WO2020243951A1 - 电网故障后供电网络毫秒级快速重构方法及系统 - Google Patents

电网故障后供电网络毫秒级快速重构方法及系统 Download PDF

Info

Publication number
WO2020243951A1
WO2020243951A1 PCT/CN2019/090354 CN2019090354W WO2020243951A1 WO 2020243951 A1 WO2020243951 A1 WO 2020243951A1 CN 2019090354 W CN2019090354 W CN 2019090354W WO 2020243951 A1 WO2020243951 A1 WO 2020243951A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit breaker
network
rapid
power supply
reconfiguration
Prior art date
Application number
PCT/CN2019/090354
Other languages
English (en)
French (fr)
Inventor
段刚
娄霄楠
张琦
张玉含
刘念
郑亮亮
Original Assignee
北京四方继保自动化股份有限公司
北京四方继保工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京四方继保自动化股份有限公司, 北京四方继保工程技术有限公司 filed Critical 北京四方继保自动化股份有限公司
Priority to PCT/CN2019/090354 priority Critical patent/WO2020243951A1/zh
Priority to US16/945,611 priority patent/US11355961B2/en
Publication of WO2020243951A1 publication Critical patent/WO2020243951A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/007Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources
    • H02J3/0073Arrangements for selectively connecting the load or loads to one or several among a plurality of power lines or power sources for providing alternative feeding paths between load and source when the main path fails, e.g. transformers, busbars
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00002Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00004Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by the power network being locally controlled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00016Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus
    • H02J13/00017Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using a wired telecommunication network or a data transmission bus using optical fiber
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00032Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for
    • H02J13/00036Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers
    • H02J13/0004Systems characterised by the controlled or operated power network elements or equipment, the power network elements or equipment not otherwise provided for the elements or equipment being or involving switches, relays or circuit breakers involved in a protection system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/16Electric power substations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/30State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/124Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using wired telecommunication networks or data transmission busses

