WO2020241497A1 - Heat-transfer device - Google Patents
Heat-transfer device Download PDFInfo
- Publication number
- WO2020241497A1 WO2020241497A1 PCT/JP2020/020303 JP2020020303W WO2020241497A1 WO 2020241497 A1 WO2020241497 A1 WO 2020241497A1 JP 2020020303 W JP2020020303 W JP 2020020303W WO 2020241497 A1 WO2020241497 A1 WO 2020241497A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wall
- facing portion
- pipe
- heat transfer
- facing
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/61—Types of temperature control
- H01M10/613—Cooling or keeping cold
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6552—Closed pipes transferring heat by thermal conductivity or phase transition, e.g. heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6554—Rods or plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/60—Heating or cooling; Temperature control
- H01M10/65—Means for temperature control structurally associated with the cells
- H01M10/655—Solid structures for heat exchange or heat conduction
- H01M10/6556—Solid parts with flow channel passages or pipes for heat exchange
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This disclosure relates to heat transfer equipment.
- Patent Document 1 As a heat transfer device that mediates heat conduction between a tube and a wall, the one described in Patent Document 1 is known.
- the heat transfer device described in Patent Document 1 is sandwiched between a tube which is an evaporative part of a thermosiphon and a side wall of a plurality of battery cells, and evaporates to mediate heat conduction between the side wall and the tube. It is a heat diffusion plate.
- a heat conductive sheet material or grease is sandwiched between the heat of vaporization diffusion plate and the side walls of the plurality of battery cells.
- the wall and the heat transfer device press against each other in order to improve the heat exchange between the heat transfer device and the wall.
- the surface of the heat transfer device which is the heat transfer device in Patent Document 1
- the surface of the heat transfer device is simply a flat surface.
- the heat transfer device is installed on the wall and the tube, or after the heat transfer device is installed, if the wall shifts in the direction of escape from the heat transfer device, the pressure between the wall and the heat transfer device is lost. .. As a result, the heat conduction between the wall and the wall facing portion becomes poor.
- the present disclosure discloses that when a heat transfer device that mediates heat conduction between tubes is installed on the wall and the tube, or after installation, the wall shifts in the direction of escape from the heat transfer device.
- the purpose is to maintain the pressure between the wall and the wall facing portion.
- a heat transfer device that mediates heat conduction between a wall and a tube extending along the wall is arranged closer to the wall of the tube and the wall.
- a plate-shaped wall-facing portion that faces the wall in a predetermined facing direction and conducts heat with the wall, and the wall-facing portion that is thermally conductively connected to the wall in a direction away from the wall in the facing direction. It is provided with a plate-shaped tube facing portion that is recessed with respect to the wall facing portion and conducts heat with the tube at a position recessed with respect to the wall facing portion.
- FIG. 3 is a sectional view taken along line IV-IV of FIG. It is a front view of the heat transfer apparatus and its surroundings which concerns on 2nd Embodiment. It is a front view of the heat transfer apparatus and its surroundings which concerns on 3rd Embodiment. It is a front view of the heat transfer apparatus and its surroundings which concerns on 4th Embodiment. It is a front view of the heat transfer apparatus and its surroundings which concerns on 5th Embodiment. It is a front view of the heat transfer apparatus and its surroundings which concerns on 6th Embodiment.
- the battery cooling system is mounted on a vehicle.
- this battery cooling system includes a thermosiphon 10, two sets of assembled batteries B1 and B2, and a heat transfer device 20.
- the assembled batteries B1 and B2 are the cooling targets of the thermosiphon 10.
- the heat transfer device 20 mediates heat conduction between the thermosiphon 10 and the assembled batteries B1 and B2.
- FIG. 1 shows a state in which the assembled batteries B1 and B2 are not assembled to the thermosiphon 10 and the heat transfer device 20.
- the assembled batteries B1 and B2 are arranged so as to face and contact the heat transfer device 20 as shown by arrows Ae1 and Ae2, respectively.
- This vehicle is an electric vehicle that can run by a running electric motor (not shown) that uses the assembled batteries B1 and B2 as power sources.
- This electric vehicle may be an electric vehicle or a hybrid vehicle.
- the arrows DR1, DR2, and DR3 in FIG. 1 indicate the direction of the vehicle. That is, the arrow DR1 indicates the vehicle front-rear direction DR1, the arrow DR2 indicates the vehicle vertical direction DR2, and the arrow DR3 indicates the vehicle left-right direction, that is, the vehicle width direction.
- thermosiphon 10 includes a sealed pipe 11, a working fluid (not shown) sealed in the pipe 11, and a heat radiation fin 15.
- the pipe 11 has a cooling pipe 12, an intermediate pipe 13, and a heat radiating pipe 14.
- the cooling pipe 12 is inclined with respect to the front-rear direction DR1 and the up-down direction DR2 along a plane parallel to the front-rear direction DR1 and the up-down direction DR2, and goes up and down from the lower end of the tube 11 toward the opposite end. It gradually rises and extends so as to be displaced upward from DR2. Further, the cooling pipe 12 extends along a plane parallel to the front-rear direction DR1 and the up-down direction DR2. The cooling pipe 12 mediates heat exchange between the working fluid of the liquid phase inside the cooling pipe 12 and the assembled batteries B1 and B2 by conducting heat conduction with the assembled batteries B1 and B2.
- the working fluid may be, for example, a refrigerant such as R134a or R1234yf used in a vapor compression refrigeration cycle.
- the intermediate pipe 13 is connected to the cooling pipe 12 at its lower end and to the heat radiating pipe 14 at its upper end.
- the intermediate pipe 13 communicates the cooling pipe 12 and the heat radiating pipe 14.
- the heat radiating tube 14 is covered with the heat radiating fins 15, and heat is conducted with the objects around the heat radiating fins 15 (for example, the air inside the vehicle interior and the air outside the vehicle interior) through the heat radiating fins 15, so that the heat radiating pipe 14 It mediates the heat exchange between the working fluid of the gas phase inside and the surrounding objects. As a result, the working fluid of the liquid phase inside the heat radiating pipe 14 is cooled, and the objects around the heat radiating fin 15 are heated.
- the objects around the heat radiating fins 15 for example, the air inside the vehicle interior and the air outside the vehicle interior
- the assembled batteries B1 and B2 each have heat transfer walls BW1 and BW2 as a part of the surface of the assembled battery.
- the heat transfer wall BW1 is a wall that forms a surface of the assembled battery B1 on the cooling pipe 12 side.
- the heat transfer wall BW2 is a wall that forms a surface of the assembled battery B2 on the cooling pipe 12 side.
- the heat transfer wall BW2 corresponds to another wall.
- the heat transfer walls BW1 and BW2 extend along the front-rear direction DR1 and the up-down direction DR2. Therefore, the cooling pipe 12 extends along the heat transfer walls BW1 and BW2. Further, the cooling pipe 12 overlaps the heat transfer walls BW1 and BW2 in the left-right direction DR3.
- each of the assembled batteries B1 and B2 has a plurality of rectangular parallelepiped shaped square battery cells BC as shown in FIG.
- the assembled batteries B1 and B2 are composed of a laminated body in which the plurality of battery cells BC are laminated and arranged. Therefore, both the assembled batteries B1 and B2 have a substantially rectangular parallelepiped shape as a whole.
- Each of these battery cells BC corresponds to the battery unit constituting the assembled battery.
- Each of the plurality of battery cells BC belonging to the assembled battery B1 has small wall BWs forming a surface on the cooling pipe 12 side. That is, the plurality of battery cells BC belonging to the assembled battery B1 have a plurality of small wall BWs forming the same surface on the cooling pipe 12 side. These plurality of small wall BWs together constitute the heat transfer wall BW1.
- the wall opposite to the heat transfer wall BW1 is urged to the heat transfer device 20 side in the left-right direction DR3 by the positioning member 31. Further, in the battery cell BC belonging to the assembled battery B2, the wall opposite to the heat transfer wall BW2 is urged to the heat transfer device 20 side in the left-right direction DR3 by the positioning member 32.
- the arrangement of the plurality of battery cells BC belonging to the assembled battery B1 is defined so that the heat transfer wall BW1 forms a flat surface.
- the positions of the plurality of small walls BWs constituting the heat transfer wall BW1 are deviated from each other in the left-right direction DR3.
- the heat transfer wall BW1 does not form a flat surface, and an uneven surface having a step in the arrangement direction of the battery cells BC is formed. That is, the heat transfer wall BW1 is formed with irregularities in the extending direction of the cooling pipe 12.
- Multiple battery cells BC belonging to the assembled battery B2 The same applies to.
- the heat transfer wall BW2 does not form a flat surface, but forms an uneven surface having a step in the arrangement direction of the battery cells BC. That is, the heat transfer wall BW2 is formed with irregularities in the extending direction of the cooling pipe 12.
- FIG. 2 shows a state in which the assembled battery B1 is not attached to the thermosiphon 10 and the heat transfer device 20.
- the assembled battery B1 is arranged so as to face and contact the heat transfer device 20 as shown by the arrow Ae1.
- the heat transfer device 20 includes a first heat transfer unit 21, a second heat transfer unit 22, a repulsive material 23, and a repulsive material 24.
- the first heat transfer unit 21 is a single plate member that mediates heat conduction between the heat transfer wall BW1 and the cooling pipe 12.
- the second heat transfer unit 22 is a single plate member that mediates heat conduction between the heat transfer wall BW2 and the cooling pipe 12.
- the material of the first heat transfer portion 21 and the second heat transfer portion 22 is a metal having good thermal conductivity such as aluminum.
- the repulsive materials 23 and 24 exist in a compressed state between the first heat transfer section 21 and the second heat transfer section 22, and urge the first heat transfer section 21 toward the heat transfer wall BW1 and the second heat transfer member 23. 2
- the heat transfer unit 22 is urged to the heat transfer wall BW2 side.
- the first heat transfer unit 21 has a wall facing portion 211, a pipe facing portion 212, and a wall facing portion 213.
- the wall facing portion 211, the pipe facing portion 212, and the wall facing portion 213 are connected in this order from the top to the bottom of the first heat transfer portion 21.
- the wall facing portion 211 is arranged on the upper side (that is, one side) of the pipe facing portion 212 in the vertical DR2, and the wall facing portion 213 is arranged on the lower side (that is, the other side).
- the vertical DR2 corresponds to the orthogonal direction orthogonal to both the horizontal DR3 and the direction in which the pipe extends.
- One of the wall facing portion 211 and the wall facing portion 213 corresponds to the wall facing portion, and the other corresponds to the additional wall facing portion.
- Each of the wall facing portions 211 and 213 is arranged at a position closer to the heat transfer wall BW1 among the cooling pipe 12 and the heat transfer wall BW1 and faces the heat transfer wall BW1 in a predetermined facing direction. It is a plate-shaped member that conducts heat. In the present embodiment, the facing direction corresponds to the left-right direction DR3.
- the pipe facing portion 212 is integrally connected to the wall facing portion 211 in a heat conductive manner at the upper end thereof, and is integrally connected to the wall facing portion 213 in a heat conductive manner at the lower end thereof.
- the pipe facing portion 212 is recessed with respect to the wall facing portions 211 and 213 in a direction away from the heat transfer wall BW1 in the facing direction DR3.
- the pipe facing portion 212 has a shape corresponding to the shape of the cooling pipe 12 at a position recessed with respect to the wall facing portions 211 and 213, and heat is transferred to the cooling pipe 12 while facing the cooling pipe 12. Cover from the wall BW1 side. As a result, the pipe facing portion 212 conducts heat conduction with the cooling pipe 12 at the recessed positions with respect to the wall facing portion 211 and the wall facing portion 213.
- the pipe facing portion 212 and the cooling pipe 12 may be in contact with each other, or a heat grease (not shown) or a heat transfer sheet (not shown) may be interposed between the pipe facing portion 212 and the cooling pipe 12.
- the wall facing portion 211 is connected to one side of the cooling pipe 12 and the wall facing portion 213 is connected to the other side with respect to the pipe facing portion 212, and the pipe facing portion 212 is transmitted to the cooling pipe 12. It is arranged between the heat walls BW1. Therefore, the force that the heat transfer wall BW1 pushes against the wall facing portion 211 acts as a force that pushes BW1 at the wall facing portion 213 via the pipe facing portion 212. On the contrary, the force of the heat transfer wall BW1 pushing the wall facing portion 213 acts as a force pushing the heat transfer wall BW1 of the wall facing portion 211 via the tube facing portion 212. Therefore, the pressing of both the wall facing portions 211 and 213 and the heat transfer wall BW1 is reinforced. Further, since the cooling pipe 12 is urged from both sides of the cooling pipe 12 in the same direction, the position of the cooling pipe 12 is stabilized.
- the wall facing portion 211 is bent in a convex shape toward the heat transfer wall BW1 side.
- the wall facing portion 211 extends from the end portion on the pipe facing portion 212 side so as to approach the heat transfer wall BW1 along the facing direction DR3.
- the wall facing portion 211 extends upward along the vertical DR2 (that is, the direction away from the pipe facing portion 212) while being curved in an arch shape toward the heat transfer wall BW1. In this portion, the wall facing portion 211 comes into surface contact with the heat transfer wall BW1.
- the wall facing portion 211 extends in a direction away from the heat transfer wall BW1 along the facing direction DR3.
- the wall facing portions 211 and 213 are bent in a convex shape toward the heat transfer wall BW1 side as a whole, so that the wall facing portions 211 and 213 have a planar shape parallel to the heat transfer wall BW1 as compared with the case where the heat transfer wall BW1 is parallel.
- the rigidity for pushing the heat wall BW1 can be increased. Therefore, the pressing of the wall facing portions 211 and 213 and the heat transfer wall BW1 is further strengthened without the wall facing portions 211 and 213 escaping from the heat transfer wall BW1.
- the wall facing portions 211 and 213 have a portion extending upward along the direction away from the pipe facing portion 212 while being curved in an arch shape toward the heat transfer wall BW1.
- the contour of this portion on the heat transfer wall BW1 side in the cross section orthogonal to the extending direction of the cooling pipe 12 has an arch shape having a curvature that is convex toward the heat transfer wall BW1 side. This portion comes into contact with the heat transfer wall BW1 and presses against the heat transfer wall BW1. By doing so, the rigidity of the wall facing portions 211 and 213 is increased, and the pressing between the wall facing portions 211 and 213 and the heat transfer wall BW1 is further strengthened.
- a plurality of slits SL are formed in the wall facing portion 211.
- the plurality of slits SL are arranged in the front-rear direction DR1, that is, in the arrangement direction of the battery cells BC constituting the assembled battery B1.
- These slits SL separate the wall facing portion 211 in the extending direction of the cooling pipe 12. Therefore, the separating portions 211x, which are two portions of the wall facing portions 211 that are separated from each other with one or more slits SL in between, can be deformed independently of each other.
- These slits SL are formed by one less than the number of the plurality of small wall BWs constituting the heat transfer wall BW1.
- the slits SL are open to face the two adjacent small wall BWs and the portion between them among the small wall BWs. For any of the two adjacent small wall BWs, one of the plurality of slits described above opens between the two small wall BWs and between them.
- each of the slit SLs is wider than the portion between the two opposing small wall BWs. Therefore, each of the separation portions 211x separated by the slit SL of the wall facing portions 211 faces only one BWs of the small wall BWs constituting the heat transfer wall BW1. Therefore, each of the separation portions 211x can follow the position of the facing small wall BWs in the facing direction DR3 without being greatly affected by the position of the small wall BWs other than the facing small wall BWs. That is, the wall facing portion 211 can satisfactorily absorb the deviation of these two adjacent small walls in the facing direction.
- a plurality of slits SL are formed in the wall facing portion 213, and the wall facing portion 213 has a plurality of separating portions separated by these slit SLs.
- the features of the plurality of slit SLs and the plurality of separation portions are the same as those described for the plurality of slit SLs of the wall facing portion 211 and the separation portions 211x.
- the second heat transfer unit 22 has a wall facing portion 221, a pipe facing portion 222, and a wall facing portion 223. From the top to the bottom of the second heat transfer portion 22, the wall facing portion 221, the pipe facing portion 222, and the wall facing portion 223 are connected in this order. Either of the wall facing portions 221 and 223 corresponds to another wall facing portion. Further, the pipe facing portion 222 corresponds to another pipe facing portion.
- the wall facing portion 221 is arranged on the upper side (that is, one side) of the pipe facing portion 222 in the vertical direction DR2, and the wall facing portion 223 is arranged on the lower side (that is, the other side).
- Each of the wall facing portions 221, 223 is arranged at a position closer to the heat transfer wall BW2 among the cooling pipe 12 and the heat transfer wall BW2, and faces the heat transfer wall BW2 and the heat transfer wall BW2 in the opposite direction DR3. It is a plate-shaped member that conducts heat.
- the pipe facing portion 222 is integrally connected to the wall facing portion 221 at the upper end thereof so as to be thermally conductive, and is integrally connected to the wall facing portion 223 so as to be thermally conductive at the lower end thereof.
- the pipe facing portion 222 is recessed with respect to the wall facing portions 221 and 223 in a direction away from the heat transfer wall BW2 in the facing direction DR3.
- the pipe facing portion 222 has a shape corresponding to the shape of the cooling pipe 12 at a position recessed with respect to the wall facing portions 221, 223, and heat is transferred to the cooling pipe 12 while facing the cooling pipe 12. Cover from the wall BW2 side. As a result, the pipe facing portion 222 conducts heat conduction with the cooling pipe 12 at such a recessed position with respect to the wall facing portion 221 and the wall facing portion 223.
- the latter portion is closer to the heat transfer wall BW2. Further, when comparing the portion of the cooling pipe 12 closest to the heat transfer wall BW2 and the portion of the pipe facing portion 222 closest to the heat transfer wall BW2, the latter portion is closer to the heat transfer wall BW2. These things are also established even if the wall facing portion 221 is replaced with the wall facing portion 223.
- the force of the heat transfer wall BW2 pushing the wall facing portion 221 acts as a force pushing the BW2 at the wall facing portion 223 via the pipe facing portion 222.
- the force that the heat transfer wall BW2 pushes against the wall facing portion 223 acts as a force that pushes the heat transfer wall BW2 at the wall facing portion 221 via the pipe facing portion 222. Therefore, the pressing of both the wall facing portions 221 and 223 and the heat transfer wall BW2 is reinforced. Further, since the cooling pipe 12 is urged from both sides of the cooling pipe 12 in the same direction, the position of the cooling pipe 12 is stabilized.
- the wall facing portions 221 and 223 are bent in a convex shape toward the heat transfer wall BW2 side as a whole, so that the heat transfer wall has a plane shape parallel to the heat transfer wall BW2.
- the rigidity for pushing the BW2 can be increased. Therefore, the wall facing portions 221 and 223 do not escape from the heat transfer wall BW2, and the pressing between the wall facing portions 221 and 223 and the heat transfer wall BW2 is further strengthened.
- the wall facing portion 211, the pipe facing portion 212, the wall facing portion 213, and the heat transfer wall BW1 are referred to as the wall facing portion 221 and the pipe facing portion 222. It is the same as the one replaced with the wall facing portion 223 and the assembled battery B2.
- the wall facing portions 221 and 223 have a portion extending upward along the direction away from the pipe facing portion 222 while being curved in an arch shape toward the heat transfer wall BW2.
- the contour of this portion on the heat transfer wall BW1 side in the cross section orthogonal to the extending direction of the cooling pipe 12 has an arch shape having a curvature that is convex toward the heat transfer wall BW2 side. This portion comes into contact with the heat transfer wall BW2 and presses against the heat transfer wall BW2. By doing so, the pressing between the wall facing portions 221 and 223 and the heat transfer wall BW2 is further strengthened.
- a plurality of slits SL are formed in the wall facing portions 221 and 223 as well as the pipe facing portion 212 and the wall facing portion 213.
- the wall facing portions 213 and 223 have a plurality of separating portions separated by these slits SL.
- the features of the plurality of slit SLs and the plurality of separation portions are the same as those described for the plurality of slit SLs of the wall facing portion 211 and the separation portions 211x.
- the assembled battery B1 and the heat transfer wall BW1 are replaced with the assembled battery B2 and the heat transfer wall BW2.
- the wall facing portion 211 and the wall facing portion 221 are arranged on the upper side on the same side with respect to the cooling pipe 12, and face the facing direction DR3. Then, the wall-facing portion 211 and the wall-facing portion 221 first move away from each other while extending from the end on the cooling pipe 12 side. Further, the wall facing portion 211 and the wall facing portion 221 extend in a direction away from the cooling pipe 12 while being separated from each other and facing the DR3 in the opposite direction.
- the wall facing portion 211 and the wall facing portion 221 are in contact with each other at the end portion on the side far from the cooling pipe 12 so as to face each other in the facing direction DR3 as shown in FIGS. 2 and 3. Pushing is realized at this contact portion. That is, the end of the wall facing portion 211 pushes the end of the wall facing portion 221 toward the heat transfer wall BW2 side, and as a reaction, the end of the wall facing portion 221 pushes the end of the wall facing portion 211. Push to the heat transfer wall BW1 side.
- the relationship between the wall facing portion 213 and the wall facing portion 223 is also the same.
- the wall facing portion 211 and the wall facing portion 221 come into contact with each other in the opposite direction DR3 at the end portion on the side far from the cooling pipe 12. Therefore, the wall facing portion 211 is urged from the wall facing portion 221 toward the heat transfer wall BW1 at its end.
- the wall facing portion 221 is urged from the wall facing portion 211 to the heat transfer wall BW2 side at its end. Therefore, the pressing between the wall facing portion 211 and the heat transfer wall BW1 is reinforced, and the pressing between the wall facing portion 221 and the heat transfer wall BW2 is also reinforced.
- the same effect can be obtained in the relationship between the wall facing portion 213 and the wall facing portion 223. That is, the pressing between the wall facing portion 213 and the heat transfer wall BW1 is reinforced, and the pressing between the wall facing portion 223 and the heat transfer wall BW2 is also reinforced.
- the repulsive material 23 is an elastic member such as urethane, elastomer, or spring, and is sandwiched between the wall facing portion 211 and the wall facing portion 221 in a state of being compressed in the facing direction DR3.
- the repulsive material 23 urges the wall facing portion 211 toward the heat transfer wall BW1 side and the wall facing portion 221 toward the heat transfer wall BW2 side by the repulsive force that is about to expand by itself.
- the repulsive material 23 further strengthens the pressing of the wall facing portion 211 and the heat transfer wall BW1 and the pressing of the wall facing portion 221 and the heat transfer wall BW2.
- the repulsive material 24 is also an elastic member similar to the repulsive material 23, and is sandwiched between the wall facing portion 213 and the wall facing portion 223 in a compressed state. As a result, the repulsive material 24 urges the wall facing portion 213 toward the heat transfer wall BW1 side and the wall facing portion 223 toward the heat transfer wall BW2 side by the repulsive force that tries to expand by itself. In this way, the repulsive material 24 further strengthens the pressing of the wall facing portion 213 and the heat transfer wall BW1 and the pressing of the wall facing portion 223 and the heat transfer wall BW2.
- the cooling pipe 12 receives heat from the assembled batteries B1 and B2 by heat conduction mediated by the heat transfer device 20, the working fluid of the liquid phase in the cooling pipe 12 evaporates due to the heat of the received assembled batteries B1 and B2. As a result, the assembled batteries B1 and B2 are deprived of heat and cooled. The working fluid of the gas phase evaporated in the cooling pipe 12 rises in the pipe 11 and reaches the heat radiating pipe 14 from the intermediate pipe 13.
- the gas phase working fluid that has reached the heat radiating pipe 14 radiates heat to the outside of the pipe 11 via the heat radiating fins 15 and condenses.
- the working fluid of the condensed liquid phase passes through the intermediate pipe 13 and flows down to the cooling pipe 12 by the action of gravity.
- the wall-facing portion 211 of the heat transfer device 20 reliably contacts the heat transfer wall BW1 of the assembled battery B1 on the surface. As described above, this is due to the convex shape of the wall facing portion 211 toward the heat transfer wall BW1, the pressing of the end portions of the wall facing portion 211 and the wall facing portion 221, the urging force of the repulsive material 23, and the like. This is because the pressing force between the 211 and the heat transfer wall BW1 is reinforced.
- the wall facing portion 213 also reliably contacts the heat transfer wall BW1 of the assembled battery B1 on the surface. Further, the wall facing portions 221 and 223 also surely come into contact with the heat transfer wall BW2 of the assembled battery B2 on the surface for the same reason.
- each of the separating portions 211x separated by the slit SL follows the position of the facing small wall BWs of the assembled battery B1 and reaches the small wall BWs. Reliable contact on the surface and in a wide range.
- each of the separated portions separated by the slit SL follows the position of the facing small wall BWs, and has a wide range in a plane with the small wall BWs. Make sure to contact.
- the cooling pipe 12 and the pipe facing portion 212 do not interfere with the contact between the heat transfer wall BW1 and the wall facing portions 211 and 213. This is because, as described above, the cooling pipe 12 and the wall facing portions 211 and 213 are recessed in the direction away from the heat transfer wall BW1 with respect to the wall facing portion 211 and the wall facing portion 213. Is.
- the cooling pipe 12 and the pipe facing portion 212 are recessed with respect to the wall facing portions 211 and 213 that conduct heat with the heat transfer wall BW1 so that the wall facing portions 211 and 213 are flexed. It can be pressed against the heat wall BW1. That is, the wall facing portions 211 and 213 have a dimension absorbing structure that is not obstructed by the pipe facing portion 212. That is, dimension absorption is realized at a portion of the facing direction DR3 that is not related to the thickness of the cooling pipe 12.
- the heat transfer wall BW1 is displaced from the desired position in the direction of escaping from the wall facing portions 211 and 213. There is. Even in that case, as described above, the wall facing portions 211 and 213 move following the deviation, so that the heat transfer wall BW1 and the wall facing portions 211 and 213 are kept pressed against each other.
- the cooling pipe 12 and the pipe facing portion 222 do not interfere with the contact between the heat transfer wall BW2 and the wall facing portions 221, 223, so that the heat transfer wall BW2 and the wall facing portions 221, 223 are pressed against each other. Be maintained. That is, the wall facing portions 221 and 223 have a dimension absorption structure that is not obstructed by the pipe facing portion 222.
- the integrally formed first heat transfer unit 21 fulfills both the function of heat conduction and the function of pressing against the heat transfer wall BW1.
- the integrally formed second heat transfer unit 22 fulfills both a function of heat conduction and a function of pressing against the heat transfer wall BW2. Therefore, since it is not necessary to provide additional parts for pressing, the number of parts can be reduced in the battery cooling system.
- the cooling pipe 12 and the heat transfer device 20 overlap each other in a direction orthogonal to the extending direction of the cooling pipe 12 and the facing direction DR3. Therefore, it is possible to suppress an increase in the distance between the cooling pipe 12 and the heat transfer walls BW1 and BW2, and by extension, the physique of the battery cooling system can be suppressed.
- thermal grease or a heat transfer sheet for improving the heat conduction performance may be arranged between the wall facing portions 211 and 213 and the heat transfer wall BW1.
- thermal grease or a heat transfer sheet for improving the heat conduction performance may be arranged between the wall facing portions 221 and 223 and the heat transfer wall BW2. Even in that case, the thickness of the thermal grease or the thickness of the heat transfer sheet in the facing direction DR3 can be minimized by the above-mentioned dimension absorption structure.
