WO2020244640A1 - 通信方法及装置 - Google Patents

通信方法及装置 Download PDF

Info

Publication number
WO2020244640A1
WO2020244640A1 PCT/CN2020/094729 CN2020094729W WO2020244640A1 WO 2020244640 A1 WO2020244640 A1 WO 2020244640A1 CN 2020094729 W CN2020094729 W CN 2020094729W WO 2020244640 A1 WO2020244640 A1 WO 2020244640A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
time
preset
distance value
location information
Prior art date
Application number
PCT/CN2020/094729
Other languages
English (en)
French (fr)
Inventor
王俊伟
张兴炜
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20819428.2A priority Critical patent/EP3952356A4/en
Publication of WO2020244640A1 publication Critical patent/WO2020244640A1/zh
Priority to US17/541,641 priority patent/US20220095076A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/023Services making use of location information using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1835Buffer management
    • H04L1/1845Combining techniques, e.g. code combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1848Time-out mechanisms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/203Details of error rate determination, e.g. BER, FER or WER
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link

Definitions

  • This application relates to the field of communication technology, especially V2X, intelligent driving, intelligent networked cars, etc., and especially relates to a communication method and device.
  • HARQ hybrid automatic repeat request
  • HARQ information includes: positive acknowledgement (ACK) and negative acknowledgement (NACK).
  • ACK positive acknowledgement
  • NACK negative acknowledgement
  • the HARQ technology is introduced in the vehicle-to-everything (V2X) multicast to ensure the quality of service (QoS) requirements.
  • V2X vehicle-to-everything
  • QoS quality of service
  • the demand for service quality is meaningful.
  • the area where the distance from the second terminal is less than or equal to the service distance d is called the guarantee area.
  • the vehicle 1 serves as the second terminal.
  • Vehicle 1 sends transmission blocks to other vehicles in a multicast manner.
  • Vehicle 2, vehicle 3, vehicle 4, vehicle 5, vehicle 6, and vehicle 7 all serve as the first terminal.
  • NACK information needs to be fed back, so that vehicle 1 can retransmit the transmission block to ensure service quality.
  • vehicles 6 and 7, when the received transport block is decoded incorrectly there is no need to feed back HARQ information.
  • the specific implementation process of "judge whether the separation distance between two terminals is less than or equal to the service distance d" may include the following methods:
  • Method 1 The second terminal broadcasts its own location information, the first terminal receives the location information from the second terminal, and combines the location information of the first terminal to calculate the separation distance between the second terminal and the first terminal, and then determine Whether the separation distance between two terminals is less than or equal to the service distance d.
  • Manner 2 The second terminal broadcasts the threshold of the received power of the reference signal.
  • the first terminal receives the signal from the second terminal, calculates the signal from the second terminal to obtain the reference signal received power, and then combines the reference signal received power threshold to determine whether the separation distance between the two terminals is less than or equal to Service distance d.
  • the frequent exchange of location information between vehicles consumes more time-frequency resources, and less time-frequency resources are used to transmit service data, resulting in a decrease in system capacity.
  • the determined location of the second terminal is also accurate.
  • the calculated reference signal received power cannot truly represent the separation distance value between the two vehicles. For example, when there is an obstruction between two vehicles, due to the existence of the obstruction, the signal strength received by the first terminal is weak, so the calculated reference signal received power becomes smaller, and the reference signal received based on the reduced The power to determine the separation distance between two vehicles will be greater than the true separation distance between the two vehicles.
  • the embodiments of the present application provide a communication method and device, which can ensure reliable transmission of service data and improve resource utilization.
  • an embodiment of the present application provides a communication method, which is applied to a first terminal or a chip of the first terminal, and the method includes: the first terminal receives service data from the second terminal, if the first terminal and the first terminal If the separation distance value of the two terminals is within the preset distance range, the first terminal sends to the second terminal a confirmation response message indicating the success or failure of the service data reception based on the preset condition.
  • the preset distance range is determined by the first preset distance value and the second preset distance value, and the second preset distance value is greater than the first preset distance value.
  • the first terminal receives service data from the second terminal, and if the separation distance between the first terminal and the second terminal is within a preset distance range, the first terminal sends the first terminal to the second terminal based on the preset condition.
  • the second terminal sends a confirmation response message indicating the success or failure of the service data reception.
  • the preset distance range is determined by the first preset distance value and the second preset distance value, and the second preset distance value is greater than the first preset distance value.
  • the confirmation response message is incorrect, and the calculation of the separation distance value is not accurate, which affects the quality of service data transmission.
  • the first terminal can also send service data to the second terminal if the preset conditions are met. Receiving successful or failed confirmation response information can not only ensure the quality of service data transmission, but also avoid the phenomenon that "the first terminal within the preset distance needs to feed back the confirmation response information", thereby avoiding unnecessary data transmission.
  • the preset conditions include: the length of time between the first time and the second time is less than the preset time parameter, and the first time is the latest determined interval distance value less than or equal to the first preset distance value
  • the second time is the time when the latest determined interval distance value is within the preset distance range.
  • the first terminal sends to the second terminal a confirmation response message indicating the success or failure of the service data reception based on a preset condition, including:
  • the first terminal sends to the second terminal a confirmation response message indicating the success or failure of the service data reception.
  • the length of time between the first time and the second time satisfies the preset condition, it indicates that the separation distance between the first terminal and the second terminal ranges from less than or equal to the first preset distance to the preset
  • the length of time within the distance range is less than or equal to the preset time parameter T, that is, the time length for the first terminal to enter the transition area from the security zone does not exceed the preset time parameter T.
  • the first terminal receives The service data of the second terminal will also send to the second terminal a confirmation response message indicating the success or failure of the reception of the service data to ensure data transmission efficiency. Even if the calculation of the separation distance value of the first terminal is not accurate, the data transmission efficiency can be guaranteed. Even if the first terminal is in an area near the first preset distance value, the quality of data transmission between the first terminal and the second terminal can be guaranteed, and unnecessary data retransmission can be avoided.
  • the preset time parameter is used to configure the timer
  • the timing duration of the timer is T
  • the first time is the time when the timer is started. If the length of time between the first time and the second time meets the preset condition, the first terminal sends to the second terminal a confirmation response message indicating the success or failure of the service data reception, including:
  • the first terminal sends to the second terminal an acknowledgement message indicating the success or failure of the service data reception.
  • the service data is the service data repeatedly transmitted by the second terminal and is transmitted in the transmission block;
  • the preset conditions include: the interval distance value when the first terminal first receives the transmission block is less than or equal to the first preset distance value.
  • the first terminal sends to the second terminal a confirmation response message indicating the success or failure of the service data reception based on a preset condition, including:
  • the first terminal sends to the second terminal an acknowledgement message indicating the success or failure of the retransmitted transmission block.
  • the retransmitted data block satisfies the preset condition, which indicates that the separation distance between the first terminal and the second terminal is less than or equal to the first preset distance value
  • the first terminal fails to receive the transmission block for the first time
  • the separation distance value between the first terminal and the second terminal is within a preset distance range.
  • the first terminal will also send to the second terminal an acknowledgement message indicating the success or failure of the retransmitted transmission block to ensure data transmission efficiency.
  • the service data is transmitted in transmission blocks, and the preset condition includes: the block error rate is greater than the block error rate threshold.
  • the first terminal sends to the second terminal a confirmation response message indicating the success or failure of the service data reception based on a preset condition, including:
  • the first terminal sends to the second terminal a confirmation response message indicating the success or failure of the transmission block reception.
  • the first terminal receives the transmission block from the second terminal, it will also send to the second terminal an acknowledgment of the success or failure of the reception of the transmission block to meet the transmission quality requirements of the service data.
  • the communication method of the embodiment of the present application further includes: if the separation distance value is less than or equal to the second preset distance value, the first terminal updates the current error block according to the status of the transmission block reception success or failure rate.
  • the method of the embodiment of the present application further includes: the first terminal corrects the communication between the first terminal and the second terminal according to the relative movement speed between the first terminal and the second terminal and the preset correction time.
  • the initial value of the distance to obtain the value of the separation distance between the first terminal and the second terminal.
  • the first terminal modifies the initial value of the distance between the first terminal and the second terminal according to the relative movement speed between the first terminal and the second terminal and the preset correspondence relationship, so as to obtain the distance between the first terminal and the second terminal.
  • the separation distance value is the distance value represented by the reference signal received power
  • the preset correspondence relationship is the correspondence relationship between the relative motion speed and the reference signal received power adjustment amount.
  • the first terminal corrects the initial value of the distance between the first terminal and the second terminal according to the relative movement speed between the first terminal and the second terminal and the preset correction time to obtain the distance between the first terminal and the second terminal.
  • the second terminal does not need to frequently send location information to the first terminal, saving time-frequency resources.
  • an embodiment of the present application provides a communication method, which is applied to a first terminal or a chip of the first terminal, and the method includes: at a first time, the first terminal obtains first location information of the second terminal. At the second time, the first terminal obtains the second location information of the second terminal. The first terminal determines the location of the second terminal according to the first location information and the second location information. The first location information indicates the location of the second terminal or the first configuration area where the second terminal is located. The second location information indicates the second configuration area where the second terminal is located, and the configuration parameters of the first configuration area are different from the configuration parameters of the second configuration area. The first time is no later than the second time.
  • the first terminal obtains the first location information of the second terminal.
  • the first terminal obtains the second location information of the second terminal.
  • the first terminal determines the location of the second terminal according to the first location information and the second location information.
  • the first location information indicates the location of the second terminal or the first configuration area where the second terminal is located.
  • the second location information indicates the second configuration area where the second terminal is located, and the configuration parameters of the first configuration area are different from the configuration parameters of the second configuration area.
  • the first time is no later than the second time.
  • the first location information can indicate the location of the second terminal or the first configuration area where the second terminal is located
  • the second location information indicates the second configuration area where the second terminal is located.
  • the first location information is carried in broadcast messages, radio resource control RRC signaling, media access control MAC signaling, or side link control information SCI.
  • the first terminal may obtain the first location information in a variety of ways to determine the location of the second terminal in combination with the second location information, so as to ensure the accuracy of determining the location of the second terminal.
  • the second location information is carried in the SCI.
  • the first terminal obtains the second location information by receiving the SCI, and then combines the first location information to determine the location of the second terminal.
  • the first terminal obtains the second location information by receiving the SCI, which has strong timeliness and helps to improve the accuracy of determining the location of the second terminal.
  • the first configuration area is larger than the second configuration area.
  • an embodiment of the present application provides a communication device, and the communication device may be the first terminal in the foregoing first aspect.
  • the communication device includes a receiver, a processor, and a transmitter.
  • the receiver is used to receive service data from the second terminal.
  • the processor is configured to determine that the separation distance value between the communication device and the second terminal is within a preset distance range and meets a preset condition.
  • the transmitter is used for the processor to determine that the separation distance value between the communication device and the second terminal is within a preset distance range, and the preset condition is met, and send to the second terminal a confirmation response message indicating the success or failure of the service data reception.
  • the preset distance range is determined by the first preset distance value and the second preset distance value, and the second preset distance value is greater than the first preset distance value.
  • the preset conditions include: the length of time between the first time and the second time is less than the preset time parameter, and the first time is the latest determined interval distance value less than or equal to the first preset distance value The second time is the time when the latest determined interval distance value is within the preset distance range.
  • the processor is configured to determine that the preset condition is satisfied, including: determining that the length of time between the first time and the second time satisfies the preset condition.
  • the preset time parameter is used to configure the timer, the timing duration of the timer is T, and the first time is the time when the timer starts;
  • the processor is configured to determine that the length of time between the first time and the second time meets a preset condition, including: determining that the timer is in a running state.
  • the service data is the service data repeatedly transmitted by the second terminal and is transmitted in transmission blocks;
  • the preset conditions include: the interval distance value when the communication device first receives the transmission block is less than or equal to the first preset distance value .
  • the processor is configured to determine that the preset condition is satisfied, including: determining that the retransmitted transmission block satisfies the preset condition.
  • the service data is transmitted in transmission blocks, and the preset condition includes: the block error rate is greater than the block error rate threshold.
  • the processor is used to determine that the preset condition is satisfied, including: used to determine that the current block error rate meets the preset condition.
  • the processor is further configured to: if the separation distance value is less than or equal to the second preset distance value, update the current block error rate according to the status of successful or failed transmission block reception.
  • the processor is further configured to: according to the relative movement speed between the communication device and the second terminal and the preset correction time, correct the initial value of the distance between the communication device and the second terminal to obtain communication The distance between the device and the second terminal.
  • the processor is further configured to: modify the initial value of the distance between the communication device and the second terminal according to the relative movement speed between the communication device and the second terminal and the preset correspondence, so as to obtain the distance between the communication device and the second terminal
  • the separation distance value, the initial distance value is the distance value represented by the reference signal received power
  • the preset correspondence relationship is the correspondence relationship between the relative motion speed and the reference signal received power adjustment amount.
  • an embodiment of the present application provides a communication device, and the communication device may be the first terminal in the foregoing second aspect.
  • the communication device includes a receiver and a processor.
  • the receiver is used to obtain the first location information of the second terminal at the first time.
  • the receiver is also used to obtain the second location information of the second terminal at the second time.
  • the processor is configured to determine the location of the second terminal according to the first location information and the second location information.
  • the first location information indicates the location of the second terminal or the first configuration area where the second terminal is located.
  • the second location information indicates the second configuration area where the second terminal is located, and the configuration parameters of the first configuration area are different from the configuration parameters of the second configuration area.
  • the first time is no later than the second time.
  • the first location information is carried in broadcast messages, radio resource control RRC signaling, media access control MAC signaling, or side link control information SCI.
  • the second location information is carried in the SCI.
  • the first configuration area is larger than the second configuration area.
  • the present application provides a communication device, which is used to implement the function of the first terminal in the foregoing first aspect, or is used to implement the function of the first terminal in the foregoing second aspect.
  • an embodiment of the present application provides a communication device that has a function of implementing the communication method of any one of the foregoing aspects.
  • This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above-mentioned functions.
  • an embodiment of the present application provides a communication device, including: a processor and a memory; the memory is used to store computer execution instructions, and when the communication device is running, the processor executes the computer execution instructions stored in the memory, So that the communication device executes the communication method according to any one of the above aspects.
  • an embodiment of the present application provides a communication device, including: a processor; the processor is configured to couple with a memory, and after reading an instruction in the memory, execute the communication method according to any one of the above aspects according to the instruction .
  • an embodiment of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium, and when it runs on a computer, the computer can perform any of the above-mentioned communications method.
  • the embodiments of the present application provide a computer program product containing instructions, which when run on a computer, enable the computer to execute the communication method of any one of the above aspects.
  • an embodiment of the present application provides a circuit system, the circuit system includes a processing circuit, and the processing circuit is configured to execute the communication method according to any one of the foregoing aspects.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor, and the processor is coupled with a memory.
  • the memory stores program instructions. When the program instructions stored in the memory are executed by the processor, any one of the above aspects is implemented. Communication method.
  • an embodiment of the present application provides a communication system.
  • the communication system includes the first terminal and the second terminal in any of the foregoing aspects.
  • Figure 1 is a schematic diagram of a business scenario for distance-based quality service requirements provided by related technologies
  • FIG. 2 is a schematic diagram of transmission block division according to an embodiment of the application.
  • FIG. 3 is a flow chart of a method for transmission and retransmission based on transmission block provided by an embodiment of the application;
  • FIG. 4 is a schematic diagram of another transmission block division provided by an embodiment of this application.
  • FIG. 5 is a flowchart of a method for transmission and retransmission based on coding block groups according to an embodiment of the application
  • FIGS. 6 and 7 are schematic diagrams of communication systems provided by embodiments of this application.
  • FIG. 8 is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 9 is a schematic diagram of a business scenario of distance-based quality service requirements provided by an embodiment of the application.
  • FIG. 13 is a schematic diagram of a block error rate statistics scenario provided by an embodiment of the application.
  • FIG. 19 is a schematic diagram of a HARQ information feedback effect provided by an embodiment of this application.
  • FIG. 22 is a schematic diagram of a HARQ information feedback effect provided by an embodiment of this application.
  • FIG. 23 is a flowchart of a communication method provided by an embodiment of this application.
  • Figure 24 is a schematic diagram of a region division scenario provided by related technologies.
  • FIG. 25 is a flowchart of a communication method provided by an embodiment of this application.
  • 26 to 28 are schematic diagrams of a communication scenario provided by an embodiment of this application.
  • FIG. 29 and FIG. 30 are schematic diagrams of a HARQ information feedback scenario provided by an embodiment of this application.
  • FIG. 31 is a flowchart of a communication method provided by an embodiment of this application.
  • FIG. 32 is a schematic diagram of a scenario for calculating distance according to an embodiment of the application.
  • FIG. 33 and FIG. 34 are schematic diagrams of the structure of a communication device provided by an embodiment of this application.
  • TB transport block
  • CBG code block group
  • Step 1 The sending end cuts the TB to be sent into multiple code blocks (CB).
  • CB code blocks
  • a TB is divided into 4 CBs, namely: CB0, CB1, CB2, and CB3 .
  • Each CB performs cyclic redundancy check (CRC) check, and the entire TB also performs CRC check.
  • CRC cyclic redundancy check
  • the sending end sends the TB checked by the CRC to the receiving end.
  • Step 2 The receiving end receives, demodulates, decodes and checks the TB after the CRC check.
  • the verification results of the four CBs are: CB0 verification error, CB1, CB2, and CB3 are all verified correctly.
  • the verification results of the 4 CBs are all correct, and the TB verification is correct, it means that the receiving end successfully receives the TB (not shown in FIG. 3).
  • Step 3 The receiving end sends a negative acknowledgement (NACK) to the sending end to inform the sending end that the TB has failed to receive.
  • NACK negative acknowledgement
  • Step 4 The sender retransmits the verified TB.
  • Step 5 The receiving end receives the retransmitted TB and merges it with the TB received in step 2. After CB0, CB1, CB2 and CB3 are all verified correctly, and the TB is verified correctly, it sends a positive acknowledgement (ACK) to the sender ) To inform the sender that the TB received successfully.
  • ACK positive acknowledgement
  • the receiving end repeats step 3, and the sending end repeats step 4 until the receiving end feeds back an ACK or the sending end retransmits the number of times the TB reaches The preset retransmission threshold.
  • Step 1 The sending end cuts the TB to be sent into N code blocks (CB), and the N CBs form M CBGs.
  • N is determined according to the length of TB
  • M is a parameter configured on the network side.
  • a TB is divided into 4 CBs, which are CB0, CB1, CB2, and CB3.
  • CB0 and CB1 constitute CBG0
  • CB2 and CB3 constitute CBG1.
  • Each CB performs a CRC check, and the entire TB also performs a CRC check.
  • the sender sends TB to the receiver.
  • Step 2 The receiving end receives, demodulates, decodes and checks the TB after the CRC check.
  • the verification results of the four CBs are: CB0 in CBG0 is verified incorrectly, CB1 in CBG0 is verified correctly, and both CB2 and CB3 in CBG1 are verified correctly.
  • the verification results of the 4 CBs are all correct, and the TB verification is correct, it means that the receiving end successfully receives the TB (not shown in FIG. 5).
  • Step 3 The receiving end sends HARQ information to the sending end, where the HARQ information corresponding to CBG0 is NACK, and the HARQ information corresponding to CBG1 is ACK.
  • Step 4 The sender retransmits CBG0.
  • Step 5 The receiving end receives the retransmitted CBG0 and merges it with the TB received in step 2. After all CB0, CB1, CB2, and CB3 are verified correctly, and the TB is verified correctly, the HARQ information is sent to the sender. Among them, CBG0 and The HARQ information corresponding to CBG1 is ACK.
  • the receiving end repeats step 3, and the sending end repeats step 4, until the receiving end feeds back M ACKs or the sending end retransmits the number of times reached the preset Set the retransmission threshold.
  • the receiving end is used as the first terminal, and the transmitting end is used as the second terminal, which will be described here in a unified manner, and will not be described in detail below.
  • the embodiments of the present application may be applicable to systems for communication between terminals, such as a V2X communication system and a device-to-device (D2D) system.
  • the communication system includes at least two terminals, and the two terminals can directly communicate through a sidelink (SL).
  • the communication system further includes an access network device.
  • the terminal can also communicate with the access network device (only two terminals are shown in Figure 6 and Figure 7). Among them, information can be transmitted between the access network equipment and the terminal through radio waves, visible light, laser, infrared, light quantum, power line, optical fiber, coaxial cable, copper stranded wire, etc.
  • the terminal is mainly used to receive or send data.
  • the terminal involved in the embodiments of the present application may be a device or a component in a device that implements terminal functions.
  • the terminal includes, for example, but not limited to, various handheld devices with wireless communication functions, vehicle-mounted devices, and wearables.
  • Devices, computing devices, or other processing devices connected to wireless modems may also include subscriber units, cellular phones, smart phones, wireless data cards, and personal digital assistants, PDA) computer, tablet computer, handheld device (handheld), laptop computer (laptop computer), machine type communication (MTC) terminal (terminal), user equipment (UE), mobile terminal, etc. .
  • PDA personal digital assistants
  • MTC machine type communication
  • UE user equipment
  • the terminal may be a component in any of the foregoing devices (for example, the terminal may refer to a chip system in any of the foregoing devices).
  • the terminal involved in the embodiments of the present application may also be a vehicle-mounted module, vehicle-mounted module, vehicle-mounted component, vehicle-mounted chip, or vehicle-mounted unit that is built into a vehicle as one or more components or units, and the vehicle passes through the built-in vehicle-mounted module , Vehicle-mounted modules, vehicle-mounted components, vehicle-mounted chips, or vehicle-mounted units can implement the method of this application.
  • the terminal device may also be referred to as a terminal, which is described here in a unified manner and will not be described in detail below.
  • Access network equipment is a device deployed on a wireless access network to provide wireless communication functions.
  • access network equipment may refer to equipment that communicates with wireless terminals through one or more cells on the air interface of the access network.
  • the device that realizes the function of the access network equipment may be the access network equipment or It is a device that supports the access network equipment to achieve this function (such as the chip in the access network equipment).
  • the access network device can perform attribute management on the air interface.
  • the base station equipment can also coordinate the attribute management of the air interface.
  • the access network equipment includes various forms of macro base stations, micro base stations (also called small stations), relay equipment such as relay stations or relay equipment chips, transmission reception points (TRP), and evolved network nodes (evolved Node B, eNB), next-generation network node (g Node B, gNB), evolved Node B (ng-evolved Node B, ng-eNB) connected to the next-generation core network, etc.
  • the access network equipment can be a baseband unit (BBU) and a remote radio unit (RRU), in the cloud radio access netowrk, CRAN
  • BBU pool baseband pool
  • RRU remote radio unit
  • the communication systems shown in Figures 6 and 7 can be applied to the current long term evolution (LTE) or advanced long term evolution (LTE advanced, LTE-A) systems, and can also be applied to the 5G network currently under development Or in other networks in the future, of course, it can also be applied to a system of LTE and 5G hybrid networking, or other systems, which are not specifically limited in the embodiment of the present application.
  • LTE long term evolution
  • LTE advanced, LTE-A advanced long term evolution
  • the vehicle-to-everything (V2X) communication system supports broadcast mode, multicast mode and unicast mode.
  • the broadcast mode means that the transmitting terminal uses the broadcast mode to send the transport block, and all receiving terminals can parse sidelink control information (SCI) and sidelink shared channel (SSCH) information. SCI does not need to be scrambled, or, SCI uses scrambling codes known to all receiving terminals to scramble.
  • the multicast mode means that the sending terminal adopts a broadcast transmission block, and the transmission block carries a multicast identity (ID). The receiving terminal parses the SCI and SSCH according to the multicast ID.
  • ID multicast identity
  • the unicast mode means that a sending terminal sends a transmission block to a receiving terminal, and other receiving terminals cannot resolve SCI and SSCH.
  • the receiving terminal is used as the first terminal
  • the transmitting terminal is used as the second terminal, which is described here in a unified manner, and will not be described in detail below.
  • the embodiment of the present application provides a communication method, which is applied in a data transmission process between terminals.
  • the communication method provided by the embodiment of the present application will be described by taking the second terminal sending service data to the first terminal in a multicast mode as an example.
  • the communication method of the embodiment of the present application includes the following steps:
  • the second terminal sends service data to the first terminal.
  • the first terminal receives service data from the second terminal.
  • the first terminal first parses the physical sidelink control channel (PSCCH) to obtain sidelink control information (SCI), and shares the channel (
  • PSSCH physical sidelink shared channel
  • the business data can be information in different business scenarios.
  • Business data is transmitted in the form of transmission blocks.
  • data transmission reliability requirements between terminals are different.
  • the service data includes location information of the second terminal.
  • the separation distance between the first terminal and the second terminal is within a certain preset distance range. It is necessary to ensure the reliability of the data transmission between the first terminal and the second terminal, so that the first terminal can be Position information, adjust the driving speed to avoid collisions between the vehicles corresponding to the first terminal and the second terminal. And when the separation distance between the first terminal and the second terminal is outside a certain preset distance range, for example, when the separation distance between the first terminal and the second terminal is very far, the distance between the first terminal and the second terminal Corresponding vehicles are less likely to collide, and accordingly, the reliability requirements for data transmission between terminals are lower.
  • the first terminal After performing S801, the first terminal performs different steps based on the location of the first terminal.
  • the area where the distance from the second terminal (vehicle 1) is the first preset distance value is called the safeguard area, and the distance from the second terminal (vehicle 1) is greater than the first preset distance.
  • the area whose value is less than or equal to the second preset distance value is called the transition zone, where the interval range determined by the first preset distance value and the second preset distance value is called the preset distance range.
  • the first terminal determines that the separation distance between the first terminal and the second terminal is less than or equal to the first preset distance value (that is, the first terminal is in the security area), the first terminal executes S802, and if the first terminal determines the first terminal The separation distance value between a terminal and the second terminal is within a preset distance range (that is, the first terminal is in the transition zone), the first terminal executes S803.
  • the first preset distance value can indicate the size of the communication required distance.
  • the range of the communication required distance may be an area range corresponding to the distance less than or equal to the first preset distance value.
  • the first preset distance value is related to the business scenario. In different business scenarios, the first preset distance value is also different.
  • the area corresponding to the first preset distance value may be referred to as a safeguard area.
  • the first preset distance value is an area range where the separation distance from the second terminal is within 1000 meters.
  • the first preset distance value may use different physical quantities to characterize the distance value in space.
  • the first preset distance value may be represented by the physical quantity "length”, and the first preset distance value indicates that the separation distance from the second terminal is 1000 meters.
  • the area range is: the area range with the second terminal within 1000 meters.
  • the first preset distance value may be represented by the physical quantity "reference signal received power”, and the first preset distance value is -80dB to indicate that the reference signal received power value of the second terminal is greater than or equal to -80dB The scope of the area.
  • the separation distance between the first terminal and the second terminal is less than or equal to the first preset distance value, which indicates that the first terminal is in the guarantee area.
  • the transmission quality of the service data between the terminals is relatively high.
  • a terminal needs to send to the second terminal a confirmation response message indicating the success or failure of service data reception to ensure data transmission efficiency.
  • the preset information is a statistical indicator corresponding to the preset condition.
  • generating the preset information can be specifically implemented as: updating the first time, that is, updating the time when the first terminal determines that the interval distance value is less than or equal to the first preset distance value.
  • generating the preset information can be specifically implemented as: identifying whether the transmission block is a newly transmitted transmission block.