Definitions

  • the present disclosure relates to the technical field of power grid control, and in particular to a method and system for rapid reconfiguration of a power supply network in milliseconds after a power grid failure.
  • an isolated island of the entire regional power grid or part of the regional power grid may be formed.
  • the lost power accounted for a large amount, and there is a large power difference between the power generation and the load in the island, it is necessary to take measures to cut the machine or the load to achieve the frequency stability of the island grid, which not only has a large impact on the production and power supply, but also temporarily stabilizes It is still very difficult for island power grids to maintain continuous and stable operation in the future. Therefore, after the power grid becomes islanded due to a fault, quickly reconstructing a new power supply path, restoring the connectivity and integrity of the power grid, and forming the largest possible power grid is the most direct measure to ensure continuous and stable power supply.
  • the existing fast power switching device usually exits within 10ms after the switch is turned off, and completes power switching within 100ms.
  • the existing fast power switching device has the following disadvantages:
  • the existing quick-cutting device can only obtain the information of the local bus or incoming line, and cannot consider the restoration of the power supply path from the perspective of the entire network. In particular, it cannot perform multi-point switching based on the remote fault information, thus limiting the power supply
  • the optional channel for path restoration reduces the probability of restoring grid connectivity and integrity.
  • the power supply selected on site may have insufficient capacity. At this time, more power supply capacity needs to be selected for support from a distance.
  • a single power supply path may have an overload problem, and multiple power supply paths are required at this time.
  • the existing methods called grid network reconstruction methods or grid self-healing methods are all based on conventional switching operations. After a grid fault causes the load to be cut off and shut down, the power supply is restored; therefore, this type of solution
  • the method cannot meet the requirement of power supply restoration within 150ms after the fault is removed, and cannot achieve the purpose of restoring power supply without stopping the load such as the motor, and therefore does not belong to the same scope as the problem solved by the present disclosure.
  • the present disclosure proposes a method and system for rapid reconfiguration of a power supply network in milliseconds after a grid failure.
  • a method for rapid reconfiguration of a power supply network in milliseconds after a grid failure includes the following characteristic steps:
  • Step 1 The fast reconfiguration master station collects all the status information of the monitored power grid from the fast reconfiguration substation located in the substation or power plant, and compares it with the built-in set of possible fault features to determine whether the monitored power grid is When a circuit breaker is opened or a fault that will cause the circuit breaker to open occurs, real-time detection of the grid disabling fault is carried out;
  • Step 2 When the rapid reconstruction master station detects the occurrence of a preset fault that may cause the circuit breaker to open, it sends the closing pre-start to the rapid reconstruction substation where the multiple recovery networked circuit breakers corresponding to the first type of circuit breaker are located Signal, among them, the first type of circuit breaker is the breaker that may be opened;
  • Step 3 If the rapid reconstruction master station detects that the external network has a disassembly fault and has crashed, it will disconnect the second type of circuit breaker, and at the same time restore the rapid reconstruction of multiple networked circuit breakers corresponding to the second type of circuit breaker
  • the sub-station sends a check synchronization closing signal, where the second type of circuit breaker is an external network connection circuit breaker;
  • Step 4 The rapid reconstruction sub-station that received the pre-start signal for closing recognizes the time of fault clearing in real time according to the on-site measurement information. When the fault is found to be cleared or is being cleared, it will correspond to the first type of circuit breaker immediately or after a specified time The restored networked circuit breaker sends a check synchronization closing signal;
  • Step 5 Quickly reconstruct the main station to monitor the breaking signal of the first type of circuit breaker in the entire network in real time.
  • a certain type of circuit breaker is found to be opened or is being opened, immediately or after a specified time
  • Multiple restored networked circuit breakers corresponding to class circuit breakers send back-up inspection and synchronous closing signals;
  • Step 6 Check synchronization and lockout execution of synchronous closing: check whether both sides of the closed and restored networked circuit breaker meet the conditions of synchronous closing and whether there is no fault lockout in the area, and there is no backup power failure lockout, if both If the requirements are met, it will send a closing execution signal to the restored networked circuit breaker;
  • Step 7 After the grid is restored to interconnection, disconnect the over-current restoration network circuit breaker or limit the current;
  • Step 8 Untie the existing high and low voltage electromagnetic ring network
  • Step 9 Reset of the power supply network rapid reconfiguration system: 200ms after step 8 is completed, the devices of the power supply network rapid reconfiguration system are reset, and return to step 1 to monitor the next power grid disassembly event.
  • a system for rapid reconfiguration of a power supply network in milliseconds after a grid failure includes a rapid reconfiguration of a main station and a rapid reconfiguration of substations, wherein the main station and the substation are based on The power system safety and stability control hardware devices and platforms required by the national and industrial standards are implemented.
  • the hardware performance of the master station and the sub-station meets the following conditions: the sub-station power frequency recording data sampling rate is not less than 1200 Hz, and the sub-station measurement data is calculated and processed
  • the cycle is no more than 0.83ms
  • the information transmission cycle and command scan cycle of the master station and the slave station are no more than 1.67ms
  • the communication between the devices in the system adopts a 2M data private network
  • the master station and the slave station adopt hard wiring to collect data from the protection CT and PT. Measurement data such as voltage and current.
  • Multi-point closing is also beneficial to take advantage of the different bus voltage change processes, resulting in the characteristics of different circuit breaker closing conditions during the same period, which improves the success rate of grid restoration interconnection; multi-point closing also reduces the overcurrent of the newly connected power supply transfer path Possibility.
  • the master station When the master station detects the actual occurrence of a potential fault that will cause the circuit breaker to open, it sends a pre-start signal to the relevant restored networked circuit breaker sub-station, and the pre-activated sub-station judges the remote fault based on the local measurement information
  • the clearing time that is, the opening time of the first or second type of circuit breaker, and then actively initiate the simultaneous closing of the restored networked circuit breaker on the spot, so as to avoid the need to rely on remote communication to start the restored networked circuit breaker after the grid is disconnected. Close the switch, saving time for remote communication.
  • the master station When the master station detects that the voltage of the bus with the lowest voltage returns to normal, it sends a quick closing signal to the slave stations corresponding to the multiple open circuits. In this way, if the slave station fails to determine that the voltage of the lowest voltage bus has returned to normal, it can be remedied by the fast closing signal sent by the master station.
  • the trip exit signal of the protection or automatic device is used as the trigger signal for fast closing, and a certain delay is used to ensure that the faulty grid circuit breaker first opens the fault, and the backup power circuit breaker is closed again to avoid the open circuit due to the faulty grid The switch is not completely disconnected and the closing fails.
  • the electromagnetic ring network when multiple circuit breakers are successfully closed to form an electromagnetic ring network, the electromagnetic ring network can be disconnected in time to make the power grid operate stably.
  • Fig. 1 shows a physical structure block diagram of a power supply network rapid reconstruction system according to an embodiment of the present disclosure.
  • Fig. 2 shows a flowchart of a method for rapid reconstruction of a power supply network after a grid failure according to an embodiment of the present disclosure.
  • Figure 3 shows a schematic diagram of the rapid reconstruction of the power supply network during an internal failure of the regional power grid.
  • Figure 4 shows a schematic diagram of the rapid reconfiguration of the power supply network when the remote disassembly of the external network fails.
  • the present disclosure provides a method for fast reconfiguration of a power supply network after a grid failure.
  • the method for fast reconfiguration of a power supply network after a grid failure in the embodiments of the present disclosure can be applied to fast reconfiguration of a power supply network system.
  • Fig. 1 shows a physical structure block diagram of a power supply network rapid reconstruction system according to an embodiment of the present disclosure.
  • the power supply network rapid reconfiguration system (hereinafter referred to as the system) of the embodiment of the present disclosure may include a rapid reconfiguration main station (hereinafter referred to as the main station) and a quick reconfiguration sub-station (hereinafter referred to as the sub-station), wherein, The main station and the sub-station can be realized based on the software and hardware platform of the power system safety and stability control device that meets the requirements of the national standard and the industry standard.
  • the hardware performance of the main station and the sub-station meets the following conditions: the sub-station power frequency recording data sampling rate is not less than 1200Hz , The calculation and processing cycle of sub-station measurement data is not more than 0.83ms, and the information transmission cycle and instruction scan cycle of the master and sub-stations are not more than 1.67ms.
  • the communication between the devices in the system adopts 2M data private network, and the master and sub-stations adopt hardware
  • the wiring collects voltage and current measurement data from the protection CT (current transformer) and PT (potential transformer), and the circuit breaker trip signal is directly output to the circuit breaker actuator through hard wiring.
  • the master station can be set in the hub substation of the regional power grid.
  • the master station is used to collect equipment information of the entire network and make centralized decision-making.
  • the sub-stations can be set in the regional power grid with circuit breakers connected to different power supply regions. Or the substation or power plant of the bus tie breaker, the substation is responsible for collecting equipment information in the substation or power plant, such as voltage, current and other information, and the substation is also responsible for executing the instructions sent by the master station.
  • the system of the embodiment of the present disclosure may include multiple different sub-stations, which are respectively responsible for collecting electrical state information of the equipment in the substation or power plant in different power supply areas.
  • the developer can pre-select and set the circuit breaker that needs to be monitored that may open, namely the first type of circuit breaker (powered by a relay protection or stability control device, etc.) based on the analysis of the power supply network.
  • the system can also perform real-time network topology analysis of the power supply network based on the circuit breaker status in the master station, and determine online circuit breakers that need to be monitored that may be disconnected and their associated restored network circuit breakers , And control the action of the circuit breaker according to the information monitored in real time.
  • Fig. 2 shows a flowchart of a method for rapid reconstruction of a power supply network after a grid failure according to an embodiment of the present disclosure.
  • the method can be applied to the main station and the sub-station in the system of Fig. 1, and specifically includes the following steps:
  • Step 1 Quickly reconfigure the master station to collect all the status information of the monitored power grid (also called the controlled power grid) from the substations located in the substation or power plant, and compare it with the built-in set of possible fault features. Determine whether the monitored power grid has a circuit breaker or a disconnection fault that will cause the circuit breaker to open, that is, real-time detection of power grid disconnection faults;
  • the monitored power grid also called the controlled power grid
  • the rapid reconstruction of the sub-station realizes the collection and measurement of electrical information in the plant station through hard wiring, and sends the sub-station measurement information and local decision information to the master station through network communication and receives the closing pre-start signal and closing of the master station. Signal; the rapid reconstruction sub-station performs the judgment of the local circuit breaker trigger logic and the judgment of the circuit breaker's synchronous closing logic, and gives a closing or tripping signal to the circuit breaker through hard wiring.
  • the rapid reconstruction of the master station collects the information of key equipment in the power grid measured by each substation from each substation through the communication network and conducts centralized analysis and decision-making, and then sends the active derailing signal, closing pre-start signal, and closing signal to Each sub-station.
  • the master station also undertakes the function of rapid reconfiguration of the substation of the plant station where it is located.
  • S2-2 Quickly reconstruct the transmission of information and instructions between the master station and the slave station through network communication; for example, using a 2M communication private network;
  • the sampling rate of the power frequency recording data of the rapid reconstruction substation is not less than 1200Hz;
  • the switching values collected by the rapid reconstruction substation in the substation or power plant include: circuit breaker position, protection trip signal, and stability control device trip signal;
