WO2020241082A1 - 半導体デバイス検査方法及び半導体デバイス検査装置 - Google Patents
半導体デバイス検査方法及び半導体デバイス検査装置 Download PDFInfo
- Publication number
- WO2020241082A1 WO2020241082A1 PCT/JP2020/015978 JP2020015978W WO2020241082A1 WO 2020241082 A1 WO2020241082 A1 WO 2020241082A1 JP 2020015978 W JP2020015978 W JP 2020015978W WO 2020241082 A1 WO2020241082 A1 WO 2020241082A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- semiconductor device
- waveform
- light
- waveform signal
- spot
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 244
- 238000000034 method Methods 0.000 title claims abstract description 98
- 238000007689 inspection Methods 0.000 claims description 114
- 238000000926 separation method Methods 0.000 claims description 37
- 238000004458 analytical method Methods 0.000 claims description 30
- 238000004088 simulation Methods 0.000 claims description 24
- 230000004044 response Effects 0.000 claims description 14
- 238000001914 filtration Methods 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 description 41
- 238000010586 diagram Methods 0.000 description 31
- 239000000523 sample Substances 0.000 description 29
- 238000001514 detection method Methods 0.000 description 28
- 230000008569 process Effects 0.000 description 28
- 230000005856 abnormality Effects 0.000 description 19
- 230000008859 change Effects 0.000 description 19
- 239000013074 reference sample Substances 0.000 description 19
- 230000002950 deficient Effects 0.000 description 17
- 238000004364 calculation method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000002159 abnormal effect Effects 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 3
- 238000007654 immersion Methods 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000012937 correction Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/302—Contactless testing
- G01R31/308—Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
- G01R31/311—Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation of integrated circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/302—Contactless testing
- G01R31/303—Contactless testing of integrated circuits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R23/00—Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
- G01R23/005—Circuits for comparing several input signals and for indicating the result of this comparison, e.g. equal, different, greater, smaller (comparing phase or frequency of 2 mutually independent oscillations in demodulators)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R23/00—Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
- G01R23/16—Spectrum analysis; Fourier analysis
- G01R23/165—Spectrum analysis; Fourier analysis using filters
Definitions
- One aspect of the present invention relates to a semiconductor device inspection method and a semiconductor device inspection apparatus.
- an optical probing technique called EOP (Electro Optical Probing) or EOFM (Electro-Optical Frequency Mapping) is known (see, for example, Patent Document 1 and Patent Document 2).
- EOP Electro Optical Probing
- EOFM Electro-Optical Frequency Mapping
- a semiconductor device is irradiated with light emitted from a light source, and the reflected light reflected by the semiconductor device is detected by an optical sensor to acquire a detection signal. Then, in the acquired detection signal, the time change of the signal is displayed as a waveform, a target frequency is selected, and the temporal passage of the amplitude energy is displayed as a two-dimensional mapping.
- the optical probing technology is an extremely effective inspection technology because it can identify and analyze a failure location and a failure cause in a semiconductor device.
- the beam spot of the light emitted toward the semiconductor device straddles a plurality of driving elements in the semiconductor device.
- interference mixture of signals corresponding to the reflected light of each of the plurality of driving elements
- the detection signal From the waveform based on the detection signal of the interference state (interference waveform), it may not be possible to inspect the semiconductor device with high accuracy.
- One aspect of the present invention has been made in view of the above circumstances, and relates to a semiconductor device inspection method and a semiconductor device inspection apparatus capable of improving the accuracy of semiconductor device inspection.
- a first interference waveform based on signals from a plurality of driving elements is generated in response to light from a first spot containing a plurality of driving elements in the semiconductor device. It includes a step of acquiring and a step of separating a waveform signal from the first interference waveform for each drive element based on the operation timings of the plurality of drive elements.
- a first interference waveform based on light from a first spot containing a plurality of driving elements is acquired, and a first interference waveform is obtained based on the operation timing of the plurality of driving elements.