- the heat transferred from the heat transfer wall BW1 to the wall facing portions 211 and 213 is transferred from the wall facing portions 211 and 213 to the pipe facing portion 212 by heat conduction, and further from the pipe facing portion 212 to the cooling pipe 12 by heat conduction. Further, the heat transferred from the heat transfer wall BW2 to the wall facing portions 221 and 223 is transferred from the wall facing portions 221 and 223 to the pipe facing portion 222 by heat conduction, and further from the pipe facing portion 222 to the cooling pipe 12 by heat conduction. It is transmitted.
- the heat transfer direction between the cooling pipe 12 and the first heat transfer unit 21 is approximately the vertical direction DR2
- the heat transfer direction between the first heat transfer unit 21 and the heat transfer wall BW1 is approximately the opposite direction DR3. Is. That is, the heat transfer direction between the cooling pipe 12 and the first heat transfer unit 21 and the heat transfer direction between the first heat transfer unit 21 and the heat transfer wall BW1 intersect and are substantially orthogonal to each other. ..
- the shapes of the first heat transfer unit 21 and the second heat transfer unit 22 are changed from those of the first embodiment. Specifically, as shown in FIG. 5, the wall facing portion 211 of the first heat transfer portion 21 and the wall facing portion 221 of the second heat transfer portion 22 come into contact with each other at the end portion on the side far from the cooling pipe 12. I'm away without. Further, the wall-facing portion 213 of the first heat transfer portion 21 and the wall-facing portion 223 of the second heat transfer portion 22 are separated from each other without contacting each other at the end portion on the side far from the cooling pipe 12.
- the wall facing portion 211 may be urged from the wall facing portion 221 to the heat transfer wall BW1 side, or conversely, the wall facing portion 221 may be urged from the wall facing portion 211 to the heat transfer wall BW2 side. ,Absent. Further, in this case, the wall facing portion 211 is urged from the wall facing portion 221 to the heat transfer wall BW1 side, and conversely, the wall facing portion 221 is urged from the wall facing portion 211 to the heat transfer wall BW2 side. There is no such thing.
- the wall facing portions 211 and 213 are urged to the heat transfer wall BW1 side, and the wall facing portions 221 and 223 are urged to the heat transfer wall BW2 side. Will be done.
- the wall facing portions 211 and 213 have a portion extending upward along the direction away from the pipe facing portion 212 while being curved in an arch shape toward the heat transfer wall BW1.
- the wall facing portions 221 and 223 have portions extending upward along the direction away from the pipe facing portion 212 while being curved in an arch shape toward the heat transfer wall BW2.
- the third embodiment will be described.
- the repulsive materials 23 and 24 are eliminated with respect to the first embodiment. That is, the space between the wall facing portion 211 and the wall facing portion 221 is hollow, and the space between the wall facing portion 213 and the wall facing portion 223 is also hollow.
- the wall facing portions 211 and 213 have a portion extending upward along the direction away from the pipe facing portion 212 while being curved in an arch shape toward the heat transfer wall BW1.
- the wall facing portions 221 and 223 have portions extending upward along the direction away from the pipe facing portion 212 while being curved in an arch shape toward the heat transfer wall BW2.
- the wall-facing portion 211 of the first heat transfer portion 21 and the wall-facing portion 221 of the second heat transfer portion 22 are in contact with each other and pressed against each other at the end portion on the side far from the cooling pipe 12.
- the wall-facing portion 213 of the first heat transfer portion 21 and the wall-facing portion 223 of the second heat transfer portion 22 are in contact with each other and pressed against each other at the end portion on the side far from the cooling pipe 12.
- the pressing between the wall facing portions 211 and 213 and the heat transfer wall BW1 is strengthened, and the pressing between the wall facing portions 221 and 223 and the heat transfer wall BW2 is strengthened.
- the shapes of the first heat transfer unit 21 and the second heat transfer unit 22 are different from those of the second embodiment. Specifically, as shown in FIG. 7, in the first heat transfer unit 21, the portion facing the heat transfer wall BW1 is a plane orthogonal to the facing direction DR3. Further, in the second heat transfer unit 22, the portion facing the heat transfer wall BW2 is a plane orthogonal to the facing direction DR3. As a result, the enhancement of rigidity obtained by bending the first heat transfer portion 21 and the second heat transfer portion 22 cannot be obtained in the present embodiment.
- the tube facing portion 212 is recessed with respect to the wall facing portions 211 and 213 in a direction away from the heat transfer wall BW1 in the facing direction DR3, and is recessed with respect to the wall facing portions 211 and 213. It conducts heat with the cooling pipe 12.
- the pipe facing portion 222 is recessed with respect to the wall facing portions 221 and 223 in a direction away from the heat transfer wall BW2 in the facing direction DR3, and heat conduction with the cooling pipe 12 at a position recessed with respect to the wall facing portions 221, 223. I do.
- the wall facing portions 211 and 213 can be pressed against the wall so that the wall facing portions 211 and 213 bend.
- This has a significant effect. That is, when the heat transfer device is installed on the heat transfer wall BW1 and the cooling pipe 12, or after the heat transfer device is installed, the heat transfer wall BW1 may be displaced in the direction of escaping from the wall facing portions 211 and 213. However, even in that case, the wall facing portions 211 and 213 move following the deviation, so that the heat transfer wall BW1 and the wall facing portions 211 and 213 are kept pressed against each other. The same applies to the wall facing portions 221 and 223. The other features and the effects of those features are the same as in the fourth embodiment.
- the battery cooling system of the present embodiment has different postures of the assembled batteries B1 and B2 and the heat transfer device 20 from the first embodiment. That is, the assembled batteries B1 and B2 of the present embodiment and the heat transfer device 20 are attached to the vehicle in a posture rotated by 90 ° about the cooling pipe 12 with respect to the battery cooling system of the first embodiment. Even in this case, the same features and effects as those of the first embodiment are exhibited.
- the facing direction in this embodiment is the vertical DR2.
- the battery cooling system of the present embodiment has different postures of the assembled batteries B1 and B2 and the heat transfer device 20 from the first embodiment. That is, the posture in which the assembled batteries B1 and B2 of the present embodiment, the heat transfer device 20, and the battery cooling system of the first embodiment are rotated by a predetermined angle larger than 0 ° and smaller than 90 ° with respect to the cooling pipe 12 as an axis. And it is attached to the vehicle. Even in this case, the same features and effects as those of the first embodiment are exhibited.
- the facing direction in the present embodiment is a direction inclined in both the vertical direction DR2 and the horizontal direction DR3.
- the wall facing portions 211 and 213 are not urged from the wall facing portions 221 and 223 toward the heat transfer wall BW1 side. Even in this case, the repulsive materials 23 and 24 are sandwiched between the vehicle body and the first heat transfer portion 21 and are in a compressed state. Therefore, the wall facing portions 211 and 213 are urged toward the heat transfer wall BW1 side. By doing so, the pressing between the wall facing portions 211 and 213 and the heat transfer wall BW1 is strengthened.
- the repulsive materials 23 and 24 when there is no cooling target on the side of the first heat transfer unit 21 opposite to the assembled battery B1, the repulsive materials 23 and 24 have the first heat transfer so that the cold heat does not escape unnecessarily. It may be configured as a heat insulating material having a lower thermal conductivity than that of the portion 21. The other features and the effects of those features are the same as in the first embodiment.
- the ninth embodiment will be described with reference to FIGS. 12 and 13.
- the assembled battery B1 is abolished, the degree of inclination of the cooling pipe 12 is changed, and the configuration of the heat transfer device 20 is changed with respect to the first embodiment.
- the cooling pipe 12 extends along a direction orthogonal to the vertical DR2, and more specifically, along the horizontal DR3 of the vehicle.
- the assembled battery B1 is arranged above the cooling pipe 12 in the vertical direction DR2.
- the second heat transfer unit 22 is abolished with respect to the first embodiment.
- the first heat transfer unit 21 is arranged below the cooling pipe 12 in the vertical direction DR2 and below the assembled battery B1 in the vertical direction DR2. Therefore, the facing direction in this embodiment is the vertical DR2.
- the assembled battery B1 and the first heat transfer unit 21 of the present embodiment are attached to the vehicle in a posture of rotating 90 ° about the cooling pipe 12 with respect to the battery cooling system of the first embodiment. Even in this case, the same features and effects as those of the first embodiment are exhibited.
- the repulsive materials 23 and 24 are pressed against the vehicle body in the vertical direction DR2.
- the wall facing portions 211 and 213 are not urged from the wall facing portions 221 and 223 toward the heat transfer wall BW1 side.
- the repulsive materials 23 and 24 are sandwiched between the vehicle body and the first heat transfer portion 21 and are in a compressed state. Therefore, the wall facing portions 211 and 213 are urged toward the heat transfer wall BW1 side. By doing so, the pressing between the wall facing portions 211 and 213 and the heat transfer wall BW1 is strengthened.
- the other features and the effects of those features are the same as in the first embodiment.
- the cooling pipe 12 of the present implementation liquid is branched into two.
- the two cooling pipes 12 are arranged in a direction orthogonal to the vertical DR2, which is the opposite direction. Both of the two cooling pipes 12 communicate with the intermediate pipe 13. Therefore, both of the two cooling pipes 12 realize the same operation as the cooling pipe 12 of the ninth embodiment.
- the first heat transfer portion 21 of the present embodiment has a pipe facing portion 214 and a wall facing portion 215 in addition to the wall facing portion 211, the pipe facing portion 212, and the wall facing portion 213.
- the pipe facing portion 214 is integrally connected to the opposite pipe facing portion 212 side end of the wall facing portion 213 at one end thereof so as to be heat conductive.
- the pipe facing portion 214 is integrally connected to the wall facing portion 215 at the other end so as to be thermally conductive.
- the pipe facing portion 214 is recessed with respect to the wall facing portions 213 and 215 in a direction away from the heat transfer wall BW1 in the vertical direction DR2.
- the pipe facing portion 214 has a shape corresponding to the shape of the cooling pipe 12 at a position recessed with respect to the wall facing portions 213 and 215, and heat is transferred to the cooling pipe 12 while facing the cooling pipe 12. Cover from the wall BW1 side.
- the cooling pipe 12 with which the pipe facing portion 214 faces is different from the cooling pipe 12 with which the pipe facing portion 212 faces.
- the pipe facing portion 214 conducts heat conduction with the cooling pipe 12 at such a recessed position with respect to the wall facing portions 213 and 215.
- Other configurations of the pipe facing portion 214 are the same as those of the pipe facing portion 212.
- the wall facing portion 215 has the same shape as the wall facing portion 211, and is bent in a convex shape toward the heat transfer wall BW1 side. Further, a slit is formed in the wall facing portion 215 in the same manner as the wall facing portions 211 and 213.
- the eleventh embodiment will be described.
- the configuration of the repulsive material 23 is different from that in the first to tenth embodiments.
- the repulsive material 23 of the present embodiment has a plurality of springs 23y dispersedly attached to one surface of one plate 23x. These springs 23y are compressed and arranged in the facing direction at the same positions as in the first to tenth embodiments, and the wall facing portion 211 and the wall facing portion 221 if any are provided by a force that tries to spread in the facing direction.
- the repulsive material 23 of the present embodiment has a plurality of springs 23y dispersedly attached to one surface of one plate 23x. These springs 23y are compressed and arranged in the facing direction at the same positions as in the first to tenth embodiments, and the wall facing portion 211 and the wall facing portion 221 if any are provided by a force that tries to spread in the facing direction.
- the wall facing portion 211 and the wall facing portion 221 if any are provided by
- the repulsive material 24 may also have the same configuration as the repulsive material 23.
- the configuration of the repulsive material 23 is different from that in the first to tenth embodiments.
- the repulsive material 23 of the present embodiment is a leaf spring member in which a plurality of irregularities are formed in a wave shape in the opposite direction while extending in the extending direction of the cooling pipe 12. ..
- the leaf spring member is compressed and arranged in the facing direction at the same positions as in the first to tenth embodiments, and the wall facing portion 211 and the wall facing portion 221 if any are present due to the force that tends to spread in the facing direction. To urge.
- the repulsive material 24 may also have the same configuration as the repulsive material 23.
- the configuration of the repulsive material 23 is different from that of the first to tenth embodiments.
- the repulsive material 23 of the present embodiment is made of the same material as that of the first to tenth embodiments, but a plurality of elliptical slits 23a are formed.
- the repulsive material 23 is compressed and arranged in the opposite direction at the same positions as in the first to tenth embodiments, and due to a force that tries to spread in the opposite direction, the wall facing portion 211 and the wall facing portion 221 if any are present. To urge.
- a plurality of slits 23a are formed side by side in the extending direction of the cooling pipe 12 on the surface of the repulsive material 23 on the wall facing portion 211 side and the surface on the wall facing portion 221 side if any.
- the slit 23a formed on one surface has a one-to-one correspondence with the slit SL formed on the facing wall facing portion, and overlaps with the corresponding slit in the facing direction. Therefore, the plurality of portions of the wall facing portion 211 separated by the slit SL are urged to only one of the plurality of portions of the repulsive material 23 separated by the slit 23a.
- the same effect can be obtained from the same configuration as in the first to tenth embodiments.
- the repulsive material 24 may also have the same configuration as the repulsive material 23.
- the 14th embodiment will be described.
- the plurality of slits 23a are replaced with the plurality of slits 23b with respect to the thirteenth embodiment.
- the slit 23b of the present embodiment is formed linearly in a direction intersecting both the extending direction and the facing direction of the cooling pipe 12.
- a gap is formed between the surfaces facing each other in the slit 23b. That is, in the repulsive material 23, the surfaces facing each other in the slit 23b are separated from each other. Other features are the same as in the thirteenth embodiment.
- the fifteenth embodiment will be described with reference to FIGS. 19 and 20.
- the plurality of slits 23a are replaced with the plurality of slits SX with respect to the thirteenth embodiment.
- the slit SX of the present embodiment is formed linearly in a direction intersecting both the extending direction and the facing direction of the cooling pipe 12.
- the cross section shown in FIG. 20 is a cross section at a position equivalent to that in FIG.
- a gap is formed between the surfaces facing each other in the slit SX. That is, in the repulsive material 23, the surfaces facing each other in the slit SX are in contact with each other.
- Other features are the same as in the thirteenth embodiment.
- the 16th embodiment will be described.
- the shapes of the wall facing portions 211 and 221 are changed from those of the fifteenth embodiment.
- the heat transfer device 20 has a first heat transfer unit 21 and a second heat transfer unit 22.
- each of the plurality of portions of the wall facing portions 211 and 221 divided by the slit SL is bent toward the repulsive material 23 at both ends in the extending direction of the cooling pipe 12.
- each of the plurality of portions of the wall facing portions 211 and 221 divided by the slit SL has a convex shape with respect to the assembled batteries B1 and B2, respectively, even in the cross section including the facing direction.
- the strength of the wall facing portions 211 and 221 with respect to the small wall BWs is increased, and as a result, the contact and heat conduction between the small wall BWs and the wall facing portions 211 and 221 are improved.
- the changes as in the present embodiment for the wall facing portions 211 and 221 may be applied to the wall facing portions 213 and 223. Further, the modification as in the present embodiment can be applied to the first to 14th embodiments.
- the 17th embodiment will be described.
- the shapes of the wall facing portions 211 and 221 are changed from those of the fifteenth embodiment.
- the heat transfer device 20 has a first heat transfer unit 21 and a second heat transfer unit 22.
- each of the plurality of portions of the wall facing portions 211 and 221 divided by the slit SL has a convex shape toward the repulsive material 23 at the central portion in the extending direction of the cooling pipe 12.
- the strength of the wall facing portions 211 and 221 with respect to the small wall BWs is increased, and as a result, the contact and heat conduction between the small wall BWs and the wall facing portions 211 and 221 are improved.
- the changes as in the present embodiment for the wall facing portions 211 and 221 may be applied to the wall facing portions 213 and 223. Further, the modification as in the present embodiment can be applied to the first to 14th embodiments.
- the 18th embodiment will be described.
- the shapes of the wall facing portions 211 and 221 are changed from those of the fifteenth embodiment.
- the heat transfer device 20 has a first heat transfer unit 21 and a second heat transfer unit 22.
- each of the plurality of portions of the wall facing portions 211 and 221 divided by the slit SL is bent toward the repulsive material 23 at both ends in the extending direction of the cooling pipe 12. Further, each of the plurality of portions of the wall facing portions 211 and 221 divided by the slit SL has a convex shape toward the repulsive material 23 at the central portion in the extending direction of the cooling pipe 12.
- the strength of the wall facing portions 211 and 221 with respect to the small wall BWs is increased, and as a result, the contact and heat conduction between the small wall BWs and the wall facing portions 211 and 221 are improved.
- the changes as in the present embodiment for the wall facing portions 211 and 221 may be applied to the wall facing portions 213 and 223. Further, the modification as in the present embodiment can be applied to the first to 14th embodiments.
- thermosiphon 10 of the present embodiment is changed from the first to eighteenth embodiments.
- the pipe 11 of the present embodiment is configured in an annular shape.
- the thermosiphon 10 of the present embodiment is a loop type thermosiphon.
- the pipe 11 has an additional pipe 16 in addition to the cooling pipe 12, the intermediate pipe 13, and the heat radiating pipe 14.
- One end of the additional pipe 16 is connected to the lower end of the intermediate pipe 13.
- the other end of the additional pipe 16 is connected to the end of the cooling pipe 12 opposite to the heat radiation pipe 14 side.
- the working fluid is the cooling pipe 12, the heat radiation pipe 14, the intermediate pipe 13, and the additional pipe 16. In order, it can circulate in the pipe 11.
- the additional pipe 16 is located at a position separated from the heat transfer device 20 via air. Therefore, the additional pipe 16 does not exchange heat with the assembled batteries B1 and B2 by heat conduction via the heat transfer device 20 without passing through the cooling pipe 12.
- the working fluid circulates as follows.
- the working fluid of the liquid phase in the cooling pipe 12 evaporates due to the heat of the assembled batteries B1 and B2 received.
- the working fluid of the gas phase evaporated in the cooling pipe 12 rises in the pipe 11 and reaches the heat radiating pipe 14 from the intermediate pipe 13.
- the gas phase working fluid that has reached the heat radiating pipe 14 radiates heat to the outside of the pipe 11 via the heat radiating fins 15 and condenses.
- the working fluid of the condensed liquid phase passes through the additional pipe 16 and flows down to the cooling pipe 12 by the action of gravity.
- Other features and effects are similar to those of the first to eighteenth embodiments.
- thermosiphon 10 is changed from the first to eighteenth embodiments. Specifically, as shown in FIG. 25, the pipe 11 of the present embodiment is configured in an annular shape. As a result, the thermosiphon 10 of the present embodiment becomes a double-tube thermosiphon.
- the pipe 11 has an additional cooling pipe 17, an additional intermediate pipe 18, and a communication pipe 19 in addition to the cooling pipe 12, the intermediate pipe 13, and the heat radiating pipe 14.
- One end of the communication pipe 19 is connected to the opposite end of the intermediate pipe 13 in the cooling pipe 12, and the other end of the communication pipe 19 is connected to one end of the additional cooling pipe 17.
- the other end of the additional cooling pipe 17 is connected to the lower end of the additional intermediate pipe 18.
- the upper end of the additional intermediate pipe 18 is connected to the end of the heat radiating pipe 14 opposite to the intermediate pipe 13.
- the additional cooling tube 17 is connected to the first heat transfer section 21 and the second heat transfer section 22 of the heat transfer device 20 in the same manner as the cooling tube 12, and is connected to the first heat transfer section 21 and the second heat transfer section 22. Heat transfer is performed with the assembled batteries B1 and B2 via the above.
- each of the first heat transfer section 21 and the second heat transfer section 22 in the heat transfer device 20 of the present embodiment has two tube facing portions as shown in the first heat transfer section 21 of FIG. Have.
- One of the two pipe facing portions conducts heat conduction with the cooling pipe 12 facing the cooling pipe 12, and the other one conducts heat conduction with the additional cooling pipe 17 facing the additional cooling pipe 17.
- the communication pipe 19 and the additional intermediate pipe 18 are located apart from the heat transfer device 20 via air. Therefore, the communication pipe 19 and the additional intermediate pipe 18 do not exchange heat with the assembled batteries B1 and B2 via the heat transfer device 20 without the cooling pipe 12 or the additional cooling pipe 17 by heat conduction.
- the refrigerant repeats evaporation and condensation in the cooling pipe 12, the intermediate pipe 13, and the heat radiation pipe 14, and repeats evaporation and condensation in the additional cooling pipe 17, the additional intermediate pipe 18, and the heat radiation pipe 14.
- the working fluid behaves as follows.
- the working fluid of the liquid phase in the cooling pipe 12 evaporates due to the heat of the assembled batteries B1 and B2 received.
- the working fluid of the gas phase evaporated in the cooling pipe 12 rises in the pipe 11 and reaches the heat radiating pipe 14 from the intermediate pipe 13.
- the gas phase working fluid that has reached the heat radiating pipe 14 radiates heat to the outside of the pipe 11 via the heat radiating fins 15 and condenses.
- the working fluid of the condensed liquid phase passes through the intermediate pipe 13 and flows down to the cooling pipe 12 by the action of gravity.
- the working fluid of the liquid phase in the additional cooling pipe 17 evaporates due to the heat of the assembled batteries B1 and B2 received.
- the working fluid of the gas phase evaporated in the additional cooling pipe 17 rises in the pipe 11 and reaches the heat radiating pipe 14 from the additional intermediate pipe 18.
- the gas phase working fluid that has reached the heat radiating pipe 14 radiates heat to the outside of the pipe 11 via the heat radiating fins 15 and condenses.
- the working fluid of the condensed liquid phase passes through the additional intermediate pipe 18 and flows down to the additional cooling pipe 17 by the action of gravity.
- Other features and effects are similar to those of the first to eighteenth embodiments.
- the 21st embodiment will be described.
- the shapes and connection modes of the first heat transfer unit 21 and the second heat transfer unit 22 are changed from those of the first embodiment.
- the pipe facing portion 212 is integrally formed with the wall facing portion 211 and is connected to the wall facing portion 211, and the pipe facing portion 212a and the wall facing portion 213. By being integrally formed, it is separated into a pipe facing portion 212b which is connected to the wall facing portion 213.
- the pipe facing portion 222 is integrally formed with the wall facing portion 221 to be connected to the wall facing portion 221 and to be integrally formed with the wall facing portion 223 to form the wall facing portion 222. It is separated into a pipe facing portion 222b connected to 223. One ends of the pipe facing portions 212a and 212b are connected to the cooling pipe 12 side ends of the wall facing portions 211 and 213, respectively. One end of each of the pipe facing portions 222a and 222b is connected to the cooling pipe 12 side end of the wall facing portions 221 and 223, respectively.
- the other end of the pipe facing portion 212a and the other end of the pipe facing portion 222a are integrally connected to each other.
- the other end of the pipe facing portion 212b and the other end of the pipe facing portion 222b are integrally connected to each other. Therefore, the wall facing portion 211, the pipe facing portion 212a, the pipe facing portion 222a, and the wall facing portion 221 are integrally formed as a whole. Further, the wall facing portion 213, the pipe facing portion 212b, the pipe facing portion 222b, and the wall facing portion 223 are integrally formed as a whole.
- the pipe facing portions 212a and 222a conduct heat conduction with the cooling pipe 12 from the wall facing portions 211 and 221 and the repulsive material 23 side (that is, the upper side) while covering the cooling pipe 12.
- the pipe facing portions 212b and 222b conduct heat conduction with the cooling pipe 12 from the wall facing portions 213 and 223 and the repulsive material 24 side (that is, the lower side) while covering the cooling pipe 12.
- the pipe facing portions 211a, 211b, 221a, 22b may be in contact with the cooling pipe 12, or a heat grease (not shown) or a heat transfer sheet (not shown) may be interposed between them.
- the sensor when it is described that the external environment information of the vehicle (for example, the humidity outside the vehicle) is acquired from the sensor, the sensor is abolished and the external environment information is received from the server or the cloud outside the vehicle. It is also possible to do. Alternatively, it is possible to abolish the sensor, acquire related information related to the external environment information from a server or cloud outside the vehicle, and estimate the external environment information from the acquired related information.
- the sensor when a plurality of values are exemplified for a certain quantity, it is also possible to adopt a value between the plurality of values unless otherwise specified or when it is clearly impossible in principle. ..
- the present disclosure also allows the following modifications and equal range modifications for each of the above embodiments.
- the following modified examples can be independently selected to be applied or not applied to the above embodiment. That is, any combination of the following modifications can be applied to the above embodiment.
- the controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done.
- the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
- the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured.
- the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
- the cooling pipe 12 is used for cooling the assembled batteries B1 and B2.
- the cooling pipe 12 may be used for cooling a heating element other than a battery.
- the heat transfer walls BW1 and BW2 are walls on the cooling pipe 12 side of the heating element.
- the heating element may have a step formed in the extending direction of the cooling pipe 12. As a heating element in which such a step is formed, for example, there is a group of heating elements on a substrate.
- the cooling pipe 12 may be a pipe used for heating an object instead of cooling it.
- the heat transfer walls BW1 and BW2 become walls on the cooling pipe 12 side of the object to be heated.
- the object to be heated may have a step formed in the extending direction of the pipe.
- the pipe facing portion 212 covers the cooling pipe 12 between the cooling pipe 12 and the heat transfer wall BW1, but covers the cooling pipe 12 from the opposite side of the heat transfer wall BW1 with respect to the cooling pipe 12. You may be. The same applies to the pipe facing portion 222.
- slit SLs are formed in the wall facing portions 211, 213, 221 and 223.
- slits are not formed in the wall facing portions 211, 213, 221 and 223, it is possible to deal with the unevenness of the heat transfer walls BW1 and BW2.
- the wall facing portion 211 and the wall facing portion 213 are connected to both sides of the pipe facing portion 212.
- this does not necessarily have to be the case.
- the wall facing portion 213 may be abolished and only the wall facing portion 211 may be connected to one side of the pipe facing portion 212.
- the cooling pipe 12 is a pipe constituting a thermosiphon.
- the thermosiphon is a form of heat pipe.
- a heat pipe is a heat transfer element that has a container and a working fluid enclosed inside the container and transfers heat by evaporation and condensation of the working fluid.
- the force for returning the condensed hydraulic fluid to the cooling pipe includes capillary force due to the wick, gravity, and centrifugal force.
- the heat pipe that uses gravity is the thermosiphon.
- the cooling pipe 12 may be a pipe constituting a heat pipe other than the thermosiphon.
- the cooling pipe 12 may be a pipe (for example, an evaporator tube) that constitutes a heat transfer element (for example, a vapor compression refrigeration cycle) other than the heat pipe.
- Each of the assembled batteries B1 and B2 of each of the above embodiments is composed of a plurality of square battery cells BC.
- each of the assembled batteries B1 and B2 may be composed of a plurality of rectangular cases in which a battery module is enclosed. In that case, the surface of the rectangular case on the heat transfer device 20 side corresponds to the small walls BWs.
- thermosiphon 10 the heat transfer device 20
- the assembled batteries B1 and B2 are mounted on the vehicle. However, these do not have to be mounted on the vehicle.
- the wall facing portions 211 and 213 are composed of ribs erected in a direction away from the assembled battery B1 with a heat runner for transferring heat from a position close to the pipe facing portion 212 to a position far from the pipe facing portion 212. You may be. The same applies to the wall facing portions 221, 223.
