WO2020244139A1 - 一种高效调控循环水养殖水体pH的石灰石用量估算方法 - Google Patents

一种高效调控循环水养殖水体pH的石灰石用量估算方法 Download PDF

Info

Publication number
WO2020244139A1
WO2020244139A1 PCT/CN2019/115494 CN2019115494W WO2020244139A1 WO 2020244139 A1 WO2020244139 A1 WO 2020244139A1 CN 2019115494 W CN2019115494 W CN 2019115494W WO 2020244139 A1 WO2020244139 A1 WO 2020244139A1
Authority
WO
WIPO (PCT)
Prior art keywords
limestone
water
circulating aquaculture
total
amount
Prior art date
Application number
PCT/CN2019/115494
Other languages
English (en)
French (fr)
Inventor
江兴龙
Original Assignee
集美大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 集美大学 filed Critical 集美大学
Publication of WO2020244139A1 publication Critical patent/WO2020244139A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K63/00Receptacles for live fish, e.g. aquaria; Terraria
    • A01K63/04Arrangements for treating water specially adapted to receptacles for live fish
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment

Definitions

  • the invention relates to a method for estimating the amount of limestone used for efficiently regulating and controlling the pH of a circulating aquaculture water body.
  • the concentration of ammonia nitrogen and nitrite nitrogen is reduced by the occurrence of nitrification reaction, because the reaction needs to consume alkalinity, Every gram of ammonia nitrogen needs to be consumed for oxidation to nitrate nitrogen 7.14g alkalinity (calculated as CaC03, the same below), in addition, through the occurrence of denitrification reaction to reduce the concentration of nitrate nitrogen, when the denitrification reaction occurs, 1g nitrate nitrogen is reduced to nitrogen, theoretically 3.57g alkalinity can be recovered Obviously, the overall result of the comprehensive reaction is still to consume a large amount of alkalinity in the water body; on the other hand, due to the high density of industrial circulating aquaculture, a large amount of CO2 gas produced by the breathing of farmed animals such as fish accumulates in the water.
  • Adjust the pH value of the water body or install a CO2 removal device such as a CO2 drip filter tower
  • a CO2 removal device such as a CO2 drip filter tower
  • the above method not only increases the investment in facilities and large operating costs, but also because of the circulating aquaculture water body and the water treatment unit water body, It has a certain pH buffering effect, which can buffer the influence of external acid-base substances on the pH value of the water body to a certain extent, resulting in a certain hysteresis in the adjustment of the pH value of the chemical reagents, and it is difficult to accurately adjust the alkalinity in time according to the real-time change of the water pH value.
  • the dosage of chemical reagents affects the control effect and increases the difficulty of operation.
  • the present invention provides a method for estimating the amount of limestone for efficiently regulating the pH of aquaculture water in circulating aquaculture.
  • the present invention is realized as follows:
  • G 2 ⁇ (70 V/1000 + 0.7272F ⁇ P-W ⁇ D ⁇ C/1000)/A ;
  • G total limestone stock weight, kg
  • V total water body of the circulating aquaculture system, m3
  • F planned total feed volume during the breeding period, kg
  • P crude protein content of the feed
  • W circulating aquaculture system
  • D breeding days, d
  • C alkalinity of supplemental water, calculated as CaCO3, mg/L
  • A CaCO3 content in limestone.
  • the circulating water aquaculture system includes a water collection tank, a water treatment system, and a culture tank connected in sequence, the culture tank is also connected to the upper part of the water collection tank, and the side of the water collection tank into which the discharged water from the culture tank is stacked vertically There is limestone.
  • the diameter of the limestone is 1-8 cm, and the density is 2.0-3.0 g/cm3.
  • the invention adopts limestone to be directly arranged in the collecting pool of the discharge water collection of the breeding pond, and the original setting unit of the system is used to carry out the automatic adjustment of the pH value of the system water body without the need to add a special water treatment unit, which simplifies The water treatment unit setting and technological process save investment costs.
  • the invention vertically accumulates limestone on the side of the sump, does not cover the entire bottom, and only occupies part of the bottom area. Because the natural limestone blocks are irregular in particle shape and the particle size is 1.0 ⁇ 8.0cm, there is a certain gap between the stones, which does not affect the water flowing through the limestone block, and there is no need to set up a supporting layer to support the limestone, saving At the same time, the vertical stacking arrangement makes the direct contact area of the water flow occupy a larger cross-sectional area of the limestone of the entire setting layer, which improves the mass transfer speed and uniform diffusion, and the wastewater (the effluent of the breeding pond) directly contacts the limestone The area and pH neutralization reaction rate is relatively large, which generally improves the speed and effect of limestone's automatic buffer adjustment and control of the pH value of the system water body, and the efficiency is high.
