WO2020244628A1 - 有源模块、移动通信前传系统和移动通信前传管控方法 - Google Patents

有源模块、移动通信前传系统和移动通信前传管控方法 Download PDF

Info

Publication number
WO2020244628A1
WO2020244628A1 PCT/CN2020/094659 CN2020094659W WO2020244628A1 WO 2020244628 A1 WO2020244628 A1 WO 2020244628A1 CN 2020094659 W CN2020094659 W CN 2020094659W WO 2020244628 A1 WO2020244628 A1 WO 2020244628A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
transmission
interface
remote radio
related performance
Prior art date
Application number
PCT/CN2020/094659
Other languages
English (en)
French (fr)
Inventor
李晗
韩柳燕
张德朝
王东
蔡谦
李允博
Original Assignee
中国移动通信有限公司研究院
中国移动通信集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信有限公司研究院, 中国移动通信集团有限公司 filed Critical 中国移动通信有限公司研究院
Priority to EP20818767.4A priority Critical patent/EP3958481A4/en
Publication of WO2020244628A1 publication Critical patent/WO2020244628A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0793Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07957Monitoring or measuring wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular to an active module, a mobile communication fronthaul system, and a mobile communication fronthaul management and control method.
  • the RAN architecture in the fifth-generation mobile communication technology is a radio unit (Remote Radio Unit, RRU) or Active Antenna Unit (AAU), Distribute Unit (DU), and Centralized Unit (CU) have a multi-level architecture.
  • the network deployment of the transmission network can be divided into fronthaul, midhaul, and backhaul.
  • the proportion of centralized network (Cloud-Radio Access Network, C-RAN) base stations is increasing.
  • a single C-RAN may cover 6-10 physical sites locally and remotely, and the fronthaul network has become an important part of the mobile communication transmission network.
  • fronthaul mainly include direct fiber optics, passive wavelength division multiplexing (Wavelength Division Multiplexing, WDM), active device networking and other methods.
  • WDM wavelength division multiplexing
  • active device networking mainly include direct fiber optics, passive wavelength division multiplexing (Wavelength Division Multiplexing, WDM), active device networking and other methods.
  • WDM wavelength division multiplexing
  • ODN optical distribution network
  • the active device networking mode the connection between the active device and AAU and DU lacks management means.
  • the present disclosure provides an active module, a mobile communication fronthaul system, and a mobile communication fronthaul management and control method, which are used to solve the problem that the current fronthaul network networking method cannot affect the intermediate transmission link (including the optical module in the optical distribution network). ) The issue of monitoring and management.
  • an active module including:
  • the first interface is used to connect with remote radio equipment
  • the second interface is used to connect with the baseband processing equipment
  • the monitoring module is used to obtain at least one of the following transmission-related performance information:
  • the transmission-related performance information includes at least one of connectivity information, transmitted optical power information, received optical power information, and transmission delay information.
  • the monitoring module is configured to perform at least one of the following operations:
  • the first monitoring information includes at least one of identification information of the remote radio frequency device, used optical wavelength information, transmitted optical power information, and received optical power information;
  • the second monitoring information includes at least one of request information used for querying transmitted optical power information, request information used for querying received optical power information, and information used for delay detection;
  • the third monitoring information includes at least one of identification information of the baseband processing device, port information, transmitted optical power information, and received optical power information.
  • the present disclosure also provides a mobile communication fronthaul system, including: a plurality of optical modules arranged at the end of the remote radio equipment, and a first wavelength division multiplexer connected to the optical module; arranged at the end of the baseband processing equipment The second wavelength division multiplexer connected to the first wavelength division multiplexer, any of the above active modules, and the active module is respectively connected to the second wavelength division multiplexer and the baseband processing Device connection
  • the first wavelength division multiplexer is used to converge the optical signals received from the plurality of optical modules and transmit them to the second wavelength division multiplexer, and/or to separate the optical signals from the second wavelength division multiplexer
  • the optical signals received by the multiplexer are respectively transmitted to the multiple optical modules;
  • the second wavelength division multiplexer is used to converge the optical signals received from the baseband processing device and transmit to the first wavelength division multiplexer, and/or to separate the optical signals from the first wavelength division multiplexer
  • the optical signal received by the user is transmitted to the baseband processing device.
  • the second wavelength division multiplexer and the active module are integrated on the same active device.
  • the optical module is a fixed wavelength color light module or a tunable color light module.
  • the present disclosure also provides a mobile communication fronthaul management and control method, which is applied to an active module.
  • the active module includes a first interface for connecting with a remote radio device and a second interface for connecting with a baseband processing device.
  • Second interface the method includes:
  • the transmission-related performance information includes at least one of connectivity information, transmitted optical power information, received optical power information, and transmission delay information.
  • the step of obtaining transmission-related performance information includes at least one of the following steps:
  • Send second monitoring information to the remote radio device receive first feedback information of the second monitoring information from the remote radio device, and determine the transmission of the remote radio device according to the first feedback information Related performance information;
  • the first monitoring information includes at least one of identification information of the remote radio frequency device, used optical wavelength information, transmitted optical power information, and received optical power information;
  • the second monitoring information includes at least one of request information used for querying transmitted optical power information, request information used for querying received optical power information, and information used for delay detection;
  • the third monitoring information includes at least one of identification information of the baseband processing device, port information, transmitted optical power information, and received optical power information.
  • the second monitoring information is sent in a broadcast or unicast manner.
  • the sending second monitoring information to the remote radio device, and receiving first feedback information of the remote radio device on the second monitoring information, and determining the second monitoring information according to the first feedback information include:
  • the transmission delay information is determined according to the locally sent time stamp information and the locally received time stamp information.
  • the information used for delay detection includes identification information of the remote radio device.
  • the method further includes at least one of the following steps:
  • the present disclosure also provides an active module, including a memory, a processor, and a computer program stored on the memory and capable of running on the processor, and also includes a remote device for connecting with a radio frequency A first interface and a second interface for connecting with a baseband processing device; when the processor executes the computer program, any one of the aforementioned mobile communication fronthaul management and control methods is implemented.
  • an active module including a memory, a processor, and a computer program stored on the memory and capable of running on the processor, and also includes a remote device for connecting with a radio frequency A first interface and a second interface for connecting with a baseband processing device; when the processor executes the computer program, any one of the aforementioned mobile communication fronthaul management and control methods is implemented.
  • the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps in any of the foregoing mobile communication fronthaul management and control methods are implemented.
  • the active module can obtain the transmission-related performance information of the remote radio equipment in the fronthaul network, the transmission-related performance information of the port of the baseband processing device, and the transmission-related performance information of the active module itself, so as to realize the The transmission of the fronthaul network is monitored.
  • Figure 1 is a schematic diagram of the optical fiber direct drive fronthaul networking mode
  • Figure 2 is a schematic diagram of the passive WDM fronthaul networking mode
  • Figure 3 is a schematic diagram of the structure of the active device forwarding networking mode
  • Embodiment 4 is a schematic structural diagram of an active module in Embodiment 1 of the disclosure.
  • FIG. 5 is a schematic structural diagram of a mobile communication fronthaul system in the second embodiment of the disclosure.
  • FIG. 6 is a schematic flowchart of a mobile communication fronthaul management and control method in Embodiment 3 of the disclosure.
  • FIG. 7 is a schematic diagram of partial functions of an active device in an embodiment of the disclosure.
  • FIG. 8 is a schematic structural diagram of an active module in the fourth embodiment of the disclosure.