- the battery cell BC has a square shape, but may have a non-square shape (for example, a round shape). Even in that case, the wall facing portion may have a shape (for example, a shape other than a flat plate) that follows the shape of the heat transfer wall of the battery cell BC.
- the heat transfer device that mediates the heat conduction between the wall and the tube extending along the wall is the tube and the wall.
- a plate-shaped wall-facing portion that is arranged closer to the wall and faces the wall in a predetermined facing direction and conducts heat with the wall is connected to the wall-facing portion so that heat can be conducted. It is provided with a plate-shaped tube facing portion that is recessed with respect to the wall facing portion in a direction away from the wall in the facing direction and conducts heat conduction with the tube at a position recessed with respect to the wall facing portion.
- the wall is formed with irregularities in the extending direction of the pipe, and the wall facing portion is formed with a slit for separating the wall facing portion in the extending direction of the pipe. ing.
- the wall that conducts heat with the pipe may have irregularities in the direction in which the pipe extends. For example, unevenness may be present on each of the side walls of the plurality of battery cells of Patent Document 1, or unevenness may occur as a whole of the plurality of side walls due to the positional deviation between the side walls.
- the surface of the heat of vaporization diffusion plate on the battery cell side is simply a flat surface, the range in which heat conduction between the heat of vaporization diffusion plate and the plurality of side walls is good is narrow. turn into.
- a slit is formed to separate the wall facing portion in the extending direction of the pipe.
- the wall facing portion is separated in the direction in which the pipe extends by the slit, so that each of the separated portions of the wall facing portion is located at the position of the facing portion of the wall.
- the wall includes a plurality of small walls, and the plurality of small walls are walls on the tube side of a plurality of battery units constituting the assembled battery, and the plurality of small walls are formed. Since the positions of the walls in the opposite direction are deviated from each other, the unevenness of the wall is formed in the direction in which the pipe extends.
- the slit is opened to face between two adjacent small walls and the two small walls among the plurality of small walls.
- the wall facing portion can satisfactorily absorb the deviation of these two adjacent small walls in the facing direction.
- the heat transfer device includes an elastic member that urges the wall facing portion toward the wall side. In this way, the elastic member further strengthens the pressing between the wall facing portion and the wall.
- the wall facing portion has a portion extending in a direction away from the pipe facing portion while being curved toward the wall. In this way, the rigidity for pushing the wall can be increased. Therefore, the pressing between the wall facing portion and the wall is further strengthened.
- the separate wall arranged on the side opposite to the wall across the pipe and the pipe arranged at a position closer to the separate wall, and facing the separate wall.
- the wall facing portion and the separate wall facing portion extend in the direction away from the pipe, and then come into contact with each other in the opposite direction at the end portion on the side far from the pipe. Therefore, the wall facing portion is urged toward the wall side from the separate wall facing portion at its end. On the contrary, the separate wall facing portion is urged from the wall facing portion to the separate wall side at its end. Therefore, the pressing between the wall facing portion and the wall is reinforced, and the pressing between the other wall facing portion and the other wall is also reinforced.
- the heat transfer device is arranged at a position closer to the wall of the tube and the wall, and conducts heat conduction with the wall so as to face the wall in the opposite direction.
- a plate-shaped additional wall facing portion is provided, and the pipe facing portion is electrically conductively connected to the additional wall facing portion, and is recessed with respect to the additional wall facing portion in a direction away from the wall in the facing direction.
- Conducts heat conduction with the pipe at a recessed position with respect to the additional wall facing portion faces the pipe between the pipe and the wall, and is orthogonal to the facing direction and orthogonal to the extending direction of the pipe.
- the wall facing portion is arranged on one side of the pipe in the direction, and the additional wall facing portion is arranged on the other side.
- the wall facing portion is connected to one side of the pipe and the additional wall facing portion is connected to the other side with respect to the pipe facing portion, and the pipe facing portion is arranged between the pipe and the wall. Therefore, the force with which the wall pushes the wall facing portion acts as a force pushing the wall at the additional wall facing portion via the pipe facing portion. On the contrary, the force of the wall pushing the additional wall facing portion acts as a force pushing the wall at the wall facing portion via the pipe facing portion. Therefore, the pressing between the wall facing portion and the wall is reinforced, and the pressing between the additional wall facing portion and the separate wall is also reinforced. Further, since the pipe facing portion is urged from both sides of the pipe in the same direction, the position of the pipe is stabilized.
- the pipe constitutes a heat pipe. In this way, the heat conduction efficiency of the heat pipe can be improved.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Secondary Cells (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
This heat-transfer device for mediating transfer of heat between walls (BW1, BW2) and a pipe (12) extending along the walls is provided with: a plate-shaped wall-facing section (211) which is disposed at a position closer to the walls than to the pipe facing the walls in a predetermined facing direction and transfers heat with the walls; and a plate-shaped pipe-facing section (212) which is connected in a heat-transferable manner to the wall-facing section, recessed from the wall-facing section in a direction away from the walls disposed in the facing direction, and transfers heat with the pipe at the position recessed from the wall-facing section.
Description
本出願は、2019年5月28日に出願された日本特許出願番号2019-099625号に基づくもので、ここにその記載内容が参照により組み入れられる。
This application is based on Japanese Patent Application No. 2019-099625 filed on May 28, 2019, the contents of which are incorporated herein by reference.
本開示は、伝熱器具に関するものである。
This disclosure relates to heat transfer equipment.
従来、管と壁の間の熱伝導を媒介する伝熱器具として、特許文献1に記載のようなものが知られている。特許文献1に記載の伝熱器具は、サーモサイフォンの蒸発部である管と、複数個の電池セルの側壁との間に挟まれて、これら側壁と管との間の熱伝導を媒介する蒸発熱拡散板である。蒸発熱拡散板と複数個の電池セルの側壁の間には、熱伝導シート材またはグリスが挟まれている。
Conventionally, as a heat transfer device that mediates heat conduction between a tube and a wall, the one described in Patent Document 1 is known. The heat transfer device described in Patent Document 1 is sandwiched between a tube which is an evaporative part of a thermosiphon and a side wall of a plurality of battery cells, and evaporates to mediate heat conduction between the side wall and the tube. It is a heat diffusion plate. A heat conductive sheet material or grease is sandwiched between the heat of vaporization diffusion plate and the side walls of the plurality of battery cells.
発明者の検討によれば、伝熱器具と壁の間の熱交換を良好なものにするためには、壁と伝熱器具が互いに押し合うことが望ましい。しかし、特許文献1における伝熱器具である蒸発熱拡散板の電池セル側の面は、単なる平面である。このような場合、壁および管に伝熱器具が設置される際、または、設置された後に、壁が伝熱器具から逃げる方向にずれた場合、壁と伝熱器具との押し合いがなくなってしまう。その結果、壁と壁対向部との間の熱伝導が良好でなくなってしまう。本開示は、管と壁の間の熱伝導を媒介する伝熱器具が、壁および管に設置される際、または、設置された後に、壁が伝熱器具から逃げる方向にずれた場合でも、壁と壁対向部との間の押し合いを維持することを目的とする。
According to the inventor's examination, it is desirable that the wall and the heat transfer device press against each other in order to improve the heat exchange between the heat transfer device and the wall. However, the surface of the heat transfer device, which is the heat transfer device in Patent Document 1, on the battery cell side is simply a flat surface. In such a case, when the heat transfer device is installed on the wall and the tube, or after the heat transfer device is installed, if the wall shifts in the direction of escape from the heat transfer device, the pressure between the wall and the heat transfer device is lost. .. As a result, the heat conduction between the wall and the wall facing portion becomes poor. The present disclosure discloses that when a heat transfer device that mediates heat conduction between tubes is installed on the wall and the tube, or after installation, the wall shifts in the direction of escape from the heat transfer device. The purpose is to maintain the pressure between the wall and the wall facing portion.
本開示の1つの観点によれば、壁と前記壁に沿って伸びる管との間の熱伝導を媒介する伝熱器具は、前記管と前記壁のうち前記壁の方により近い位置に配置され、前記壁と所定の対向方向に対向して前記壁と熱伝導を行う板形状の壁対向部と、前記壁対向部と熱伝導可能に接続し、前記対向方向の前記壁から遠ざかる向きに前記壁対向部に対して窪み、前記壁対向部に対して窪んだ位置において前記管と熱伝導を行う板形状の管対向部と、を備える。
According to one aspect of the present disclosure, a heat transfer device that mediates heat conduction between a wall and a tube extending along the wall is arranged closer to the wall of the tube and the wall. A plate-shaped wall-facing portion that faces the wall in a predetermined facing direction and conducts heat with the wall, and the wall-facing portion that is thermally conductively connected to the wall in a direction away from the wall in the facing direction. It is provided with a plate-shaped tube facing portion that is recessed with respect to the wall facing portion and conducts heat with the tube at a position recessed with respect to the wall facing portion.
このように、壁と熱伝導を行う壁対向部に対して管と熱伝導を行う管対向部が窪んだ形状となっていることで、壁対向部が撓むように壁対向部を壁に押しつけることができる。このようになっていることで、壁および管に伝熱器具が設置される際、または、設置された後に、壁が壁対向部から逃げる方向にずれても、そのずれに追従して壁対向部が動くことで、壁と壁対向部との押し合いが維持される。
In this way, since the pipe and the pipe facing portion that conducts heat are recessed with respect to the wall facing portion that conducts heat with the wall, the wall facing portion is pressed against the wall so that the wall facing portion bends. Can be done. By doing so, even if the heat transfer device is installed on the wall and the pipe, or after the heat transfer device is installed, even if the wall shifts in the direction of escaping from the wall facing portion, the wall facing the wall follows the deviation. By moving the part, the pressing between the wall and the wall facing part is maintained.
なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
Note that the reference reference numerals in parentheses attached to each component or the like indicate an example of the correspondence between the component or the like and the specific component or the like described in the embodiment described later.
(第1実施形態)
以下、第1実施形態について、図1、図2、図3、図4を用いて説明する。本実施形態に係る電池冷却システムは、車両に搭載される。この電池冷却システムは、図1、図2に示すように、サーモサイフォン10と、2組の組電池B1、B2と、伝熱器具20とを備える。組電池B1、B2は、サーモサイフォン10の冷却対象である。伝熱器具20は、サーモサイフォン10と組電池B1、B2との間の熱伝導を媒介する。なお、図1では、伝熱器具20の形状は実際よりも単純化されて表されている。また、図1では、組電池B1、B2がサーモサイフォン10および伝熱器具20に組み付けられていない状態が表されている。実際の電池冷却システムは、組電池B1、B2がそれぞれ矢印Ae1、Ae2に示すように伝熱器具20に対向して接触するように配置される。 (First Embodiment)
Hereinafter, the first embodiment will be described with reference to FIGS. 1, 2, 3, and 4. The battery cooling system according to this embodiment is mounted on a vehicle. As shown in FIGS. 1 and 2, this battery cooling system includes athermosiphon 10, two sets of assembled batteries B1 and B2, and a heat transfer device 20. The assembled batteries B1 and B2 are the cooling targets of the thermosiphon 10. The heat transfer device 20 mediates heat conduction between the thermosiphon 10 and the assembled batteries B1 and B2. In FIG. 1, the shape of the heat transfer device 20 is shown in a simpler form than it actually is. Further, FIG. 1 shows a state in which the assembled batteries B1 and B2 are not assembled to the thermosiphon 10 and the heat transfer device 20. In the actual battery cooling system, the assembled batteries B1 and B2 are arranged so as to face and contact the heat transfer device 20 as shown by arrows Ae1 and Ae2, respectively.
以下、第1実施形態について、図1、図2、図3、図4を用いて説明する。本実施形態に係る電池冷却システムは、車両に搭載される。この電池冷却システムは、図1、図2に示すように、サーモサイフォン10と、2組の組電池B1、B2と、伝熱器具20とを備える。組電池B1、B2は、サーモサイフォン10の冷却対象である。伝熱器具20は、サーモサイフォン10と組電池B1、B2との間の熱伝導を媒介する。なお、図1では、伝熱器具20の形状は実際よりも単純化されて表されている。また、図1では、組電池B1、B2がサーモサイフォン10および伝熱器具20に組み付けられていない状態が表されている。実際の電池冷却システムは、組電池B1、B2がそれぞれ矢印Ae1、Ae2に示すように伝熱器具20に対向して接触するように配置される。 (First Embodiment)
Hereinafter, the first embodiment will be described with reference to FIGS. 1, 2, 3, and 4. The battery cooling system according to this embodiment is mounted on a vehicle. As shown in FIGS. 1 and 2, this battery cooling system includes a
この車両は、組電池B1、B2を電源とする不図示の走行用電動モータによって走行可能な電動車両である。この電動車両は、電気自動車であってもよいしハイブリッド自動車であってもよい。
This vehicle is an electric vehicle that can run by a running electric motor (not shown) that uses the assembled batteries B1 and B2 as power sources. This electric vehicle may be an electric vehicle or a hybrid vehicle.
図1の各矢印DR1、DR2、DR3は、車両の向きを示す。すなわち、矢印DR1は車両の前後方向DR1を示し、矢印DR2は車両の上下方向DR2を示し、矢印DR3は車両の左右方向すなわち車両の幅方向を示す。
The arrows DR1, DR2, and DR3 in FIG. 1 indicate the direction of the vehicle. That is, the arrow DR1 indicates the vehicle front-rear direction DR1, the arrow DR2 indicates the vehicle vertical direction DR2, and the arrow DR3 indicates the vehicle left-right direction, that is, the vehicle width direction.
図1に示すように、サーモサイフォン10は、密閉された管11と、管11内に封入された不図示の作動流体と、放熱フィン15とを備える。管11は、冷却管12、中間管13、および放熱管14を有している。
As shown in FIG. 1, the thermosiphon 10 includes a sealed pipe 11, a working fluid (not shown) sealed in the pipe 11, and a heat radiation fin 15. The pipe 11 has a cooling pipe 12, an intermediate pipe 13, and a heat radiating pipe 14.
冷却管12は、前後方向DR1および上下方向DR2に平行な面に沿って、前後方向DR1および上下方向DR2に対して傾斜して、管11の下端からその反対側の端部に向かって上下方向DR2の上側に変位するよう、緩やかに上昇して伸びる。また、冷却管12は、前後方向DR1および上下方向DR2に平行な面に沿って伸びる。冷却管12は、組電池B1、B2と熱伝導を行うことで、冷却管12の内部にある液相の作動流体と組電池B1、B2との熱交換を媒介する。これにより、冷却管12の内部にある液相の作動流体は加熱され、組電池B1、B2は冷却される。ただし、冷却管12と組電池B1、B2とは直接接しておらず離れており、熱伝導は伝熱器具20を介して実現する。作動流体は、例えば、蒸気圧縮式の冷凍サイクルで利用されるR134a、R1234yfなどの冷媒であってもよい。
The cooling pipe 12 is inclined with respect to the front-rear direction DR1 and the up-down direction DR2 along a plane parallel to the front-rear direction DR1 and the up-down direction DR2, and goes up and down from the lower end of the tube 11 toward the opposite end. It gradually rises and extends so as to be displaced upward from DR2. Further, the cooling pipe 12 extends along a plane parallel to the front-rear direction DR1 and the up-down direction DR2. The cooling pipe 12 mediates heat exchange between the working fluid of the liquid phase inside the cooling pipe 12 and the assembled batteries B1 and B2 by conducting heat conduction with the assembled batteries B1 and B2. As a result, the working fluid of the liquid phase inside the cooling pipe 12 is heated, and the assembled batteries B1 and B2 are cooled. However, the cooling pipe 12 and the assembled batteries B1 and B2 are not in direct contact with each other but are separated from each other, and heat conduction is realized via the heat transfer device 20. The working fluid may be, for example, a refrigerant such as R134a or R1234yf used in a vapor compression refrigeration cycle.
中間管13は、その下端で冷却管12に繋がり、その上端で放熱管14に繋がる。中間管13は、冷却管12と放熱管14とを連通させる。
The intermediate pipe 13 is connected to the cooling pipe 12 at its lower end and to the heat radiating pipe 14 at its upper end. The intermediate pipe 13 communicates the cooling pipe 12 and the heat radiating pipe 14.
放熱管14は、放熱フィン15に覆われており、放熱フィン15を介して放熱フィン15の周囲の物(例えば車室内の空気、車室外の空気)と熱伝導を行うことで、放熱管14の内部にある気相の作動流体と当該周囲の物との熱交換を媒介する。これにより、放熱管14の内部にある液相の作動流体は冷却され、放熱フィン15の周囲の物が加熱される。
The heat radiating tube 14 is covered with the heat radiating fins 15, and heat is conducted with the objects around the heat radiating fins 15 (for example, the air inside the vehicle interior and the air outside the vehicle interior) through the heat radiating fins 15, so that the heat radiating pipe 14 It mediates the heat exchange between the working fluid of the gas phase inside and the surrounding objects. As a result, the working fluid of the liquid phase inside the heat radiating pipe 14 is cooled, and the objects around the heat radiating fin 15 are heated.
そして、組電池B1、B2は、それぞれ、その組電池の表面の一部分として、伝熱壁BW1、BW2を有している。伝熱壁BW1は、組電池B1の冷却管12側の面を形成する壁である。伝熱壁BW2は、組電池B2の冷却管12側の面を形成する壁である。伝熱壁BW2は別壁に対応する。伝熱壁BW1、BW2は、前後方向DR1および上下方向DR2に沿って拡がる。したがって、冷却管12は、伝熱壁BW1、BW2に沿って伸びている。また、冷却管12は、左右方向DR3において伝熱壁BW1、BW2と重なっている。
Then, the assembled batteries B1 and B2 each have heat transfer walls BW1 and BW2 as a part of the surface of the assembled battery. The heat transfer wall BW1 is a wall that forms a surface of the assembled battery B1 on the cooling pipe 12 side. The heat transfer wall BW2 is a wall that forms a surface of the assembled battery B2 on the cooling pipe 12 side. The heat transfer wall BW2 corresponds to another wall. The heat transfer walls BW1 and BW2 extend along the front-rear direction DR1 and the up-down direction DR2. Therefore, the cooling pipe 12 extends along the heat transfer walls BW1 and BW2. Further, the cooling pipe 12 overlaps the heat transfer walls BW1 and BW2 in the left-right direction DR3.
また、組電池B1、B2の各々は、図1に示すように、直方体形状の複数の角型の電池セルBCを有している。そして、組電池B1、B2は、その複数の電池セルBCが積層配置された積層体で構成されている。したがって、組電池B1、B2のいずれも、全体として略直方体形状を成している。これら電池セルBCの各々は、組電池を構成する電池単位に対応する。
Further, each of the assembled batteries B1 and B2 has a plurality of rectangular parallelepiped shaped square battery cells BC as shown in FIG. The assembled batteries B1 and B2 are composed of a laminated body in which the plurality of battery cells BC are laminated and arranged. Therefore, both the assembled batteries B1 and B2 have a substantially rectangular parallelepiped shape as a whole. Each of these battery cells BC corresponds to the battery unit constituting the assembled battery.
組電池B1に属する複数の電池セルBCの各々は、冷却管12側の面を形成する小壁BWsを有している。つまり、組電池B1に属する複数の電池セルBCは、同じ冷却管12側の面を形成する複数の小壁BWsを有している。これら複数の小壁BWsが、全体として、伝熱壁BW1を構成する。組電池B2についても同様である。すなわち、組電池B2に属する複数の電池セルBCは、同じ冷却管12側の面を形成する複数の小壁BWsを有している。これら複数の小壁BWsが、全体として、伝熱壁BW2を構成する。
Each of the plurality of battery cells BC belonging to the assembled battery B1 has small wall BWs forming a surface on the cooling pipe 12 side. That is, the plurality of battery cells BC belonging to the assembled battery B1 have a plurality of small wall BWs forming the same surface on the cooling pipe 12 side. These plurality of small wall BWs together constitute the heat transfer wall BW1. The same applies to the assembled battery B2. That is, the plurality of battery cells BC belonging to the assembled battery B2 have a plurality of small wall BWs forming the same surface on the cooling pipe 12 side. These plurality of small wall BWs together constitute the heat transfer wall BW2.
図3に示すように、組電池B1に属する電池セルBCは、位置決め部材31によって、伝熱壁BW1の反対側の壁が、左右方向DR3における伝熱器具20側に、付勢されている。また、組電池B2に属する電池セルBCは、位置決め部材32によって、伝熱壁BW2の反対側の壁が、左右方向DR3における伝熱器具20側に、付勢されている。
As shown in FIG. 3, in the battery cell BC belonging to the assembled battery B1, the wall opposite to the heat transfer wall BW1 is urged to the heat transfer device 20 side in the left-right direction DR3 by the positioning member 31. Further, in the battery cell BC belonging to the assembled battery B2, the wall opposite to the heat transfer wall BW2 is urged to the heat transfer device 20 side in the left-right direction DR3 by the positioning member 32.
組電池B1に属する複数の電池セルBCの配置は、伝熱壁BW1が平面を形成するように規定されている。しかし、実際に配置した場合には僅かな位置ずれが不可避的に生じてしまう。したがって、伝熱壁BW1を構成する複数の小壁BWsの位置が、図4に示すように、左右方向DR3に互いにずれている。その結果、伝熱壁BW1が平面を形成せず、電池セルBCの並び方向に段差がある凹凸面を形成してしまう。つまり、伝熱壁BW1には、冷却管12の伸びる方向に凹凸が形成される。組電池B2に属する複数の電池セルBC
についても、同様である。したがって、同様の形態で、伝熱壁BW2が平面を形成せず、電池セルBCの並び方向に段差がある凹凸面を形成する。つまり、伝熱壁BW2には、冷却管12の伸びる方向に凹凸が形成される。 The arrangement of the plurality of battery cells BC belonging to the assembled battery B1 is defined so that the heat transfer wall BW1 forms a flat surface. However, when actually arranged, a slight misalignment will inevitably occur. Therefore, as shown in FIG. 4, the positions of the plurality of small walls BWs constituting the heat transfer wall BW1 are deviated from each other in the left-right direction DR3. As a result, the heat transfer wall BW1 does not form a flat surface, and an uneven surface having a step in the arrangement direction of the battery cells BC is formed. That is, the heat transfer wall BW1 is formed with irregularities in the extending direction of the coolingpipe 12. Multiple battery cells BC belonging to the assembled battery B2
The same applies to. Therefore, in the same manner, the heat transfer wall BW2 does not form a flat surface, but forms an uneven surface having a step in the arrangement direction of the battery cells BC. That is, the heat transfer wall BW2 is formed with irregularities in the extending direction of the coolingpipe 12.
についても、同様である。したがって、同様の形態で、伝熱壁BW2が平面を形成せず、電池セルBCの並び方向に段差がある凹凸面を形成する。つまり、伝熱壁BW2には、冷却管12の伸びる方向に凹凸が形成される。 The arrangement of the plurality of battery cells BC belonging to the assembled battery B1 is defined so that the heat transfer wall BW1 forms a flat surface. However, when actually arranged, a slight misalignment will inevitably occur. Therefore, as shown in FIG. 4, the positions of the plurality of small walls BWs constituting the heat transfer wall BW1 are deviated from each other in the left-right direction DR3. As a result, the heat transfer wall BW1 does not form a flat surface, and an uneven surface having a step in the arrangement direction of the battery cells BC is formed. That is, the heat transfer wall BW1 is formed with irregularities in the extending direction of the cooling
The same applies to. Therefore, in the same manner, the heat transfer wall BW2 does not form a flat surface, but forms an uneven surface having a step in the arrangement direction of the battery cells BC. That is, the heat transfer wall BW2 is formed with irregularities in the extending direction of the cooling
ここで、伝熱器具20について、図2、図3、図4を用いて説明する。図2では、組電池B1がサーモサイフォン10および伝熱器具20に組み付けられていない状態が表されている。実際の電池冷却システムは、組電池B1が矢印Ae1に示すように伝熱器具20に対向して接触するように配置される。
Here, the heat transfer device 20 will be described with reference to FIGS. 2, 3, and 4. FIG. 2 shows a state in which the assembled battery B1 is not attached to the thermosiphon 10 and the heat transfer device 20. In the actual battery cooling system, the assembled battery B1 is arranged so as to face and contact the heat transfer device 20 as shown by the arrow Ae1.
伝熱器具20は、第1伝熱部21、第2伝熱部22、反発材23、反発材24を備えている。第1伝熱部21は、伝熱壁BW1と冷却管12との間の熱伝導を媒介する1枚の板部材である。第2伝熱部22は、伝熱壁BW2と冷却管12との間の熱伝導を媒介する1枚の板部材である。第1伝熱部21、第2伝熱部22の材質は、アルミニウム等の熱伝導性の良好な金属である。反発材23、24は、第1伝熱部21と第2伝熱部22との間において圧縮された状態で存在し、第1伝熱部21を伝熱壁BW1側に付勢するとともに第2伝熱部22を伝熱壁BW2側に付勢する。
The heat transfer device 20 includes a first heat transfer unit 21, a second heat transfer unit 22, a repulsive material 23, and a repulsive material 24. The first heat transfer unit 21 is a single plate member that mediates heat conduction between the heat transfer wall BW1 and the cooling pipe 12. The second heat transfer unit 22 is a single plate member that mediates heat conduction between the heat transfer wall BW2 and the cooling pipe 12. The material of the first heat transfer portion 21 and the second heat transfer portion 22 is a metal having good thermal conductivity such as aluminum. The repulsive materials 23 and 24 exist in a compressed state between the first heat transfer section 21 and the second heat transfer section 22, and urge the first heat transfer section 21 toward the heat transfer wall BW1 and the second heat transfer member 23. 2 The heat transfer unit 22 is urged to the heat transfer wall BW2 side.
第1伝熱部21は、壁対向部211と、管対向部212と、壁対向部213とを有している。第1伝熱部21の上から下に、壁対向部211、管対向部212、壁対向部213がこの順に繋がっている。
The first heat transfer unit 21 has a wall facing portion 211, a pipe facing portion 212, and a wall facing portion 213. The wall facing portion 211, the pipe facing portion 212, and the wall facing portion 213 are connected in this order from the top to the bottom of the first heat transfer portion 21.
上下方向DR2における管対向部212の上側(すなわち一方側)に壁対向部211が配置され、下側(すなわち他方側)に壁対向部213が配置される。ここで、上下方向DR2は、左右方向DR3にも管が伸びる方向にも直交する直交方向に対応する。壁対向部211および壁対向部213の一方が壁対向部に対応し、他方が追加壁対向部に対応する。
The wall facing portion 211 is arranged on the upper side (that is, one side) of the pipe facing portion 212 in the vertical DR2, and the wall facing portion 213 is arranged on the lower side (that is, the other side). Here, the vertical DR2 corresponds to the orthogonal direction orthogonal to both the horizontal DR3 and the direction in which the pipe extends. One of the wall facing portion 211 and the wall facing portion 213 corresponds to the wall facing portion, and the other corresponds to the additional wall facing portion.
壁対向部211、213の各々は、冷却管12と伝熱壁BW1のうち伝熱壁BW1の方により近い位置に配置され、伝熱壁BW1と所定の対向方向に対向して伝熱壁BW1と熱伝導を行う板形状の部材である。本実施形態では、対向方向は左右方向DR3に相当する。
Each of the wall facing portions 211 and 213 is arranged at a position closer to the heat transfer wall BW1 among the cooling pipe 12 and the heat transfer wall BW1 and faces the heat transfer wall BW1 in a predetermined facing direction. It is a plate-shaped member that conducts heat. In the present embodiment, the facing direction corresponds to the left-right direction DR3.