  • the analog data collected by the rapid reconstruction substation in the substation or power plant includes: the voltage of the key bus, the current and voltage of the external power line, the transformer branch, the generator branch, the connection line between the stations or the bus tie.
  • the faults that will cause the circuit breaker to open include, but are not limited to the following faults:
  • circuit breaker that is disconnected by the rapid reconstruction system of the non-power supply network such as the device, and an island grid circuit breaker that does not contain the original fault after the disconnection is the first type of circuit breaker.
  • the rapid reconstruction system of the power supply network will actively disconnect the monitored power grid and the external network at the tie line breaker, and the monitored power grid will form an isolated island.
  • the circuit breaker that the quick reconfiguration system actively opens is the second type of circuit breaker.
  • Step 2 When the master station detects the occurrence of a preset fault that may cause the circuit breaker to open, it sends the closing pre-switch to the substation where the circuit breaker that may be opened, that is, the multiple restoration network circuit breakers corresponding to the first type of circuit breaker is located. Start signal
  • the method of monitoring the preset fault that may cause the circuit breaker to open is:
  • the fast reconstruction master station evaluates the monitored bus voltages in the power grid in real time. When the lowest bus voltage is lower than the first voltage threshold and continues for the first time period threshold, select the bus corresponding to the lowest bus voltage As a fault bus; the present disclosure preferably sets the first voltage threshold to be 0.5 times the rated voltage, and the first time period threshold is preferably 10 ms.
  • the restored network circuit breaker has the following characteristics:
  • the overcurrent protection action is not triggered within the second time period threshold, and the second time period threshold is preferably 20s in the present disclosure. ;
  • Each restored networked circuit breaker belongs to a fast reconfiguration sub-station, and the command issued by the master station to the restored networked circuit breaker is forwarded through the fast reconfiguration sub-station.
  • Figure 3 shows a schematic diagram of the rapid reconstruction of the power supply network in the event of an internal failure of the regional power grid.
  • the fast-closing restoration network circuit breaker should be selected: 35kV 3200 bus tie, 6kV 6101 bus coupling, 6102 bus coupling, 6103 bus coupling.
  • the 6kV bus tie is far away from the fault and there is a large amount of motor load, so the phase angle difference between the 6kV bus bars is usually less than the phase angle difference between the 35kV bus bars, and the success rate of the bus tie simultaneous closing is higher; in addition, three 6kV bus bars are selected at the same time
  • the reason for the combined switching is: when the 3200 bus combined switching is unsuccessful, if only one 6kV bus tie is used to achieve fast closing, for example, the 6101 circuit breaker is closed, then the 35kV section III will pass through the 2# and 1# transformers to the 35kV section IV. For three groups of loads to supply power, the transformer may be over-current and overloaded. Therefore, using three 6kV bus couplers to participate in fast closing at the same time can reduce the possibility of over-current and overload of each 35/6kV transformer.
  • Step 3 If the master station detects that the external network has a (islanding) disconnection fault and it has collapsed, it will disconnect the external network contact circuit breaker, that is, the second type of circuit breaker, and restore the network to the multiple corresponding to the second type of circuit breaker.
  • the sub-station where the circuit breaker is located sends a check synchronization closing signal;
  • the second frequency deviation threshold is preferably 0.2 Hz in the present disclosure;
  • the bus frequency of the standby power supply area is within the first frequency range; the present disclosure preferably sets the first frequency range to 49Hz ⁇ 51Hz;
  • the frequency change rate of the bus bar connected to the external network connection line exceeds the first frequency change rate threshold; this disclosure preferably sets the first frequency change threshold to 0.2 Hz/s;
  • step 3 when the master station detects that the external network has an islanding failure and has collapsed, it sends the following signal:
  • the master station connects the circuit breaker to the external network, that is, the second type of circuit breaker sends a trip signal;
  • step 3 The requirements for restoring networked circuit breakers in step 3 are the same as those in step 2.
  • Fig. 4 shows a schematic diagram of the rapid reconstruction of the power supply network when the remote disassembly failure occurs in the external network.
  • the remote fault of the JJN external network caused the remote circuit breaker to trip, causing the JJN external network to be disconnected from the large power grid, forming a large-scale island grid with the regional power grid, but because the 112 tie switch was not disconnected, the conventional power supply was quickly switched
  • the device cannot be started, and the island grid cannot be multiplexed to the XJZ external grid with normal power supply through the quick closing of the 100 circuit breaker.
  • the method of the present disclosure can actively open the 112 circuit breaker in the case of islanding in the external network, thereby triggering the rapid switching of the power supply, and then select the 100 bus coupler of the 110kV voltage level and the 3000 bus coupler of the 35kV voltage level at the same time to connect the islanded regional power grid Fast switching to the XJZ grid, since the switching can be completed within 150ms, the island can be eliminated while the load remains in continuous operation.
  • Step 4 The sub-station that receives the pre-start signal for closing will identify the time of fault clearing in real time based on the on-site measurement information. When the fault is found to be cleared or being cleared, it will immediately or delay the designated time to restore the network to the first type of circuit breaker.
  • the circuit breaker sends a check synchronization closing signal; the faults and the first type of circuit breaker here are not limited to the plant where the substation is located, but also include the faults of other remote plants and the first type of circuit breaker.
  • step 4 the sub-station that received the closing pre-start signal uses the following method to identify the time when the fault is cleared or is being cleared, and sends a check to the corresponding (in the plant where the rapid reconfiguration sub-station is located) the restored network circuit breaker. Synchronous closing signal:
  • the sub-station will directly receive the trip signal of the first-category circuit breaker through hard wiring. After receiving the trip signal, the sub-station will immediately send the The restored networked circuit breaker corresponding to the circuit breaker sends a check synchronization closing signal;
  • the sub-station will directly receive the tripping exit signal from the protection device or stability control device related to the first-category circuit breaker through hard wiring; After the tripping exit signal is reached, the sub-station delays the fourth time period threshold to send the detection synchronization closing signal to the restored networked circuit breaker corresponding to the first type of circuit breaker; the fourth time period threshold is preferably 5ms in this disclosure;
  • the sub-station judges the time when the fault is cleared by monitoring the state of the voltage across both ends of the circuit breaker that received the closing pre-start signal in the station; When the fault is cleared, the sub-station will immediately send a synchronous closing signal to the restored networked circuit breaker corresponding to the first type of circuit breaker.
  • the substation monitors in real time the bus voltage Uy on the lower voltage side of the busbars on both sides of the busbars connected to the circuit breaker that received the closing pre-start signal;
  • the “immediate” in the present disclosure means that the delay relative to the moment when the substation receives the opening of the first type of circuit breaker should not exceed 5 ms.
  • the main station of the 110kV/35kV substation triggers the substation located at the 35kV/6kV distribution station in advance.
  • the substation detects the voltage of 6kV I section Recovery, it means that the 304 switch has been protected and tripped, so you can quickly close the 6kV bus coupler, without waiting for the closing signal from the master station, saving a few milliseconds of communication time, which is beneficial to the subsequent step 6 The closing conditions are met.
  • Step 5 The master station monitors the breaking signal of the first type circuit breaker in the whole network in real time, and when it finds that a certain first type circuit breaker is opened or is being opened, it will send the first type circuit breaker immediately or after a specified time Corresponding multiple restored networked circuit breakers send back-up inspection synchronous closing signals.
  • the specific method is as follows:
  • the master station receives the breaking signals of the first type circuit breakers or the trip signals of the protection devices or stability control devices associated with the first type circuit breakers in the entire network from the substations in real time through the communication network;
  • the master station receives the breaking signal of each type 1 circuit breaker or the trip signal of the protection device or stability control device associated with the type 1 circuit breaker in the plant station in real time through hard wiring;
  • the master station When the master station detects the opening of a certain type 1 circuit breaker, it will immediately send the check synchronization closing signal through the communication network to the substations of the multiple restoration networked circuit breakers corresponding to the first type circuit breaker.
  • the restored network circuit breaker can belong to different control substations or plant stations;
  • the delay time is 5ms to the multiple restoration network circuit breakers corresponding to the type 1 circuit breaker through the communication network.
  • the station sends a check synchronization closing signal, and these restored networked circuit breakers can belong to different control substations or plant stations.
  • the “immediate” in the present disclosure means that the delay relative to the moment when the primary station receives the opening of the first type circuit breaker should not exceed 5 ms.
  • the fast reconfiguration master station when the fast reconfiguration master station receives the following signal, it sends a fast closing signal to the control substation of the associated closing circuit breaker after the following corresponding set delays:
  • the trip exit signal from the protection or automatic device associated with the circuit breaker in the remote plant has a delay of 10ms
  • the fast reconfiguration slave station When the fast reconfiguration slave station receives the following signals, it sends a fast closing signal to the control module of the associated closing circuit breaker after the following corresponding set delays:
  • the fast reconfiguration sub-station If the fast reconfiguration sub-station receives a pre-trigger command to close a circuit breaker in step 3, it will monitor the bus on the lower voltage side of the bus on both sides connected to the circuit breaker in real time. When the bus voltage If the voltage is greater than 0.9 times the rated voltage or the voltage rises more than 0.1 times the rated voltage within 20ms, there is no delay, and a fast closing signal is sent to the control module of the circuit breaker.
  • the trip exit signal of the protection or automatic device is used as the trigger signal for fast closing. After a certain delay, the circuit breaker of the faulty grid can disconnect the fault first, and the backup power supply The circuit breaker is closed again.
  • the main station of the 110kV/35kV substation triggers the substation located at the 35kV/6kV distribution station in advance, and when the substation fails to judge 304 to trip , The closing signal from the master station remotely becomes a backup remedial measure.
  • Step 6 Check synchronization and check lock execution of synchronous closing. Check whether both sides of the closed and restored networked circuit breaker meet the simultaneous closing conditions and whether there is no area fault lockout and backup power failure lockout. If both meet the requirements, send a closing execution signal to the restored networked circuit breaker.
  • the simultaneous closing condition of the restored networked circuit breaker is to meet the following requirements at the same time:
  • the node voltage and frequency of the restored networked circuit breaker on the standby power supply side meet any of the following conditions, and the standby power failure blocking of the restored networked circuit breaker will occur:
  • phase voltage is outside the range of 0.85 ⁇ 1.2 times the rated value
  • Step 7 After the grid is restored to interconnection, disconnect the over-current restoration network circuit breaker or perform current limiting.
  • the method is: if the current of the circuit breaker exceeds the allowable current threshold after the closed circuit breaker is restored, and continues to exceed the threshold for the fifth time period, the circuit breaker is opened or the corresponding fast switch of the substation is triggered to enter a high impedance state; the present disclosure
  • the fifth time period threshold is preferably 100 ms.
  • the overcurrent interruption here can be realized inside the fast reconfiguration device; if the overcurrent limiting scheme is adopted, a fast switch needs to be installed. When the current is greater than a certain value, the reactance of the switch changes from 0 to a very high value. A large value, thereby limiting the current.
  • Step 8 Untie the existing high and low voltage electromagnetic ring network, the method is:
  • step 19-1 After the closing execution signal is issued in step 6, if the first type of circuit breaker and the second type of circuit breaker that should have been tripped are still in the closed state, and the threshold value of the sixth time period is maintained, then send to these circuit breakers Trip instruction; the present disclosure preferably selects the sixth time period threshold to be 150ms;
  • step 6 After the closing execution signal is issued in step 6, if the high-voltage recovery networked circuit breaker is in the successful closing state and continues for the sixth time period threshold, it will be restored to all lower voltage levels successfully closed
  • the networked circuit breaker issues a trip instruction; the present disclosure prefers the sixth time period threshold to be 150 ms.
  • Step 9 Reset the power supply network to quickly reconfigure the system. 200ms after step 8 is completed, the devices of the power supply network rapid reconfiguration system are reset, and step 1 is returned to monitor the next power grid disassembly event.
  • the grid-connection of the de-energized isolated grid can be restored within a maximum of 150 ms, so as to ensure that the motor load is restored to normal grid-connection without shutting down. run.