  • generating the preset information can be specifically implemented as: updating the current block error rate.
  • the feedback mode of "ACK/NACK" can be adopted, that is, when the service data is successfully received, the first terminal sends Acknowledge the response message ACK.
  • the first terminal sends a negative response message NACK to the second terminal.
  • the first terminal can also use the "NACK only" feedback method, that is, when the service data is successfully received, the first terminal does not send any information to the second terminal, and when the service data fails to be received, the first terminal sends to the second terminal Negative acknowledgement information NACK.
  • the first terminal receives the side link control information from the second terminal, and the side link control information carries feedback mode indication information to inform the first terminal of the feedback mode used when feeding back HARQ information.
  • the preset distance range is determined by the first preset distance value and the second preset distance value, and the second preset distance value is greater than the first preset distance value.
  • the area corresponding to the preset distance range can be called the transition zone.
  • the preset distance range is an area ranging from 1000 meters to 1100 meters apart from the second terminal.
  • the second preset distance value is a value determined according to the business scenario, and the second preset distance value may also be an infinite value. When the second preset distance value is set to infinity, it is only judged whether the separation distance value is much smaller than the second preset distance value.
  • the second preset distance value is similar to the first preset distance value, and different physical quantities may also be used to characterize the spatial separation length value. For example, when the first preset distance value and the second preset distance value are both represented by the physical quantity "length", the first preset distance value is 1000 to indicate that the separation distance from the second terminal is 1000 meters The second preset distance value is 1100 to indicate that the distance from the second terminal is within 1100 meters.
  • the preset distance is greater than 1000 and less than or equal to 1100.
  • the separation distance from the second terminal is in the range of 1000 meters to 1100 meters.
  • the first preset distance value is -80 to indicate: the reference of the second terminal
  • the signal reception power value is greater than or equal to the area range of -80dB.
  • the second preset distance value is -95, to indicate that the reference signal received power value of the second terminal is greater than or equal to an area range of -95dB.
  • the preset distance range is an interval range greater than -95 and less than or equal to -80, that is, an area range where the reference signal received power value of the second terminal is greater than -95dB and less than or equal to -80dB.
  • the first terminal sends to the second terminal the confirmation response information of the success or failure of the reception of the service data
  • the second terminal sends to the second terminal the confirmation response information of the success or failure of the reception of the service data
  • the preset condition may be: the length of time between the first time and the second time is less than the preset time parameter, where the first time is the time when the latest determined interval distance value is less than or equal to the first preset distance value, and the first time The second time is the time when the latest determined interval distance value is within the preset distance range.
  • the preset condition may be: the interval distance value when the first terminal first receives the transmission block is less than or equal to the first preset distance value.
  • the preset condition may also be: the block error rate is greater than the block error rate threshold.
  • the preset condition includes: the time length between the first time and the second time is less than the preset time parameter T.
  • the first time is the time when the latest determined interval distance value is less than or equal to the first preset distance value.
  • the first time is the time when the first terminal receives the location information of the second terminal.
  • the first terminal receives broadcast messages, radio resource control (RRC) signaling, or medium access control (MAC) signaling from the access network equipment to obtain the location of the second terminal Information
  • the first time is the latest time when the first terminal received the broadcast message, RRC signaling or MAC signaling.
  • the first terminal receives sidelink control information (SCI) from the second terminal to obtain location information of the second terminal.
  • SCI sidelink control information
  • the first time is the latest time when the first terminal receives the SCI.
  • the SCI carries the location information of the second terminal.
  • the second time is the time when the latest determined interval distance value is within the preset distance range.
  • S803 may include S8031:
  • the first terminal sends service data to the second terminal Receive a confirmation response message of success or failure.
  • the first terminal determines that the separation distance value is less than or equal to the first preset distance value, it indicates that the first terminal is in the guarantee area.
  • the first terminal receives service data from the second terminal, it will The second terminal sends a confirmation response message indicating the success or failure of the service data reception.
  • the length of time between the first time and the second time meets the preset condition, it indicates that the separation distance between the first terminal and the second terminal ranges from less than or equal to the first preset distance value to within the preset distance range
  • the length of time within is less than or equal to the preset time parameter T, that is, the length of time the first terminal enters the transition area from the guarantee area does not exceed the preset time parameter T.
  • the first terminal receives In order to ensure the efficiency of data transmission, the confirmation response information of the success or failure of the service data reception is also sent to the second terminal.
  • the first terminal also sends to the second terminal a confirmation response message indicating the success or failure of the service data reception, even if the communication between the first terminal and the second terminal.
  • the reduction in the frequency of location information interaction can also ensure the efficiency of data transmission.
  • the first terminal can correctly determine that the separation distance value is less than or equal to the first preset distance value at least once.
  • the preset distance value, and the time when the first terminal determines that the interval distance value is less than or equal to the first preset distance value is the first time, even if the interval distance value is calculated by the first terminal during one or several subsequent intervals
  • the separation distance value of is inaccurate and fails to truly reflect the separation distance between the first terminal and the second terminal.
  • the first terminal determines that the separation distance value is within the preset distance range instead of the separation distance value being less than or equal to the first preset distance.
  • the first terminal when the first terminal receives the service data from the second terminal, it will also send to the second terminal a message indicating whether the service data is received successfully or failed. Confirm the response information, so that even if the calculation of the separation distance of the first terminal is not accurate, the data transmission efficiency can be guaranteed. Even if the first terminal is in an area near the first preset distance value, the quality of data transmission between the first terminal and the second terminal can be guaranteed, and unnecessary data retransmission can be avoided.
  • the preset time parameter is used to configure the timer.
  • the timing duration of the timer is T
  • the first time is the time when the timer starts, that is, the first terminal determines that the interval distance value is less than or equal to the first preset distance value to start the timer .
  • the specific implementation process of S8031 may include: if the separation distance value between the first terminal and the second terminal is within the preset distance range and the timer is in the running state, the first terminal sends to the second terminal a successful or unsuccessful service data reception. Confirm the response message.
  • the start time of the timer is the first time, if the timer is running, it indicates that the length of time between the first time and the second time meets the preset condition.
  • the first terminal receives from the second terminal In the case of service data, the second terminal will also send a confirmation response message indicating the success or failure of the service data reception to ensure data transmission efficiency.
  • the service data is the service data retransmitted by the second terminal and is transmitted in transmission blocks.
  • the preset condition includes: the interval distance value when the first terminal first receives the transmission block is less than or equal to the first preset distance value.
  • the specific implementation process of S803 may include S8032:
  • the first terminal sends the retransmitted transmission block to the second terminal to be successfully received or Failed confirmation response message.
  • the transmission block received by the first terminal for the first time is the newly transmitted transmission block, that is, the first terminal receives the data transmitted for the first time by the second terminal.
  • the retransmitted transmission block is a transmission block repeatedly transmitted by the second terminal, so that the first terminal receives the transmission block again.
  • Each transmission block corresponds to a new transmission indication information, which is used to indicate whether the transmission block is a transmission block newly transmitted by the second terminal.
  • the retransmitted data block satisfies the preset condition, which indicates that the separation distance between the first terminal and the second terminal is less than or equal to the first preset distance value
  • the first terminal fails to receive the transmission block for the first time
  • the separation distance value between the first terminal and the second terminal is within a preset distance range.
  • the first terminal will also send to the second terminal an acknowledgement message indicating the success or failure of the retransmitted transmission block to ensure data transmission efficiency.
  • business data is transmitted in transport blocks.
  • the preset conditions include: the block error rate is greater than the block error rate threshold.
  • the specific implementation process of S803 may include S8033:
  • the first terminal sends a confirmation response to the second terminal of the success or failure of the transmission block reception information.
  • the block error rate satisfies the following formula:
  • BLER represents the block error rate
  • N_error represents the number of transmission blocks that are not successfully received within the preset time period
  • N_total represents the number of transmission blocks received within the preset time period
  • N_error is a preset value, such as 1024 , 2048.
  • the block error rate threshold may be a value determined by the access network device or the second terminal, and the block error rate threshold may also be a value determined according to the quality of service (QoS) of the service type.
  • QoS quality of service
  • the block error rate threshold may be a multiple of the QoS required block error rate, that is, the block error rate threshold may be 10% or 15%. It can also be set based on the offset and the original QoS requirement block error rate. The offset is 2%, and the original QoS requirement block error rate is 5%, then the block error rate threshold can be 7%.
  • FIG. 13 shows a schematic diagram of block error rate statistics.
  • the length of the preset time period corresponding to time window 1 and time window 2 is 1 second.
  • each transmission block corresponds to a number.
  • N_total 10.
  • the number of transmissions is once and the number of transmission blocks that are successfully received is 8.
  • the transmission block numbered 6 has the number of transmissions three times, and the final reception is successful, and the transmission block number 8 has the number of transmissions once, and the final reception fails.
  • BLER 10.00%.
  • N_total 11.
  • the number of transmissions is one and the number of successfully received transmission blocks is 9.
  • the transmission block numbered 6 has the number of transmissions three times, and the final reception is successful, and the transmission block number 8 has the number of transmissions once, and the final reception fails.
  • BLER 9.09%.
  • the first terminal receives the transmission block from the second terminal, it will also send to the second terminal an acknowledgment of the success or failure of the reception of the transmission block to meet the transmission quality requirements of the service data.
  • the first terminal needs to update the current block error rate in real time. Referring to Figure 14, the first terminal needs to perform S8034 after performing S801:
  • the first terminal updates the current block error rate according to the status of the transmission block receiving success or failure.
  • the separation distance value is less than or equal to the first preset distance value, it indicates that the first terminal is in the guarantee area.
  • the first terminal receives the transmission block from the second terminal, it sends to the second terminal the status of the success or failure of the reception of the transmission block, and updates the current block error rate according to the status of the success or failure of the reception of the transmission block.
  • the first terminal is in the transition zone (that is, the separation distance value is within the preset distance range), it is used as a basis for whether the first terminal feeds back confirmation response information.
  • the separation distance value is within the preset distance range, it indicates that the first terminal is in the transition zone. Regardless of whether the current block error rate is greater than the block error rate threshold, the first terminal will update according to the status of the successful or failed transmission block reception
  • the current block error rate means that when the current block error rate is greater than the block error rate threshold, the first terminal sends to the second terminal an acknowledgement message indicating the success or failure of the transmission block reception to ensure the transmission quality requirements of the service data.
  • the first terminal needs to execute S802 and S8034.
  • the first terminal can execute S802 first, then execute S8034, or execute S8034 first, then execute In S802, S802 and S034 can also be executed at the same time.
  • the order in which the first terminal executes S802 and S8034 is not limited.
  • the first terminal needs to execute S8033 and S8034, and the order of execution is not limited, that is, the first terminal can execute S8033 first, then execute S8034, or execute S8034 first , And then execute S8033, you can also execute S8033 and S034 at the same time.
  • the separation distance value in the communication method in the embodiment of the present application is a corrected value.
  • the specific process for the first terminal to obtain the separation distance value may include S8010 or S8011.
  • the specific process for the first terminal to obtain the separation distance value may include S8010:
  • the first terminal corrects the initial value of the distance between the first terminal and the second terminal according to the relative movement speed between the first terminal and the second terminal and the preset correction time to obtain the distance between the first terminal and the second terminal.
  • the separation distance value The separation distance value.
  • the initial value of the distance may be a value calculated by the first terminal based on the location information of the first terminal and the second terminal.
  • the initial value of the distance between the first terminal and the second terminal may also use different physical quantities to represent the value of the spatial separation length. For example, when the initial value of the distance is represented by the physical quantity "length", the first terminal receives the location information from the second terminal, and then calculates the distance between the two based on the location information of the second terminal and the location information of the first terminal. Initial value of distance.
  • the first terminal receives the signal from the second terminal, and the first terminal calculates the reference signal received power of the received signal to characterize the relationship between the first terminal and the The distance between the second terminals.
  • the relative movement speed between the first terminal and the second terminal is obtained according to the actual movement speed of the first terminal and the second terminal.
  • the first terminal receives the actual movement speed from the second terminal, and combines the actual movement speed of the first terminal to obtain the relative movement speed.
  • the preset correction time is related to the business scenario. For example, in the anti-collision business scenario, the preset correction time is 5 seconds.
  • the preset correction time may be a parameter received by the first terminal from the access network device, may also be a parameter received by the first terminal from the second terminal, or may be a parameter indicated by the network side when the service is established.
  • the separation distance value between the first terminal and the second terminal satisfies the following formula:
  • A represents the separation distance value between the first terminal and the second terminal
  • e represents the initial value of the distance between the first terminal and the second terminal
  • x represents the preset correction time
  • v represents the first terminal and the second terminal The relative speed of movement between.
  • the preset correction time x 5 seconds.
  • A 950 meters can be obtained.
  • the separation distance value between the first terminal and the second terminal satisfies the following formula:
  • A represents the modified reference signal received power
  • a represents the reference signal received power before correction
  • e represents the initial value of the distance between the first terminal and the second terminal
  • x represents the preset correction time
  • v represents the The relative speed of movement between the second terminals.
  • the first terminal can then obtain the separation distance value between the first terminal and the second terminal based on the corrected reference signal received power.
  • the first terminal corrects the initial value of the distance between the first terminal and the second terminal according to the relative movement speed between the first terminal and the second terminal and the preset correction time to obtain the distance between the first terminal and the second terminal.
  • the second terminal does not need to frequently send location information to the first terminal, saving time-frequency resources.
  • the specific process for the first terminal to obtain the separation distance value may include S8011:
  • the first terminal corrects the initial value of the distance between the first terminal and the second terminal according to the relative movement speed between the first terminal and the second terminal and the preset correspondence, so as to obtain the distance between the first terminal and the second terminal.
  • the separation distance value is the separation distance value.
  • the relative movement speed and the initial value of the distance can refer to the relevant description of S8010, which will not be repeated here.
  • the preset correspondence is the correspondence between the relative motion speed and the reference signal received power adjustment amount.
  • Table 1 shows a corresponding relationship between the relative motion speed and the reference signal received power adjustment amount.
  • the revised reference signal received power satisfies the following formula:
  • A represents the corrected reference signal received power
  • a represents the reference signal received power before correction
  • represents the correction amount of the reference signal received power.
  • the first terminal modifies the initial value of the distance between the first terminal and the second terminal according to the relative movement speed between the first terminal and the second terminal and the preset correspondence relationship, so as to obtain the distance between the first terminal and the second terminal.
  • the second terminal does not need to frequently send location information to the first terminal, saving time-frequency resources.
  • the first preset distance value is also a corrected value.
  • the specific process for the first terminal to obtain the first preset distance value may include S8012 or S8013.
  • the specific process for the first terminal to obtain the first preset distance value may include S8012:
  • the first terminal corrects the initial distance value according to the relative movement speed between the first terminal and the second terminal and the preset correction time to obtain the first preset distance value.
  • the initial distance value is used to indicate the size of the guarantee area, and different physical quantities can also be used to characterize the distance in space.
  • the initial distance value can be represented by the physical quantity "length”, and can be represented by the physical quantity "reference signal received power”.
  • the first preset distance value satisfies the following formula:
  • B represents the first preset distance value
  • b represents the initial distance value
  • x represents the preset correction time
  • v represents the relative movement speed between the first terminal and the second terminal.
  • the preset correction time x 5 seconds.
  • B 1050 meters can be obtained.
  • the first preset distance value satisfies the following formula:
  • B represents the corrected reference signal received power
  • b represents the reference signal received power before correction
  • d represents the initial value of the initial distance
  • x represents the preset correction time
  • v represents the relative movement speed between the first terminal and the second terminal .
  • the first terminal can then obtain the first preset distance value based on the corrected reference signal received power.
  • the first terminal corrects the initial distance value according to the relative movement speed between the first terminal and the second terminal and the preset correction time to obtain the first preset distance value, and the second terminal does not need to frequently send the position to the first terminal Information, save time and frequency resources.
  • the specific process for the first terminal to obtain the separation distance value may include S8013:
  • the first terminal corrects the initial distance value according to the relative movement speed between the first terminal and the second terminal and the preset correspondence relationship to obtain the first preset distance value.
  • the relative movement speed and the initial distance value can refer to the relevant description of S8010, which will not be repeated here.
  • the preset correspondence relationship is the correspondence relationship between the relative motion speed and the reference signal received power adjustment amount. For details, refer to the correspondence relationship shown in Table 1.
  • the revised reference signal received power satisfies the following formula:
  • B represents the corrected reference signal received power
  • b represents the reference signal received power before correction
  • represents the correction amount of the reference signal received power.
  • the first terminal can then obtain the first preset distance value based on the corrected reference signal received power.
  • the first terminal corrects the initial distance value according to the relative movement speed between the first terminal and the second terminal and the preset correspondence relationship to obtain the first preset distance value, and the second terminal does not need to frequently send the position to the first terminal Information, save time and frequency resources.
  • the first terminal may first modify the initial value of the distance between the first terminal and the second terminal to obtain the value of the separation distance between the first terminal and the second terminal.
  • the initial distance value of the size is corrected to obtain the first preset distance value, that is, the first terminal first executes S8010 or S8011, and then executes S8012 or S8013.
  • the first terminal may first modify the initial distance value used to indicate the size of the security area to obtain the first preset distance value, and then modify the initial value of the distance between the first terminal and the second terminal to obtain The value of the separation distance between the first terminal and the second terminal, that is, the first terminal executes S8012 or S8013 first, and then executes S8010 or S8011.
  • the first terminal may first modify the initial value of the distance between the first terminal and the second terminal and the initial distance value used to indicate the size of the security area at the same time, that is, the first terminal executes one of the steps in S8010 and S8011, and at the same time Perform a step in S8012 and S8013.
  • the order in which the first terminal executes S8010 to S8013 is not limited.
  • the first terminal receives service data from the second terminal, and if the separation distance between the first terminal and the second terminal is within a preset distance range, the first terminal sends the first terminal to the second terminal based on the preset condition.
  • the second terminal sends a confirmation response message indicating the success or failure of the service data reception.
  • the preset distance range is determined by the first preset distance value and the second preset distance value, and the second preset distance value is greater than the first preset distance value.
  • the confirmation response message is incorrect, and the calculation of the separation distance value is not accurate, which affects the quality of service data transmission.
  • the first terminal can also send service data to the second terminal if the preset conditions are met. Receiving successful or failed confirmation response information can not only ensure the quality of service data transmission, but also avoid the phenomenon that "the first terminal within the preset distance needs to feed back the confirmation response information", thereby avoiding unnecessary data transmission.
  • the communication method in this embodiment of the present application may include: the first terminal determines the vehicle position of the first terminal Scope, the first terminal feeds back HARQ information.
  • the specific implementation process of "the first terminal determines the vehicle location range of the first terminal” may include the following steps:
  • the first terminal obtains configuration parameters.
  • the configuration parameters include a preset correction time, a first preset distance value, and a second preset distance value.
  • the preset correction time is 5 seconds
  • the first preset distance value is 1000 meters
  • the second preset distance value is 1100 meters.
  • the first terminal calculates a separation distance value between the first terminal and the second terminal.
  • the first terminal determines whether the separation distance value between the first terminal and the second terminal is less than or equal to the first preset distance value: if yes, execute S1704 and S1705, if not, execute S1706.
  • the first terminal sets the vehicle location of the first terminal as a security zone.
  • the first terminal starts a timer. Among them, the timing duration of the timer is set according to the preset time parameter T.
  • the preset time parameter T is 7 milliseconds.
  • the first terminal determines whether the separation distance value between the first terminal and the second terminal is within a preset distance range: if yes, execute S1707, if not, execute S1708.
  • the first terminal sets the vehicle location of the first terminal as: a transition zone.
  • the first terminal sets the vehicle location of the first terminal as: other.
  • the specific implementation process of "feedback of HARQ information by the first terminal” may include the following steps:
  • the first terminal receives service data from the second terminal.
  • the first terminal determines whether the first terminal is in the transition zone: if yes, execute S1803, if not, execute S1805.
  • the first terminal determines whether the timer is in a running state: if yes, execute S1804; otherwise, execute S1806.
  • the first terminal sends to the second terminal a confirmation response message indicating the success or failure of the service data reception.
  • the first terminal if the service data is successfully received, the first terminal does not send any information to the second terminal. If the service data reception fails, the first terminal sends a NACK to the second terminal.
  • the first terminal determines whether the first terminal is in the guarantee area: if yes, execute S1804, if not, execute S1806.
  • S1806 The first terminal does not send to the second terminal a confirmation response message indicating the success or failure of the service data reception.
  • FIG. 19 shows a schematic diagram of a HARQ information feedback effect.
  • the first terminal is in the guarantee area and successfully receives the transmission block TB1 from the second terminal.
  • the first terminal starts the timer.
  • the first terminal is in the transition zone and receives the transport block TB2 from the second terminal, and the reception of TB2 fails. At this time, the first terminal determines that the timer has not expired, and then feeds back NACK to the second terminal.
  • the first terminal is still in the transition zone and successfully receives the transmission block TB2 retransmitted from the second terminal.
  • the first terminal determines whether to send HARQ information to the second terminal based on the running state of the timer, avoiding unnecessary data retransmission .
  • the communication method in this embodiment of the present application may include: the first terminal determines the vehicle position of the first terminal Scope, the first terminal feeds back HARQ information.
  • the specific implementation process of "the first terminal determines the vehicle location range of the first terminal” may include the following steps:
  • the first terminal obtains configuration parameters.
  • the configuration parameters include: a preset correction time, a first preset distance value, a first threshold value, and a second threshold value.
  • the preset correction time is 5 seconds
  • the first preset distance value is 1000 meters
  • the first threshold value is -80dbm
  • the second threshold value is -95dbm.
  • the first terminal calculates a separation distance value between the first terminal and the second terminal.
  • the separation distance value is a value that characterizes the distance through the reference signal received power.
  • the reference signal may be a position reference signal (position reference signal, P-RS), a channel status information reference signal (channel status information reference signal, CSI-RS), and a demodulation reference signal (demodulation reference signal, DMRS). ).
  • the first terminal determines whether the separation distance value between the first terminal and the second terminal is less than or equal to the first preset distance value: if yes, execute S2004, if not, execute S2005.
  • the first terminal compares the reference signal received power value between the first terminal and the second terminal with the first threshold value to determine whether the separation distance value is less than or equal to the first preset distance value.
  • the first terminal sets the vehicle location of the first terminal as: a security zone.
  • S2005 The first terminal determines whether the separation distance value between the first terminal and the second terminal is within a preset distance range: if yes, execute S2006, if not, execute S2007.
  • the first terminal compares the reference signal received power value between the first terminal and the second terminal with the first threshold value and the second threshold value, respectively, to determine whether the separation distance value is within a preset distance range Inside.
  • the first terminal sets the vehicle location of the first terminal as: a transition zone.
  • S2007 The first terminal sets the vehicle location of the first terminal as: other.
  • the specific implementation process of "feedback of HARQ information by the first terminal” may include the following steps:
  • the first terminal receives a transmission block from the second terminal.
  • the first terminal parses the side link control channel PSCCH to obtain new transmission indication information, HARQ process ID and control information.
  • the new transmission indication information is used to indicate whether the transmission block is a newly transmitted transmission block
  • the HARQ process number is used to indicate the transmission block that needs to be combined.
  • the first terminal parses the side link shared channel PSSCH according to the control information to obtain a transmission block.
  • the first terminal determines whether the transmission block is a newly transmitted transmission block: if yes, execute S2103, if not, execute S2106.
  • the first terminal determines whether the first terminal is in the guarantee area: if yes, execute S2104; otherwise, execute S2105.
  • the first terminal sets a feedback identifier for the transmission block as a first set value.
  • the first set value is used to indicate that the first terminal receives the transmission block for the first time when it is in the guarantee area.
  • the first terminal since the first terminal is in the guarantee area, the first terminal adopts the "NACK only" feedback mode to send to the second terminal an acknowledgement message indicating the success or failure of the transmission block reception.
  • the first terminal sets a feedback identifier for the transmission block as a second set value.
  • the second set value is used to indicate that the first terminal is not in the guarantee area when the first terminal receives the transmission block for the first time.
  • S2106 The first terminal determines whether the first terminal is in the transition zone: if yes, execute S2107, if not, execute S2109.
  • S2107 The first terminal judges whether the feedback identifier corresponding to the transmission block is the first preset value: if yes, execute S2108, if not, execute S2109.
  • the first terminal sends to the second terminal an acknowledgement message indicating the success or failure of the transmission block reception.
  • S2109 The first terminal does not send to the second terminal an acknowledgement message indicating the success or failure of the transmission block reception.
  • FIG. 22 shows a schematic diagram of a HARQ information feedback effect.
  • the first terminal At the time corresponding to slot 0, the first terminal is in the guaranteed area to receive the transport block TB1 for the first time, and the reception fails.
  • the first terminal sends a negative acknowledgement response message NACK to the second terminal, and sets the feedback identifier of the transmission block TB1 to the first preset value.
  • the first terminal is in the transition zone and receives the retransmitted transport block TB1 from the second terminal, and the reception of the retransmitted transport block TB1 fails. Since the feedback identifier corresponding to the transmission block TB1 is the first preset value, the first terminal feeds back NACK to the second terminal.
  • the first terminal is still in the transition zone, and again receives the retransmitted transport block TB1 from the second terminal, and the retransmitted transport block TB1 is successfully received. Since the feedback mode is "NACK only", the first terminal does not send any information to the second terminal.
  • the first terminal will determine whether to send to the second terminal according to the feedback identifier HARQ information to ensure the quality of data transmission.
  • the communication method in this embodiment of the present application may include: the first terminal determines the vehicle location range of the first terminal, The first terminal feeds back HARQ information.
  • the specific implementation process of "the first terminal determines the vehicle location range of the first terminal” can refer to S1701 to S1708, and can also refer to S1901 to S1907, which will not be repeated here.
  • the specific implementation process of "feedback of HARQ information by the first terminal” may include the following steps:
  • the first terminal receives a transmission block from the second terminal.
  • the first terminal determines whether the first terminal is in the guarantee area: if yes, execute S2303; otherwise, execute S2305.
  • the first terminal sends, to the second terminal, an acknowledgement message indicating the success or failure of reception of the transmission block according to the reception status of the transmission block.
  • S2304 The first terminal updates the current block error rate according to the status of the successful or failed reception of the transmission block.
  • the first terminal determines whether the first terminal is in the transition zone: if yes, execute S2306, otherwise, execute S2307 and S2304.
  • the first terminal determines whether the current block error rate is greater than the block error rate threshold: if yes, execute S2303, and if not, execute S2307 and S2304.
  • S2307 The first terminal does not send to the second terminal an acknowledgement message indicating the success or failure of the transmission block reception.
  • the first terminal determines whether to send HARQ information to the second terminal based on the running state of the timer, avoiding unnecessary data retransmission .
  • the position of the second terminal determined by the first terminal is not accurate enough.
  • the second terminal determines the coordinate information (x, y) based on the global positioning system (GPS), where the abscissa x is the ground measurement of the longitude between the location of the second terminal and the geographic coordinates (0,0) Distance, the ordinate y is the ground measurement distance in latitude between the location of the second terminal and the geographic coordinates (0,0).