  • the present invention addresses the problems of high cost of pH control of water bodies in the current industrial circulating aquaculture system, complicated operation, use of limestone control but lack of a method for estimating the amount of limestone, and failure to achieve accurate estimation and supply.
  • Figure 1 is a process flow diagram of the circulating aquaculture system of the present invention.
  • Figure 2 is a side view of the structure of the sump of the present invention.
  • the present invention relates to a method for estimating the amount of limestone used to efficiently control the pH of circulating aquaculture water. It is characterized by controlling the total weight of the limestone input to regulate the pH fluctuations in the water of the circulating aquaculture system. Within the range of 1.0 unit, the empirical formula for calculating the total weight of the limestone is as follows:
  • G 2 ⁇ (70 V/1000 + 0.7272F ⁇ P-W ⁇ D ⁇ C/1000)/A ;
  • G total limestone stock weight, kg
  • V total water body of the circulating aquaculture system, m3
  • F planned total feed volume during the breeding period, kg
  • P crude protein content of the feed
  • W circulating aquaculture system
  • D breeding days, d
  • C alkalinity of supplemental water, calculated as CaCO3, mg/L
  • A CaCO3 content in limestone.
  • the circulating water aquaculture system includes a water collection tank 1, a water treatment system 2, and a culture tank 3 connected in sequence.
  • the culture tank 3 is also connected to the upper part of the water collection tank 1, and the culture tank 3 discharges water.
  • Limestone 4 is vertically stacked on the side of the collecting basin 1, and the bottom of the other side of the collecting basin 1 is connected to the water treatment system 2 through a submersible pump 11.
  • the diameter of the limestone 4 is 1-8 cm, and the density is 2.0-3.0 g/cm3.
  • Coefficient 70 Empirical value. Due to the biological filter processing unit in the water treatment system, the optimal pH value for the growth of nitrifying bacteria and denitrifying bacteria that degrade nitrogen nutrients is in the neutral or weak alkaline range. When the pH value deviates from the optimal value, the reaction rates of nitrification and denitrification gradually decrease, and alkalinity plays a buffer role.
  • the practice of circulating aquaculture water treatment shows that in order to maintain the pH value of the system water near neutral, the remaining total alkalinity in the pond should be greater than 70g/m3. Therefore, in order to maintain a stable pH near neutral, the remaining total alkalinity (calculated as CaCO3) in the circulating aquaculture system must be maintained above 70 g/m3;
  • Coefficient 1000 unit conversion is consistent, g is converted to kg;
  • 70 V/1000 Refers to the remaining total alkalinity (calculated as CaCO3) required by the circulating aquaculture system in order to maintain a stable pH near neutral, kg;
  • the factor 7.14 means that every gram of ammonia nitrogen is oxidized to nitrate nitrogen and needs to be consumed 7.14g alkalinity;
  • 3 is the recommendation of the US EPA (US Environmental Protection Agency) that reducing 1g of nitrate nitrogen can actually increase the alkalinity by 3g; 90%, an empirical value, means that about 90% of the nitrate nitrogen participates in the denitrification reaction as a substrate; 40 %, an empirical value, means that only about 40% of the nitrate nitrogen in the nitrate nitrogen substrate is reduced by denitrification.
  • the coefficient is 16%, which refers to the nitrogen content in protein
  • the coefficient is 75%, which means that only about 25% of the nitrogen in the feed consumed by the farmed animals can be assimilated and used, and about 75% is finally excreted into the culture water body.
  • the water treatment system must process and remove the nitrogen in the culture water body , Firstly, protein is decomposed and converted into ammonia nitrogen by ammoniating;
  • 0.7272F ⁇ P estimate the total increase of nitrogen in the water body caused by the feeding of feed by the farmed animals during the aquaculture period.
  • the nitrogen undergoes a series of protein ammoniation, nitrification and denitrification reactions, which will comprehensively lead to the consumption of water alkalinity (Calculated as CaCO3), kg.
  • Safety factor 2 Empirical value. Because limestone is slightly soluble in pure water when the pH is neutral, the alkalinity release is less; when the pH value in the water drops, or the CO2 concentration in the water increases, the limestone can dissolve and release more Of alkalinity. The overall alkalinity release of limestone is a slow fluctuating process. Therefore, on the basis of estimating the required amount of supplementary limestone alkalinity, the empirical safety factor is 2 after experiments. To fully satisfy the amount of limestone that should be added during the breeding period, in order to stabilize the pH of the water body near neutral.