管対向部212は、その上端において壁対向部211と熱伝導可能に一体に接続し、その下端において壁対向部213と熱伝導可能に一体に接続する。管対向部212は、対向方向DR3の伝熱壁BW1から遠ざかる向きに、壁対向部211、213に対して窪んでいる。
The pipe facing portion 212 is integrally connected to the wall facing portion 211 in a heat conductive manner at the upper end thereof, and is integrally connected to the wall facing portion 213 in a heat conductive manner at the lower end thereof. The pipe facing portion 212 is recessed with respect to the wall facing portions 211 and 213 in a direction away from the heat transfer wall BW1 in the facing direction DR3.
そして管対向部212は、壁対向部211、213に対してこのように窪んだ位置において、冷却管12の形状に対応した形状を有し、冷却管12と対向しながら冷却管12を伝熱壁BW1側から覆う。これにより、管対向部212は、壁対向部211、壁対向部213に対してこのように窪んだ位置において、冷却管12と熱伝導を行う。管対向部212と冷却管12とは接触していてもよいし、管対向部212と冷却管12との間に不図示の熱グリスまたは不図示の伝熱シートが介在していてもよい。
The pipe facing portion 212 has a shape corresponding to the shape of the cooling pipe 12 at a position recessed with respect to the wall facing portions 211 and 213, and heat is transferred to the cooling pipe 12 while facing the cooling pipe 12. Cover from the wall BW1 side. As a result, the pipe facing portion 212 conducts heat conduction with the cooling pipe 12 at the recessed positions with respect to the wall facing portion 211 and the wall facing portion 213. The pipe facing portion 212 and the cooling pipe 12 may be in contact with each other, or a heat grease (not shown) or a heat transfer sheet (not shown) may be interposed between the pipe facing portion 212 and the cooling pipe 12.
管対向部212のうち伝熱壁BW1に最も近い部分と、壁対向部211のうち伝熱壁BW1に最も近い部分とを比較すると、後者の部分の方が、伝熱壁BW1に近い。また、冷却管12のうち伝熱壁BW1に最も近い部分と、壁対向部211のうち伝熱壁BW1に最も近い部分とを比較すると、後者の部分の方が、伝熱壁BW1に近い。これらのことは、壁対向部211を壁対向部213に置き換えても成立する。
Comparing the portion of the tube facing portion 212 closest to the heat transfer wall BW1 and the portion of the wall facing portion 211 closest to the heat transfer wall BW1, the latter portion is closer to the heat transfer wall BW1. Further, when comparing the portion of the cooling pipe 12 closest to the heat transfer wall BW1 and the portion of the wall facing portion 211 closest to the heat transfer wall BW1, the latter portion is closer to the heat transfer wall BW1. These things are also established even if the wall facing portion 211 is replaced with the wall facing portion 213.
このように、管対向部212に対して冷却管12の一方側には壁対向部211が接続され他方側には壁対向部213が接続され、かつ、管対向部212は冷却管12と伝熱壁BW1の間に配置される。したがって、伝熱壁BW1が壁対向部211を押す力が、管対向部212を介して、壁対向部213におけるBW1を押す力として作用する。また逆に、伝熱壁BW1が壁対向部213を押す力が、管対向部212を介して、壁対向部211における伝熱壁BW1を押す力として作用する。したがって、壁対向部211、213の両方と伝熱壁BW1の押し合いが補強される。また、冷却管12が冷却管12の両側から同じ方向に付勢されるので、冷却管12の位置が安定する。
In this way, the wall facing portion 211 is connected to one side of the cooling pipe 12 and the wall facing portion 213 is connected to the other side with respect to the pipe facing portion 212, and the pipe facing portion 212 is transmitted to the cooling pipe 12. It is arranged between the heat walls BW1. Therefore, the force that the heat transfer wall BW1 pushes against the wall facing portion 211 acts as a force that pushes BW1 at the wall facing portion 213 via the pipe facing portion 212. On the contrary, the force of the heat transfer wall BW1 pushing the wall facing portion 213 acts as a force pushing the heat transfer wall BW1 of the wall facing portion 211 via the tube facing portion 212. Therefore, the pressing of both the wall facing portions 211 and 213 and the heat transfer wall BW1 is reinforced. Further, since the cooling pipe 12 is urged from both sides of the cooling pipe 12 in the same direction, the position of the cooling pipe 12 is stabilized.
ここで、壁対向部211の構造について更に詳しく説明する。壁対向部211は、図2、図3に示すように、伝熱壁BW1側に向かって凸形状に曲がっている。具体的には、壁対向部211は、管対向部212側の端部から、対向方向DR3に沿って伝熱壁BW1に近付くように伸びる。更に壁対向部211は、伝熱壁BW1に近付く方にアーチ状に湾曲しながら上下方向DR2(すなわち、管対向部212から離れる方向)に沿って上方に伸びる。この部分において壁対向部211は、伝熱壁BW1に面で接触する。更に壁対向部211は、対向方向DR3に沿って伝熱壁BW1から遠ざかる方向に伸びる。また、壁対向部213についても同様である。すなわち、壁対向部213は、壁対向部211と同様の形態で、伝熱壁BW1側に向かって凸形状に曲がっている。
Here, the structure of the wall facing portion 211 will be described in more detail. As shown in FIGS. 2 and 3, the wall facing portion 211 is bent in a convex shape toward the heat transfer wall BW1 side. Specifically, the wall facing portion 211 extends from the end portion on the pipe facing portion 212 side so as to approach the heat transfer wall BW1 along the facing direction DR3. Further, the wall facing portion 211 extends upward along the vertical DR2 (that is, the direction away from the pipe facing portion 212) while being curved in an arch shape toward the heat transfer wall BW1. In this portion, the wall facing portion 211 comes into surface contact with the heat transfer wall BW1. Further, the wall facing portion 211 extends in a direction away from the heat transfer wall BW1 along the facing direction DR3. The same applies to the wall facing portion 213. That is, the wall facing portion 213 has the same shape as the wall facing portion 211, and is bent in a convex shape toward the heat transfer wall BW1 side.
このように、壁対向部211、213は、全体として、伝熱壁BW1側に向かって凸形状に曲がっていることで、伝熱壁BW1に対して平行な平面形状である場合に比べ、伝熱壁BW1を押すための剛性を高めることができる。したがって、壁対向部211、213が伝熱壁BW1から逃げることなく、壁対向部211、213と伝熱壁BW1との押し合いがより強化される。
As described above, the wall facing portions 211 and 213 are bent in a convex shape toward the heat transfer wall BW1 side as a whole, so that the wall facing portions 211 and 213 have a planar shape parallel to the heat transfer wall BW1 as compared with the case where the heat transfer wall BW1 is parallel. The rigidity for pushing the heat wall BW1 can be increased. Therefore, the pressing of the wall facing portions 211 and 213 and the heat transfer wall BW1 is further strengthened without the wall facing portions 211 and 213 escaping from the heat transfer wall BW1.
また、上記のように、壁対向部211、213は、伝熱壁BW1に近付く方にアーチ状に湾曲しながら管対向部212から離れる方向に沿って上方に伸びる部分を有する。冷却管12の伸びる方向に直交する断面におけるこの部分の伝熱壁BW1側の輪郭は、伝熱壁BW1側に凸となる曲率を有するアーチ形状となる。この部分が伝熱壁BW1に接触して伝熱壁BW1と押し合う。このようになっていることで、壁対向部211、213の剛性が高まり、壁対向部211、213と伝熱壁BW1との押し合いがより強化される。
Further, as described above, the wall facing portions 211 and 213 have a portion extending upward along the direction away from the pipe facing portion 212 while being curved in an arch shape toward the heat transfer wall BW1. The contour of this portion on the heat transfer wall BW1 side in the cross section orthogonal to the extending direction of the cooling pipe 12 has an arch shape having a curvature that is convex toward the heat transfer wall BW1 side. This portion comes into contact with the heat transfer wall BW1 and presses against the heat transfer wall BW1. By doing so, the rigidity of the wall facing portions 211 and 213 is increased, and the pressing between the wall facing portions 211 and 213 and the heat transfer wall BW1 is further strengthened.
また、図2、図4に示すように、壁対向部211には、複数個のスリットSLが形成されている。これら複数個のスリットSLは、前後方向DR1すなわち組電池B1を構成する電池セルBCの並び方向に、並んでいる。これらスリットSLは、壁対向部211を冷却管12の伸びる方向に分離させている。したがって、壁対向部211のうち1つ以上のスリットSLを挟んで離れている2つの部分である分離部211xは、互いに独立に変形可能である。
Further, as shown in FIGS. 2 and 4, a plurality of slits SL are formed in the wall facing portion 211. The plurality of slits SL are arranged in the front-rear direction DR1, that is, in the arrangement direction of the battery cells BC constituting the assembled battery B1. These slits SL separate the wall facing portion 211 in the extending direction of the cooling pipe 12. Therefore, the separating portions 211x, which are two portions of the wall facing portions 211 that are separated from each other with one or more slits SL in between, can be deformed independently of each other.
これらスリットSLは、伝熱壁BW1を構成する複数の小壁BWsの数より1個少ない数だけ形成される。そしてこれらスリットSLは、これら小壁BWsのうち隣り合う2つの小壁BWsおよびその間の部分に対向して開口している。隣り合う2つの小壁BWsのいずれについても、上述の複数個のスリットのうち1つが、当該2つの小壁BWsおよびその間に開口する。
These slits SL are formed by one less than the number of the plurality of small wall BWs constituting the heat transfer wall BW1. The slits SL are open to face the two adjacent small wall BWs and the portion between them among the small wall BWs. For any of the two adjacent small wall BWs, one of the plurality of slits described above opens between the two small wall BWs and between them.
このように、スリットSLの各々は、対向する2つの小壁BWsの間の部分よりも大きく開いている。したがって、壁対向部211のうちこれらスリットSLによって分離された分離部211xの各々は、伝熱壁BW1を構成する小壁BWsのうち1つのBWsのみに対向する。したがって、分離部211xの各々は、対向する小壁BWs以外の小壁BWsの位置に大きく影響されることなく、対向する小壁BWsの対向方向DR3における位置に追従することができる。つまり、壁対向部211は、これら隣り合う2つの小壁の対向方向のずれを良好に吸収することができる。
In this way, each of the slit SLs is wider than the portion between the two opposing small wall BWs. Therefore, each of the separation portions 211x separated by the slit SL of the wall facing portions 211 faces only one BWs of the small wall BWs constituting the heat transfer wall BW1. Therefore, each of the separation portions 211x can follow the position of the facing small wall BWs in the facing direction DR3 without being greatly affected by the position of the small wall BWs other than the facing small wall BWs. That is, the wall facing portion 211 can satisfactorily absorb the deviation of these two adjacent small walls in the facing direction.
また同様に、壁対向部213にも、複数個のスリットSLが形成されており、壁対向部213はこれらスリットSLによって分離される複数の分離部を有している。これら複数個のスリットSLおよび複数の分離部の特徴は、壁対向部211の複数のスリットSLおよび分離部211xについて説明したことと同じである。
Similarly, a plurality of slits SL are formed in the wall facing portion 213, and the wall facing portion 213 has a plurality of separating portions separated by these slit SLs. The features of the plurality of slit SLs and the plurality of separation portions are the same as those described for the plurality of slit SLs of the wall facing portion 211 and the separation portions 211x.
第2伝熱部22は、壁対向部221と、管対向部222と、壁対向部223とを有している。第2伝熱部22の上から下に、壁対向部221、管対向部222、壁対向部223がこの順に繋がっている。壁対向部221、223のどちらかが別壁対向部に対応する。また、管対向部222が別管対向部に対応する。上下方向DR2における管対向部222の上側(すなわち一方側)に壁対向部221が配置され、下側(すなわち他方側)に壁対向部223が配置される。
The second heat transfer unit 22 has a wall facing portion 221, a pipe facing portion 222, and a wall facing portion 223. From the top to the bottom of the second heat transfer portion 22, the wall facing portion 221, the pipe facing portion 222, and the wall facing portion 223 are connected in this order. Either of the wall facing portions 221 and 223 corresponds to another wall facing portion. Further, the pipe facing portion 222 corresponds to another pipe facing portion. The wall facing portion 221 is arranged on the upper side (that is, one side) of the pipe facing portion 222 in the vertical direction DR2, and the wall facing portion 223 is arranged on the lower side (that is, the other side).
壁対向部221、223の各々は、冷却管12と伝熱壁BW2のうち伝熱壁BW2の方により近い位置に配置され、伝熱壁BW2と対向方向DR3に対向して伝熱壁BW2と熱伝導を行う板形状の部材である。
Each of the wall facing portions 221, 223 is arranged at a position closer to the heat transfer wall BW2 among the cooling pipe 12 and the heat transfer wall BW2, and faces the heat transfer wall BW2 and the heat transfer wall BW2 in the opposite direction DR3. It is a plate-shaped member that conducts heat.
管対向部222は、その上端において壁対向部221と熱伝導可能に一体に接続し、その下端において壁対向部223と熱伝導可能に一体に接続する。管対向部222は、対向方向DR3の伝熱壁BW2から遠ざかる向きに、壁対向部221、223に対して窪んでいる。
The pipe facing portion 222 is integrally connected to the wall facing portion 221 at the upper end thereof so as to be thermally conductive, and is integrally connected to the wall facing portion 223 so as to be thermally conductive at the lower end thereof. The pipe facing portion 222 is recessed with respect to the wall facing portions 221 and 223 in a direction away from the heat transfer wall BW2 in the facing direction DR3.
そして管対向部222は、壁対向部221、223に対してこのように窪んだ位置において、冷却管12の形状に対応した形状を有し、冷却管12と対向しながら冷却管12を伝熱壁BW2側から覆う。これにより、管対向部222は、壁対向部221、壁対向部223に対してこのように窪んだ位置において、冷却管12と熱伝導を行う。
The pipe facing portion 222 has a shape corresponding to the shape of the cooling pipe 12 at a position recessed with respect to the wall facing portions 221, 223, and heat is transferred to the cooling pipe 12 while facing the cooling pipe 12. Cover from the wall BW2 side. As a result, the pipe facing portion 222 conducts heat conduction with the cooling pipe 12 at such a recessed position with respect to the wall facing portion 221 and the wall facing portion 223.
管対向部222のうち伝熱壁BW2に最も近い部分と、壁対向部221のうち伝熱壁BW2に最も近い部分とを比較すると、後者の部分の方が、伝熱壁BW2に近い。また、冷却管12のうち伝熱壁BW2に最も近い部分と、管対向部222のうち伝熱壁BW2に最も近い部分とを比較すると、後者の部分の方が、伝熱壁BW2に近い。これらのことは、壁対向部221を壁対向部223に置き換えても成立する。
Comparing the portion of the tube facing portion 222 closest to the heat transfer wall BW2 and the portion of the wall facing portion 221 closest to the heat transfer wall BW2, the latter portion is closer to the heat transfer wall BW2. Further, when comparing the portion of the cooling pipe 12 closest to the heat transfer wall BW2 and the portion of the pipe facing portion 222 closest to the heat transfer wall BW2, the latter portion is closer to the heat transfer wall BW2. These things are also established even if the wall facing portion 221 is replaced with the wall facing portion 223.
また、伝熱壁BW2が壁対向部221を押す力が、管対向部222を介して、壁対向部223におけるBW2を押す力として作用する。また逆に、伝熱壁BW2が壁対向部223を押す力が、管対向部222を介して、壁対向部221における伝熱壁BW2を押す力として作用する。したがって、壁対向部221、223の両方と伝熱壁BW2の押し合いが補強される。また、冷却管12が冷却管12の両側から同じ方向に付勢されるので、冷却管12の位置が安定する。
Further, the force of the heat transfer wall BW2 pushing the wall facing portion 221 acts as a force pushing the BW2 at the wall facing portion 223 via the pipe facing portion 222. On the contrary, the force that the heat transfer wall BW2 pushes against the wall facing portion 223 acts as a force that pushes the heat transfer wall BW2 at the wall facing portion 221 via the pipe facing portion 222. Therefore, the pressing of both the wall facing portions 221 and 223 and the heat transfer wall BW2 is reinforced. Further, since the cooling pipe 12 is urged from both sides of the cooling pipe 12 in the same direction, the position of the cooling pipe 12 is stabilized.
また、壁対向部221、223は、全体として、伝熱壁BW2側に向かって凸形状に曲がっていることで、伝熱壁BW2に対して平行な平面形状である場合に比べ、伝熱壁BW2を押すための剛性を高めることができる。したがって、壁対向部221、223が伝熱壁BW2から逃げることなく、壁対向部221、223と伝熱壁BW2との押し合いがより強化される。
Further, the wall facing portions 221 and 223 are bent in a convex shape toward the heat transfer wall BW2 side as a whole, so that the heat transfer wall has a plane shape parallel to the heat transfer wall BW2. The rigidity for pushing the BW2 can be increased. Therefore, the wall facing portions 221 and 223 do not escape from the heat transfer wall BW2, and the pressing between the wall facing portions 221 and 223 and the heat transfer wall BW2 is further strengthened.
この特徴関する特徴の詳細については、壁対向部221、223の同様の説明において壁対向部211、管対向部212、壁対向部213、伝熱壁BW1を壁対向部221、管対向部222、壁対向部223、組電池B2に置き換えたものと同じである。
For details of the features related to this feature, in the same description of the wall facing portions 221 and 223, the wall facing portion 211, the pipe facing portion 212, the wall facing portion 213, and the heat transfer wall BW1 are referred to as the wall facing portion 221 and the pipe facing portion 222. It is the same as the one replaced with the wall facing portion 223 and the assembled battery B2.
また、壁対向部221、223は、伝熱壁BW2に近付く方にアーチ状に湾曲しながら管対向部222から離れる方向に沿って上方に伸びる部分を有する。冷却管12の伸びる方向に直交する断面におけるこの部分の伝熱壁BW1側の輪郭は、伝熱壁BW2側に凸となる曲率を有するアーチ形状となる。この部分が伝熱壁BW2に接触して伝熱壁BW2と押し合う。このようになっていることで、壁対向部221、223と伝熱壁BW2との押し合いがより強化される。
Further, the wall facing portions 221 and 223 have a portion extending upward along the direction away from the pipe facing portion 222 while being curved in an arch shape toward the heat transfer wall BW2. The contour of this portion on the heat transfer wall BW1 side in the cross section orthogonal to the extending direction of the cooling pipe 12 has an arch shape having a curvature that is convex toward the heat transfer wall BW2 side. This portion comes into contact with the heat transfer wall BW2 and presses against the heat transfer wall BW2. By doing so, the pressing between the wall facing portions 221 and 223 and the heat transfer wall BW2 is further strengthened.
また、管対向部212、壁対向部213と同様に、壁対向部221、223にも、複数個のスリットSLが形成されている。そして壁対向部213、223は、これらスリットSLによって分離される複数の分離部を有している。これら複数個のスリットSLおよび複数の分離部の特徴は、壁対向部211の複数のスリットSLおよび分離部211xについて説明したことと同じである。ただし、その説明においては、組電池B1および伝熱壁BW1が組電池B2および伝熱壁BW2に置き換わる。
Further, a plurality of slits SL are formed in the wall facing portions 221 and 223 as well as the pipe facing portion 212 and the wall facing portion 213. The wall facing portions 213 and 223 have a plurality of separating portions separated by these slits SL. The features of the plurality of slit SLs and the plurality of separation portions are the same as those described for the plurality of slit SLs of the wall facing portion 211 and the separation portions 211x. However, in the description, the assembled battery B1 and the heat transfer wall BW1 are replaced with the assembled battery B2 and the heat transfer wall BW2.
ここで、第1伝熱部21の壁対向部211と第2伝熱部22の壁対向部221との関係について説明する。壁対向部211と壁対向部221は、冷却管12に対して同じ側である上側に配置され、対向方向DR3に対向している。そして、壁対向部211と壁対向部221は、冷却管12側の端部から伸びながら、まず互いに対して遠ざかる。更に壁対向部211と壁対向部221は、離間して互いに対向方向DR3に対向しながら冷却管12から離れる方向に伸びる。更に壁対向部211と壁対向部221は、冷却管12から遠い側の端部において、図2、図3に示すように、互いに対向方向DR3に対向して接触している。この接触部分において、押し合いが実現している。すなわち、壁対向部211の当該端部が壁対向部221の当該端部を伝熱壁BW2側に押し、その反作用として、壁対向部221の当該端部が壁対向部211の当該端部を伝熱壁BW1側に押す。壁対向部213と壁対向部223との関係も同様である。
Here, the relationship between the wall facing portion 211 of the first heat transfer section 21 and the wall facing portion 221 of the second heat transfer section 22 will be described. The wall facing portion 211 and the wall facing portion 221 are arranged on the upper side on the same side with respect to the cooling pipe 12, and face the facing direction DR3. Then, the wall-facing portion 211 and the wall-facing portion 221 first move away from each other while extending from the end on the cooling pipe 12 side. Further, the wall facing portion 211 and the wall facing portion 221 extend in a direction away from the cooling pipe 12 while being separated from each other and facing the DR3 in the opposite direction. Further, the wall facing portion 211 and the wall facing portion 221 are in contact with each other at the end portion on the side far from the cooling pipe 12 so as to face each other in the facing direction DR3 as shown in FIGS. 2 and 3. Pushing is realized at this contact portion. That is, the end of the wall facing portion 211 pushes the end of the wall facing portion 221 toward the heat transfer wall BW2 side, and as a reaction, the end of the wall facing portion 221 pushes the end of the wall facing portion 211. Push to the heat transfer wall BW1 side. The relationship between the wall facing portion 213 and the wall facing portion 223 is also the same.
このように、壁対向部211と壁対向部221は、冷却管12から遠い側の端部において互いに対向方向DR3に対向して接触する。したがって、壁対向部211はその端部において、壁対向部221から伝熱壁BW1側に付勢される。逆に、壁対向部221はその端部において、壁対向部211から伝熱壁BW2側に付勢される。したがって、壁対向部211と伝熱壁BW1の押し合いが補強されると共に、壁対向部221と伝熱壁BW2の押し合いも補強される。壁対向部213と壁対向部223との関係においても同様の効果が得られる。すなわち、壁対向部213と伝熱壁BW1の押し合いが補強されると共に、壁対向部223と伝熱壁BW2の押し合いも補強される。
In this way, the wall facing portion 211 and the wall facing portion 221 come into contact with each other in the opposite direction DR3 at the end portion on the side far from the cooling pipe 12. Therefore, the wall facing portion 211 is urged from the wall facing portion 221 toward the heat transfer wall BW1 at its end. On the contrary, the wall facing portion 221 is urged from the wall facing portion 211 to the heat transfer wall BW2 side at its end. Therefore, the pressing between the wall facing portion 211 and the heat transfer wall BW1 is reinforced, and the pressing between the wall facing portion 221 and the heat transfer wall BW2 is also reinforced. The same effect can be obtained in the relationship between the wall facing portion 213 and the wall facing portion 223. That is, the pressing between the wall facing portion 213 and the heat transfer wall BW1 is reinforced, and the pressing between the wall facing portion 223 and the heat transfer wall BW2 is also reinforced.
次に、反発材23、24について説明する。反発材23は、ウレタン、エラストマー、バネ等の弾性部材であり、対向方向DR3に圧縮された状態で壁対向部211と壁対向部221の間に挟まれる。これにより、反発材23は、自ら膨張しようとする反発力により、壁対向部211を伝熱壁BW1側に付勢すると共に、壁対向部221を伝熱壁BW2側に付勢する。このようになっていることで、反発材23によって壁対向部211と伝熱壁BW1の押し合いおよび壁対向部221と伝熱壁BW2の押し合いがより強化される。
Next, the repulsive materials 23 and 24 will be described. The repulsive material 23 is an elastic member such as urethane, elastomer, or spring, and is sandwiched between the wall facing portion 211 and the wall facing portion 221 in a state of being compressed in the facing direction DR3. As a result, the repulsive material 23 urges the wall facing portion 211 toward the heat transfer wall BW1 side and the wall facing portion 221 toward the heat transfer wall BW2 side by the repulsive force that is about to expand by itself. In this way, the repulsive material 23 further strengthens the pressing of the wall facing portion 211 and the heat transfer wall BW1 and the pressing of the wall facing portion 221 and the heat transfer wall BW2.
反発材24も、反発材23と同様の弾性部材であり、圧縮された状態で壁対向部213と壁対向部223の間に挟まれる。これにより、反発材24は、自ら膨張しようとする反発力により、壁対向部213を伝熱壁BW1側に付勢すると共に、壁対向部223を伝熱壁BW2側に付勢する。このようになっていることで、反発材24によって壁対向部213と伝熱壁BW1の押し合いおよび壁対向部223と伝熱壁BW2の押し合いがより強化される。
The repulsive material 24 is also an elastic member similar to the repulsive material 23, and is sandwiched between the wall facing portion 213 and the wall facing portion 223 in a compressed state. As a result, the repulsive material 24 urges the wall facing portion 213 toward the heat transfer wall BW1 side and the wall facing portion 223 toward the heat transfer wall BW2 side by the repulsive force that tries to expand by itself. In this way, the repulsive material 24 further strengthens the pressing of the wall facing portion 213 and the heat transfer wall BW1 and the pressing of the wall facing portion 223 and the heat transfer wall BW2.
以下、上記のような構成の電池冷却システムの作動について説明する。冷却管12が伝熱器具20を媒介した熱伝導によって組電池B1、B2から受熱すると、冷却管12内の液相の作動流体は、受けた組電池B1、B2の熱により蒸発する。これにより、組電池B1、B2は熱を奪われ冷却される。冷却管12で蒸発した気相の作動流体は管11内で上昇して、中間管13から放熱管14へ到達する。
The operation of the battery cooling system having the above configuration will be described below. When the cooling pipe 12 receives heat from the assembled batteries B1 and B2 by heat conduction mediated by the heat transfer device 20, the working fluid of the liquid phase in the cooling pipe 12 evaporates due to the heat of the received assembled batteries B1 and B2. As a result, the assembled batteries B1 and B2 are deprived of heat and cooled. The working fluid of the gas phase evaporated in the cooling pipe 12 rises in the pipe 11 and reaches the heat radiating pipe 14 from the intermediate pipe 13.
放熱管14に到達した気相の作動流体は、放熱フィン15を介して管11の外部へ放熱して凝縮する。その凝縮した液相の作動流体は、重力の作用により中間管13を通過して冷却管12へ流下する。このように作動流体の液相と気相との相変化が管11内で繰り返されることにより、組電池P1、B2は冷却される。
The gas phase working fluid that has reached the heat radiating pipe 14 radiates heat to the outside of the pipe 11 via the heat radiating fins 15 and condenses. The working fluid of the condensed liquid phase passes through the intermediate pipe 13 and flows down to the cooling pipe 12 by the action of gravity. By repeating the phase change between the liquid phase and the gas phase of the working fluid in the pipe 11 in this way, the assembled batteries P1 and B2 are cooled.
