WO2020242161A1 - 신규한 화합물 및 이를 이용한 유기발광 소자 - Google Patents

신규한 화합물 및 이를 이용한 유기발광 소자 Download PDF

Info

Publication number
WO2020242161A1
WO2020242161A1 PCT/KR2020/006754 KR2020006754W WO2020242161A1 WO 2020242161 A1 WO2020242161 A1 WO 2020242161A1 KR 2020006754 W KR2020006754 W KR 2020006754W WO 2020242161 A1 WO2020242161 A1 WO 2020242161A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
layer
substituted
emitting device
Prior art date
Application number
PCT/KR2020/006754
Other languages
English (en)
French (fr)
Inventor
이정하
이동훈
장분재
서상덕
정민우
한수진
박슬찬
황성현
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200061908A external-priority patent/KR102322872B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202080005711.1A priority Critical patent/CN112912375B/zh
Publication of WO2020242161A1 publication Critical patent/WO2020242161A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers

Definitions

  • the organic light emitting device generally has a structure including an anode and a cathode, and an organic material layer between the anode and the cathode.
  • the organic material layer is often made of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light emitting device.For example, it may be formed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • a voltage is applied between the two electrodes
  • holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and excitons are formed when the injected holes and electrons meet. It glows when it falls back to the ground.
  • the present invention relates to an organic light-emitting device comprising the novel compound.
  • the present invention provides a compound represented by the following formula 1:
  • X 1 , X 2 and X 3 are each independently N or CH, provided that at least one of X 1 , X 2 , and X 3 is N,
  • Y is O, '1, and wherein R' S or NR 1 is a substituted or unsubstituted C 6-60 aryl,
  • L 1 and L 2 are each independently a direct bond, a substituted or unsubstituted C 6-60 arylene, or a substituted or unsubstituted C containing at least one hetero atom selected from the group consisting of N, O and S 5-60 heteroarylene,
  • Each R 1 is independently hydrogen, deuterium or substituted or substituted C 6-60 aryl
  • Ra is any one selected from the group consisting of,
  • Each R 2 is independently hydrogen, deuterium, or substituted or unsubstituted C 6-60 aryl,
  • n is each independently an integer of 0 to 7
  • p is an integer from 0 to 5
  • a is an integer from 0 to 4.
  • the present invention is a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises the compound of the present invention.
  • FIG. 1 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • FIG. 2 shows a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron suppression layer (7), a light emitting layer (3), an electron transport layer (8), an electron injection layer (9). And an example of an organic light-emitting device including the cathode 4 is shown.
  • substituted or unsubstituted refers to deuterium (D); Halogen group; Nitrile group; Nitro group; Hydroxy group; Carbonyl group; Ester group; Imide group; Amino group; Phosphine oxide group; Alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy group; Arylsulfoxy group; Silyl group; Boron group; Alkyl group; Cycloalkyl group; Alkenyl group; Aryl group; Aralkyl group; Aralkenyl group; Alkylaryl group; Alkylamine group; Aralkylamine group; Heteroarylamine group; Arylamine group; Arylphosphine group; Or it means a substituted or unsubstituted substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocyclic group containing one or more of N, O and S atoms,
  • a substituent to which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent to which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but it is preferably 1 to 40 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably 1 to 25 carbon atoms. Specifically, it may be a compound having the following structure, but is not limited thereto.
  • the silyl group is specifically trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, etc. However, it is not limited thereto.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cycloheptylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhex
  • the alkenyl group may be a linear or branched chain, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • the cycloalkyl group is not particularly limited, but is preferably 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • Etc When the fluorenyl group is substituted, Etc.
  • Etc it is not limited thereto.
  • the heterocyclic group is a heterocyclic group including at least one of O, N, Si and S as a heterogeneous element, and the number of carbons is not particularly limited, but it is preferably 2 to 60 carbon atoms.
  • the heterocyclic group include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, acridyl group , Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , Car
  • the description of the aryl group described above may be applied except that the arylene is a divalent group.
  • the description of the aforementioned heterocyclic group may be applied except that the heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the aryl group or the cycloalkyl group described above may be applied except that the hydrocarbon ring is formed by bonding of two substituents.
  • the heterocycle is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that two substituents are bonded to each other.
  • the present invention provides a compound represented by the following formula 1:
  • X 1 , X 2 and X 3 are each independently N or CH, provided that at least one of X 1 , X 2 , and X 3 is N,
  • Y is O, '1, and wherein R' S or NR 1 is a substituted or unsubstituted C 6-60 aryl,
  • L 1 and L 2 are each independently a direct bond, a substituted or unsubstituted C 6-60 arylene, or a substituted or unsubstituted C containing at least one hetero atom selected from the group consisting of N, O and S 5-60 heteroarylene,
  • Each R 1 is independently hydrogen, deuterium or substituted or substituted C 6-60 aryl
  • Ra is any one selected from the group consisting of,
  • Each R 2 is independently hydrogen, deuterium, or substituted or unsubstituted C 6-60 aryl,
  • R 3 is substituted or unsubstituted C 6-60 aryl
  • n is each independently an integer of 0 to 7
  • n is an integer from 0 to 8
  • p is an integer from 0 to 5
  • a is an integer from 0 to 4.
  • L 1 and L 2 are each independently a direct bond or phenylene.
  • R '1 is a phenyl unsubstituted or substituted with one or more deuterium.
  • each R 1 is independently hydrogen, deuterium, or phenyl unsubstituted or substituted with one or more deuterium.
  • each R 2 is independently hydrogen, deuterium, or phenyl unsubstituted or substituted with one or more deuterium.
  • R 3 is phenyl unsubstituted or substituted with one or more deuterium.
  • the terminal substituent of the compound represented by Formula 1 In the case of further substitution with deuterium (D), it is preferable that the lifespan characteristics can be improved when applied to an organic light emitting device.
  • the compound represented by Formula 1 is any one selected from the group consisting of:
  • the compound represented by Formula 1 can be prepared through the following Scheme A.
  • Z 1 and Z 2 are as defined above, and Z 1 and Z 2 are each independently halogen, for example, bromo or chloro.
  • Reaction Scheme A the reactants, catalysts, solvents, and the like to be used can be changed to suit the desired product.
  • the method for preparing the compound of Formula 1 may be more specific in Preparation Examples to be described later.
  • the present invention provides an organic light-emitting device including the compound represented by Chemical Formula 1.
  • the present invention provides a first electrode; A second electrode provided to face the first electrode; And one or more organic material layers provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes a compound represented by Formula 1 do.
  • the organic material layer of the organic light emitting device of the present invention may have a single-layer structure, but may have a multilayer structure in which two or more organic material layers are stacked.
  • the organic light-emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, an electron suppression layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic material layer may include a hole injection layer, a hole transport layer, or a layer that simultaneously injects and transports holes, and the hole injection layer, a hole transport layer, or a layer that simultaneously injects and transports holes is represented by Formula 1 above. Including the indicated compound.
  • the organic material layer may include an electron inhibiting layer, and the electron inhibiting layer includes a compound represented by Formula 1 above.
  • the organic material layer may include an emission layer, and the emission layer includes the compound represented by Chemical Formula 1.
  • the organic material layer may include an electron transport layer, an electron injection layer, or a layer for simultaneous electron transport and electron injection
  • the electron transport layer, an electron injection layer, or a layer for simultaneous electron transport and electron injection is represented by the formula It includes the compound represented by 1.
