WO2020244537A1 - 一种杂草定量监控方法 - Google Patents

一种杂草定量监控方法 Download PDF

Info

Publication number
WO2020244537A1
WO2020244537A1 PCT/CN2020/094114 CN2020094114W WO2020244537A1 WO 2020244537 A1 WO2020244537 A1 WO 2020244537A1 CN 2020094114 W CN2020094114 W CN 2020094114W WO 2020244537 A1 WO2020244537 A1 WO 2020244537A1
Authority
WO
WIPO (PCT)
Prior art keywords
weeds
weed
level
soil
rice
Prior art date
Application number
PCT/CN2020/094114
Other languages
English (en)
French (fr)
Inventor
强胜
张峥
Original Assignee
南京农业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京农业大学 filed Critical 南京农业大学
Priority to US17/616,363 priority Critical patent/US20220256784A1/en
Priority to JP2021572440A priority patent/JP7393032B2/ja
Publication of WO2020244537A1 publication Critical patent/WO2020244537A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/20Cereals
    • A01G22/22Rice
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0098Plants or trees
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q90/00Systems or methods specially adapted for administrative, commercial, financial, managerial or supervisory purposes, not involving significant data processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining

Definitions

  • the invention belongs to the technical field of crop cultivation management, and specifically relates to a method for quantitative monitoring of weeds.
  • Weeds are one of the most important factors leading to the reduction of crop production. Weed control mainly relies on chemical herbicides. With the intensive and large-scale development of agricultural production in my country, this dependence will increase. In the rice-wheat (oil) continuous cropping area, one season of rice will use “one”, “two kills”, and “three supplements” to use three herbicides, and wheat or rapeseed will also use “one” and “two supplements”. If the number of weeds is very high, the "two supplements” need to use herbicides that kill grass weeds and broadleaf weeds respectively, for a total of up to 6 applications.
  • weed control technology needs to change the current situation that almost completely relies on chemical removal technology.
  • the Ministry of Agriculture has also proposed the "double reduction" goal of reducing the use of chemical pesticides and fertilizers.
  • the use of pesticides has accounted for more than 40% of the use of pesticides. Therefore, reducing the use of herbicides is an important part of achieving the goal of double reduction.
  • How to formulate weed control measures scientifically and reduce the frequency/amount of herbicides used requires quantitative monitoring of weeds. Based on the results of monitoring surveys, the ecological weed control measures and chemical weed control measures are organically combined, and development is based on weeds. Quantitatively monitored weed comprehensive control technology, and finally realize the sustainable management of weeds.
  • An ecological weeding method discloses a research on an ecological weed control system based on accelerating the depletion of a weed seed bank.
  • the ecological weed control technology of applying irrigation water flow filtration and removing floating weed seeds during the irrigating and soaking period is effective for rice and wheat Farming weeds has a good control effect, and the density of weeds in the soil seed bank continues to decrease year by year.
  • farmland with high weed density the use of ecological control grass alone is not enough to control the occurrence and damage of weeds in the current season, and chemical herbicides are also needed.
  • the purpose of the present invention is to solve the time-consuming and cumbersome investigation method of farmland weeds, and provide a weed quantitative monitoring method that can quickly and quantitatively conduct weed monitoring investigations and determine the degree of weed damage, which is the choice of weed control strategies Provide evidence.
  • a quantitative monitoring method for weeds includes the following steps:
  • the four-level visual inspection method is specifically as follows:
  • the seven-level visual inspection method is used to observe the height, abundance and coverage of the weeds relative to the crop to determine the dominance level of the weeds.
  • the seven-level visual inspection method is based on the weeds.
  • the dominance levels are named from high to low:
  • Level 1 Level 2: Dominance level 4, 5, indicating serious weed damage;
  • Level three and level four dominance level 2, 3, indicating moderate weed damage
  • Dominance level 1 which means that weeds are less harmful
  • Level 6 and Level 7 Dominance level 0, T, which means that weed damage is very light;
  • each field is designed with a "W" shape for 9 squares with an area of 0.5-1m 2 and the types of weeds in the squares are counted separately Calculate the weed density with the number of plants of each weed;
  • the soil seed bank is used to drill soil for sampling: each field is designed with 9 sample points in the shape of "W”, with an interval of 1 meter around the sample points, set 5 points in the shape of "plum blossom", and 1 sample is drilled from each spot
  • the drilling depth is 15cm
  • the drilling soil area of each soil sample is 0.002m 2
  • the drilling soil diameter is 50mm.
  • the monitoring survey result is that the occurrence of weeds is high density, or dominance level 4 to 5, or weed density>200 plants/m 2 , or the size of the soil weed seed bank>100000 seeds/m 2 .
  • the crop During the planting period the local conventional chemical weeding method was used, and the ecological grass control measures "cutting river” and "net fishing" were used.
  • the monitoring and investigation result is that the density of weeds occurs, or the dominance level is 2 to 3, or the weed density is 100 to 200 plants/m 2 , or the size of the soil weed seed bank is 50,000 to 100,000 seeds/m At 2 o'clock, compared with the local conventional chemical weeding methods, the use of chemical herbicides was reduced once during the crop planting period, and the use of ecological grass control measures "intercepting" and "net fishing” was used.
  • the monitoring survey result is that the weeds are low density, or dominance level 1, or the weed density is 50-100 plants/m 2 , or the size of the soil weed seed bank is 20000-50000 seeds/m 2 .
  • chemical herbicides are used only once, and the use of ecological weed control measures "interception” and "net fishing” are also used.
  • the monitoring survey result is that the amount of weeds is extremely low density, or the degree of dominance is 0 to T, or the weed density is less than 50 plants/m 2 , or the size of the soil weed seed bank is less than 20,000 seeds/m 2 .
  • chemical herbicides are not used, and only ecological weed control measures "intercepting" and "net fishing” are used to maintain the density of weeds in the field at a low level.
  • the farming mode of the crop is rice-wheat, rice-canola, rice-green manure or rice-winter fallow field.