- the waveform signal is separated from the interference waveform of 1 for each driving element.
- the plurality of drive elements included in the semiconductor device have different operation timings according to the operation pulse signal. Therefore, by considering the timing (operation timing) of the signals from the plurality of drive elements included in the first interference waveform, the waveform signal of each drive element can be appropriately separated from the first interference waveform. it can.
- the semiconductor device inspection can be performed with high accuracy based on the waveform signal of the drive element after the separation.
- the semiconductor device inspection method may further include a step of displaying the waveform signal after separation and the waveform signal of the semiconductor device for reference or the waveform signal generated by the logic simulation side by side.
- the semiconductor device inspection method may further include a step of comparing the waveform signal after separation with the waveform signal of the semiconductor device for reference or the waveform signal generated by the logic simulation.
- the semiconductor device inspection method further includes a step of aligning the semiconductor device with the layout image of the semiconductor device based on the comparison result between the waveform signal after separation and the waveform signal generated by the logic simulation. May be good.
- the above alignment can be performed based on the similarity of the waveform signals, and after the alignment, the semiconductor device inspection (identification of the failure position, etc.) can be performed with higher accuracy based on the layout image.
- the position of each driving element in the first spot is specified based on the waveform signal after separation, and the semiconductor device and the layout image of the semiconductor device are determined based on the position of each specified driving element. It may further include a step of aligning.
- the alignment based on the position of the driving element, the above alignment can be performed more easily than when comparing the waveform signals, and after the alignment, the semiconductor device inspection is performed based on the layout image. (Identification of failure position, etc.) can be performed with higher accuracy.
- the semiconductor device inspection method may further include a step of performing noise removal filtering on the first interference waveform.
- noise removal filtering By removing noise by using, for example, deep learning, it is possible to appropriately separate the waveform signal based on the interference waveform from which the noise has been removed.
- the semiconductor device inspection method is a second method based on signals from a plurality of driving elements in response to light from a second spot that overlaps a part of the first spot and a region and includes a plurality of driving elements.
- a step of acquiring the interference waveform and a step of separating the waveform signal for each driving element in the first and second spots based on the first and second interference waveforms may be further provided.
- the semiconductor device inspection method may further include a step of reconstructing a waveform signal at an arbitrary position in the first and second spots based on the first and second interference waveforms.
- the semiconductor device inspection method further includes a step of irradiating the first spot with light and a step of detecting light from the first spot which is reflected light with respect to the light radiated to the first spot. You may.
- the semiconductor device inspection can be performed with high accuracy by using an optical probing technique such as EOP according to the reflected light.
- the semiconductor device inspection method may further include a step of detecting light from the first spot, which is light emitted from the semiconductor device at the first spot.
- the semiconductor device inspection can be performed with high accuracy by using a technique such as time-resolved light emission analysis according to the light emission from the semiconductor device.
- the semiconductor device inspection apparatus includes a photodetector for detecting light from the semiconductor device and an analysis unit, and the analysis unit includes the light detected by the photodetector in the semiconductor device.
- the semiconductor device inspection device may further include a display unit that displays the waveform signal after separation and the waveform signal of the semiconductor device for reference or the waveform signal generated by the logic simulation side by side.
- the analysis unit may be configured to further compare the separated waveform signal with the waveform signal of the reference semiconductor device or the waveform signal generated by the logic simulation.
- the analysis unit is configured to further align the semiconductor device and the layout image of the semiconductor device based on the comparison result between the separated waveform signal and the waveform signal generated by the logic simulation. You may be.
- the analysis unit identifies the position of each drive element in the first spot based on the waveform signal after separation, and aligns the semiconductor device with the layout image of the semiconductor device based on the position of each specified drive element. It may be configured to do more of what it does.
- the analysis unit may be configured to further perform noise removal filtering on the first interference waveform.