このときの、冷却管12および伝熱器具20を介した組電池B1、B2と作動流体の熱伝導について更に説明する。上述の通り、伝熱器具20の壁対向部211は、組電池B1の伝熱壁BW1に面で確実に接触する。これは、上述の通り、壁対向部211の伝熱壁BW1に向けた凸形状、壁対向部211と壁対向部221の端部同士の押し合い、反発材23の付勢力等により、壁対向部211と伝熱壁BW1の押し合いの力が補強されているからである。
At this time, the heat conduction of the assembled batteries B1 and B2 and the working fluid via the cooling pipe 12 and the heat transfer device 20 will be further described. As described above, the wall-facing portion 211 of the heat transfer device 20 reliably contacts the heat transfer wall BW1 of the assembled battery B1 on the surface. As described above, this is due to the convex shape of the wall facing portion 211 toward the heat transfer wall BW1, the pressing of the end portions of the wall facing portion 211 and the wall facing portion 221, the urging force of the repulsive material 23, and the like. This is because the pressing force between the 211 and the heat transfer wall BW1 is reinforced.
壁対向部213も同様の理由で組電池B1の伝熱壁BW1に面で確実に接触する。また、壁対向部221、223も、同様の理由で組電池B2の伝熱壁BW2に面で確実に接触する。
For the same reason, the wall facing portion 213 also reliably contacts the heat transfer wall BW1 of the assembled battery B1 on the surface. Further, the wall facing portions 221 and 223 also surely come into contact with the heat transfer wall BW2 of the assembled battery B2 on the surface for the same reason.
また、上述の通り、組電池B1を構成する電池セルの設置時または設置後における小壁BWsの対向方向DR3の位置ずれに起因して、図4に示すように、伝熱壁BW1に冷却管12に沿った凹凸が段差という形態で発生する。それであっても、伝熱器具20の壁対向部211においては、スリットSLによって分離された分離部211xの各々が、組電池B1の対向する小壁BWsの位置に追従し、当該小壁BWsに面でかつ広い範囲で確実に接触する。
Further, as described above, due to the misalignment of the small wall BWs in the opposite direction DR3 during or after the installation of the battery cells constituting the assembled battery B1, as shown in FIG. 4, the cooling pipe is attached to the heat transfer wall BW1. Unevenness along 12 is generated in the form of a step. Even so, in the wall facing portion 211 of the heat transfer device 20, each of the separating portions 211x separated by the slit SL follows the position of the facing small wall BWs of the assembled battery B1 and reaches the small wall BWs. Reliable contact on the surface and in a wide range.
また同様の理由で、壁対向部213、221、223においても、スリットSLによって分離された分離部の各々が、対向する小壁BWsの位置に追従し、当該小壁BWsに面でかつ広い範囲で確実に接触する。
For the same reason, in the wall facing portions 213, 221 and 223, each of the separated portions separated by the slit SL follows the position of the facing small wall BWs, and has a wide range in a plane with the small wall BWs. Make sure to contact.
なおこのとき、冷却管12および管対向部212は、伝熱壁BW1と壁対向部211、213の接触の邪魔をしない。これは、上述の通り、冷却管12および壁対向部211、213が、壁対向部211に対しても壁対向部213に対しても、伝熱壁BW1から遠ざかる方向に窪んだ位置にあるからである。
At this time, the cooling pipe 12 and the pipe facing portion 212 do not interfere with the contact between the heat transfer wall BW1 and the wall facing portions 211 and 213. This is because, as described above, the cooling pipe 12 and the wall facing portions 211 and 213 are recessed in the direction away from the heat transfer wall BW1 with respect to the wall facing portion 211 and the wall facing portion 213. Is.
つまり、伝熱壁BW1と熱伝導を行う壁対向部211、213に対して冷却管12と管対向部212部が窪んだ形状となっていることで、壁対向部211、213を撓むように伝熱壁BW1に押しつけることができる。つまり、壁対向部211、213は、管対向部212に邪魔されない寸法吸収構造を有している。つまり、対向方向DR3における冷却管12の厚みと関係ない部分で寸法吸収が実現する。
That is, the cooling pipe 12 and the pipe facing portion 212 are recessed with respect to the wall facing portions 211 and 213 that conduct heat with the heat transfer wall BW1 so that the wall facing portions 211 and 213 are flexed. It can be pressed against the heat wall BW1. That is, the wall facing portions 211 and 213 have a dimension absorbing structure that is not obstructed by the pipe facing portion 212. That is, dimension absorption is realized at a portion of the facing direction DR3 that is not related to the thickness of the cooling pipe 12.
また、伝熱壁BW1および冷却管12に伝熱器具20が設置される際、または、設置された後に、伝熱壁BW1が所望の位置よりも壁対向部211、213から逃げる方向にずれることがある。その場合でも、上記のようになっていることで、そのずれに追従して壁対向部211、213が動くことで、伝熱壁BW1と壁対向部211、213との押し合いが維持される。
Further, when the heat transfer device 20 is installed on the heat transfer wall BW1 and the cooling pipe 12, or after the heat transfer device 20 is installed, the heat transfer wall BW1 is displaced from the desired position in the direction of escaping from the wall facing portions 211 and 213. There is. Even in that case, as described above, the wall facing portions 211 and 213 move following the deviation, so that the heat transfer wall BW1 and the wall facing portions 211 and 213 are kept pressed against each other.
同様の理由で、冷却管12および管対向部222は、伝熱壁BW2と壁対向部221、223の接触の邪魔をしないことにより、伝熱壁BW2と壁対向部221、223との押し合いが維持される。つまり、壁対向部221、223は、管対向部222に邪魔されない寸法吸収構造を有している。
For the same reason, the cooling pipe 12 and the pipe facing portion 222 do not interfere with the contact between the heat transfer wall BW2 and the wall facing portions 221, 223, so that the heat transfer wall BW2 and the wall facing portions 221, 223 are pressed against each other. Be maintained. That is, the wall facing portions 221 and 223 have a dimension absorption structure that is not obstructed by the pipe facing portion 222.
このように、一体に形成された第1伝熱部21が熱伝導の機能も伝熱壁BW1との押し合いの機能も果たす。また、一体に形成された第2伝熱部22が熱伝導の機能も伝熱壁BW2との押し合いの機能も果たす。したがって、押し合いのための追加の部品を設ける必要がないので、電池冷却システムにおいて部品点数を抑えることができる。
In this way, the integrally formed first heat transfer unit 21 fulfills both the function of heat conduction and the function of pressing against the heat transfer wall BW1. In addition, the integrally formed second heat transfer unit 22 fulfills both a function of heat conduction and a function of pressing against the heat transfer wall BW2. Therefore, since it is not necessary to provide additional parts for pressing, the number of parts can be reduced in the battery cooling system.
それと共に、冷却管12と伝熱壁BW1、BW2との間に熱伝導のための大きな部材を追加する必要がない。そして、冷却管12と伝熱器具20とは冷却管12の伸びる方向にも対向方向DR3にも直交する方向に互いに重なっている。したがって、冷却管12と伝熱壁BW1、BW2との間の距離の増大を抑えることができ、ひいては、電池冷却システムの体格を抑制することができる。
At the same time, it is not necessary to add a large member for heat conduction between the cooling pipe 12 and the heat transfer walls BW1 and BW2. The cooling pipe 12 and the heat transfer device 20 overlap each other in a direction orthogonal to the extending direction of the cooling pipe 12 and the facing direction DR3. Therefore, it is possible to suppress an increase in the distance between the cooling pipe 12 and the heat transfer walls BW1 and BW2, and by extension, the physique of the battery cooling system can be suppressed.
なお、壁対向部211、213と伝熱壁BW1との間に熱伝導性能を向上するための熱グリスまたは伝熱シートが配置されていてもよい。同様に、壁対向部221、223と伝熱壁BW2との間に熱伝導性能を向上するための熱グリスまたは伝熱シートが配置されていてもよい。その場合も、上述の寸法吸収構造により、対向方向DR3における熱グリスの厚みまたは伝熱シートの厚みを最小限にすることができる。
Note that thermal grease or a heat transfer sheet for improving the heat conduction performance may be arranged between the wall facing portions 211 and 213 and the heat transfer wall BW1. Similarly, thermal grease or a heat transfer sheet for improving the heat conduction performance may be arranged between the wall facing portions 221 and 223 and the heat transfer wall BW2. Even in that case, the thickness of the thermal grease or the thickness of the heat transfer sheet in the facing direction DR3 can be minimized by the above-mentioned dimension absorption structure.
また、伝熱壁BW1の各小壁BWsと壁対向部211、213の接触が確実になっているので、伝熱壁BW1の各小壁BWsから壁対向部211、213への熱の伝導が良好に行われる。また、伝熱壁BW2の各小壁BWsと壁対向部221、223の接触が確実になっているので、伝熱壁BW2の各小壁BWsから壁対向部221、223への熱の伝導が良好に行われる。
Further, since the contact between each small wall BWs of the heat transfer wall BW1 and the wall facing portions 211 and 213 is ensured, heat is conducted from each small wall BWs of the heat transfer wall BW1 to the wall facing portions 211 and 213. Well done. Further, since the contact between the small wall BWs of the heat transfer wall BW2 and the wall facing portions 221 and 223 is ensured, heat is conducted from the small wall BWs of the heat transfer wall BW2 to the wall facing portions 221 and 223. Well done.
伝熱壁BW1から壁対向部211、213に伝わった熱は、壁対向部211、213から管対向部212に熱伝導で伝わり、更に、管対向部212から冷却管12に熱伝導で伝わる。また、伝熱壁BW2から壁対向部221、223に伝わった熱は、壁対向部221、223から管対向部222に熱伝導で伝わり、更に、管対向部222から冷却管12に熱伝導で伝わる。このように、冷却管12と第1伝熱部21の間の熱移動方向は概ね上下方向DR2であり、第1伝熱部21と伝熱壁BW1の間の熱移動方向は概ね対向方向DR3である。すなわち、冷却管12と第1伝熱部21の間の熱移動方向と、第1伝熱部21と伝熱壁BW1の間の熱移動方向とは、交差しており、概ね直交している。
The heat transferred from the heat transfer wall BW1 to the wall facing portions 211 and 213 is transferred from the wall facing portions 211 and 213 to the pipe facing portion 212 by heat conduction, and further from the pipe facing portion 212 to the cooling pipe 12 by heat conduction. Further, the heat transferred from the heat transfer wall BW2 to the wall facing portions 221 and 223 is transferred from the wall facing portions 221 and 223 to the pipe facing portion 222 by heat conduction, and further from the pipe facing portion 222 to the cooling pipe 12 by heat conduction. It is transmitted. As described above, the heat transfer direction between the cooling pipe 12 and the first heat transfer unit 21 is approximately the vertical direction DR2, and the heat transfer direction between the first heat transfer unit 21 and the heat transfer wall BW1 is approximately the opposite direction DR3. Is. That is, the heat transfer direction between the cooling pipe 12 and the first heat transfer unit 21 and the heat transfer direction between the first heat transfer unit 21 and the heat transfer wall BW1 intersect and are substantially orthogonal to each other. ..
(第2実施形態)
次に第2実施形態について説明する。本実施形態の電池冷却システムは、第1実施形態に対して、第1伝熱部21、第2伝熱部22の形状が変更されている。具体的には、図5に示すように、第1伝熱部21の壁対向部211および第2伝熱部22の壁対向部221は、冷却管12から遠い側の端部において、互いに接触せず離れている。また、第1伝熱部21の壁対向部213および第2伝熱部22の壁対向部223は、冷却管12から遠い側の端部において、互いに接触せず離れている。 (Second Embodiment)
Next, the second embodiment will be described. In the battery cooling system of the present embodiment, the shapes of the firstheat transfer unit 21 and the second heat transfer unit 22 are changed from those of the first embodiment. Specifically, as shown in FIG. 5, the wall facing portion 211 of the first heat transfer portion 21 and the wall facing portion 221 of the second heat transfer portion 22 come into contact with each other at the end portion on the side far from the cooling pipe 12. I'm away without. Further, the wall-facing portion 213 of the first heat transfer portion 21 and the wall-facing portion 223 of the second heat transfer portion 22 are separated from each other without contacting each other at the end portion on the side far from the cooling pipe 12.
次に第2実施形態について説明する。本実施形態の電池冷却システムは、第1実施形態に対して、第1伝熱部21、第2伝熱部22の形状が変更されている。具体的には、図5に示すように、第1伝熱部21の壁対向部211および第2伝熱部22の壁対向部221は、冷却管12から遠い側の端部において、互いに接触せず離れている。また、第1伝熱部21の壁対向部213および第2伝熱部22の壁対向部223は、冷却管12から遠い側の端部において、互いに接触せず離れている。 (Second Embodiment)
Next, the second embodiment will be described. In the battery cooling system of the present embodiment, the shapes of the first
この場合、壁対向部211が壁対向部221から伝熱壁BW1側に付勢されることも、逆に壁対向部221が壁対向部211から伝熱壁BW2側に付勢されることも、ない。また、この場合、壁対向部211が壁対向部221から伝熱壁BW1側に付勢されることも、逆に壁対向部221が壁対向部211から伝熱壁BW2側に付勢されることも、ない。
In this case, the wall facing portion 211 may be urged from the wall facing portion 221 to the heat transfer wall BW1 side, or conversely, the wall facing portion 221 may be urged from the wall facing portion 211 to the heat transfer wall BW2 side. ,Absent. Further, in this case, the wall facing portion 211 is urged from the wall facing portion 221 to the heat transfer wall BW1 side, and conversely, the wall facing portion 221 is urged from the wall facing portion 211 to the heat transfer wall BW2 side. There is no such thing.
このようになっていても、反発材23、24があることにより、壁対向部211、213は伝熱壁BW1側に付勢され、壁対向部221、223は伝熱壁BW2側に付勢される。また、壁対向部211、213は、伝熱壁BW1に近付く方にアーチ状に湾曲しながら管対向部212から離れる方向に沿って上方に伸びる部分を有する。また、壁対向部221、223は、伝熱壁BW2に近付く方にアーチ状に湾曲しながら管対向部212から離れる方向に沿って上方に伸びる部分を有する。このようになっていることで、壁対向部211、213と伝熱壁BW1との押し合いが強化され、壁対向部221、223と伝熱壁BW2との押し合いが強化される。その他の特徴およびそれら特徴による効果は、第1実施形態と同様である。
Even in this case, due to the presence of the repulsive materials 23 and 24, the wall facing portions 211 and 213 are urged to the heat transfer wall BW1 side, and the wall facing portions 221 and 223 are urged to the heat transfer wall BW2 side. Will be done. Further, the wall facing portions 211 and 213 have a portion extending upward along the direction away from the pipe facing portion 212 while being curved in an arch shape toward the heat transfer wall BW1. Further, the wall facing portions 221 and 223 have portions extending upward along the direction away from the pipe facing portion 212 while being curved in an arch shape toward the heat transfer wall BW2. By doing so, the pressing between the wall facing portions 211 and 213 and the heat transfer wall BW1 is strengthened, and the pressing between the wall facing portions 221 and 223 and the heat transfer wall BW2 is strengthened. Other features and the effects of those features are similar to those of the first embodiment.
(第3実施形態)
次に第3実施形態について説明する。本実施形態の電池冷却システムは、図6に示すように、第1実施形態に対して、反発材23、24が廃されている。つまり、壁対向部211と壁対向部221の間は中空になっており、壁対向部213と壁対向部223の間も中空になっている。 (Third Embodiment)
Next, the third embodiment will be described. In the battery cooling system of the present embodiment, as shown in FIG. 6, the repulsive materials 23 and 24 are eliminated with respect to the first embodiment. That is, the space between the wall facing portion 211 and the wall facing portion 221 is hollow, and the space between the wall facing portion 213 and the wall facing portion 223 is also hollow.
次に第3実施形態について説明する。本実施形態の電池冷却システムは、図6に示すように、第1実施形態に対して、反発材23、24が廃されている。つまり、壁対向部211と壁対向部221の間は中空になっており、壁対向部213と壁対向部223の間も中空になっている。 (Third Embodiment)
Next, the third embodiment will be described. In the battery cooling system of the present embodiment, as shown in FIG. 6, the
このようになっていても、壁対向部211、213は、伝熱壁BW1に近付く方にアーチ状に湾曲しながら管対向部212から離れる方向に沿って上方に伸びる部分を有する。また、壁対向部221、223は、伝熱壁BW2に近付く方にアーチ状に湾曲しながら管対向部212から離れる方向に沿って上方に伸びる部分を有する。また、第1伝熱部21の壁対向部211および第2伝熱部22の壁対向部221は、冷却管12から遠い側の端部において、互いに接触して押し合っている。また、第1伝熱部21の壁対向部213および第2伝熱部22の壁対向部223は、冷却管12から遠い側の端部において、互いに接触して押し合っている。このようになっていることで、壁対向部211、213と伝熱壁BW1との押し合いが強化され、壁対向部221、223と伝熱壁BW2との押し合いが強化される。その他の特徴およびそれら特徴による効果は、第1実施形態と同様である。
Even in this case, the wall facing portions 211 and 213 have a portion extending upward along the direction away from the pipe facing portion 212 while being curved in an arch shape toward the heat transfer wall BW1. Further, the wall facing portions 221 and 223 have portions extending upward along the direction away from the pipe facing portion 212 while being curved in an arch shape toward the heat transfer wall BW2. Further, the wall-facing portion 211 of the first heat transfer portion 21 and the wall-facing portion 221 of the second heat transfer portion 22 are in contact with each other and pressed against each other at the end portion on the side far from the cooling pipe 12. Further, the wall-facing portion 213 of the first heat transfer portion 21 and the wall-facing portion 223 of the second heat transfer portion 22 are in contact with each other and pressed against each other at the end portion on the side far from the cooling pipe 12. By doing so, the pressing between the wall facing portions 211 and 213 and the heat transfer wall BW1 is strengthened, and the pressing between the wall facing portions 221 and 223 and the heat transfer wall BW2 is strengthened. The other features and the effects of those features are the same as in the first embodiment.
(第4実施形態)
次に第4実施形態について説明する。本実施形態の電池冷却システムは、第2実施形態に対して、第1伝熱部21、第2伝熱部22の形状が異なっている。具体的には、図7に示すように、第1伝熱部21において、伝熱壁BW1に対向する部分が、対向方向DR3に直交する平面になっている。また、第2伝熱部22において、伝熱壁BW2に対向する部分が、対向方向DR3に直交する平面になっている。このようになっていることで、第1伝熱部21、第2伝熱部22が湾曲することによって得られる剛性の強化は、本実施形態では得られない。 (Fourth Embodiment)
Next, the fourth embodiment will be described. In the battery cooling system of the present embodiment, the shapes of the firstheat transfer unit 21 and the second heat transfer unit 22 are different from those of the second embodiment. Specifically, as shown in FIG. 7, in the first heat transfer unit 21, the portion facing the heat transfer wall BW1 is a plane orthogonal to the facing direction DR3. Further, in the second heat transfer unit 22, the portion facing the heat transfer wall BW2 is a plane orthogonal to the facing direction DR3. As a result, the enhancement of rigidity obtained by bending the first heat transfer portion 21 and the second heat transfer portion 22 cannot be obtained in the present embodiment.
次に第4実施形態について説明する。本実施形態の電池冷却システムは、第2実施形態に対して、第1伝熱部21、第2伝熱部22の形状が異なっている。具体的には、図7に示すように、第1伝熱部21において、伝熱壁BW1に対向する部分が、対向方向DR3に直交する平面になっている。また、第2伝熱部22において、伝熱壁BW2に対向する部分が、対向方向DR3に直交する平面になっている。このようになっていることで、第1伝熱部21、第2伝熱部22が湾曲することによって得られる剛性の強化は、本実施形態では得られない。 (Fourth Embodiment)
Next, the fourth embodiment will be described. In the battery cooling system of the present embodiment, the shapes of the first
このようになっていても、反発材23、24があることにより、壁対向部211、213は伝熱壁BW1側に付勢され、壁対向部221、223は伝熱壁BW2側に付勢される。したがって、壁対向部211、213と伝熱壁BW1との押し合いが強化され、壁対向部221、223と伝熱壁BW2との押し合いが強化される。その他の特徴およびそれら特徴による効果は、第2実施形態と同様である。
Even in this case, due to the presence of the repulsive materials 23 and 24, the wall facing portions 211 and 213 are urged to the heat transfer wall BW1 side, and the wall facing portions 221 and 223 are urged to the heat transfer wall BW2 side. Will be done. Therefore, the pressing between the wall facing portions 211 and 213 and the heat transfer wall BW1 is strengthened, and the pressing between the wall facing portions 221 and 223 and the heat transfer wall BW2 is strengthened. Other features and the effects of those features are similar to those of the second embodiment.
(第5実施形態)
次に第5実施形態について説明する。本実施形態の電池冷却システムは、図8に示すように、第4実施形態に対して、反発材23、24が廃されている。つまり、壁対向部211と壁対向部221の間は空隙になっており、壁対向部213と壁対向部223の間も空隙になっている。 (Fifth Embodiment)
Next, the fifth embodiment will be described. In the battery cooling system of the present embodiment, as shown in FIG. 8, the repulsive materials 23 and 24 are eliminated with respect to the fourth embodiment. That is, there is a gap between the wall facing portion 211 and the wall facing portion 221 and a gap between the wall facing portion 213 and the wall facing portion 223.
次に第5実施形態について説明する。本実施形態の電池冷却システムは、図8に示すように、第4実施形態に対して、反発材23、24が廃されている。つまり、壁対向部211と壁対向部221の間は空隙になっており、壁対向部213と壁対向部223の間も空隙になっている。 (Fifth Embodiment)
Next, the fifth embodiment will be described. In the battery cooling system of the present embodiment, as shown in FIG. 8, the
このようになっていても、管対向部212は、対向方向DR3の伝熱壁BW1から遠ざかる向きに壁対向部211、213に対して窪み、壁対向部211、213に対して窪んだ位置において冷却管12と熱伝導を行う。また、管対向部222は、対向方向DR3の伝熱壁BW2から遠ざかる向きに壁対向部221、223に対して窪み、壁対向部221、223に対して窪んだ位置において冷却管12と熱伝導を行う。
Even in this case, the tube facing portion 212 is recessed with respect to the wall facing portions 211 and 213 in a direction away from the heat transfer wall BW1 in the facing direction DR3, and is recessed with respect to the wall facing portions 211 and 213. It conducts heat with the cooling pipe 12. Further, the pipe facing portion 222 is recessed with respect to the wall facing portions 221 and 223 in a direction away from the heat transfer wall BW2 in the facing direction DR3, and heat conduction with the cooling pipe 12 at a position recessed with respect to the wall facing portions 221, 223. I do.
したがって、壁対向部211、213が撓むように壁対向部211、213を壁に押しつけることができる。これによって顕著な効果が得られる。すなわち、伝熱壁BW1および冷却管12に伝熱器具が設置される際、または、設置された後に、伝熱壁BW1が壁対向部211、213から逃げる方向にずれることがある。しかしその場合でも、そのずれに追従して壁対向部211、213が動くことで、伝熱壁BW1と壁対向部211、213との押し合いが維持される。壁対向部221、223についても同様である。その他の特徴およびそれら特徴による効果は、第4実施形態と同様である。
Therefore, the wall facing portions 211 and 213 can be pressed against the wall so that the wall facing portions 211 and 213 bend. This has a significant effect. That is, when the heat transfer device is installed on the heat transfer wall BW1 and the cooling pipe 12, or after the heat transfer device is installed, the heat transfer wall BW1 may be displaced in the direction of escaping from the wall facing portions 211 and 213. However, even in that case, the wall facing portions 211 and 213 move following the deviation, so that the heat transfer wall BW1 and the wall facing portions 211 and 213 are kept pressed against each other. The same applies to the wall facing portions 221 and 223. The other features and the effects of those features are the same as in the fourth embodiment.
(第6実施形態)
次に第6実施形態について説明する。本実施形態の電池冷却システムは、図9に示すように、第1実施形態に対して、組電池B1、B2、伝熱器具20の姿勢が異なっている。すなわち、本実施形態の組電池B1、B2、伝熱器具20は、第1実施形態の電池冷却システムに対して、冷却管12を軸として90°回転した姿勢で、車両に取り付けられている。このようになっていても、第1実施形態と同様の特徴および効果は発揮される。なお、本実施形態における対向方向は、上下方向DR2である。 (Sixth Embodiment)
Next, the sixth embodiment will be described. As shown in FIG. 9, the battery cooling system of the present embodiment has different postures of the assembled batteries B1 and B2 and theheat transfer device 20 from the first embodiment. That is, the assembled batteries B1 and B2 of the present embodiment and the heat transfer device 20 are attached to the vehicle in a posture rotated by 90 ° about the cooling pipe 12 with respect to the battery cooling system of the first embodiment. Even in this case, the same features and effects as those of the first embodiment are exhibited. The facing direction in this embodiment is the vertical DR2.
次に第6実施形態について説明する。本実施形態の電池冷却システムは、図9に示すように、第1実施形態に対して、組電池B1、B2、伝熱器具20の姿勢が異なっている。すなわち、本実施形態の組電池B1、B2、伝熱器具20は、第1実施形態の電池冷却システムに対して、冷却管12を軸として90°回転した姿勢で、車両に取り付けられている。このようになっていても、第1実施形態と同様の特徴および効果は発揮される。なお、本実施形態における対向方向は、上下方向DR2である。 (Sixth Embodiment)
Next, the sixth embodiment will be described. As shown in FIG. 9, the battery cooling system of the present embodiment has different postures of the assembled batteries B1 and B2 and the
(第7実施形態)
次に第7実施形態について説明する。本実施形態の電池冷却システムは、図10に示すように、第1実施形態に対して、組電池B1、B2、伝熱器具20の姿勢が異なっている。すなわち、本実施形態の組電池B1、B2、伝熱器具20、第1実施形態の電池冷却システムに対して、冷却管12を軸として0°より大きくかつ90°より小さい所定角度だけ回転した姿勢で、車両に取り付けられている。このようになっていても、第1実施形態と同様の特徴および効果は発揮される。なお、本実施形態における対向方向は、上下方向DR2にも左右方向DR3にも傾斜した方向である。 (7th Embodiment)
Next, the seventh embodiment will be described. As shown in FIG. 10, the battery cooling system of the present embodiment has different postures of the assembled batteries B1 and B2 and theheat transfer device 20 from the first embodiment. That is, the posture in which the assembled batteries B1 and B2 of the present embodiment, the heat transfer device 20, and the battery cooling system of the first embodiment are rotated by a predetermined angle larger than 0 ° and smaller than 90 ° with respect to the cooling pipe 12 as an axis. And it is attached to the vehicle. Even in this case, the same features and effects as those of the first embodiment are exhibited. The facing direction in the present embodiment is a direction inclined in both the vertical direction DR2 and the horizontal direction DR3.
次に第7実施形態について説明する。本実施形態の電池冷却システムは、図10に示すように、第1実施形態に対して、組電池B1、B2、伝熱器具20の姿勢が異なっている。すなわち、本実施形態の組電池B1、B2、伝熱器具20、第1実施形態の電池冷却システムに対して、冷却管12を軸として0°より大きくかつ90°より小さい所定角度だけ回転した姿勢で、車両に取り付けられている。このようになっていても、第1実施形態と同様の特徴および効果は発揮される。なお、本実施形態における対向方向は、上下方向DR2にも左右方向DR3にも傾斜した方向である。 (7th Embodiment)
Next, the seventh embodiment will be described. As shown in FIG. 10, the battery cooling system of the present embodiment has different postures of the assembled batteries B1 and B2 and the
(第8実施形態)
次に第8実施形態について説明する。本実施形態の電池冷却システムは、図11に示すように、第1実施形態に対して、組電池B1および第2伝熱部22が廃されている。そして、反発材23、24が車体に対して、対向方向DR3に押しつけられている。 (8th Embodiment)
Next, the eighth embodiment will be described. In the battery cooling system of the present embodiment, as shown in FIG. 11, the assembled battery B1 and the secondheat transfer unit 22 are eliminated from the first embodiment. Then, the repulsive materials 23 and 24 are pressed against the vehicle body in the opposite direction DR3.