  • the invention utilizes the four-level visual inspection method at the seedling stage, the growth stage sample method, the seven-level visual inspection method at the maturity stage, and the soil seed bank survey before planting to perform rapid and quantitative monitoring of farmland weeds and weeds under different farming modes throughout the growth period , Implement targeted weed control strategies based on the quantitative indicators of the occurrence of weeds and weeds to achieve the goal of continuous weed control.
  • Continuous monitoring can clarify the occurrence and dynamics of weeds, reasonably implement weed prevention and control measures, reduce the frequency and amount of herbicides used, and realize the quantification of weed control, which can significantly reduce the occurrence of weeds while effectively controlling the occurrence of weeds. Planting costs and reduce environmental pollution.
  • a weed quantitative monitoring method is a method of rapid and quantitative monitoring of the occurrence of weeds in farmland under different farming modes using visual methods. It is used to guide the reasonable selection of weed control measures, including the following steps:
  • the four-level visual inspection method is as follows: 1 Straight waist observation: Seeing from a distance (3 meters away from the field) the soil is obviously green and covered (a piece of green), the weeds are dense; 2 Standing straight in the field to observe: the soil is covered with green, then The density of weeds is medium; 3Standing and observing in the field: Seedlings of weeds, the density of weeds is low; 4Squatting observation: Only sporadic seedlings are seen, and the density of weeds is very low. See Table 1 for specific classification.
  • Table 1 Four-level visual inspection grading standard for weeds at seedling stage
  • a seven-level visual inspection method is used to visually observe the height, abundance, and coverage of the weeds relative to the crop, and judge the dominance level (hazard level) of the weeds.
  • the degree of weed damage from high to low was 5, 4, 3, 2, 1, T, 0, a total of 7 levels.
  • the height of weeds relative to crops can be divided into upper, middle and lower layers. The relative height of different weeds should correspond to different coverage and abundance to determine the hazard level classification. Refer to Table 2 for specific classification.
  • Table 2 The seven-level visual grading standard for dominance of weed communities
  • each field is designed with 9 sampling points in a "W" shape, and 5 points in a "plum blossom” shape are set at a distance of 1 meter around the sampling points.
  • One soil sample is drilled at each point, the depth of the drilling soil is 15cm, and the drilling area of each soil sample is 0.002m 2 (drilling soil diameter is 50mm).
  • count the weed seeds in the seed bank The type and quantity are the size (density) of the soil weed seed bank.
  • weeds were conducted according to the amount of weed seedlings, or the dominance level of adult plants (hazard level), or the density of weeds, or the size (density) of the soil weed seed bank. See Table 3 for the selection of grass prevention and control strategies and the specific selection of grass control measures.
  • the four-level visual inspection method and the seventh-level visual inspection method of weeds can be applied to the rapid and quantitative monitoring of weeds under the rice-wheat, rice-cole, rice-green manure or rice-winter fallow farming mode to guide the selection of weed control measures.
  • the amount of weeds (hazards) is continuously monitored, and weed control measures are adjusted in time based on the monitoring results.
  • Eco-grass control measures "cut-off” and "net fishing” are implemented under different planting modes: after wheat/canola/green manure/winter fallow fields, plowing is carried out before rice planting, and then irrigation.
  • Use "cut-off” measures that is, set up a filter at the inlet and outlet of the field before the first irrigation to filter and remove weed seeds in the irrigation water stream.
  • the filter can choose nylon mesh, stainless steel wire mesh or wire mesh.
  • the aperture of the net is 50-150 meshes; after flooding the field and during the soaking period, keep the water layer of the field above 10cm, and use the "net fishing” measure, that is, the weed seeds floating on the water are blown to the corner of the field Or at the edge, use a fishing net to fish out the weed seeds floating on the water.
  • the fishing net can choose a nylon net with an aperture of 80-120 mesh. In the later stage of the field, perform rotary tillage and raking. Maintain the water layer for a period of time, and then carry out the "net fishing" operation again.
  • the experimental site is a rice-wheat continuous cropping model.
  • Wheat is planted in winter, and the wheat variety is "Huaimai 26", the sowing rate is 35kg/mu, and the rice variety is "Lianjing 11" in summer.
  • Machine-transplanted seedlings) Row spacing 30cm, plant spacing 20cm, 5 seedlings per hole.
  • primary closure + secondary stem and leaf that is, use soil sealing herbicide and spray before seedling after sowing of wheat; use stem and leaf herbicide spray treatment at the three-leaf and one-heart stage of wheat; after wheat 4-leaf stage Before jointing, apply a herbicide for stem and leaf treatment.
  • the herbicides are used as "one, two kills, three supplements", that is, the closed herbicide is applied before the seedling after the rice is sowed, and the stem and leaves are sprayed for weeding at the seedling stage after sowing (weeds with 3 leaves and 1 heart) Replenishing the stem and leaf treatment agent in the late seedling stage.
  • Quantitative monitoring of weeds Carry out a soil seed bank base survey after the 2016 rice harvest. During the wheat planting period in 2016, we conducted a survey on the amount of weeds at the seedling stage of the wheat field (basic survey). The survey was conducted in mid-November 2016 (herbicide was not applied). After that, the seedling stage and the mature stage were conducted in each crop season.
  • the survey and monitoring of the above-ground weed communities will guide the selection of follow-up weed control measures based on the survey results: the weed survey at the seedling stage of the rice field is 30 days after rice transplantation, and the survey of weeds at the mature stage is conducted in early October (before the rice harvest); the seedling stage of the wheat field Weed surveys were conducted 30 days after sowing, and mature weed surveys were conducted in early May (before wheat harvest). And after the crops (rice, wheat) are harvested, the soil weed seed bank is investigated.
  • the survey results show that the occurrence of weeds in wheat fields in 2016 was at a medium density, that is, a small amount of green weeds covering the rows were observed with straight waist, weed plants were visible when bent over, and weed seedlings were observed when squatting down.
  • the number of weed seedlings is 123 plants/m 2
  • the medium scale of the soil weed seed bank is 85456 seeds/m 2 . See Table 4 for the selection of weed monitoring and corresponding weed control measures.
  • the experimental site is a rice-wheat continuous cropping model.
  • Wheat is planted in winter, and the wheat variety is "Huaimai 26", the sowing rate is 35kg/mu, and the rice variety is "Lianjing 11" in summer.