  • Limestone is slightly soluble in pure water when the pH is generally neutral. However, under acidic conditions, with the increase of H+ concentration, the solubility increases rapidly, thereby releasing more alkalinity; the CO2 released by the life metabolism activities of farmed fish accelerates the release of alkalinity.
  • a certain amount of limestone is placed in the catch basin of the circulating aquaculture system.
  • the H+ concentration in the water increases due to the operation of the water treatment system.
  • the water The concentration of CO2 increases, as the water flows across the surface of the limestone, the limestone continues to dissolve to release the alkalinity, and timely neutralizes and buffers the drop in pH; vice versa.
  • the automatic buffer adjustment of the pH value of the system water is realized, and the fluctuation range is limited to less than 1 unit.
  • the actual feed intake was 371 kg
  • the pH value of the system aquaculture water is 6.59 ⁇ 0.49
  • the pH value fluctuates from 6.24 to 6.93.
  • the maximum drop of the pH value of the water body is ⁇ 0.78 units
  • the average drop of the pH value is ⁇ 0.43 units.
  • the accurate calculation of the present invention can save the amount of limestone; on the other hand, due to the low price of limestone (130 yuan/ton), it is much cheaper than the current alkaline chemical reagents.
  • the price of industrial sodium carbonate is 4000 yuan/ton.
  • the price of NaHCO3 is 2,000 yuan/ton. It is economically feasible.
  • G total weight of limestone stock, kg
  • V total water body of circulating aquaculture system, m3
  • F planned total feed volume during aquaculture, kg
  • P crude protein content of feed
  • W circulating aquaculture
  • D breeding days, d
  • C the alkalinity of supplemental water (calculated as CaCO3), mg/L
  • A the content of CaCO3 in limestone.
  • the existing technology is generally to build a system water pH adjustment pool in the water treatment system for setting limestone, while the present invention uses limestone to be directly set in the collection pool at the discharge water collection point of the aquaculture pond, using the original system Set up the unit-the water collection tank to carry out the automatic adjustment of the pH value of the system water body, without the need to build a special water treatment unit-the system water body pH value adjustment pool, therefore, the water treatment unit setting and process flow are simplified, saving Investment costs.
  • the existing setting generally adopts the setting method similar to the traditional sand filter layer, that is, the water inlet is set in the upper part of the pool, and the limestone accumulation layer is set in a horizontal and horizontal level parallel to the bottom of the pool, and must be near the pool.
  • a supporting layer supporting limestone is set at the bottom, and a water outlet is set below the supporting layer. Since the area of direct contact with water occupies a small cross-sectional area of limestone in the entire installation layer, it affects the mass transfer rate and uniform diffusion of mass transfer.
  • the direct contact area of wastewater and limestone and the pH neutralization reaction rate are relatively small, which generally causes limestone to affect the system water body.
  • the speed and effect of automatic buffer adjustment of pH value are slow, and the efficiency is reduced.
  • the invention adopts the vertical accumulation of limestone near the side of the water inlet in the collecting basin, which does not cover the entire bottom but only occupies a part of the bottom area. Because the natural limestone blocks are irregular in particle shape and the particle size is 1.0 ⁇ 8.0cm, there is a certain gap between the stones, which does not affect the water flowing through the limestone block, and there is no need to set up a supporting layer to support the limestone, saving At the same time, the vertical stacking arrangement makes the direct contact area of the water flow occupy a larger cross-sectional area of the limestone of the entire setting layer, which improves the mass transfer speed and uniform diffusion, and the wastewater (the effluent of the breeding pond) directly contacts the limestone The area and pH neutralization reaction rate is relatively large, which generally improves the speed and effect of limestone's automatic buffer adjustment and control of the pH value of the system water body, and the efficiency is high.
  • the present invention addresses the problems of high cost of pH adjustment of the water body in the current industrial circulating aquaculture system, complicated operation, use of limestone adjustment but lack of limestone input quantity estimation method, and failure to achieve accurate estimation and distribution. Provides an efficient method for estimating the amount of limestone used to control the pH of circulating aquaculture water.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Farming Of Fish And Shellfish (AREA)