  • Optical fiber direct drive mode As shown in Figure 1, the RRU (or AAU) and the DU (or indoor baseband processing unit (Building Baseband Unit, BBU)) are directly connected point-to-point through the fronthaul optical module. This method needs to consume a lot of optical fiber. Taking 5G as an example, each physical site usually deploys 3 AAUs, and each AAU needs 2 25G interfaces, so a physical site will consume 12 optical fibers (including upstream and downstream), and, In the direct fiber optics solution, the transmission network manager cannot obtain information such as the connection status of the intermediate fiber.
  • AAU indoor baseband processing unit
  • BBU Building Baseband Unit
  • the RRU (or AAU) and DU (or BBU) are equipped with color light modules, and multiple wavelengths are multiplexed for transmission through a passive wavelength division multiplexer.
  • this method can save the backbone optical fiber by WDM technology in the optical distribution network part, but RRU (or AAU) and DU (or BBU) are equipped with color optical modules, lacking management means, and have no perception of ODN failures. Operation and maintenance are difficult and can only be checked manually.
  • Active equipment networking mode As shown in Figure 3, the client side of the active transmission device and the wireless device adopt a common gray optical interface for docking, and the transmission device is connected and networked to complete the functions of service flow aggregation and remoteness.
  • the remote transmission equipment needs power, so it can only be installed at the RRU (or AAU) to solve single-site services. It requires more transmission equipment and high deployment costs.
  • the links between transmission equipment can be managed, but the transmission
  • the connection between the device and the client-side RRU (or AAU), DU (or BBU) lacks management means.
  • FIG. 4 is a schematic structural diagram of an active module provided in Embodiment 1 of the present disclosure, including:
  • the first interface 41 is used to connect with a remote radio device
  • the second interface 42 is used to connect with a baseband processing device
  • the monitoring module 43 is configured to obtain at least one of the following transmission-related performance information:
  • the active module can obtain the transmission-related performance information of the remote radio equipment in the fronthaul network, the transmission-related performance information of the port of the baseband processing device, and the transmission-related performance information of the active module itself, so as to realize the The transmission of the fronthaul network is monitored.
  • the transmission related performance of the remote radio equipment refers to the transmission related performance of the optical module in the remote radio equipment and the transmission related performance of the link between the remote radio equipment and the active module.
  • the transmission-related performance of the port of the baseband processing device refers to the transmission-related performance of the link between the port of the baseband processing device and the active device.
  • the transmission-related performance information of the first interface and the second interface refers to the transmission-related performance of the first interface and the second interface itself, and the information between the first interface and the second interface Transmission related performance.
  • the transmission-related performance information includes at least one of connectivity information, transmitted optical power information, received optical power information, and transmission delay information.
  • the transmission-related performance of the remote radio device may include the connectivity between each remote radio device and the active device, the transmit optical power of the optical module in the remote radio device, and the optical module in the remote radio device.
  • the transmission-related performance of the port of the baseband processing device may include the connectivity between each port and the active device, the transmitted optical power, and the received optical power.
  • the transmission-related performance of the first interface and the second interface may include the first interface, the second interface, and the connectivity between the first interface and the second interface, and may also include the transmit optical power at the first interface and Receive optical power, transmit optical power and receive optical power at the second interface, etc.
  • the monitoring module is configured to perform at least one of the following operations:
  • the first monitoring information is specifically sent by the optical module in the remote radio frequency device.
  • the first monitoring information includes at least one of identification information of the remote radio frequency device, used optical wavelength information, transmitted optical power information, and received optical power information;
  • the second monitoring information includes at least one of request information used for querying transmitted optical power information, request information used for querying received optical power information, and information used for delay detection;
  • the third monitoring information includes at least one of identification information of the baseband processing device, port information, transmitted optical power information, and received optical power information.
  • FIG. 5 is a schematic structural diagram of a mobile communication fronthaul system according to Embodiment 2 of the present disclosure, including: a plurality of optical modules 51 arranged at the end of the remote radio equipment 01, and a second optical module 51 connected to A wavelength division multiplexer 52; a second wavelength division multiplexer 53 connected to the first wavelength division multiplexer 52, and the active module 54 as described in the first embodiment above, provided at one end of the baseband processing device 02 , The active module 54 is respectively connected to the second wavelength division multiplexer 53 and the baseband processing device 02;
  • the first wavelength division multiplexer 52 is used to converge the optical signals received from the plurality of optical modules 51 and transmit them to the second wavelength division multiplexer 53, and/or to separate the optical signals from the The optical signals received by the second wavelength division multiplexer 53 are respectively transmitted to the plurality of optical modules 51;
  • the second wavelength division multiplexer 53 is used to converge the optical signals received from the baseband processing device 02 and transmit to the first wavelength division multiplexer 52, and/or to separate the optical signals from the first wavelength division multiplexer 52.
  • the optical signal received by a wavelength division multiplexer 52 is transmitted to the baseband processing device 02.
  • the first wavelength division multiplexer 52 arranged at the end of the remote radio equipment 01 multiplexes and transmits light waves of different wavelengths from multiple remote radio equipment, and is arranged at The second wavelength division multiplexer at one end of the baseband processing device demultiplexes the optical signal transmitted from the first wavelength division multiplexer 52, thereby reducing fiber consumption and deployment costs.
  • the embodiment of the present disclosure can also obtain the transmission-related performance information of the remote radio equipment in the fronthaul network, the transmission-related performance information of the port of the baseband processing device, and the transmission-related performance information of the active module itself through the active device 54. So as to realize the monitoring of the transmission of the fronthaul network.
  • the following examples illustrate the mobile communication fronthaul system.
  • the second wavelength division multiplexer 53 and the active module 54 are integrated on the same active device.
  • the optical module 51 is a fixed wavelength color light module or a tunable color light module.
  • different remote radio devices 01 use different wavelengths.
  • the first wavelength division multiplexer 52 and the second wavelength division multiplexer 53 are passive wavelength division multiplexers
  • the active module 54 is connected to the baseband processing module 02 by using a gray light interface or a color light interface.
  • the monitoring module is used to perform at least one of the following operations:
  • the first monitoring information sent by the remote radio frequency device is received through the first interface 55 (refer to SignalA_Up in FIG. 5, SignalA_Up is formed by the convergence of the monitoring signals sent by multiple remote radio frequency devices (for example, by the remote radio frequency
  • the monitoring signal Signal_ ⁇ 1-1 sent by the device ⁇ 1, the monitoring signal Signal_ ⁇ 2-1 sent by the remote radio device ⁇ 2, and the monitoring signal Signal_ ⁇ 3-1 sent by the remote radio device ⁇ 3... are combined)), according to the first monitoring information Determining transmission-related performance information of the remote radio equipment;
  • SignalA_Up as feedback information is composed of feedback signals sent by multiple remote radio equipment (for example, the feedback signal Signal_ ⁇ 1-1 sent by radio remote equipment ⁇ 1, radio remote equipment The feedback signal Signal_ ⁇ 2-1 sent by ⁇ 2, the feedback signal Signal_ ⁇ 3-1 sent by the remote radio equipment ⁇ 3... are combined)), and the transmission-related performance information of the remote radio equipment is determined according to the first feedback information;
  • Send fourth monitoring information (refer to SignalB_Up in FIG. 5) to the baseband processing device through the second interface 56, and receive second feedback information of the baseband processing device on the fourth monitoring information (refer to FIG. 5 SignalB_Down in ), determining the transmission-related performance information of the port of the baseband processing device according to the second feedback information;
  • the fifth monitoring information sent by the first interface 55 and/or the second interface 56 is received, and the transmission-related performance information of the first interface 55 and the second interface 56 is determined according to the fifth monitoring information.
  • FIG. 6 is a schematic flowchart of a mobile communication fronthaul management and control method according to Embodiment 3 of the present disclosure.