- the analysis unit obtains a second interference waveform based on signals from the plurality of drive elements in response to light from the second spot whose region overlaps with a part of the first spot and includes a plurality of drive elements. It may be configured to further perform the acquisition and the separation of the waveform signal for each drive element in the first and second spots based on the first and second interference waveforms. ..
- the analysis unit may be configured to further reconstruct the waveform signal at an arbitrary position in the first and second spots based on the first and second interference waveforms.
- the semiconductor device inspection device further includes a light generating unit that generates light that irradiates the first spot, and the photodetector starts from the first spot that is reflected light with respect to the light that irradiates the first spot. Light may be detected.
- the photodetector may detect light from the first spot, which is light emitted from the semiconductor device at the first spot.
- It shows the time change of the interference waveform acquired for each grid point of the three light beam spots whose regions partially overlap each other. It is a figure which expressed the time change of the wave height of each grid point including the grid point shown in FIG. It is a figure which shows the signal distribution which reproduces the wave height of each grid point at the time: t3 shown in FIG. 10C. It is a figure explaining the process of estimating the position of a driving element from the time change of an interference waveform. It is a figure which shows the wave height curved surface of the interference waveform reproduced at each time. It is a figure explaining the position distribution of a driving element. It is a figure explaining the process which separates a waveform signal for each drive element.
- FIG. 1 is a block diagram of the semiconductor device inspection device 1 according to the first embodiment.
- the semiconductor device inspection device 1 is a device for inspecting (measuring) the semiconductor device 100, such as identifying an abnormality occurrence location in the semiconductor device 100 which is a device to be inspected (DUT: Device Under Test).
- DUT Device Under Test
- the semiconductor device 100 includes an integrated circuit (IC: Integrated Circuit) having a PN junction such as a transistor, a logic device, a memory device, an analog device, which is a large-scale integrated circuit (LSI: Large Scale Integration), and a combination thereof. It may be a mixed signal device, or a semiconductor device (power device) for power such as a high current / high pressure MOS transistor, a bipolar transistor, or an IGBT.
- IC Integrated Circuit
- a PN junction such as a transistor, a logic device, a memory device, an analog device, which is a large-scale integrated circuit (LSI: Large Scale Integration), and a combination thereof.
- LSI Large Scale Integration
- It may be a mixed signal device, or a semiconductor device (power device) for power such as a high current / high pressure MOS transistor, a bipolar transistor, or an IGBT.
- the semiconductor device inspection device 1 inspects the semiconductor device 100 by using optical probing technology.
- the semiconductor device inspection device 1 will be described as inspecting the semiconductor device 100 by using an optical probing technique called EOP (Electro Optical Probing).
- EOP Electro Optical Probing
- the semiconductor device inspection device 1 may inspect the semiconductor device 100 by another optical probing technique.
- EOP Electronic Optical Probing
- the drain potential of the semiconductor device 100 changes by sweeping the voltage pattern (operating pulse signal) to the gate 100a of the semiconductor device 100 by a tester (not shown), and the semiconductor device
- the carrier density of 100 changes, and the refractive index and light absorption rate of the semiconductor device 100 change.
- the semiconductor device inspection device 1 identifies an abnormality occurrence location in the semiconductor device 100 based on, for example, an EOP waveform.
- the semiconductor device inspection device 1 When obtaining the EOP waveform, the semiconductor device inspection device 1 separates the waveform signal for each driving element of the semiconductor device 100. Hereinafter, the separation of the waveform signal performed by the semiconductor device inspection apparatus 1 will be described with reference to FIGS. 2 to 8.
- FIG. 2 is a diagram showing an example of the relationship between the device pattern and the light beam spot.
- FIG. 2A shows the relationship between the device pattern of the semiconductor device using the 180 nm process and the optical beam spot BS
- FIG. 2B shows the device pattern of the semiconductor device using the 45 nm process and the optical beam spot BS.
- the relationship is shown
- FIG. 2C shows the relationship between the device pattern of the semiconductor device using the 10 nm process and the optical beam spot BS.