Abstract

一种高效调控循环水养殖水体pH的石灰石(4)用量估算方法,通过控制石灰石(4)投放量总重量来调控循环水养殖系统水体中的pH的波动稳定在中性1.0个单位范围内,所述石灰石(4)投放总重量的计算经验公式如下:G=2×(70V/1000+0.7272F×P-W×D×C/1000)/A;式中,G:石灰石(4)投放总重量,kg;V:循环水养殖系统总水体,m 3;F:养殖期间计划的总投饲料量,kg;P:饲料的粗蛋白含量;W:循环水养殖系统日均补充水量,m 3;D:养殖天数,d;C:补充水的碱度,以CaCO 3计,mg/L;A:石灰石(4)中CaCO 3的含量。具有用量计算结果精准,节省投资,自动调控水体pH,运行不耗费能源,以及操作简便,运行成本低的优点。

Description

一种高效调控循环水养殖水体pH的石灰石用量估算方法 技术领域
本发明涉及一种高效调控循环水养殖水体pH的石灰石用量估算方法。
背景技术
在工厂化循环水养殖系统中,由于水处理系统中通常配置生物滤池或生物膜反应池处理单元,通过发生硝化反应从而降低氨氮和亚硝酸盐氮的浓度,由于该反应需要消耗碱度,每克氨氮氧化成硝态氮需消耗 7.14g 碱度(以CaC03计,下同),此外,通过发生反硝化反应从而降低硝酸盐氮的浓度,发生反硝化反应时,还原 1g 硝态氮成氮气,理论上可回收3.57g 碱度,显然,综合反应的结果总体上仍然是消耗水体中的碱度较大量;另一方面,由于工厂化循环水养殖的高密度,养殖动物如鱼类呼吸产生的大量CO2气体在水中的积累,也导致水体 pH 值的下降。上述的结果都导致养殖系统水体中的 pH 值,随着养殖过程的持续,pH 值逐渐下降,如果不采取一定的pH调控措施,甚至可发生水体pH 值降低至4.5以下的情况,将使养殖动物发生强烈应激,严重影响生长和成活率。因此,一般当前采用的应对措施是使用溶药桶和蠕动泵等设备设施,每天往工厂化循环水养殖系统中投入碱性化学试剂(如NaHCO3、Na2CO3、CaO、Ca(OH)2等)的方式进行调节水体pH值或同时再设置CO2去除装置(如CO2滴滤塔),然而,上述做法,不仅增加了设施投资和较大的运行成本,并且由于循环水养殖水体及水处理单元水体,具有一定的pH缓冲作用,能够一定程度上缓冲外来酸碱物质对水体pH值的影响,导致pH值的化学试剂调控具有一定的滞后性,难以根据水体pH值的实时变化而及时精确调整碱性化学试剂投加量,影响了调控的效果和增加了操作的难度。应用石灰石投置于循环水养殖系统的养殖出水汇集池中或水处理系统单元中,利用石灰石释放碱度可中和酸度,稳定水体pH值,但如何较准确地估算养殖周期内石灰石的需要用量,实现一次性精准投入系统中运行,对高效应用和发挥石灰石调控稳定水体pH值,降低生产成本,具有重要意义。
技术问题
针对当前工厂化循环水养殖系统中存在的水体pH值调控成本较高、操作较复杂、使用石灰石调控但缺乏石灰石投放量估算方法,未能实现精准估算和投放的问题。本发明提供了一种高效调控循环水养殖水体pH的石灰石用量估算方法,通过建立的石灰石用量计算经验公式,估算出需要的石灰石投放量,精准调控循环水养殖期间养殖水体pH值的稳定,具有用量计算结果精准,节省投资,自动调控水体pH,运行不耗费能源,以及操作简便,运行成本低的优点。
技术解决方案
本发明是这样实现的:
一种高效调控循环水养殖水体pH的石灰石用量估算方法,通过控制石灰石投放量总重量来调控循环水养殖系统水体中的pH的波动稳定在中性1.0个单位范围内,所述石灰石投放总重量的计算经验公式如下:
G = 2×(70 V/1000 + 0.7272F×P - W×D ×C/1000)/A     ;
式中,G:石灰石投放总重量,kg;V:循环水养殖系统总水体,m3;F: 养殖期间计划的总投饲料量,kg;P:饲料的粗蛋白含量;W:循环水养殖系统日均补充水量,m3;D:养殖天数,d;C:补充水的碱度,以CaCO3计, mg/L;A:石灰石中CaCO3的含量。
进一步地,所述循环水养殖系统包括依次相连的集水池、水处理系统以及养殖池,所述养殖池还连接至集水池上部,所述养殖池排出水汇入的集水池侧部竖向堆放有石灰石。
进一步地,所述石灰石的直径为1-8cm,密度为2.0~3.0g/cm3。
有益效果
本发明具有如下优点:
本发明采用石灰石直接设置在养殖池排出水汇集处的集水池中,利用系统的原有设置单元,开展对系统水体pH值的自动调节,而不需要增加建设一个专门的水处理单元,简化了水处理单元设置和工艺流程,节约了投资成本。