  • Machine-transplanted seedlings Row spacing 30cm, plant spacing 20cm, 5 seedlings per hole.
  • planting "one time sealing + one stem and leaf”, that is, use soil sealing herbicide and spray before seedling after sowing of wheat; in the three-leaf and one-heart stage of wheat, use stem and leaf herbicide spray.
  • the herbicides are used as "one, two kills, three supplements", that is, the closed herbicide is applied before the seedling after the rice is sowed, and the stem and leaves are sprayed for weeding at the seedling stage after sowing (weeds with 3 leaves and 1 heart) Replenishing the stem and leaf treatment agent in the late seedling stage.
  • Quantitative monitoring of weeds During the rice planting period in 2016, we conducted a survey on the amount of weeds at the seedling stage of the paddy field (basic survey, conducted when herbicides were not applied in early July 2016; weeds at the mature stage of the paddy field were surveyed in early October 2016. Afterwards.
  • the survey and monitoring of the above-ground weed communities in the seedling and maturity stages are carried out in each crop season, and the selection of follow-up weed control measures will be guided based on the survey results: the weed survey at the seedling stage of the rice field is 30 days after the rice transplantation, and the weed survey at the maturity stage It was conducted in early October (before the rice harvest); the wheat field seedling stage weed survey was conducted 30 days after sowing, and the mature stage weed survey was conducted in early May (before the wheat harvest). The soil survey was conducted after the crops (rice, wheat) were harvested. Grass seed bank survey.
  • the seed bank After the 2016 rice harvest, the seed bank has a medium size (75236 grains/m 2 ), and the 2016 wheat planting season (seeding in November 2016) will be treated with "one closure + one stem and leaf” treatment.
  • the frequency of removal in 2017 can be appropriately reduced, and in conjunction with ecological weed control measures, the use of "reduction and removal +
  • the comprehensive weed control measures of interception + net fishing are used to reduce the occurrence of weeds and the size of the seed bank: that is, after the wheat harvest in 2017, the measures of “interception” and “net fishing” will be adopted before rice planting; for use during rice planting, the implementation of One seal + one stem and leaf” treatment, after ground preparation and rake level, use the enclosed herbicide for "one kill”, and spray the stem and leaf herbicide at the seedling stage after sowing (before the weed 3 leaves and 1 heart stage) for the "second kill” .
  • the experimental site is a rice-cole continuous cropping model
  • the winter rapeseed is "Suyou 8”
  • the row spacing is 40cm
  • the plant spacing is 15cm
  • the rice variety is "Sudao No. 5"
  • the transplanting (machine transplanting) row spacing is 25cm
  • the plant spacing 24cm 5 seedlings per hole.
  • the rape field uses the "closed + stem and leaf” treatment, that is, two days before the rape transplanting after the rice harvest, the closed herbicide is used for the closed treatment, and the rapeseed is 6-8 leaf age, and the herbicide stem and leaf spray; during the rice planting period,
  • the use of herbicides is "one, two kills, three supplements", that is, the closed herbicide is applied before the seedling after sowing, and the stem and leaf herbicide is sprayed at the seedling stage after sowing (weeds with 3 leaves and 1 heart). Reapply the stem and leaf treatment agent in the later stage.
  • Quantitative monitoring of weeds Carry out a soil seed bank base survey after the 2016 rice harvest. During the rapeseed planting period in 2016, a survey of weeds in the rape field (basic survey) was conducted, and the survey was conducted in mid-November 2016 (herbicide was not applied).
  • the weed survey at the seedling stage of the rice field will be conducted 35 days after the rice transplantation, and the survey of the weeds at the maturity stage will be conducted in early October (before the rice harvest);
  • the survey of weeds at the seedling stage was 25 days after transplanting, and the survey of weeds at the mature stage was conducted in mid- May (before the rape harvest).
  • crops (rice, rape) are harvested, the soil weed seed bank is investigated.
  • the test site is a rice-winter fallow model. Rice is planted in summer and rice seedlings are machine-transplanted. The variety is "Jiangzao 361", which is planted in mid-May. Before the experiment: during the winter slack period, before the weeds become fruit, use a biocidal herbicide for a "killing" treatment; for use during rice planting, a "second sealing + one stem and leaf” treatment is performed, and the ground is prepared and flattened and then closed once , 7-10 days after planting, closed again, and treated the stems and leaves of the weeds before the 3 leaves and 1 heart stage after planting.
  • Quantitative monitoring of weeds Before the 2016 rice harvest, it was used to conduct a basic survey of the aboveground weed communities during the maturity of rice fields. After that, weed monitoring was carried out twice during the rice planting season: the weed survey at the seedling stage of the rice field was 30 days after the rice transplantation, and the weed survey at the mature stage was conducted in early October (before the rice harvest). The soil weed seed bank survey is conducted before rice transplanting every year. See Table 7 for the selection of weed monitoring and corresponding weed control measures.
  • the experimental site is a rice-green manure model, and rice is planted in summer.
  • the rice variety is "Huiliangyou 996", the row spacing is 35cm, the plant spacing is 17cm, and each hole has 4 seedlings. Sown milk vetch 15 days before the rice harvest, harvest during the blooming period of vetch bloom (late April), and return vetch back to the field after harvest; transplant rice in mid to early June.
  • the herbicide was used as "one, two kills, three supplements", that is, the closed herbicide was applied before the seedling after the rice was sowed, and sprayed at the seedling stage after sowing (weeds with 3 leaves and 1 heart) Apply the stem and leaf herbicide, and apply another stem and leaf treatment agent in the late seedling stage.
  • Quantitative monitoring of weeds At the end of June 2016 (without herbicide application), a basic survey of weeds at the seedling stage of rice fields was conducted, and the four-level visual inspection method was used for the survey. After that, weed monitoring was carried out twice during the rice planting period: the weed survey at the seedling stage of the rice field was 25 days after the rice transplantation, and the weed survey at the mature stage was conducted in early October (before the rice harvest). The soil weed seed bank survey is conducted before rice transplanting every year. See Table 8 for the selection of weed monitoring and corresponding weed control measures.
  • green plants such as ryegrass and alfalfa can also be used.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Economics (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Catching Or Destruction (AREA)