  • the method is applied to an active module, and the active module includes a second remote device for connecting with a remote radio An interface and a second interface for connecting with a baseband processing device, the method includes the following steps:
  • Step 61 The active module obtains at least one of the following transmission-related performance information:
  • the active module can obtain the transmission-related performance information of the remote radio equipment in the fronthaul network, the transmission-related performance information of the port of the baseband processing device, and the transmission-related performance information of the active module itself, so as to realize the The transmission of the fronthaul network is monitored.
  • the transmission related performance of the remote radio equipment refers to the transmission related performance of the optical module in the remote radio equipment and the transmission related performance of the link between the remote radio equipment and the active module.
  • the transmission-related performance of the port of the baseband processing device refers to the transmission-related performance of the link between the port of the baseband processing device and the active device.
  • the transmission-related performance information of the first interface and the second interface refers to the transmission-related performance of the first interface and the second interface itself, and the information between the first interface and the second interface Transmission related performance.
  • the transmission-related performance information includes at least one of connectivity information, transmitted optical power information, received optical power information, and transmission delay information.
  • the transmission-related performance of the remote radio device may include the connectivity between each remote radio device and the active device, the transmit optical power of the optical module in the remote radio device, and the optical module in the remote radio device.
  • the transmission-related performance of the port of the baseband processing device may include the connectivity between each port and the active device, the transmitted optical power, and the received optical power.
  • the transmission-related performance of the first interface and the second interface may include the first interface, the second interface, and the connectivity between the first interface and the second interface, and may also include the transmit optical power at the first interface and Receive optical power, transmit optical power and receive optical power at the second interface, etc.
  • the step of obtaining transmission-related performance information includes at least one of the following steps:
  • Send second monitoring information to the remote radio device receive first feedback information of the second monitoring information from the remote radio device, and determine the transmission of the remote radio device according to the first feedback information Related performance information;
  • the first monitoring information is specifically sent by the optical module in the remote radio frequency device.
  • the first monitoring information includes at least one of identification information of the remote radio frequency device, used optical wavelength information, transmitted optical power information, and received optical power information;
  • the second monitoring information includes at least one of request information used for querying transmitted optical power information, request information used for querying received optical power information, and information used for delay detection;
  • the third monitoring information includes at least one of identification information of the baseband processing device, port information, transmitted optical power information, and received optical power information.
  • the second monitoring information is sent in a broadcast or unicast manner.
  • the second monitoring information is sent by broadcasting means that it is sent to all remote radio equipment connected to the active module, and the second monitoring information is sent by unicast means that the second monitoring information
  • the identifier of the target remote radio equipment is carried in, to be sent to the designated remote radio equipment corresponding to the carried identifier.
  • the sending second monitoring information to the remote radio device, and receiving first feedback information of the remote radio device on the second monitoring information, and determining the second monitoring information according to the first feedback information include:
  • the transmission delay information is determined according to the locally sent timestamp information and the locally received timestamp information, and the transmission delay is a two-way delay between the active module and a certain remote radio device.
  • the information used for delay detection includes identification information of the remote radio frequency device.
  • the method further includes at least one of the following steps:
  • the active module may also directly receive at least one of the received first monitoring information, first feedback information, third monitoring information, second feedback information, and fifth monitoring information. Send to the control system.
  • the optical power information contained in the monitoring information or feedback information of a certain interface (port), a certain wavelength, or a certain radio frequency remote device
  • the optical power is lower than the alarm threshold, it is determined that the interface (port), the wavelength, or the transmission side of the remote radio equipment is faulty, that is, it can be based on the first monitoring information, the first feedback information, the third monitoring information, and the second monitoring information.
  • the feedback information and the fifth monitoring information judge whether it is a local fault or a remote fault, and can locate the fault location, so that the forward transmission between each remote remote device and the baseband processing device can be effectively monitored.
  • the method provided in the embodiment of the present disclosure is a technical solution corresponding to the active module provided in the first embodiment above, having the same inventive concept, and can achieve the same technical effect.
  • FIG. 8 is a schematic structural diagram of an active module provided in the fourth embodiment of the present disclosure.
  • the active module 80 includes a processor 81, a memory 82, and is stored in the memory 82 and can be used in the processing.
  • the active module 80 also includes a first interface 83 for connecting with a remote radio device and a second interface 84 for connecting with a baseband processing device; the processor 81 executes the The computer program implements the following steps:
  • the active module can obtain the transmission-related performance information of the remote radio equipment in the fronthaul network, the transmission-related performance information of the port of the baseband processing device, and the transmission-related performance information of the active module itself, so as to realize the The transmission of the fronthaul network is monitored.
  • the transmission-related performance information includes at least one of connectivity information, transmitted optical power information, received optical power information, and transmission delay information.
  • processor 81 may also implement the following steps when executing the computer program:
  • the step of obtaining transmission-related performance information includes at least one of the following steps:
  • Send second monitoring information to the remote radio device receive first feedback information of the second monitoring information from the remote radio device, and determine the transmission of the remote radio device according to the first feedback information Related performance information;
  • the first monitoring information includes at least one of identification information of the remote radio frequency device, used optical wavelength information, transmitted optical power information, and received optical power information;
  • the second monitoring information includes at least one of request information used for querying transmitted optical power information, request information used for querying received optical power information, and information used for delay detection;
  • the third monitoring information includes at least one of identification information of the baseband processing device, port information, transmitted optical power information, and received optical power information.
  • the second monitoring information is sent in a broadcast or unicast manner.
  • processor 81 may also implement the following steps when executing the computer program:
  • the sending second monitoring information to the remote radio equipment, and receiving the first feedback information of the remote radio equipment to the second monitoring information, and determining the remote radio equipment according to the first feedback information The steps of transmitting related performance information include:
  • the transmission delay information is determined according to the locally sent time stamp information and the locally received time stamp information.
  • the information used for delay detection includes identification information of the remote radio device.
  • processor 81 may also implement at least one of the following steps when executing the computer program:
  • the fifth embodiment of the present disclosure provides a computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the steps in any of the mobile communication fronthaul management and control methods in the third embodiment are implemented.
  • the steps in any of the mobile communication fronthaul management and control methods in the third embodiment are implemented.
  • the above-mentioned computer-readable storage media includes permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to, phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage, Magnetic cassettes, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media can be used to store information that can be accessed by computing devices.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本公开提供一种有源模块、移动通信前传系统和移动通信前传管控方法,属于无线通信技术领域,该有源模块,包括:第一接口,用于与射频拉远设备连接;第二接口,用于与基带处理设备连接,监控模块,用于获取以下传输相关性能信息中的至少之一:射频拉远设备的传输相关性能信息;基带处理设备的端口的传输相关性能信息;第一接口和第二接口的传输相关性能信息。