本发明在集水池侧面竖向堆积石灰石,不覆盖全部底部,仅占部分的底部面积。由于采用的天然石灰石块粒形不规则且粒径在1.0~8.0cm,因此石块之间具有一定的间隙,不影响水流流经石灰石块后的出水,无需设置支撑石灰石的承托层,节约了建设成本;同时,竖向堆积设置使水流直接接触的面积占整个设置层石灰石横截面积较大,提高了传质速度和传质均匀扩散,废水(养殖池的出水)与石灰石的直接接触面积和酸碱度中和反应速率较大,总体提高了石灰石对系统水体pH值的自动缓冲调控速率和效果,效率较高。
总之,本发明针对当前工厂化循环水养殖系统中存在的水体pH值调控成本较高、操作较复杂、使用石灰石调控但缺乏石灰石投放量估算方法,未能实现精准估算和投放的问题,提供了一种高效调控循环水养殖水体pH的石灰石用量估算方法,其通过建立的石灰石用量计算经验公式,估算出需要的石灰石投放量,从而实现在工厂化循环水养殖的一个生产周期(一般4~12个月)内,仅需按计算出的石灰石用量,一次性投置于循环水养殖系统集水池中,可自动调控养殖期间循环水养殖系统水体pH值的稳定,具有用量精准,节省投资,调控运行不耗费能源,操作简便,运行成本低的优点。
附图说明
下面参照附图结合实施例对本发明作进一步的说明。
图1为本发明的循环水养殖系统工艺流程图。
图2为本发明的集水池侧视结构图。
本发明的实施方式
参阅图1-2,本发明涉及一种高效调控循环水养殖水体pH的石灰石用量估算方法,其特征在于:通过控制石灰石投放量总重量来调控循环水养殖系统水体中的pH的波动稳定在中性1.0个单位范围内,所述石灰石投放总重量的计算经验公式如下:
G = 2×(70 V/1000 + 0.7272F×P - W×D ×C/1000)/A     ;
式中,G:石灰石投放总重量,kg;V:循环水养殖系统总水体,m3;F: 养殖期间计划的总投饲料量,kg;P:饲料的粗蛋白含量;W:循环水养殖系统日均补充水量,m3;D:养殖天数,d;C:补充水的碱度,以CaCO3计, mg/L;A:石灰石中CaCO3的含量。
重点参阅图1-2,所述循环水养殖系统包括依次相连的集水池1、水处理系统2以及养殖池3,所述养殖池3还连接至集水池1上部,所述养殖池3排出水汇入的集水池1侧部竖向堆放有石灰石4,所述集水池1的另一侧底部通过一潜水泵11连接至水处理系统2。
所述石灰石4的直径为1-8cm,密度为2.0~3.0g/cm3。
本发明公式的构建原理如下:
1、系数70:经验值,由于水处理系统中的生物滤池处理单元,其降解氮营养盐所依赖的硝化细菌和反硝化菌生长的最佳pH值在中性或弱碱性范围,当 pH 值偏离最佳值时,硝化和反硝化反应速度均逐渐下降,碱度起着缓冲作用。循环水养殖水处理实践表明,为使系统水体的pH值维持在中性附近,池中剩余总碱度宜大于 70g/m3。因此,为维持pH稳定在中性附近,循环水养殖系统水中剩余总碱度(以CaCO3计)必须保持70 g/m3以上;
系数1000:单位换算一致,g换算为kg;
70 V/1000:指为维持pH稳定在中性附近,循环水养殖系统水中需要的剩余总碱度(以CaCO3计),kg;
2、系数0.7272 =(7.14-1.08)× 75% × 16%;
其中,系数7.14,指每克氨氮被氧化成硝态氮需消耗 7.14g 碱度;
系数1.08 = 3 × 90% × 40%;
其中,3 为美国 EPA(美国环境保护署)推荐的还原1g硝态氮实际可增加 3g碱度;90%,经验值,指约90%的硝态氮参与作为反硝化反应的底物;40%,经验值,指硝态氮底物中仅约40%的硝态氮经反硝化作用被还原。
系数16%,指蛋白质中的氮含量;
系数75%,指养殖动物所摄食饲料中的氮仅约25%能被同化利用,而约75%最后都排出体外进入养殖水体中,水处理系统则必须对养殖水体中的氮,进行处理去除,首先蛋白质经氨化作用而分解转化为氨氮;
0.7272F×P,估算养殖期间,养殖动物摄食饲料而将导致的水体中总增加的氮,氮经一系列的蛋白质氨化反应、硝化反应和反硝化反应等,综合导致水体碱度消耗的量(以CaCO3计),kg。
3、W×D ×C/1000,估算养殖期间,循环水养殖系统由于补充水而能增加的碱度(以CaCO3计),kg。
4、安全系数2:经验值,由于石灰石在pH中性的情况下,微溶解于纯水,碱度释放少;水中pH值下降,或水中的CO2浓度增大,石灰石可溶解释放出更多的碱度。总体石灰石的碱度释放是个缓慢波动过程,因此,在估算补充石灰石碱度需要量的基础上,经试验,得出经验安全系数为2。以充分满足养殖期间,为调节水体pH稳定在中性附近,应当投加的石灰石量。
石灰石在一般pH中性的情况下,微溶解于纯水中。但在酸性条件下,随着H+浓度的增大,溶解度迅速增大,从而释放出更多的碱度;养殖鱼类生命代谢活动释放出的CO2,加速了其碱度的释放。