Abstract

一种杂草定量监控方法,可将该杂草定量监控方法应用于指导杂草防控措施的选择,属于植物保护领域,具体涉及一种利用苗期四级目测法、成长期样方法、成熟期七级目测法、种植前的土壤种子库调查,对不同耕作模式下的农田杂草草害进行全生育期快速、定量的监控,根据杂草草害发生的定量指标,实施针对性的控草策略,实现杂草的持续防控的目的。持续的监控可明确草害的发生规律和动态,合理实施杂草的防控措施,减少除草剂使用次数和使用量,有效控制草害的发生并显著降低种植成本,减轻环境污染。

Description

一种杂草定量监控方法 技术领域
本发明属于作物栽培管理技术领域,具体涉及一种杂草定量监控方法。
背景技术
杂草是导致农作物减产的最主要因素之一,杂草防除主要依赖于化学除草剂,随着我国农业生产的集约化和规模化发展,还将加重这种依赖性。在稻-麦(油)连作区,一季水稻会采取“一封”、“二杀”、“三补”使用三次除草剂,小麦或油菜也会采用“一封”、“二补”的两次除草剂使用,如果杂草基数很高,则“二补”需要分别使用杀禾本科杂草和杀阔叶杂草的除草剂,总共多达6次用药。然而,化学除草剂的长期大量施用会导致农田土壤、水源的严重污染,带来严重的环境危机,造成农产品的化学残留超标,有些则是环境激素,危害人类健康。另外一个技术性问题就是抗性杂草的产生,导致防除效果降低、除草剂的用量增大,构成恶性循环,最终造成除草成本的增加,降低种植者的效益。
随着人们对食品安全及环境恶化等生态问题的日益关注,杂草控制技术需要改变目前几乎完全依赖化除技术的状况,农业部也提出减少化学农药和化肥使用的“双减”目标,除草剂使用已经占到农药使用量的40%以上,因此,减少除草剂的使用量是实现双减目标的重要一环。而如何科学的进行控草措施的制定,减少除草剂的使用次数/使用量,需要利用杂草的定量监控,基于监控调查结果,将生态控草措施和化学除草措施有机结合,发展基于杂草定量监控的杂草综合防治技术,最终实现杂草的可持续治理。
CN 103477920 B一种生态除草方法公开了基于加快耗竭杂草种子库的生态控草体系研究,通过应用灌溉水流过滤及在灌水浸田期捞除漂浮杂草种子的生态控草技术对稻麦连作田杂草有良好的防除效果,并使得土壤种子库中杂草种子密度逐年持续下降。在杂草密度较高的农田,单独使用生态控草还不足以控制当季杂草的发生和危害,还需要配合化学除草剂等措施。不过,如何在稻-麦、稻-油菜、稻-绿肥以及稻-冬闲田等栽培耕作模式下进行杂草的快速定量监控,并基于定量监控进行综合控草策略的选择,快速降低杂草密度,减少除草剂使用次数和使用量还没有相关的具体技术。特别是怎样根据的田间杂草的多度、盖度等指标来快速判断杂草的优势度级别(危害度级别),并没有明确的数据指标作为依据。
发明内容
本发明的目的是为了解决农田杂草调查方法耗时繁琐,提供一种杂草定量监控方法,能够快速定量进行杂草监控调查,确定杂草危害程度的方法,为杂草防控策略的选择提供依据。
本发明是通过以下技术方案实现的:
一种杂草定量监控方法,包括以下步骤:
(1)在杂草苗期调查时,采用四级目测法,观察苗期杂草的多度和盖度,判断杂草的优势度级别,所述四级目测法具体如下:
一级:离田3米以外直腰观察可见土壤明显被绿色覆盖,表示杂草发生量高密度;
二级:站在田边或田间直腰观察可见土壤被绿色覆盖,表示杂草发生量中密度;
三级:站在田间弯腰观察可见杂草幼苗,表示杂草发生量低密度;
四级:站在田间蹲下观察才可见零星杂草幼苗,表示杂草发生量极低密度;
(2)在杂草成熟期调查时,采用七级目测法,观察杂草相对于作物的高度、多度、盖度,判断杂草的优势度级别,所述七级目测法是按杂草优势度级别从高到低依次命名的:
一级、二级:优势度级别4、5,表示杂草危害严重;
三级、四级:优势度级别2、3,表示杂草危害中等;
五级:优势度级别1,表示杂草危害轻;
六级、七级:优势度级别0、T,表示杂草危害极轻;
(3)在杂草成长期调查时,采用“W”型九点样方法:每块田以“W”型设计9个面积0.5~1m 2的样方,分别计数样方中的杂草种类和每种杂草的株数,计算杂草密度;
(4)作物收获后,采用土壤种子库钻土取样:每块田以“W”型设计9个样点,样点周边间隔1米按“梅花”型设置5点,每点钻取1个土壤样品,钻土深度为15cm,每个土样的钻土面积为0.002m 2,钻土直径为50mm,土样使用水洗法处理后,计数种子库中的杂草种子种类和数量,即为土壤杂草种子库规模。
优选地,当监控调查结果为杂草发生量高密度、或优势度4~5级、或杂草密度>200株/m 2、或土壤杂草种子库规模>100000粒/m 2时,作物种植期间沿用当地的常规化学除草方式,同时配合生态控草措施“截流”和“网捞”的使用。
优选地,当监控调查结果为杂草发生量中密度、或优势度2~3级、或杂草密度为100~200株/m 2、或土壤杂草种子库规模为50000~100000粒/m 2时,作物种植期间相较于当地的常规化学除草方式,减少一次化学除草剂的使用,同时配合生态控草措施“截流”和“网捞”的使用。
优选地,当监控调查结果为杂草发生量低密度、或优势度1级、或杂草密度为50~100株/m 2、或土壤杂草种子库规模20000~50000粒/m 2时,作物种植期间仅使用一次化学除草剂,同时配合生态控草措施“截流”和“网捞”的使用。
优选地,当监控调查结果为杂草发生量极低密度、或优势度0~T级、或杂草密度<50株/m 2、或土壤杂草种子库规模<20000粒/m 2时,作物种植期间不使用化学除草剂,只使用生态控草措施“截流”和“网捞”来维持田间杂草发生密度在较低水平。
优选地,所述作物的耕作模式为稻-麦、稻-油菜、稻-绿肥或稻-冬闲田。
本发明的有益效果如下:
本发明利用苗期四级目测法、成长期样方法、成熟期七级目测法、种植前的土壤种子库调查,对不同耕作模式下的农田杂草草害进行全生育期快速、定量的监控,根据杂草草害发生的定量指标,实施针对性的控草策略,实现杂草的持续防控的目的。持续的监控可明确草害的发生规律和动态,合理实施杂草的防控措施,减少除草剂使用次数和使用量,实现了杂草防治的定量化,在有效控制草害发生的同时显著降低种植成本,减轻环境污染。
具体实施方式
下面结合具体实施例对本发明做进一步详细说明。
一种杂草定量监控方法,是应用目视法进行不同耕作模式下农田杂草发生量快速定量监控的方法,用于指导杂草防控措施的合理选择,包括以下步骤:
(1)在杂草苗期调查时,采用四级简单目测法,主要根据土壤表面的绿色覆盖情况,评估杂草的发生程度(发生量),判断杂草的优势度级别(危害度级别)。不同的土壤杂草种子库规模决定了杂草的发生量。杂草苗期调查时,通过调查人员观察角度的变化,确认杂草的发生情况。四级目测法具体如下:①直腰观察:远看(离田块3米以外)土壤明显绿色覆盖(一片绿),则杂草高密度;②站在田间直腰观察:土壤绿色覆盖,则杂草中密度;③站在田间弯腰观察:可见杂草幼苗,则杂草低密度;④蹲下观察:才可见零星幼苗,则杂草极低密度。具体分级参见表1。