  • the organic light emitting device according to the present invention may be an organic light emitting device having a structure (normal type) in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device according to the present invention may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of an organic light-emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
  • FIG. 1 shows an example of an organic light emitting device comprising a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • the compound represented by Formula 1 may be included in the emission layer.
  • the compound represented by Formula 1 may be included in one or more of the hole injection layer, the hole transport layer, the electron suppression layer, the light-emitting layer, the electron transport layer, and the electron injection layer.
  • the organic light-emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one of the organic material layers includes the compound represented by Chemical Formula 1.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • the anode is formed by depositing a metal or a conductive metal oxide or an alloy thereof on the substrate.
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer and an electron transport layer thereon it can be prepared by depositing a material that can be used as a cathode thereon.
  • an organic light-emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Formula 1 may be formed as an organic material layer by a solution coating method as well as a vacuum deposition method when manufacturing an organic light emitting device.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • an organic light-emitting device may be manufactured by sequentially depositing an organic material layer and an anode material from a cathode material on a substrate (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode
  • the cathode material a material having a large work function is preferable so that holes can be smoothly injected into the organic material layer.
  • the cathode material include metals such as vanadium, chromium, copper, zinc, and gold, or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); A combination of a metal and an oxide such as ZnO:Al or SNO 2 :Sb; Poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), conductive polymers such as polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multi-layered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • the hole injection layer is a layer that injects holes from an electrode, and has the ability to transport holes as a hole injection material, so that it has a hole injection effect at the anode, an excellent hole injection effect for a light emitting layer or a light emitting material.
  • a compound that prevents the movement of excitons to the electron injection layer or the electron injection material and has excellent ability to form a thin film is preferable.
  • the HOMO (highest occupied molecular orbital) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • hole injection materials include metal porphyrin, oligothiophene, arylamine-based organic substances, hexanitrile hexaazatriphenylene-based organic substances, quinacridone-based organic substances, and perylene-based organic substances.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer.
  • a hole transport material a material capable of transporting holes from the anode or the hole injection layer to the light emitting layer and having high mobility for holes This is suitable.
  • Specific examples include an arylamine-based organic material, a conductive polymer, and a block copolymer including a conjugated portion and a non-conjugated portion, but are not limited thereto.
  • the electron-suppression layer is a layer between the hole-transport layer and the light-emitting layer in order to prevent electrons injected from the cathode from passing over to the hole-transport layer without being recombined in the light-emitting layer, and is also called an electron-blocking layer.
  • the electron-suppressing layer is preferably a material having less electron affinity than the electron transport layer.
  • the light-emitting material a material capable of emitting light in a visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency against fluorescence or phosphorescence is preferable.
  • the emission layer may include a host material and a dopant material.
  • Host materials include condensed aromatic ring derivatives or heterocyclic-containing compounds.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • heterocycle-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • Dopant materials include aromatic amine derivatives, strylamine compounds, boron complexes, fluoranthene compounds, and metal complexes.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group
  • the styrylamine compound is substituted or unsubstituted
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group
  • the styrylamine compound is substituted or unsubstituted
  • at least one arylvinyl group is substituted on the arylamine, one or two or more substituents selected from the group consisting
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the emission layer.
  • an electron transport material a material capable of receiving electrons from the cathode and transferring them to the emission layer is suitable. Do. Specific examples include Al complex of 8-hydroxyquinoline; Complexes containing Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used according to the prior art.
  • suitable cathode materials are conventional materials that have a low work function and are followed by an aluminum layer or a silver layer. Specifically, they are cesium, barium, calcium, ytterbium, and samarium, and in each case an aluminum layer or a silver layer follows.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer A compound that prevents migration to the layer and has excellent thin film formation ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone, and their derivatives, metals Complex compounds and nitrogen-containing 5-membered ring derivatives, but are not limited thereto.
  • the organic light emitting device may be a top emission type, a bottom emission type, or a double-sided emission type depending on the material used.
  • the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • A3-1 (21.7 g, 64.6 mmol) and bis (pinacolato) diboron (19.7 g, 77.5 mmol) were added to 434 ml of Diox and stirred and refluxed. Thereafter, potassium acetate (18.6 g, 193.9 mmol) was added and sufficiently stirred, and then palladium dibenzylidene acetone palladium (1.1 g, 1.9 mmol) and tricyclohexylphosphine (1.1 g, 3.9 mmol) were added. After reaction for 4 hours, after cooling to room temperature, the organic layer was filtered to remove salt, and the filtered organic layer was distilled.
  • Compound A4 was prepared in the same manner as in Preparation Example 1-2, except that 2-chloro-benzothiazole was used instead of 2-chloro-benzoxazole.
  • Compound A5 was prepared in the same manner as in Preparation Example 1-2, except that 2-chloro-1-phenyl-1H-benzoimidazole was used instead of 2-chloro-benzoxazole.
  • Compound A6 was prepared in the same manner as in Preparation Example 1-2, except that 2-(3-bromophenyl)benzothiazole was used instead of 2-chloro-benzoxazole.
  • Compound A7 was prepared in the same manner as in Preparation Example 1-2, except that 2-(4-bromophenyl)benzooxazole was used instead of 2-chloro-benzoxazole.
  • the following hexanitrile hexaazatriphenylene (HAT) compound was thermally vacuum deposited to a thickness of 500 ⁇ to form a hole injection layer.
  • the HT-1 compound was thermally vacuum deposited to a thickness of 800 ⁇ on the hole injection layer, and the HT-2 compound was sequentially vacuum deposited to a thickness of 500 ⁇ to form a hole transport layer.
  • compound 1 prepared as a host, the following H1 compound, and a phosphorescent dopant GD were co-deposited at a weight ratio of 47:47:6 to form a light emitting layer having a thickness of 350 ⁇ .
  • a hole blocking layer is formed by vacuum depositing an ET-1 material to a thickness of 50 ⁇ on the emission layer, and 250 ⁇ electrons by vacuum depositing an ET-2 material and LiQ (Lithium Quinolate) on the hole blocking layer at a weight ratio of 1:1 A transport layer was formed.
  • Lithium pyride (LiF) having a thickness of 10 ⁇ was sequentially deposited on the electron transport layer, and aluminum was deposited thereon to a thickness of 1000 ⁇ to form a negative electrode.
  • the deposition rate of the organic material was maintained at 0.4 ⁇ 0.7 ⁇ /sec
  • the deposition rate of lithium fluoride at the cathode was 0.3 ⁇ /sec
  • the deposition rate of aluminum was 2 ⁇ /sec
  • the vacuum degree during deposition was 1 ⁇ 10. -7 ⁇ 5 ⁇ 10 -8 torr was maintained.
  • the organic light-emitting devices of Comparative Examples 1 to 3 were fabricated using the same method as in Example 1, except that the following C1 to C3 were used as in Table 1 instead of Compound 1 as a host when forming the emission layer. I did.
  • T95 refers to the time it takes for the luminance to decrease to 95% from the initial luminance.
  • the organic light-emitting device according to the embodiment has an efficiency increase of about 10% and a lifetime increase of about 20-50% compared to Compound C1, which is a phosphorescent host material that is commonly used.
  • the compounds of the present invention exhibited superior properties in terms of efficiency and life according to the position of the substituent and the type of the substituent compared to the comparative compounds.
  • substrate 2 anode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