CaCO3 +  H+ = Ca2+ + HCO3-     ;
CaCO3 + CO2 + H2O = Ca2+ + 2HCO3-   ;
本发明通过把一定量的石灰石置于循环水养殖系统的集水池中,循环水养殖期间,由于水处理系统的运行,水中H+浓度增大,同时由于养殖鱼类的呼吸及生命代谢活动,水中的CO2浓度增大,随着水流流经石灰石表面,石灰石不断溶解释放出碱度,及时中和缓冲pH值的下降;反之亦然。实现了对系统水体pH值的自动缓冲调控,限制了其波动范围小于1个单位。
以下结合具体实施例对本发明作进一步的说明。
实施例:
在工厂化循环水养殖系统(总水体20m3),开展南美洲鳗鲡为期150天的养殖,计划的养殖投饲料量360公斤(饲料粗蛋白≥47%),系统水源水(补充水)的pH值7.02,碱度(以CaC03计, 40mg/L),系统日均补充水量2m3。依据本发明的石灰石所需投放量经验公式计算结果,需要投放250公斤石灰石(CaC03的含量≥90%)。因此在养殖开始时一次性在该系统的集水池中投放了250公斤石灰石(CaC03的含量≥90%,规格直径3.0~6.0cm),实施结果,150天养殖期间,实际投食饲料量371公斤,系统养殖水体的pH值为6.59±0.49,pH值波动范围6.24~6.93,与系统补充水pH值比较,水体pH值最大下降幅度≤0.78个单位,平均pH值下降幅度≤0.43个单位。实现了工厂化循环水养殖系统水体pH值的基本稳定。经本发明精准计算可节省石灰石的用量;另一方面,由于石灰石价格低廉(130元/吨),较当前使用的碱性化学药品试剂便宜很多,如,工业碳酸钠价格4000元/吨,工业NaHCO3价格2000元/吨。具有经济可行性。
其他实施例数据详见表1:
表1. 石灰石投放量与养殖水体pH的调控稳定效果
Figure 449001dest_path_image002
表1中:G:石灰石投放总重量,kg;V:循环水养殖系统总水体,m3;F: 养殖期间计划的总投饲料量,kg;P:饲料的粗蛋白含量;W:循环水养殖系统日均补充水量,m3;D:养殖天数,d;C:补充水的碱度(以CaCO3计), mg/L;A:石灰石中CaCO3的含量。
本发明的优点如下:
1.工艺环节设置不同,本发明优化了工艺:
现有的工艺一般是在水处理系统中专门建造一个系统水体pH值调节池用于设置石灰石,而本发明则采用石灰石直接设置在养殖池排出水汇集处的集水池中,利用系统的原有设置单元——集水池,开展对系统水体pH值的自动调节,而不需要增加建设一个专门的水处理单元——系统水体pH值调节池,因此,简化了水处理单元设置和工艺流程,节约了投资成本。
2. 石灰石具体设置的不同,本发明提高了调控效率:
以水流下行设置为例,现有的设置一般采用类似传统砂滤层的设置方式,即在池的上部设置进水口,石灰石堆积层采用与池的底部平行横向的层级设置,并必须在近池底部之处设置支撑石灰石的承托层,再在承托层之下设置出水口。由于水流直接接触的面积占整个设置层石灰石横截面积较小,影响了传质速度和传质均匀扩散,废水与石灰石的直接接触面积和酸碱度中和反应速率较小,总体导致石灰石对系统水体pH值的自动缓冲调控速率和效果较慢,效率降低。本发明采用在集水池中靠近进水口处侧面的竖向堆积石灰石,不覆盖全部底部,仅占部分的底部面积。由于采用的天然石灰石块粒形不规则且粒径在1.0~8.0cm,因此石块之间具有一定的间隙,不影响水流流经石灰石块后的出水,无需设置支撑石灰石的承托层,节约了建设成本;同时,竖向堆积设置使水流直接接触的面积占整个设置层石灰石横截面积较大,提高了传质速度和传质均匀扩散,废水(养殖池的出水)与石灰石的直接接触面积和酸碱度中和反应速率较大,总体提高了石灰石对系统水体pH值的自动缓冲调控速率和效果,效率较高。
3、总之,本发明针对当前工厂化循环水养殖系统中存在的水体pH值调控成本较高、操作较复杂、使用石灰石调控但缺乏石灰石投放量估算方法,未能实现精准估算和投放的问题,提供了一种高效调控循环水养殖水体pH的石灰石用量估算方法,其通过建立的石灰石用量计算经验公式,估算出需要的石灰石投放量,从而实现在工厂化循环水养殖的一个生产周期(一般4~12个月)内,仅需按计算出的石灰石用量,一次性投置于循环水养殖系统集水池中,可自动调控养殖期间循环水养殖系统水体pH值的稳定,具有用量精准,节省投资,调控运行不耗费能源,操作简便,运行成本低的优点。
虽然以上描述了本发明的具体实施方式,但是熟悉本技术领域的技术人员应当理解,我们所描述的具体的实施例只是说明性的,而不是用于对本发明的范围的限定,熟悉本领域的技术人员在依照本发明的精神所作的等效的修饰以及变化,都应当涵盖在本发明的权利要求所保护的范围内。