表1杂草苗期四级目测法分级标准
Figure PCTCN2020094114-appb-000001
(2)在杂草成熟期调查时,采用七级目测法,目视观察杂草相对于作物的高度、多度、盖度,判断杂草的优势度级别(危害度级别)。杂草危害度级别从高到低依次为5、4、3、2、1、T、0,共7个级别。杂草相对于作物的高度可分为上层、中层和下层三种,不同的杂草相对高度要分别对应于不同的盖度、多度来确定危害度级别的分级,具体分级参见表2。
表2杂草群落优势度七级目测分级标准
Figure PCTCN2020094114-appb-000002
Figure PCTCN2020094114-appb-000003
(3)在杂草成长期采用“W”型九点样方法调查,每个样方面积0.5m×0.5m,分别计数样方中的杂草种类和每种杂草的株数,计算杂草密度。
(4)在作物收获后(或作物播种前),调查土壤杂草种子库,每块田以“W”型设计9个样点,样点周边间隔1米按“梅花”型设置5点,每点钻取1个土壤样品,钻土深度为15cm,每个土样的钻取面积0.002m 2(钻土直径为50mm),土样使用水洗法处理后,计数种子库中的杂草种子种类和数量,即为土壤杂草种子库规模(密度)。
在对田间杂草危害的快速定量调查后,根据杂草的幼苗发生量、或成株优势度级别(危害度级别)、或杂草密度、或土壤杂草种子库规模(密度)来进行杂草防控策略的选择,控草措施的具体选择参见表3。
表3杂草的防控策略的选择
Figure PCTCN2020094114-appb-000004
杂草的四级目测法和七级目测法可以应用于稻-麦、稻-油菜、稻-绿肥或稻-冬闲田耕作模式下的杂草快速定量监控,指导杂草防控措施的选择。杂草发生量(危害)持续监控,根据监控的结果,及时调整控草措施。①在杂草发生量高密度时,采取当地的常规化学除草方式再配合生态控草措施“截流”和“网捞”,快速降低田间杂草发生量;②在杂草发生量为中密度时,可以在当地常规化除的基础上,各作物季分别减少一次化学除草剂(茎叶处理)的使用,再配合控草措施“截流”和“网捞”,有效控制杂草的发生;③在杂草发生量为低密度时,各作物季只使用一次化学除草剂(土壤封闭处理或苗期茎叶处理),再配合控草措 施“截流”和“网捞”,在降低除草剂用量(使用次数)的同时持续控制杂草的发生;④在杂草发生量为极低密度时,只需在作物季节实施控草措施“截流”和“网捞”,维持杂草发生量在低水平。
生态控草措施“截流”和“网捞”在不同种植模式下的实施:小麦/油菜/绿肥/冬闲田后,水稻种植前均进行翻耕,然后灌水。灌水期间,使用“截流”措施,即在第一次灌水前在田块的进出水口架设过滤网,过滤清除灌溉水流中的杂草种子,滤网可选择尼龙网、不锈钢丝网或铁丝网,滤网的孔径为50~150目;在灌水后浸田,泡田期间,保持田块水层10cm以上,使用“网捞”措施,即在漂浮于水面的杂草种子在被吹拂到田块角落或边缘处时,使用捞网捞出漂浮于水面的杂草种子,捞网可选择尼龙网,孔径80~120目;泡田后期,进行旋耕耙田,田块耙平后,静置并保持水层一段时间,再次进行“网捞”操作。
实施例1
实施时间:2016年-2018年。
实施地点:江苏宿迁宿城区屠园乡正阳种植专业合作社。
实施方案:该试验地为稻-麦连作模式,冬季种植小麦,小麦品种为“淮麦26”,播种量为35kg/亩,夏季种植水稻,水稻品种为“连粳11号”,移栽(机插秧)行距30cm,株距20cm,每穴5苗。试验实施前:试验田杂草常规化除。小麦种植期间“一次封闭+二次茎叶”,即在小麦播后苗前使用土壤封闭除草剂,喷雾;在小麦3叶1心期,使用茎叶除草剂喷雾处理;在小麦4叶期后至拔节前,补施1次茎叶处理除草剂。水稻种植期间,除草剂使用为“一封,二杀,三补”,即在水稻播后苗前施用封闭除草剂,播后苗期(杂草3叶1心期前)喷施茎叶除草剂,在苗后期再补施一次茎叶处理剂。
杂草定量监控:在2016年稻收后进行土壤种子库基数调查。在2016年小麦种植期间,进行麦田苗期杂草发生量调查(基础调查),调查在2016年11月中旬进行(除草剂未施用),之后每个作物季各进行一次苗期和成熟期的地上杂草群落调查监控,根据调查结果指导后续控草措施的选择:稻田苗期杂草调查在水稻移栽后30天,成熟期杂草调查在10月初(水稻收获前)进行;麦田苗期杂草调查在播种后30天,成熟期杂草调查在5月初(小麦收获前)进行。并在作物(水稻、小麦)收获后进行土壤杂草种子库调查。
调查结果显示,2016年麦田杂草发生量为中密度,即直腰观察看到少量绿色杂草覆盖行间,弯腰观察可见杂草植株,蹲下观察杂草幼苗明显。杂草幼苗数量为123株/m 2,土壤杂草种子库规模中等为85456粒/m 2。杂草监控及相应控草措施的选择具体参见表4。
表4宿迁试验田杂草监控与控草措施选择
Figure PCTCN2020094114-appb-000005
根据麦田杂草的调查结果,指导控草措施的实施。根据2016年麦田杂草发生量的调查结果,杂草发生量中密度,使用“减次化除+截流+网捞”的综合控草措施来降低杂草发生量和种子库规模,即当季麦田不再进行除草剂“封闭”处理,之后在11月底(小麦3叶期,杂草3叶期前)进行“一次茎叶”处理,在2月下旬再进行“一次茎叶”处理。根据2016年麦田杂草定量监控结果,相较于当地的常规化除,2017年可以适当减少化除次数,再配合生态控草措施,使用“减次化除+截流+网捞”的综合控草措施来降低杂草发生量和种子库规模:即在2017年麦收后,水稻种植前进行采取“截流”和“网捞”措施;水稻种植期间使用,实行“一封封闭+一次茎叶”处理,整地耙平后,使用封闭除草剂进行“一杀”,播后苗期(杂草3叶1心期前)喷施茎叶除草剂进行“二杀”。持续进行杂草监控,可以合理指导下一作物季的控草措施选择。根据2017年杂草持续监控的结果,2018年继续选择使用“减次化除+截流+网捞”的控草策略。杂草监控结果显示,2016-2018年麦田和稻田的杂草危害程度均降低,总体而言,通过杂草的定量监控,控草策略的选择更合理,在有效的进行杂草的防除的基础上减少了除草剂的使用次数(使用量)。
实施例2
实施时间:2016年-2018年。
实施地点:江苏淮安市淮阴区凌桥乡夏家湖。
实施方案:该试验地为稻-麦连作模式,冬季种植小麦,小麦品种为“淮麦26”,播种量为35kg/亩,夏季种植水稻,水稻品种为“连粳11号”,移栽(机插秧)行距30cm,株距20cm,每穴5苗。试验实施前:试验田杂草常规化除。小麦种植期间“一次封闭+一次茎叶”,即在小麦播后苗前使用土壤封闭除草剂,喷雾;在小麦3叶1心期,使用茎叶除草剂喷雾处理。水稻种植期间,除草剂使用为“一封,二杀,三补”,即在水稻播后苗前施用封闭除草剂,播后苗期(杂草3叶1心期前)喷施茎叶除草剂,在苗后期再补施一次茎叶处理剂。