Abstract

本公开提供了一种电网故障后供电网络毫秒级快速重构方法及系统。快速网络重构主站从变电站或电厂的子站收集电网状态信息,并与内置可能发生故障的控制策略表进行比对;当监测到预想电网解列故障发生时,向多个恢复联网断路器对应的子站发送合闸预启动信号;当故障清除后,子站根据就地信息对清除时刻进行识别,并向对应的就地恢复联网断路器发送检同期合闸信号;同时主站独立监测故障的清除,向对应恢复联网断路器发送后备检同期合闸信号,基于上述机制实现被解列电网在解列后150ms内重新并网。电网恢复互联后,断开形成电磁环网的断路器。

Description

电网故障后供电网络毫秒级快速重构方法及系统 技术领域
本公开涉及电网控制技术领域,尤其涉及一种电网故障后供电网络毫秒级快速重构方法及系统。
背景技术
区域电网发生外网事故或内网故障后,由于部分供电路径的中断,可能形成全区域电网或者部分区域电网的孤岛。当失去的电源占比较大,孤岛内发电和负荷有较大的功率差,就需要采取切机或切负荷的措施才能实现孤岛电网的频率稳定,这不仅对生产供电影响大,并且暂时稳定的孤岛电网在后续维持持续稳定运行的难度仍然很高。因此,在电网因为故障出现孤岛后,迅速重构新的供电路径,恢复电网的联通性、完整性,形成尽可能大的电网,是保证持续供电、稳定供电的最直接措施。
由于电动机等负荷在断电后,若电压低于0.8倍额定电压,持续时间超过150ms,则会被欠压保护跳开。因此,形成孤岛后的快速恢复供电应能在100ms内完成。现有的电源快速切换装置通常在开关断开后10ms内出口,100ms内完成电源切换。然而现有电源快速切换装置存在以下缺点:
(1)现有的快切装置只能获取就地母线或进线的信息,不能从全网的角度考虑供电路径的恢复,尤其不能根据远方故障信息,进行多点合闸,因此限制了供电路径恢复的可选通道,降低了恢复电网连通性和完整性的概率。
(2)常规快切需要依赖开关跳闸或相关的保护信号启动,然而,当电网发生远方系统外故障,常规电源快速切换装置所监视的区域没有开关动作,快速切换装置无法启动,但是频率和电压正在发生崩溃,若不及时与故障系统隔离,并切换到正常电源系统,则故障电源所供给的负荷将会失去供电电源。
(3)就地选择的电源可能存在容量不足的问题,这时需要在远方选择更多的电源容量做支撑。
(4)单一供电路径可能存在过载问题,此时需要多个供电路径。
(5)电源快切存在因同期条件不满足要求而失败的可能,常规单一快切点失败后,则整个快切防线失败,无后备措施。
此外,现有的被称为电网网络重构方法或者电网自愈的方法,都是基于常规的开关倒闸操作,电网故障导致负荷断电后并且已停机,再恢复供电;因此,这类解决方法不能满足在故障切除后150ms 内恢复供电的要求,不能实现电动机等负荷不停机恢复供电的目的,因此与本公开所解决的问题不属于同一范围。
发明内容
有鉴于此,本公开提出了一种电网故障后供电网络毫秒级快速重构方法及系统。
根据本公开的一方面,提供了一种电网故障后供电网络毫秒级快速重构方法,所述方法包括以下特征步骤:
步骤1:快速重构主站从位于变电站或发电厂的快速重构子站收集所监视的电网的全部状态信息,并与内置的可能发生的故障集特征进行比对,判断所监视的电网是否有断路器开断或将引起断路器开断的故障发生,即进行电网解列故障实时感知;
步骤2:当快速重构主站监测到可能引起断路器开断的预设故障发生时,向第一类断路器对应的多个恢复联网断路器所在的快速重构子站发送合闸预启动信号,其中,第一类断路器即可能开断的断路器;
步骤3:若快速重构主站监测到外网发生解列故障并且已经崩溃,则断开第二类断路器,同时向第二类断路器对应的多个恢复联网断路器所在的快速重构子站发送检同期合闸信号,其中,第二类断路器为外网联络断路器;
步骤4:接收到合闸预启动信号的快速重构子站根据就地测量信息实时识别故障清除时刻,当发现故障被清除或正在被清除时,即刻或延指定时间向第一类断路器对应的恢复联网断路器发送检同期合闸信号;
步骤5:快速重构主站实时监测全网范围内第一类断路器的开断信号,当发现某一第一类断路器开断或正在被开断时,即刻或延指定时间向第一类断路器对应的多个恢复联网断路器发送后备检同期合闸信号;
步骤6:检同期合闸的检同期和检闭锁执行:检查被合闸恢复联网断路器两侧是否满足同期合闸条件以及是否不存在区内故障闭锁,并且不存在备用电源故障闭锁,若均满足要求,则向恢复联网断路器发送合闸执行信号;
步骤7:电网恢复互联后,断开过流的恢复联网断路器或进行限流;
步骤8:解开存在的高低压电磁环网;
步骤9:供电网络快速重构系统的复位:步骤8完成后200ms,供电网络快速重构系统各装置复位,返回步骤1监测下次电网解列事件。
根据本公开的另一方面,基于上述方法提供了一种电网故障后供电网络毫秒级快速重构系统,系统包括快速重构主站和快速重构子站,其中,主站、子站基于符合国标和行标要求的电力系统安全稳控的硬件装置和平台来实现,主站和子站的硬件性能满足以下条件:子站工频录波数据采样率不小于1200Hz,子站量测数据计算处理周期不大于0.83ms,主站和子站信息传输周期和指令扫描周期均不大于1.67ms,系统内装置间的通信采用2M数据专网,主站和子站分别采用硬接线从保护CT和PT上采集电压、电流等量测数据。
技术效果:
(1)设立集中全网关键信息的策略主站,通过主站获取全网各供电区域的设备信息,并根据设备信息和网络拓扑确定潜在故障,控制潜在故障对应的多个断路器。根据本公开实施例的供电网络快速重构方法,从全网的角度实现供电路径的10ms级快速恢复:确定了潜在故障对应的多个断路器,在潜在故障发生时,能够对多个断路器进行控制,实现在多个并网点的快速合闸,提高将解列的电网恢复联网的成功率,从而实现电动机、厂用电等负荷的不停机连续运行。多点合闸也有利于利用不同母线电压变化过程不同,导致的各断路器合闸同期条件不同的特点提高电网恢复互联成功率;多点合闸还减少了新接入电源转供路径过流的可能性。
(2)主站在监测到会引起断路器开断的潜在故障实际发生时,向相关的恢复联网断路器子站发出预启动信号,被预启动的子站根据就地测量信息判断远方的故障的清除时刻,即第一类或第二类断路器开断时刻,然后就地主动启动恢复联网断路器的同期合闸,从而避免在电网发生解列后要依赖远方通信启动恢复联网断路器的合闸,节省了远方通信时间。
(3)主站在检测到电压最低母线的电压恢复正常时,向所述多个断路对应的子站发送快速合闸信号。这样,若子站没有成功判断出电压最低母线的电压恢复正常,可以通过主站发送的快速合闸信号进行补救。
(4)采用保护或自动装置的跳闸出口信号作为快速合闸的触发信号,通过一定的延时,确保故障电网断路器先断开故障,备用电源断路器再合闸,避免由于故障电网的断路器没有完全断开导致合闸失败。
(5)当电网发生远方系统外故障(外网崩溃),常规电源快速切换装置所监视的区域没有开关动 作,快速切换装置无法启动;但是频率和电压正在发生崩溃,根据本公开的方法,能够及时与故障系统主动隔离,并切换到正常电源系统,保证电网的稳定性和正常运行。
(6)根据本公开上述实施方式的方法,在多个断路器合闸成功形成电磁环网时,能够及时解列电磁环网,使电网稳定运行。
根据下面参考附图对示例性实施例的详细说明,本公开的其它特征及方面将变得清楚。
附图说明
包含在说明书中并且构成说明书的一部分的附图与说明书一起示出了本公开的示例性实施例、特征和方面,并且用于解释本公开的原理。
图1示出根据本公开一实施例的供电网络快速重构系统的物理结构框图。
图2示出根据本公开一实施例的电网故障后供电网络快速重构方法的流程图。
图3示出区域电网内部故障时的供电网络快速重构示意图。
图4示出外网远方解列故障时的供电网络快速重构示意图。
具体实施方式
以下将参考附图详细说明本公开的各种示例性实施例、特征和方面。附图中相同的附图标记表示功能相同或相似的元件。尽管在附图中示出了实施例的各种方面,但是除非特别指出,不必按比例绘制附图。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本公开,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本公开同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本公开的主旨。
为了解决常规电源快速切换装置存在的技术问题,本公开提供了一种电网故障后供电网络快速重构方法,本公开实施例的电网故障后供电网络快速重构方法可以应用于供电网络快速重构系统。