Claims (3)

  1. 一种高效调控循环水养殖水体pH的石灰石用量估算方法,其特征在于:通过控制石灰石投放量总重量来调控循环水养殖系统水体中的pH的波动稳定在中性1.0个单位范围内,所述石灰石投放总重量的计算经验公式如下:
    G = 2×(70 V/1000 + 0.7272F×P - W×D ×C/1000)/A     ;
    式中,G:石灰石投放总重量,kg;V:循环水养殖系统总水体,m 3;F: 养殖期间计划的总投饲料量,kg;P:饲料的粗蛋白含量;W:循环水养殖系统日均补充水量,m 3;D:养殖天数,d;C:补充水的碱度,以CaCO 3计, mg/L;A:石灰石中CaCO 3的含量。
  2. 根据权利要求1所述的一种高效调控循环水养殖水体pH的石灰石用量估算方法,其特征在于:所述循环水养殖系统包括依次相连的集水池、水处理系统以及养殖池,所述养殖池还连接至集水池上部,所述养殖池排出水汇入的集水池侧部竖向堆放有石灰石。
  3. 根据权利要求1或2所述的一种高效调控循环水养殖水体pH的石灰石用量估算方法,其特征在于:所述石灰石的直径为1-8cm,密度为2.0~3.0g/cm 3
PCT/CN2019/115494 2019-06-04 2019-11-05 一种高效调控循环水养殖水体pH的石灰石用量估算方法 WO2020244139A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910481484.9A CN110140687B (zh) 2019-06-04 2019-06-04 一种高效调控循环水养殖水体pH的石灰石用量估算方法
CN201910481484.9 2019-06-04

Publications (1)

Publication Number Publication Date
WO2020244139A1 true WO2020244139A1 (zh) 2020-12-10

Family

ID=67590402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115494 WO2020244139A1 (zh) 2019-06-04 2019-11-05 一种高效调控循环水养殖水体pH的石灰石用量估算方法

Country Status (2)