  • the geographic location information determined by the GPS is converted into a zone identity (zone identity).
  • Each region corresponds to a region code.
  • the GPS location coordinates (x, y) and the area code satisfy the following relationship:
  • x represents the longitude ground measurement distance between the location of the second terminal and the geographic coordinates (0,0)
  • L represents the length of the ground measurement in each area
  • N x represents the maximum number of areas in the length direction (x axis)
  • Y represents the ground measurement distance in latitude between the location of the second terminal and the geographic coordinates (0,0)
  • W represents the ground measurement width of each area
  • N y represents the maximum number of areas in the width direction (y-axis)
  • Mod is the remainder operator
  • Zone id represents the zone code of the zone where the second terminal is located.
  • each area code is divided in advance. Within a certain preset area, the area is divided according to preset parameters (such as length L and width W).
  • preset parameters such as length L and width W.
  • each square represents the area range of an area, and the number (such as any number from 0 to 15) in each square is the area code of the area.
  • the area code can only indicate the configuration area where the second terminal is located, but cannot accurately indicate where the second terminal is located. If the preset parameters (such as length L and width W) become larger, the range of each divided area becomes larger.
  • the preset area range is fixed. Correspondingly, the number of divided areas decreases and the number of digits of the area code decreases.
  • the region code is transmitted through SCI, and the number of bits of the region code is reduced, which reduces the resource overhead of SCI.
  • the range of the area corresponding to each area code becomes larger, when the location of the second terminal is determined based on the area code, the accuracy of the determined location becomes worse.
  • the preset parameters such as length L and width W
  • the preset area range is fixed.
  • the number of divided areas increases, and the number of bits of the area code increases.
  • the regional code is transmitted through SCI. As the number of bits of the regional code increases, the resource overhead of SCI is increased and the system capacity is further reduced.
  • the number of areas will increase.
  • the value range of the area code is also limited. Due to the limited number of region codes, there may be a situation where one region code corresponds to two or more regions. At this time, the first terminal cannot determine the location of the second terminal only based on the area code.
  • an embodiment of the present application also provides a communication method that can accurately determine the location of the second terminal.
  • the method includes:
  • the first terminal obtains first location information of the second terminal.
  • the first location information may indicate the location where the second terminal is located.
  • the first location information may be GPS information to indicate the location where the second terminal is located.
  • the first location information may also indicate the first configuration area where the second terminal is located.
  • the first location information may be area information, such as area code.
  • the first location information (such as area information) indicates the first configuration area where the second terminal is located
  • the first location information may be carried in the SCI.
  • the first terminal receives the SCI from the second terminal to obtain the first location information.
  • the first location information can also be carried in a broadcast message.
  • the first terminal obtains the first location information by receiving a broadcast message from the access network device.
  • the first location information may be carried in RRC signaling.
  • the first terminal obtains the first location information by receiving RRC signaling from the access network device.
  • the RRC signaling includes multiple information elements (information element, IE), and the first location information is carried by a certain IE or several IEs.
  • the first location information can be carried in MAC signaling.
  • the first terminal obtains the first location information by receiving MAC signaling from the access network device.
  • the MAC signaling includes multiple control elements (CEs), and the first location information is carried by a certain CE or several CEs.
  • the first location information (such as geographic location information) indicates the location of the second terminal
  • the first location information may be carried in a broadcast message, RRC signaling or MAC signaling.
  • the second terminal sends the first location information to the first terminal according to a preset time period, so that the first terminal can obtain the required first location information.
  • the preset time period may be a parameter configured on the network side, or may be a parameter set according to the actual movement speed of the second terminal. For example, when the actual moving speed of the second terminal is less than or equal to the first speed threshold, the preset time period is set to the first value, and when the actual moving speed of the second terminal is greater than the first speed threshold, the preset time period is set to second Value (the second value is less than the first value).
  • the value of the preset time period is in inverse proportion to the value of the actual movement speed of the second terminal, that is, the larger the value of the actual movement speed of the second terminal, the smaller the value of the preset time period.
  • the second terminal sends the geographic location information to the first terminal.
  • the second terminal sends the first location information to the first terminal.
  • the HARQ mechanism may be in a disabled state, that is, after the first terminal obtains the first location information of the second terminal, there is no need to feed back confirmation response information to the second terminal.
  • the second terminal may directly send the first location information according to the preset time period, without considering whether there is confirmation response information fed back by the first terminal.
  • the second terminal uses repeated transmissions so that all the first terminals in the multicast can receive the first location information.
  • the second terminal encodes the service data carrying the first location information according to a preset coding rate.
  • the encoding rate of the preset encoding rate is relatively low. Due to the low coding rate, the first terminal can effectively receive the first location information even in a channel environment with a low signal-to-noise ratio.
  • the first terminal may obtain the first location information in a variety of ways to determine the location of the second terminal in combination with the second location information, so as to ensure the accuracy of determining the location of the second terminal.
  • S2502 At the second time, the first terminal obtains second location information of the second terminal.
  • the first time is no later than the second time.
  • the first terminal may first obtain the first location information, and then obtain the second location information.
  • the first terminal also obtains the first location information and the second location information at the same time.
  • the time interval for the first terminal to obtain the first location information may be greater than the time interval for the first terminal to obtain the second location information.
  • the second location information indicates the second configuration area where the second terminal is located.
  • the second location information may also be area information, such as area code.
  • the configuration parameters of the second configuration area are different from the configuration parameters of the first configuration area.
  • the configuration parameters may be the length value L, the width value W of each area, the maximum value of the number of areas in the length direction (x axis) N x , and the number of areas in the width direction (y axis) The maximum value of N y .
  • the area range of the first arrangement area is larger than the area range of the second arrangement area.
  • the first configuration area can indicate a distance range farther from the second terminal.
  • the location of the second configuration area is determined according to the area code of the first location information and the second location information.
  • the first location information is an area code indicating the first configuration area where the second terminal is located
  • the second configuration area may be the area corresponding to the area code closest to the first configuration area.
  • the first location information is geographic location coordinates
  • the second configuration area may be the area corresponding to the area code closest to the geographic location coordinates.
  • the second location information may be carried in the SCI.
  • the first terminal may obtain the second location information by receiving the SCI from the second terminal.
  • the SCI may carry different indication marks, so that the first terminal can determine whether the position information carried by the SCI is the first position information or the second position information based on the different indication marks.
  • the first terminal obtains the second location information by receiving the SCI, and then combines the first location information to determine the location of the second terminal.
  • the first terminal obtains the second location information by receiving the SCI, which has strong timeliness and helps to improve the accuracy of determining the location of the second terminal.
  • the configuration parameters are the length and width of each area.
  • the length of the area is denoted as L, and the width of the area is denoted as W.
  • the length of the first configuration area is denoted as L 1
  • the width is denoted as W 1 .
  • the length of the second configuration area is denoted as L 2
  • the width of the area is denoted as W 2 .
  • the four configuration parameters satisfy the following relationship: L 1 >L 2 , or W 1 >W 2 .
  • the size of the second configuration area may be determined according to the preset time period and the movement speed of the second terminal.
  • the preset time period is a time period for the first terminal to obtain the first location information.
  • L 2 and W 2 can be set to 50m.
  • the first configuration area is larger than the second configuration area.
  • the area ranges of the two configuration areas are different. Both the first configuration area and the second configuration area are used to determine the location of the second terminal.
  • the first terminal can first determine a larger area based on the first configuration area, and then combine the second configuration area to accurately determine the location of the second terminal, which helps to improve positioning accuracy and avoid "inaccurate positioning" problem.
  • the first terminal determines the location of the second terminal according to the first location information and the second location information.
  • the first location information is coordinate information (x TX , y TX ), where x TX represents the longitude between the location of the second terminal at the first time and the geographic coordinates (0, 0)
  • the ground measurement distance of y TX represents the ground measurement distance of the latitude between the location of the second terminal and the geographic coordinates (0,0) at the first time, as shown in FIG. 26 where the circular icon is located.
  • the second location information is the area code.
  • the area code corresponds to more than one area.
  • the first terminal will select the area with the smallest distance from the coordinate information (x TX , y TX ), as shown in Figure 26 where the trapezoid icon is located, that is, the area code is 10 area.
  • the first terminal determines the location of the second terminal based on the area (the area with the smallest distance from the coordinate information (x TX , y TX )). If there is more than one area with the smallest distance from the coordinate information (x TX , y TX ), determine the distance between each area (the area with the smallest distance from the coordinate information (x TX , y TX )) and the first terminal, based on The area with the smallest distance value determines the location of the second terminal.
  • the first terminal determines the coordinate information (x RX1 , y RX1 ) based on GPS, where x RX1 represents the ground measurement distance between the location of the first terminal at the first time and the geographic coordinates (0,0) in longitude , Y RX1 represents the ground measurement distance of the latitude between the location of the first terminal at the first time and the geographic coordinates (0,0).
  • the area code of the first location information corresponds to more than one area.
  • the first terminal will select the smallest distance from the coordinate information (x RX1 , y RX1 ) among the multiple areas corresponding to the area code of the first location information As the first configuration area of the second terminal at the first time.
  • the area code of the second location information corresponds to more than one area.
  • the first terminal will select the first configuration area from the multiple areas corresponding to the area code of the second location information (this area is the second terminal
  • the first configuration area at the first time) the area with the smallest distance is used as the second configuration area of the second terminal at the second time.
  • the second configuration area of the second terminal at the second time may be the area closest to the center point of the first configuration area.
  • the location of the second terminal is determined based on the second configuration area of the second terminal at the second time.
  • the first terminal determines the coordinate information (x RX1 , y RX1 ) based on GPS, where x RX1 represents the ground measurement distance between the location of the first terminal at the first time and the geographic coordinates (0,0) in longitude , Y RX1 represents the ground measurement distance of the latitude between the location of the first terminal at the first time and the geographic coordinates (0,0).
  • the first terminal determines the coordinate information (x RX1 , y RX1 ) based on the GPS, and determines the first configuration area of the first terminal at the first time.
  • the first configuration area of the first terminal at the first time may be the area where the circular icon is located, that is, the area coded as 5.
  • the area code of the first location information corresponds to more than one area.
  • the first terminal will select the first configuration of the first terminal at the first time from the multiple areas corresponding to the area code of the first location information
  • the area with the smallest area distance serves as the first configuration area of the second terminal at the first time.
  • the first configuration area of the second terminal at the first time may be the area where the star icon is located, that is, the area coded as 14.
  • the area code of the second location information corresponds to more than one area.
  • the first terminal will select the first configuration area from the multiple areas corresponding to the area code of the second location information (this area is the second terminal).
  • the first configuration area at the first time the area with the smallest distance is used as the second configuration area of the second terminal at the second time.
  • the second configuration area of the second terminal at the second time may be the area closest to the center point of the first configuration area. Referring to FIG. 28, the square icon is the center point of the first configuration area, that is, the center point of the first configuration area whose area code is 14.
  • the second configuration area of the second terminal at the second time may be the area where the diamond icon is located.
  • the second location information used to determine the location of the second terminal may be: information carried in the SCI corresponding to the physical side link shared channel PSSCH for transmitting service data.
  • the SCI also includes information indicating the time-frequency resources of the physical side uplink shared channel PSSCH, which is used to transmit service data.
  • Each PSSCH corresponds to one SCI.
  • the SCI corresponding to the PSSCH transmitting the service data can be found, and the location of the second terminal is determined according to the second location information in the SCI.
  • the service data is transmitted in the form of transmission blocks, and the second terminal transmits SCI1 to the first terminal through PSCCH1.
  • the SCI1 includes second location information and information indicating PSSCH1 time-frequency resources.
  • the second terminal transmits the transport block TB1 to the first terminal through PSSCH1.
  • the first terminal receives the data in PSCCH1 and PSSCH1, demodulates and decodes the data in PSSCH1 and PSCCH1, and the first terminal calculates the position of the second terminal based on the second position information in SCI1 .
  • the first terminal determines whether to send the confirmation response information of the success or failure of the transmission block TB1 based on the location of the second terminal. If it is, the first terminal sends the confirmation response information of TB1 to the second terminal.
  • the first terminal does not need to send the confirmation response information to the second terminal (not shown in FIG. 29).
  • the second terminal transmits SCI2 to the first terminal through PSCCH2, and the SCI2 includes second location information and information indicating the time-frequency resource of PSSCH2.
  • the second terminal transmits the transport block TB2 to the first terminal through PSSCH2.
  • the first terminal receives the data in PSCCH2 and PSSCH2, and demodulates and decodes the data in PSSCH2 and PSCCH2.
  • the first terminal calculates the location of the second terminal based on the second location information in SCI2 , To determine whether to send a confirmation response message that TB2 receives success or failure. If it is, the first terminal sends the confirmation response information of TB2 to the second terminal. If not, the first terminal does not need to send the confirmation response information to the second terminal (not shown in FIG. 29).
  • the second location information used to determine the location of the second terminal may also be: information carried in the newly received SCI.
  • the first terminal can find the newly received SCI, and determine the location of the second terminal according to the second location information in the newly received SCI.
  • the service data is transmitted in the form of transmission blocks, and the second terminal transmits SCI1 to the first terminal through PSCCH1.
  • the SCI1 includes second location information and information indicating PSSCH1 time-frequency resources.
  • the second terminal transmits the transport block TB1 to the first terminal through PSSCH1.
  • the first terminal receives the data in PSCCH1 and PSSCH1, and demodulates and decodes the data in PSSCH1 and PSCCH1.
  • the first terminal receives the data in PSCCH2 and PSSCH2, and demodulates and decodes the data in PSSCH2 and PSCCH2. Since the time when the first terminal receives SCI2 is later than the time when SCI1 is received, the first terminal determines the location of the second terminal based on the second location information in SCI2, and then determines whether to send a confirmation response message indicating the success or failure of TB1 reception . If yes, the first terminal sends the confirmation response information of TB1 to the second terminal. If not, the first terminal does not need to send the confirmation response information to the second terminal (not shown in FIG. 30).
  • the first terminal if it does not receive a new SCI within the preset time period, it will also calculate the location of the second terminal based on the second location information in SCI2, and then determine whether to send TB2 to receive If the first terminal receives a new SCI within the preset period of time, it will determine the location of the second terminal according to the information in the new SCI indicating the area where the second terminal is located. It is determined whether to send a confirmation response message (not shown in FIG. 30) indicating the success or failure of TB2 reception.
  • the first terminal obtains the first location information of the second terminal.
  • the first terminal obtains the second location information of the second terminal.
  • the first terminal determines the location of the second terminal according to the first location information and the second location information.
  • the first location information indicates the location of the second terminal or the first configuration area where the second terminal is located.
  • the second location information indicates the second configuration area where the second terminal is located, and the configuration parameters of the first configuration area are different from the configuration parameters of the second configuration area.
  • the first time is no later than the second time.
  • the first location information can indicate the location of the second terminal or the first configuration area where the second terminal is located
  • the second location information indicates the second configuration area where the second terminal is located.
  • an embodiment of the present application also provides a communication method, that is, when the first location information indicates the location of the second terminal, the first terminal determines the location of the second terminal based on the first location information. Referring to Figure 31, the first terminal executes S2501 and S2504:
  • the first terminal obtains first location information of the second terminal.
  • the first location information indicates the location of the second terminal.
  • the first terminal determines the location of the second terminal based on the first location information.
  • the first location information can indicate the coordinate information (x TX , y TX ) of the second terminal, where x TX represents the longitude between the location of the second terminal and the geographic coordinates (0, 0) at the first time Ground measurement distance, y TX represents the ground measurement distance in latitude between the location of the second terminal at the first time and the geographic coordinates (0,0).
  • the first terminal directly uses the coordinate information (x TX , y TX ) as the position of the second terminal.
  • the first terminal makes adjustments based on the coordinate information (x TX , y TX ), such as offsetting by a certain distance value, to obtain the position of the second terminal.
  • the first terminal can obtain the location of the second terminal based on the first location information.
  • the area code is used to indicate the area where the second terminal is located.
  • the first A location information directly indicates the location of the second terminal.
  • the first terminal can obtain the location of the second terminal directly based on the first location information, simplifying the calculation process of location determination.
  • the first terminal obtains the first location information through the access network device to determine the location of the second terminal, so that the second terminal does not need to directly send the first location information to the first terminal, saving side-link time-frequency resources.
  • the first location information indicates the location of the second terminal
  • the process is as follows: the maximum moving speed of the second terminal is 360km/h, and the maximum driving distance of the second terminal is 100m per second.
  • the time interval for transmitting the first position information is 1 second.
  • the maximum error is 100 m
  • the average error is 50 m.
  • the communication required distance is 1000m, which is within the allowable range of error.
  • the first terminal may determine the location of the second terminal only based on the first location information, or the first terminal may determine the location of the second terminal according to the first location information and the second location information, and then determine the first terminal and
  • the separation distance value between the second terminals is used to determine whether to feed back the confirmation response information of the success or failure of the service data reception when the first terminal receives the service data from the second terminal. For example, when the separation distance value is less than the communication required distance (that is, the first terminal is in the guarantee area, and the separation distance value is less than the first preset distance value), the first terminal feeds back confirmation response information indicating the success or failure of the service data reception; otherwise, A terminal does not feed back any confirmation response information.
  • the first terminal executes S802, and the separation distance value is within the preset distance range ( That is, when the first terminal is in the transition zone), the first terminal executes S803, and when the separation distance value is greater than the second preset distance value, the first terminal does not feed back any confirmation response information.
  • the first terminal determines the second terminal's location information only based on the first location information. Location.
  • the first location information may be geographic location information, indicating the location of the second terminal. It is determined at the first terminal that the first terminal is in the guaranteed area (that is, the distance between the first terminal and the second terminal is less than or equal to the first preset distance value) or the transition area (that is, the distance between the first terminal and the second terminal is Before being located within the preset distance range), the first terminal may execute S801, S2501, and S2504.
  • the first terminal can determine the location of the second terminal only according to the first location information, and then determine the distance between the first terminal and the second terminal, so as to determine the location of the first terminal. If the terminal is in the guaranteed area, the first terminal executes S802, and if the first terminal is in the transition area, the first terminal executes S803.
  • the first terminal determines whether to send the confirmation response information of the service data to the second terminal based on the first location information, it needs to refer to the first location information closest to the reception time of the service data.
  • the first terminal determines the location of the second terminal according to the first location information and the second location information. It is determined at the first terminal that the first terminal is in the guaranteed area (that is, the distance between the first terminal and the second terminal is less than or equal to the first preset distance value) or the transition area (that is, the distance between the first terminal and the second terminal is Before being located within the preset distance range), the first terminal may execute S801, S2501, S2502, and S2503.
  • the first terminal can determine the location of the second terminal according to the first location information and the second location information, and then determine the distance between the first terminal and the second terminal, so as to determine the location of the first terminal If the first terminal is in the guarantee area, the first terminal executes S802, and if the first terminal is in the transition area, the first terminal executes S803.
  • Manner 1 Regard the center point of the second configuration area of the second terminal at the second time as the position of the second terminal at the second time, and perform calculation based on the center point.
  • the solid line box represents the second configuration area
  • the focus of the two dashed solid lines represents the center point of the second configuration area, denoted as (x 0 , y 0 ).
  • the location point of the first terminal is denoted as (x 1 , y 1 ), where the location point (x 1 , y 1 ) can be the location coordinates determined by the first terminal based on GPS, or the location of the first terminal at the second time
  • the center point of the second configuration area is
  • the solid line between the two terminals represents the initial value of the distance between the two terminals, denoted as e.
  • e satisfies the following formula:
  • Manner 2 Regard the center point of the second configuration area of the second terminal at the second time as the position of the second terminal at the second time.
  • the maximum error value is The first terminal calculates the initial value of the distance based on the center point and the maximum error value. Still taking Figure 21 as an example, e satisfies the following formula:
  • the first terminal After the first terminal obtains the initial distance value e through formula (9) or formula (10), it then obtains the separation distance value between the first terminal and the second terminal according to formula (2) or formula (3). Alternatively, the first terminal may also directly use e in formula (9) or formula (10) as the separation distance value between the first terminal and the second terminal.
  • the first terminal and the second terminal include hardware structures and/or software modules corresponding to each function.
  • the embodiments of this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Those skilled in the art can use different methods for each specific application to implement the described functions, but such implementation should not be considered as going beyond the scope of the technical solutions of the embodiments of the present application.
  • the embodiment of the present application may divide the communication device into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 33 shows a schematic block diagram of a communication device provided in an embodiment of the present application.
  • the communication device 3300 may exist in the form of software, or a device, or a component in the device (such as a chip system).
  • the communication device 3300 includes a storage unit 3301, a processing unit 3302, and a communication unit 3303.
  • the communication unit 3303 can also be divided into a transmitting unit (not shown in FIG. 33) and a receiving unit (not shown in FIG. 33). Among them, the sending unit is used to support the communication device 3300 to send information to other network elements. The receiving unit is used to support the communication device 3300 to receive information from other network elements.
  • the storage unit 3301 is used to store the program code and data of the communication device 3300.
  • the data may include but is not limited to raw data or intermediate data.
  • the communication unit 3303 is configured to receive service data from the second terminal.
  • the processing unit 3302 is configured to determine that the separation distance value between the communication device 3300 and the second terminal is within a preset distance range and meets a preset condition.
  • the communication unit 3303 is further configured for the processing unit 3302 to determine that the separation distance value between the communication device 3300 and the second terminal is within the preset distance range and the preset condition is met, sending a confirmation response to the second terminal of the success or failure of the service data reception information.
  • the preset distance range is determined by the first preset distance value and the second preset distance value, and the second preset distance value is greater than the first preset distance value.
  • the preset conditions include: the length of time between the first time and the second time is less than the preset time parameter, and the first time is the latest determined interval distance value less than or equal to the first preset distance value The second time is the time when the latest determined interval distance value is within the preset distance range.
  • the processing unit 3302 is configured to determine that a preset condition is satisfied, including: determining that the length of time between the first time and the second time satisfies the preset condition.
  • the preset time parameter is used to configure the timer, the timing duration of the timer is T, and the first time is the time when the timer starts;
  • the processing unit 3302 is configured to determine that the length of time between the first time and the second time meets a preset condition, including: determining that the timer is in a running state.
  • the service data is the service data repeatedly transmitted by the second terminal and is transmitted in the transmission block;
  • the preset conditions include: the interval distance value when the communication device 3300 first receives the transmission block is less than or equal to the first preset distance value.
  • the processing unit 3302 is configured to determine that a preset condition is satisfied, including: determining that the retransmitted transmission block satisfies the preset condition.
  • the service data is transmitted in transmission blocks, and the preset condition includes: the block error rate is greater than the block error rate threshold.
  • the processing unit 3302 is configured to determine that the preset condition is satisfied, including: determining that the current block error rate satisfies the preset condition.
  • the processing unit 3302 is further configured to: if the separation distance value is less than or equal to the second preset distance value, update the current block error rate according to the status of the transmission block receiving success or failure.
  • the processing unit 3302 is further configured to: modify the initial value of the distance between the communication device 3300 and the second terminal according to the relative movement speed between the communication device 3300 and the second terminal and the preset correction time, To obtain the separation distance value between the communication device 3300 and the second terminal.
  • the processing unit 3302 is further configured to: modify the initial value of the distance between the communication device 3300 and the second terminal according to the relative movement speed between the communication device 3300 and the second terminal and the preset correspondence, so as to obtain the communication device 3300 and the second terminal.
  • the separation distance value of the second terminal, the initial distance value is the distance value represented by the reference signal received power
  • the preset correspondence relationship is the correspondence relationship between the relative motion speed and the reference signal received power adjustment amount.
  • the communication unit 3303 is configured to acquire the first location information of the second terminal at the first time.
  • the communication unit 3303 is further configured to obtain the second location information of the second terminal at the second time.
  • the processing unit 3302 is configured to determine the location of the second terminal according to the first location information and the second location information.
  • the first location information indicates the location of the second terminal or the first configuration area where the second terminal is located.
  • the second location information indicates the second configuration area where the second terminal is located, and the configuration parameters of the first configuration area are different from the configuration parameters of the second configuration area.
  • the first time is no later than the second time.
  • the first location information is carried in broadcast messages, radio resource control RRC signaling, media access control MAC signaling, or side link control information SCI.
  • the second location information is carried in the SCI.
  • the first configuration area is larger than the second configuration area.
  • the processing unit 3302 may be a processor or a controller, for example, a CPU, a general-purpose processor, DSP, ASIC, FPGA, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination of computing functions, for example, a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication unit 3303 may be a communication interface, a transceiver, or a transceiver circuit, etc., where the communication interface is a general term.
  • the communication interface may include multiple interfaces, for example, may include: the terminal and the interface between the terminal and/ Or other interfaces.
  • the storage unit 3301 may be a memory.
  • the processing unit 3302 is a processor
  • the communication unit 3303 is a communication interface
  • the storage unit 3301 is a memory
  • the communication device 3400 involved in the embodiment of the present application may be as shown in FIG. 34.
  • the communication device 3400 includes: a processor 3402, a transceiver 3403, and a memory 3401.
  • the transceiver 3403 may be an independently set transmitter, which may be used to send information to other devices, and the transceiver may also be an independently set receiver, which is used to receive information from other devices.
  • the transceiver may also be a component that integrates the functions of sending and receiving information. The embodiment of the present application does not limit the specific implementation of the transceiver.
  • the communication device 3400 may further include a bus 3404.
  • the transceiver 3403, the processor 3402, and the memory 3401 can be connected to each other through a bus 3404;
  • the bus 3404 can be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) Bus etc.
  • the bus 3404 can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in Fig. 34, but it does not mean that there is only one bus or one type of bus.
  • a person of ordinary skill in the art can understand that: in the above-mentioned embodiments, it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium, (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (SSD)) )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, and a magnetic tape
  • an optical medium for example, a digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (SSD)
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical or other forms.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network devices (for example, Terminal). Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each functional unit may exist independently, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware, or may be implemented in the form of hardware plus software functional units.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种通信方法及装置,涉及通信技术领域,特别是V2X、智能驾驶、智能网联汽车等,能够保证业务数据传输可靠性。该方法包括:第一终端接收来自第二终端的业务数据,若第一终端与第二终端的间隔距离值位于预设距离范围内,则第一终端基于预设条件向第二终端发送业务数据接收成功或失败的确认应答信息。其中,预设距离范围由第一预设距离值和第二预设距离值确定,且第二预设距离值大于第一预设距离值。该方法应用在终端与终端通信过程中。