Description

有源模块、移动通信前传系统和移动通信前传管控方法
相关申请的交叉引用
本申请主张在2019年6月6日在中国提交的中国专利申请号No.201910491138.9的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种有源模块、移动通信前传系统和移动通信前传管控方法。
背景技术
随着移动通信技术的发展,对无线接入网(Radio Access Network,RAN)功能进行了切分,第五代移动通信技术(5G)中的RAN架构为射频单元(Remote Radio Unit,RRU)或有源天线单元(Active Antenna Unit,AAU)、分布单元(Distribute Unit,DU)、集中单元(Centralized Unit,CU)多级架构,传送网的网络部署可分为前传、中传、回传。其中集中化网络(Cloud-Radio Access Network,C-RAN)基站的比例日渐提高。单个C-RAN有可能覆盖本地及拉远的6~10个物理站点,前传网络成为移动通信传输网重要的组成部分。
相关技术,前传主要有光纤直趋、无源波分复用(Wavelength Division Multiplexing,WDM)、有源设备组网等几种方式,这几种前传方式都存在有一个共同的缺点,无法对中间的传输链路进行监控和管理。例如,对于光纤直驱方式,传输网管无法获取中间光纤连接状态等信息;对于无源WDM方式,难以感知光分配网络(Optical Distribution Network,ODN)故障,光模块运行维护困难,只能通过人工排查;对于有源设备组网方式,有源设备与AAU、DU之间的连接缺乏管理手段。
发明内容
有鉴于此,本公开提供一种有源模块、移动通信前传系统和移动通信前传管控方法,用于解决目前前传网络的组网方式无法对中间的传输链路(包 括光分配网络中的光模块)进行监控和管理的问题。
为解决上述技术问题,第一方面,本公开提供一种有源模块,包括:
第一接口,用于与射频拉远设备连接;
第二接口,用于与基带处理设备连接;
监控模块,用于获取以下传输相关性能信息中的至少之一:
所述射频拉远设备的传输相关性能信息;
所述基带处理设备的端口的传输相关性能信息;
所述第一接口和所述第二接口的传输相关性能信息。
可选的,所述传输相关性能信息包括连通性信息、发送光功率信息、接收光功率信息和传输时延信息中的至少之一。
可选的,所述监控模块用于执行以下操作中的至少之一:
通过所述第一接口接收所述射频拉远设备发送的第一监控信息,根据所述第一监控信息确定所述射频拉远设备的传输相关性能信息;
通过所述第一接口向所述射频拉远设备发送第二监控信息,并接收所述射频拉远设备对所述第二监控信息的第一反馈信息,根据所述第一反馈信息确定所述射频拉远设备的传输相关性能信息;
通过所述第二接口接收所述基带处理设备发送的第三监控信息,根据所述第三监控信息确定所述基带处理设备的端口的传输相关性能信息;
通过所述第二接口向所述基带处理设备发送第四监控信息,并接收所述基带处理设备对所述第四监控信息的第二反馈信息,根据所述第二反馈信息确定所述基带处理设备的端口的传输相关性能信息;
接收所述第一接口和/或所述第二接口发送的第五监控信息,根据所述第五监控信息确定所述第一接口和所述第二接口的传输相关性能信息。
可选的,所述第一监控信息包括所述射频拉远设备的标识信息、使用的光波长信息、发送光功率信息和接收光功率信息中的至少之一;
所述第二监控信息包括用于查询发送光功率信息的请求信息、用于查询接收光功率信息的请求信息和用于时延检测的信息中的至少一个;
所述第三监控信息包括基带处理设备的标识信息、端口信息、发送光功率信息和接收光功率信息中的至少一个。
第二方面,本公开还提供一种移动通信前传系统,包括:设置在射频拉远设备端的多个光模块、与所述光模块连接的第一波分复用器;设在基带处理设备一端的与所述第一波分复用器连接的第二波分复用器、上述任一种有源模块,所述有源模块分别与所述第二波分复用器、所述基带处理设备连接;
所述第一波分复用器用于汇合从所述多个光模块接收的光信号,并传输至所述第二波分复用器,和/或,用于分离从所述第二波分复用器接收的光信号,并分别传输至所述多个光模块;
所述第二波分复用器用于汇合从所述基带处理设备接收的光信号,并传输至所述第一波分复用器,和/或,用于分离从所述第一波分复用器接收的光信号,并传输至所述基带处理设备。
可选的,所述第二波分复用器和所述有源模块集成在同一有源设备上。
可选的,所述光模块为固定波长彩光模块或者可调谐彩光模块。
第三方面,本公开还提供一种移动通信前传管控方法,应用于有源模块,所述有源模块包括用于与射频拉远设备连接的第一接口和用于与基带处理设备连接的第二接口,所述方法包括:
获取以下传输相关性能信息中的至少之一:
所述射频拉远设备的传输相关性能信息;
所述基带处理设备的端口的传输相关性能信息;
所述第一接口和所述第二接口的传输相关性能信息。
可选的,所述传输相关性能信息包括连通性信息、发送光功率信息、接收光功率信息和传输时延信息中的至少之一。
可选的,获取传输相关性能信息的步骤包括以下步骤中的至少之一:
接收所述射频拉远设备发送的第一监控信息,根据所述第一监控信息确定所述射频拉远设备的传输相关性能信息;
向所述射频拉远设备发送第二监控信息,并接收所述射频拉远设备对所述第二监控信息的第一反馈信息,根据所述第一反馈信息确定所述射频拉远设备的传输相关性能信息;
接收所述基带处理设备发送的第三监控信息,根据所述第三监控信息确定所述基带处理设备的端口的传输相关性能信息;
向所述基带处理设备发送第四监控信息,并接收所述基带处理设备对所述第四监控信息的第二反馈信息,根据所述第二反馈信息确定所述基带处理设备的端口的传输相关性能信息;
接收所述第一接口和/或所述第二接口发送的第五监控信息,根据所述第五监控信息确定所述第一接口和所述第二接口的传输相关性能信息。
可选的,所述第一监控信息包括所述射频拉远设备的标识信息、使用的光波长信息、发送光功率信息和接收光功率信息中的至少之一;
所述第二监控信息包括用于查询发送光功率信息的请求信息、用于查询接收光功率信息的请求信息和用于时延检测的信息中的至少一个;
所述第三监控信息包括基带处理设备的标识信息、端口信息、发送光功率信息和接收光功率信息中的至少一个。
可选的,所述第二监控信息是通过广播或单播方式发送。
可选的,所述向所述射频拉远设备发送第二监控信息,并接收所述射频拉远设备对所述第二监控信息的第一反馈信息,根据所述第一反馈信息确定所述射频拉远设备的传输相关性能信息的步骤包括:
向所述射频拉远设备发送包括用于时延检测的信息的第二监控信息,所述用于时延检测的信息包括本地发送时间戳信息;
接收所述射频拉远设备在接收到所述第二监控信息后环回的第二监控信息作为所述第一反馈信息;
记录本地接收到所述第一反馈信息的本地接收时间戳信息;
根据所述本地发送时间戳信息和所述本地接收时间戳信息确定传输时延信息。
可选的,所述用于时延检测的信息包括所述射频拉远设备的标识信息。
可选的,所述方法还包括以下步骤的至少之一:
将获取到的传输相关性能信息上报管控系统;
当获取到的传输相关性能信息中存在低于光功率告警阈值的发送光功率信息或接收光功率信息时,生成告警信息并在本地输出所述告警信息;
当获取到的传输相关性能信息中存在低于光功率告警阈值的发送光功率信息或接收光功率信息时,生成告警信息,并将所述告警信息上报管控系统;
根据获取到的传输相关性能信息定位故障。
第四方面,本公开还提供一种有源模块,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,还包括用于与射频拉远设备连接的第一接口和用于与基带处理设备连接的第二接口;所述处理器执行所述计算机程序时实现上述任一种移动通信前传管控方法。
第五方面,本公开还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述任一种移动通信前传管控方法中的步骤。
本公开的上述技术方案的有益效果如下:
本公开实施例中,有源模块可以获取前传网络中射频拉远设备的传输相关性能信息、基带处理设备的端口的传输相关性能信息、所述有源模块自身的传输相关性能信息,从而实现对前传网络的传输进行监控。
附图说明
图1为光纤直驱前传组网方式的结构示意图;
图2为无源WDM前传组网方式的结构示意图;
图3为有源设备前传组网方式的结构示意图;
图4为本公开实施例一中的一种有源模块的结构示意图;
图5为本公开实施例二中的一种移动通信前传系统的结构示意图;
图6为本公开实施例三中的一种移动通信前传管控方法的流程示意图;
图7为本公开实施例中一种有源设备的部分功能示意图;
图8为本公开实施例四中的一种有源模块的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