次に第8実施形態について説明する。本実施形態の電池冷却システムは、図11に示すように、第1実施形態に対して、組電池B1および第2伝熱部22が廃されている。そして、反発材23、24が車体に対して、対向方向DR3に押しつけられている。 (8th Embodiment)
Next, the eighth embodiment will be described. In the battery cooling system of the present embodiment, as shown in FIG. 11, the assembled battery B1 and the second
この場合、第2伝熱部22が無いので、壁対向部211、213が壁対向部221、223から伝熱壁BW1側に付勢されることがない。このようになっていても、反発材23、24は車体と第1伝熱部21に挟まれて圧縮された状態になっている。したがって、壁対向部211、213は伝熱壁BW1側に付勢される。このようになっていることで、壁対向部211、213と伝熱壁BW1との押し合いが強化される。
また、本実施形態のように、第1伝熱部21の組電池B1とは反対側に冷却対象が無い場合、冷熱が無駄に逃げないように、反発材23、24は、第1伝熱部21よりも熱伝導率の低い断熱材として構成されていてもよい。その他の特徴およびそれら特徴による効果は、第1実施形態と同様である。 In this case, since there is no secondheat transfer portion 22, the wall facing portions 211 and 213 are not urged from the wall facing portions 221 and 223 toward the heat transfer wall BW1 side. Even in this case, the repulsive materials 23 and 24 are sandwiched between the vehicle body and the first heat transfer portion 21 and are in a compressed state. Therefore, the wall facing portions 211 and 213 are urged toward the heat transfer wall BW1 side. By doing so, the pressing between the wall facing portions 211 and 213 and the heat transfer wall BW1 is strengthened.
Further, as in the present embodiment, when there is no cooling target on the side of the firstheat transfer unit 21 opposite to the assembled battery B1, the repulsive materials 23 and 24 have the first heat transfer so that the cold heat does not escape unnecessarily. It may be configured as a heat insulating material having a lower thermal conductivity than that of the portion 21. The other features and the effects of those features are the same as in the first embodiment.
また、本実施形態のように、第1伝熱部21の組電池B1とは反対側に冷却対象が無い場合、冷熱が無駄に逃げないように、反発材23、24は、第1伝熱部21よりも熱伝導率の低い断熱材として構成されていてもよい。その他の特徴およびそれら特徴による効果は、第1実施形態と同様である。 In this case, since there is no second
Further, as in the present embodiment, when there is no cooling target on the side of the first
(第9実施形態)
次に第9実施形態について、図12、図13を用いて説明する。本実施形態の電池冷却システムは、第1実施形態に対して、組電池B1が廃され、冷却管12の傾斜の程度が変更され、かつ伝熱器具20の構成が変更されている。 (9th Embodiment)
Next, the ninth embodiment will be described with reference to FIGS. 12 and 13. In the battery cooling system of the present embodiment, the assembled battery B1 is abolished, the degree of inclination of the coolingpipe 12 is changed, and the configuration of the heat transfer device 20 is changed with respect to the first embodiment.
次に第9実施形態について、図12、図13を用いて説明する。本実施形態の電池冷却システムは、第1実施形態に対して、組電池B1が廃され、冷却管12の傾斜の程度が変更され、かつ伝熱器具20の構成が変更されている。 (9th Embodiment)
Next, the ninth embodiment will be described with reference to FIGS. 12 and 13. In the battery cooling system of the present embodiment, the assembled battery B1 is abolished, the degree of inclination of the cooling
具体的には、図12に示すように、冷却管12は、上下方向DR2に対して直交する方向に沿って、より具体的には、車両の左右方向DR3に沿って、伸びている。そして、組電池B1は、冷却管12に対して上下方向DR2の上側に配置されている。
Specifically, as shown in FIG. 12, the cooling pipe 12 extends along a direction orthogonal to the vertical DR2, and more specifically, along the horizontal DR3 of the vehicle. The assembled battery B1 is arranged above the cooling pipe 12 in the vertical direction DR2.
また、本実施形態の伝熱器具20は、第1実施形態に対して、第2伝熱部22が廃されている。そして、第1伝熱部21は、冷却管12に対して上下方向DR2の下側に、かつ、組電池B1に対して上下方向DR2の下側に、配置されている。したがって、本実施形態における対向方向は、上下方向DR2である。
Further, in the heat transfer device 20 of the present embodiment, the second heat transfer unit 22 is abolished with respect to the first embodiment. The first heat transfer unit 21 is arranged below the cooling pipe 12 in the vertical direction DR2 and below the assembled battery B1 in the vertical direction DR2. Therefore, the facing direction in this embodiment is the vertical DR2.
すなわち、本実施形態の組電池B1、第1伝熱部21は、第1実施形態の電池冷却システムに対して、冷却管12を軸として90°回転した姿勢で、車両に取り付けられている。このようになっていても、第1実施形態と同様の特徴および効果は発揮される。
That is, the assembled battery B1 and the first heat transfer unit 21 of the present embodiment are attached to the vehicle in a posture of rotating 90 ° about the cooling pipe 12 with respect to the battery cooling system of the first embodiment. Even in this case, the same features and effects as those of the first embodiment are exhibited.
また、反発材23、24が車体に対して、上下方向DR2に押しつけられている。この場合、第2伝熱部22が無いので、壁対向部211、213が壁対向部221、223から伝熱壁BW1側に付勢されることがない。このようになっていても、反発材23、24は車体と第1伝熱部21に挟まれて圧縮された状態になっている。したがって、壁対向部211、213は伝熱壁BW1側に付勢される。このようになっていることで、壁対向部211、213と伝熱壁BW1との押し合いが強化される。その他の特徴およびそれら特徴による効果は、第1実施形態と同様である。
In addition, the repulsive materials 23 and 24 are pressed against the vehicle body in the vertical direction DR2. In this case, since there is no second heat transfer portion 22, the wall facing portions 211 and 213 are not urged from the wall facing portions 221 and 223 toward the heat transfer wall BW1 side. Even in this case, the repulsive materials 23 and 24 are sandwiched between the vehicle body and the first heat transfer portion 21 and are in a compressed state. Therefore, the wall facing portions 211 and 213 are urged toward the heat transfer wall BW1 side. By doing so, the pressing between the wall facing portions 211 and 213 and the heat transfer wall BW1 is strengthened. The other features and the effects of those features are the same as in the first embodiment.
(第10実施形態)
次に第10実施形態について説明する。本実施形態は、第9実施形態に対して、冷却管12および伝熱器具20の構成が異なっている。本実施液体の冷却管12は、図14に示すように、2本に分岐している。2本の冷却管12は、対向方向である上下方向DR2に直交する方向に並んでいる。2本の冷却管12のいずれもが、中間管13に連通している。したがって、2本の冷却管12のいずれもが、第9実施形態の冷却管12と同等の作用を実現する。 (10th Embodiment)
Next, the tenth embodiment will be described. In this embodiment, the configurations of the coolingpipe 12 and the heat transfer device 20 are different from those of the ninth embodiment. As shown in FIG. 14, the cooling pipe 12 of the present implementation liquid is branched into two. The two cooling pipes 12 are arranged in a direction orthogonal to the vertical DR2, which is the opposite direction. Both of the two cooling pipes 12 communicate with the intermediate pipe 13. Therefore, both of the two cooling pipes 12 realize the same operation as the cooling pipe 12 of the ninth embodiment.
次に第10実施形態について説明する。本実施形態は、第9実施形態に対して、冷却管12および伝熱器具20の構成が異なっている。本実施液体の冷却管12は、図14に示すように、2本に分岐している。2本の冷却管12は、対向方向である上下方向DR2に直交する方向に並んでいる。2本の冷却管12のいずれもが、中間管13に連通している。したがって、2本の冷却管12のいずれもが、第9実施形態の冷却管12と同等の作用を実現する。 (10th Embodiment)
Next, the tenth embodiment will be described. In this embodiment, the configurations of the cooling
また、本実施形態の第1伝熱部21は、壁対向部211、管対向部212、壁対向部213に加え、管対向部214、壁対向部215を有している。
Further, the first heat transfer portion 21 of the present embodiment has a pipe facing portion 214 and a wall facing portion 215 in addition to the wall facing portion 211, the pipe facing portion 212, and the wall facing portion 213.
管対向部214は、その一端において壁対向部213の反管対向部212側端部と熱伝導可能に一体に接続している。そして管対向部214は、他端において壁対向部215と熱伝導可能に一体に接続する。管対向部214は、上下方向DR2の伝熱壁BW1から遠ざかる向きに、壁対向部213、215に対して窪んでいる。
The pipe facing portion 214 is integrally connected to the opposite pipe facing portion 212 side end of the wall facing portion 213 at one end thereof so as to be heat conductive. The pipe facing portion 214 is integrally connected to the wall facing portion 215 at the other end so as to be thermally conductive. The pipe facing portion 214 is recessed with respect to the wall facing portions 213 and 215 in a direction away from the heat transfer wall BW1 in the vertical direction DR2.
そして管対向部214は、壁対向部213、215に対してこのように窪んだ位置において、冷却管12の形状に対応した形状を有し、冷却管12と対向しながら冷却管12を伝熱壁BW1側から覆う。管対向部214が対向する冷却管12と管対向部212が対向する冷却管12とは、異なっている。これにより、管対向部214は、壁対向部213、215に対してこのように窪んだ位置において、冷却管12と熱伝導を行う。管対向部214のその他の構成は、管対向部212と同じである。
The pipe facing portion 214 has a shape corresponding to the shape of the cooling pipe 12 at a position recessed with respect to the wall facing portions 213 and 215, and heat is transferred to the cooling pipe 12 while facing the cooling pipe 12. Cover from the wall BW1 side. The cooling pipe 12 with which the pipe facing portion 214 faces is different from the cooling pipe 12 with which the pipe facing portion 212 faces. As a result, the pipe facing portion 214 conducts heat conduction with the cooling pipe 12 at such a recessed position with respect to the wall facing portions 213 and 215. Other configurations of the pipe facing portion 214 are the same as those of the pipe facing portion 212.
壁対向部215は、壁対向部211と同様の形態で、伝熱壁BW1側に向かって凸形状に曲がっている。また、壁対向部215には、壁対向部211、213と同様の形態でスリットが形成されている。
The wall facing portion 215 has the same shape as the wall facing portion 211, and is bent in a convex shape toward the heat transfer wall BW1 side. Further, a slit is formed in the wall facing portion 215 in the same manner as the wall facing portions 211 and 213.
したがって、本実施形態においても、第9実施形態と同様の効果が達成される。
Therefore, the same effect as that of the ninth embodiment is achieved in this embodiment as well.
(第11実施形態)
次に、第11実施形態について説明する。本実施形態は、第1~第10実施形態に対して、反発材23の構成が異なっている。具体的には、図15に示すように、本実施形態の反発材23は、一枚の板23xの一面に分散して取り付けられた複数個のバネ23yを有している。これらバネ23yは、第1~第10実施形態と同様の位置において対向方向に圧縮されて配置され、対向方向に対して広がろうとする力により、壁対向部211およびあれば壁対向部221を付勢する。 (11th Embodiment)
Next, the eleventh embodiment will be described. In this embodiment, the configuration of therepulsive material 23 is different from that in the first to tenth embodiments. Specifically, as shown in FIG. 15, the repulsive material 23 of the present embodiment has a plurality of springs 23y dispersedly attached to one surface of one plate 23x. These springs 23y are compressed and arranged in the facing direction at the same positions as in the first to tenth embodiments, and the wall facing portion 211 and the wall facing portion 221 if any are provided by a force that tries to spread in the facing direction. Encourage.
次に、第11実施形態について説明する。本実施形態は、第1~第10実施形態に対して、反発材23の構成が異なっている。具体的には、図15に示すように、本実施形態の反発材23は、一枚の板23xの一面に分散して取り付けられた複数個のバネ23yを有している。これらバネ23yは、第1~第10実施形態と同様の位置において対向方向に圧縮されて配置され、対向方向に対して広がろうとする力により、壁対向部211およびあれば壁対向部221を付勢する。 (11th Embodiment)
Next, the eleventh embodiment will be described. In this embodiment, the configuration of the
このような構成でも、第1~第10実施形態と同様の効果が得られる。なお、本実施形態においては反発材24も反発材23と同等の構成を有するようになっていてもよい。
Even with such a configuration, the same effect as that of the first to tenth embodiments can be obtained. In this embodiment, the repulsive material 24 may also have the same configuration as the repulsive material 23.
(第12実施形態)
次に、第12実施形態について説明する。本実施形態は、第1~第10実施形態に対して、反発材23の構成が異なっている。具体的には、図16に示すように、本実施形態の反発材23は、冷却管12の伸びる方向に伸びながら、対向方向に波形状に複数の凹凸が形成された、板バネ部材である。この板バネ部材は、第1~第10実施形態と同様の位置において対向方向に圧縮されて配置され、対向方向に対して広がろうとする力により、壁対向部211およびあれば壁対向部221を付勢する。 (12th Embodiment)
Next, the twelfth embodiment will be described. In this embodiment, the configuration of therepulsive material 23 is different from that in the first to tenth embodiments. Specifically, as shown in FIG. 16, the repulsive material 23 of the present embodiment is a leaf spring member in which a plurality of irregularities are formed in a wave shape in the opposite direction while extending in the extending direction of the cooling pipe 12. .. The leaf spring member is compressed and arranged in the facing direction at the same positions as in the first to tenth embodiments, and the wall facing portion 211 and the wall facing portion 221 if any are present due to the force that tends to spread in the facing direction. To urge.
次に、第12実施形態について説明する。本実施形態は、第1~第10実施形態に対して、反発材23の構成が異なっている。具体的には、図16に示すように、本実施形態の反発材23は、冷却管12の伸びる方向に伸びながら、対向方向に波形状に複数の凹凸が形成された、板バネ部材である。この板バネ部材は、第1~第10実施形態と同様の位置において対向方向に圧縮されて配置され、対向方向に対して広がろうとする力により、壁対向部211およびあれば壁対向部221を付勢する。 (12th Embodiment)
Next, the twelfth embodiment will be described. In this embodiment, the configuration of the
このような構成でも、第1~第10実施形態と同様の効果が得られる。なお、本実施形態においては反発材24も反発材23と同等の構成を有するようになっていてもよい。
Even with such a configuration, the same effect as that of the first to tenth embodiments can be obtained. In this embodiment, the repulsive material 24 may also have the same configuration as the repulsive material 23.
(第13実施形態)
次に、第13実施形態について説明する。本実施形態は、第1~第10実施形態に対して、反発材23の構成が異なっている。具体的には、図17に示すように、本実施形態の反発材23は、材質は第1~第10実施形態と同等であるが、複数の楕円形状のスリット23aが形成されている点が、第1~第10実施形態とは異なる。この反発材23は、第1~第10実施形態と同様の位置において対向方向に圧縮されて配置され、対向方向に対して広がろうとする力により、壁対向部211およびあれば壁対向部221を付勢する。 (13th Embodiment)
Next, the thirteenth embodiment will be described. In this embodiment, the configuration of therepulsive material 23 is different from that of the first to tenth embodiments. Specifically, as shown in FIG. 17, the repulsive material 23 of the present embodiment is made of the same material as that of the first to tenth embodiments, but a plurality of elliptical slits 23a are formed. , Different from the first to tenth embodiments. The repulsive material 23 is compressed and arranged in the opposite direction at the same positions as in the first to tenth embodiments, and due to a force that tries to spread in the opposite direction, the wall facing portion 211 and the wall facing portion 221 if any are present. To urge.
次に、第13実施形態について説明する。本実施形態は、第1~第10実施形態に対して、反発材23の構成が異なっている。具体的には、図17に示すように、本実施形態の反発材23は、材質は第1~第10実施形態と同等であるが、複数の楕円形状のスリット23aが形成されている点が、第1~第10実施形態とは異なる。この反発材23は、第1~第10実施形態と同様の位置において対向方向に圧縮されて配置され、対向方向に対して広がろうとする力により、壁対向部211およびあれば壁対向部221を付勢する。 (13th Embodiment)
Next, the thirteenth embodiment will be described. In this embodiment, the configuration of the
ここで、これらスリット23aについて説明する。スリット23aは、反発材23の壁対向部211側の面およびあれば壁対向部221側の面において、冷却管12の伸びる方向に複数個並んで、形成されている。一つの面に形成されたスリット23aは、対向する壁対向部に形成されたスリットSLと1対1で対応し、対応先のスリットと対向方向に重なる。したがって、壁対向部211のうちスリットSLを挟んで離れている複数の部分は、反発材23のうちスリット23aで分離された複数の部分のうち1つのみに付勢される。したがって、壁対向部211のうちスリットSLを挟んで離れている複数の部分は、対応する小壁BWsの位置ずれに良好に追従することができる。壁対向部221があれば、壁対向部221についても同様である。
Here, these slits 23a will be described. A plurality of slits 23a are formed side by side in the extending direction of the cooling pipe 12 on the surface of the repulsive material 23 on the wall facing portion 211 side and the surface on the wall facing portion 221 side if any. The slit 23a formed on one surface has a one-to-one correspondence with the slit SL formed on the facing wall facing portion, and overlaps with the corresponding slit in the facing direction. Therefore, the plurality of portions of the wall facing portion 211 separated by the slit SL are urged to only one of the plurality of portions of the repulsive material 23 separated by the slit 23a. Therefore, a plurality of portions of the wall facing portion 211 that are separated from each other with the slit SL interposed therebetween can satisfactorily follow the misalignment of the corresponding small wall BWs. If there is a wall facing portion 221, the same applies to the wall facing portion 221.
また、本実施形態において第1~第10実施形態と同様の構成からは、同様の効果が得られる。なお、本実施形態においては反発材24も反発材23と同等の構成を有するようになっていてもよい。
Further, in the present embodiment, the same effect can be obtained from the same configuration as in the first to tenth embodiments. In this embodiment, the repulsive material 24 may also have the same configuration as the repulsive material 23.
(第14実施形態)
次に、第14実施形態について説明する。本実施形態では、図18に示すように、第13実施形態に対して、複数のスリット23aが複数のスリット23bに置き換わっている。本実施形態のスリット23bは、冷却管12の伸びる方向にも対向方向にも交差する方向に直線状に形成されている。 (14th Embodiment)
Next, the 14th embodiment will be described. In the present embodiment, as shown in FIG. 18, the plurality ofslits 23a are replaced with the plurality of slits 23b with respect to the thirteenth embodiment. The slit 23b of the present embodiment is formed linearly in a direction intersecting both the extending direction and the facing direction of the cooling pipe 12.
次に、第14実施形態について説明する。本実施形態では、図18に示すように、第13実施形態に対して、複数のスリット23aが複数のスリット23bに置き換わっている。本実施形態のスリット23bは、冷却管12の伸びる方向にも対向方向にも交差する方向に直線状に形成されている。 (14th Embodiment)
Next, the 14th embodiment will be described. In the present embodiment, as shown in FIG. 18, the plurality of
また、反発材23のうち、スリット23b内で向かい合う面と面の間に、空隙が形成されている。つまり、反発材23のうち、スリット23b内で向かい合う面と面は、互いから離れている。その他の特徴は、第13実施形態と同じである。
Further, in the repulsive material 23, a gap is formed between the surfaces facing each other in the slit 23b. That is, in the repulsive material 23, the surfaces facing each other in the slit 23b are separated from each other. Other features are the same as in the thirteenth embodiment.
(第15実施形態)
次に、第15実施形態について、図19、図20を用いて説明する。本実施形態では、図19、図20に示すように、第13実施形態に対して、複数のスリット23aが複数のスリットSXに置き換わっている。本実施形態のスリットSXは、冷却管12の伸びる方向にも対向方向にも交差する方向に直線状に形成されている。なお、図20で示されている断面は、図4と同等の位置の断面である。 (15th Embodiment)
Next, the fifteenth embodiment will be described with reference to FIGS. 19 and 20. In the present embodiment, as shown in FIGS. 19 and 20, the plurality ofslits 23a are replaced with the plurality of slits SX with respect to the thirteenth embodiment. The slit SX of the present embodiment is formed linearly in a direction intersecting both the extending direction and the facing direction of the cooling pipe 12. The cross section shown in FIG. 20 is a cross section at a position equivalent to that in FIG.
次に、第15実施形態について、図19、図20を用いて説明する。本実施形態では、図19、図20に示すように、第13実施形態に対して、複数のスリット23aが複数のスリットSXに置き換わっている。本実施形態のスリットSXは、冷却管12の伸びる方向にも対向方向にも交差する方向に直線状に形成されている。なお、図20で示されている断面は、図4と同等の位置の断面である。 (15th Embodiment)
Next, the fifteenth embodiment will be described with reference to FIGS. 19 and 20. In the present embodiment, as shown in FIGS. 19 and 20, the plurality of
また、反発材23のうち、スリットSX内で向かい合う面と面の間に、空隙が形成されている。つまり、反発材23のうち、スリットSX内で向かい合う面と面は、互いに接している。その他の特徴は、第13実施形態と同じである。
Further, in the repulsive material 23, a gap is formed between the surfaces facing each other in the slit SX. That is, in the repulsive material 23, the surfaces facing each other in the slit SX are in contact with each other. Other features are the same as in the thirteenth embodiment.
(第16実施形態)
次に、第16実施形態について説明する。本実施形態は、第15実施形態に対して、壁対向部211、221の形状が変更されている。なお、本実施形態では、伝熱器具20は、第1伝熱部21および第2伝熱部22を有する。 (16th Embodiment)
Next, the 16th embodiment will be described. In this embodiment, the shapes of the wall facing portions 211 and 221 are changed from those of the fifteenth embodiment. In the present embodiment, the heat transfer device 20 has a first heat transfer unit 21 and a second heat transfer unit 22.
次に、第16実施形態について説明する。本実施形態は、第15実施形態に対して、壁対向部211、221の形状が変更されている。なお、本実施形態では、伝熱器具20は、第1伝熱部21および第2伝熱部22を有する。 (16th Embodiment)
Next, the 16th embodiment will be described. In this embodiment, the shapes of the
図21に示すように、壁対向部211、221のスリットSLで分割された複数の部分の各々が、冷却管12の伸びる方向における両端部において、反発材23側に曲がっている。それによって、壁対向部211、221のスリットSLで分割された複数の部分の各々は、対向方向を含む断面においても、それぞれ、組電池B1、B2に対して凸形状となっている。
As shown in FIG. 21, each of the plurality of portions of the wall facing portions 211 and 221 divided by the slit SL is bent toward the repulsive material 23 at both ends in the extending direction of the cooling pipe 12. As a result, each of the plurality of portions of the wall facing portions 211 and 221 divided by the slit SL has a convex shape with respect to the assembled batteries B1 and B2, respectively, even in the cross section including the facing direction.
このようになっていることで、小壁BWsに対する壁対向部211、221の強度が高まり、その結果、小壁BWsと壁対向部211、221の間の接触および熱伝導が良好になる。
By doing so, the strength of the wall facing portions 211 and 221 with respect to the small wall BWs is increased, and as a result, the contact and heat conduction between the small wall BWs and the wall facing portions 211 and 221 are improved.
なお、壁対向部211、221に対する本実施形態のような変更を、壁対向部213、223に対して適用してもよい。また、本実施形態のような変更は、第1~第14実施形態にも適用可能である。
It should be noted that the changes as in the present embodiment for the wall facing portions 211 and 221 may be applied to the wall facing portions 213 and 223. Further, the modification as in the present embodiment can be applied to the first to 14th embodiments.
(第17実施形態)
次に、第17実施形態について説明する。本実施形態は、第15実施形態に対して、壁対向部211、221の形状が変更されている。なお、本実施形態では、伝熱器具20は、第1伝熱部21および第2伝熱部22を有する。 (17th Embodiment)
Next, the 17th embodiment will be described. In this embodiment, the shapes of the wall facing portions 211 and 221 are changed from those of the fifteenth embodiment. In the present embodiment, the heat transfer device 20 has a first heat transfer unit 21 and a second heat transfer unit 22.
次に、第17実施形態について説明する。本実施形態は、第15実施形態に対して、壁対向部211、221の形状が変更されている。なお、本実施形態では、伝熱器具20は、第1伝熱部21および第2伝熱部22を有する。 (17th Embodiment)
Next, the 17th embodiment will be described. In this embodiment, the shapes of the
図22に示すように、壁対向部211、221のスリットSLで分割された複数の部分の各々が、冷却管12の伸びる方向における中央部において、反発材23側に凸形状となっている。
As shown in FIG. 22, each of the plurality of portions of the wall facing portions 211 and 221 divided by the slit SL has a convex shape toward the repulsive material 23 at the central portion in the extending direction of the cooling pipe 12.
このようになっていることで、小壁BWsに対する壁対向部211、221の強度が高まり、その結果、小壁BWsと壁対向部211、221の間の接触および熱伝導が良好になる。
By doing so, the strength of the wall facing portions 211 and 221 with respect to the small wall BWs is increased, and as a result, the contact and heat conduction between the small wall BWs and the wall facing portions 211 and 221 are improved.
なお、壁対向部211、221に対する本実施形態のような変更を、壁対向部213、223に対して適用してもよい。また、本実施形態のような変更は、第1~第14実施形態にも適用可能である。
It should be noted that the changes as in the present embodiment for the wall facing portions 211 and 221 may be applied to the wall facing portions 213 and 223. Further, the modification as in the present embodiment can be applied to the first to 14th embodiments.
(第18実施形態)
次に、第18実施形態について説明する。本実施形態は、第15実施形態に対して、壁対向部211、221の形状が変更されている。なお、本実施形態では、伝熱器具20は、第1伝熱部21および第2伝熱部22を有する。 (18th Embodiment)
Next, the 18th embodiment will be described. In this embodiment, the shapes of the wall facing portions 211 and 221 are changed from those of the fifteenth embodiment. In the present embodiment, the heat transfer device 20 has a first heat transfer unit 21 and a second heat transfer unit 22.
次に、第18実施形態について説明する。本実施形態は、第15実施形態に対して、壁対向部211、221の形状が変更されている。なお、本実施形態では、伝熱器具20は、第1伝熱部21および第2伝熱部22を有する。 (18th Embodiment)
Next, the 18th embodiment will be described. In this embodiment, the shapes of the
図23に示すように、壁対向部211、221のスリットSLで分割された複数の部分の各々が、冷却管12の伸びる方向における両端部において、反発材23側に曲がっている。また、壁対向部211、221のスリットSLで分割された複数の部分の各々が、冷却管12の伸びる方向における中央部において、反発材23側に凸形状となっている。
As shown in FIG. 23, each of the plurality of portions of the wall facing portions 211 and 221 divided by the slit SL is bent toward the repulsive material 23 at both ends in the extending direction of the cooling pipe 12. Further, each of the plurality of portions of the wall facing portions 211 and 221 divided by the slit SL has a convex shape toward the repulsive material 23 at the central portion in the extending direction of the cooling pipe 12.
このようになっていることで、小壁BWsに対する壁対向部211、221の強度が高まり、その結果、小壁BWsと壁対向部211、221の間の接触および熱伝導が良好になる。
By doing so, the strength of the wall facing portions 211 and 221 with respect to the small wall BWs is increased, and as a result, the contact and heat conduction between the small wall BWs and the wall facing portions 211 and 221 are improved.
