WO2020243916A1 - 一种超声波4d探头 - Google Patents

一种超声波4d探头 Download PDF

Info

Publication number
WO2020243916A1
WO2020243916A1 PCT/CN2019/090094 CN2019090094W WO2020243916A1 WO 2020243916 A1 WO2020243916 A1 WO 2020243916A1 CN 2019090094 W CN2019090094 W CN 2019090094W WO 2020243916 A1 WO2020243916 A1 WO 2020243916A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission mechanism
belt transmission
synchronous belt
ultrasonic
output shaft
Prior art date
Application number
PCT/CN2019/090094
Other languages
English (en)
French (fr)
Inventor
张梦悦
Original Assignee
深圳嘉瑞电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳嘉瑞电子科技有限公司 filed Critical 深圳嘉瑞电子科技有限公司
Priority to PCT/CN2019/090094 priority Critical patent/WO2020243916A1/zh
Priority to CN201990000293.XU priority patent/CN212037573U/zh
Publication of WO2020243916A1 publication Critical patent/WO2020243916A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4444Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to the probe
    • A61B8/4461Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe
    • A61B8/4466Features of the scanning mechanism, e.g. for moving the transducer within the housing of the probe involving deflection of the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4494Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer characterised by the arrangement of the transducer elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • G01S15/892Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array the array being curvilinear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8934Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
    • G01S15/8938Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions
    • G01S15/894Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions by rotation about a single axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8993Three dimensional imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/35Sound-focusing or directing, e.g. scanning using mechanical steering of transducers or their beams
    • G10K11/352Sound-focusing or directing, e.g. scanning using mechanical steering of transducers or their beams by moving the transducer
    • G10K11/355Arcuate movement