본 발명은 신규한 화합물 및 이를 이용한 유기 발광 소자를 제공한다.

Description

신규한 화합물 및 이를 이용한 유기발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2019년 5월 24일자 한국 특허 출원 제 10-2019-0061426호 및 2020년 5월 22일자 한국 특허 출원 제 10-2020-0061908호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 신규한 화합물 및 이를 이용한 유기발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
선행기술문헌
특허문헌
(특허문헌 0001) 한국특허 공개번호 제10-2013-073537호
본 발명은 신규한 화합물 이를 포함하는 유기 발광 소자에 관한 것이다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2020006754-appb-img-000001
상기 화학식 1에서,
X 1, X 2 및 X 3는 각각 독립적으로, N 또는 CH이고, 단, X 1, X 2, 및 X 3 중 하나 이상이 N이고,
Y는 O, S 또는 NR' 1이고, 여기서 R' 1은 치환 또는 비치환된 C 6-60 아릴이고,
L 1 및 L 2는 각각 독립적으로, 직접 결합, 치환 또는 비치환된 C 6-60 아릴렌 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C 5-60 헤테로아릴렌이고,
R 1는 각각 독립적으로, 수소, 중수소 또는 치환 또는 치환된 C 6-60 아릴이고,
Ra는 하기로 구성되는 군으로부터 선택되는 어느 하나이고,
Figure PCTKR2020006754-appb-img-000002
R 2는 각각 독립적으로, 수소, 중수소 또는 치환 또는 비치환된 C 6-60 아릴이고,
R 3는 치환 또는 비치환된 C 6-60 아릴이고,
n은 각각 독립적으로 0 내지 7의 정수이고,
m는 0 내지 8의 정수이고,
p는 0 내지 5의 정수이고,
a는 0 내지 4의 정수이다.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 전술한 본 발명의 화합물을 포함하는 유기 발광 소자를 제공한다.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(3), 전자수송층(8), 전자주입층(9) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
(용어의 정의)
본 명세서에서,
Figure PCTKR2020006754-appb-img-000003
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소(D); 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020006754-appb-img-000004
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020006754-appb-img-000005
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2020006754-appb-img-000006
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸,사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2020006754-appb-img-000007
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 티아졸릴기, 이소옥사졸릴기, 옥사디아졸릴기, 티아디아졸릴기, 벤조티아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
(화합물)
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:
[화학식 1]
Figure PCTKR2020006754-appb-img-000008
상기 화학식 1에서,
D는 중수소를 의미하고,
X 1, X 2 및 X 3는 각각 독립적으로, N 또는 CH이고, 단, X 1, X 2, 및 X 3 중 하나 이상이 N이고,
Y는 O, S 또는 NR' 1이고, 여기서 R' 1은 치환 또는 비치환된 C 6-60 아릴이고,
L 1 및 L 2는 각각 독립적으로, 직접 결합, 치환 또는 비치환된 C 6-60 아릴렌 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C 5-60 헤테로아릴렌이고,
R 1는 각각 독립적으로, 수소, 중수소 또는 치환 또는 치환된 C 6-60 아릴이고,
Ra는 하기로 구성되는 군으로부터 선택되는 어느 하나이고,
Figure PCTKR2020006754-appb-img-000009
R 2는 각각 독립적으로, 수소, 중수소 또는 치환 또는 비치환된 C 6-60 아릴이고,
R 3는 치환 또는 비치환된 C 6-60 아릴이고,
n은 각각 독립적으로 0 내지 7의 정수이고,
m는 0 내지 8의 정수이고,
p는 0 내지 5의 정수이고,
a는 0 내지 4의 정수이다.
바람직하게는, L 1 및 L 2는 각각 독립적으로, 직접 결합, 또는 페닐렌이다.
바람직하게는, R' 1은 하나 이상의 중수소로 치환 또는 비치환된 페닐이다.
바람직하게는, R 1은 각각 독립적으로, 수소, 중수소 또는 하나 이상의 중수소로 치환 또는 비치환된 페닐이다.
바람직하게는, R 2는 각각 독립적으로, 수소, 중수소 또는 하나 이상의 중수소로 치환 또는 비치환된 페닐이다.
바람직하게는, R 3는 하나 이상의 중수소로 치환 또는 비치환된 페닐이다.
상기 화학식 1로 표시되는 화합물의 말단 치환기가 추가로 중수소(D)로 치환되는 경우, 유기 발광 소자에 적용시 수명 특성이 개선될 수 있어 바람직하다.
바람직하게는, 상기 화학식 1로 표시되는 화합물은, 하기로 구성되는 군으로부터 선택되는 어느 하나이다:
Figure PCTKR2020006754-appb-img-000010
Figure PCTKR2020006754-appb-img-000011
Figure PCTKR2020006754-appb-img-000012
Figure PCTKR2020006754-appb-img-000013
Figure PCTKR2020006754-appb-img-000014
Figure PCTKR2020006754-appb-img-000015
Figure PCTKR2020006754-appb-img-000016
Figure PCTKR2020006754-appb-img-000017
Figure PCTKR2020006754-appb-img-000018
Figure PCTKR2020006754-appb-img-000019
Figure PCTKR2020006754-appb-img-000020
Figure PCTKR2020006754-appb-img-000021
Figure PCTKR2020006754-appb-img-000022
Figure PCTKR2020006754-appb-img-000023
Figure PCTKR2020006754-appb-img-000024
Figure PCTKR2020006754-appb-img-000025
_
Figure PCTKR2020006754-appb-img-000026
Figure PCTKR2020006754-appb-img-000027
Figure PCTKR2020006754-appb-img-000028
Figure PCTKR2020006754-appb-img-000029
Figure PCTKR2020006754-appb-img-000030
Figure PCTKR2020006754-appb-img-000031
Figure PCTKR2020006754-appb-img-000032
Figure PCTKR2020006754-appb-img-000033
Figure PCTKR2020006754-appb-img-000034
.
상기 화학식 1로 표시되는 화합물은 하기 반응식 A를 거쳐 제조할 수 있다.
[반응식 A]
Figure PCTKR2020006754-appb-img-000035