- SIL Solid Immersion Lens
- NA Numerical Aperture
- the spot of light at that time has a diameter corresponding to FWHM of 214 nm, and a size corresponding to the diameter of the entire spot called an Airy disk is 512 nm.
- the central portion of the light beam spot BS is represented as an Airy disk having a diameter of a dark portion of 214 nm and a peripheral portion having a light color of 512 nm.
- the optical beam spot BS overlaps only one drive element 150a (that is,).
- the pitch of the contact gate is smaller than that of the semiconductor device using the 180 nm process, so that the optical beam spot BS is a plurality of driving elements. It straddles 150b (that is, a plurality of driving elements 150b are irradiated with light). In this case, interference (mixture of signals corresponding to the reflected light of each of the plurality of driving elements 150b) occurs in the detection signal.
- the optical beam spot BS straddles the plurality of driving elements 150c, and interference occurs in the detection signal.
- interference in the detection signal becomes a problem.
- FIG. 3 is a diagram illustrating an interference waveform.
- the EOP waveform interference waveform
- the EOP waveform interference waveform based on the detection signal of the interference state is formed by superimposing the waveform signals of a plurality of drive signals.
- the phase difference between the waveform signal of the driving element A and the waveform signal of the driving element B is about ⁇ / 4.
- the wave height has two stages.
- FIG. 4 is a diagram showing a setting example of the light beam spot BS.
- a plurality of drive elements 150 (“elements 1 to 9” shown in FIG. 4) are arranged in a grid pattern.
- a plurality of light beam spot BSs are set in a grid shape so that a part of each region overlaps with each other. For example, in the example shown in FIG.
- the light beam spot BS1 is set so that the light beam spots BS2, BS3, BS4, BS5, BS6 and a part of the region overlap with each other, and the light beam spot BS2 is set to overlap.
- the optical beam spots BS1, BS3, BS4, BS5, and BS6 are set so that a part of the region overlaps with each other.
- the semiconductor device 100 for example, a semiconductor device using a 45 nm process (or a semiconductor device smaller than that) is used, and each optical beam spot BS is used as a plurality of drive elements 150. Straddling. For example, in the example shown in FIG.
- the light beam spot BS1 straddles the drive element 150 shown by “element 1", “element 2”, “element 4", and “element 5", and the light beam spot BS2 is “element”. It straddles the drive element 150 represented by “1”, “element 2", “element 3”, “element 4", “element 5", and “element 6". Therefore, the signals from the plurality of driving elements 150 are interfering with the signals acquired according to the light (reflected light) from each light beam spot. That is, the semiconductor device inspection device 1 can acquire the interference waveform according to the light from each light beam spot. At the time of setting the light beam spot BS, it is not known which drive element 150 overlaps with each light beam spot BS.
- FIG. 5 is a diagram illustrating an interference waveform in each optical beam spot BS.
- FIG. 5A is a diagram showing waveform signals of each drive element 150 (“element 1” to “element 9”).
- FIG. 5B is a diagram showing interference waveforms in each optical beam spot BS (BS1 to BS9).
- the waveform to be generated is an interference waveform.
- each driving element as shown in FIG. 5A is obtained from the interference waveform acquired in each optical beam spot BS as shown in FIG. 5B.
- FIG. 6 is a diagram illustrating an outline of a method for identifying an abnormality occurrence location.
- a separated waveform is acquired from a plurality of interference waveforms of a semiconductor device (defective sample) suspected of having an abnormality.
- FIG. 6B it is shown that the separated waveform is acquired from a plurality of interference waveforms of the semiconductor device (reference sample) in which no abnormality has occurred.
- the semiconductor device inspection device 1 compares the separated waveform of the defective sample with the separated waveform of the reference sample, and identifies a portion where the waveforms are similar to each other, but timing deviation or the like occurs and the degree of mutual agreement is low.