Definitions

  • the invention belongs to the field of ultrasonic imaging equipment, and particularly relates to an ultrasonic 4D probe.
  • a 4D probe is also called volume probe or mechanical 3D probe in the industry.
  • the computer synthesizes and reconstructs the two-dimensional ultrasound images of different planes captured by the 4D probe during the ultrasound scanning process, so as to obtain a real-time dynamic three-dimensional image that changes over time, which is more convenient for clinical observation, diagnosis and treatment.
  • a 4D probe usually has a built-in drive motor and a transmission mechanical structure.
  • the drive motor drives the array transducer to reciprocate within a certain angle through the transmission mechanism.
  • the array transducer transmits and receives ultrasonic waves during the swing process to complete image acquisition on different planes.
  • the driving method through which the drive motor drives the array transducer to make precise reciprocating swings is the core technology of the 4D probe.
  • An existing 4D probe transmission mechanism includes a winding wheel, a swinging wheel and a rope.
  • the middle of the rope is wound and fixed on the winding wheel.
  • the head and tail are respectively fixed on both sides of the swinging wheel.
  • the driving motor drives the winding wheel.
  • the wire wheel rotates back and forth, thereby controlling the rope to swing with the swing wheel, so that the array transducer reciprocates.
  • the swing angle controlled by such a transmission mechanism generally does not exceed 90 degrees. After 90 degrees, the motor is nonlinearly controlled, and the swing is prone to noise that affects the user experience.
  • the technical problem to be solved by the present invention is to provide an ultrasonic 4D probe, aiming at the problem that the swing angle controlled by the existing 4D probe transmission mechanical structure is limited (less than 90 degrees), and the swing is prone to noise that affects user experience.
  • An ultrasonic 4D probe includes:
  • the drive motor is fixed inside the housing;
  • a first-level synchronous belt transmission mechanism connected to the drive motor, and driven by the drive motor;
  • a two-stage synchronous belt transmission mechanism is connected with the first-stage synchronous belt transmission mechanism through an intermediate shaft, and moves under the drive of the first-stage synchronous belt transmission mechanism;
  • the array transducer is connected with the secondary synchronous belt transmission mechanism through an output shaft, and is driven by the secondary synchronous belt transmission mechanism to make an oscillating motion.
  • the housing includes:
  • a sealed cavity, an outer wall is provided with a step, the cover body is buckled to the step, and the inside of the sealed cavity is filled with coupling liquid;
  • the driving motor, the primary synchronous belt transmission mechanism, and the secondary synchronous belt transmission mechanism are located in the cover, and the array transducer is located in the sealed cavity.
  • the sealed cavity includes an open container and a sealed end cover, the sealed end cover is concavely formed with a groove, two opposite side walls of the groove are respectively provided with through holes, and the second stage
  • the driven wheel of the synchronous belt transmission mechanism is arranged in the groove and fixed on the output shaft.
  • the two ends of the output shaft respectively pass through the two through holes, and the array transducer is fixed on The two ends of the output shaft.
  • the sealing end cover is provided with two support platforms on the other side of the surface where the groove is located, the intermediate shaft is rotatably arranged on the support platform, and the intermediate shaft and the output shaft parallel.
  • the motor shaft of the driving motor is coaxial with the central axis of the driving wheel of the first-stage synchronous belt transmission mechanism or connected by a coupling.
  • the primary synchronous belt transmission mechanism and/or the secondary synchronous belt transmission mechanism transmit power through meshing.
  • the core wire of the timing belt is made of rigid material
  • the present invention has the beneficial effects that: the present invention adopts a two-stage synchronous belt transmission scheme, through two-stage reduction transmission, a larger transmission ratio is obtained, and the transmission efficiency is high, reaching 98% to 99%, and it also has The transmission is stable and noiseless, which will not bring discomfort to doctors and patients, and is especially suitable for the quiet environment of hospital wards. And compared with the traditional wire rope transmission scheme, the synchronous belt transmission has no restriction on the rotation angle, so it can realize the large-angle swing (greater than 90 degrees) of the array transducer.
  • Fig. 1 is a structural diagram of an embodiment of an ultrasonic 4D probe of the present invention.
  • Fig. 2 is a working principle diagram of the ultrasonic 4D probe of the present invention-static state.
  • Fig. 3 is a working principle diagram of the ultrasonic 4D probe of the present invention—the state of swinging to the left.
  • Figure 4 is a diagram of the working principle of the ultrasonic 4D probe of the present invention-swinging to the right.
  • Fig. 5 is a cross-sectional view of the ultrasonic 4D probe of the present invention after explosion.
  • Fig. 6 is a diagram of an embodiment of the sealed cavity of the ultrasonic 4D probe of the present invention.