상기 반응식 A에서, Z 1 및 Z 2를 제외한 나머지는 앞서 정의한 바와 같고, Z 1 및 Z 2는 각각 독립적으로 할로겐, 예를 들어, 브로모 또는 클로로이다.
상기 반응식 A에서, 사용되는 반응물, 촉매, 용매 등은 목적하는 생성물에 적합하게 변경이 가능하다. 화학식 1의 화합물의 제조 방법은 후술할 제조예에서 보다 구체화 될 수 있다.
(유기 발광 소자)
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서, 정공주입층, 정공수송층, 전자억제층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
또한, 상기 유기물 층은 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층을 포함할 수 있고, 상기 정공주입층, 정공수송층, 또는 정공 주입과 수송을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 전자억제층을 포함할 수 있고, 상기 전자억제층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 상기 유기물 층은 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층을 포함할 수 있고, 상기 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다.
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자억제층(7), 발광층(3), 전자수송층(8), 전자주입층(9) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 전자억제층, 발광층, 전자수송층 및 전자주입층 중 1층 이상에 포함될 수 있다.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SNO 2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO 2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 전자억제층은 음극에서 주입된 전자가 발광층에서 재결합되지 않고 정공수송층으로 넘어가는 것을 방지하기 위해 정공수송층과 발광층의 사이에 두는 층으로는 층으로, 전자저지층으로 불리기도 한다. 전자억제층에는 전자수송층보다 전자 친화력이 작은 물질이 바람직하다.
상기 발광 물질로는 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq 3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq 3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.
상기 화학식 1로 표시되는 화합물 및 이를 포함하는 유기 발광 소자의 제조를 이하 실시예에서 구체적으로 설명한다. 그러나 하기 실시예는 본 발명을 예시하기 위한 것이며, 본 발명의 범위가 이들에 의하여 한정되는 것은 아니다.
[제조예]
제조예 1-1: 화합물 A2의 합성
Figure PCTKR2020006754-appb-img-000036
1) 화합물 A1 의 제조
질소 분위기에서 1000ml 둥근 바닥 플라스크에 4-클로로 디벤조싸이오펜(100 g, 0.45 mol)와 아세트산 300 ml을 넣고, 저온에서 브로민(73.1 g, 0.47 mol)를 dropping funnel을 이용하여 천천히 넣어준 뒤, 실온에서 15시간 교반하였다. 이 후, 필터하여 얻어진 고체를 테트라하이드로퓨란에 녹여 물과 sodium thiosulfate용액으로 씻어준 뒤, 유기층을 분리해 내고 에탄올을 이용하여 재결정화 시켜 중간체 A1 을 얻었다(85 g, 수율 62%, MS:[M+H] += 296).
2) 화합물 A2 의 제조
화합물 A1 (85.0 g, 285.6 mmol)을 테트라하이드로퓨란(850 mL)에 녹인 후, -78℃로 온도를 낮추고 2.5 M 터셔리-부틸리튬(t-BuLi)(115.4 mL, 288.5 mmol)을 천천히 가하였다. 동일 온도에서 1시간 동안 교반한 후 트리아이소프로필보레이트(98.9 mL, 428.4 mmol)을 가하고, 상온으로 온도를 서서히 올리면서 2.5시간동안 교반하였다. 반응 혼합물에 2 N 염산수용액(900 mL)을 가하고 1.5시간 동안 상온에서 교반하였다. 생성된 침전물을 거르고 물과 에틸에테르(ethyl ether)로 차례로 씻은 후 진공 건조하여 화합물 A2 (68.1 g, 수율 91 %; MS:[M+H] +=263)를 제조하였다.
제조예 1-2: 화합물 A3의 합성
Figure PCTKR2020006754-appb-img-000037
1) 화합물 A3-1의 제조
질소 분위기에서 A2(20 g, 76.2 mmol)와 2-클로로-벤조옥사졸(11.7 g, 76.2mmol)를 1,4-디옥세인 600ml에 넣고 교반 및 환류하였다. 이 후 세슘카보네이트(74.5 g, 228.6mmol)를 물74 ml에 녹여 투입하고 충분히 교반한 후 비스(트리 터셔리-부틸포스핀)팔라듐(0.8 g, 1.5mmol)을 투입하였다. 5시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 클로로포름 1279 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 A3-1(21.7g, 85%, MS: [M+H]+ = 336.8)을 제조하였다.
2) 화합물 A3의 제조
질소 분위기에서 A3-1(21.7 g, 64.6 mmol)와 비스(피나콜라토)디보론(19.7 g, 77.5mmol)를 Diox 434ml에 넣고 교반 및 환류하였다. 이 후 포타슘아세테이트(18.6 g, 193.9mmol)를투입하고 충분히 교반한 후 팔라듐디벤질리덴아세톤팔라듐(1.1 g, 1.9mmol) 및 트리시클로헥실포스핀 (1.1 g, 3.9mmol) 을 투입하였다. 4시간 반응 후 상온으로 식인 후 유기층을 필터처리하여 염을 제거 한 후 걸러진 유기층을 증류하였다. 이를 다시 클로로포름 828 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에탄올재결정을 통해 아이보리색의 고체 화합물 A3(21.5g, 78%, MS: [M+H]+ = 428.1)을 제조하였다.
제조예 1-3: 화합물 A4의 합성
Figure PCTKR2020006754-appb-img-000038
2-클로로-벤조옥사졸 대신 2-클로로-벤조싸이아졸을 사용한 것을 제외하고 제조예 1-2의 화합물 A3의 제조와 동일한 방법으로 화합물 A4를 제조하였다.
제조예 1-4: 화합물 A5의 합성
Figure PCTKR2020006754-appb-img-000039
2-클로로-벤조옥사졸 대신 2-클로로-1-페닐-1H-벤조이미다졸을 사용한 것을 제외하고 제조예 1-2의 화합물 A3의 제조와 동일한 방법으로 화합물 A5를 제조하였다.
제조예 1-5: 화합물 A6의 합성
Figure PCTKR2020006754-appb-img-000040
2-클로로-벤조옥사졸 대신 2-(3-브로모페닐)벤조싸이아졸을 사용한 것을 제외하고 제조예 1-2의 화합물 A3의 제조와 동일한 방법으로 화합물 A6를 제조하였다.
제조예 1-6: 화합물 A7의 합성
Figure PCTKR2020006754-appb-img-000041
2-클로로-벤조옥사졸 대신 2-(4-브로모페닐)벤조옥사솔을 사용한 것을 제외하고 제조예 1-2의 화합물 A3의 제조와 동일한 방법으로 화합물 A7를 제조하였다.
[실시예]
실시예 1: 화합물 1의 제조
Figure PCTKR2020006754-appb-img-000042
질소 분위기에서 화합물 A3(5 g, 11.7 mmol)와 2-클로로-4-(디벤조퓨란-2-일)-6-페닐l-1,3,5-트리아진(4.2 g, 11.7mmol)를 테트라하이드로퓨란 125ml에 넣고 교반 및 환류하였다. 이 후 포타슘카보네이트(4.9 g, 35.1mmol)를 물5 ml에 녹여 투입하고 충분히 교반한 후 비스(트리 터셔리-부틸포스핀)팔라듐(0.2 g, 0.4mmol)을 투입하였다. 7시간 반응 후 상온으로 식인 후 생성된 고체를 여과하였다. 고체를 테트라하이드로퓨란 364 mL에 투입하여 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 테트라하이드로퓨란과 에틸아세테이트재결정을 통해 흰색의 고체 화합물 1(6g, 82%, MS: [M+H]+ = 623.1)을 제조하였다.