- the semiconductor device inspection device 1 identifies a location where an abnormality occurs in a defective sample based on a location where such a timing shift or the like occurs.
- FIGS. 7 and 8 are shown. It will be explained with reference to.
- FIG. 7 is a diagram showing the degree of coincidence of each waveform when comparing the interference waveforms of the defective sample and the reference sample. As shown in FIG. 7, in the fifth waveform from the top, the degree of agreement between the waveform of the defective sample and the waveform of the reference sample is 0.8603.
- FIG. 8 is a diagram showing the degree of coincidence of each waveform when comparing the separated waveforms of the defective sample and the reference sample. As shown in FIG.
- the degree of agreement between the waveform of the defective sample and the waveform of the reference sample is 0.8059.
- the degree of agreement between the waveform of the defective sample and the waveform of the reference sample is 0.8059.
- the semiconductor device inspection device 1 includes a light source 11 (light generator), a light guide lens 12, an optical branching optical system 13, an objective lens 14, a condenser lens 15, a light detector 16, and a control device 20 ( An analysis unit), a monitor 30 (display unit), and a dark box 50 are provided.
- the dark box 50 accommodates configurations other than the control device 20 and the monitor 30 among the configurations described above, and is provided to prevent the influence of external light on each of the accommodated configurations.
- the light source 11 generates light to be applied to the light beam spot of the semiconductor device inspection device 1 and outputs the light.
- the light source 11 is composed of, for example, an SLD (Super Luminescent Diode).
- the light source 11 may be a laser light source such as an LD (LaserDiode), an LED (LightEmittingDiode), an incoherent light source using a lamp light source, or the like.
- the light guide lens 12 is, for example, a single or composite convex lens, and guides the light output from the light source 11 to the optical branching optical system 13.
- the relationship between the distance between the light beam spots adjacent to each other and the distance between the gates constituting the driving elements adjacent to each other will be described.
- the light beam spot spacing (grid pitch) and the gate spacing (gate pitch) are set within a specific range so as to achieve the above-mentioned interference state.
- the grid pitch is set independently of the gate pitch, the interference ratio changes for each light beam spot.
- the grid pitch may be set to, for example, an integral multiple of the gate pitch.
- the gate pitch is about 4 times the gate length l
- the grid pitch is made larger than 4 times the gate pitch, interference may not occur appropriately. That is, the separation distance between the center of the first light beam spot and the center of the second light beam spot adjacent to the first light beam spot is 4 times or less the separation distance between the gates constituting the driving element. May be.
- the optical branching optical system 13 transmits the light output from the light source 11 and arriving through the light guide lens 12 in the direction of the semiconductor device 100.
- the optical branching optical system 13 may further include an optical scanning optical system that scans the semiconductor device 100 with irradiation light.
- the objective lens 14 collects the light (irradiation light) guided by the optical branching optical system 13 on the semiconductor device 100.
- the light beam spot which is a focusing point in the semiconductor device 100, is, for example, such that the chuck (not shown) holding the semiconductor device 100 is in the XY directions (front-back / left-right directions), that is, on the mounting surface of the semiconductor device 100 in the chuck. It is switched by being moved in the direction along it.
- Such a chuck is moved in the XY directions (front-back / left-right direction) by, for example, an XY stage (not shown).
- the XY stage moves the chuck in the XY direction so that a plurality of preset light beam spots are sequentially set as the irradiation region of the irradiation light according to the control by the control device 20.
- the optical branching optical system 13 guides the reflected light reflected by the semiconductor device 100 with respect to the light applied to the semiconductor device 100 in the direction of the photodetector 16.
- the condensing lens 15 condenses the reflected light on the photodetector 16.
- the photodetector 16 detects the reflected light that has arrived through the optical branching optical system 13 and the condenser lens 15, and outputs a detection signal corresponding to the reflected light.
- the photodetector 16 is an APD (Avalanche PhotoDiode), PD (PhotoDiode), PMT (PhotoMultiplier Tube), or the like.