  • An embodiment of an ultrasonic 4D probe provided by the present invention includes: a housing 1, a driving motor 2, a first-level synchronous belt transmission mechanism 3 (including a first-level driving wheel 32, a first-level driven wheel 33, The first-level timing belt 34), the second-level timing belt transmission mechanism 4 (including the second-level driving wheel 32, the second-level driven wheel 33, and the second-level timing belt 34), and the array transducer 5.
  • the driving motor 2 is fixed inside the casing; the first-level synchronous belt transmission mechanism 3 is connected to the driving motor 2.
  • the motor shaft of the driving motor 2 can be coaxial with the central axis of the driving wheel of the first-level synchronous belt transmission mechanism 3.
  • the two shafts can be connected by a coupling.
  • the secondary synchronous belt transmission mechanism 4 and the primary synchronous belt transmission mechanism 3 are connected through an intermediate shaft 31, and the array transducer 5 is fixed on the output shaft 41 of the secondary synchronous belt transmission mechanism 4.
  • the working principle is shown in Figure 2-4.
  • the array transducer 5 is in the middle position. After the drive motor 2 is powered on, the drive motor 2 drives the primary synchronous belt transmission mechanism 3, and the primary synchronous belt drive mechanism 3 drives the secondary synchronization.
  • the belt drive mechanism 4 and the array transducer 5 move under the drive of the secondary synchronous belt drive mechanism 4, and the drive motor 2 can be controlled to make the array transducer 5 swing.
  • the invention adopts a two-stage synchronous belt transmission scheme, through two-stage deceleration transmission, a larger transmission ratio is obtained, and the transmission efficiency is high, which can reach 98% to 99%. It also has the characteristics of smooth transmission and no noise, which will not give doctors and patients Bring discomfort, especially suitable for the quiet environment of the hospital ward.
  • the synchronous belt transmission has no restriction on the rotation angle, so it can realize the large-angle swing (greater than 90 degrees) of the array transducer.
  • the transmission structure of the timing belt is relatively simple and compact, which can reduce the volume and weight of the 4D probe, and bring changes to the bulky external image of the 4D probe.
  • the present invention provides a more detailed embodiment of the ultrasonic 4D probe, as shown in FIG. 1 and FIG. 5, wherein the housing of the ultrasonic 4D probe includes a cover 11 and a sealed cavity 12.
  • the outer wall of the sealed cavity 12 is provided with a step 121, and the cover 11 is buckled at the step 121, for example, a buckle or a rotary fixing buckle may be provided for buckling.
  • the sealed cavity 12 contains a coupling liquid 6.
  • the driving motor 2, the primary synchronous belt transmission mechanism 3, and the secondary synchronous belt transmission mechanism 4 are located in the cover 11, and the array transducer 5 is located in the sealed cavity 12.
  • the shell structure is convenient for installation, disassembly and maintenance.
  • the present invention provides the structure of the sealed cavity 12 and the installation method of the output shaft 41.
  • the sealed cavity 12 specifically includes an open container 122 and a sealed end cover 123.
  • the inner recess of the sealed end cover 123 (toward the inside of the cavity) is formed with a groove 124, preferably a groove 124 and the sealing end cover 123 are integrally formed.
  • the two opposite side walls of the groove 124 are respectively provided with through holes 125, and the driven wheel of the secondary timing belt transmission mechanism 4 is arranged in the groove 124 and fixed on the output shaft 41 to rotate synchronously with the output shaft 41.
  • Two ends of the output shaft 41 pass through the two through holes 125 respectively, and the array transducer 5 is fixed on both ends of the output shaft 41.
  • the output shaft 41 can be fixed in the through hole 125 through the bearing 7 so that the output shaft 41 can rotate relative to the through hole 125.
  • fixing the output shaft 41 on the inner side of the sealing end cover 123 can not only transmit power from the outside to the inside, but also prevent the coupling liquid from leaking out, and the sealing effect is good.
  • two support platforms 126 can be provided outside the sealing end cover 123, the intermediate shaft 31 can be mounted on the support platform 126 through bearings, and the intermediate shaft 31 and the output shaft 41 are kept parallel to achieve smooth power transmission.
  • the stable and accurate transmission ratio of the 4D probe is essential for the computer to construct high-quality 4D dynamic images.
  • the transmission mode of meshing instead of friction is preferably adopted between the synchronous belt and the pulley to transmit power, so as to avoid slippage and affect transmission accuracy.
  • the core wire of the timing belt can be made of rigid materials to ensure transmission accuracy. Preferably, it is made of steel wire core wire, glass fiber and other materials with good tensile properties and low elongation to obtain a stable and accurate transmission ratio.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Acoustics & Sound (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Gynecology & Obstetrics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种超声波4D探头,包括:壳体(1);驱动电机(2),固定于所述壳体(1)的内部;一级同步带传动机构(3),与所述驱动电机(2)连接,并由所述驱动电机(2)驱动运动;二级同步带传动机构(4),与所述一级同步带传动机构(3)通过中间轴(31)连接,在所述一级同步带传动机构(3)的带动下运动;阵列换能器(5),与所述二级同步带传动机构(4)通过输出轴(41)连接,在所述二级同步带传动机构(4)的带动下做摆动运动。