Description

通信方法及装置
本申请要求于2019年06月06日提交国家知识产权局、申请号为201910492591.1、发明名称为“通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,特别是V2X、智能驾驶、智能网联汽车等,尤其涉及一种通信方法及装置。
背景技术
在无线通信系统中,两个终端之间通常采用混合自动重传请求(hybrid automatic repeat request,HARQ)技术来提高数据传输的可靠性。第一终端接收来自第二终端的传输块(transport block,TB)之后,向第二终端反馈HARQ信息,以告知第二终端传输块的接收状况。其中,HARQ信息包括:确认应答(positive acknowledgement,ACK)、否定应答(negative acknowledgement,NACK)。具体的,若第一终端成功接收到来自第二终端的传输块,则向第二终端反馈ACK;若第一终端接收传输块失败,则向第二终端反馈NACK,以使第二终端收到NACK后重传该传输块。
目前,车与任何事物通信(vehicle to everything,V2X)组播中引入HARQ技术,来保证业务服务质量(quality of service,QoS)的需求。
针对某些安全类业务,在一定的距离范围内,其对服务质量的需求才有意义。例如,对于智能驾驶而言,车与车之间的间隔距离在服务距离范围内,才需要较高的业务服务质量。参见图1,与第二终端之间的间隔小于或等于服务距离d的区域称为保障区。车辆1作为第二终端。车辆1以组播的方式向其他车辆发送传输块。车辆2、车辆3、车辆4、车辆5、车辆6和车辆7均作为第一终端。对于车辆2、车辆3、车辆4和车辆5而言,当接收到的传输块译码错误时,需要反馈NACK信息,以使车辆1重传传输块,保证业务服务质量。对于车辆6和车辆7而言,当接收到的传输块译码错误时,无需反馈HARQ信息。
在上述业务传输过程中,“判断两个终端之间的间隔距离值是否小于或等于服务距离d”的具体实现过程可以包括如下方式:
方式一:第二终端广播自身的位置信息,第一终端接收来自第二终端的位置信息,再结合第一终端的位置信息,计算第二终端和第一终端之间的间隔距离值,进而确定两个终端之间的间隔距离值是否小于或等于服务距离d。
方式二:第二终端广播参考信号接收功率的阈值。第一终端接收来自第二终端的信号,对来自第二终端的信号进行计算,得到参考信号接收功率,再结合参考信号接收功率的阈值,确定两个终端之间的间隔距离值是否小于或等于服务距离d。
在方式一中,车辆之间频繁交互位置信息,消耗的时频资源较多,用于传输业务数据的时频资源较少,导致系统容量降低。并且,第一终端基于来自第二终端的位置信息,确定第二终端的位置时,所确定的第二终端的位置也够精确。在方式二中,计算得到的参考信号接收功率无法真实表征两个车辆之间的间隔距离值。例如,在两个车辆之间存在遮挡 物时,由于遮挡物的存在,第一终端所接收到的信号强度偏弱,从而计算得到的参考信号接收功率变小,而基于变小的参考信号接收功率来确定两个车辆之间的间隔距离值,会大于两个车辆之间的真实间隔距离值。
发明内容
本申请实施例提供一种通信方法及装置,能够保证业务数据可靠性传输,提高资源利用率。
为达到上述目的,本申请实施例采用如下技术方案:
第一方面,本申请实施例提供一种通信方法,该方法应用于第一终端或第一终端的芯片,该方法包括:第一终端接收来自第二终端的业务数据,若第一终端与第二终端的间隔距离值位于预设距离范围内,则第一终端基于预设条件向第二终端发送业务数据接收成功或失败的确认应答信息。其中,预设距离范围由第一预设距离值和第二预设距离值确定,且第二预设距离值大于第一预设距离值。
本申请实施例提供的通信方法,第一终端接收来自第二终端的业务数据,若第一终端与第二终端的间隔距离值位于预设距离范围内,则第一终端基于预设条件向第二终端发送业务数据接收成功或失败的确认应答信息。其中,预设距离范围由第一预设距离值和第二预设距离值确定,且第二预设距离值大于第一预设距离值。相对于现有技术中,第一终端处于保障区(即第一终端与第二终端的间隔距离值大于第一预设距离值)以外时,不再向第二终端发送业务信息接收成功或失败的确认应答信息,而间隔距离值计算不准确,致使业务数据传输质量受到影响。在本申请实施例通信方法中,第一终端即使处于保障区以外,如第一终端处于预设距离范内,在满足预设条件的情况下,第一终端也可以向第二终端发送业务数据接收成功或失败的确认应答信息,既能够保证业务数据传输质量,又能够避免“处于预设距离范围内的第一终端均需反馈确认应答信息”的现象,从而避免不必要的数据传输。
在一种可能的设计中,预设条件包括:第一时间和第二时间之间的时间长度小于预设时间参数,第一时间为最新确定间隔距离值小于或等于第一预设距离值的时间,第二时间为最新确定间隔距离值位于预设距离范围的时间。第一终端基于预设条件向第二终端发送业务数据接收成功或失败的确认应答信息,包括:
若第一时间和第二时间之间的时间长度满足预设条件,则第一终端向第二终端发送业务数据接收成功或失败的确认应答信息。
如此,当第一时间和第二时间之间的时间长度满足预设条件,则表明第一终端与第二终端之间的间隔距离值从小于或等于第一预设距离值、到位于预设距离范围内的时间长度小于或等于预设时间参数T,也就是说,第一终端从保障区进入过渡区的时间长度未超出预设时间参数T,此时,若第一终端接收到来自第二终端的业务数据,也会向第二终端发送该业务数据接收成功或失败的确定应答信息,以保证数据传输效率。即使第一终端的间隔距离值计算不准确,也能够保证数据传输效率。即使第一终端处于第一预设距离值附近的区域,其与第二终端之间的数据传输质量也能够得到保障,同时还能够避免不必要的数据重传。
在一种可能的设计中,预设时间参数用于配置定时器,定时器的定时时长为T,第一时间为定时器启动的时间。若第一时间和第二时间之间的时间长度满足预设条件,则第一 终端向第二终端发送业务数据接收成功或失败的确认应答信息,包括:
若定时器处于运行状态,则第一终端向第二终端发送业务数据接收成功或失败的确认应答信息。
在一种可能的设计中,业务数据为第二终端重复传输的业务数据,且以传输块传输;预设条件包括:第一终端首次接收传输块时间隔距离值小于或等于第一预设距离值。第一终端基于预设条件向第二终端发送业务数据接收成功或失败的确认应答信息,包括:
若重传的传输块满足预设条件,则第一终端向第二终端发送重传的传输块接收成功或失败的确认应答信息。
这里,重传的数据块满足预设条件,则表明:第一终端与第二终端之间的间隔距离值小于或等于第一预设距离值,第一终端首次接收该传输块失败,且第一终端接收来自第二终端重传的该数据块时,第一终端与第二终端之间的间隔距离值位于预设距离范围内。此时,第一终端也会向第二终端发送该重传的传输块接收成功或失败的确认应答信息,以保证数据传输效率。
在一种可能的设计中,业务数据以传输块传输,预设条件包括:误块率大于误块率阈值。第一终端基于预设条件向第二终端发送业务数据接收成功或失败的确认应答信息,包括:
若当前的误块率满足预设条件,则第一终端向第二终端发送传输块接收成功或失败的确认应答信息。
这里,当前的误块率满足预设条件,则表明:当前的误块率大于误块率阈值。此时,第一终端接收到来自第二终端的传输块时,也会向第二终端发送该传输块接收成功或失败的确认应答信息,以满足业务数据的传输质量需求。
在一种可能的设计中,本申请实施例通信方法还包括:若间隔距离值小于或等于第二预设距离值,则第一终端根据传输块接收成功或失败的状态,更新当前的误块率。
在一种可能的设计中,本申请实施例方法还包括:第一终端根据第一终端和第二终端之间的相对运动速度和预设修正时间,修正第一终端与第二终端之间的距离初始值,以获取第一终端与第二终端的间隔距离值。或者,第一终端根据第一终端和第二终端之间的相对运动速度与预设对应关系,修正第一终端与第二终端之间的距离初始值,以获取第一终端与第二终端的间隔距离值。其中,距离初始值是通过参考信号接收功率所表征的距离值,预设对应关系为相对运动速度与参考信号接收功率调整量之间的对应关系。
如此,第一终端根据第一终端和第二终端之间的相对运动速度和预设修正时间,修正第一终端与第二终端之间的距离初始值,以获取第一终端与第二终端的间隔距离值,第二终端无需频繁向第一终端发送位置信息,节省时频资源。
第二方面,本申请实施例提供一种通信方法,该方法应用于第一终端或第一终端的芯片,该方法包括:在第一时间,第一终端获取第二终端的第一位置信息。在第二时间,第一终端获取第二终端的第二位置信息。第一终端根据第一位置信息和第二位置信息,确定第二终端的位置。其中,第一位置信息指示第二终端的位置或第二终端所处的第一配置区域。第二位置信息指示第二终端所处的第二配置区域,第一配置区域的配置参数和第二配置区域的配置参数不同。第一时间不晚于第二时间。
本申请实施例提供的通信方法,在第一时间,第一终端获取第二终端的第一位置信息。 在第二时间,第一终端获取第二终端的第二位置信息。第一终端根据第一位置信息和第二位置信息,确定第二终端的位置。其中,第一位置信息指示第二终端的位置或第二终端所处的第一配置区域。第二位置信息指示第二终端所处的第二配置区域,第一配置区域的配置参数和第二配置区域的配置参数不同。第一时间不晚于第二时间。相对于现有技术中,采用区域编码确定第二终端的位置时,仅依据一个区域编码存在“定位不准确”的问题。在本申请实施例通信方法中,第一位置信息能够指示第二终端所处的位置或第二终端所处的第一配置区域,第二位置信息指示第二终端所处的第二配置区域。在确定第二终端的位置时,第一终端需要结合第一位置信息和第二位置信息,即根据第二终端所处的位置(由第一位置信息指示)和第二配置区域,来确定第二终端的位置,或者,根据配置参数互不相同的第一配置区域和第二配置区域,来确定第二终端的位置。以避免仅依据一个区域编码存在“定位不准确”或“无法定位”的问题。
在一种可能的设计中,第一位置信息承载于广播消息、无线资源控制RRC信令、媒体接入控制MAC信令或侧行链路控制信息SCI。
如此,第一终端可以通过多种方式获取到第一位置信息,以结合第二位置信息,确定第二终端的位置,保障第二终端位置确定的准确度。
在一种可能的设计中,第二位置信息承载于SCI。
如此,第一终端通过接收SCI的方式,获取到第二位置信息,再结合第一位置信息来确定第二终端所处的位置。相对于通过接收广播消息、RRC信令和MAC信令的方式而言,第一终端通过接收SCI以获取第二位置信息,时效性强,有助于提高第二终端位置确定的准确度。
在一种可能的设计中,当第一位置信息指示第二终端所处的第一配置区域时,第一配置区域大于第二配置区域。
第三方面,本申请实施例提供一种通信装置,该通信装置可以为上述第一方面中的第一终端。该通信装置包括:接收器、处理器和发送器。其中,接收器,用于接收来自第二终端的业务数据。处理器,用于确定通信装置与第二终端的间隔距离值位于预设距离范围内,且满足预设条件。发送器,用于处理器确定通信装置与第二终端的间隔距离值位于预设距离范围内,且满足预设条件时,向第二终端发送业务数据接收成功或失败的确认应答信息。其中,预设距离范围由第一预设距离值和第二预设距离值确定,且第二预设距离值大于第一预设距离值。
在一种可能的设计中,预设条件包括:第一时间和第二时间之间的时间长度小于预设时间参数,第一时间为最新确定间隔距离值小于或等于第一预设距离值的时间,第二时间为最新确定间隔距离值位于预设距离范围的时间。
处理器,用于确定满足预设条件,包括:用于确定第一时间和第二时间之间的时间长度满足预设条件。
在一种可能的设计中,预设时间参数用于配置定时器,定时器的定时时长为T,第一时间为定时器启动的时间;
处理器,用于确定第一时间和第二时间之间的时间长度满足预设条件,包括:用于确定定时器处于运行状态。
在一种可能的设计中,业务数据为第二终端重复传输的业务数据,且以传输块传输; 预设条件包括:通信装置首次接收传输块时间隔距离值小于或等于第一预设距离值。
处理器,用于确定满足预设条件,包括:用于确定重传的传输块满足预设条件。
在一种可能的设计中,业务数据以传输块传输,预设条件包括:误块率大于误块率阈值。
处理器,用于确定满足预设条件,包括:用于确定当前的误块率满足预设条件。
在一种可能的设计中,处理器还用于:若间隔距离值小于或等于第二预设距离值,则根据传输块接收成功或失败的状态,更新当前的误块率。
在一种可能的设计中,处理器还用于:根据通信装置和第二终端之间的相对运动速度和预设修正时间,修正通信装置与第二终端之间的距离初始值,以获取通信装置与第二终端的间隔距离值。或者,处理器还用于:根据通信装置和第二终端之间的相对运动速度与预设对应关系,修正通信装置与第二终端之间的距离初始值,以获取通信装置与第二终端的间隔距离值,距离初始值是通过参考信号接收功率所表征的距离值,预设对应关系为相对运动速度与参考信号接收功率调整量之间的对应关系。
第四方面,本申请实施例提供一种通信装置,该通信装置可以为上述第二方面中的第一终端。该通信装置包括:接收器和处理器。其中,接收器,用于在第一时间,获取第二终端的第一位置信息。接收器,还用于在第二时间,获取第二终端的第二位置信息。处理器,用于根据第一位置信息和第二位置信息,确定第二终端的位置。其中,第一位置信息指示第二终端的位置或第二终端所处的第一配置区域。第二位置信息指示第二终端所处的第二配置区域,第一配置区域的配置参数和第二配置区域的配置参数不同。第一时间不晚于第二时间。
在一种可能的设计中,第一位置信息承载于广播消息、无线资源控制RRC信令、媒体接入控制MAC信令或侧行链路控制信息SCI。
在一种可能的设计中,第二位置信息承载于SCI。
在一种可能的设计中,当第一位置信息指示第二终端所处的第一配置区域时,第一配置区域大于第二配置区域。
第五方面,本申请提供一种通信装置,用于实现上述第一方面中第一终端的功能,或用于实现上述第二方面中第一终端的功能。
第六方面,本申请实施例提供一种通信装置,该通信装置具有实现上述任一方面中任一项的通信方法的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的模块。
第七方面,本申请实施例提供一种通信装置,包括:处理器和存储器;该存储器用于存储计算机执行指令,当该通信装置运行时,该处理器执行该存储器存储的该计算机执行指令,以使该通信装置执行如上述任一方面中任一项的通信方法。
第八方面,本申请实施例提供一种通信装置,包括:处理器;处理器用于与存储器耦合,并读取存储器中的指令之后,根据指令执行如上述任一方面中任一项的通信方法。
第九方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机可以执行上述任一方面中任一项的通信方法。
第十方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行 时,使得计算机可以执行上述任一方面中任一项的通信方法。
第十一方面,本申请实施例提供一种电路系统,电路系统包括处理电路,处理电路被配置为执行如上述任一方面中任一项的通信方法。
第十二方面,本申请实施例提供一种芯片,芯片包括处理器,处理器和存储器耦合,存储器存储有程序指令,当存储器存储的程序指令被处理器执行时实现上述任一方面任意一项的通信方法。
第十三方面,本申请实施例提供一种通信系统,通信系统包括上述各个方面中任一方面中的第一终端和第二终端。
其中,第二方面至第十三方面中任一种设计方式所带来的技术效果可参见第一方面中不同设计方式所带来的技术效果,此处不再赘述。
附图说明
图1为相关技术提供的一种基于距离的质量服务要求业务场景示意图;
图2为本申请实施例提供的一种传输块分割示意图;
图3为本申请实施例提供的一种基于传输块的传输与重传的方法流程图;
图4为本申请实施例提供的又一种传输块分割示意图;
图5为本申请实施例提供的一种基于编码块组的传输与重传的方法流程图;
图6和图7为本申请实施例提供的通信系统示意图;
图8为本申请实施例提供的一种通信方法流程图;
图9为本申请实施例提供的一种基于距离的质量服务要求业务场景示意图;
图10至图12为本申请实施例提供的一种通信方法流程图;
图13为本申请实施例提供的一种误块率统计场景示意图;
图14至图18为本申请实施例提供的一种通信方法流程图;
图19为本申请实施例提供的一种HARQ信息反馈效果示意图;
图20和图21为本申请实施例提供的一种通信方法流程图;
图22为本申请实施例提供的一种HARQ信息反馈效果示意图;
图23为本申请实施例提供的一种通信方法流程图;
图24为相关技术提供的一种区域划分场景示意图;
图25为本申请实施例提供的一种通信方法流程图;
图26至图28为本申请实施例提供的一种通信场景示意图;
图29和图30为本申请实施例提供的一种HARQ信息反馈的场景示意图;
图31为本申请实施例提供的一种通信方法流程图;
图32为本申请实施例提供的一种计算距离的场景示意图;
图33和图34为本申请实施例提供的通信装置的结构示意图。
具体实施方式
本申请的说明书以及附图中的术语“第一”和“第二”等是用于区别不同的对象,或者用于区别对同一对象的不同处理,而不是用于描述对象的特定顺序。此外,本申请的描述中所提到的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括其他没有列出的步骤或单元,或可选地还包括对于这些过程、 方法、产品或设备固有的其它步骤或单元。需要说明的是,本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了使得本申请实施例更加的清楚,首先对本申请实施例中涉及到的“HARQ反馈与重传”作简单介绍。
为了保证数据的有效传输,通信系统中引入两种传输与重传方式:基于传输块(transport block,TB)的传输与重传、基于编码块组(code block group,CBG)的传输与重传。
方式一、参见图2和图3,基于TB的传输与重传的具体实现过程可以包括如下步骤:
步骤一、发送端将待发送的TB切割成多个编码块(code block,CB),示例性的,参见图2,将一个TB分割为4个CB,分别为:CB0、CB1、CB2和CB3。每个CB进行循环冗余校验码(cyclic redundancy check,CRC)校验,整个TB也进行CRC校验。发送端向接收端发送CRC校验后的TB。
步骤二、接收端对CRC校验后的TB进行接收、解调、译码和校验。示例性的,参见图3,4个CB的校验结果为:CB0校验错误、CB1、CB2和CB3均校验正确。另外,作为一种可能的情况,4个CB的校验结果全部正确,且TB校验正确,则表示接收端成功接收TB(图3未示出)。
步骤三、接收端向发送端发送否定应答(negative acknowledgement,NACK),以告知发送端TB接收失败。
步骤四、发送端重传校验后的TB。
步骤五、接收端接收重传的TB,与步骤二中接收的TB合并,CB0、CB1、CB2和CB3全部校验正确,且TB校验正确后,向发送端发送确认应答(positive acknowledgement,ACK),以告知发送端TB接收成功。
若CRC校验错误,如对CB0进行CRC校验时,校验出错,则接收端重复执行步骤三,且发送端重复执行步骤四,直至接收端反馈ACK或者发送端重传该TB的次数达到预设重传门限值。
方式二、参见图4和图5,基于CBG的传输与重传的具体实现过程可以包括如下步骤:
步骤一、发送端将待发送的TB切割成N个编码块(code block,CB),将N个CB构成M个CBG。其中,N是根据TB的长度确定的,M是根据网络侧配置的参数。示例性的,参见图4将一个TB分割为4个CB,分别为:CB0、CB1、CB2和CB3。CB0和CB1构成CBG0,CB2和CB3构成CBG1。每个CB进行CRC校验,整个TB也进行CRC校验。发送端向接收端发送TB。
步骤二、接收端对CRC校验后的TB进行接收、解调、译码和校验。示例性的,参见图5,4个CB的校验结果为:CBG0中的CB0校验错误,CBG0中的CB1校验正确,CBG1中的CB2和CB3均校验正确。另外,作为一种可能的情况,4个CB的校验结果全部正确,且TB校验正确,则表示接收端成功接收TB(图5未示出)。
步骤三、接收端向发送端发送HARQ信息,其中,CBG0所对应的HARQ信息为NACK,CBG1所对应的HARQ信息为ACK。
步骤四、发送端重传CBG0。
步骤五、接收端接收重传的CBG0,与步骤二中接收的TB合并,CB0、CB1、CB2和CB3全部校验正确,且TB校验正确后,向发送端发送HARQ信息,其中,CBG0和CBG1所对应的HARQ信息均为ACK。
若CRC校验错误,如对CB0进行CRC校验时,校验出错,则接收端重复执行步骤三,且发送端重复执行步骤四,直至接收端反馈M个ACK或者发送端重传次数达到预设重传门限值。在本申请一些实施例中,接收端作为第一终端,发送端作为第二终端,在此统一说明,下文不再赘述。
本申请实施例可以适用于终端之间通信的系统,如V2X通信系统、设备到设备(device to device,D2D)系统。参见图6,该通信系统包括至少两个终端,两个终端之间能够通过侧行链路(sidelink,SL)直接进行通信。可选的,参见图7,该通信系统还包括接入网设备。终端还可以与接入网设备进行通信(图6和图7中仅示出了两个终端)。其中,接入网设备和终端之间可以通过无线电波、可见光、激光、红外、光量子、电力线、光纤、同轴电缆、铜绞线等传输信息。
其中,终端主要用于接收或者发送数据。可选的,本申请实施例中所涉及到的终端可以是实现终端功能的设备或设备中的组件,比如,终端包括例如但不限于各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备;还可以包括用户单元(subscriber unit)、蜂窝电话(cellular phone)、智能电话(smart phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、平板型电脑、手持设备(handheld)、膝上型电脑(laptop computer)、机器类型通信(machine type communication,MTC)终端(terminal)、用户设备(user equipment,UE)、移动终端等。又比如,终端可以是上述任一设备中的组件(比如,终端可以指上述任一设备中的芯片系统)。本申请实施例中所涉及到的终端还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。在本申请一些实施例中,终端装置还可以称为终端,在此统一说明,下文不再赘述。
接入网设备是一种部署在无线接入网用以提供无线通信功能的装置。可选的,接入网设备可以指接入网的空中接口上通过一个或多个小区与无线终端通信的设备,其中,实现接入网设备的功能的装置可以是接入网设备,也可以是支持接入网设备实现该功能的装置(比如接入网设备中的芯片)。可选的,接入网设备可对空中接口进行属性管理。基站设备还可协调对空中接口的属性管理。接入网设备包括各种形式的宏基站,微基站(也称为小站),诸如中继站的中继设备或中继设备的芯片,发送接收点(transmission reception point,TRP),演进型网络节点(evolved Node B,eNB),下一代网络节点(g Node B,gNB)、连接下一代核心网的演进型节点B(ng evolved Node B,ng-eNB)等。或者,在分布式基站场景下,接入网设备可以是基带单元(base band unit,BBU)和射频拉远单元(remote radio unit,RRU),在云无线接入网(cloud radio access netowrk,CRAN)场景下,接入网设备可以是基带池(BBU pool)和RRU。
图6和图7所示的通信系统可以应用于目前的长期演进(long term evolution,LTE) 或者高级的长期演进(LTE advanced,LTE-A)系统中,也可以应用于目前正在制定的5G网络或者未来的其它网络中,当然,还可以应用于LTE和5G混合组网的系统中,或者其他系统中,本申请实施例对此不作具体限定。其中,在不同的网络中,上述通信系统中的接入网设备、终端可能对应不同的名字,本领域技术人员可以理解的是,名字对设备本身不构成限定。