실시예 2: 화합물 2의 제조
Figure PCTKR2020006754-appb-img-000043
2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 2-클로로-4-(디벤조싸이오펜-4-일)-6-페닐-1,3,5-트리아진을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 2를 제조하였다(6.3 g, 수율 85%, MS:[M+H] += 639).
실시예 3: 화합물 3의 제조
Figure PCTKR2020006754-appb-img-000044
2-클로로-4-(디벤조퓨란-2-일)-6-페닐l-1,3,5-트리아진 대신 2-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-9-페닐-9H-카바졸을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 3를 제조하였다(7.3 g, 수율 89%, MS:[M+H] += 698).
실시예 4: 화합물 4의 제조
Figure PCTKR2020006754-appb-img-000045
2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 9-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-4-페닐-9H-카바졸을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 4를 제조하였다(6.6 g, 수율 81%, MS:[M+H] += 698).
실시예 5: 화합물 5의 제조
Figure PCTKR2020006754-appb-img-000046
화합물 A3와 2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 화합물 A4와 2-클로로-4-(디벤조퓨란-3-일)-6-페닐-1,3,5-트리아진을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 5를 제조하였다(6.0 g, 수율 83%, MS:[M+H] += 639).
실시예 6: 화합물 6의 제조
Figure PCTKR2020006754-appb-img-000047
화합물 A3와 2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 화합물 A4와 2-클로로-4-(디벤조싸이오펜-4-일)-6-(페닐-d5)-1,3,5-트리아진을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 6를 제조하였다(5.7 g, 수율 77%, MS:[M+H] += 660).
실시예 7: 화합물 7의 제조
Figure PCTKR2020006754-appb-img-000048
화합물 A3와 2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 화합물 A4와 3-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-9-페닐-9H-카바졸을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 7를 제조하였다(6.0 g, 수율 75%, MS:[M+H] += 714).
실시예 8: 화합물 8의 제조
Figure PCTKR2020006754-appb-img-000049
화합물 A3와 2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 화합물 A4와 9-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-4-페닐-9H-카바졸을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 8를 제조하였다(5.7 g, 수율 71%, MS:[M+H] += 714).
실시예 9: 화합물 9의 제조
Figure PCTKR2020006754-appb-img-000050
화합물 A3와 2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 화합물 A4와 2-(3-클로로페닐)-4-(디벤조퓨란-4-일)-6-페닐-1,3,5-트리아진을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 9를 제조하였다(5.3 g, 수율 66%, MS:[M+H] += 715).
실시예 10: 화합물 10의 제조
Figure PCTKR2020006754-appb-img-000051
화합물 A3와 2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 화합물 A5와 2-클로로-4-(디벤조퓨란-1-일)-6-페닐-1,3,5-트리아진을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 10을 제조하였다(4.5 g, 수율 65%, MS:[M+H] += 698).
실시예 11: 화합물 11의 제조
Figure PCTKR2020006754-appb-img-000052
화합물 A3와 2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 화합물 A5와 2-클로로-4-(디벤조싸이오펜-2-일)-6-페닐-1,3,5-트리아진을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 11를 제조하였다(4.3 g, 수율 61%, MS:[M+H] += 714).
실시예 12: 화합물 12의 제조
Figure PCTKR2020006754-appb-img-000053
화합물 A3와 2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 화합물 A5와 9-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-2-페닐-9H-카바졸을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 12를 제조하였다(5.4 g, 수율 70%, MS:[M+H] += 773).
실시예 13: 화합물 13의 제조
Figure PCTKR2020006754-appb-img-000054
화합물 A3와 2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 화합물 A5와 4-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-9-페닐-9H-카바졸을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 13를 제조하였다(5.1 g, 수율 66%, MS:[M+H] += 773).
실시예 14: 화합물 14의 제조
Figure PCTKR2020006754-appb-img-000055
화합물 A3와 2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 화합물 A6와 2-클로로-4-(디벤조퓨란-4-일)-6-(페닐-d5)-1,3,5-트리아진을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 14를 제조하였다(5.2 g, 수율 75%, MS:[M+H] += 720).
실시예 15: 화합물 15의 제조
Figure PCTKR2020006754-appb-img-000056
화합물 A3와 2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 화합물 A6와 9-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-9H-카바졸을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 15를 제조하였다(5.1 g, 수율 74%, MS:[M+H] += 714).
실시예 16: 화합물 16의 제조
Figure PCTKR2020006754-appb-img-000057