首先,简单介绍下相关技术中的几种前传组网方式。
一、光纤直驱方式。如图1所示,RRU(或AAU)与DU(或室内基带处理单元(Building Baseband Unit,BBU))通过前传光模块点到点直接连接。该方式需要消耗大量光纤,以5G为例,每个物理站点通常部署3个AAU,每个AAU需要出2个25G接口,则一个物理站点就要消耗12根光纤(含上下行),而且,光纤直趋方案,传输网管无法获知中间光纤连接状态等信息。
二、无源WDM方式。如图2所示,RRU(或AAU)与DU(或BBU)上配置彩光模块,通过无源波分复用器复用多个波长进行传输。该方式相比光纤直驱方式,在光分配网络部分可以WDM技术节省主干光纤,但是RRU(或AAU)与DU(或BBU)配备彩光模块,缺乏管理手段,对ODN故障无感知,光模块运维困难,只能通过人工排查。
三、有源设备组网方式。如图3所示,有源传输设备的客户侧与无线设备采用普通灰光接口对接,传输设备进行连接组网,以完成业务的流量汇聚和拉远等功能。远端传输设备需要取电,故仅能安装于RRU(或AAU)处解决单站业务,对传输设备的数量要求较多,部署成本高,传输设备之间的链路可以进行管理,但传输设备与客户侧RRU(或AAU)、DU(或BBU)之间的连接缺乏管理手段。
请参阅图4,图4为本公开实施例一提供的一种有源模块的结构示意图,包括:
第一接口41,用于与射频拉远设备连接;
第二接口42,用于与基带处理设备连接;
监控模块43,用于获取以下传输相关性能信息中的至少之一:
所述射频拉远设备的传输相关性能信息;
所述基带处理设备的端口的传输相关性能信息;
所述第一接口和所述第二接口的传输相关性能信息。
本公开实施例中,有源模块可以获取前传网络中射频拉远设备的传输相关性能信息、基带处理设备的端口的传输相关性能信息、所述有源模块自身的传输相关性能信息,从而实现对前传网络的传输进行监控。
需要说明的是,所述射频拉远设备的传输相关性能是指所述射频拉远设 备中的光模块的传输相关性能,以及射频拉远设备与有源模块之间链路的传输相关性能。所述基带处理设备的端口的传输相关性能是指所述基带处理设备的端口与所述有源设备之间链路的传输相关性能。所述第一接口和所述第二接口的传输相关性能信息是指所述第一接口和所述第二接口本身的传输相关性能,以及所述第一接口和所述第二接口之间的传输相关性能。
下面举例说明上述有源模块。
可选的,所述传输相关性能信息包括连通性信息、发送光功率信息、接收光功率信息和传输时延信息中的至少之一。
具体的,所述射频拉远设备的传输相关性能可以包括每一射频拉远设备与有源设备之间的连通性、射频拉远设备中光模块的发送光功率、射频拉远设备中光模块的接收光功率、射频拉远设备与有源设备之间的传输时延等。所述基带处理设备的端口的传输相关性能可以包括每一端口与有源设备之间的连通性、发送光功率和接收光功率等。所述第一接口和所述第二接口的传输相关性能可以包括第一接口、第二接口以及第一接口与第二接口之间的连通性,还可以包括第一接口处的发送光功率和接收光功率、第二接口处的发送光功率和接收光功率等。
可选的,所述监控模块用于执行以下操作中的至少之一:
通过所述第一接口接收所述射频拉远设备发送的第一监控信息,根据所述第一监控信息确定所述射频拉远设备的传输相关性能信息;
通过所述第一接口向所述射频拉远设备发送第二监控信息,并接收所述射频拉远设备对所述第二监控信息的第一反馈信息,根据所述第一反馈信息确定所述射频拉远设备的传输相关性能信息;
通过所述第二接口接收所述基带处理设备发送的第三监控信息,根据所述第三监控信息确定所述基带处理设备的端口的传输相关性能信息;
通过所述第二接口向所述基带处理设备发送第四监控信息,并接收所述基带处理设备对所述第四监控信息的第二反馈信息,根据所述第二反馈信息确定所述基带处理设备的端口的传输相关性能信息;
接收所述第一接口和/或所述第二接口发送的第五监控信息,根据所述第五监控信息确定所述第一接口和所述第二接口的传输相关性能信息。
需要说明的是,所述第一监控信息具体是所述射频拉远设备中的光模块发送的。
进一步可选的,所述第一监控信息包括所述射频拉远设备的标识信息、使用的光波长信息、发送光功率信息和接收光功率信息中的至少之一;
所述第二监控信息包括用于查询发送光功率信息的请求信息、用于查询接收光功率信息的请求信息和用于时延检测的信息中的至少一个;
所述第三监控信息包括基带处理设备的标识信息、端口信息、发送光功率信息和接收光功率信息中的至少一个。
请参阅图5,图5为本公开实施例二提供的一种移动通信前传系统的结构示意图,包括:设置在射频拉远设备01端的多个光模块51、与所述光模块51连接的第一波分复用器52;设在基带处理设备02一端的与所述第一波分复用器52连接的第二波分复用器53、如上述实施例一所述的有源模块54,所述有源模块54分别与所述第二波分复用器53、所述基带处理设备02连接;
所述第一波分复用器52用于汇合从所述多个光模块51接收的光信号,并传输至所述第二波分复用器53,和/或,用于分离从所述第二波分复用器53接收的光信号,并分别传输至所述多个光模块51;
所述第二波分复用器53用于汇合从所述基带处理设备02接收的光信号,并传输至所述第一波分复用器52,和/或,用于分离从所述第一波分复用器52接收的光信号,并传输至所述基带处理设备02。
本公开实施例提供的移动通信前传系统,设置在射频拉远设备01端的第一波分复用器52将来自多个射频拉远设备的、多个不同波长的光波进行复用传输,设置在基带处理设备一端的第二波分复用器对第一波分复用器52传输过来的光信号进行解复用,从而可以减少光纤消耗、降低部署成本。另外,本公开实施例还可以通过有源设备54获取前传网络中射频拉远设备的传输相关性能信息、基带处理设备的端口的传输相关性能信息、所述有源模块自身的传输相关性能信息,从而实现对前传网络的传输进行监控。
下面举例说明上述移动通信前传系统。
可选的,所述第二波分复用器53和所述有源模块54集成在同一有源设备上。
可选的,所述光模块51为固定波长彩光模块或者可调谐彩光模块。本公开实施例提供的移动通信前传系统中,不同的射频拉远设备01使用不同波长。
可选的,所述第一波分复用器52、所述第二波分复用器53为无源波分复用器;
可选的,所述有源模块54采用灰光接口或者彩光接口与所述基带处理模块02连接。
对于所述有源模块54,所述监控模块用于执行以下操作中的至少之一:
通过所述第一接口55接收所述射频拉远设备发送的第一监控信息(参阅图5中的SignalA_Up,SignalA_Up由多个射频拉远设备发出的监控信号汇合而成(例如,由射频拉远设备λ1发送的监控信号Signal_λ1-1,射频拉远设备λ2发送的监控信号Signal_λ2-1,射频拉远设备λ3发送的监控信号Signal_λ3-1……汇合而成)),根据所述第一监控信息确定所述射频拉远设备的传输相关性能信息;
通过所述第一接口55向所述射频拉远设备发送第二监控信息(参阅图5中的SignalA_Down),并接收所述射频拉远设备对所述第二监控信息的第一反馈信息(可参阅图5中的SignalA_Up,同样的,作为反馈信息的SignalA_Up由多个射频拉远设备发出的反馈信号汇合而成(例如,由射频拉远设备λ1发送的反馈信号Signal_λ1-1,射频拉远设备λ2发送的反馈信号Signal_λ2-1,射频拉远设备λ3发送的反馈信号Signal_λ3-1……汇合而成)),根据所述第一反馈信息确定所述射频拉远设备的传输相关性能信息;
通过所述第二接口56接收所述基带处理设备发送的第三监控信息(参阅图5中的SignalB_Down),根据所述第三监控信息确定所述基带处理设备的端口的传输相关性能信息;
通过所述第二接口56向所述基带处理设备发送第四监控信息(参阅图5中的SignalB_Up),并接收所述基带处理设备对所述第四监控信息的第二反馈信息(参阅图5中的SignalB_Down),根据所述第二反馈信息确定所述基带处理设备的端口的传输相关性能信息;
接收所述第一接口55和/或所述第二接口56发送的第五监控信息,根据所述第五监控信息确定所述第一接口55和所述第二接口56的传输相关性能 信息。
请参阅图6,图6是本公开实施例三提供的一种移动通信前传管控方法的流程示意图,该方法应用于有源模块,所述有源模块包括用于与射频拉远设备连接的第一接口和用于与基带处理设备连接的第二接口,所述方法包括以下步骤:
步骤61:所述有源模块获取以下传输相关性能信息中的至少之一:
所述射频拉远设备的传输相关性能信息;
所述基带处理设备的端口的传输相关性能信息;
所述第一接口和所述第二接口的传输相关性能信息。
本公开实施例中,有源模块可以获取前传网络中射频拉远设备的传输相关性能信息、基带处理设备的端口的传输相关性能信息、所述有源模块自身的传输相关性能信息,从而实现对前传网络的传输进行监控。
下面举例说明上述移动通信前传管控方法。