车与任何事物(vehicle to everything,V2X)的通信系统支持广播模式、组播模式和单播模式。其中,广播模式是指发送终端采用广播模式发送传输块,所有接收终端均能够解析侧行链路控制信息(sidelink control information,SCI)和侧行链路业务信道(sidelink shared channel,SSCH)信息。SCI无需加扰,或者,SCI采用所有接收终端已知的扰码加扰。其中,组播模式是指发送终端采用广播传输块,传输块中携带组播标识(identity,ID)。接收终端根据组播ID,解析SCI和SSCH。其中,单播模式是指一个发送终端向一个接收终端发送传输块,其他接收终端均无法解析SCI和SSCH。在本申请一些实施例中,接收终端作为第一终端,发送终端作为第二终端,在此统一说明,下文不再赘述。
本申请实施例提供一种通信方法,该方法应用在终端之间的数据传输过程中。
下面,以第二终端采用组播方式向第一终端发送业务数据为例,对本申请实施例提供的通信方法进行说明。详见图8,本申请实施例的通信方法包括如下步骤:
S801、第二终端向第一终端发送业务数据。相应的,第一终端接收来自第二终端的业务数据。
其中,第一终端先解析物理侧行链路控制信道(physical sidelink control channel,PSCCH),以获取侧行链路控制信息(sidelink control information,SCI),根据SCI对物理侧行链路共享信道(physical sidelink shared channel,PSSCH)的进行解调和译码,以获取业务数据。
其中,业务数据可以是不同业务场景下的信息。业务数据以传输块的形式传输。在实际应用的业务场景中,不同的预设距离范围内,对终端之间数据传输可靠性要求不同。
示例性的,在防碰撞业务场景中,业务数据包括第二终端的位置信息。第一终端与第二终端之间的间隔距离值在一定的预设距离范围内,需要保证第一终端与第二终端之间的数据传输的可靠性,以使第一终端根据第二终端的位置信息,调整行驶速度,避免第一终端和第二终端所对应的车辆发生碰撞。而当第一终端与第二终端之间的间隔距离值在一定的预设距离范围外,如第一终端与第二终端之间的间隔距离值很远时,第一终端和第二终端所对应的车辆发生碰撞的可能性较小,相应的,终端之间数据传输的可靠性要求较低。
第一终端在执行S801之后,基于第一终端所处的位置执行不同的步骤。示例性的,参见图9,与第二终端(车辆1)的距离值为第一预设距离值的区域称为保障区,与第二终端(车辆1)的距离值大于第一预设距离值且小于或等于第二预设距离值的区域称为过渡区,其中,由第一预设距离值和第二预设距离值所确定的区间范围称为预设距离范围。若第一终端确定第一终端与第二终端之间的间隔距离值小于或等于第一预设距离值(即第一终端处于保障区),则第一终端执行S802,若第一终端确定第一终端与第二终端之间的间隔距离值位于预设距离范围内(即第一终端处于过渡区),则第一终端执行S803。
S802、若第一终端与第二终端的间隔距离值小于或等于第一预设距离值,则第一终端 向第二终端发送业务数据接收成功或失败的确认应答信息,生成预设信息。
其中,第一预设距离值能够指示通信需求距离的大小。通信需求距离的范围可以是距离小于或等于第一预设距离值所对应的区域范围。第一预设距离值与业务场景相关。业务场景不同,第一预设距离值也存在差异。第一预设距离值所对应的区域可称为保障区。示例性的,在防碰撞业务场景中,第一预设距离值是与第二终端的间隔距离在1000米以内的区域范围。
其中,第一预设距离值可以通过不同的物理量来表征空间上的相隔长度值。例如,第一预设距离值可以采用“长度”这一物理量来表示,第一预设距离值表示:与第二终端的间隔距离是1000米,此时,第一预设距离值所指示的区域范围是:与第二终端的间隔距离在1000米以内的区域范围。又例如,第一预设距离值可以采用“参考信号接收功率”这一物理量来表示,第一预设距离值为-80dB,以表示:第二终端的参考信号接收功率值大于或等于-80dB的区域范围。
其中,第一终端与第二终端的间隔距离值小于或等于第一预设距离值,则表明第一终端处于保障区,此时,对终端之间的业务数据的传输质量要求较高,第一终端需要向第二终端发送业务数据接收成功或失败的确认应答信息,以保证数据传输效率。
其中,预设信息是预设条件所对应的统计指标。例如,预设条件与预设时间参数有关时,生成预设信息则可以具体实施为:更新第一时间,即更新第一终端确定间隔距离值小于或等于第一预设距离值的时间。又例如,预设条件与重传的传输块有关时,生成预设信息则可以具体实施为:标识该传输块是否为新传的传输块。再例如,预设条件与误块率阈值有关时,生成预设信息则可以具体实施为:更新当前的误块率。
其中,第一终端向第二终端发送业务数据接收成功或失败的确认应答信息时,可以采用“ACK/NACK”这一反馈方式,即在业务数据接收成功时,第一终端向第二终端发送确认应答信息ACK,在业务数据接收失败时,第一终端向第二终端发送否定应答信息NACK。第一终端也可以采用“NACK only”这一反馈方式,即在业务数据接收成功时,第一终端不向第二终端发送任何信息,在业务数据接收失败时,第一终端向第二终端发送否定应答信息NACK。第一终端接收来自第二终端的侧行链路控制信息,侧行链路控制信息携带有反馈方式指示信息,以告知第一终端反馈HARQ信息时所采用的反馈方式。
S803、若第一终端与第二终端的间隔距离值位于预设距离范围内,则第一终端基于预设条件向第二终端发送业务数据接收成功或失败的确认应答信息。
其中,预设距离范围由第一预设距离值和第二预设距离值确定,且第二预设距离值大于第一预设距离值。业务场景不同,预设距离范围也存在差异。预设距离范围所对应的区域可称为过渡区。示例性的,在防碰撞业务场景中,预设距离范围是与第二终端的间隔距离在1000米至1100米的区域范围。
其中,第二预设距离值是根据业务场景所确定的数值,第二预设距离值也可以是无穷大的数值。当第二预设距离值设置为无穷大时,则仅判断间隔距离值是否远小于第二预设距离值。第二预设距离值与第一预设距离值类似,也可以通过不同的物理量来表征空间上的相隔长度值。例如,在第一预设距离值和第二预设距离值均采用“长度”这一物理量来表示时,第一预设距离值为1000,以指示:与第二终端的间隔距离是1000米以内的区域范围,第二预设距离值为1100,以指示:与第二终端的间隔距离是1100米以内的区域范 围,此时,预设距离范围为大于1000且小于或等于1100的区间范围,以表示:与第二终端的间隔距离在1000米至1100米的区域范围。又例如,在第一预设距离值和第二预设距离值均采用“参考信号接收功率”这一物理量来表示时,第一预设距离值为-80,以表示:第二终端的参考信号接收功率值大于或等于-80dB的区域范围。第二预设距离值为-95,以表示:第二终端的参考信号接收功率值大于或等于-95dB的区域范围。此时,预设距离范围为大于-95且小于或等于-80的区间范围,即第二终端的参考信号接收功率值大于-95dB且小于或等于-80dB的区域范围。
其中,“第一终端向第二终端发送业务数据接收成功或失败的确认应答信息”的具体说明参数S802中的相关说明,此处不再赘述。
其中,预设条件可以有多种,具体可以从不同方面来设定需要反馈HARQ信息的条件。例如,预设条件可以是:第一时间和第二时间之间的时间长度小于预设时间参数,其中,第一时间为最新确定间隔距离值小于或等于第一预设距离值的时间,第二时间为最新确定间隔距离值位于预设距离范围的时间。若第一终端接收到的是重传的传输块,此时,预设条件可以是:第一终端首次接收传输块时间隔距离值小于或等于第一预设距离值。预设条件又可以是:误块率大于误块率阈值。
在第一种可能的设计中,预设条件包括:第一时间和第二时间之间的时间长度小于预设时间参数T。
其中,第一时间为最新确定间隔距离值小于或等于第一预设距离值的时间。在实际应用过程中,第一时间为第一终端接收到第二终端的位置信息的时间。例如,第一终端接收来自接入网设备的广播消息、无线资源控制(radio resource control,RRC)信令或媒体接入控制(medium access control,MAC)信令等,以获取第二终端的位置信息,第一时间即为第一终端最新一次接收到广播消息、RRC信令或MAC信令的时间。又例如,第一终端接收来自第二终端的侧行链路控制信息(sidelink control information,SCI),以获取第二终端的位置信息。第一时间即为第一终端最新一次接收到SCI的时间。其中,SCI携带第二终端的位置信息。
其中,第二时间为最新确定间隔距离值位于预设距离范围的时间。
此时,参见图10,S803的具体实现过程可以包括S8031:
S8031、若第一终端与第二终端的间隔距离值位于预设距离范围内,且第一时间和第二时间之间的时间长度满足预设条件,则第一终端向第二终端发送业务数据接收成功或失败的确认应答信息。
如此,当第一终端确定间隔距离值小于或等于第一预设距离值时,则表明第一终端处于保障区,此时,若第一终端接收到来自第二终端的业务数据,则向第二终端发送该业务数据接收成功或失败的确定应答信息。当第一时间和第二时间之间的时间长度满足预设条件,则表明第一终端与第二终端之间的间隔距离值从小于或等于第一预设距离值、到位于预设距离范围内的时间长度小于或等于预设时间参数T,也就是说,第一终端从保障区进入过渡区的时间长度未超出预设时间参数T,此时,若第一终端接收到来自第二终端的业务数据,也会向第二终端发送该业务数据接收成功或失败的确定应答信息,以保证数据传输效率。由于第一时间和第二时间之间的时间长度满足预设条件时,第一终端也向第二终端发送业务数据接收成功或失败的确认应答信息,即使第一终端和第二终端之间的位置信 息的交互频率降低,也能够保证数据传输效率。并且,在“第一终端与第二终端之间的真实间隔距离值小于或等于第一预设距离值”这一场景中,第一终端至少存在一次能够正确确定间隔距离值小于或等于第一预设距离值,记第一终端确定间隔距离值小于或等于第一预设距离值的时间为第一时间,即使在后续某一次或某几次间隔距离值计算过程中,第一终端所计算的间隔距离值不准确,未能真实反映第一终端与第二终端之间的间隔距离,如第一终端确定间隔距离值位于预设距离范围内,而不是间隔距离值小于或等于第一预设距离值,记第一终端确定间隔距离值位于预设距离范围内的时间为第二时间。只要第一时间与第二时间之间的时间长度未超出预设时间参数T,则第一终端接收到来自第二终端的业务数据时,也会向第二终端发送业务数据接收成功或失败的确认应答信息,如此,即使第一终端的间隔距离值计算不准确,也能够保证数据传输效率。即使第一终端处于第一预设距离值附近的区域,其与第二终端之间的数据传输质量也能够得到保障,同时还能够避免不必要的数据重传。
示例性的,以预设时间参数配置定时器的定时时长T为例,对第一种可能的设计进行说明:
预设时间参数用于配置定时器,定时器的定时时长为T,第一时间为定时器启动的时间,也即第一终端确定间隔距离值小于或等于第一预设距离值时启动定时器。S8031的具体实现过程可以包括:若第一终端与第二终端的间隔距离值位于预设距离范围内,且定时器处于运行状态,则第一终端向第二终端发送业务数据接收成功或失败的确认应答信息。
由于定时器的启动的时间为第一时间,若定时器处于运行状态,则表明第一时间与第二时间之间的时间长度满足预设条件,此时,第一终端接收到来自第二终端的业务数据时,也会向第二终端发送业务数据接收成功或失败的确认应答信息,以保证数据传输效率。
在第二种可能的设计中,业务数据为第二终端重传的业务数据,且以传输块传输。预设条件包括:第一终端首次接收传输块时间隔距离值小于或等于第一预设距离值。此时,参见图11,S803的具体实现过程可以包括S8032:
S8032、若第一终端与第二终端的间隔距离值位于预设距离范围内,且重传的传输块满足预设条件,则第一终端向第二终端发送该重传的传输块接收成功或失败的确认应答信息。
其中,第一终端首次接收的传输块,即新传的传输块,也就是说,第一终端接收第二终端初次传输的数据。重传的传输块是第二终端重复传输的传输块,以使第一终端再次接收该传输块。
每个传输块均对应一个新传指示信息,新传指示信息用于指示该传输块是否为第二终端新传的传输块。
这里,重传的数据块满足预设条件,则表明:第一终端与第二终端之间的间隔距离值小于或等于第一预设距离值,第一终端首次接收该传输块失败,且第一终端接收来自第二终端重传的该数据块时,第一终端与第二终端之间的间隔距离值位于预设距离范围内。此时,第一终端也会向第二终端发送该重传的传输块接收成功或失败的确认应答信息,以保证数据传输效率。
在第三种可能的设计中,业务数据以传输块传输。预设条件包括:误块率大于误块率阈值。此时,参见图12,S803的具体实现过程可以包括S8033:
S8033、若第一终端与第二终端的间隔距离值位于预设距离范围内,且当前的误块率满足预设条件,则第一终端向第二终端发送传输块接收成功或失败的确认应答信息。
其中,误块率满足如下公式:
BLER=N_error/N_total      (1)
其中,BLER表示误块率,N_error表示在预设时间段内未接收成功的传输块的数量,N_total表示在预设时间段内接收的传输块的数量,或者,N_error为预设值,如1024、2048。
其中,误块率阈值可以是接入网设备或第二终端所确定的数值,误块率阈值也可以是根据业务类型的服务质量(quality of service,QoS)所确定的数值。例如,某一种业务类型的QoS要求误块率为5%,误块率阈值可以是QoS要求误块率的倍数,即误块率阈值可以是10%或15%。也可以是基于偏移量和原QoS要求误块率进行设置,偏移量为2%,原QoS要求误块率为5%,则误块率阈值可以是7%。
示例性的,参见图13,图13示出了一种误块率统计示意图。在图13中,时间窗1和时间窗2所对应的预设时间段长度为1秒。在时间窗1和时间窗2内,每个传输块均对应一个编号。在时间窗1内,总共传输了10个传输块,N_total=10。其中,传输次数为一次且接收成功的传输块的数量为8,编号为6的传输块,传输次数为三次,且最终接收成功,编号为8的传输块,传输次数为一次,且最终接收失败,此时,在时间窗1所对应的预设时间段内未接收成功的传输块为:编号8所对应的传输块,N_error=1。BLER=10.00%。类似地,在时间窗2内,总共传输了11个传输块,N_total=11。其中,传输次数为一次且接收成功的传输块的数量为9,编号为6的传输块,传输次数为三次,且最终接收成功,编号为8的传输块,传输次数为一次,且最终接收失败,此时,在时间窗2所对应的预设时间段内未接收成功的传输块为:编号8所对应的传输块,N_error=1。BLER=9.09%。
这里,当前的误块率满足预设条件,则表明:当前的误块率大于误块率阈值。此时,第一终端接收到来自第二终端的传输块时,也会向第二终端发送该传输块接收成功或失败的确认应答信息,以满足业务数据的传输质量需求。
另外,在预设条件与误块率阈值有关时,第一终端需要实时更新当前的误块率。参见图14,第一终端在执行S801之后,需要执行S8034:
S8034、若间隔距离值小于或等于第二预设距离值,则第一终端根据传输块接收成功或失败的状态,更新当前的误块率。
其中,若间隔距离值小于或等于第一预设距离值,则表明第一终端处于保障区。此时,第一终端接收来自第二终端的传输块时,向第二终端发送该传输块接收成功或失败的状态,根据该传输块接收成功或失败的状态,更新当前的误块率,以便于第一终端处于过渡区(即间隔距离值位于预设距离范围内)时作为第一终端是否反馈确认应答信息的依据。
若间隔距离值位于预设距离范围内时,则表明第一终端处于过渡区,无论当前的误块率是否大于误块率阈值,第一终端均会根据传输块接收成功或失败的状态,更新当前的误块率,以在当前的误块率大于误块率阈值时,第一终端向第二终端发送传输块接收成功或失败的确认应答信息,以保证业务数据的传输质量需求。
需要说明的是,若间隔距离值小于或等于第一预设距离值时,则第一终端需要执行S802和S8034,第一终端可以先执行S802,再执行S8034,也可以先执行S8034,再执行 S802,还可以同时执行S802和S034,此处,对第一终端执行S802和S8034的先后顺序不作限定。类似的,若间隔距离值位于预设距离范围内时,则第一终端需要执行S8033和S8034,且执行先后顺序不作限定,即第一终端可以先执行S8033,再执行S8034,也可以先执行S8034,再执行S8033,还可以同时执行S8033和S034。
为了提高第一终端位置判断的准确性,如判断第一终端是处于保障区,还是处于过渡区,本申请实施例通信方法中的间隔距离值是经过修正后的数值。参见图15,第一终端获得间隔距离值的具体过程可以包括S8010或S8011。作为一种可能的实现方式,第一终端获得间隔距离值的具体过程可以包括S8010:
S8010、第一终端根据第一终端和第二终端之间的相对运动速度和预设修正时间,修正第一终端与第二终端之间的距离初始值,以获取第一终端与第二终端的间隔距离值。
其中,距离初始值可以是第一终端基于第一终端和第二终端的位置信息,计算得到的数值。第一终端与第二终端之间的距离初始值也可以通过不同的物理量来表征空间上的相隔长度值。例如,距离初始值采用“长度”这一物理量来表示时,第一终端接收来自第二终端的位置信息,再基于第二终端的位置信息和第一终端的位置信息,计算两者之间的距离初始值。又例如,距离初始值采用“参考信号接收功率”这一物理量来表示时,第一终端接收来自第二终端的信号,第一终端计算所接收信号的参考信号接收功率,以表征第一终端与第二终端之间的距离。
其中,第一终端和第二终端之间的相对运动速度是根据第一终端和第二终端的实际运动速度得到的。示例性的,第一终端接收来自第二终端的实际运动速度,再结合第一终端的实际运动速度,得到相对运动速度。
其中,预设修正时间与业务场景相关,例如,在防碰撞业务场景中,预设修正时间是5秒。预设修正时间可以是第一终端从接入网设备所接收的参数,也可以是第一终端从第二终端所接收的参数,还可以是业务建立时,网络侧指示的参数。
示例性的,以“长度”这一物理量来表示距离初始值时,第一终端与第二终端之间的间隔距离值满足如下公式:
A=e-v×x     (2)
其中,A表示第一终端与第二终端之间的间隔距离值,e表示第一终端与第二终端之间的距离初始值,x表示预设修正时间,v表示第一终端与第二终端之间的相对运动速度。
例如,在防碰撞这一业务场景中,预设修正时间x=5秒。在某一时刻,第一终端计算得到的距离初始值e=1000米,第一终端与第二终端之间的相对运动速度v=10米/秒。通过上述公式(2),可得A=950米。
示例性的,以“参考信号接收功率”这一物理量来体现距离初始值时,第一终端与第二终端之间的间隔距离值满足如下公式:
A=a-20log 10(v×x/e+1)       (3)
其中,A表示修正的参考信号接收功率,a表示修正前的参考信号接收功率,e表示第一终端与第二终端之间的距离初始值,x表示预设修正时间,v表示第一终端与第二终端之间的相对运动速度。第一终端再基于修正后的参考信号接收功率,即可得到第一终端与第二终端之间的间隔距离值。
如此,第一终端根据第一终端和第二终端之间的相对运动速度和预设修正时间,修正 第一终端与第二终端之间的距离初始值,以获取第一终端与第二终端的间隔距离值,第二终端无需频繁向第一终端发送位置信息,节省时频资源。
作为另一种可能的实现方式,第一终端获得间隔距离值的具体过程可以包括S8011:
S8011、第一终端根据第一终端和第二终端之间的相对运动速度与预设对应关系,修正第一终端与第二终端之间的距离初始值,以获取第一终端与第二终端的间隔距离值。
其中,相对运动速度和距离初始值均可参见S8010的相关说明,此处不再赘述。
其中,预设对应关系为相对运动速度与参考信号接收功率调整量之间的对应关系。
示例性的,参见表1,表1示出了一种相对运动速度与参考信号接收功率调整量之间的对应关系。在表1中,若第一终端确定相对运动速度v=0.35公里/秒,v大于0.3,此时,参考信号接收功率的修正量为5dB。
表1
Figure PCTCN2020094729-appb-000001
示例性的,修正后的参考信号接收功率满足如下公式:
A=a-Δ        (4)
其中,A表示修正的参考信号接收功率,a表示修正前的参考信号接收功率,Δ表示参考信号接收功率的修正量。第一终端再基于修正后的参考信号接收功率,即可得到第一终端与第二终端之间的间隔距离值。
如此,第一终端根据第一终端和第二终端之间的相对运动速度与预设对应关系,修正第一终端与第二终端之间的距离初始值,以获取第一终端与第二终端的间隔距离值,第二终端无需频繁向第一终端发送位置信息,节省时频资源。
类似的,第一预设距离值也是经过修正之后的数值。参见图16,第一终端获得第一预设距离值的具体过程可以包括S8012或S8013。作为一种可能的实现方式,第一终端获得第一预设距离值的具体过程可以包括S8012:
S8012、第一终端根据第一终端和第二终端之间的相对运动速度和预设修正时间,修正初始距离值,以获取第一预设距离值。
其中,初始距离值用于指示保障区的大小,也可以通过不同的物理量来表征空间上的相隔长度值。例如,初始距离值可以采用“长度”这一物理量来表示,又可以采用“参考信号接收功率”这一物理量来表示。
其中,第一终端和第二终端之间的相对运动速度和预设修正时间均可参见S8010的相关说明,此处不再赘述。
示例性的,以“长度”这一物理量来表示初始距离值时,第一预设距离值满足如下公 式:
B=b+v×x       (5)
其中,B表示第一预设距离值,b表示初始距离值,x表示预设修正时间,v表示第一终端与第二终端之间的相对运动速度。
例如,在防碰撞这一业务场景中,预设修正时间x=5秒。在某一时刻,第一终端得到的初始距离值b=1000米,第一终端与第二终端之间的相对运动速度v=10米/秒。通过上述公式(5),可得B=1050米。
示例性的,以“参考信号接收功率”这一物理量来体现初始距离值时,第一预设距离值满足如下公式:
B=b+20log 10(v×x/d+1)        (6)
其中,B表示修正的参考信号接收功率,b表示修正前的参考信号接收功率,d表示初始距离始值,x表示预设修正时间,v表示第一终端与第二终端之间的相对运动速度。第一终端再基于修正后的参考信号接收功率,即可得到第一预设距离值。
如此,第一终端根据第一终端和第二终端之间的相对运动速度和预设修正时间,修正初始距离值,以获取第一预设距离值,第二终端无需频繁向第一终端发送位置信息,节省时频资源。
作为另一种可能的实现方式,第一终端获得间隔距离值的具体过程可以包括S8013:
S8013、第一终端根据第一终端和第二终端之间的相对运动速度与预设对应关系,修正初始距离值,以获取第一预设距离值。
其中,相对运动速度和初始距离值均可参见S8010的相关说明,此处不再赘述。
其中,预设对应关系为相对运动速度与参考信号接收功率调整量之间的对应关系,具体可以参见表1所示的对应关系。
示例性的,修正后的参考信号接收功率满足如下公式:
B=b-Δ         (7)
其中,B表示修正的参考信号接收功率,b表示修正前的参考信号接收功率,Δ表示参考信号接收功率的修正量。第一终端再基于修正后的参考信号接收功率,即可得到第一预设距离值。
如此,第一终端根据第一终端和第二终端之间的相对运动速度与预设对应关系,修正初始距离值,以获取第一预设距离值,第二终端无需频繁向第一终端发送位置信息,节省时频资源。
需要说明的是,第一终端可以先对第一终端与第二终端之间的距离初始值进行修正,以得到第一终端与第二终端之间的间隔距离值,再对用于指示保障区大小的初始距离值进行修正,以得到第一预设距离值,即第一终端先执行S8010或S8011,再执行S8012或S8013。或者,第一终端可以先对用于指示保障区大小的初始距离值进行修正,以得到第一预设距离值,再对第一终端与第二终端之间的距离初始值进行修正,以得到第一终端与第二终端之间的间隔距离值,即第一终端先执行S8012或S8013,再执行S8010或S8011。或者,第一终端可以先对第一终端与第二终端之间的距离初始值和用于指示保障区大小的初始距离值同时进行修正,即第一终端执行S8010和S8011中的一个步骤,同时执行S8012和S8013中的一个步骤。此处,对第一终端执行S8010至S8013的顺序不作限定。