图1示出根据本公开一实施例的供电网络快速重构系统的物理结构框图。如图1所示,本公开实施例的供电网络快速重构系统(以下简称系统)可以包括快速重构主站(以下简称主站)和快速重构子 站(以下简称子站),其中,主站、子站可以基于符合国标和行标要求的电力系统安全稳定控制装置的软硬件平台来实现,主站和子站的硬件性能满足以下条件:子站工频录波数据采样率不小于1200Hz,子站量测数据计算处理周期不大于0.83ms,主站和子站信息传输周期和指令扫描周期均不大于1.67ms,系统内装置间的通信采用2M数据专网,主站和子站分别采用硬接线从保护CT(电流互感器,current transformer)和PT(电压互感器,potential transformer)上采集电压、电流等量测数据,断路器跳闸信号通过硬接线直接输出到断路器执行机构。
在一种可能的实现方式中,主站可以设置在区域电网的枢纽变电站,主站用于收集全网的设备信息并进行集中决策,子站可以设置在区域电网中具有联络不同供电区域断路器或母联断路器的变电站或电厂,子站负责采集变电站或电厂内的设备信息,例如,电压、电流等信息,子站还负责执行主站发送的指令。在本公开实施例的系统中可以包括多个不同的子站,分别负责不同供电区域变电站或电厂的设备电气状态信息的采集。
在一种可能的实现方式中,开发人员可以根据对供电网络的分析,预先选择和设置需要监视的可能会断开的断路器即第一类断路器(由继电保护或稳控装置等供电网络快速重构系统以外的装置断开的断路器)和第二类断路器(由供电网络快速重构系统自身断开的断路器),以及与其(即可能会断开的断路器)关联的恢复联网断路器;系统可以记录可能会断开的断路器以及与其关联的恢复联网断路器之间的关联关系;在系统监测到可能会断开的断路器断开时,可以根据关联关系获取关联的恢复联网断路器,控制关联的恢复联网断路器快速合闸。在另一种可能的实现方式中,系统也可以在主站中基于断路器状态进行供电网络的实时网络拓扑分析,在线确定需要监视的可能会断开的断路器以及其关联的恢复联网断路器,并根据实时监测到的信息控制断路器的动作。
图2示出根据本公开一实施例的电网故障后供电网络快速重构方法的流程图,该方法可以应用于图1系统中的主站和子站,具体包括以下步骤:
步骤1:快速重构主站从位于变电站或发电厂的子站收集所监视的电网(也可以称作被控制电网)的全部状态信息,并与内置的可能发生的故障集特征进行比对,判断所监视的电网是否有断路器开断或将引起断路器开断的解列故障发生,即进行电网解列故障实时感知;
快速重构子站通过硬接线实现对厂站内电气信息的采集测量,通过网络通信将子站测量信息、就地决策信息上送主站并接收主站下发的合闸预启动信号、合闸信号;快速重构子站进行就地断路器触发逻辑的判断以及断路器同期合闸逻辑的判断,通过硬接线对断路器给出合闸或跳闸信号。
快速重构主站通过通信网络从各子站收集各厂站测量得到的电网中关键设备的信息并进行集 中分析决策,然后将主动解列信号、合闸预启动信号、合闸信号下发给各子站。此外主站还承担所在厂站的快速重构子站的功能。
其中对快速重构主站和子站的信息采集和传输有以下要求:
S2-1)快速重构子站通过硬接线实现对厂站内电气信息的采集测量;
S2-2)快速重构主站与子站间通过网络通信进行信息和指令的传输;例如采用2M通信专网;
S2-3)快速重构子站工频录波数据采样率不小于1200Hz;
S2-4)快速重构子站数据计算处理周期不大于0.83ms;
S2-5)快速重构主站和子站之间信息传输周期和指令扫描周期均不大于1.67ms;
S2-6)快速重构子站在变电站或电厂采集的开关量包括:断路器位置、保护跳闸信号、稳控装置跳闸信号;
S2-7)快速重构子站在变电站或电厂采集的模拟量包括:关键母线的电压,外电源线路、变压器支路、发电机支路、站间联络线路或母联的电流和电压。其中,将引起断路器开断的故障包括,但不限于下述故障:
S3-1)短路故障;
S3-2)过流故障;
S3-3)功率或电压振荡故障;
S3-4)外网远方解列形成孤网。
其中,短路故障、过流故障、功率或电压振荡故障将触发继电保护或者电网稳控装置等断开相应的断路器,引起电网解列形成孤岛,称这类被继电保护、电网稳控装置等非供电网络快速重构系统断开的断路器,且断开后会出现一个不含有原始故障的孤岛电网的断路器为第一类断路器。
当发生外网远方解列形成孤网时,由供电网络快速重构系统主动将所监视的电网与外网在联络线断路器处进行开断解列,被监视电网形成孤岛,称这类由快速重构系统主动断开的断路器为第二类断路器。
步骤2:当主站监测到可能引起断路器开断的预设故障发生时,向可能开断的断路器即第一类断路器对应的多个恢复联网断路器所在的子站发送合闸预启动信号;
其中,监测可能引起断路器开断的预设故障的方法是:
S4-1)快速重构主站实时评估所监视的电网内各母线电压,当其中的最低母线电压低于第一电压阈值,并持续第一时间段阈值时,选择该最低母线电压对应的母线作为故障母线;本公开把第一电压阈值优选为0.5倍额定电压,第一时间段阈值优选为10ms。
S4-2)根据与故障母线相连的各支路电流的大小,选择电流最大的支路作为故障支路,故障支路上靠近故障母线的断路器作为第一类断路器;
S4-3)若故障发生在母线上,仍然采用S4-2的方法确定一个第一类断路器。
其中,恢复联网断路器具有以下特征:
S5-1)恢复联网断路器可以通过合闸操作,将孤岛电网与其它电网连接在一起;
S5-2)恢复联网断路器合闸后,在第二时间段阈值内不触发过流保护动作,本公开将第二时间段阈值优选为20s。;
S5-3)若对于某个第一类断路器或第二类断路器形成的孤岛有多个恢复联网断路器,并且这些恢复联网断路器分属三个或三个以上电压等级,则只保留最高两个电压等级的恢复联网断路器。
S5-4)每个恢复联网断路器归属一个快速重构子站,主站发给恢复联网断路器的指令是通过快速重构子站转发的。
附图3给出一个区域电网内部故障时,供电网络快速重构的示意图。如图3所示区域电网内4#降压变支路故障,保护跳开304断路器情况下,根据本公开的方法应选择快速合闸的恢复联网断路器为:35kV的3200母联,6kV的6101母联、6102母联、6103母联。其中,6kV母联由于离故障远,并且有大量电动机负荷,因此6kV母线间相角差通常也小于35kV母线间相角差,母联同期合闸成功率较高;此外同时选择3个6kV母联合闸的原因是:当3200母联合闸不成功,若只用1个6kV母联实现快速合闸,例如6101断路器合闸,则35kV III段通过2#、1#变压器对35kV IV段的三组负荷进行供电,变压器可能过流过载,因此采用让3个6kV母联同时参与快速合闸,可以减轻各35/6kV变压器过流过载的可能性。
实际上各母线由于所带的电动机负荷或发电机不同,与故障点的距离不同,其电压幅值和相角变化的情况也不同,在某对母线间不满足快切同期合闸条件,在其他母线间很可能就满足同期合闸条件,因此在不同母线间同时做电源的快速切换尝试可以提高快速切换的成功率。
步骤3:若主站监测到外网发生(孤岛)解列故障并且已经崩溃,则断开外网联络断路器,即第二类断路器,同时向第二类断路器对应的多个恢复联网断路器所在的子站发送检同期合闸信号;
其中,确定外网发生孤岛解列故障并且已经崩溃需要同时满足以下全部判据:
S6-1)外网联络线路所连接的母线的频率偏离额定频率(50Hz)超过第一频率偏差阈值;本公开将第一频率偏差阈值优选为0.1Hz;
S6-2)外网联络线路所连接的母线的频率与备用电源区域母线频率偏差超过第二频率偏差阈值; 本公开将第二频率偏差阈值优选为0.2Hz;
S6-3)备用电源区域母线频率在第一频率范围之内;本公开将第一频率范围优选为49Hz~51Hz;
S6-4)外网联络线路所连接的母线的频率变化率超过第一频率变化率阈值;本公开将第一频率变化阈值优选为0.2Hz/s;
S6-5)上述条件均被满足,并且持续时间大于第三时间段阈值;本公开将第三时间段阈值优选为150ms。
在步骤3中当主站监测到外网发生孤岛解列故障并且已经崩溃时,发送以下信号:
S8-1)主站向外网联络断路器,即第二类断路器发送跳闸信号;
S8-2)延时5毫秒后,向第二类断路器对应的多个恢复联网断路器所在的子站发送检同期合闸信号。
步骤3中对恢复联网断路器的要求与步骤2相同。
当电网发生远方系统外故障(外网崩溃),常规电源快速切换装置所监视的区域没有开关动作,快速切换装置无法启动,但是频率和电压正在发生崩溃,根据本实施方式的供电网络快速重构方法,能够及时与故障系统主动隔离,并切换到正常电源系统,保证电网的稳定性和正常运行。
附图4示出外网远方解列故障时的供电网络快速重构示意图。如图4所示,JJN外网远方故障使得远方断路器跳闸,导致JJN外网与大电网解列,与区域电网形成大范围孤岛电网,但是由于112联络开关没有断开,因此常规电源快速切换装置不能被启动,孤岛电网不能通过100断路器的快合,复接到正常供电的XJZ外网。本公开的方法在外网孤岛情况下可以主动断开112断路器,从而触发电源快速切换,然后选择同时快合110kV电压等级的100母联,以及35kV电压等级的3000母联,将孤岛的区域电网快速合闸到XJZ电网,由于切换在150ms内可以完成,因此可以在负荷保持连续运行的情况下消除孤岛。仿真和实测均表明,在外网故障情况下,在相同时刻,由于110kV母联距离故障近,因此110kV母线间的相角差通常要大于35kV母线间的相角差,因此3000断路器实现检同期合闸成功的概率比100断路器高。