なお、壁対向部211、221に対する本実施形態のような変更を、壁対向部213、223に対して適用してもよい。また、本実施形態のような変更は、第1~第14実施形態にも適用可能である。
It should be noted that the changes as in the present embodiment for the wall facing portions 211 and 221 may be applied to the wall facing portions 213 and 223. Further, the modification as in the present embodiment can be applied to the first to 14th embodiments.
(第19実施形態)
次に、第19実施形態について説明する。本実施形態は、第1~第18実施形態に対して、サーモサイフォン10の管11の構成が変更されている。具体的には、図24に示すように、本実施形態の管11は、環状に構成されている。これにより、本実施形態のサーモサイフォン10は、ループ式のサーモサイフォンとなっている。 (19th Embodiment)
Next, the 19th embodiment will be described. In this embodiment, the configuration of thetube 11 of the thermosiphon 10 is changed from the first to eighteenth embodiments. Specifically, as shown in FIG. 24, the pipe 11 of the present embodiment is configured in an annular shape. As a result, the thermosiphon 10 of the present embodiment is a loop type thermosiphon.
次に、第19実施形態について説明する。本実施形態は、第1~第18実施形態に対して、サーモサイフォン10の管11の構成が変更されている。具体的には、図24に示すように、本実施形態の管11は、環状に構成されている。これにより、本実施形態のサーモサイフォン10は、ループ式のサーモサイフォンとなっている。 (19th Embodiment)
Next, the 19th embodiment will be described. In this embodiment, the configuration of the
具体的には、管11は、冷却管12、中間管13、放熱管14に加え、追加管16を有している。追加管16の一端は、中間管13の下端に接続されている。そして、追加管16の他端は、冷却管12の放熱管14側とは反対側の端に接続さている。このように、一端で中間管13に連通し、他端で冷却管12に連通する追加管16があることで、作動流体は、冷却管12、放熱管14、中間管13、追加管16の順に、管11内を循環することができる。なお、追加管16は、伝熱器具20から空気を介して離れた位置にある。したがって、追加管16は、冷却管12を介さず伝熱器具20を介して組電池B1、B2と熱伝導で熱交換するということはない。
Specifically, the pipe 11 has an additional pipe 16 in addition to the cooling pipe 12, the intermediate pipe 13, and the heat radiating pipe 14. One end of the additional pipe 16 is connected to the lower end of the intermediate pipe 13. The other end of the additional pipe 16 is connected to the end of the cooling pipe 12 opposite to the heat radiation pipe 14 side. As described above, since there is an additional pipe 16 that communicates with the intermediate pipe 13 at one end and communicates with the cooling pipe 12 at the other end, the working fluid is the cooling pipe 12, the heat radiation pipe 14, the intermediate pipe 13, and the additional pipe 16. In order, it can circulate in the pipe 11. The additional pipe 16 is located at a position separated from the heat transfer device 20 via air. Therefore, the additional pipe 16 does not exchange heat with the assembled batteries B1 and B2 by heat conduction via the heat transfer device 20 without passing through the cooling pipe 12.
具体的には、作動流体は以下のように循環する。冷却管12内の液相の作動流体は、受けた組電池B1、B2の熱により蒸発する。冷却管12で蒸発した気相の作動流体は管11内で上昇して、中間管13から放熱管14へ到達する。放熱管14に到達した気相の作動流体は、放熱フィン15を介して管11の外部へ放熱して凝縮する。その凝縮した液相の作動流体は、重力の作用により追加管16を通過して冷却管12へ流下する。その他の特徴および効果は、第1~第18実施形態と同様である。
Specifically, the working fluid circulates as follows. The working fluid of the liquid phase in the cooling pipe 12 evaporates due to the heat of the assembled batteries B1 and B2 received. The working fluid of the gas phase evaporated in the cooling pipe 12 rises in the pipe 11 and reaches the heat radiating pipe 14 from the intermediate pipe 13. The gas phase working fluid that has reached the heat radiating pipe 14 radiates heat to the outside of the pipe 11 via the heat radiating fins 15 and condenses. The working fluid of the condensed liquid phase passes through the additional pipe 16 and flows down to the cooling pipe 12 by the action of gravity. Other features and effects are similar to those of the first to eighteenth embodiments.
(第20実施形態)
次に、第20実施形態について説明する。本実施形態は、第1~第18実施形態に対して、サーモサイフォン10の管11の構成が変更されている。具体的には、図25に示すように、本実施形態の管11は、環状に構成されている。これにより、本実施形態のサーモサイフォン10は、複管式のサーモサイフォンとなる。 (20th Embodiment)
Next, the twentieth embodiment will be described. In this embodiment, the configuration of thetube 11 of the thermosiphon 10 is changed from the first to eighteenth embodiments. Specifically, as shown in FIG. 25, the pipe 11 of the present embodiment is configured in an annular shape. As a result, the thermosiphon 10 of the present embodiment becomes a double-tube thermosiphon.
次に、第20実施形態について説明する。本実施形態は、第1~第18実施形態に対して、サーモサイフォン10の管11の構成が変更されている。具体的には、図25に示すように、本実施形態の管11は、環状に構成されている。これにより、本実施形態のサーモサイフォン10は、複管式のサーモサイフォンとなる。 (20th Embodiment)
Next, the twentieth embodiment will be described. In this embodiment, the configuration of the
具体的には、管11は、冷却管12、中間管13、放熱管14に加え、追加冷却管17および追加中間管18および連通管19を有している。連通管19の一端は冷却管12における中間管13の反対側の端に接続しており、連通管19の他端は追加冷却管17の一端に接続している。追加冷却管17の他端は追加中間管18の下端に接続される。追加中間管18の上端は放熱管14における中間管13とは反対側の端に接続される。
Specifically, the pipe 11 has an additional cooling pipe 17, an additional intermediate pipe 18, and a communication pipe 19 in addition to the cooling pipe 12, the intermediate pipe 13, and the heat radiating pipe 14. One end of the communication pipe 19 is connected to the opposite end of the intermediate pipe 13 in the cooling pipe 12, and the other end of the communication pipe 19 is connected to one end of the additional cooling pipe 17. The other end of the additional cooling pipe 17 is connected to the lower end of the additional intermediate pipe 18. The upper end of the additional intermediate pipe 18 is connected to the end of the heat radiating pipe 14 opposite to the intermediate pipe 13.
追加冷却管17は、冷却管12と同様の形態で、伝熱器具20の第1伝熱部21および第2伝熱部22に接続され、第1伝熱部21および第2伝熱部22を介して組電池B1、B2と熱伝導を行う。
The additional cooling tube 17 is connected to the first heat transfer section 21 and the second heat transfer section 22 of the heat transfer device 20 in the same manner as the cooling tube 12, and is connected to the first heat transfer section 21 and the second heat transfer section 22. Heat transfer is performed with the assembled batteries B1 and B2 via the above.
このため、本実施形態の伝熱器具20における第1伝熱部21、第2伝熱部22の各々は、図14の第1伝熱部21に示したように、2つの管対向部を有している。それら2つの管対向部のうち1つは、冷却管12に対向して冷却管12と熱伝導を行い、他の1つは、追加冷却管17に対向して追加冷却管17と熱伝導を行う。連通管19と追加中間管18は、伝熱器具20から空気を介して離れた位置にある。したがって、連通管19と追加中間管18は、冷却管12も追加冷却管17も介さず伝熱器具20を介して組電池B1、B2と熱伝導で熱交換するということはない。
Therefore, each of the first heat transfer section 21 and the second heat transfer section 22 in the heat transfer device 20 of the present embodiment has two tube facing portions as shown in the first heat transfer section 21 of FIG. Have. One of the two pipe facing portions conducts heat conduction with the cooling pipe 12 facing the cooling pipe 12, and the other one conducts heat conduction with the additional cooling pipe 17 facing the additional cooling pipe 17. Do. The communication pipe 19 and the additional intermediate pipe 18 are located apart from the heat transfer device 20 via air. Therefore, the communication pipe 19 and the additional intermediate pipe 18 do not exchange heat with the assembled batteries B1 and B2 via the heat transfer device 20 without the cooling pipe 12 or the additional cooling pipe 17 by heat conduction.
このような構成により、冷媒は、冷却管12、中間管13、放熱管14において蒸発と凝縮を繰り返すると共に、追加冷却管17、追加中間管18、放熱管14において蒸発と凝縮を繰り返す。
With such a configuration, the refrigerant repeats evaporation and condensation in the cooling pipe 12, the intermediate pipe 13, and the heat radiation pipe 14, and repeats evaporation and condensation in the additional cooling pipe 17, the additional intermediate pipe 18, and the heat radiation pipe 14.
具体的には、作動流体は以下のように振る舞う。冷却管12内の液相の作動流体は、受けた組電池B1、B2の熱により蒸発する。冷却管12で蒸発した気相の作動流体は管11内で上昇して、中間管13から放熱管14へ到達する。放熱管14に到達した気相の作動流体は、放熱フィン15を介して管11の外部へ放熱して凝縮する。その凝縮した液相の作動流体は、重力の作用により中間管13を通過して冷却管12へ流下する。
Specifically, the working fluid behaves as follows. The working fluid of the liquid phase in the cooling pipe 12 evaporates due to the heat of the assembled batteries B1 and B2 received. The working fluid of the gas phase evaporated in the cooling pipe 12 rises in the pipe 11 and reaches the heat radiating pipe 14 from the intermediate pipe 13. The gas phase working fluid that has reached the heat radiating pipe 14 radiates heat to the outside of the pipe 11 via the heat radiating fins 15 and condenses. The working fluid of the condensed liquid phase passes through the intermediate pipe 13 and flows down to the cooling pipe 12 by the action of gravity.
また、追加冷却管17内の液相の作動流体は、受けた組電池B1、B2の熱により蒸発する。追加冷却管17で蒸発した気相の作動流体は管11内で上昇して、追加中間管18から放熱管14へ到達する。放熱管14に到達した気相の作動流体は、放熱フィン15を介して管11の外部へ放熱して凝縮する。その凝縮した液相の作動流体は、重力の作用により追加中間管18を通過して追加冷却管17へ流下する。その他の特徴および効果は、第1~第18実施形態と同様である。
Further, the working fluid of the liquid phase in the additional cooling pipe 17 evaporates due to the heat of the assembled batteries B1 and B2 received. The working fluid of the gas phase evaporated in the additional cooling pipe 17 rises in the pipe 11 and reaches the heat radiating pipe 14 from the additional intermediate pipe 18. The gas phase working fluid that has reached the heat radiating pipe 14 radiates heat to the outside of the pipe 11 via the heat radiating fins 15 and condenses. The working fluid of the condensed liquid phase passes through the additional intermediate pipe 18 and flows down to the additional cooling pipe 17 by the action of gravity. Other features and effects are similar to those of the first to eighteenth embodiments.
(第21実施形態)
次に、第21実施形態について説明する。本実施形態の電池冷却システムは、第1実施形態に対して、第1伝熱部21、第2伝熱部22の形状および接続形態が変更されている。具体的には、図26に示すように、管対向部212は、壁対向部211と一体に形成されることで壁対向部211と接続している管対向部212aと、壁対向部213と一体に形成されることで壁対向部213と接続している管対向部212bと、に分離されている。 (21st Embodiment)
Next, the 21st embodiment will be described. In the battery cooling system of the present embodiment, the shapes and connection modes of the firstheat transfer unit 21 and the second heat transfer unit 22 are changed from those of the first embodiment. Specifically, as shown in FIG. 26, the pipe facing portion 212 is integrally formed with the wall facing portion 211 and is connected to the wall facing portion 211, and the pipe facing portion 212a and the wall facing portion 213. By being integrally formed, it is separated into a pipe facing portion 212b which is connected to the wall facing portion 213.
次に、第21実施形態について説明する。本実施形態の電池冷却システムは、第1実施形態に対して、第1伝熱部21、第2伝熱部22の形状および接続形態が変更されている。具体的には、図26に示すように、管対向部212は、壁対向部211と一体に形成されることで壁対向部211と接続している管対向部212aと、壁対向部213と一体に形成されることで壁対向部213と接続している管対向部212bと、に分離されている。 (21st Embodiment)
Next, the 21st embodiment will be described. In the battery cooling system of the present embodiment, the shapes and connection modes of the first
また、管対向部222は、壁対向部221と一体に形成されることで壁対向部221と接続している管対向部222aと、壁対向部223と一体に形成されることで壁対向部223と接続している管対向部222bと、に分離されている。管対向部212a、212bは、それぞれ、一端が壁対向部211、213の冷却管12側端に接続される。管対向部222a、222bは、それぞれ、一端が壁対向部221、223の冷却管12側端に接続される。
Further, the pipe facing portion 222 is integrally formed with the wall facing portion 221 to be connected to the wall facing portion 221 and to be integrally formed with the wall facing portion 223 to form the wall facing portion 222. It is separated into a pipe facing portion 222b connected to 223. One ends of the pipe facing portions 212a and 212b are connected to the cooling pipe 12 side ends of the wall facing portions 211 and 213, respectively. One end of each of the pipe facing portions 222a and 222b is connected to the cooling pipe 12 side end of the wall facing portions 221 and 223, respectively.
そして、管対向部212aの他端と管対向部222aの他端とが、互いに一体に接続されている。また、管対向部212bの他端と管対向部222bの他端とが、互いに一体に接続されている。したがって、壁対向部211、管対向部212a、管対向部222a、壁対向部221が、全体として一体に形成されている。また、壁対向部213、管対向部212b、管対向部222b、壁対向部223が、全体として一体に形成されている。
Then, the other end of the pipe facing portion 212a and the other end of the pipe facing portion 222a are integrally connected to each other. Further, the other end of the pipe facing portion 212b and the other end of the pipe facing portion 222b are integrally connected to each other. Therefore, the wall facing portion 211, the pipe facing portion 212a, the pipe facing portion 222a, and the wall facing portion 221 are integrally formed as a whole. Further, the wall facing portion 213, the pipe facing portion 212b, the pipe facing portion 222b, and the wall facing portion 223 are integrally formed as a whole.
そして、管対向部212a、222aは、冷却管12に対して、壁対向部211、221および反発材23側(すなわち上側)から、冷却管12を覆いながら冷却管12と熱伝導を行う。また、管対向部212b、222bは、冷却管12に対して、壁対向部213、223および反発材24側(すなわち下側)から、冷却管12を覆いながら冷却管12と熱伝導を行う。管対向部211a、211b、221a、22bと冷却管12とは接触していてもよいし、間に不図示の熱グリスまたは不図示の伝熱シートが介在していてもよい。
Then, the pipe facing portions 212a and 222a conduct heat conduction with the cooling pipe 12 from the wall facing portions 211 and 221 and the repulsive material 23 side (that is, the upper side) while covering the cooling pipe 12. Further, the pipe facing portions 212b and 222b conduct heat conduction with the cooling pipe 12 from the wall facing portions 213 and 223 and the repulsive material 24 side (that is, the lower side) while covering the cooling pipe 12. The pipe facing portions 211a, 211b, 221a, 22b may be in contact with the cooling pipe 12, or a heat grease (not shown) or a heat transfer sheet (not shown) may be interposed between them.
このようになっていても、第1実施形態と同様の構成から同様の効果が達成される。なお、第1実施形態にたいする本実施形態の変更は、同様に第2~第20実施形態に対して適用されてもよい。
Even if this is the case, the same effect can be achieved from the same configuration as in the first embodiment. It should be noted that the modification of the present embodiment with respect to the first embodiment may be similarly applied to the second to twentieth embodiments.
(他の実施形態)
なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記実施形態において、センサから車両の外部環境情報(例えば車外の湿度)を取得することが記載されている場合、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報を受信することも可能である。あるいは、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報に関連する関連情報を取得し、取得した関連情報からその外部環境情報を推定することも可能である。特に、ある量について複数個の値が例示されている場合、特に別記した場合および原理的に明らかに不可能な場合を除き、それら複数個の値の間の値を採用することも可能である。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。また、本開示は、上記各実施形態に対する以下のような変形例および均等範囲の変形例も許容される。なお、以下の変形例は、それぞれ独立に、上記実施形態に適用および不適用を選択できる。すなわち、以下の変形例のうち任意の組み合わせを、上記実施形態に適用することができる。 (Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. Further, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above embodiments, the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when it is clearly considered to be essential in principle. Further, in each of the above embodiments, when numerical values such as the number, numerical values, amounts, and ranges of the constituent elements of the embodiment are mentioned, when it is clearly stated that they are particularly essential, and in principle, the number is clearly limited to a specific number. It is not limited to the specific number except when it is done. Further, in the above embodiment, when it is described that the external environment information of the vehicle (for example, the humidity outside the vehicle) is acquired from the sensor, the sensor is abolished and the external environment information is received from the server or the cloud outside the vehicle. It is also possible to do. Alternatively, it is possible to abolish the sensor, acquire related information related to the external environment information from a server or cloud outside the vehicle, and estimate the external environment information from the acquired related information. In particular, when a plurality of values are exemplified for a certain quantity, it is also possible to adopt a value between the plurality of values unless otherwise specified or when it is clearly impossible in principle. .. In addition, in each of the above embodiments, when referring to the shape, positional relationship, etc. of a component or the like, the shape, unless otherwise specified or limited in principle to a specific shape, positional relationship, etc. It is not limited to the positional relationship. In addition, the present disclosure also allows the following modifications and equal range modifications for each of the above embodiments. In addition, the following modified examples can be independently selected to be applied or not applied to the above embodiment. That is, any combination of the following modifications can be applied to the above embodiment.
なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記各実施形態は、互いに無関係なものではなく、組み合わせが明らかに不可な場合を除き、適宜組み合わせが可能である。また、上記各実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。また、上記各実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。また、上記実施形態において、センサから車両の外部環境情報(例えば車外の湿度)を取得することが記載されている場合、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報を受信することも可能である。あるいは、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報に関連する関連情報を取得し、取得した関連情報からその外部環境情報を推定することも可能である。特に、ある量について複数個の値が例示されている場合、特に別記した場合および原理的に明らかに不可能な場合を除き、それら複数個の値の間の値を採用することも可能である。また、上記各実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。また、本開示は、上記各実施形態に対する以下のような変形例および均等範囲の変形例も許容される。なお、以下の変形例は、それぞれ独立に、上記実施形態に適用および不適用を選択できる。すなわち、以下の変形例のうち任意の組み合わせを、上記実施形態に適用することができる。 (Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be changed as appropriate. Further, the above-described embodiments are not unrelated to each other, and can be appropriately combined unless the combination is clearly impossible. Further, in each of the above embodiments, the elements constituting the embodiment are not necessarily essential except when it is clearly stated that they are essential and when it is clearly considered to be essential in principle. Further, in each of the above embodiments, when numerical values such as the number, numerical values, amounts, and ranges of the constituent elements of the embodiment are mentioned, when it is clearly stated that they are particularly essential, and in principle, the number is clearly limited to a specific number. It is not limited to the specific number except when it is done. Further, in the above embodiment, when it is described that the external environment information of the vehicle (for example, the humidity outside the vehicle) is acquired from the sensor, the sensor is abolished and the external environment information is received from the server or the cloud outside the vehicle. It is also possible to do. Alternatively, it is possible to abolish the sensor, acquire related information related to the external environment information from a server or cloud outside the vehicle, and estimate the external environment information from the acquired related information. In particular, when a plurality of values are exemplified for a certain quantity, it is also possible to adopt a value between the plurality of values unless otherwise specified or when it is clearly impossible in principle. .. In addition, in each of the above embodiments, when referring to the shape, positional relationship, etc. of a component or the like, the shape, unless otherwise specified or limited in principle to a specific shape, positional relationship, etc. It is not limited to the positional relationship. In addition, the present disclosure also allows the following modifications and equal range modifications for each of the above embodiments. In addition, the following modified examples can be independently selected to be applied or not applied to the above embodiment. That is, any combination of the following modifications can be applied to the above embodiment.
本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
The controls and methods thereof described in the present disclosure are realized by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by a computer program. May be done. Alternatively, the controls and methods thereof described in the present disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and method thereof described in the present disclosure may be a combination of a processor and memory programmed to perform one or more functions and a processor composed of one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as an instruction executed by the computer.
(変形例1)
上記各実施形態では、冷却管12は、組電池B1、B2を冷却する用途に用いられている。しかし、必ずしもこのようになっておらずともよい。例えば、冷却管12は、電池以外の発熱体を冷却する用途に用いられてもよい。その場合、伝熱壁BW1、BW2は、当該発熱体の冷却管12側の壁となる。この場合、発熱体は、冷却管12の伸びる方向に段差が形成されていてもよい。そのように段差が形成される発熱体としては、例えば、基板上の発熱素子群がある。 (Modification example 1)
In each of the above embodiments, the coolingpipe 12 is used for cooling the assembled batteries B1 and B2. However, this does not necessarily have to be the case. For example, the cooling pipe 12 may be used for cooling a heating element other than a battery. In that case, the heat transfer walls BW1 and BW2 are walls on the cooling pipe 12 side of the heating element. In this case, the heating element may have a step formed in the extending direction of the cooling pipe 12. As a heating element in which such a step is formed, for example, there is a group of heating elements on a substrate.
上記各実施形態では、冷却管12は、組電池B1、B2を冷却する用途に用いられている。しかし、必ずしもこのようになっておらずともよい。例えば、冷却管12は、電池以外の発熱体を冷却する用途に用いられてもよい。その場合、伝熱壁BW1、BW2は、当該発熱体の冷却管12側の壁となる。この場合、発熱体は、冷却管12の伸びる方向に段差が形成されていてもよい。そのように段差が形成される発熱体としては、例えば、基板上の発熱素子群がある。 (Modification example 1)
In each of the above embodiments, the cooling
また、冷却管12は、対象物を冷却するのではなく加熱する用途に用いられる管であってもよい。その場合、伝熱壁BW1、BW2は、当該加熱対象物の冷却管12側の壁となる。この場合、加熱対象物は、当該管の伸びる方向に段差が形成されていてもよい。
Further, the cooling pipe 12 may be a pipe used for heating an object instead of cooling it. In that case, the heat transfer walls BW1 and BW2 become walls on the cooling pipe 12 side of the object to be heated. In this case, the object to be heated may have a step formed in the extending direction of the pipe.
(変形例2)
上記各実施形態において、管対向部212は冷却管12と伝熱壁BW1の間において冷却管12を覆っているが、冷却管12に対して伝熱壁BW1の反対側から冷却管12を覆っていてもよい。管対向部222についても同様である。 (Modification 2)
In each of the above embodiments, thepipe facing portion 212 covers the cooling pipe 12 between the cooling pipe 12 and the heat transfer wall BW1, but covers the cooling pipe 12 from the opposite side of the heat transfer wall BW1 with respect to the cooling pipe 12. You may be. The same applies to the pipe facing portion 222.
上記各実施形態において、管対向部212は冷却管12と伝熱壁BW1の間において冷却管12を覆っているが、冷却管12に対して伝熱壁BW1の反対側から冷却管12を覆っていてもよい。管対向部222についても同様である。 (Modification 2)
In each of the above embodiments, the
(変形例3)
上記各実施形態では、壁対向部211、213、221、223にはスリットSLが形成されている。しかし、壁対向部211、213、221、223にスリットが形成されていなくても、伝熱壁BW1、BW2の凹凸に対応することは可能である。 (Modification 3)
In each of the above embodiments, slit SLs are formed in the wall facing portions 211, 213, 221 and 223. However, even if slits are not formed in the wall facing portions 211, 213, 221 and 223, it is possible to deal with the unevenness of the heat transfer walls BW1 and BW2.
上記各実施形態では、壁対向部211、213、221、223にはスリットSLが形成されている。しかし、壁対向部211、213、221、223にスリットが形成されていなくても、伝熱壁BW1、BW2の凹凸に対応することは可能である。 (Modification 3)
In each of the above embodiments, slit SLs are formed in the
(変形例4)
上記各実施形態では、管対向部212の両側に壁対向部211と壁対向部213が接続している。しかし、必ずしもこのようになっておらずともよい。例えば、壁対向部213が廃されて、管対向部212の一方側に壁対向部211のみが接続されていてもよい。管対向部222についても同様である。 (Modification example 4)
In each of the above embodiments, thewall facing portion 211 and the wall facing portion 213 are connected to both sides of the pipe facing portion 212. However, this does not necessarily have to be the case. For example, the wall facing portion 213 may be abolished and only the wall facing portion 211 may be connected to one side of the pipe facing portion 212. The same applies to the pipe facing portion 222.
上記各実施形態では、管対向部212の両側に壁対向部211と壁対向部213が接続している。しかし、必ずしもこのようになっておらずともよい。例えば、壁対向部213が廃されて、管対向部212の一方側に壁対向部211のみが接続されていてもよい。管対向部222についても同様である。 (Modification example 4)
In each of the above embodiments, the
(変形例5)
上記各実施形態において、冷却管12はサーモサイフォンを構成する管である。ここで、サーモサイフォンはヒートパイプの一形態である。ヒートパイプは, 容器と、当該容器内部に封入された作動流体とを有し、作動流体の蒸発および凝縮により熱移動を行う伝熱要素である。ヒートパイプにおいて、凝縮した作動液を冷却管に還流させる力は、ウイックによる毛細管力、 重力、 遠心力等がある。これらのうち重力を利用したヒートパイプが、サーモサイフォンである。しかし、冷却管12は、サーモサイフォン以外のヒートパイプを構成する管であってもよい。また、冷却管12は、ヒートパイプ以外の伝熱要素(例えば、蒸気圧縮式の冷凍サイクル)を構成する管(例えばエバレータのチューブ)であってもよい。 (Modification 5)
In each of the above embodiments, the coolingpipe 12 is a pipe constituting a thermosiphon. Here, the thermosiphon is a form of heat pipe. A heat pipe is a heat transfer element that has a container and a working fluid enclosed inside the container and transfers heat by evaporation and condensation of the working fluid. In the heat pipe, the force for returning the condensed hydraulic fluid to the cooling pipe includes capillary force due to the wick, gravity, and centrifugal force. Of these, the heat pipe that uses gravity is the thermosiphon. However, the cooling pipe 12 may be a pipe constituting a heat pipe other than the thermosiphon. Further, the cooling pipe 12 may be a pipe (for example, an evaporator tube) that constitutes a heat transfer element (for example, a vapor compression refrigeration cycle) other than the heat pipe.
上記各実施形態において、冷却管12はサーモサイフォンを構成する管である。ここで、サーモサイフォンはヒートパイプの一形態である。ヒートパイプは, 容器と、当該容器内部に封入された作動流体とを有し、作動流体の蒸発および凝縮により熱移動を行う伝熱要素である。ヒートパイプにおいて、凝縮した作動液を冷却管に還流させる力は、ウイックによる毛細管力、 重力、 遠心力等がある。これらのうち重力を利用したヒートパイプが、サーモサイフォンである。しかし、冷却管12は、サーモサイフォン以外のヒートパイプを構成する管であってもよい。また、冷却管12は、ヒートパイプ以外の伝熱要素(例えば、蒸気圧縮式の冷凍サイクル)を構成する管(例えばエバレータのチューブ)であってもよい。 (Modification 5)
In each of the above embodiments, the cooling
(変形例6)
上記各実施形態の組電池B1、B2の各々は、複数の角型の電池セルBCから構成されている。しかし、組電池B1、B2の各々は、電池モジュールが封入された複数の角形のケースから構成されていてもよい。その場合、当該角形のケースの伝熱器具20側の面が、小壁BWsに該当する。 (Modification 6)
Each of the assembled batteries B1 and B2 of each of the above embodiments is composed of a plurality of square battery cells BC. However, each of the assembled batteries B1 and B2 may be composed of a plurality of rectangular cases in which a battery module is enclosed. In that case, the surface of the rectangular case on theheat transfer device 20 side corresponds to the small walls BWs.