本申请实施例提供的通信方法,第一终端接收来自第二终端的业务数据,若第一终端与第二终端的间隔距离值位于预设距离范围内,则第一终端基于预设条件向第二终端发送业务数据接收成功或失败的确认应答信息。其中,预设距离范围由第一预设距离值和第二预设距离值确定,且第二预设距离值大于第一预设距离值。相对于现有技术中,第一终端处于保障区(即第一终端与第二终端的间隔距离值大于第一预设距离值)以外时,不再向第二终端发送业务信息接收成功或失败的确认应答信息,而间隔距离值计算不准确,致使业务数据传输质量受到影响。在本申请实施例通信方法中,第一终端即使处于保障区以外,如第一终端处于预设距离范内,在满足预设条件的情况下,第一终端也可以向第二终端发送业务数据接收成功或失败的确认应答信息,既能够保证业务数据传输质量,又能够避免“处于预设距离范围内的第一终端均需反馈确认应答信息”的现象,从而避免不必要的数据传输。
下面,以基于预设时间参数T来设定预设条件、第一终端采用“NACK only”这一反馈方式为例,本申请实施例通信方法可以包括:第一终端确定第一终端的车辆位置范围、第一终端反馈HARQ信息。其中,参见图17,“第一终端确定第一终端的车辆位置范围”的具体实现过程可以包括如下步骤:
S1701、第一终端获取配置参数。
其中,配置参数包括预设修正时间、第一预设距离值和第二预设距离值。
示例性的,预设修正时间为5秒,第一预设距离值为1000米,第二预设距离值为1100米。
S1702、第一终端计算第一终端与第二终端之间的间隔距离值。
其中,S1702的具体实现过程可以参见S8010的相关说明,此处不再赘述。
S1703、第一终端确定第一终端与第二终端之间的间隔距离值是否小于或等于第一预设距离值:若是,则执行S1704和S1705,若否,则执行S1706。
S1704、第一终端设置第一终端的车辆位置为:保障区。
S1705、第一终端启动定时器。其中,定时器的定时时长是根据预设时间参数T设置。
示例性的,预设时间参数T为7毫秒。
S1706、第一终端确定第一终端与第二终端之间的间隔距离值是否位于预设距离范围内:若是,则执行S1707,若否,则执行S1708。
S1707、第一终端设置第一终端的车辆位置为:过渡区。
S1708、第一终端设置第一终端的车辆位置为:其他。
参见图18,“第一终端反馈HARQ信息”的具体实现过程可以包括如下步骤:
S1801、第一终端接收来自第二终端的业务数据。
其中,S1801的具体实现过程可以参见S801的相关说明,此处不再赘述。
S1802、第一终端确定第一终端是否处于过渡区:若是,则执行S1803,若否,则执行S1805。
S1803、第一终端确定定时器是否处于运行状态:若是,则执行S1804,否则,执行S1806。
S1804、第一终端向第二终端发送业务数据接收成功或失败的确认应答信息。
示例性的,若业务数据接收成功,则第一终端不向第二终端发送任何信息。若业务数据接收失败,则第一终端向第二终端发送NACK。
S1805、第一终端确定第一终端是否处于保障区:若是,则执行S1804,若否,则执行S1806。
S1806、第一终端不向第二终端发送业务数据接收成功或失败的确认应答信息。
示例性的,参见图19,图19示出了一种HARQ信息反馈效果示意图。在时隙(slot)0所对应的时刻,第一终端处于保障区,且成功接收来自第二终端的传输块TB1,此时,第一终端启动定时器。
在时隙(slot)3所对应的时刻,第一终端处于过渡区,且接收来自第二终端的传输块TB2,TB2接收失败。此时,第一终端确定定时器未超时,则向第二终端反馈NACK。
在时隙(slot)6所对应的时刻,第一终端仍处于过渡区,且成功接收来自第二终端重传的传输块TB2。
如此,若第一终端处于保障区和过渡区的边缘,则依据定时器的运动状态,确定是否向第二终端发送HARQ信息,以保证数据传输质量。相对于“处于过渡区的第一终端均需反馈HARQ信息”这一场景来说,第一终端基于定时器的运行状态,来确定是否向第二终端发送HARQ信息,避免不必要的数据重传。
下面,以基于初传的传输块来设定预设条件、第一终端采用“NACK only”这一反馈方式为例,本申请实施例通信方法可以包括:第一终端确定第一终端的车辆位置范围、第一终端反馈HARQ信息。其中,参见图20,“第一终端确定第一终端的车辆位置范围”的具体实现过程可以包括如下步骤:
S2001、第一终端获取配置参数。
其中,配置参数包括:预设修正时间、第一预设距离值、第一门限值和第二门限值。
示例性的,预设修正时间为5秒,第一预设距离值为1000米,第一门限值为-80dbm,第二门限值为-95dbm。
S2002、第一终端计算第一终端与第二终端之间的间隔距离值。
其中,间隔距离值是通过参考信号接收功率来表征距离的数值。示例性的,参考信号可以是位置参考信号(position reference signal,P-RS)、信道状况信息参考信号(channel status information reference signal,CSI-RS)和解调导频参考信号(demodulation reference signal,DMRS)。
S2002的具体实现过程可以参见S8010或S8011的相关说明,此处不再赘述。
S2003、第一终端确定第一终端与第二终端之间的间隔距离值是否小于或等于第一预设距离值:若是,则执行S2004,若否,则执行S2005。
示例性的,第一终端将第一终端与第二终端之间的参考信号接收功率值与第一门限值进行比较,以判断间隔距离值是否小于或等于第一预设距离值。
S2004、第一终端设置第一终端的车辆位置为:保障区。
S2005、第一终端确定第一终端与第二终端之间的间隔距离值是否位于预设距离范围内:若是,则执行S2006,若否,则执行S2007。
示例性的,第一终端将第一终端与第二终端之间的参考信号接收功率值分别与第一门限值和第二门限值进行比较,以判断间隔距离值是否位于预设距离范围内。
S2006、第一终端设置第一终端的车辆位置为:过渡区。
S2007、第一终端设置第一终端的车辆位置为:其他。
参见图21,“第一终端反馈HARQ信息”的具体实现过程可以包括如下步骤:
S2101、第一终端接收来自第二终端的传输块。
示例性的,第一终端对侧行链路控制信道PSCCH进行解析,以获取新传指示信息、HARQ进程号和控制信息。其中,新传指示信息用于指示传输块是否为新传的传输块,HARQ进程号用于指示需要合并的传输块。第一终端根据控制信息解析侧行链路共享信道PSSCH,以获取传输块。
S2102、第一终端确定传输块是否为新传的传输块:若是,则执行S2103,若否,则执行S2106。
S2103、第一终端确定第一终端是否处于保障区:若是,则执行S2104,否则,执行S2105。
S2104、第一终端为该传输块设置反馈标识为第一设定值。
其中,第一设定值用于指示第一终端处于保障区时首次接收到该传输块。
需要说明的是,由于第一终端处于保障区,第一终端采用“NACK only”这一反馈方式,向第二终端发送传输块接收成功或失败的确认应答信息。
S2105、第一终端为该传输块设置反馈标识为第二设定值。
其中,第二设定值用于指示第一终端首次接收到该传输块时并未处于保障区。
S2106、第一终端确定第一终端是否处于过渡区:若是,则执行S2107,若否,则执行S2109。
S2107、第一终端判断该传输块所对应的反馈标识是否为第一预设值:若是,则执行S2108,若否,则执行S2109。
S2108、第一终端向第二终端发送传输块接收成功或失败的确认应答信息。
S2109、第一终端不向第二终端发送传输块接收成功或失败的确认应答信息。
示例性的,参见图22,图22示出了一种HARQ信息反馈效果示意图。在时隙(slot)0所对应的时刻,第一终端处于保障区首次接收传输块TB1,且接收失败。第一终端向第二终端发送否定确认应答信息NACK,设置传输块TB1的反馈标识为第一预设值。
在时隙(slot)3所对应的时刻,第一终端处于过渡区,且接收来自第二终端重传的传输块TB1,重传的传输块TB1接收失败。由于该传输块TB1所对应的反馈标识为第一预设值,第一终端向第二终端反馈NACK。
在时隙(slot)6所对应的时刻,第一终端仍处于过渡区,再次接收来自第二终端重传的传输块TB1,重传的传输块TB1接收成功。由于反馈方式为“NACK only”,第一终端不向第二终端发送任何信息。
如此,若第一终端处于保障区时接收到新传的传输块,且接收失败,即使第一终端移出保障区,进入过渡区,第一终端也会依据反馈标识,确定是否向第二终端发送HARQ信息,以保证数据传输质量。
下面,以基于误块率来设定预设条件、第一终端采用“NACK only”这一反馈方式为例,本申请实施例通信方法可以包括:第一终端确定第一终端的车辆位置范围、第一终端反馈HARQ信息。其中,“第一终端确定第一终端的车辆位置范围”的具体实现过程可以参 见S1701至S1708,也可以参见S1901至S1907,此处不再赘述。
参见图23,“第一终端反馈HARQ信息”的具体实现过程可以包括如下步骤:
S2301、第一终端接收来自第二终端的传输块。
S2302、第一终端确定第一终端是否处于保障区:若是,则执行S2303,否则,执行S2305。
S2303、第一终端根据传输块的接收状态,向第二终端发送传输块接收成功或失败的确认应答信息。
S2304、第一终端根据传输块的接收成功或失败的状态,更新当前的误块率。
其中,S2303的具体实现过程可以参见S8034的相关说明,此处不再赘述。
S2305、第一终端确定第一终端是否处于过渡区:若是,则执行S2306,否则,执行S2307和S2304。
S2306、第一终端确定当前的误块率是否大于误块率阈值:若是,则执行S2303,若否,则执行S2307和S2304。
S2307、第一终端不向第二终端发送传输块接收成功或失败的确认应答信息。
如此,若第一终端处于过渡区,则依据当前的误块率,确定是否向第二终端发送HARQ信息,以保证数据传输质量。相对于“处于过渡区的第一终端均需反馈HARQ信息”这一场景来说,第一终端基于定时器的运行状态,来确定是否向第二终端发送HARQ信息,避免不必要的数据重传。
相关技术中,第一终端所确定的第二终端的位置的不够精准。例如,第二终端基于全球定位系统(global positioning system,GPS)确定坐标信息(x,y),其中,横坐标x是第二终端的位置与地理坐标(0,0)之间经度的地面测量距离,纵坐标y是第二终端的位置与地理坐标(0,0)之间纬度的地面测量距离。再按照预设的区域编码规则,将GPS所确定的地理位置信息转换为区域编码(zone identity)。每个区域对应一个区域编码。例如,GPS地理位置坐标(x,y)与区域编码满足如下关系:
Figure PCTCN2020094729-appb-000002
其中,x表示第二终端的位置与地理坐标(0,0)之间经度的地面测量距离,L表示每个区域地面测量的长度,N x表示长度方向(x轴)区域个数的最大值,y表示第二终端的位置与地理坐标(0,0)之间纬度的地面测量距离,W表示每个区域地面测量的宽度,N y表示宽度方向(y轴)区域个数的最大值,Mod为取余运算符,Zone id表示第二终端所处区域的区域编码。
每个区域编码所对应的区域是预先划分的。在一定的预设区域范围内,按照预设参数(如长度L和宽度W)划分区域。参见图24,每个方格表示一个区域的区域范围,每个方格内的数字(如0至15中任一个数字)即为该区域的区域编码。而区域编码仅能够指示第二终端所处的配置区域,并不能精确指示第二终端所处的位置。若预设参数(如长度L和宽度W)取值变大,则划分后的每个区域的范围变大。而预设区域范围是固定的,相应的,划分后的区域数量变少,区域编码的位数降低。而区域编码是通过SCI传输的,由于区域编码的位数降低,也就降低了SCI的资源开销。但是,由于每个区域编码所对应的区域的范围变大,在基于区域编码来确定第二终端的位置时,所确定位置的精准度变差。反之, 若预设参数(如长度L和宽度W)取值变小,则划分后的每个区域的范围变小。而预设区域范围是固定的,相应的,划分后的区域数量变多,区域编码的位数增加。而区域编码是通过SCI传输的,由于区域编码的位数增加,也就加大了SCI的资源开销,进一步降低了系统容量。在一定的区域范围内,若缩小每个区域的范围,区域的数量会增加。在N x和N y的位数一定的情况下,也就限定了区域编码的取值范围。由于区域编码的个数有限,可能存在一个区域编码对应两个或多个区域的情况。此时,第一终端仅基于区域编码是无法确定第二终端的位置的。
有鉴于此,本申请实施例还提供一种通信方法,能够准确地确定第二终端的位置,参见图25,该方法包括:
S2501、在第一时间,第一终端获取第二终端的第一位置信息。
其中,第一位置信息可以指示第二终端所处的位置。示例性的,第一位置信息可以是GPS信息,以表示第二终端所处的位置。
其中,第一位置信息也可以指示第二终端所处的第一配置区域。示例性的,第一位置信息可以是区域信息,如区域编码。
当第一位置信息(如区域信息)指示第二终端所处的第一配置区域时,第一位置信息可以承载于SCI。第一终端接收来自第二终端的SCI,以获取第一位置信息。
第一位置信息还可以承载于广播消息。第一终端接收来自第二终端的第一位置信息时,通过接收来自接入网设备的广播消息,以获取第一位置信息。
第一位置信息又可以承载于RRC信令。第一终端接收来自第二终端的第一位置信息时,通过接收来自接入网设备的RRC信令,以获取第一位置信息。示例性的,RRC信令包括多个信息元素(information element,IE),通过某一IE或某几个IE承载第一位置信息。
第一位置信息又可以承载于MAC信令。第一终端接收来自第二终端的第一位置信息时,通过接收来自接入网设备的MAC信令,以获取第一位置信息。示例性的,MAC信令包括多个控制元素(control element,CE),通过某一CE或某几个CE承载第一位置信息。
当第一位置信息(如地理位置信息)指示第二终端所处的位置时,第一位置信息可以承载于广播消息、RRC信令或MAC信令。
示例性的,第二终端按照预设时间周期,向第一终端发送第一位置信息,以使第一终端获取到所需要的第一位置信息。其中,预设时间周期可以是网络侧所配置的参数,也可以是根据第二终端的实际运动速度设置的参数。例如,第二终端的实际运动速度小于或等于第一速度阈值时,预设时间周期设置为第一数值,第二终端的实际运动速度大于第一速度阈值时,预设时间周期设置为第二数值(第二数值小于第一数值)。又例如,预设时间周期的取值与第二终端的实际运动速度的数值呈反比例关系,即第二终端的实际运动速度的数值越大,预设时间周期的取值越小。或者,在前一次发送第一位置信息后,如果第二终端的移动隔距离值大于距离阈值时,第二终端向第一终端发送地理位置信息。或者,在前一次发送第一位置信息后,如果第二终端的移动隔距离值大于距离阈值时,第二终端向第一终端发送第一位置信息。
需要说明的是,在S2501的执行过程中,HARQ机制可以处于去使能状态,即第一终端获取到第二终端的第一位置信息之后,无需向第二终端反馈确认应答信息。第二终端直接按照预设时间周期发送第一位置信息即可,无需考虑是否存在第一终端反馈的确认应答信息。这里,第二终端以重复发送的方式,以使组播中的第一终端均能够接收到第一位置信 息。或者,第二终端按照预设编码码率对承载第一位置信息的业务数据进行编码。其中,预设编码码率的编码码率较低。由于编码码率较低,即使在低信噪比的信道环境中,第一终端也能够有效接收到第一位置信息。
如此,第一终端可以通过多种方式获取到第一位置信息,以结合第二位置信息,确定第二终端的位置,保障第二终端位置确定的准确度。
S2502、在第二时间,第一终端获取第二终端的第二位置信息。
其中,第一时间不晚于第二时间。示例性的,第一终端可以先获取到第一位置信息,再获取到第二位置信息。第一终端也同时获取到第一位置信息和第二位置信息。
其中,第一终端获取第一位置信息的时间间隔可以大于第一终端获取第二位置信息的时间间隔。
其中,第二位置信息指示第二终端所处的第二配置区域。示例性的,第二位置信息也可以是区域信息,如区域编码。
其中,第二配置区域的配置参数和第一配置区域的配置参数不同。示例性的,以长方形区域为例,配置参数可以是每个区域的长度值L、宽度值W、长度方向(x轴)区域个数的最大值N x、宽度方向(y轴)区域个数的最大值N y。例如:将第一配置区域的配置参数分别记为:L 1、W 1、N x1、N y1,其中,N x1=N y1=8。将第二配置区域的配置参数分别记为:L 2、W 2、N x2、N y2,其中,N x2=N y2=4。L 1=L 2且W 1=W 2。如此,第一配置区域的区域范围比第二配置区域的区域范围较大。相对于第二配置区域来说,第一配置区域能够表示距离第二终端更远的距离范围。
其中,第二配置区域的位置是根据第一位置信息和第二位置信息的区域编码确定的。例如,当第一位置信息为区域编码,指示第二终端所处的第一配置区域时,第二配置区域可以是距离第一配置区域最近的区域编码所对应的区域。当第一位置信息为地理位置坐标时,第二配置区域可以是距离地理位置坐标最近的区域编码所对应的区域。
其中,第二位置信息可以承载于SCI。第一终端可以通过接收来自第二终端的SCI,以获取第二位置信息。
需要说明的是,SCI可以携带不同的指示标识,以使第一终端基于不同的指示标识,确定该SCI所携带位置信息是第一位置信息,还是第二位置信息。
如此,第一终端通过接收SCI的方式,获取到第二位置信息,再结合第一位置信息来确定第二终端所处的位置。相对于通过接收广播消息、RRC信令和MAC信令的方式而言,第一终端通过接收SCI以获取第二位置信息,时效性强,有助于提高第二终端位置确定的准确度。
需要说明的是,当第一位置信息指示第一终端所处的第一配置区域时,第一配置区域大于第二配置区域。示例性的,以长方形的区域为例,配置参数为每个区域的长度和宽度。区域的长度记为L,区域的宽度记为W。第一配置区域的长度记为L 1,宽度记为W 1。第二配置区域的长度记为L 2,区域的宽度记为W 2。四个配置参数满足如下关系:L 1>L 2,或者,W 1>W 2。作为一种可能的实现方式,第二配置区域的大小可以根据预设时间周期和第二终端的运动速度确定的。这里,预设时间周期是第一终端获取第一位置信息的时间周期。示例性的,以“L 2和W 2的取值相同、且N x=N y=4”为例,在某一时刻预设时间周期为1S,第二终端的运动速度为360km/h,也就是说,第二终端每秒最多行驶距离S=100m。此时,可以将L 2和W 2设置为50m。
如此,第一配置区域大于第二配置区域。两个配置区域的区域范围不同。第一配置区域和第二配置区域均用于确定第二终端的位置。第一终端可以先基于第一配置区域,确定一个较大的区域范围,再结合第二配置区域,精准确定第二终端的位置,有助于提高定位的精准度,避免“定位不准确”的问题。
S2503、第一终端根据第一位置信息和第二位置信息,确定第二终端的位置。
其中,S2503的实现方式有多种,包括但不限于如下三种可能的实现方式:
作为第一种可能的实现方式,当第一位置信息为坐标信息(x TX,y TX),其中,x TX表示在第一时间第二终端的位置与地理坐标(0,0)之间经度的地面测量距离,y TX表示在第一时间第二终端的位置与地理坐标(0,0)之间纬度的地面测量距离,如图26所示的圆形图标所在的位置。第二位置信息为区域编码。区域编码所对应的区域不止一个,此时,第一终端会选取与坐标信息(x TX,y TX)距离最小的区域,如图26所示的梯形图标所在的区域,即区域编码为10的区域。第一终端基于该区域(与坐标信息(x TX,y TX)距离最小的区域)确定第二终端的位置。若与坐标信息(x TX,y TX)距离最小的区域不止一个,则确定每个区域(与坐标信息(x TX,y TX)距离最小的区域)与第一终端之间的距离值,基于距离值最小的区域确定第二终端的位置。
作为第二种可能的实现方式,当第一位置信息和第二位置信息均为区域编码时,第一位置信息的配置参数L 1=200,W 1=200,N x=N y=4。第二位置信息的配置参数L 2=200,W 2=200,N x=N y=4。在第一时间,第一终端基于GPS确定坐标信息(x RX1,y RX1),其中,x RX1表示第一终端在第一时间的位置与地理坐标(0,0)之间经度的地面测量距离,y RX1表示第一终端在第一时间的位置与地理坐标(0,0)之间纬度的地面测量距离。第一位置信息的区域编码所对应的区域不止一个,此时,第一终端会在第一位置信息的区域编码所对应的多个区域中,选取与坐标信息(x RX1,y RX1)距离最小的区域,作为第二终端在第一时间的第一配置区域。第二位置信息的区域编码所对应的区域不止一个,此时,第一终端会在第二位置信息的区域编码所对应的多个区域中,选取与第一配置区域(该区域是第二终端在第一时间的第一配置区域)距离最小的区域,作为第二终端在第二时间的第二配置区域。其中,第二终端在第二时间的第二配置区域可以是与第一配置区域的中心点距离最近的区域。基于第二终端在第二时间的第二配置区域确定第二终端的位置。
作为第三种可能的实现方式,当第一位置信息和第二位置信息均为区域编码时,第一位置信息的配置参数L 1=200,W 1=200,N x=N y=4。第二位置信息的配置参数L 2=200,W 2=200,N x=N y=4。在第一时间,第一终端基于GPS确定坐标信息(x RX1,y RX1),其中,x RX1表示第一终端在第一时间的位置与地理坐标(0,0)之间经度的地面测量距离,y RX1表示第一终端在第一时间的位置与地理坐标(0,0)之间纬度的地面测量距离。第一终端基于GPS确定坐标信息(x RX1,y RX1),确定第一终端在第一时间的第一配置区域。参见图27,第一终端在第一时间的第一配置区域可以是圆形图标所在的区域,即区域编码为5的区域。
第一位置信息的区域编码所对应的区域不止一个,此时,第一终端会在第一位置信息的区域编码所对应的多个区域中,选取与第一终端在第一时间的第一配置区域距离最小的区域,作为第二终端在第一时间的第一配置区域。参见图27,第二终端在第一时间的第一 配置区域可以是星形图标所在的区域,即区域编码为14的区域。
第二位置信息的区域编码所对应的区域不止一个,此时,第一终端会在第二位置信息的区域编码所对应的多个区域中,选取与第一配置区域(该区域是第二终端在第一时间的第一配置区域)距离最小的区域,作为第二终端在第二时间的第二配置区域。其中,第二终端在第二时间的第二配置区域可以是与第一配置区域的中心点距离最近的区域。参见图28,方形图标即为第一配置区域的中心点,即区域编码为14的第一配置区域的中心点。第二终端在第二时间的第二配置区域可以是菱形图标所在的区域。
需要说明的是,在S2503中,用于确定第二终端位置的第二位置信息可以是:传输业务数据的物理侧行链路共享信道PSSCH所对应的SCI中所携带的信息。SCI还包括指示物理侧行链路共享信道PSSCH时频资源的信息,PSSCH用于传输业务数据。每个PSSCH对应一个SCI。在第一终端确定第二终端位置时,可以找到传输业务数据的PSSCH所对应的SCI,依据该SCI中的第二位置信息确定第二终端的位置。示例性的,参见图29,业务数据以传输块的形式传输,第二终端通过PSCCH1向第一终端传输SCI1,SCI1包括第二位置信息和指示PSSCH1时频资源的信息。第二终端通过PSSCH1向第一终端传输传输块TB1。在t1时刻,第一终端接收到PSCCH1和PSSCH1中的数据,对PSSCH1和PSCCH1中的数据进行解调和译码,第一终端依据SCI1中的第二位置信息,计算第二终端所处的位置。在基于距离的质量服务要求业务场景中,第一终端基于第二终端的位置,确定是否发送传输块TB1接收成功或失败的确认应答信息。若是,则第一终端向第二终端发送TB1的确认应答信息,若否,则第一终端无需向第二终端发送确认应答信息(图29未示出)。类似的,第二终端通过PSCCH2向第一终端传输SCI2,SCI2包括第二位置信息和指示PSSCH2时频资源的信息。第二终端通过PSSCH2向第一终端传输传输块TB2。在t2时刻,第一终端接收到PSCCH2和PSSCH2中的数据,对PSSCH2和PSCCH2中的数据进行解调和译码,第一终端依据SCI2中的第二位置信息,计算第二终端所处的位置,以确定是否发送TB2接收成功或失败的确认应答信息。若是,则第一终端向第二终端发送TB2的确认应答信息,若否,则第一终端无需向第二终端发送确认应答信息(图29未示出)。