화합물 A3와 2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 화합물 A6와 9-(4-(3-클로로페닐)-6-페닐-1,3,5-트리아진-2-일)-9H-카바졸을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 16을 제조하였다(5.1 g, 수율 67%, MS:[M+H] += 790).
실시예 17: 화합물 17의 제조
Figure PCTKR2020006754-appb-img-000058
화합물 A3와 2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 화합물 A7과 2-클로로-4-(디벤조퓨란-4-일)-6-페닐-1,3,5-트리아진을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 17를 제조하였다(4.7 g, 수율 68%, MS:[M+H] += 699).
실시예 18: 화합물 18의 제조
Figure PCTKR2020006754-appb-img-000059
화합물 A3와 2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 화합물 A7과 9-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-9H-카바졸-1,3,4,5,6,8-d6을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 18을 제조하였다(4.9 g, 수율 70%, MS:[M+H] += 704).
실시예 19: 화합물 19의 제조
Figure PCTKR2020006754-appb-img-000060
화합물 A3와 2-클로로-4-(디벤조퓨란-2-일)-6-페닐-1,3,5-트리아진 대신 화합물 A7과 9-(4-클로로-6-페닐-1,3,5-트리아진-2-일)-3-페닐-9H-카바졸을 사용한 것을 제외하고 실시예 1의 화합물 1의 제조와 동일한 방법으로 화합물 19을 제조하였다(5.0 g, 수율 65%, MS:[M+H] += 774).
[실험예]
실험예 1
ITO(indium tin oxide)가 1,300 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5분간 세정한 후 진공 증착기로 기판을 수송시켰다.
상기와 같이 준비된 ITO 투명 전극 위에 하기의 헥사니트릴 헥사아자트리페닐렌(hexanitrile hexaazatri페닐ene; HAT) 화합물을 500Å의 두께로 열 진공 증착하여 정공 주입층을 형성하였다. 상기 정공 주입층 위에 HT-1 화합물을 800Å의 두께로 열 진공증착하고, 순차적으로 HT-2 화합물을 500Å 두께로 진공 증착하여 정공 수송층을 형성하였다. 이어서, 상기 정공수송층 위에 호스트로서 제조한 화합물 1, 하기 H1 화합물, 및 인광도펀트 GD을 47:47:6의 중량비로 공증착하여 350Å 두께의 발광층을 형성하였다. 상기 발광층 위에 ET-1 물질을 50Å의 두께로 진공 증착하여 정공저지층을 형성하고, 상기 정공저지층 위에 ET-2 물질 및 LiQ(Lithium Quinolate)를 1:1의 중량비로 진공증착하여 250Å의 전자 수송층을 형성하였다. 상기 전자 수송층 위에 순차적으로 10Å 두께의 리튬 프루라이드(LiF)를 증착하고, 이위에 1000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure PCTKR2020006754-appb-img-000061
Figure PCTKR2020006754-appb-img-000062
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 Å/sec를 유지하였고, 음극의 리튬플루오라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1 × 10 -7 ~ 5 × 10 -8 torr를 유지하였다.
실험예 2 내지 19
발광층 형성시 호스트로서 화합물 1 대신 하기 표 1과 같이 사용하였다는 점을 제외하고는, 상기 실험예 1과 동일한 방법을 이용하여 실험예 2 내지 19의 유기 발광 소자를 각각 제작하였다.
비교 실험예 1 내지 3
발광층 형성시 호스트로서 화합물 1 대신 각각 하기 표 1과 같이 하기 C1 내지 C3을 사용하였다는 점을 제외하고는, 상기 실시예 1과 동일한 방법을 이용하여 비교예 1 내지 3의 유기 발광 소자를 각각 제작하였다.
Figure PCTKR2020006754-appb-img-000063
상기 실험예 1 내지 19 및 비교예 1 내지 3에서 제작된 유기 발광 소자에 전류를 인가하여, 전압, 효율 및 수명을 측정하였고, 그 결과를 하기 표 1에 나타내었다. T95은 휘도가 초기 휘도에서 95%로 감소되는데 소요되는 시간을 의미한다.
구분 화합물 전압(V)(@10mA/cm 2) 효율(Cd/A)(@10mA/cm 2) 색좌표(x,y) 수명(h)(LT 95 at 50mA/cm 2)
실험예 1 화합물 1 4.3 64 0.34, 0.62 97
실험예 2 화합물 2 4.3 63 0.35, 0.61 96
실험예 3 화합물 3 4.3 60 0.35, 0.61 99
실험예 4 화합물 4 4.2 62 0.34, 0.60 96
실험예 5 화합물 5 4.2 62 0.35, 0.62 101
실험예 6 화합물 6 4.3 61 0.35, 0.60 120
실험예 7 화합물 7 4.3 59 0.35, 0.61 99
실험예 8 화합물 8 4.2 60 0.35, 0.61 105
실험예 9 화합물 9 4.3 61 0.36, 0.60 115
실험예 10 화합물 10 4.4 63 0.35, 0.61 95
실험예 11 화합물 11 4.3 60 0.36, 0.61 99
실험예 12 화합물 12 4.4 60 0.34, 0.61 98
실험예 13 화합물 13 4.5 62 0.35, 0.61 97
실험예 14 화합물 14 4.3 61 0.35, 0.61 110
실험예 15 화합물 15 4.2 63 0.35, 0.61 113
실험예 16 화합물 16 4.3 60 0.35, 0.60 105
실험예 17 화합물 17 4.3 61 0.35, 0.61 99
실험예 18 화합물 18 4.2 62 0.35, 0.62 110
실험예 19 화합물 19 4.3 60 0.35, 0.61 100
비교실험예 1 C1 4.2 55 0.35, 0.61 80
비교실험예 2 C2 4.4 61 0.35, 0.62 77
비교실험예 3 C3 4.5 40 0.34, 0.61 60
상기 표 1에 나타난 바와 같이, 본 발명에 따른 화합물을 발광층의 호스트로 사용하여 제조된 유기 발광 소자의 경우에 비교예의 유기 발광 소자에 비하여 효율 및 수명 특성이 우수한 것을 확인할 수 있었다.
특히, 실시예에 따른 유기 발광 소자는 통상적으로 사용되는 인광 호스트 물질인 화합물 C1에 비하여 효율이 약 10% 증가하고, 수명은 약 20-50% 증가하는 것을 확인 할 수 있었다.
디벤조싸이오펜에 치환된 트리아진이 추가 치환기 유무에 따라 유기 발광 소자에 적용시 효과 차이가 현저하며, 추가 치환기를 포함하지 않는 화합물을 사용한 비교 실험예 2의 경우, 본원의 실시예 대비 구동 전압이 높고 및 수명 특성이 저하되는 것을 확인할 수 있었다.
더불어 치환기의 치환 위치에 따라 유기 발광 소자에 적용시 효과 차이가 현저하며, 디벤조싸이오펜의 4번 위치에 트리아진 치환기가 있는 본 발명의 화합물에 비해 치환기의 위치가 다른 화합물을 사용한 비교실험예 3는 효율 및 수명 특성이 모두 현저히 저하되는 것을 확인할 수 있었다.
본 발명의 화합물인 화합물 8와 16을 사용한 소자예를 비교해 보면 페닐 링커 유무에 따라, 효율과 수명에선 큰 특성의 차이가 없으나, 비교 실험예 3의 경우 링커의 종류 및 치환 위치에 따라 전압, 효율, 수명측면에서 큰 차이가 나타남을 확인할 수 있었다.
더불어 실험예 18 내지 19를 비교해 보면 말단에 중수소가 되는 경우 수명 특성이 개선되는 것을 확인할 수 있었다.
상기와 같이, 본 발명의 화합물들이 비교예 화합물들에 비하여 치환기의 위치 및 치환기의 종류에 따라 효율 및 수명 측면에서 우수한 특성을 나타냄을 확인할 수 있었다.
부호의 설명
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자억제층 8: 전자수송층
9: 전자주입층