杂草定量监控:在2016年水稻种植期间,进行稻田苗期杂草发生量调查(基础调查,2016年7月上旬除草剂未施用时进行;2016年10月初进行稻田成熟期杂草调查。之后每个作物季各进行一次苗期和成熟期的地上杂草群落调查监控,根据调查结果指导后续控草措施的选择:稻田苗期杂草调查在水稻移栽后30天,成熟期杂草调查在10月初(水稻收获前)进行;麦田苗期杂草调查在播种后30天,成熟期杂草调查在5月初(小麦收获前)进行。并在作物(水稻、小麦)收获后进行土壤杂草种子库调查。
调查结果显示,2016年稻田杂草发生量为中密度,杂草幼苗数量为79株/m 2,土壤 杂草种子库规模中等为75236粒/m 2。杂草监控及相应控草措施的选择具体参见表5。
表5淮安试验田杂草监控与控草措施选择
Figure PCTCN2020094114-appb-000006
Figure PCTCN2020094114-appb-000007
2016年稻收后种子库规模中等(75236粒/m 2),2016年小麦种植季(2016年11月播种)进行“一次封闭+一次茎叶”处理。根据2016年和2017年的杂草群落和种子库的定量监控结果,相较于当地的常规化除,2017年可以适当减少化除次数,再配合生态控草措施,使用“减次化除+截流+网捞”的综合控草措施来降低杂草发生量和种子库规模:即在2017年麦收后,水稻种植前进行采取“截流”和“网捞”措施;水稻种植期间使用,实行“一封封闭+一次茎叶”处理,整地耙平后,使用封闭除草剂进行“一杀”,播后苗期(杂草3叶1心期前)喷施茎叶除草剂进行“二杀”。根据2017年和2018年杂草群落和种子库的持续监控结果,稻田和麦田的杂草发生量均已较低,且种子库规模较小(<50000粒/m 2),因而2018年选择使用“一次化除+截流+网捞”的控草策略。
实施例3
实施时间:2016年-2018年。
实施地点:江苏昆山千灯镇大唐生态园。
实施方案:该试验地为稻-油菜连作模式,冬季种植油菜为“苏油8号”,行距40cm,株距15cm,水稻品种为“苏稻5号”,移栽(机插秧)行距25cm,株距24cm,每穴5苗。试验实施前:试验田杂草常规化除。油菜田使用“封闭+茎叶”处理,即在稻收后油菜移栽前2天,使用封闭除草剂进行封闭处理,油菜6~8叶龄期,使用除草剂茎叶喷雾;水稻种植期间,除草剂使用为“一封,二杀,三补”,即在水稻播后苗前施用封闭除草剂,播后苗期(杂草3叶1心期前)喷施茎叶除草剂,在苗后期再补施一次茎叶处理剂。
杂草定量监控:在2016年稻收后进行土壤种子库基数调查。在2016年油菜种植期间,进行油菜田杂草调查(基础调查),调查在2016年11月中旬进行(除草剂未施用)。之后每个作物季各进行一次苗期和成熟期地上杂草群落调查监控:稻田苗期杂草调查在水稻移栽后35天,成熟期杂草调查在10月初(水稻收获前)进行;油菜田苗期杂草调查在移栽后25天,成熟期杂草调查在5月中旬(油菜收获前)进行。并在作物(水稻、油菜)收获后进行土壤杂草种子库调查。
根据2016年稻收后土壤种子库和油菜田苗期杂草群落的调查结果,指导控草措施的实施。调查结果显示,2016年油菜田杂草发生量为高密度(245株/m 2),土壤杂草种子库规 模较大(113285粒/m 2),因而2016年油菜季要维持当地的常规化除,在下季(2017年)水稻种植期间再配合生态控草措施,使用“常规+截流+网捞”的综合控草措施来降低杂草发生量和种子库规模。杂草监控及相应控草措施的选择具体参见表6。
表6昆山试验田杂草监控与控草措施选择
Figure PCTCN2020094114-appb-000008
根据2017年5月油菜田的成熟期杂草监控结果,杂草危害度级别高为4级,因而下个油菜种植季(2017年冬)仍维持常规化除,2017年稻田杂草成熟期调查结果显示危害度级别为3级(中等),因而2018年的水稻种植季节可使用“减次化除+截流+网捞”,减少一次茎叶处理除草剂的使用。实施杂草监控,通过生态控草措施和化学除草的配合使用,2018年油菜田和稻田的杂草危害程度均下降,且减少了除草剂的使用次数。
实施例4
实施时间:2016年-2018年。
实施地点:江西吉安上高县。
实施方案:该试验地为稻-冬闲模式。夏季种植水稻,水稻机插秧,品种为“江早361”,5月中旬栽种。试验实施前:在冬闲期间,杂草结实前,使用灭生除草剂进行一次“灭生”处理;水稻种植期间使用,实行“二次封闭+一次茎叶”处理,整地耙平后进行一次封闭,栽插后7~10天,再次封闭,栽秧后在杂草3叶1心期前进行一次茎叶处理。
杂草定量监控:2016年稻收前使用进行稻田成熟期地上杂草群落基础调查。之后在水稻种植期季均进行2次杂草监控:稻田苗期杂草调查在水稻移栽后30天,成熟期杂草调查在10月初(水稻收获前)进行。每年水稻移栽前进行土壤杂草种子库调查。杂草监控及相应控草措施的选择具体参见表7。
表7江西试验田杂草监控与控草措施选择
Figure PCTCN2020094114-appb-000009
2016年成熟期杂草调查结果显示(表7),杂草危害度级别为4级,危害较为严重,因而2017年稻田化学控草措施仍然维持当地的常规化除,再配合生态控草措施“截流+网捞”,经过1年处理,2017年稻田成熟期杂草危害度中等为3级,危害较上一年降低,因而调整下一季(2018年)的稻田控草措施,减少一次“封闭处理”。杂草持续监控,根据2018年的监控结果再指导下一季(2019年)稻田控草措施的选择。通过杂草定量监控,为控草策略的选择提供了事实依据。
实施例5
实施时间:2016年-2018年。
实施地点:安徽合肥市庐江县白湖农场。
实施方案:该试验地为稻-绿肥模式,夏季种植水稻,水稻品种为“徽两优996”,行距35cm,株距17cm,每穴4苗。稻收前15天播种紫云英,在紫云英开花盛期(4月下旬)收割,收割后将紫云英翻压还田;六月中上旬移栽水稻。试验实施前:水稻种植期间,除草剂使用为“一封,二杀,三补”,即在水稻播后苗前施用封闭除草剂,播后苗期(杂草3叶1心期前)喷施茎叶除草剂,在苗后期再补施一次茎叶处理剂。
杂草定量监控:2016年6月底(除草剂不施用)进行一次稻田苗期杂草基础调查,调查使用四级目测法。之后在水稻种植期间进行2次杂草监控:稻田苗期杂草调查在水稻移栽后25天,成熟期杂草调查在10月初(水稻收获前)进行。每年水稻移栽前进行土壤杂草种子库调查。杂草监控及相应控草措施的选择具体参见表8。
表8安徽试验田杂草监控与控草措施选择
Figure PCTCN2020094114-appb-000010
2016年种子库和苗期杂草调查结果显示(表8),土壤种子库规模中等(98748粒/m 2),稻田苗期杂草发生量为中密度(123株/m 2),使用两次茎叶处理,当季稻田的成熟杂草调 查显示杂草危害度3级,因而下一季(2017年)水稻种植期间使用“截流+网捞”再配合“一次封闭+一次茎叶”。杂草监控持续进行,根据2017年的苗期和成熟期杂草定量监控结果(杂草危害中等),确认选择2018年的控草措施仍然为“截流+网捞”再配合“一次封闭+一次茎叶”。
该稻-绿肥耕作模式下,除采用紫云英还田的方式外,还可采用的绿植有黑麦草、苜蓿等。