Description

一种超声波4D探头 技术领域
本发明属于超声成像设备领域,尤其涉及一种超声波4D探头。
背景技术
(超声波)4D探头在行业内又称为容积探头或机械3D探头, 是通过计算机将4D探头在超声扫描过程中所捕捉到的不同平面的二维超声图像进行合成重构,从而得到一个随时间变化的实时动态三维立体图像,更便于临床的观察和诊疗。4D探头通常内置驱动电机和传动机械结构,驱动电机通过传动机构带动阵列换能器在一定角度内做往复摆动,阵列换能器在摆动过程中发射和接收超声波,以完成不同平面的图像采集。其中,驱动电机通过何种传动方式带动阵列换能器做精确的往复摆动,是4D探头最为核心的技术。
现有的一种4D探头传动机械结构包括绕线轮、摆动轮及绳索,绳索的中部缠绕固定在所述绕线轮上,头部和尾部分别固定在摆动轮的两侧,驱动电机驱动绕线轮往返转动,从而控制绳索带着摆动轮摆动,使阵列换能器做往复摆动。
但此种传动机械结构控制的摆动角度一般不超过90度后,超过90度后,电机为非线性控制,并且摆动容易产生噪音影响用户体验。
发明内容
本发明所要解决的技术问题在于提供一种超声波4D探头,旨在现有的4D探头传动机械结构控制的摆动角度有限(小于90度),并且摆动容易产生噪音影响用户体验的问题。
为解决上述技术问题,本发明是这样实现的,一种超声波4D探头,包括:
壳体;
驱动电机,固定于所述壳体的内部;
一级同步带传动机构,与所述驱动电机连接,并由所述驱动电机驱动运动;
二级同步带传动机构,与所述一级同步带传动机构通过中间轴连接,在所述一级同步带传动机构的带动下运动;
阵列换能器,与所述二级同步带传动机构通过输出轴连接,在所述二级同步带传动机构的带动下做摆动运动。
进一步的,所述壳体包括:
罩体;
密封腔,外壁设置有台阶,所述罩体扣接于所述台阶处,所述密封腔的内部装有耦合液体;
所述驱动电机、所述一级同步带传动机构,以及所述二级同步带传动机构位于所述罩体中,所述阵列换能器位于所述密封腔中。
进一步的,所述密封腔包括一敞口容器和密封端盖,所述密封端盖内凹形成有凹槽,所述凹槽两个相对的侧壁上分别设置有通孔,所述二级同步带传动机构的从动轮设置在所述凹槽中,并固定在所述输出轴上,所述输出轴的两端分别从两个所述通孔穿出,所述阵列换能器固定于所述输出轴的两端。
进一步的,所述密封端盖相对所述凹槽所在面的另一面,设置有两个支撑台,所述中间轴可转动地设置在所述支撑台上,所述中间轴与所述输出轴平行。
进一步的,所述驱动电机的电机轴与所述一级同步带传动机构的主动轮中心轴同轴或通过联轴器连接。
进一步的,所述一级同步带传动机构和/或所述二级同步带传动机构通过啮合传递动力。
进一步的,所述一级同步带传动机构和/或所述二级同步带传动机构中,同步带的芯线采用刚性材料制作
本发明与现有技术相比,有益效果在于:本发明采用两级同步带传动方案,通过两级减速传动,获得较大的传动比,传动效率高,可达到98%~99%,还具有传动平稳无噪音的特点,不会给医生和患者带来不适,特别适合医院病房的安静环境。并且与传统的钢丝绳传动方案比较而言,同步带传动因为没有转动角度的限制,因此可以实现阵列换能器的大角度摆动(大于90度)。
附图说明
图1是本发明的一种超声波4D探头的实施例结构图。
图2是本发明的超声波4D探头工作原理图—静止状态。
图3是本发明的超声波4D探头工作原理图—向左摆动状态。
图4是本发明的超声波4D探头工作原理图—向右摆动状态。
图5是本发明的超声波4D探头爆炸后的剖视图。
图6是本发明的超声波4D探头密封腔的一种实施例图。
在附图中,各附图标记表示:
1、壳体;11、罩体;12、密封腔;121、台阶;122、敞口容器;123、密封端盖;124、凹槽;125、通孔;126、支撑台;2、驱动电机;3、一级同步带传动机构;31、中间轴;32、一级主动轮;33、一级从动轮;34、一级同步带;4、二级同步带传动机构;41、输出轴;42、二级主动轮;43、二级从动轮;44、二级同步带;5、阵列换能器;6、耦合液体;7、轴承。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
本发明提供的一种超声波4D探头的实施例,如图1所示,包括:壳体1、驱动电机2,一级同步带传动机构3(包括一级主动轮32、一级从动轮33、一级同步带34)、二级同步带传动机构4(包括二级主动轮32、二级从动轮33、二级同步带34)、阵列换能器5。驱动电机2固定于壳体的内部;一级同步带传动机构3与驱动电机2连接,具体的,驱动电机2的电机轴可以与一级同步带传动机构3的主动轮中心轴同轴,也可以通过联轴器将两个轴连接。二级同步带传动机构4与一级同步带传动机构3通过中间轴31连接,阵列换能器5固定在二级同步带传动机构4的输出轴41上。
工作原理如图2-4所示,阵列换能器5位于中间位置,给驱动电机2上电后,驱动电机2驱动一级同步带传动机构3,一级同步带传动机构3带动二级同步带传动机构4,阵列换能器5在二级同步带传动机构4的带动下运动,可控制驱动电机2使阵列换能器5做摆动运动。本发明采用两级同步带传动方案,通过两级减速传动,获得较大的传动比,传动效率高,可达到98%~99%,还具有传动平稳无噪音的特点,不会给医生和患者带来不适,特别适合医院病房的安静环境。并且与传统的钢丝绳传动方案比较而言,同步带传动因为没有转动角度的限制,因此可以实现阵列换能器的大角度摆动(大于90度)。另外,同步带的传动结构相对简单,结构紧凑,可以减小4D探头的体积,减轻重量,给4D探头贯有的笨重外部形象带来改变。
本发明提供的一种更为详细的超声波4D探头的实施例,如图1、图5所示,其中,超声波4D探头的壳体包括:罩体11和密封腔12。密封腔12的外壁设置有台阶121,罩体11扣接于台阶121处,例如可以设置卡扣或旋转固定扣进行扣接。密封腔12内装有耦合液体6。驱动电机2、一级同步带传动机构3,以及二级同步带传动机构4位于罩体11中,阵列换能器5位于密封腔12中。本壳体结构便于安装和拆卸维护。
进一步的,本发明提供了密封腔12的结构及输出轴41的安装方法。如图5、图6所示,密封腔12具体包括一敞口容器122和密封端盖123,密封端盖123内凹(向腔体内一侧)形成有凹槽124,较佳的是凹槽124与密封端盖123一体成型。凹槽124两个相对的侧壁上分别设置有通孔125,二级同步带传动机构4的从动轮设置在凹槽124中,并固定在输出轴41上,与输出轴41同步转动。输出轴41的两端分别从两个通孔125穿出,阵列换能器5固定于输出轴41的两端。输出轴41可通过轴承7固定于通孔125中,以实现输出轴41能够相对通孔125转动。本方案中,将输出轴41固定在密封端盖123的内侧,不仅可以将动力由外传递至内部,而且能够防止耦合液体渗出,密封效果良好。
此外,可以在密封端盖123的外侧设置两个支撑台126,中间轴31可通过轴承安装在支撑台126上,并且,中间轴31与输出轴41保持平行,以实现平稳的动力传递。
在B超系统的三维成像算法中,4D探头具有稳定精确的传动比对于计算机构建高质量的4D动态图像是至关重要的。本发明中,一级同步带传动机构、二级同步带传动机构中,同步带与滑轮之间优选采用啮合代替摩擦的传动方式传递动力,避免出现滑差,影响传动精度。同步带的芯线可以采用刚性材料制作,以保证传动精度,优选采用钢丝芯线、玻璃纤维等抗拉性能好、延伸率低的材料制作,可以获得稳定而且精确的传动比。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