需要说明的是,所述射频拉远设备的传输相关性能是指所述射频拉远设备中的光模块的传输相关性能,以及射频拉远设备与有源模块之间链路的传输相关性能。所述基带处理设备的端口的传输相关性能是指所述基带处理设备的端口与所述有源设备之间链路的传输相关性能。所述第一接口和所述第二接口的传输相关性能信息是指所述第一接口和所述第二接口本身的传输相关性能,以及所述第一接口和所述第二接口之间的传输相关性能。
可选的,所述传输相关性能信息包括连通性信息、发送光功率信息、接收光功率信息和传输时延信息中的至少之一。
具体的,所述射频拉远设备的传输相关性能可以包括每一射频拉远设备与有源设备之间的连通性、射频拉远设备中光模块的发送光功率、射频拉远设备中光模块的接收光功率、射频拉远设备与有源设备之间的传输时延等。所述基带处理设备的端口的传输相关性能可以包括每一端口与有源设备之间的连通性、发送光功率和接收光功率等。所述第一接口和所述第二接口的传输相关性能可以包括第一接口、第二接口以及第一接口与第二接口之间的连通性,还可以包括第一接口处的发送光功率和接收光功率、第二接口处的发送光功率和接收光功率等。
可选的,获取传输相关性能信息的步骤包括以下步骤中的至少之一:
接收所述射频拉远设备发送的第一监控信息,根据所述第一监控信息确定所述射频拉远设备的传输相关性能信息;
向所述射频拉远设备发送第二监控信息,并接收所述射频拉远设备对所述第二监控信息的第一反馈信息,根据所述第一反馈信息确定所述射频拉远设备的传输相关性能信息;
接收所述基带处理设备发送的第三监控信息,根据所述第三监控信息确定所述基带处理设备的端口的传输相关性能信息;
向所述基带处理设备发送第四监控信息,并接收所述基带处理设备对所述第四监控信息的第二反馈信息,根据所述第二反馈信息确定所述基带处理设备的端口的传输相关性能信息;
接收所述第一接口和/或所述第二接口发送的第五监控信息,根据所述第五监控信息确定所述第一接口和所述第二接口的传输相关性能信息。
需要说明的是,所述第一监控信息具体是所述射频拉远设备中的光模块发送的。
进一步可选的,所述第一监控信息包括所述射频拉远设备的标识信息、使用的光波长信息、发送光功率信息和接收光功率信息中的至少之一;
所述第二监控信息包括用于查询发送光功率信息的请求信息、用于查询接收光功率信息的请求信息和用于时延检测的信息中的至少一个;
所述第三监控信息包括基带处理设备的标识信息、端口信息、发送光功率信息和接收光功率信息中的至少一个。
可选的,所述第二监控信息是通过广播或单播方式发送。所述第二监控信息是通过广播方式发送是指发送给所有与所述有源模块连接的射频拉远设备,所述第二监控信息是通过单播方式发送是指在所述第二监控信息中携带目标射频拉远设备的标识,以发送给携带的标识对应的指定射频拉远设备。
可选的,所述向所述射频拉远设备发送第二监控信息,并接收所述射频拉远设备对所述第二监控信息的第一反馈信息,根据所述第一反馈信息确定所述射频拉远设备的传输相关性能信息的步骤包括:
向所述射频拉远设备发送包括用于时延检测的信息的第二监控信息,所 述用于时延检测的信息包括本地发送时间戳信息;
接收所述射频拉远设备在接收到所述第二监控信息后环回的第二监控信息作为所述第一反馈信息;
记录本地接收到所述第一反馈信息的本地接收时间戳信息;
根据所述本地发送时间戳信息和所述本地接收时间戳信息确定传输时延信息,该传输时延是有源模块到某个射频拉远设备之间的双向时延。
进一步可选的,所述用于时延检测的信息包括所述射频拉远设备的标识信息。
可选的,所述方法还包括以下步骤的至少之一:
将获取到的传输相关性能信息上报管控系统(参阅图7);
当获取到的传输相关性能信息中存在低于光功率告警阈值的发送光功率信息或接收光功率信息时,生成告警信息并在本地输出所述告警信息;
当获取到的传输相关性能信息中存在低于光功率告警阈值的发送光功率信息或接收光功率信息时,生成告警信息,并将所述告警信息上报管控系统(参阅图7);
根据获取到的传输相关性能信息定位故障。
在其他的可选实施例中,所述有源模块也可以直接将接收到的第一监控信息、第一反馈信息、第三监控信息、第二反馈信息和第五监控信息中的至少之一发送至管控系统。
对于根据获取到的传输相关性能信息定位故障,具体可以是当某个接口(端口)、某个波长或者某个射频拉远设备的监控信息或者反馈信息中包含的(发送或接收)光功率信息低于光功率告警阈值时,判断该接口(端口)、该波长或者该射频拉远设备的传输侧存在故障,也即可以根据第一监控信息、第一反馈信息、第三监控信息、第二反馈信息和第五监控信息判断是本地故障还是远端故障,并能定位故障位置,从而可以有效地对每一个远端拉远设备和基带处理设备之间的前传传输进行监控。
本公开实施例提供的方法是与上述实施例一提供的有源模块对应的、具有相同发明构思的技术方案,且能达到相同的技术效果。
请参阅图8,图8是本公开实施例四提供的一种有源模块的结构示意图, 该有源模块80包括处理器81、存储器82及存储在所述存储器82上并可在所述处理器81上运行的计算机程序,该有源模块80还包括用于与射频拉远设备连接的第一接口83和用于与基带处理设备连接的第二接口84;所述处理器81执行所述计算机程序时实现如下步骤:
获取以下传输相关性能信息中的至少之一:
所述射频拉远设备的传输相关性能信息;
所述基带处理设备的端口的传输相关性能信息;
所述第一接口和所述第二接口的传输相关性能信息。
本公开实施例中,有源模块可以获取前传网络中射频拉远设备的传输相关性能信息、基带处理设备的端口的传输相关性能信息、所述有源模块自身的传输相关性能信息,从而实现对前传网络的传输进行监控。可选的,所述传输相关性能信息包括连通性信息、发送光功率信息、接收光功率信息和传输时延信息中的至少之一。
可选的,所述处理器81执行所述计算机程序时还可实现如下步骤:
获取传输相关性能信息的步骤包括以下步骤中的至少之一:
接收所述射频拉远设备发送的第一监控信息,根据所述第一监控信息确定所述射频拉远设备的传输相关性能信息;
向所述射频拉远设备发送第二监控信息,并接收所述射频拉远设备对所述第二监控信息的第一反馈信息,根据所述第一反馈信息确定所述射频拉远设备的传输相关性能信息;
接收所述基带处理设备发送的第三监控信息,根据所述第三监控信息确定所述基带处理设备的端口的传输相关性能信息;
向所述基带处理设备发送第四监控信息,并接收所述基带处理设备对所述第四监控信息的第二反馈信息,根据所述第二反馈信息确定所述基带处理设备的端口的传输相关性能信息;
接收所述第一接口和/或所述第二接口发送的第五监控信息,根据所述第五监控信息确定所述第一接口和所述第二接口的传输相关性能信息。
可选的,所述第一监控信息包括所述射频拉远设备的标识信息、使用的光波长信息、发送光功率信息和接收光功率信息中的至少之一;
所述第二监控信息包括用于查询发送光功率信息的请求信息、用于查询接收光功率信息的请求信息和用于时延检测的信息中的至少一个;
所述第三监控信息包括基带处理设备的标识信息、端口信息、发送光功率信息和接收光功率信息中的至少一个。
可选的,所述第二监控信息是通过广播或单播方式发送。
可选的,所述处理器81执行所述计算机程序时还可实现如下步骤:
所述向所述射频拉远设备发送第二监控信息,并接收所述射频拉远设备对所述第二监控信息的第一反馈信息,根据所述第一反馈信息确定所述射频拉远设备的传输相关性能信息的步骤包括:
向所述射频拉远设备发送包括用于时延检测的信息的第二监控信息,所述用于时延检测的信息包括本地发送时间戳信息;
接收所述射频拉远设备在接收到所述第二监控信息后环回的第二监控信息作为所述第一反馈信息;
记录本地接收到所述第一反馈信息的本地接收时间戳信息;
根据所述本地发送时间戳信息和所述本地接收时间戳信息确定传输时延信息。
可选的,所述用于时延检测的信息包括所述射频拉远设备的标识信息。
可选的,所述处理器81执行所述计算机程序时还可实现如下步骤的至少之一:
将获取到的传输相关性能信息上报管控系统;
当获取到的传输相关性能信息中存在低于光功率告警阈值的发送光功率信息或接收光功率信息时,生成告警信息并在本地输出所述告警信息;
当获取到的传输相关性能信息中存在低于光功率告警阈值的发送光功率信息或接收光功率信息时,生成告警信息,并将所述告警信息上报管控系统;
根据获取到的传输相关性能信息定位故障。本公开实施例的具体工作过程与上述方法实施例三中的一致,故在此不再赘述,详细请参阅上述实施例三中方法步骤的说明。
本公开实施例五提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例三中任一种移动通信前传管控 方法中的步骤。详细请参阅以上对应实施例中方法步骤的说明。
上述计算机可读存储介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
以上所述是本公开的可选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本公开的保护范围。