- the control device 20 controls the XY stage (not shown), the light source 11, and the photodetector 16. Specifically, the control device 20 controls the switching of the irradiation region (light beam spot) of the irradiation light by controlling the XY stage. The control device 20 adjusts the emission of the irradiation and the wavelength and amplitude of the irradiation light by controlling the light source 11. The control device 20 makes adjustments related to the detection of reflected light by controlling the photodetector 16. Further, the control device 20 acquires each interference waveform according to the reflected light acquired at each light beam spot, and separates the waveform signal for each driving element in each light beam spot based on each interference waveform. The function of the control device 20 related to the separation of the waveform signal will be described later.
- the control device 20 is a computer, and is physically configured to include a memory such as a RAM and a ROM, a processor (arithmetic circuit) such as a CPU, a communication interface, and a storage unit such as a hard disk. Examples of the control device 20 include personal computers, cloud servers, smart devices (smartphones, tablet terminals, etc.) and the like. The control device 20 functions by executing a program stored in the memory on the CPU of the computer system. Further, the control device 20 may be composed of a microcomputer or an FPGA.
- control device 20 related to the separation of the waveform signal
- the control device 20 converts the reflected light detected by the photodetector 16 into signals from the plurality of driving elements according to the light from the first light beam spot including the plurality of driving elements in the semiconductor device 100. Acquiring the first interference waveform based on the above, and among the reflected light detected by the photodetector 16, the second light in which a part of the first light beam spot and the region overlap and a plurality of driving elements are included. Acquiring the second interference waveform based on the signals from a plurality of driving elements according to the light from the beam spot, and the first and second light beam spots based on the first and second interference waveforms. It is configured to separate the waveform signal for each drive element inside and to execute.
- the first and second light beam spots indicate that there are a plurality of (at least two or more) light beam spots whose regions partially overlap each other. Further, the first and second interference waveforms indicate that a plurality of (at least two or more) interference waveforms are used when separating the waveform signals for each driving element.
- the center of each light beam spot (the point at which the interference waveform is acquired) may be described as a grid point.
- FIG. 9 shows the time variation of the interference waveform acquired for grid points I to III of each of the three light beam spots whose regions partially overlap each other.
- FIG. 9A shows a time change (including time: t1 to t3) of the interference waveform with respect to the grid point I.
- FIG. 9B shows the time change (including time: t1 to t3) of the interference waveform with respect to the grid point II.
- FIG. 9C shows the time variation (including time: t1 to t3) of the interference waveform with respect to the grid point III.
- FIG. 10 is a diagram showing the time change of the wave height of each grid point including the grid points I to III shown in FIG.
- FIG. 10A shows the wave height of each grid point at time: t1.
- FIG. 10A shows the wave height of each grid point at time: t1.
- FIG. 10B shows the wave height of each grid point at time: t2.
- FIG. 10 (c) shows the wave height of each grid point at time: t3.
- the waveform before interference that is, the waveform signal of each driving element
- FIG. 11 is a diagram showing a signal distribution that reproduces the wave height of each grid point at the time: t3 shown in FIG. 10 (c).
- the control device 20 sets a plurality of analysis points within the grid setting range, for example.
- the analysis points may be, for example, each pixel when an image is displayed in the grid.
- the control device 20 repeats the calculation assuming, for example, a Gaussian distribution corresponding to the beam diameter at each analysis point, and determines the wave height (the length of the vertical bar line shown in FIG. 11) at a specific time of each grid point. Find the combination to reproduce (combination of waveform signals at each analysis point). Thereby, the point (position) corresponding to the driving element and the waveform signal can be estimated from each analysis point.
- a Bessel function closer to the beam convergence distribution may be used.
- FIG. 12 is a diagram illustrating a process of estimating the position of the driving element from the time change of the interference waveform.
- the wave height at each grid point at time: t1 the wave height at each grid point at time: t2, and the wave height at each grid point at time: t3 are shown.