  1. 一种超声波4D探头,其特征在于,包括:
    壳体;
    驱动电机,固定于所述壳体的内部;
    一级同步带传动机构,与所述驱动电机连接,并由所述驱动电机驱动运动;
    二级同步带传动机构,与所述一级同步带传动机构通过中间轴连接,在所述一级同步带传动机构的带动下运动;
    阵列换能器,与所述二级同步带传动机构通过输出轴连接,在所述二级同步带传动机构的带动下做摆动运动。
  2. 如权利要求1所述的超声波4D探头,其特征在于,所述壳体包括:
    罩体;
    密封腔,外壁设置有台阶,所述罩体扣接于所述台阶处,所述密封腔的内部装有耦合液体;
    所述驱动电机、所述一级同步带传动机构,以及所述二级同步带传动机构位于所述罩体中,所述阵列换能器位于所述密封腔中。
  3. 如权利要求2所述的超声波4D探头,其特征在于,所述密封腔包括一敞口容器和密封端盖,所述密封端盖内凹形成有凹槽,所述凹槽两个相对的侧壁上分别设置有通孔,所述二级同步带传动机构的从动轮设置在所述凹槽中,并固定在所述输出轴上,所述输出轴的两端分别从两个所述通孔穿出,所述阵列换能器固定于所述输出轴的两端。
  4. 如权利要求3所述的超声波4D探头,其特征在于,所述密封端盖相对所述凹槽所在面的另一面,设置有两个支撑台,所述中间轴可转动地设置在所述支撑台上,所述中间轴与所述输出轴平行。
  5. 如权利要求1-4任一所述的超声波4D探头,其特征在于,所述驱动电机的电机轴与所述一级同步带传动机构的主动轮中心轴同轴或通过联轴器连接。
  6. 如权利要求1-4任一所述的超声波4D探头,其特征在于,所述一级同步带传动机构和/或所述二级同步带传动机构通过啮合传递动力。
  7. 如权利要求1-4任一所述的超声波4D探头,其特征在于,所述一级同步带传动机构和/或所述二级同步带传动机构中,同步带的芯线采用刚性材料制作。
PCT/CN2019/090094 2019-06-05 2019-06-05 一种超声波4d探头 WO2020243916A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/090094 WO2020243916A1 (zh) 2019-06-05 2019-06-05 一种超声波4d探头
CN201990000293.XU CN212037573U (zh) 2019-06-05 2019-06-05 一种超声波4d探头