用于确定第二终端位置的第二位置信息也可以是:最新收到的SCI中所携带的信息。第一终端可以找到该最新收到的SCI,依据最新收到的SCI中的第二位置信息,确定第二终端的位置。示例性的,参见图30,业务数据以传输块的形式传输,第二终端通过PSCCH1向第一终端传输SCI1,SCI1包括第二位置信息和指示PSSCH1时频资源的信息。第二终端通过PSSCH1向第一终端传输传输块TB1。在t1时刻,第一终端接收到PSCCH1和PSSCH1中的数据,对PSSCH1和PSCCH1中的数据进行解调和译码。在t2时刻,第一终端接收到PSCCH2和PSSCH2中的数据,对PSSCH2和PSCCH2中的数据进行解调和译码。由于第一终端接收SCI2的时刻晚于SCI1的接收时刻,所以,第一终端基于SCI2中的第二位置信息确定第二终端所处的位置,进而确定是否发送TB1接收成功或失败的确认应答信息。若是,则第一终端向第二终端发送TB1的确认应答信息,若否,则第一终端无需向第二终端发送确认应答信息(图30未示出)。另外,对于TB2而言,若在预设时间段内,第一终端未接收到新的SCI,则同样依据SCI2中的第二位置信息计算第二终端所处的位置,进而确定是否发送TB2接收成功或失败的确认应答信息,若在预设时间段内,第一终端接收到新的SCI,则依据新的SCI中指示第二终端所处区域的信息确定第二终端所处的位置,以确定是否发送 TB2接收成功或失败的确认应答信息(图30未示出)。
本申请实施例提供的通信方法,在第一时间,第一终端获取第二终端的第一位置信息。在第二时间,第一终端获取第二终端的第二位置信息。第一终端根据第一位置信息和第二位置信息,确定第二终端的位置。其中,第一位置信息指示第二终端的位置或第二终端所处的第一配置区域。第二位置信息指示第二终端所处的第二配置区域,第一配置区域的配置参数和第二配置区域的配置参数不同。第一时间不晚于第二时间。相对于现有技术中,采用区域编码确定第二终端的位置时,仅依据一个区域编码存在“定位不准确”的问题。在本申请实施例通信方法中,第一位置信息能够指示第二终端所处的位置或第二终端所处的第一配置区域,第二位置信息指示第二终端所处的第二配置区域。在确定第二终端的位置时,第一终端需要结合第一位置信息和第二位置信息,即根据第二终端所处的位置(由第一位置信息指示)和第二配置区域,来确定第二终端的位置,或者,根据配置参数互不相同的第一配置区域和第二配置区域,来确定第二终端的位置。以避免仅依据一个区域编码存在“定位不准确”或“无法定位”的问题。
另外,本申请实施例还提供一种通信方法,即第一位置信息指示第二终端所处的位置时,第一终端基于第一位置信息确定第二终端的位置。参见图31,第一终端执行S2501和S2504:
S2501、在第一时间,第一终端获取第二终端的第一位置信息。
其中,第一位置信息指示第二终端所处的位置。
S2504、第一终端基于第一位置信息确定第二终端的位置。
示例性的,第一位置信息能够指示第二终端的坐标信息(x TX,y TX),其中,x TX表示在第一时间第二终端的位置与地理坐标(0,0)之间经度的地面测量距离,y TX表示在第一时间第二终端的位置与地理坐标(0,0)之间纬度的地面测量距离。第一终端直接将坐标信息(x TX,y TX),作为第二终端的位置。或者,第一终端在坐标信息(x TX,y TX)的基础上,进行调整,如偏移一定的距离值,以得到第二终端的位置。
如此,第一终端基于第一位置信息,即可得到第二终端的位置,相对于现有技术中,采用区域编码指示第二终端所处的区域,而本申请实施例通信方法中,采用第一位置信息直接指示第二终端的位置。第一终端直接基于第一位置信息,即可得到第二终端的位置,简化位置确定的运算过程。第一终端通过接入网设备获取第一位置信息,以确定第二终端的位置,从而使得第二终端无需直接向第一终端发送第一位置信息,节省侧行链路时频资源。
需要说明的是,本申请实施例提供的通信方法,在第一位置信息指示第二终端所处的位置时,第一终端仅仅基于第一位置信息确定第二终端的位置是合理的,具体分析过程如下:第二终端的最大运动速度为360km/h,第二终端每秒最多行驶距离为100m。而传输第一位置信息的时间间隔为1秒。如此,第一终端在确定第二终端的位置时,最大误差为100m,平均误差为50m。而通信需求距离为1000m,在误差允许的范围内。
此时,第一终端可以仅基于第一位置信息来确定第二终端的位置,或者,第一终端根据第一位置信息和第二位置信息来确定第二终端的位置,进而确定第一终端和第二终端之间的间隔距离值,以在第一终端接收到来自第二终端的业务数据时,判断是否反馈业务数据接收成功或失败的确认应答信息。例如,在间隔距离值小于通信需求距离(即第一终端 处于保障区,间隔距离值小于第一预设距离值)时,第一终端反馈业务数据接收成功或失败的确认应答信息,否则,第一终端不反馈任何确认应答信息。又例如,在间隔距离值小于通信需求距离(即第一终端处于保障区,间隔距离值小于第一预设距离值)时,第一终端执行S802,在间隔距离值位于预设距离范围内(即第一终端处于过渡区)时,第一终端执行S803,在间隔距离值大于第二预设距离值时,第一终端不反馈任何确认应答信息。
下面以“基于距离的质量服务要求业务场景”为例,对本本申请实施例提供的通信方法进行说明:在一种可能的设计中,第一终端仅依据第一位置信息来确定第二终端的位置,此时,第一位置信息可以为地理位置信息,指示第二终端所处位置。在第一终端确定第一终端处于保障区(即第一终端与第二终端的间隔距离值小于或等于第一预设距离值)或过渡区(即第一终端与第二终端的间隔距离值位于预设距离范围内)之前,第一终端可以执行S801、S2501和S2504。此时,第一终端可以仅根据第一位置信息来确定第二终端的位置,进而确定第一终端和第二终端的间隔距离值,以此来判断第一终端所处的位置,若第一终端处于保障区,则第一终端执行S802,若第一终端处于过渡区,则第一终端执行S803。
需要说明的是,在第一终端基于第一位置信息,确定是否需要向第二终端发送业务数据的确认应答信息时,需要参考与业务数据的接收时间最接近的第一位置信息。
在又一种可能的设计中,第一终端依据第一位置信息和第二位置信息来确定第二终端的位置。在第一终端确定第一终端处于保障区(即第一终端与第二终端的间隔距离值小于或等于第一预设距离值)或过渡区(即第一终端与第二终端的间隔距离值位于预设距离范围内)之前,第一终端可以执行S801、S2501、S2502和S2503。此时,第一终端可以根据第一位置信息和第二位置信息来确定第二终端的位置,进而确定第一终端和第二终端的间隔距离值,以此来判断第一终端所处的位置,若第一终端处于保障区,则第一终端执行S802,若第一终端处于过渡区,则第一终端执行S803。
需要说明的是,第一终端确定第二配置区域之后,基于第二配置区域确定间隔距离值时,具体可以采用如下方式:
方式一:将第二终端在第二时间的第二配置区域的中心点视为第二终端在第二时间所处的位置,基于中心点进行计算。参见图32,实线方框表示第二配置区域,两条虚实线的焦点表示第二配置区域的中心点,记为(x 0,y 0)。第一终端的位置点记为(x 1,y 1),其中,位置点(x 1,y 1)可以为第一终端基于GPS所确定的位置坐标,也可以是第一终端在第二时间的第二配置区域的中心点。
两个终端之间的实线表示两个终端之间的距离初始值,记为e。其中,e满足如下公式:
Figure PCTCN2020094729-appb-000003
方式二:将第二终端在第二时间的第二配置区域的中心点视为第二终端在第二时间所处的位置,此时,最大误差值即为
Figure PCTCN2020094729-appb-000004
第一终端基于中心点和最大误差值计算距离初始值。仍以图21为例,e满足如下公式:
Figure PCTCN2020094729-appb-000005
第一终端通过公式(9)或公式(10),得到距离初始值e之后,再根据公式(2)或公式(3)得到第一终端与第二终端之间的间隔距离值。或者,第一终端也可以将公式(9)或公式(10)中的e直接作为第一终端与第二终端之间的间隔距离值。
上述主要从不同网元之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,第一终端、第二终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本申请中所公开的实施例描述的各示例的单元及算法步骤,本申请 实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的技术方案的范围。
本申请实施例可以根据上述方法示例对通信装置进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图33示出了本申请实施例中提供的通信装置的一种示意性框图。该通信装置3300可以以软件的形式存在,也可以为设备,或者设备中的组件(比如芯片系统)。该通信装置3300包括:存储单元3301、处理单元3302和通信单元3303。
通信单元3303还可以划分为发送单元(并未在图33中示出)和接收单元(并未在图33中示出)。其中,发送单元,用于支持通信装置3300向其他网元发送信息。接收单元,用于支持通信装置3300从其他网元接收信息。
存储单元3301,用于存储通信装置3300的程序代码和数据,数据可以包括不限于原始数据或者中间数据等。
当通信装置3300作为第一终端时,通信单元3303,用于接收来自第二终端的业务数据。处理单元3302,用于确定通信装置3300与第二终端的间隔距离值位于预设距离范围内,且满足预设条件。通信单元3303,还用于处理单元3302确定通信装置3300与第二终端的间隔距离值位于预设距离范围内,且满足预设条件时,向第二终端发送业务数据接收成功或失败的确认应答信息。其中,预设距离范围由第一预设距离值和第二预设距离值确定,且第二预设距离值大于第一预设距离值。
在一种可能的设计中,预设条件包括:第一时间和第二时间之间的时间长度小于预设时间参数,第一时间为最新确定间隔距离值小于或等于第一预设距离值的时间,第二时间为最新确定间隔距离值位于预设距离范围的时间。
处理单元3302,用于确定满足预设条件,包括:用于确定第一时间和第二时间之间的时间长度满足预设条件。
在一种可能的设计中,预设时间参数用于配置定时器,定时器的定时时长为T,第一时间为定时器启动的时间;
处理单元3302,用于确定第一时间和第二时间之间的时间长度满足预设条件,包括:用于确定定时器处于运行状态。
在一种可能的设计中,业务数据为第二终端重复传输的业务数据,且以传输块传输;预设条件包括:通信装置3300首次接收传输块时间隔距离值小于或等于第一预设距离值。
处理单元3302,用于确定满足预设条件,包括:用于确定重传的传输块满足预设条件。
在一种可能的设计中,业务数据以传输块传输,预设条件包括:误块率大于误块率阈值。
处理单元3302,用于确定满足预设条件,包括:用于确定当前的误块率满足预设条件。
在一种可能的设计中,处理单元3302还用于:若间隔距离值小于或等于第二预设距 离值,则根据传输块接收成功或失败的状态,更新当前的误块率。
在一种可能的设计中,处理单元3302还用于:根据通信装置3300和第二终端之间的相对运动速度和预设修正时间,修正通信装置3300与第二终端之间的距离初始值,以获取通信装置3300与第二终端的间隔距离值。或者,处理单元3302还用于:根据通信装置3300和第二终端之间的相对运动速度与预设对应关系,修正通信装置3300与第二终端之间的距离初始值,以获取通信装置3300与第二终端的间隔距离值,距离初始值是通过参考信号接收功率所表征的距离值,预设对应关系为相对运动速度与参考信号接收功率调整量之间的对应关系。
当通信装置3300作为第一终端时,通信单元3303,用于在第一时间,获取第二终端的第一位置信息。通信单元3303,还用于在第二时间,获取第二终端的第二位置信息。处理单元3302,用于根据第一位置信息和第二位置信息,确定第二终端的位置。其中,第一位置信息指示第二终端的位置或第二终端所处的第一配置区域。第二位置信息指示第二终端所处的第二配置区域,第一配置区域的配置参数和第二配置区域的配置参数不同。第一时间不晚于第二时间。
在一种可能的设计中,第一位置信息承载于广播消息、无线资源控制RRC信令、媒体接入控制MAC信令或侧行链路控制信息SCI。
在一种可能的设计中,第二位置信息承载于SCI。
在一种可能的设计中,当第一位置信息指示第二终端所处的第一配置区域时,第一配置区域大于第二配置区域。
其中,处理单元3302可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
通信单元3303可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口,例如可以包括:终端和终端之间的接口和/或其他接口。
存储单元3301可以是存储器。
当处理单元3302为处理器,通信单元3303为通信接口,存储单元3301为存储器时,本申请实施例所涉及的通信装置3400可以为图34所示。
参阅图34所示,该通信装置3400包括:处理器3402、收发器3403、存储器3401。
其中,收发器3403可以为独立设置的发送器,该发送器可用于向其他设备发送信息,该收发器也可以为独立设置的接收器,用于从其他设备接收信息。该收发器也可以是将发送、接收信息功能集成在一起的部件,本申请实施例对收发器的具体实现不做限制。
可选的,通信装置3400还可以包括总线3404。其中,收发器3403、处理器3402以及存储器3401可以通过总线3404相互连接;总线3404可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。所述总线3404可以分为地址总线、数据总线、控制总线等。为便于表示,图34中仅用一条粗线表示,但并不表示仅有一根 总线或一种类型的总线。
本领域普通技术人员可以理解:在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络设备(例如终端)上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个功能单元独立存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘,硬盘或光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种通信方法,其特征在于,包括:
    第一终端接收来自第二终端的业务数据;
    若所述第一终端与所述第二终端的间隔距离值位于预设距离范围内,则所述第一终端基于预设条件向所述第二终端发送所述业务数据接收成功或失败的确认应答信息;
    其中,所述预设距离范围由第一预设距离值和第二预设距离值确定,且所述第二预设距离值大于所述第一预设距离值。
  2. 根据权利要求1所述的通信方法,其特征在于,所述预设条件包括:第一时间和第二时间之间的时间长度小于预设时间参数,所述第一时间为最新确定所述间隔距离值小于或等于所述第一预设距离值的时间,所述第二时间为最新确定所述间隔距离值位于所述预设距离范围的时间;
    所述第一终端基于预设条件向所述第二终端发送所述业务数据接收成功或失败的确认应答信息,包括:
    若第一时间和第二时间之间的时间长度满足所述预设条件,则所述第一终端向所述第二终端发送所述业务数据接收成功或失败的确认应答信息。
  3. 根据权利要求2所述的通信方法,其特征在于,所述预设时间参数用于配置定时器,所述定时器的定时时长为T,所述第一时间为所述定时器启动的时间;
    若第一时间和第二时间之间的时间长度满足所述预设条件,则所述第一终端向所述第二终端发送所述业务数据接收成功或失败的确认应答信息,包括:
    若所述定时器处于运行状态,则所述第一终端向所述第二终端发送所述业务数据接收成功或失败的确认应答信息。
  4. 根据权利要求1所述的通信方法,其特征在于,所述业务数据为所述第二终端重复传输的业务数据,且以传输块传输;所述预设条件包括:所述第一终端首次接收传输块时所述间隔距离值小于或等于所述第一预设距离值;
    所述第一终端基于预设条件向所述第二终端发送所述业务数据接收成功或失败的确认应答信息,包括:
    若重传的传输块满足所述预设条件,则所述第一终端向所述第二终端发送所述重传的传输块接收成功或失败的确认应答信息。
  5. 根据权利要求1所述的通信方法,其特征在于,所述业务数据以传输块传输,所述预设条件包括:误块率大于误块率阈值;
    所述第一终端基于预设条件向所述第二终端发送所述业务数据接收成功或失败的确认应答信息,包括:
    若当前的误块率满足所述预设条件,则所述第一终端向所述第二终端发送传输块接收成功或失败的确认应答信息。
  6. 根据权利要求5所述的通信方法,其特征在于,所述方法还包括:
    若所述间隔距离值小于或等于所述第二预设距离值,则所述第一终端根据传输块接收成功或失败的状态,更新当前的误块率。
  7. 根据权利要求1至6任一项所述的通信方法,其特征在于,所述方法还包括:
    所述第一终端根据所述第一终端和所述第二终端之间的相对运动速度和预设修正时 间,修正所述第一终端与所述第二终端之间的距离初始值,以获取所述第一终端与所述第二终端的间隔距离值;
    或者,
    所述第一终端根据所述第一终端和所述第二终端之间的相对运动速度与预设对应关系,修正所述第一终端与所述第二终端之间的距离初始值,以获取所述第一终端与所述第二终端的间隔距离值,所述距离初始值是通过参考信号接收功率所表征的距离值,所述预设对应关系为相对运动速度与参考信号接收功率调整量之间的对应关系。
  8. 一种通信方法,其特征在于,包括:
    在第一时间,第一终端获取第二终端的第一位置信息;
    在第二时间,所述第一终端获取所述第二终端的第二位置信息;
    所述第一终端根据所述第一位置信息和所述第二位置信息,确定所述第二终端的位置;
    其中,第一位置信息指示所述第二终端的位置或所述第二终端所处的第一配置区域;
    所述第二位置信息指示所述第二终端所处的第二配置区域,所述第一配置区域的配置参数和所述第二配置区域的配置参数不同;
    所述第一时间不晚于所述第二时间。
  9. 根据权利要求8所述的通信方法,其特征在于,所述第一位置信息承载于广播消息、无线资源控制RRC信令、媒体接入控制MAC信令或侧行链路控制信息SCI。
  10. 根据权利要求8所述的通信方法,其特征在于,所述第二位置信息承载于SCI。
  11. 根据权利要求8至10中任一项所述的通信方法,其特征在于,当所述第一位置信息指示所述第二终端所处的第一配置区域时,所述第一配置区域大于所述第二配置区域。
  12. 一种通信装置,其特征在于,包括:
    接收器,用于接收来自第二终端的业务数据;
    处理器,用于确定所述通信装置与所述第二终端的间隔距离值位于预设距离范围内,且满足预设条件;
    发送器,用于所述处理器确定所述通信装置与所述第二终端的间隔距离值位于预设距离范围内,且满足所述预设条件时,向所述第二终端发送所述业务数据接收成功或失败的确认应答信息;
    其中,所述预设距离范围由第一预设距离值和第二预设距离值确定,且所述第二预设距离值大于所述第一预设距离值。
  13. 根据权利要求12所述的通信装置,其特征在于,所述预设条件包括:第一时间和第二时间之间的时间长度小于预设时间参数,所述第一时间为最新确定所述间隔距离值小于或等于所述第一预设距离值的时间,所述第二时间为最新确定所述间隔距离值位于所述预设距离范围的时间;
    所述处理器,用于确定满足预设条件,包括:用于确定第一时间和第二时间之间的时间长度满足所述预设条件。
  14. 根据权利要求13所述的通信装置,其特征在于,所述预设时间参数用于配置定时器,所述定时器的定时时长为T,所述第一时间为所述定时器启动的时间;
    所述处理器,用于确定第一时间和第二时间之间的时间长度满足所述预设条件,包括:用于确定所述定时器处于运行状态。
  15. 根据权利要求12所述的通信装置,其特征在于,所述业务数据为所述第二终端重复传输的业务数据,且以传输块传输;所述预设条件包括:所述通信装置首次接收传输块时所述间隔距离值小于或等于所述第一预设距离值;
    所述处理器,用于确定满足预设条件,包括:用于确定重传的传输块满足所述预设条件。
  16. 根据权利要求12所述的通信装置,其特征在于,所述业务数据以传输块传输,所述预设条件包括:误块率大于误块率阈值;
    所述处理器,用于确定满足预设条件,包括:用于确定当前的误块率满足所述预设条件。
  17. 根据权利要求16所述的通信装置,其特征在于,所述处理器还用于:若所述间隔距离值小于或等于所述第二预设距离值,则根据传输块接收成功或失败的状态,更新当前的误块率。
  18. 根据权利要求12至17任一项所述的通信装置,其特征在于,所述处理器还用于:根据所述通信装置和所述第二终端之间的相对运动速度和预设修正时间,修正所述通信装置与所述第二终端之间的距离初始值,以获取所述通信装置与所述第二终端的间隔距离值;
    或者,
    所述处理器还用于:根据所述通信装置和所述第二终端之间的相对运动速度与预设对应关系,修正所述通信装置与所述第二终端之间的距离初始值,以获取所述通信装置与所述第二终端的间隔距离值,所述距离初始值是通过参考信号接收功率所表征的距离值,所述预设对应关系为相对运动速度与参考信号接收功率调整量之间的对应关系。
  19. 一种通信装置,其特征在于,包括:
    接收器,用于在第一时间,获取第二终端的第一位置信息;
    所述接收器,还用于在第二时间,获取所述第二终端的第二位置信息;
    处理器,用于根据所述第一位置信息和所述第二位置信息,确定所述第二终端的位置;
    其中,第一位置信息指示所述第二终端的位置或所述第二终端所处的第一配置区域;
    所述第二位置信息指示所述第二终端所处的第二配置区域,所述第一配置区域的配置参数和所述第二配置区域的配置参数不同;
    所述第一时间不晚于所述第二时间。
  20. 根据权利要求19所述的通信装置,其特征在于,所述第一位置信息承载于广播消息、无线资源控制RRC信令、媒体接入控制MAC信令或侧行链路控制信息SCI。
  21. 根据权利要求19所述的通信装置,其特征在于,所述第二位置信息承载于SCI。
  22. 根据权利要求19至21中任一项所述的通信装置,其特征在于,当所述第一位置信息指示所述第二终端所处的第一配置区域时,所述第一配置区域大于所述第二配置区域。
  23. 一种可读存储介质,其特征在于,包括程序或指令,当所述程序或指令被执行时,如权利要求1至7中任一项所述的通信方法被实现,或者,如权利要求8至11中任一项所述的通信方法被实现。
PCT/CN2020/094729 2019-06-06 2020-06-05 通信方法及装置 WO2020244640A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20819428.2A EP3952356A4 (en) 2019-06-06 2020-06-05 COMMUNICATION METHOD AND DEVICE
US17/541,641 US20220095076A1 (en) 2019-06-06 2021-12-03 Communication method and apparatus to improve resource utilization and reliability of transmission of service data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910492591.1 2019-06-06
CN201910492591.1A CN112054881B (zh) 2019-06-06 2019-06-06 通信方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/541,641 Continuation US20220095076A1 (en) 2019-06-06 2021-12-03 Communication method and apparatus to improve resource utilization and reliability of transmission of service data