Claims (6)

  1. 一种杂草定量监控方法,其特征在于,包括以下步骤:
    (1)在杂草苗期调查时,采用四级目测法,观察苗期杂草的多度和盖度,判断杂草的优势度级别,所述四级目测法具体如下:
    一级:离田3米以外直腰观察可见土壤明显被绿色覆盖,表示杂草发生量高密度;
    二级:站在田边或田间直腰观察可见土壤被绿色覆盖,表示杂草发生量中密度;
    三级:站在田间弯腰观察可见杂草幼苗,表示杂草发生量低密度;
    四级:站在田间蹲下观察才可见零星杂草幼苗,表示杂草发生量极低密度;
    (2)在杂草成熟期调查时,采用七级目测法,观察杂草相对于作物的高度、多度、盖度,判断杂草的优势度级别,所述七级目测法是按杂草优势度级别从高到低依次命名的:
    一级、二级:优势度级别4、5,表示杂草危害严重;
    三级、四级:优势度级别2、3,表示杂草危害中等;
    五级:优势度级别1,表示杂草危害轻;
    六级、七级:优势度级别0、T,表示杂草危害极轻;
    (3)在杂草成长期调查时,采用“W”型九点样方法:每块田以“W”型设计9个面积0.5~1m 2的样方,分别计数样方中的杂草种类和每种杂草的株数,计算杂草密度;
    (4)作物收获后,采用土壤种子库钻土取样:每块田以“W”型设计9个样点,样点周边间隔1米按“梅花”型设置5点,每点钻取1个土壤样品,钻土深度为15cm,每个土样的钻土面积为0.002m 2,钻土直径为50mm,土样使用水洗法处理后,计数种子库中的杂草种子种类和数量,即为土壤杂草种子库规模。
  2. 根据权利要求1所述的一种杂草定量监控方法,其特征在于,当监控调查结果为杂草发生量高密度、或优势度4~5级、或杂草密度>200株/m 2、或土壤杂草种子库规模>100000粒/m 2时,作物种植期间沿用当地的常规化学除草方式,同时配合生态控草措施“截流”和“网捞”的使用。
  3. 根据权利要求1所述的一种杂草定量监控方法,其特征在于,当监控调查结果为杂草发生量中密度、或优势度2~3级、或杂草密度为100~200株/m 2、或土壤杂草种子库规模为50000~100000粒/m 2时,作物种植期间相较于当地的常规化学除草方式,减少一次化学除草剂的使用,同时配合生态控草措施“截流”和“网捞”的使用。
  4. 根据权利要求1所述的一种杂草定量监控方法,其特征在于,当监控调查结果为杂草发生量低密度、或优势度1级、或杂草密度为50~100株/m 2、或土壤杂草种子库规模20000~50000粒/m 2时,作物种植期间仅使用一次化学除草剂,同时配合生态控草措施“截流”和“网捞”的使用。
  5. 根据权利要求1所述的一种杂草定量监控方法,其特征在于,当监控调查结果为杂草发生量极低密度、或优势度0~T级、或杂草密度<50株/m 2、或土壤杂草种子库规模<20000粒/m 2时,作物种植期间不使用化学除草剂,只使用生态控草措施“截流”和“网捞”来维持田间杂草发生密度在较低水平。
  6. 根据权利要求2~5任一项所述的杂草定量监控方法,其特征在于,所述作物的耕作模式为稻-麦、稻-油菜、稻-绿肥或稻-冬闲田。
PCT/CN2020/094114 2019-06-05 2020-06-03 一种杂草定量监控方法 WO2020244537A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/616,363 US20220256784A1 (en) 2019-06-05 2020-06-03 Quantitative weed monitoring method
JP2021572440A JP7393032B2 (ja) 2019-06-05 2020-06-03 雑草の定量的モニタリング方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910485266.2 2019-06-05
CN201910485266.2A CN110244001B (zh) 2019-06-05 2019-06-05 一种杂草定量监控方法

Publications (1)

Publication Number Publication Date
WO2020244537A1 true WO2020244537A1 (zh) 2020-12-10

Family

ID=67886106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094114 WO2020244537A1 (zh) 2019-06-05 2020-06-03 一种杂草定量监控方法

Country Status (4)