Claims (12)

  1. 하기 화학식 1로 표시되는 화합물:
    [화학식 1]
    Figure PCTKR2020006754-appb-img-000064
    상기 화학식 1에서,
    X 1, X 2 및 X 3는 각각 독립적으로, N 또는 CH이고, 단, X 1, X 2, 및 X 3 중 하나 이상이 N이고,
    Y는 O, S 또는 NR' 1이고, 여기서 R' 1은 치환 또는 비치환된 C 6-60 아릴이고,
    L 1 및 L 2는 각각 독립적으로, 직접 결합, 치환 또는 비치환된 C 6-60 아릴렌 또는 N, O 및 S로 구성되는 군으로부터 선택되는 하나 이상의 헤테로 원자를 포함하는 치환 또는 비치환된 C 5-60 헤테로아릴렌이고,
    R 1는 각각 독립적으로, 수소, 중수소 또는 치환 또는 치환된 C 6-60 아릴이고,
    Ra는 하기로 구성되는 군으로부터 선택되는 어느 하나이고,
    Figure PCTKR2020006754-appb-img-000065
    R 2는 각각 독립적으로, 수소, 중수소 또는 치환 또는 비치환된 C 6-60 아릴이고,
    R 3는 치환 또는 비치환된 C 6-60 아릴이고,
    n은 각각 독립적으로 0 내지 7의 정수이고,
    m는 0 내지 8의 정수이고,
    p는 0 내지 5의 정수이고,
    a는 0 내지 4의 정수임.
  2. 제 1항에 있어서,
    L 1 및 L 2는 각각 독립적으로, 직접 결합 또는 페닐렌인, 화합물.
  3. 제 1항에 있어서,
    R' 1은 하나 이상의 중수소로 치환 또는 비치환된 페닐인, 화합물.
  4. 제 1항에 있어서,
    R 1은 각각 독립적으로, 수소, 중수소 또는 하나 이상의 중수소로 치환 또는 비치환된 페닐인, 화합물.
  5. 제 1항에 있어서,
    R 2는 각각 독립적으로, 수소, 중수소 또는 하나 이상의 중수소로 치환 또는 비치환된 페닐인, 화합물.
  6. 제 1항에 있어서,
    R 3는 하나 이상의 중수소로 치환 또는 비치환된 페닐인, 화합물.
  7. 제 1항에 있어서,
    상기 화학식 1로 표시되는 화합물은, 하기로 구성되는 군으로부터 선택되는 어느 하나인, 화합물:
    Figure PCTKR2020006754-appb-img-000066
    Figure PCTKR2020006754-appb-img-000067
    Figure PCTKR2020006754-appb-img-000068
    Figure PCTKR2020006754-appb-img-000069
    Figure PCTKR2020006754-appb-img-000070
    Figure PCTKR2020006754-appb-img-000071
    Figure PCTKR2020006754-appb-img-000072
    Figure PCTKR2020006754-appb-img-000073
    Figure PCTKR2020006754-appb-img-000074
    Figure PCTKR2020006754-appb-img-000075
    Figure PCTKR2020006754-appb-img-000076
    Figure PCTKR2020006754-appb-img-000077
    Figure PCTKR2020006754-appb-img-000078
    Figure PCTKR2020006754-appb-img-000079
    Figure PCTKR2020006754-appb-img-000080
    Figure PCTKR2020006754-appb-img-000081
    Figure PCTKR2020006754-appb-img-000082
    Figure PCTKR2020006754-appb-img-000083
    Figure PCTKR2020006754-appb-img-000084
    Figure PCTKR2020006754-appb-img-000085
    Figure PCTKR2020006754-appb-img-000086
    Figure PCTKR2020006754-appb-img-000087
    Figure PCTKR2020006754-appb-img-000088
    Figure PCTKR2020006754-appb-img-000089
    Figure PCTKR2020006754-appb-img-000090
    .
  8. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제 1항 내지 제 7항 중 어느 하나의 항에 따른 화합물을 포함하는 것인, 유기 발광 소자.
  9. 제 8항에 있어서,
    상기 화합물을 포함하는 유기물층은 발광층인, 유기 발광 소자.
  10. 제 9항에 있어서,
    상기 화합물은 호스트로서 포함되는, 유기 발광 소자.
  11. 제 9항에 있어서,
    상기 발광층은 도펀트 화합물을 더 포함하는, 유기 발광 소자.
  12. 제 8항에 있어서,
    상기 화합물을 포함하는 유기물층은 전자주입층; 전자수송층; 또는 전자주입과 전자수송을 동시에 하는 층인 것을 특징으로 하는, 유기 발광 소자.
PCT/KR2020/006754 2019-05-24 2020-05-25 신규한 화합물 및 이를 이용한 유기발광 소자 WO2020242161A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080005711.1A CN112912375B (zh) 2019-05-24 2020-05-25 化合物及包含其的有机发光器件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0061426 2019-05-24
KR20190061426 2019-05-24
KR1020200061908A KR102322872B1 (ko) 2019-05-24 2020-05-22 신규한 화합물 및 이를 이용한 유기발광 소자
KR10-2020-0061908 2020-05-22