Claims (17)

  1. 一种有源模块,包括:
    第一接口,用于与射频拉远设备连接;
    第二接口,用于与基带处理设备连接;
    监控模块,用于获取以下传输相关性能信息中的至少之一:
    所述射频拉远设备的传输相关性能信息;
    所述基带处理设备的端口的传输相关性能信息;
    所述第一接口和所述第二接口的传输相关性能信息。
  2. 根据权利要求1所述的有源模块,其中,所述传输相关性能信息包括连通性信息、发送光功率信息、接收光功率信息和传输时延信息中的至少之一。
  3. 根据权利要求1所述的有源模块,其中,所述监控模块用于执行以下操作中的至少之一:
    通过所述第一接口接收所述射频拉远设备发送的第一监控信息,根据所述第一监控信息确定所述射频拉远设备的传输相关性能信息;
    通过所述第一接口向所述射频拉远设备发送第二监控信息,并接收所述射频拉远设备对所述第二监控信息的第一反馈信息,根据所述第一反馈信息确定所述射频拉远设备的传输相关性能信息;
    通过所述第二接口接收所述基带处理设备发送的第三监控信息,根据所述第三监控信息确定所述基带处理设备的端口的传输相关性能信息;
    通过所述第二接口向所述基带处理设备发送第四监控信息,并接收所述基带处理设备对所述第四监控信息的第二反馈信息,根据所述第二反馈信息确定所述基带处理设备的端口的传输相关性能信息;
    接收所述第一接口和/或所述第二接口发送的第五监控信息,根据所述第五监控信息确定所述第一接口和所述第二接口的传输相关性能信息。
  4. 根据权利要求3所述的有源模块,其中,所述第一监控信息包括所述射频拉远设备的标识信息、使用的光波长信息、发送光功率信息和接收光功率信息中的至少之一;
    所述第二监控信息包括用于查询发送光功率信息的请求信息、用于查询接收光功率信息的请求信息和用于时延检测的信息中的至少一个;
    所述第三监控信息包括基带处理设备的标识信息、端口信息、发送光功率信息和接收光功率信息中的至少一个。
  5. 一种移动通信前传系统,包括:设置在射频拉远设备端的多个光模块、与所述光模块连接的第一波分复用器;设在基带处理设备一端的与所述第一波分复用器连接的第二波分复用器、如权利要求1-4中任一项所述的有源模块,所述有源模块分别与所述第二波分复用器、所述基带处理设备连接;
    所述第一波分复用器用于汇合从所述多个光模块接收的光信号,并传输至所述第二波分复用器,和/或,用于分离从所述第二波分复用器接收的光信号,并分别传输至所述多个光模块;
    所述第二波分复用器用于汇合从所述基带处理设备接收的光信号,并传输至所述第一波分复用器,和/或,用于分离从所述第一波分复用器接收的光信号,并传输至所述基带处理设备。
  6. 根据权利要求5所述的系统,其中,所述第二波分复用器和所述有源模块集成在同一有源设备上。
  7. 根据权利要求5所述的系统,其中,所述光模块为固定波长彩光模块或者可调谐彩光模块。
  8. 一种移动通信前传管控方法,应用于有源模块,所述有源模块包括用于与射频拉远设备连接的第一接口和用于与基带处理设备连接的第二接口,所述方法包括:
    获取以下传输相关性能信息中的至少之一:
    所述射频拉远设备的传输相关性能信息;
    所述基带处理设备的端口的传输相关性能信息;
    所述第一接口和所述第二接口的传输相关性能信息。
  9. 根据权利要求8所述的方法,其中,所述传输相关性能信息包括连通性信息、发送光功率信息、接收光功率信息和传输时延信息中的至少之一。
  10. 根据权利要求8所述的方法,其中,获取传输相关性能信息的步骤包括以下步骤中的至少之一:
    接收所述射频拉远设备发送的第一监控信息,根据所述第一监控信息确定所述射频拉远设备的传输相关性能信息;
    向所述射频拉远设备发送第二监控信息,并接收所述射频拉远设备对所述第二监控信息的第一反馈信息,根据所述第一反馈信息确定所述射频拉远设备的传输相关性能信息;
    接收所述基带处理设备发送的第三监控信息,根据所述第三监控信息确定所述基带处理设备的端口的传输相关性能信息;
    向所述基带处理设备发送第四监控信息,并接收所述基带处理设备对所述第四监控信息的第二反馈信息,根据所述第二反馈信息确定所述基带处理设备的端口的传输相关性能信息;
    接收所述第一接口和/或所述第二接口发送的第五监控信息,根据所述第五监控信息确定所述第一接口和所述第二接口的传输相关性能信息。
  11. 根据权利要求10所述的方法,其中,所述第一监控信息包括所述射频拉远设备的标识信息、使用的光波长信息、发送光功率信息和接收光功率信息中的至少之一;
    所述第二监控信息包括用于查询发送光功率信息的请求信息、用于查询接收光功率信息的请求信息和用于时延检测的信息中的至少一个;
    所述第三监控信息包括基带处理设备的标识信息、端口信息、发送光功率信息和接收光功率信息中的至少一个。
  12. 根据权利要求10或11所述的方法,其中,所述第二监控信息是通过广播或单播方式发送。
  13. 根据权利要求11所述的方法,其中,所述向所述射频拉远设备发送第二监控信息,并接收所述射频拉远设备对所述第二监控信息的第一反馈信息,根据所述第一反馈信息确定所述射频拉远设备的传输相关性能信息的步骤包括:
    向所述射频拉远设备发送包括用于时延检测的信息的第二监控信息,所述用于时延检测的信息包括本地发送时间戳信息;
    接收所述射频拉远设备在接收到所述第二监控信息后环回的第二监控信息作为所述第一反馈信息;
    记录本地接收到所述第一反馈信息的本地接收时间戳信息;
    根据所述本地发送时间戳信息和所述本地接收时间戳信息确定传输时延信息。
  14. 根据权利要求13所述的方法,其中,所述用于时延检测的信息包括所述射频拉远设备的标识信息。
  15. 根据权利要求8或10所述的方法,其中,还包括以下步骤的至少之一:
    将获取到的传输相关性能信息上报管控系统;
    当获取到的传输相关性能信息中存在低于光功率告警阈值的发送光功率信息或接收光功率信息时,生成告警信息并在本地输出所述告警信息;
    当获取到的传输相关性能信息中存在低于光功率告警阈值的发送光功率信息或接收光功率信息时,生成告警信息,并将所述告警信息上报管控系统;
    根据获取到的传输相关性能信息定位故障。
  16. 一种有源模块,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,还包括用于与射频拉远设备连接的第一接口和用于与基带处理设备连接的第二接口;其中,所述处理器执行所述计算机程序时实现如权利要求8至15中任一项所述的移动通信前传管控方法。
  17. 一种计算机可读存储介质,其上存储有计算机程序,其中,该计算机程序被处理器执行时实现如权利要求8至15中任一项所述的移动通信前传管控方法中的步骤。
PCT/CN2020/094659 2019-06-06 2020-06-05 有源模块、移动通信前传系统和移动通信前传管控方法 WO2020244628A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20818767.4A EP3958481A4 (en) 2019-06-06 2020-06-05 ACTIVE MODULE, MOBILE COMMUNICATIONS FRONTHOUL SYSTEM AND METHOD OF MANAGING AND CONTROLLING MOBILE COMMUNICATIONS FRONTHOUSE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910491138.9A CN112054841A (zh) 2019-06-06 2019-06-06 有源模块、移动通信前传系统和移动通信前传管控方法
CN201910491138.9 2019-06-06