步骤4:接收到合闸预启动信号的子站根据就地测量信息实时识别故障清除时刻,当发现故障被清除或正在被清除时,即刻或延指定时间向第一类断路器对应的恢复联网断路器发送检同期合闸信号;这里的故障和第一类断路器不限于本子站所在厂站,还包括远方其他厂站的故障和第一类断路器。
在步骤4中接收到合闸预启动信号的子站采用下述方法识别故障被清除时刻或正在被清除,并向对应的(本快速重构子站所在厂站内的)恢复联网断路器发送检同期合闸信号:
S10-1)若子站与第一类断路器在同一厂站内,则子站通过硬接线直接接收该第一类断路器的跳闸信号,当接收到跳闸信号后,子站即刻向该第一类断路器对应的恢复联网断路器发送检同期合闸信号;
S10-2)若子站与第一类断路器在同一厂站内,则子站通过硬接线直接接收该第一类断路器相关的保护装置或稳控装置等自动装置发出的跳闸出口信号;当接收到跳闸出口信号后,子站延时第四时间段阈值向该第一类断路器对应的恢复联网断路器发送检同期合闸信号;本公开将第四时间段阈值优选为5ms;
S10-3)若子站与第一类断路器不在同一厂站内,则子站通过监测站内接收到合闸预启动信号的断路器的两端电压的状态,判断故障被清除的时刻;当判断出故障被清除时,子站即刻向该第一类断路器对应的恢复联网断路器发送检同期合闸信号。
根据断路器的两端电压的状态,判断故障被清除的时刻的具体方法如下:
S11-1)子站实时监测接收到合闸预启动信号的断路器所连接的两侧母线中电压较低侧的母线电压Uy;
S11-2)当Uy大于0.9倍额定电压或者在20ms内电压升高超过0.1倍额定电压时,认为故障被清除,记录该时刻为故障被清的除时刻。
本公开中的“即刻”是指相对于子站接收到第一类断路器开断发生时刻的延时应不超过5ms。
对于附图3的情况,当4#降压变支路短路时,110kV/35kV变电所的主站预先触发位于35kV/6kV配电所的子站,当子站监测到6kV I段的电压恢复,则说明304开关已被保护跳开,因此可以进行快速合6kV母联的操作,不必等主站发来的合闸信号,节省了几毫秒的通信时间,有利于后续步骤6中检同期合闸条件的满足。
步骤5:主站实时监测全网范围内第一类断路器的开断信号,当发现某一第一类断路器开断或正在被开断时,即刻或延指定时间向第一类断路器对应的多个恢复联网断路器发送后备检同期合闸信号。具体方法如下:
S12-1)主站通过通信网络从子站实时接收全网范围内各第一类断路器开断信号或者第一类断路器关联的保护装置或稳控装置的跳闸信号;
S12-2)主站通过硬接线实时接收所在厂站内各第一类断路器开断信号或者第一类断路器关联的保护装置或稳控装置的跳闸信号;
S12-3)当主站监测到某一第一类断路器开断时,通过通信网络即刻向该第一类断路器对应的多 个恢复联网断路器的子站发送检同期合闸信号,这些恢复联网断路器可以属于不同的控制子站或厂站;
S12-4)当主站监测到保护或稳控装置向某一第一类断路器发送跳闸信号时,延时5ms通过通信网络向该第一类断路器对应的多个恢复联网断路器的子站发送检同期合闸信号,这些恢复联网断路器可以属于不同的控制子站或厂站。采用保护装置或自动装置的跳闸出口信号作为检同期合闸的触发信号时,通过一定的延时,确保故障电网断路器先断开故障,备用电源断路器再合闸,避免由于故障电网的断路器没有完全断开,导致将备用电源合闸到故障上,导致故障范围扩大。
S12-5)当子站已经发出检同期合闸信号,并且子站发送的检同期合闸信号已被执行,则主站的检同期合闸信号被忽略;否则,执行主站的检同期合闸信号;即主站的检同期合闸信号是子站的检同期合闸信号的后备信号。
本公开中的“即刻”是指相对于主站接收到第一类断路器开断发生时刻的延时应不超过5ms。
举例来说,快速重构主站在接收到以下信号时,经以下相应设定延时,向关联的合闸断路器的控制子站发送快速合闸信号:
(5.1)主站就地厂站内断路器跳闸信号,无延时;
(5.2)主站就地厂站内断路器关联的保护或自动装置发出的跳闸出口信号或重构主站主动解列模块发出的跳闸出口信号,延时30ms;
(5.3)远方厂站断路器跳闸信号,无延时;
(5.4)远方厂站内断路器关联的保护或自动装置发出的跳闸出口信号,延时10ms;
快速重构子站在接收到以下信号时,经以下相应设定延时,向关联的合闸断路器的本子站控制模块发送快速合闸信号:
(5.5)快速重构主站发给子站的快速合闸信号,无延时;
(5.6)快速重构子站就地厂站内断路器跳闸信号,无延时;
(5.7)快速重构子站就地厂站内断路器关联的保护或自动装置发出的跳闸出口信号或重构主站主动解列模块发出的跳闸出口信号,经30ms延时;
(5.8)快速重构子站若在步骤3接收到对某断路器的合闸预触发指令,则其实时监测该断路器所连接的两侧母线中电压较低侧的母线,当该母线电压大于0.9倍额定电压或者在20ms内电压升高超过0.1倍额定电压,则无延时,向该断路器的控制模块发出快速合闸信号。
由于断路器的完全断开需要几十毫秒的时间,因此采用保护或自动装置的跳闸出口信号作为快速 合闸的触发信号,通过一定的延时,实现故障电网断路器先断开故障,备用电源断路器再合闸。
对于附图3的情况,当4#降压变支路短路时,110kV/35kV变电所的主站预先触发位于35kV/6kV配电所的子站,当子站没有成功判出304跳开,则主站远程发来的合闸信号成为后备补救措施。
步骤6:检同期合闸的检同期和检闭锁执行。检查被合闸恢复联网断路器两侧是否满足同期合闸条件以及是否不存在区内故障闭锁和备用电源故障闭锁,若均满足要求,则向恢复联网断路器发送合闸执行信号。
其中,恢复联网断路器的同期合闸条件是同时满足如下要求:
S15-1)恢复联网断路器两侧电压相角差<20°;
S15-2)恢复联网断路器两侧频差小于1Hz;
S15-3)恢复联网断路器两侧电压副值差小于0.2倍额定电压。
恢复联网断路器在孤岛区域侧的节点电压满足以下任一条件,则产生对该断路器的区内故障闭锁:
S16-1)存在相电压均小于0.7倍额定电压;
S16-2)三相电压幅值中,最大值与最小相差大于30%。
恢复联网断路器在备用电源侧的节点电压和频率满足以下任一条件,则产生对该恢复联网断路器的备用电源故障闭锁:
S17-1)相电压在0.85~1.2倍额定值范围之外;
S17-2)频率在49.2Hz~50.8Hz范围外。
步骤7:电网恢复互联后,断开过流的恢复联网断路器或进行限流。方法是:若恢复联网断路器合闸后断路器的电流超过允许电流阈值,并持续第五时间段阈值以上,则断开断路器或者触发该子站对应的快速开关进入高阻抗状态;本公开将第五时间段阈值优选为100ms。
这里的过流速断可以在快速重构装置内部实现;若采用过流限流方案,则需要加装快速开关,这种开关当电流大于某个定值时,开关的电抗由0变为一个很大的值,从而起到限制电流的目的。
步骤8:解开存在的高低压电磁环网,方法是:
19-1)在步骤6发出合闸执行信号后,若本应跳闸的第一类断路器和第二类断路器仍然为合闸状态,并持续第六时间段阈值,则向这些断路器发出跳闸指令;本公开将第六时间段阈值优选为150ms;
19-2)在步骤6发出合闸执行信号后,若高电压等级的恢复联网断路器为合闸成功状态,并持续第六时间段阈值,则向全部较低电压等级的合闸成功的恢复联网断路器发出跳闸指令;本公开将第六 时间段阈值优选为150ms。
应指出的是上述被选择的开断断路器,若满足以下条件,则不进行开断,这些不参与开断的断路器的选择可以由离线设置实现或者通过在线拓扑分析实现:
19-3)若低压断路器的断开减少了外电源的接入量,则不跳闸该低压断路器;
19-4)若外网为单一电源,不可能形成外网功率穿越区域内电网的高低压电磁环网。
对于附图3的情况,在合闸执行信号发出后,若检测到35kV的3200断路器合闸成功,并且持续150ms,则断开6kV的6101、6102和6103断路器。
对于附图4的情况,在合闸执行信号发出后,若检查到110kV的100断路器合闸成功,并且持续150ms,则断开35kV的3000断路器。
步骤9:供电网络快速重构系统的复位。步骤8完成后200ms,供电网络快速重构系统各装置复位,返回步骤1监测下次电网解列事件。
采用本公开的上述方法,可以实现当电网发生解列后,在最长150ms内恢复被解列孤网的并网,从而保证电动机负荷在断电后,在不停机的状态下恢复并网正常运行。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场中的技术的改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。