Publications (1)

Publication Number Publication Date
WO2020242161A1 true WO2020242161A1 (ko) 2020-12-03

Family

ID=73553284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/006754 WO2020242161A1 (ko) 2019-05-24 2020-05-25 신규한 화합물 및 이를 이용한 유기발광 소자

Country Status (1)

Country Link
WO (1) WO2020242161A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100118690A (ko) * 2009-04-29 2010-11-08 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
KR20170003502A (ko) * 2016-12-27 2017-01-09 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
CN106316925A (zh) * 2015-06-26 2017-01-11 上海和辉光电有限公司 一种有机电致发光化合物及其应用
KR20180028179A (ko) * 2016-09-08 2018-03-16 에스케이케미칼 주식회사 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
WO2019017734A1 (ko) * 2017-07-20 2019-01-24 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100118690A (ko) * 2009-04-29 2010-11-08 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
CN106316925A (zh) * 2015-06-26 2017-01-11 上海和辉光电有限公司 一种有机电致发光化合物及其应用
KR20180028179A (ko) * 2016-09-08 2018-03-16 에스케이케미칼 주식회사 유기전계발광소자용 화합물 및 그를 포함하는 유기전계발광소자
KR20170003502A (ko) * 2016-12-27 2017-01-09 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
WO2019017734A1 (ko) * 2017-07-20 2019-01-24 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자

Similar Documents

Publication Publication Date Title
WO2019168367A1 (ko) 유기 발광 소자
WO2020022860A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020262861A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2015152651A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2022102992A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021125648A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021080254A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2021080253A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020231242A1 (ko) 유기 발광 소자
WO2023096405A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2022250386A1 (ko) 유기 발광 소자
WO2022059923A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2022031020A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031013A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022031016A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021194261A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021034156A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021040467A1 (ko) 신규한 헤테로 고리 화합물 및 이를 이용한 유기 발광 소자
WO2020246835A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020246837A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020231021A1 (ko) 유기 발광 소자
WO2020231022A1 (ko) 유기 발광 소자
WO2016140551A2 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020242161A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020235955A1 (ko) 신규한 화합물 및 이를 이용한 유기발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20812514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20812514

Country of ref document: EP

Kind code of ref document: A1