Publications (1)

Publication Number Publication Date
WO2020244628A1 true WO2020244628A1 (zh) 2020-12-10

Family

ID=73609734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094659 WO2020244628A1 (zh) 2019-06-06 2020-06-05 有源模块、移动通信前传系统和移动通信前传管控方法

Country Status (3)

Country Link
EP (1) EP3958481A4 (zh)
CN (1) CN112054841A (zh)
WO (1) WO2020244628A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116017660A (zh) * 2021-10-21 2023-04-25 中国移动通信有限公司研究院 一种光模块功率调整方法、光模块及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136868A (zh) * 2011-05-09 2011-07-27 广州茂腾信息科技有限公司 电信基站基带处理单元bbu-射频拉远模块rru故障判断方法
US20160218801A1 (en) * 2015-01-27 2016-07-28 Electronics And Telecommunications Research Institute Control apparatus and method for monitoring optical fiber link
CN106411397A (zh) * 2015-07-27 2017-02-15 中兴通讯股份有限公司 智能光分配网络装置和无源光纤网络系统
CN106817159A (zh) * 2017-01-25 2017-06-09 深圳太辰光通信股份有限公司 一种无源波分移动前传网络系统
CN106888473A (zh) * 2016-12-23 2017-06-23 中国移动通信有限公司研究院 前传网络控制方法及装置
WO2019201100A1 (zh) * 2018-04-18 2019-10-24 中兴通讯股份有限公司 Amcc装置及传输波长调控方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602007003926D1 (de) * 2006-10-06 2010-02-04 Acterna Llc Testen optisch verstärkter Verbindungen mit zeitlich gemultiplexten Testsignalen
CN202602637U (zh) * 2012-06-14 2012-12-12 南京泰通科技有限公司 一种单纤星型rru监控传输装置
CN203352596U (zh) * 2013-07-24 2013-12-18 戴世超 近端监控设备、远端监控设备及分布式基站监控系统
TWI609575B (zh) * 2016-07-22 2017-12-21 Chunghwa Telecom Co Ltd Portable WDM interface device and method
KR102296176B1 (ko) * 2016-12-23 2021-09-01 차이나 모바일 커뮤니케이션 컴퍼니 리미티드 리서치 인스티튜트 프론트홀 전송 네트워크, 데이터 전송 방법 및 장치, 컴퓨터 저장 매체
WO2018133932A1 (en) * 2017-01-18 2018-07-26 Telefonaktiebolaget Lm Ericsson (Publ) Node for a fronthaul network and monitoring of optical trasceivers in fronthaul networks
US10623129B2 (en) * 2017-09-15 2020-04-14 Futurewei Technologies, Inc. Control and management of a first PON using a second PON

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136868A (zh) * 2011-05-09 2011-07-27 广州茂腾信息科技有限公司 电信基站基带处理单元bbu-射频拉远模块rru故障判断方法
US20160218801A1 (en) * 2015-01-27 2016-07-28 Electronics And Telecommunications Research Institute Control apparatus and method for monitoring optical fiber link
CN106411397A (zh) * 2015-07-27 2017-02-15 中兴通讯股份有限公司 智能光分配网络装置和无源光纤网络系统
CN106888473A (zh) * 2016-12-23 2017-06-23 中国移动通信有限公司研究院 前传网络控制方法及装置
CN106817159A (zh) * 2017-01-25 2017-06-09 深圳太辰光通信股份有限公司 一种无源波分移动前传网络系统
WO2019201100A1 (zh) * 2018-04-18 2019-10-24 中兴通讯股份有限公司 Amcc装置及传输波长调控方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3958481A4

Also Published As

Publication number Publication date
EP3958481A1 (en) 2022-02-23
EP3958481A4 (en) 2023-01-11
CN112054841A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
Paolucci et al. Network telemetry streaming services in SDN-based disaggregated optical networks
WO2020253850A1 (zh) 前传网络的控制方法、网络设备及系统
US20140161438A1 (en) Protection for distributed radio access networks
CN112260794A (zh) 一种5g前传半有源wdm业务监控系统及其监控方法
US9584218B2 (en) Method and arrangement for monitoring optical transmission lines
CN102035597B (zh) 一种无源光网络的主备切换方法、装置和系统
CN105656715B (zh) 用于监测云计算环境下网络设备的状态的方法和装置
WO2020244633A1 (zh) 无线接入网的控制方法、网络设备及系统
WO2020244628A1 (zh) 有源模块、移动通信前传系统和移动通信前传管控方法
CN104283790A (zh) Sdn中弹性分组环rpr的拓扑发现方法和设备
EP3892026B1 (en) Node outage determination and reporting in a mesh network
WO2012171168A1 (zh) 监控室内覆盖网络的方法、设备及系统
CN103036724B (zh) 状态信息传输方法、网络设备及组合设备
WO2016206010A1 (zh) 一种链路故障定位的方法、装置及系统
JP2017536052A (ja) タグ交換パス接続性の検出方法及び装置
CN104184602B (zh) 增量数据同步方法、网元管理系统及网络管理系统
US11265080B2 (en) Submarine cable fault determining method and apparatus
US9900234B2 (en) Direct link quality monitoring method, communications device, and system
US10298440B2 (en) Transmission apparatus, alarm transfer method and alarm transfer system
US9559751B2 (en) Communication system, transmission apparatus, line control apparatus, line state monitoring method and non-transitory computer readable medium storing program
CN109150747B (zh) 一种变更业务带宽的方法、装置及计算机可读存储介质
CN102647298B (zh) 一种基于二层网络相切环实现数据传输的方法及装置
WO2023274161A1 (zh) 业务保护方法、电子设备和计算机可读存储介质
WO2020244632A1 (zh) 连接信息发送方法、接收方法、光模块和中心处理设备
CN102281157A (zh) Moca系统环路检测及处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020818767

Country of ref document: EP

Effective date: 20211115

NENP Non-entry into the national phase

Ref country code: DE