Claims (26)

  1. 一种电网故障后供电网络毫秒级快速重构方法,其特征在于,所述方法包括以下特征步骤:
    步骤1:快速重构主站从位于变电站或发电厂的快速重构子站收集所监视的电网的全部状态信息,并与内置的可能发生的故障集特征进行比对,判断所监视的电网是否有断路器开断或将引起断路器开断的故障发生,即进行电网解列故障实时感知;
    步骤2:当快速重构主站监测到可能引起断路器开断的预设故障发生时,向第一类断路器对应的多个恢复联网断路器所在的快速重构子站发送合闸预启动信号,其中,第一类断路器即可能开断的断路器;
    步骤3:若快速重构主站监测到外网发生解列故障并且已经崩溃,则断开第二类断路器,同时向第二类断路器对应的多个恢复联网断路器所在的快速重构子站发送检同期合闸信号,其中,第二类断路器为外网联络断路器;
    步骤4:接收到合闸预启动信号的快速重构子站根据就地测量信息实时识别故障清除时刻,当发现故障被清除或正在被清除时,即刻或延指定时间向第一类断路器对应的恢复联网断路器发送检同期合闸信号;
    步骤5:快速重构主站实时监测全网范围内第一类断路器的开断信号,当发现某一第一类断路器开断或正在被开断时,即刻或延指定时间向第一类断路器对应的多个恢复联网断路器发送后备检同期合闸信号;
    步骤6:检同期合闸的检同期和检闭锁执行:检查被合闸恢复联网断路器两侧是否满足同期合闸条件以及是否不存在区内故障闭锁,并且不存在备用电源故障闭锁,若均满足要求,则向恢复联网断路器发送合闸执行信号;
    步骤7:电网恢复互联后,断开过流的恢复联网断路器或进行限流;
    步骤8:解开存在的高低压电磁环网;
    步骤9:供电网络快速重构系统的复位:步骤8完成后200ms,供电网络快速重构系统各装置复位,返回步骤1监测下次电网解列事件。
  2. 根据权利要求1所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,步骤1中对快速重构主站和快速重构子站的信息采集和传输有以下要求:
    S2-1)快速重构子站通过硬接线实现对厂站内电气信息的采集测量;
    S2-2)快速重构主站与快速重构子站间通过网络通信进行信息和指令的传输;
    S2-3)快速重构子站工频录波数据采样率不小于1200Hz;
    S2-4)快速重构子站数据计算处理周期不大于0.83ms;
    S2-5)快速重构主站和快速重构子站之间信息传输周期和指令扫描周期均不大于1.67ms;
    S2-6)快速重构子站在变电站或电厂采集的开关量包括:断路器位置、保护跳闸信号、稳控装置跳闸信号;
    S2-7)快速重构子站在变电站或电厂采集的模拟量包括:关键母线的电压,外电源线路、变压器支路、发电机支路、站间联络线路或母联的电流和电压。
  3. 根据权利要求1所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,在步骤1中,在快速重构主站,根据采集到的电网信息,判断是否有断路器开断或将引起断路器开断的故障发生,其中将引起断路器开断的故障包括,但不限于下述故障:
    S3-1)短路故障;
    S3-2)过流故障;
    S3-3)功率或电压振荡故障;
    S3-4)外网远方解列形成孤网;
    其中,短路故障、过流故障、功率或电压振荡故障将触发供电网络快速重构系统以外的装置断开相应的第一类断路器,引起电网解列形成孤岛,且断开后会出现一个不含有原始故障的孤岛电网,供电网络快速重构系统以外的装置包括:继电保护、电网稳控装置;
    当发生外网远方解列形成孤网时,由供电网络快速重构系统主动将所监视的电网与外网在联络线断路器处,即第二类断路器处开断解列,被监视电网形成孤岛。
  4. 根据权利要求1所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,在步骤2中监测可能引起断路器开断的预设故障的方法是:
    S4-1)快速重构主站实时评估所监视的电网内各母线电压,当其中的最低母线电压低于第一电压阈值,并持续第一时间段阈值时,选择该最低母线电压对应的母线作为故障母线;
    S4-2)根据与故障母线相连的各支路电流的大小,选择电流最大的支路作为故障支路,故障支路 上靠近故障母线的断路器作为第一类断路器;
    S4-3)若故障发生在母线上,仍然采用S4-2)的方法确定一个第一类断路器。
  5. 根据权利要求1所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,在步骤2和步骤3中的恢复联网断路器具有以下特征:
    S5-1)恢复联网断路器通过合闸操作,将孤岛电网与其它电网连接在一起;
    S5-2)恢复联网断路器合闸后,在第二时间段阈值内不触发过流保护动作;
    S5-3)若对于某个第一类断路器或第二类断路器形成的孤岛有多个恢复联网断路器,并且这些恢复联网断路器分属三个或三个以上电压等级,则只保留最高两个电压等级的恢复联网断路器;
    S5-4)每个恢复联网断路器归属一个快速重构子站,主站发给恢复联网断路器的指令是通过快速重构子站转发的。
  6. 根据权利要求1所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,在步骤3中,需要同时满足以下全部判据来判定外网发生解列故障并且已经崩溃:
    S6-1)外网联络线路所连接的母线的频率偏离额定频率超过第一频率偏差阈值;
    S6-2)外网联络线路所连接的母线的频率与备用电源区域母线频率偏差超过第二频率偏差阈值;
    S6-3)备用电源区域母线频率在第一频率范围之内;
    S6-4)外网联络线路所连接的母线的频率变化率超过第一频率变化率阈值;
    S6-5)上述条件均被满足,并且持续时间大于第三时间段阈值。
  7. 根据权利要求1所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,在步骤2中当快速重构主站监测到预设故障发生时,在预设故障引起断路器开断之前,就向多个恢复联网断路器所在的子站发送合闸预启动信号。
  8. 根据权利要求1所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,在步骤3中当快速重构主站监测到外网发生解列故障并且已经崩溃时,发送以下信号:
    S8-1)向外网联络断路器,即第二类断路器,发送跳闸信号;
    S8-2)延时5毫秒后,向第二类断路器对应的多个恢复联网断路器所在的子站发送检同期合闸信号。
  9. 根据权利要求1所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,在步骤4中接收到合闸预启动信号的快速重构子站根据就地测量信息实时识别到故障被清除或正在被清除时,即第一类断路器被开断或正在被开断时,向本快速重构子站所在厂站内的恢复联网断路器发送检同期合闸信号,这里的故障和第一类断路器不限于本快速重构子站所在厂站,还包括远方其他厂站的故障和第一类断路器。
  10. 根据权利要求1所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,在步骤4中接收到合闸预启动信号的快速重构子站采用下述方法识别故障被清除或正在被清除:
    S10-1)若快速重构子站与第一类断路器在同一厂站内,则快速重构子站通过硬接线直接接收该第一类断路器的跳闸信号,当接收到跳闸信号后,快速重构子站即刻向该第一类断路器对应的恢复联网断路器发送检同期合闸信号;
    S10-2)若快速重构子站与第一类断路器在同一厂站内,则快速重构子站通过硬接线直接接收该第一类断路器相关的保护装置或稳控装置发出的跳闸出口信号;当接收到跳闸出口信号后,快速重构子站延时第四时间段阈值向该第一类断路器对应的恢复联网断路器发送检同期合闸信号;
    S10-3)若快速重构子站与第一类断路器不在同一厂站内,则快速重构子站通过监测站内接收到合闸预启动信号的断路器的两端电压的状态,判断故障被清除的时刻;当判断出故障被清除时,快速重构子站即刻向该第一类断路器对应的恢复联网断路器发送检同期合闸信号。
  11. 根据权利要求10中所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,S10-3)采用下述方法识别故障被清除的时刻:
    S11-1)快速重构子站实时监测接收到合闸预启动信号的断路器所连接的两侧母线中电压较低侧的母线电压Uy;
    S11-2)当Uy大于0.9倍额定电压或者在20ms内电压升高超过0.1倍额定电压时,认为故障被清除,记录该时刻为故障被清除的时刻。
  12. 根据权利要求1所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,在步骤5中快速重构主站监测第一类断路器开断,并发送后备检同期合闸信号方法如下:
    S12-1)快速重构主站通过通信网络从快速重构子站实时接收全网范围内各第一类断路器开断信号或者第一类断路器关联的保护装置或稳控装置的跳闸信号;
    S12-2)快速重构主站通过硬接线实时接收所在厂站内各第一类断路器开断信号或者第一类断路器关联的保护装置或稳控装置的跳闸信号;
    S12-3)当快速重构主站监测到某一第一类断路器开断时,通过通信网络即刻向该第一类断路器对应的多个恢复联网断路器的快速重构子站发送检同期合闸信号,这些恢复联网断路器可以属于不同的快速重构子站或厂站;
    S12-4)当快速重构主站监测到保护装置或稳控装置向某一第一类断路器发送跳闸信号时,延时5ms通过通信网络向该第一类断路器对应的多个恢复联网断路器的快速重构子站发送检同期合闸信号,这些恢复联网断路器可以属于不同的快速重构子站或厂站;
    S12-5)当快速重构子站已经发出检同期合闸信号,并且快速重构子站发送的检同期合闸信号已被执行,则快速重构主站的检同期合闸信号被忽略;否则,执行快速重构主站的检同期合闸信号;即快速重构主站的检同期合闸信号是快速重构子站的检同期合闸信号的后备信号。
  13. 根据权利要求1所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,在步骤4和步骤5中发现第一类断路器开断发生时,即刻向对应的恢复联网断路器发送检同期合闸信号,这里的“即刻”相对于快速重构子站或快速重构主站接收到第一类断路器开断发生时刻的延时应不超过5ms。
  14. 根据权利要求1所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,在步骤6中,接收到检同期合闸信号的恢复联网断路器的快速重构子站判断恢复联网断路器是否同时满足同期合闸条件、无区内故障闭锁和无备用电源故障闭锁,若满足,则给恢复联网断路器发送合闸执行信号。
  15. 根据权利要求1或14所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,步骤6中的检同期方法,恢复联网断路器的同期合闸条件是同时满足如下要求:
    S15-1)恢复联网断路器两侧电压相角差<20°;
    S15-2)恢复联网断路器两侧频差小于1Hz;
    S15-3)恢复联网断路器两侧电压副值差小于0.2倍额定电压。
  16. 根据权利要求1或14所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,步骤6中的区内故障闭锁是指当恢复联网断路器在孤岛区域侧的节点电压满足以下任一条件,则产生对该恢复联网断路器的区内故障闭锁:
    S16-1)存在相电压均小于0.7倍额定电压;
    S16-2)三相电压幅值中,最大值与最小相差大于30%额定电压。
  17. 根据权利要求1或14所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,步骤6中的备用电源故障闭锁是指当恢复联网断路器在备用电源侧的节点电压和频率满足以下任一条件,则产生对该恢复联网断路器的备用电源故障闭锁:
    S17-1)相电压在0.85~1.2倍额定值范围之外;
    S17-2)频率在49.2Hz~50.8Hz范围外。
  18. 根据权利要求1所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,在步骤7中,采用以下方法断开过流的恢复联网断路器或进行限流:若恢复联网断路器合闸后断路器的电流超过允许电流阈值,并持续第五时间段阈值以上,则断开断路器或者触发该快速重构子站对应的快速开关进入高阻抗状态。
  19. 根据权利要求1所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,在步骤8中,采用以下方法解开高低压电磁环网:
    19-1)在步骤6发出合闸执行信号后,若本应跳闸的第一类断路器和第二类断路器仍然为合闸状态,并持续第六时间段阈值,则向这些断路器发出跳闸指令;
    19-2)在步骤6发出合闸执行信号后,若高电压等级的恢复联网断路器为合闸成功状态,并持续第六时间段阈值,则向全部较低电压等级的合闸成功的恢复联网断路器发出跳闸指令;
    应指出的是上述被选择的开断断路器,若满足以下条件,则不进行开断,这些不参与开断的断路 器的选择可以由离线设置实现或者通过在线拓扑分析实现:
    19-3)若低压断路器的断开减少了外电源的接入量,则不跳闸该低压断路器;
    19-4)若外网为单一电源,不可能形成外网功率穿越区域内电网的高低压电磁环网。
  20. 根据权利要求1所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,当电网发生解列后,在最长150ms内恢复被解列孤网的并网。
  21. 根据权利要求4所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,第一电压阈值设为0.5倍额定电压,第一时间段阈值设为10ms。
  22. 根据权利要求5所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,所述第二时间段阈值设为20s。
  23. 根据权利要求6所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于:第一频率偏差阈值取为0.1Hz,第二频率偏差阈值取为0.2Hz,第一频率范围取为49Hz~51Hz,第一频率变化阈值取为0.2Hz/s,第三时间段阈值取为150ms。
  24. 根据权利要求10所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,第四时间段阈值取为5ms。
  25. 根据权利要求18所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,其中的第五时间段阈值取为100ms。
  26. 根据权利要求19所述的一种电网故障后供电网络毫秒级快速重构方法,其特征在于,其中的第六时间段阈值取为150ms。
PCT/CN2019/090354 2019-06-06 2019-06-06 电网故障后供电网络毫秒级快速重构方法及系统 WO2020243951A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/090354 WO2020243951A1 (zh) 2019-06-06 2019-06-06 电网故障后供电网络毫秒级快速重构方法及系统
US16/945,611 US11355961B2 (en) 2019-06-06 2020-07-31 Method and system for fast reconfiguration of power supply network in tens of milliseconos after power grid failure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/090354 WO2020243951A1 (zh) 2019-06-06 2019-06-06 电网故障后供电网络毫秒级快速重构方法及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/945,611 Continuation US11355961B2 (en) 2019-06-06 2020-07-31 Method and system for fast reconfiguration of power supply network in tens of milliseconos after power grid failure