Publications (1)

Publication Number Publication Date
WO2020244640A1 true WO2020244640A1 (zh) 2020-12-10

Family

ID=73608782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094729 WO2020244640A1 (zh) 2019-06-06 2020-06-05 通信方法及装置

Country Status (4)

Country Link
US (1) US20220095076A1 (zh)
EP (1) EP3952356A4 (zh)
CN (1) CN112054881B (zh)
WO (1) WO2020244640A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022241337A1 (en) * 2021-05-13 2022-11-17 Qualcomm Incorporated Signaling minimum and maximum positioning range indications and zone identifiers for sidelink positioning

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114128190A (zh) * 2019-07-15 2022-03-01 苹果公司 基于位置的侧链路(sl)混合自动重传请求(harq)反馈传输
CN113055821B (zh) * 2021-03-15 2023-01-31 北京京东乾石科技有限公司 用于发送信息的方法和装置
CN114666897B (zh) * 2022-03-25 2024-07-02 深圳艾灵网络有限公司 终端定位方法、系统、装置及定位服务器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170273128A1 (en) * 2016-03-21 2017-09-21 Qualcomm Incorporated Supporting high speeds in vehicle-to-vehicle communication
CN109075908A (zh) * 2018-08-10 2018-12-21 北京小米移动软件有限公司 车联网设备之间的反馈信息传输方法、装置及系统
CN109417685A (zh) * 2018-09-28 2019-03-01 北京小米移动软件有限公司 直连通信的数据传输方法、装置、设备及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200803270A (en) * 2006-06-19 2008-01-01 Innovative Sonic Ltd Method and apparatus for detection and recovery of HARQ DTX to NACK error
CN102547975A (zh) * 2010-12-28 2012-07-04 上海贝尔股份有限公司 基于参考信号的接收功率实现移动台定位的方法与设备
CN103167521B (zh) * 2011-12-16 2015-11-25 航通互联网信息服务有限责任公司 适合超大范围覆盖的混合自动重传请求harq方法及系统
US10757550B2 (en) * 2016-04-07 2020-08-25 Lg Electronics Inc. Method for performing sensing during terminal-specific sensing period in wireless communication system, and terminal using same
CN106372213B (zh) * 2016-09-05 2019-05-03 天泽信息产业股份有限公司 一种位置分析方法
CN108632782B (zh) * 2017-03-24 2023-11-21 北京三星通信技术研究有限公司 一种v2x通信中的发送与接收方法和设备
JP7265488B2 (ja) * 2017-06-16 2023-04-26 北京小米移動軟件有限公司 Harqフィードバック方法および指示情報の送信方法、ならびに、そのユーザ機器および基地局
WO2019004688A1 (ko) * 2017-06-26 2019-01-03 엘지전자 주식회사 무선 통신 시스템에서 v2x 통신을 위한 단말의 동작 방법 및 상기 방법을 이용하는 단말

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170273128A1 (en) * 2016-03-21 2017-09-21 Qualcomm Incorporated Supporting high speeds in vehicle-to-vehicle communication
CN109075908A (zh) * 2018-08-10 2018-12-21 北京小米移动软件有限公司 车联网设备之间的反馈信息传输方法、装置及系统
CN109417685A (zh) * 2018-09-28 2019-03-01 北京小米移动软件有限公司 直连通信的数据传输方法、装置、设备及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL, INC.: "On Physical Layer Procedures for NR V2X Sidelink", 3GPP TSG RAN WG1 #97 R1-1907096, 3 May 2019 (2019-05-03), XP051709125, DOI: 20200821100219X *
See also references of EP3952356A4
SEQUANS COMMUNICATIONS: "On HARQ procedure for NR sidelink", 3GPP TSG RAN WG1 MEETING #97 R1-1907083, 3 May 2019 (2019-05-03), XP051709112, DOI: 20200821100032X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022241337A1 (en) * 2021-05-13 2022-11-17 Qualcomm Incorporated Signaling minimum and maximum positioning range indications and zone identifiers for sidelink positioning

Also Published As

Publication number Publication date
EP3952356A4 (en) 2022-09-14
CN112054881A (zh) 2020-12-08
CN112054881B (zh) 2022-06-10
US20220095076A1 (en) 2022-03-24
EP3952356A1 (en) 2022-02-09

Similar Documents

Publication Publication Date Title
WO2020244640A1 (zh) 通信方法及装置
US20220264646A1 (en) Data sending method, data receiving method, and apparatus
US20220182206A1 (en) Retransmission feedback method and device for sidelink communication, and storage medium
EP3562221A1 (en) Power allocation method and apparatus for uplink channel
EP4030671A1 (en) Communication method and device
US20220311582A1 (en) Physical Sidelink Feedback Channel (PSFCH) Range Extension with Long PSFCH Format
WO2020063410A1 (zh) 一种通信方法及通信装置
CN111107618A (zh) 功率控制的方法和终端设备
WO2021017792A1 (zh) 一种反馈信息的传输方法及终端装置
CN112152761B (zh) 一种通信方法、装置及存储介质
US20220052798A1 (en) Communication method and apparatus
CN115428490B (zh) 边链路发送和接收方法以及装置
CN109151957B (zh) 无线局域网的通信方法及通信装置、通信设备
KR20210154250A (ko) 통신 방법 및 장치
WO2021134448A1 (zh) 一种侧行数据传输的方法、装置和系统
CN109788538B (zh) 通信方法和装置
JP2022551322A (ja) 通信方法及び装置
EP4101101A2 (en) Methods and apparatus for disabling of option 1 hybrid automatic repeat request (harq) feedback for sidelink communication
CN111585712A (zh) 资源分配方法、信息反馈、获取方法、终端及网络设备
US20230344610A1 (en) Indication information transmission method, apparatus, and system
CN111954261B (zh) 上行harq的发送方法及相关产品
CN114024659B (zh) 数据的传输方法、装置、设备及存储介质
EP4037400A1 (en) Communication method and communication apparatus
CN117676618A (zh) 数据调度方法及装置
CN114765469A (zh) 一种数据传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819428

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020819428

Country of ref document: EP

Effective date: 20211105

NENP Non-entry into the national phase

Ref country code: DE