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/090094 WO2020243916A1 (zh) 2019-06-05 2019-06-05 一种超声波4d探头

Publications (1)

Publication Number Publication Date
WO2020243916A1 true WO2020243916A1 (zh) 2020-12-10

Family

ID=73536005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090094 WO2020243916A1 (zh) 2019-06-05 2019-06-05 一种超声波4d探头

Country Status (2)

Country Link
CN (1) CN212037573U (zh)
WO (1) WO2020243916A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030055338A1 (en) * 2001-09-18 2003-03-20 Josef Steininger Apparatus and methods for ultrasound imaging with positioning of the transducer array
US20070016060A1 (en) * 2005-07-15 2007-01-18 Medison Co., Ltd. Device for moving a transducer of an ultrasonic probe
CN102068279A (zh) * 2011-01-14 2011-05-25 深圳市开立科技有限公司 一种超声扫描探头
CN103006262A (zh) * 2012-12-12 2013-04-03 深圳市理邦精密仪器股份有限公司 一种用于3d超声成像的机械探头和3d超声成像装置
CN104055533A (zh) * 2013-03-21 2014-09-24 深圳深超换能器有限公司 一种4d探头
CN104248448A (zh) * 2013-06-25 2014-12-31 深圳市开立科技有限公司 一种超声三维成像探头
CN107802287A (zh) * 2017-11-16 2018-03-16 深圳纯和医药有限公司 提高超声诊断仪4d机械探头成像稳定度的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030055338A1 (en) * 2001-09-18 2003-03-20 Josef Steininger Apparatus and methods for ultrasound imaging with positioning of the transducer array
US20070016060A1 (en) * 2005-07-15 2007-01-18 Medison Co., Ltd. Device for moving a transducer of an ultrasonic probe
CN102068279A (zh) * 2011-01-14 2011-05-25 深圳市开立科技有限公司 一种超声扫描探头
CN103006262A (zh) * 2012-12-12 2013-04-03 深圳市理邦精密仪器股份有限公司 一种用于3d超声成像的机械探头和3d超声成像装置
CN104055533A (zh) * 2013-03-21 2014-09-24 深圳深超换能器有限公司 一种4d探头
CN104248448A (zh) * 2013-06-25 2014-12-31 深圳市开立科技有限公司 一种超声三维成像探头
CN107802287A (zh) * 2017-11-16 2018-03-16 深圳纯和医药有限公司 提高超声诊断仪4d机械探头成像稳定度的方法

Also Published As

Publication number Publication date
CN212037573U (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
US4238962A (en) Transducer drive for ultrasonic imaging
EP2457516B1 (en) Three-dimensional ultrasonic scanner
US10149662B2 (en) 3D mechanical probe
WO2020243916A1 (zh) 一种超声波4d探头
CN102988081A (zh) 超声扫描探头
CN219109524U (zh) 一种三维超声探头
CN100500102C (zh) B型超声位置反馈式机械扇扫探头装置
CN203483452U (zh) 一种用于三维超声成像的机械探头
JP2015036122A (ja) 超音波診断装置
CN107007894B (zh) 一种超声直线电机驱动的可植入式搏动血泵
CN203524700U (zh) 一种三维超声探头中的摆动控制机构及其三维超声探头
CN103356240A (zh) 超声波探头
WO2024050882A1 (zh) 全方位观察欠驱动胶囊机器人及其轴线翻转磁控操作方法
CN209523994U (zh) 一种万向节锁紧机构及全乳腺超声系统
KR102333542B1 (ko) 초음파 프로브 및 그 제어 방법
CN208958165U (zh) 三维超声机械探头
US11974879B2 (en) Three dimensional mechanical ultrasound probe
CN109718057B (zh) 一种双速摆动式乳腺癌术后康复训练装置
CN201088595Y (zh) B型超声位置反馈式机械扇扫探头装置
CN106671126B (zh) 基于中空超声电机且带有支架和双波纹管的机器人手腕
CN207979980U (zh) 一种按摩机芯
CN112222082A (zh) 一种医疗美容用小型器械清洗装置
CN212996505U (zh) 一种新型的超声3d图像设备
JP2007222247A (ja) 短軸遥動型超音波探触子
CN102085103B (zh) 一种实现锥形扫描的三维b超装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/04/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19931892

Country of ref document: EP

Kind code of ref document: A1