Publications (1)

Publication Number Publication Date
WO2020243951A1 true WO2020243951A1 (zh) 2020-12-10

Family

ID=73652367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090354 WO2020243951A1 (zh) 2019-06-06 2019-06-06 电网故障后供电网络毫秒级快速重构方法及系统

Country Status (2)

Country Link
US (1) US11355961B2 (zh)
WO (1) WO2020243951A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113610391A (zh) * 2021-08-04 2021-11-05 国网江苏省电力有限公司泰州供电分公司 基于挂牌停电与事后原因追溯的配电网双向管控系统
CN113922346A (zh) * 2021-10-09 2022-01-11 华北电力大学 一种主从控制下的中压孤岛微电网故障定位方法和系统
CN114137328A (zh) * 2021-11-29 2022-03-04 西安热工研究院有限公司 一种基于二分之三接线系统的同期定相方法
CN115277485A (zh) * 2022-07-25 2022-11-01 绿盟科技集团股份有限公司 一种网络数据的控制方法、装置及电子设备

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019242657A1 (zh) * 2018-06-19 2019-12-26 清华大学 微电网重构方法、装置、微电网保护控制中心和存储介质
AU2020319910B2 (en) * 2019-07-29 2023-01-05 Enphase Energy, Inc. Method and apparatus for automatic interleaving of cycled loads in a microgrid
US11500407B2 (en) * 2020-02-13 2022-11-15 Schweitzer Engineering Laboratories, Inc. Boundary separation scheme for faults in power systems
CN113013851B (zh) * 2021-01-21 2022-10-21 上海施耐德电气电力自动化有限公司 一种分布式智能配电自动化系统
CN112886578A (zh) * 2021-02-02 2021-06-01 国家电网有限公司 基于保护信息的电网恢复过程中线路可用性在线评估方法
CN113241846B (zh) * 2021-03-02 2022-11-25 天津理工大学 一种配电网电缆快速故障定位及恢复方法
CN113036915B (zh) * 2021-03-04 2024-02-27 国网福建省电力有限公司厦门供电公司 一种基于智能网关的园区供用电设备远程监测及控制方法
CN112886713A (zh) * 2021-04-09 2021-06-01 国网河北省电力有限公司沧州供电分公司 一种基于岸基供电海上油田群的电网紧急控制方法
CN113283703B (zh) * 2021-04-23 2022-08-23 国电南瑞科技股份有限公司 电网预防控制决策生成方法、系统、存储介质及计算设备
CN113193776B (zh) * 2021-05-31 2023-05-30 上海交通大学 基于同步握手协议的mmc结构及控制方法
CN113629669A (zh) * 2021-07-23 2021-11-09 国网浙江省电力有限公司宁波供电公司 基于快速开关的短路电流柔性限制方法
CN113659617A (zh) * 2021-07-28 2021-11-16 中车唐山机车车辆有限公司 一种辅助供电管理系统、方法和轨道车辆
CN113810796A (zh) * 2021-08-02 2021-12-17 国网浙江宁波市鄞州区供电有限公司 一种配电网的网络新型组网架构及其规划方法
CN113644742B (zh) * 2021-08-16 2023-07-28 国网河北省电力有限公司电力科学研究院 配电网负荷的供电切换方法、终端及系统
CN113949067B (zh) * 2021-08-26 2024-03-15 北京空间飞行器总体设计部 一种大功率航天器分布式电源系统重构系统
CN113922362B (zh) * 2021-09-24 2024-03-15 国网北京市电力公司 断路器控制系统及方法
CN113866677B (zh) * 2021-10-15 2024-04-05 贵州电网有限责任公司 基于scada数据的接地故障切除正确性校验方法
CN113746206B (zh) * 2021-11-03 2022-08-23 赫兹曼电力(广东)有限公司 一种网格状的电力系统全面域自愈的方法及系统
CN114442239A (zh) * 2022-02-10 2022-05-06 广西防城港核电有限公司 一种基于光纤接口装置的继电保护信号回路优化配置方法
KR20230143835A (ko) * 2022-04-06 2023-10-13 엘에스일렉트릭(주) 보호 계전 시스템
CN115392790A (zh) * 2022-10-11 2022-11-25 南方电网科学研究院有限责任公司 局部电网分区方法、装置、设备及可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184203A (zh) * 2011-04-27 2011-09-14 中国电力科学研究院 一种构建网络重构数据库的方法
CN102243280A (zh) * 2011-05-16 2011-11-16 中国电力科学研究院 一种基于网络重构的电力系统故障诊断方法
CN202759221U (zh) * 2012-05-25 2013-02-27 南京国网电瑞继保科技有限公司 可实现快速故障隔离与重构的网络继电保护装置
CN106981875A (zh) * 2017-04-26 2017-07-25 国网江西省电力公司电力科学研究院 计及计划孤岛的含dg配电网故障恢复方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4302750A (en) * 1979-08-03 1981-11-24 Compuguard Corporation Distribution automation system
JP2003299263A (ja) * 2002-03-29 2003-10-17 Mitsubishi Electric Corp 監視制御システム
US11016450B2 (en) * 2006-02-14 2021-05-25 Power Analytics Corporation Real-time predictive systems for intelligent energy monitoring and management of electrical power networks
KR100883777B1 (ko) * 2007-01-26 2009-02-18 명지대학교 산학협력단 배전자동화시스템에서 단말장치의 고장표시 생성방법
US7751166B2 (en) * 2007-03-16 2010-07-06 Abb Technology Ag Advanced feeder architecture with automated power restoration
US8892375B2 (en) * 2008-05-09 2014-11-18 Accenture Global Services Limited Power grid outage and fault condition management
SE539916C2 (sv) * 2016-05-11 2018-01-16 Dlaboratory Sweden Ab Metod och anordning för bortkoppling av fel i elnät

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102184203A (zh) * 2011-04-27 2011-09-14 中国电力科学研究院 一种构建网络重构数据库的方法
CN102243280A (zh) * 2011-05-16 2011-11-16 中国电力科学研究院 一种基于网络重构的电力系统故障诊断方法
CN202759221U (zh) * 2012-05-25 2013-02-27 南京国网电瑞继保科技有限公司 可实现快速故障隔离与重构的网络继电保护装置
CN106981875A (zh) * 2017-04-26 2017-07-25 国网江西省电力公司电力科学研究院 计及计划孤岛的含dg配电网故障恢复方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113610391A (zh) * 2021-08-04 2021-11-05 国网江苏省电力有限公司泰州供电分公司 基于挂牌停电与事后原因追溯的配电网双向管控系统
CN113922346A (zh) * 2021-10-09 2022-01-11 华北电力大学 一种主从控制下的中压孤岛微电网故障定位方法和系统
CN113922346B (zh) * 2021-10-09 2022-09-06 华北电力大学 一种主从控制下的中压孤岛微电网故障定位方法和系统
CN114137328A (zh) * 2021-11-29 2022-03-04 西安热工研究院有限公司 一种基于二分之三接线系统的同期定相方法
CN114137328B (zh) * 2021-11-29 2023-12-22 西安热工研究院有限公司 一种基于二分之三接线系统的同期定相方法
CN115277485A (zh) * 2022-07-25 2022-11-01 绿盟科技集团股份有限公司 一种网络数据的控制方法、装置及电子设备
CN115277485B (zh) * 2022-07-25 2023-09-26 绿盟科技集团股份有限公司 一种网络数据的控制方法、装置及电子设备

Also Published As

Publication number Publication date
US11355961B2 (en) 2022-06-07
US20200412167A1 (en) 2020-12-31

Similar Documents

Publication Publication Date Title
WO2020243951A1 (zh) 电网故障后供电网络毫秒级快速重构方法及系统
CN110233478B (zh) 电网故障后供电网络毫秒级快速重构方法及系统
CN109193582B (zh) 一种智能配电网区域保护控制系统及控制方法
CN107069676B (zh) 配电网故障定位及快速隔离恢复控制方法
CN109713794B (zh) 一种分布式智能自恢复系统及方法
CN109347093B (zh) 一种主站与就地控制结合的配电网自愈控制方法
CN104300580B (zh) 基于广域信息的含分布式电源配电网的重合闸方法
CN103683491A (zh) 一种多电源接入变电站防孤岛运行系统
CN112886557B (zh) 一种配电网主站与级差保护协同型自愈方法
CN102496916B (zh) 一种利用电网广域信息的开关失灵保护方法
CN202550668U (zh) 一种分布式配电网管理终端
CN106329497B (zh) 一种基于馈线保护模拟原理的配电网故障自愈死区消除方法
CN109510192B (zh) 配电网以及配电网的自愈方法
CN103972865A (zh) 一种防止电动机投切于短路故障的控制方法
JP2007037354A (ja) 単独運転防止システム
CN112332521B (zh) 母线主变低压双分支配置的分段备自投电路及其控制方法
CN105449835B (zh) 一种区域备自投方法
CN113872160A (zh) 配电网分布式电源联切系统
CN209844638U (zh) 一种带有高压快切装置的供电系统
CN114243658A (zh) 一种应用5g网络切片通信技术的馈线自动化处理方法
CN112182816A (zh) 一种35kV~110kV电网事故失压区域内在线防误操作的方法
Tang et al. Synchrophasor based transmission system anti-islanding scheme
CN116316487B (zh) 一种配电线路的故障自愈方法及系统
CN211880167U (zh) 一种应用于高速电气化铁路的备自投系统
CN213125593U (zh) 一种用于带小水电线路的自动化开关

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931668

Country of ref document: EP

Kind code of ref document: A1