Country Link
CN (1) CN110140687B (zh)
WO (1) WO2020244139A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110140687B (zh) * 2019-06-04 2020-08-11 集美大学 一种高效调控循环水养殖水体pH的石灰石用量估算方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206255956U (zh) * 2016-10-29 2017-06-16 广西壮族自治区水产技术推广总站 一种龟类养殖废水循环使用处理池
CN110140687A (zh) * 2019-06-04 2019-08-20 集美大学 一种高效调控循环水养殖水体pH的石灰石用量估算方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW593161B (en) * 2001-08-13 2004-06-21 Toray Industries System for producing purified water
CN102464426B (zh) * 2010-11-15 2014-04-30 北京源汇远科技有限公司 一种城市污水厂化学除磷剂智能投加控制方法
CN102084844B (zh) * 2010-11-23 2012-05-30 中国水产科学研究院渔业机械仪器研究所 一种养殖池的自动加碱方法
CN107840434B (zh) * 2017-11-10 2023-07-28 岳京松 实验室软硬水自动配制方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206255956U (zh) * 2016-10-29 2017-06-16 广西壮族自治区水产技术推广总站 一种龟类养殖废水循环使用处理池
CN110140687A (zh) * 2019-06-04 2019-08-20 集美大学 一种高效调控循环水养殖水体pH的石灰石用量估算方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
FERNANDES PAULO MIRA; PEDERSEN LARS-FLEMMING; PEDERSEN PER BOVBJERG: "Influence of fixed and moving bed biofilters on micro particle dynamics in a recirculating aquaculture system", AQUACULTURAL ENGENEERING, ELSEVIER SCIENCE PUBLISHERS LTD, AMSTERDAM NL, vol. 78, 1 August 2016 (2016-08-01), Amsterdam NL, pages 32 - 41, XP085167421, ISSN: 0144-8609, DOI: 10.1016/j.aquaeng.2016.09.002 *
GUO-ZHI LUO, CHEN XIAO-QING,TAN HONG-XIN: "Changes and control of alkalinity in the process of utilize recycling aquaculture water", FRESHWATER FISHERIES, vol. 48, no. 2, 1 March 2018 (2018-03-01), pages 100 - 106, XP055766175, ISSN: 1000-6907, DOI: 10.13721/j.cnki.dsyy.2018.02.015 *
S. ADHIKARI, GHOSH L., AYYAPPAN S.: "Combined effects of water pH and alkalinity on the accumulation of lead, cadmium and chromium to Labeo rohita (Hamilton)", INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, CENTER FOR ENVIRONMENT AND ENERGY RESEARCH AND STUDIES (C E E R S), IR, vol. 3, no. 3, 25 June 2006 (2006-06-25), IR, pages 289 - 296, XP055766102, ISSN: 1735-1472, DOI: 10.1007/BF03325936 *
YANGXUE HAN: "Effects of different usages of organic animal manure and lime on water quality and growth of tilapia in ponds", SHANGHAI OCEAN UNIVERSITY - (CHINA MASTER’S THESES FULL-TEXT DATABASE), 1 January 2017 (2017-01-01), pages Frontpg. - 34, XP055766093, [retrieved on 20210118] *
YONGMEI HU: "The research of pH regulation methods 专 业: in industrialized recirculating aquaculture water", CHINA MASTER’S THESES FULL-TEXT DATABASE, 4 January 2012 (2012-01-04), pages Frontpg. - 102, XP055766151 *
ZHU MING-RUI, GUANG-BIN CAO, SHU-YI JIANG, SHI-CHENG HAN, HEILONGJIANG: "Automatic control system of pH value in the recirculating aquaculture", JOURNAL OF FISHERIES OF CHINA, vol. 31, no. 3, 1 May 2007 (2007-05-01), pages 335 - 342, XP055766127, ISSN: 1000-0615 *
陈群玉等 (CHEN, QUNYU ET AL.): "过滤中和法 (Non-official translation: Filtering Neutralization)", 水污染控制工程 (WATER POLLUTION CONTROL PROJECT), 28 February 2018 (2018-02-28), DOI: 20200215094025A *

Also Published As

Publication number Publication date
CN110140687B (zh) 2020-08-11
CN110140687A (zh) 2019-08-20

Similar Documents

Publication Publication Date Title
US5288407A (en) Denitrification system
CN101759333B (zh) 生物脱氮工艺稳定维持污泥微膨胀实现节能的方法
US7294255B2 (en) Nitrification system and method
CN101606506A (zh) 集约化的循环水养殖系统
JP5685504B2 (ja) 水処理システムおよびその曝気風量制御方法
CN109836025A (zh) 一种污水处理精确排泥系统及方法
CN113023881A (zh) 一种基于mabr工艺的曝气量与内回流量优化控制系统及方法
CN108046520B (zh) 一种低成本低刺激生物絮凝水产养殖方法
CN104961229A (zh) 一种硝化细菌微生物膜及其制备方法
CN113772900A (zh) 一种海水养殖尾水处理高效脱氮除磷工艺系统
JP5149717B2 (ja) 脱窒処理方法及び脱窒処理装置
WO2020244139A1 (zh) 一种高效调控循环水养殖水体pH的石灰石用量估算方法
CN109455811B (zh) 接触氧化型mbr装置及其部分硝化快速启动与运行方法
CN111072140A (zh) 一种基于缺氧池反硝化过程的碳源投加量在线计算方法
CN101633532B (zh) 脱氮处理方法以及脱氮处理装置
KR101044826B1 (ko) 막 여과 생물반응조의 고도처리 효율을 높이는 운전방법 및 그 방법을 이용한 고도처리장치
JP4685224B2 (ja) 排水処理方法および排水処理装置
JP2015192938A (ja) 有機性排水の生物処理方法及び装置
CN102381763A (zh) 一种利用双氧生物填料处理氨氮废水的装置和方法
CN102503045B (zh) 一种生物膜污水处理方法
TW202202454A (zh) 好氧性生物處理方法及裝置
CN208657690U (zh) 一种循环水养鱼装置及其系统
KR200361743Y1 (ko) pH 조절 시스템을 구비한 순환 여과식 양식 장치
JP6202069B2 (ja) 有機性排水の生物処理方法
CN113003712B (zh) 一种强化短程硝化污泥颗粒化和沉降性能的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931649

Country of ref document: EP

Kind code of ref document: A1