Country Link
US (1) US20220256784A1 (zh)
JP (1) JP7393032B2 (zh)
CN (1) CN110244001B (zh)
WO (1) WO2020244537A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110244001B (zh) * 2019-06-05 2021-10-08 南京农业大学 一种杂草定量监控方法
CN112841162A (zh) * 2019-11-27 2021-05-28 北京森迪生化科技开发有限责任公司 一种毒杂草型退化草地的修复方法
CN112529352B (zh) * 2020-09-07 2023-08-01 广东省农业科学院茶叶研究所 一种适用于广东茶园的杂草评价与分类方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040149893A1 (en) * 2001-04-26 2004-08-05 Scott Christopher C Selective plant discrimination
CN105469019A (zh) * 2014-09-05 2016-04-06 中国农业机械化科学研究院 一种逆向杂草定位方法及定位装置
CN208012577U (zh) * 2018-04-16 2018-10-26 山西省农业科学院小麦研究所 一种可拆卸便携式农田杂草盖度测量工具
CN110244001A (zh) * 2019-06-05 2019-09-17 南京农业大学 一种杂草定量监控方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322030A (en) * 1976-08-03 1978-03-01 Mikijirou Shida Weed seed collecter for paddy field and collecter used at irrigation water channel
US7772155B2 (en) * 2001-05-30 2010-08-10 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Agriculture And Agri-Food Fungal isolates and biological control compositions for the control of weeds
EP2021833A1 (en) * 2006-05-08 2009-02-11 P&B Agri-Tech Innovations Inc. Method and system for monitoring growth characteristics
CN103477920B (zh) * 2013-10-14 2015-05-27 南京农业大学 一种生态除草方法
CN105191703A (zh) * 2014-06-20 2015-12-30 沈攀攀 一种消灭杂草种子的除草方法
JP5719067B1 (ja) 2014-08-27 2015-05-13 信雅 園井 雑草発芽生育抑制材の製造方法、その製造方法により得られた雑草発芽生育抑制材および水稲の栽培方法
CN108024511A (zh) * 2015-09-11 2018-05-11 工业罗利食品股份公司 用于生产蔬菜和菌类植物的农艺方法
JP2019037198A (ja) 2017-08-28 2019-03-14 東京電力ホールディングス株式会社 植生被度判定方法および植生被度判定装置
WO2019106666A1 (en) * 2017-11-29 2019-06-06 Weedout Ltd. Compositions, kits and methods for controlling weed
CA3134436A1 (en) * 2019-03-29 2020-10-08 Basf Agro Trademarks Gmbh Targeted weed control with chemical and mechanical means

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040149893A1 (en) * 2001-04-26 2004-08-05 Scott Christopher C Selective plant discrimination
CN105469019A (zh) * 2014-09-05 2016-04-06 中国农业机械化科学研究院 一种逆向杂草定位方法及定位装置
CN208012577U (zh) * 2018-04-16 2018-10-26 山西省农业科学院小麦研究所 一种可拆卸便携式农田杂草盖度测量工具
CN110244001A (zh) * 2019-06-05 2019-09-17 南京农业大学 一种杂草定量监控方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHAO-MING ZHANG, ZHANG KAI-LONG , QIANG SHENG: "Introduction of Weed Survey Methods Applied in the Main Crop Fields of Jiangsu Province", WEED SCIENCE, vol. 32, no. 4, 31 December 2014 (2014-12-31), pages 24 - 27, XP055765619, ISSN: 1003-935x, DOI: 10.19588/j.issn.1003-935x.2014.04.006 *
ZHANG CHAO-BIN,MA BO,QIANG SHENG: "Analyses of species composition and diversity of weed seed bank of main crop fields in Jiangsu Province and its correlation with environmental factors", JOURNAL OF PLANT RESOURCES AND ENVIRONMENT, vol. 21, no. 1, 31 December 2012 (2012-12-31), pages 1 - 13, XP055765622, ISSN: 1674-7895 *
ZHANG ZHENG, DAI WEI-MIN, ZHANG CHAO-BIN, SHENG QIANG: "Investigation of the Biological Characteristics and Harmfulness of Weedy Rice(Oryza sativa L.f.spontanea) Occurred in the Regions Along the Yangtze River of Jiangsu Province", SCIENTIA AGRICULTURA SINICA, vol. 45, no. 12, 31 December 2012 (2012-12-31), pages 2856 - 2866, XP055765630, ISSN: 0578-1752, DOI: 10.3864/j.issn.0578-1752.2012.14.008 *

Also Published As

Publication number Publication date
CN110244001A (zh) 2019-09-17
US20220256784A1 (en) 2022-08-18
JP7393032B2 (ja) 2023-12-06
JP2022536301A (ja) 2022-08-15
CN110244001B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
Zhang et al. Conserving groundwater for irrigation in the North China Plain
WO2020244537A1 (zh) 一种杂草定量监控方法
Kar et al. Productivity trade-off with different water regimes and genotypes of rice under non-puddled conditions in Eastern India
CN102893794A (zh) 一种鱼腥草的繁育方法
CN101317522B (zh) 广防风野生变家栽和大面积种植的种植方法
CN102077752A (zh) 无公害五味子栽培技术
CN108886902A (zh) 一种针对山地桃园的保水固土方法
Khamidov et al. Efficiency of drip irrigation technology of cotton in saline soils of Bukhara oasis
CN109258354A (zh) 一种旱稻的种植方法
CN108739147A (zh) 一种创制抗根肿病大白菜种质的方法
CN104737766A (zh) 一种通过组织培养获得高含量白藜芦醇的虎杖人工种植方法
CN104871880A (zh) 一种机械穴直播水稻田杂草防治方法
CN111512915A (zh) 一种防治三七根结线虫病的育苗方法
Towa et al. Effects of water management and mulching on weed control and rice grain yield under water saving irrigation model
CN101473739B (zh) 吉祥草的人工种植方法
CN106376406A (zh) 一种有机富硒大米种植方法
CN107810791B (zh) 一种桃园夏季生草管理方法
Way et al. Texas rice production guidelines
Dhakad et al. Influence of seed-cum-fertilizer drill machine on the growth characters and yield of soybean (Glycine max L.) at farmer's fields.
CN107278567A (zh) 川续断野生抚育的种植方法
CN113519337A (zh) 亚热带地区幼龄澳洲坚果间种马铃薯和红薯的种植技术
CN108496717B (zh) 一种砂姜黑土区秸秆粉碎全量还田下夏玉米的栽培方法
Padmanabhan Drip irrigation technology for rice cultivation for enhancing rice productivity and reducing water consumption
CN105191717A (zh) 一种有机水稻的种植方法
CN112167257A (zh) 一种芽苞药剂处理和土壤改良综合防治山药枯萎病的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819145

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021572440

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20819145

Country of ref document: EP

Kind code of ref document: A1