上記各実施形態の組電池B1、B2の各々は、複数の角型の電池セルBCから構成されている。しかし、組電池B1、B2の各々は、電池モジュールが封入された複数の角形のケースから構成されていてもよい。その場合、当該角形のケースの伝熱器具20側の面が、小壁BWsに該当する。 (Modification 6)
Each of the assembled batteries B1 and B2 of each of the above embodiments is composed of a plurality of square battery cells BC. However, each of the assembled batteries B1 and B2 may be composed of a plurality of rectangular cases in which a battery module is enclosed. In that case, the surface of the rectangular case on the
(変形例7)
上記各実施形態では、サーモサイフォン10、伝熱器具20、および組電池B1、B2は、車両に搭載されている。しかし、これらは、車両に搭載されていなくてもよい。 (Modification 7)
In each of the above embodiments, thethermosiphon 10, the heat transfer device 20, and the assembled batteries B1 and B2 are mounted on the vehicle. However, these do not have to be mounted on the vehicle.
上記各実施形態では、サーモサイフォン10、伝熱器具20、および組電池B1、B2は、車両に搭載されている。しかし、これらは、車両に搭載されていなくてもよい。 (Modification 7)
In each of the above embodiments, the
(変形例8)
上記各実施形態における反発材23、24が配置される位置に、反発材のみならず、蓄冷剤が配置されてもよい。そのようにすることで、伝熱器具20の体格が大きくなることなく、サーモサイフォン10側の温度変動の影響を緩和することが可能になる。 (Modification 8)
Not only the repulsive material but also the cold storage agent may be arranged at the positions where the repulsive materials 23 and 24 in each of the above embodiments are arranged. By doing so, it is possible to mitigate the influence of the temperature fluctuation on the thermosiphon 10 side without increasing the physique of the heat transfer device 20.
上記各実施形態における反発材23、24が配置される位置に、反発材のみならず、蓄冷剤が配置されてもよい。そのようにすることで、伝熱器具20の体格が大きくなることなく、サーモサイフォン10側の温度変動の影響を緩和することが可能になる。 (Modification 8)
Not only the repulsive material but also the cold storage agent may be arranged at the positions where the
(変形例9)
上記各実施形態において、壁対向部211、213には、管対向部212に近い位置から遠い位置まで熱を伝えるためのヒートランナーが、組電池B1から遠ざかる方向に立設されたリブで構成されていてもよい。壁対向部221、223についても同様である。 (Modification 9)
In each of the above embodiments, the wall facing portions 211 and 213 are composed of ribs erected in a direction away from the assembled battery B1 with a heat runner for transferring heat from a position close to the pipe facing portion 212 to a position far from the pipe facing portion 212. You may be. The same applies to the wall facing portions 221, 223.
上記各実施形態において、壁対向部211、213には、管対向部212に近い位置から遠い位置まで熱を伝えるためのヒートランナーが、組電池B1から遠ざかる方向に立設されたリブで構成されていてもよい。壁対向部221、223についても同様である。 (Modification 9)
In each of the above embodiments, the
(変形例10)
上記実施形態においては、電池セルBCは角形であったが、角形でない形状(例えば丸形)をしていてもよい。その場合であっても、壁対向部は、電池セルBCの伝熱壁の形状に沿った形状(例えば、平板でない形状)をしていてもよい。 (Modification example 10)
In the above embodiment, the battery cell BC has a square shape, but may have a non-square shape (for example, a round shape). Even in that case, the wall facing portion may have a shape (for example, a shape other than a flat plate) that follows the shape of the heat transfer wall of the battery cell BC.
上記実施形態においては、電池セルBCは角形であったが、角形でない形状(例えば丸形)をしていてもよい。その場合であっても、壁対向部は、電池セルBCの伝熱壁の形状に沿った形状(例えば、平板でない形状)をしていてもよい。 (Modification example 10)
In the above embodiment, the battery cell BC has a square shape, but may have a non-square shape (for example, a round shape). Even in that case, the wall facing portion may have a shape (for example, a shape other than a flat plate) that follows the shape of the heat transfer wall of the battery cell BC.
(まとめ)
上記各実施形態の一部または全部で示された第1の観点によれば、壁と前記壁に沿って伸びる管との間の熱伝導を媒介する伝熱器具は、前記管と前記壁のうち前記壁の方により近い位置に配置され、前記壁と所定の対向方向に対向して前記壁と熱伝導を行う板形状の壁対向部と、前記壁対向部と熱伝導可能に接続し、前記対向方向の前記壁から遠ざかる向きに前記壁対向部に対して窪み、前記壁対向部に対して窪んだ位置において前記管と熱伝導を行う板形状の管対向部と、を備える。 (Summary)
According to the first aspect shown in part or all of each of the above embodiments, the heat transfer device that mediates the heat conduction between the wall and the tube extending along the wall is the tube and the wall. Of these, a plate-shaped wall-facing portion that is arranged closer to the wall and faces the wall in a predetermined facing direction and conducts heat with the wall is connected to the wall-facing portion so that heat can be conducted. It is provided with a plate-shaped tube facing portion that is recessed with respect to the wall facing portion in a direction away from the wall in the facing direction and conducts heat conduction with the tube at a position recessed with respect to the wall facing portion.
上記各実施形態の一部または全部で示された第1の観点によれば、壁と前記壁に沿って伸びる管との間の熱伝導を媒介する伝熱器具は、前記管と前記壁のうち前記壁の方により近い位置に配置され、前記壁と所定の対向方向に対向して前記壁と熱伝導を行う板形状の壁対向部と、前記壁対向部と熱伝導可能に接続し、前記対向方向の前記壁から遠ざかる向きに前記壁対向部に対して窪み、前記壁対向部に対して窪んだ位置において前記管と熱伝導を行う板形状の管対向部と、を備える。 (Summary)
According to the first aspect shown in part or all of each of the above embodiments, the heat transfer device that mediates the heat conduction between the wall and the tube extending along the wall is the tube and the wall. Of these, a plate-shaped wall-facing portion that is arranged closer to the wall and faces the wall in a predetermined facing direction and conducts heat with the wall is connected to the wall-facing portion so that heat can be conducted. It is provided with a plate-shaped tube facing portion that is recessed with respect to the wall facing portion in a direction away from the wall in the facing direction and conducts heat conduction with the tube at a position recessed with respect to the wall facing portion.
このように、壁と熱伝導を行う壁対向部に対して管と熱伝導を行う管対向部が窪んだ形状となっていることで、壁対向部が撓むように壁対向部を壁に押しつけることができる。このようになっていることで、壁および管に伝熱器具が設置される際、または、設置された後に、壁が壁対向部から逃げる方向にずれても、そのずれに追従して壁対向部が動くことで、壁と壁対向部との押し合いが維持される。
In this way, since the pipe and the pipe facing portion that conducts heat are recessed with respect to the wall facing portion that conducts heat with the wall, the wall facing portion is pressed against the wall so that the wall facing portion bends. Can be done. By doing so, even if the heat transfer device is installed on the wall and the pipe, or after the heat transfer device is installed, even if the wall shifts in the direction of escaping from the wall facing portion, the wall facing the wall follows the deviation. By moving the part, the pressing between the wall and the wall facing part is maintained.
また、第2の観点によれば、前記壁には、前記管の伸びる方向に凹凸が形成され、記壁対向部には、当該壁対向部を前記管の伸びる方向に分離させるスリットが形成されている。
Further, according to the second aspect, the wall is formed with irregularities in the extending direction of the pipe, and the wall facing portion is formed with a slit for separating the wall facing portion in the extending direction of the pipe. ing.
発明者の検討によれば、管と熱伝導を行う壁には、管の伸びる方向に凹凸が形成されている場合がある。例えば、特許文献1の複数個の電池セルの側壁の各々において凹凸が存在したり、あるいは、これら側壁間の位置ずれによって複数の側壁全体として凹凸が生じたりする場合がある。このような場合、特許文献1のように、蒸発熱拡散板の電池セル側の面が、単なる平面あれば、蒸発熱拡散板と複数の側壁との間の熱伝導が良好となる範囲が狭くなってしまう。
According to the inventor's examination, the wall that conducts heat with the pipe may have irregularities in the direction in which the pipe extends. For example, unevenness may be present on each of the side walls of the plurality of battery cells of Patent Document 1, or unevenness may occur as a whole of the plurality of side walls due to the positional deviation between the side walls. In such a case, as in Patent Document 1, if the surface of the heat of vaporization diffusion plate on the battery cell side is simply a flat surface, the range in which heat conduction between the heat of vaporization diffusion plate and the plurality of side walls is good is narrow. turn into.
これに対し、本開示においては、管の伸びる方向に壁対向部を分離するスリットが形成されている。このようになっていることで、スリットによって、壁対向部が管の伸びる方向に分離されているので、壁対向部の分離された部分の各々が、それぞれ、壁のうち対向する箇所の位置に追従することができる。したがって、壁に管の伸びる方向の凹凸が形成されていても、壁と壁対向部との押し合いが広い範囲で維持される。
On the other hand, in the present disclosure, a slit is formed to separate the wall facing portion in the extending direction of the pipe. By doing so, the wall facing portion is separated in the direction in which the pipe extends by the slit, so that each of the separated portions of the wall facing portion is located at the position of the facing portion of the wall. Can follow. Therefore, even if the wall is formed with irregularities in the extending direction of the pipe, the pressing between the wall and the wall facing portion is maintained in a wide range.
また、第3の観点によれば、前記壁は、複数の小壁を含み、前記複数の小壁は、組電池を構成する複数の電池単位の前記管側の壁であり、前記複数の小壁の対向方向の位置が互いにずれていることにより、前記管の伸びる方向に前記壁の凹凸が形成される。
Further, according to a third aspect, the wall includes a plurality of small walls, and the plurality of small walls are walls on the tube side of a plurality of battery units constituting the assembled battery, and the plurality of small walls are formed. Since the positions of the walls in the opposite direction are deviated from each other, the unevenness of the wall is formed in the direction in which the pipe extends.
このようになっていることで、組電池を構成する複数の電池単位に位置ずれが生じ、それが原因で複数の小壁が全体として管の伸びる方向に凹凸になっている場合も、その凸凹が吸収される。すなわち、スリットによって、壁対向部が管の伸びる方向に分離されているので、壁対向部の分離された部分の各々が、それぞれ、上記凹凸に追従することができる。
As a result, even if the plurality of battery units constituting the assembled battery are misaligned and the plurality of small walls are uneven in the direction in which the tube extends as a whole due to this, the unevenness thereof. Is absorbed. That is, since the wall facing portion is separated in the extending direction of the pipe by the slit, each of the separated portions of the wall facing portion can follow the unevenness.
また、第4の観点によれば、前記スリットは、前記複数の小壁のうち隣り合う2つの小壁および前記2つの小壁の間に対向して開口している。このようになっていることで、壁対向部は、これら隣り合う2つの小壁の対向方向のずれを良好に吸収することができる。
Further, according to the fourth viewpoint, the slit is opened to face between two adjacent small walls and the two small walls among the plurality of small walls. In this way, the wall facing portion can satisfactorily absorb the deviation of these two adjacent small walls in the facing direction.
また、第5の観点によれば、伝熱器具は、前記壁対向部を前記壁側に付勢する弾性部材を備える。このようになっていることで、弾性部材によって壁対向部と壁との押し合いがより強化される。
Further, according to the fifth viewpoint, the heat transfer device includes an elastic member that urges the wall facing portion toward the wall side. In this way, the elastic member further strengthens the pressing between the wall facing portion and the wall.
また、第6の観点によれば、前記壁対向部は、前記壁に近付く方に湾曲しながら前記管対向部から離れる方向に伸びる部分を有する。このようになっていることで、壁を押すための剛性を高めることができる。したがって、壁対向部と壁との押し合いがより強化される。
Further, according to the sixth aspect, the wall facing portion has a portion extending in a direction away from the pipe facing portion while being curved toward the wall. In this way, the rigidity for pushing the wall can be increased. Therefore, the pressing between the wall facing portion and the wall is further strengthened.
また、第7の観点によれば、前記管を挟んで前記壁と反対側に配置される別壁と前記管のうち前記別壁の方により近い位置に配置され、前記別壁と前記対向方向に対向して前記別壁と熱伝導を行う板形状の別壁対向部と、前記別壁対向部と熱伝導可能に接続し、前記対向方向の前記別壁から遠ざかる向きに前記別壁対向部に対して窪み、前記別壁対向部に対して窪んだ位置において前記管と熱伝導を行う板形状の別管対向部と、を備え、前記壁対向部と前記別壁対向部は、離間して互いに前記対向方向に対向しながら前記管から離れる方向に伸び、前記管から遠い側の端部において互いに前記対向方向に対向して接触している。
Further, according to the seventh aspect, the separate wall arranged on the side opposite to the wall across the pipe and the pipe arranged at a position closer to the separate wall, and facing the separate wall. A plate-shaped separate wall facing portion that faces the separate wall and conducts heat with the separate wall, and the separate wall facing portion that is thermally conductively connected to the separate wall facing portion and that faces away from the separate wall in the facing direction. It is provided with a plate-shaped separate pipe facing portion that conducts heat conduction with the pipe at a position recessed with respect to the separate wall facing portion, and the wall facing portion and the separate wall facing portion are separated from each other. They extend in a direction away from the pipe while facing each other in the opposite direction, and are in contact with each other in the opposite direction at the end portion on the side far from the pipe.
このように、壁対向部と別壁対向部は、離間して管から離れる方向に伸びた後、管から遠い側の端部において互いに対向方向に対向して接触する。したがって、壁対向部はその端部において、別壁対向部から壁側に付勢される。逆に、別壁対向部はその端部において、壁対向部から別壁側に付勢される。したがって、壁対向部と壁の押し合いが補強されると共に、別壁対向部と別壁の押し合いも補強される。
In this way, the wall facing portion and the separate wall facing portion extend in the direction away from the pipe, and then come into contact with each other in the opposite direction at the end portion on the side far from the pipe. Therefore, the wall facing portion is urged toward the wall side from the separate wall facing portion at its end. On the contrary, the separate wall facing portion is urged from the wall facing portion to the separate wall side at its end. Therefore, the pressing between the wall facing portion and the wall is reinforced, and the pressing between the other wall facing portion and the other wall is also reinforced.
また、第8の観点によれば、伝熱器具は、前記管と前記壁のうち前記壁の方により近い位置に配置され、前記壁と前記対向方向に対向して前記壁と熱伝導を行う板形状の追加壁対向部を備え、前記管対向部は、前記追加壁対向部と熱伝導可能に接続し、前記対向方向の前記壁から遠ざかる向きに前記追加壁対向部に対して窪み、前記追加壁対向部に対して窪んだ位置において前記管と熱伝導を行い、前記管と前記壁との間において前記管と対向し、前記対向方向に直交しかつ前記管が伸びる方向に直交する直交方向における前記管の一方側に前記壁対向部が配置され他方側に前記追加壁対向部が配置される。
Further, according to the eighth aspect, the heat transfer device is arranged at a position closer to the wall of the tube and the wall, and conducts heat conduction with the wall so as to face the wall in the opposite direction. A plate-shaped additional wall facing portion is provided, and the pipe facing portion is electrically conductively connected to the additional wall facing portion, and is recessed with respect to the additional wall facing portion in a direction away from the wall in the facing direction. Conducts heat conduction with the pipe at a recessed position with respect to the additional wall facing portion, faces the pipe between the pipe and the wall, and is orthogonal to the facing direction and orthogonal to the extending direction of the pipe. The wall facing portion is arranged on one side of the pipe in the direction, and the additional wall facing portion is arranged on the other side.
このように、管対向部に対して管の一方側には壁対向部が接続され他方側には追加壁対向部が接続され、かつ、管対向部は管と壁の間に配置される。したがって、壁が壁対向部を押す力が、管対向部を介して、追加壁対向部における壁を押す力として作用する。また逆に、壁が追加壁対向部を押す力が、管対向部を介して、壁対向部における壁を押す力として作用する。したがって、壁対向部と壁の押し合いが補強されると共に、追加壁対向部と別壁の押し合いも補強される。また、管対向部が管の両側から同じ方向に付勢されるので、管の位置が安定する。
In this way, the wall facing portion is connected to one side of the pipe and the additional wall facing portion is connected to the other side with respect to the pipe facing portion, and the pipe facing portion is arranged between the pipe and the wall. Therefore, the force with which the wall pushes the wall facing portion acts as a force pushing the wall at the additional wall facing portion via the pipe facing portion. On the contrary, the force of the wall pushing the additional wall facing portion acts as a force pushing the wall at the wall facing portion via the pipe facing portion. Therefore, the pressing between the wall facing portion and the wall is reinforced, and the pressing between the additional wall facing portion and the separate wall is also reinforced. Further, since the pipe facing portion is urged from both sides of the pipe in the same direction, the position of the pipe is stabilized.
また、第9の観点によれば、前記管は、ヒートパイプを構成する。このようになっていることで、ヒートパイプの熱伝導効率を高めることができる。
Further, according to the ninth viewpoint, the pipe constitutes a heat pipe. In this way, the heat conduction efficiency of the heat pipe can be improved.
Claims (9)
- 壁(BW1、BW2)と前記壁に沿って伸びる管(12)との間の熱伝導を媒介する伝熱器具であって、
前記管と前記壁のうち前記壁の方により近い位置に配置され、前記壁と所定の対向方向に対向して前記壁と熱伝導を行う板形状の壁対向部(211)と、
前記壁対向部と熱伝導可能に接続し、前記対向方向の前記壁から遠ざかる向きに前記壁対向部に対して窪み、前記壁対向部に対して窪んだ位置において前記管と熱伝導を行う板形状の管対向部(212)と、を備えた、伝熱器具。 A heat transfer device that mediates heat conduction between a wall (BW1, BW2) and a tube (12) extending along the wall.
A plate-shaped wall facing portion (211) arranged at a position closer to the wall among the pipe and the wall and facing the wall in a predetermined facing direction and conducting heat conduction with the wall.
A plate that is electrically conductively connected to the wall-facing portion, is recessed with respect to the wall-facing portion in a direction away from the wall in the facing direction, and conducts heat with the pipe at a position recessed with respect to the wall-facing portion. A heat transfer device provided with a tube facing portion (212) having a shape. - 前記壁には、前記管の伸びる方向に凹凸が形成され、
前記壁対向部には、当該壁対向部を前記管の伸びる方向に分離させるスリット(SL)が形成されている請求項1に記載の伝熱器具。 The wall is formed with irregularities in the extending direction of the pipe.
The heat transfer device according to claim 1, wherein a slit (SL) is formed in the wall facing portion to separate the wall facing portion in the extending direction of the pipe. - 前記壁は、複数の小壁(BWs)を含み、
前記複数の小壁は、組電池を構成する複数の電池単位の前記管側の壁であり、
前記複数の小壁の対向方向の位置が互いにずれていることにより、前記管の伸びる方向に前記壁の凹凸が形成される、請求項2に記載の伝熱器具。 The wall contains a plurality of small walls (BWs).
The plurality of small walls are walls on the tube side of a plurality of battery units constituting the assembled battery.
The heat transfer device according to claim 2, wherein the unevenness of the wall is formed in the extending direction of the tube because the positions of the plurality of small walls in the opposite direction are deviated from each other. - 前記スリットは、前記複数の小壁のうち隣り合う2つの小壁および前記2つの小壁の間に対向して開口している請求項3に記載の伝熱器具。 The heat transfer device according to claim 3, wherein the slit is opened to face between two adjacent small walls and the two small walls among the plurality of small walls.
- 前記壁対向部を前記壁側に付勢する弾性部材(23、24)を備えた請求項1ないし4のいずれか1つに記載の伝熱器具。 The heat transfer device according to any one of claims 1 to 4, further comprising an elastic member (23, 24) for urging the wall facing portion to the wall side.
- 前記壁対向部は、前記壁に近付く方に湾曲しながら前記管対向部から離れる方向に伸びる部分を有する請求項1ないし5のいずれか1つに記載の伝熱器具。 The heat transfer device according to any one of claims 1 to 5, wherein the wall facing portion has a portion that extends in a direction away from the pipe facing portion while being curved toward the wall.
- 前記管を挟んで前記壁と反対側に配置される別壁と前記管のうち前記別壁の方により近い位置に配置され、前記別壁と前記対向方向に対向して前記別壁と熱伝導を行う板形状の別壁対向部(221)と、
前記別壁対向部と熱伝導可能に接続し、前記対向方向の前記別壁から遠ざかる向きに前記別壁対向部に対して窪み、前記別壁対向部に対して窪んだ位置において前記管と熱伝導を行う板形状の別管対向部(222)と、を備え、
前記壁対向部と前記別壁対向部は、離間して互いに前記対向方向に対向しながら前記管から離れる方向に伸び、前記管から遠い側の端部において互いに前記対向方向に対向して接触している、請求項1ないし6のいずれか1つに記載の伝熱器具。 A separate wall arranged on the opposite side of the pipe from the wall and the pipe are arranged at a position closer to the separate wall, facing the separate wall in the opposite direction and conducting heat with the separate wall. With a plate-shaped separate wall facing portion (221)
It is thermally conductively connected to the separate wall facing portion, recessed with respect to the separate wall facing portion in a direction away from the separate wall in the facing direction, and heat with the pipe at a position recessed with respect to the separate wall facing portion. A plate-shaped separate tube facing portion (222) for conducting conduction is provided.
The wall facing portion and the separate wall facing portion extend in a direction away from the pipe while facing each other in the facing direction, and come into contact with each other in the facing direction at the end portion on the side far from the pipe. The heat transfer device according to any one of claims 1 to 6. - 前記管と前記壁のうち前記壁の方により近い位置に配置され、前記壁と前記対向方向に対向して前記壁と熱伝導を行う板形状の追加壁対向部(213)を備え、
前記管対向部は、前記追加壁対向部と熱伝導可能に接続し、前記対向方向の前記壁から遠ざかる向きに前記追加壁対向部に対して窪み、前記追加壁対向部に対して窪んだ位置において前記管と熱伝導を行い、前記管と前記壁との間において前記管と対向し、
前記対向方向に直交しかつ前記管が伸びる方向に直交する直交方向における前記管の一方側に前記壁対向部が配置され他方側に前記追加壁対向部が配置される、請求項1ないし7のいずれか1つに記載の伝熱器具。 It is provided with a plate-shaped additional wall facing portion (213) which is arranged at a position closer to the wall among the pipe and the wall and which faces the wall in the facing direction and conducts heat with the wall.
The pipe facing portion is thermally conductively connected to the additional wall facing portion, is recessed with respect to the additional wall facing portion in a direction away from the wall in the facing direction, and is recessed with respect to the additional wall facing portion. Conducts heat conduction with the tube, and faces the tube between the tube and the wall.
Claims 1 to 7, wherein the wall facing portion is arranged on one side of the pipe and the additional wall facing portion is arranged on the other side in an orthogonal direction orthogonal to the facing direction and orthogonal to the extending direction of the pipe. The heat transfer device according to any one. - 前記管は、ヒートパイプを構成する、請求項1ないし8のいずれか1つに記載の伝熱器具。 The heat transfer device according to any one of claims 1 to 8, wherein the pipe constitutes a heat pipe.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-099625 | 2019-05-28 | ||
JP2019099625A JP2020193762A (en) | 2019-05-28 | 2019-05-28 | Heat conduction apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020241497A1 true WO2020241497A1 (en) | 2020-12-03 |
Family
ID=73545830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/020303 WO2020241497A1 (en) | 2019-05-28 | 2020-05-22 | Heat-transfer device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2020193762A (en) |
WO (1) | WO2020241497A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0279093U (en) * | 1988-12-08 | 1990-06-18 | ||
JPH0579779A (en) * | 1991-09-19 | 1993-03-30 | Furukawa Electric Co Ltd:The | Heat pipe type cooler |
US20080035313A1 (en) * | 2006-08-09 | 2008-02-14 | Hul-Chun Hsu | Heat-Conducting Base and Isothermal Plate having the same |
JP2012007752A (en) * | 2010-06-22 | 2012-01-12 | Hitachi Appliances Inc | Heat pump water heater |
WO2015041149A1 (en) * | 2013-09-20 | 2015-03-26 | 株式会社 東芝 | Cell heat dissipation system, and cell heat dissipation unit |
-
2019
- 2019-05-28 JP JP2019099625A patent/JP2020193762A/en active Pending
-
2020
- 2020-05-22 WO PCT/JP2020/020303 patent/WO2020241497A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0279093U (en) * | 1988-12-08 | 1990-06-18 | ||
JPH0579779A (en) * | 1991-09-19 | 1993-03-30 | Furukawa Electric Co Ltd:The | Heat pipe type cooler |
US20080035313A1 (en) * | 2006-08-09 | 2008-02-14 | Hul-Chun Hsu | Heat-Conducting Base and Isothermal Plate having the same |
JP2012007752A (en) * | 2010-06-22 | 2012-01-12 | Hitachi Appliances Inc | Heat pump water heater |
WO2015041149A1 (en) * | 2013-09-20 | 2015-03-26 | 株式会社 東芝 | Cell heat dissipation system, and cell heat dissipation unit |
Also Published As
Publication number | Publication date |
---|---|
JP2020193762A (en) | 2020-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6129979B2 (en) | Battery heat dissipation system, battery heat dissipation unit | |
CN100499979C (en) | Heat radiating device | |
US7331379B2 (en) | Heat dissipation device with heat pipe | |
US20070000646A1 (en) | Heat dissipation device with heat pipe | |
JPH05264182A (en) | Integrated heat pipe, assembly for heat exchanger and clamping as well as obtaining method thereof | |
JP6564596B2 (en) | Lithium ion secondary battery device | |
JP2010192207A (en) | Cooling device for battery, and battery pack | |
TWI683078B (en) | Gravity-type liquid gas circulation device | |
US20180283797A1 (en) | Heat sink | |
JP7049892B2 (en) | Cooling and heating device for assembled batteries | |
CN104303293A (en) | Structure for connecting cooling apparatus, cooling apparatus, and method for connecting cooling apparatus | |
WO2014142033A1 (en) | Temperature adjustment device and battery equipped with same | |
WO2020241497A1 (en) | Heat-transfer device | |
WO2012161002A1 (en) | Flat plate cooling device, and method for using same | |
TWM625188U (en) | Hetero-material floating heat pipe structure | |
CN101312634A (en) | Heat radiating device | |
JP7166901B2 (en) | battery cooler | |
WO2017169969A1 (en) | Cooling device | |
WO2013089162A1 (en) | Cooling structure for thin-profile electronics, and electronic device employing same | |
JP2011220620A (en) | Plate-type heat pipe module and apparatus for cooling power semiconductor by using the same | |
JP6561849B2 (en) | Battery module | |
WO2020255883A1 (en) | Cooling device | |
JP6197651B2 (en) | Cooling system | |
JP5624771B2 (en) | Heat pipe and heat sink with heat pipe | |
CN212132715U (en) | Air conditioner outdoor unit and air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20813330 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20813330 Country of ref document: EP Kind code of ref document: A1 |