- the horizontal axis indicates the position
- the vertical axis indicates the wave height
- the vertical bar indicates the wave height detected at the grid points.
- the control device 20 obtains a combination of signals that reproduces the wave height at the grid points at each time.
- the control device 20 calculates the position of the Gaussian distribution representing the state of involvement of the signal from the grid inner region point (analysis point) in the grid range so that the wave height at the grid point is reproduced, and each signal is used.
- a curve showing the interference state (see FIG. 12) is derived.
- the grid inner region points that reproduce the interference state are initially set at random as appropriate, and are repeatedly calculated so that the wave height at the grid points is reproduced, and the coordinates (position) are obtained by the convergence of the calculation. By performing such calculations at different times, the grid interior points will converge to a plurality of fixed coordinates.
- the grid inner region points are the coordinates: a, b, c, e, f, h, and only the contribution of the signal from the coordinates: a, b, c, e, f, h.
- the wave height at the grid points at each time can be reproduced.
- a source that is, a driving element
- the coordinates: d and g shown in FIG. 12 are not used for reproducing the wave height change at any time, and it can be said that the driving element does not exist at the coordinates: d and g.
- the position of the driving element as described above can be derived with higher accuracy by performing calculations for many times. After obtaining a part of the coordinates of the driving element, it is possible to reproduce the wave height by turning on / off the Gaussian distribution at that coordinate, assuming that the signal source exists at that coordinate, and the other driving element. The calculation time for obtaining the coordinates can be shortened.
- FIG. 13 is a diagram showing a wave height curved surface of the interference waveform reproduced at each time.
- 13 (a) shows the wave height curved surface of the interference waveform at time: t1
- FIG. 13 (b) shows the wave height curved surface of the interference waveform at time: t2
- FIG. 13 (c) shows the wave height curved surface of the interference waveform at time: t3.
- FIG. 14 is a diagram illustrating the position distribution of the driving element.
- each position is indicated by the hatching in (a). Since such a wave height curved surface reproduction point can be rephrased as the position of the driving element, the distribution of the driving element (signal output element) is shown in FIG. 14 (b).
- a driving element capable of outputting a signal can be specified.
- the driving element is schematically shown by three narrow rectangles, and the pattern that does not emit a signal is shown by a wide rectangle.
- the distribution of the driving elements shown in FIG. 14 (b) is compared and contrasted with the layout image shown in FIG. 14 (c) to generate the superimpose image shown in FIG. 14 (d). It is possible.
- the superimpose image of FIG. 14D it is possible to recognize from which position on the layout image the signal is detected.
- FIG. 15 is a diagram illustrating a process of separating a waveform signal for each driving element.
- FIG. 15A is a diagram showing an interference waveform at each time and a signal (signal of each driving element) for reproducing the interference waveform.
- FIG. 15B is a diagram showing a signal level time change of each driving element.
- FIG. 15A a case where the interference waveform can be reproduced depending on the presence or absence of the Gaussian distribution shape signal at the coordinates: a, b, c, e, f, h where the driving element is assumed to exist.
- FIG. 15A the presence of a signal is output as high (the square indicated by the number “1” in the figure), and the absence of a signal is output as low (the square indicated by the number “0” in the figure). It corresponds to being done.
- FIG. 15B shows the high-low level (signal level) of each driving element for each time. Such a waveform showing the signal level time change of each drive element (for each coordinate) corresponds to the waveform signal of each drive element separated from the interference waveform.
- the waveform of each drive element is formed by randomly setting the position of the drive element and repeating the process of comparing the wave height of the signal obtained by adding the influences of the set drive elements with the wave height acquired at the grid points.
- a method for estimating a signal (each waveform signal separated from an interference waveform) will be described.
- 16th, 17th, and 18th are diagrams for explaining the waveform signal separation process.
- the horizontal axis represents the position and the vertical axis represents the wave height.
- the broken line in these figures indicates the position and waveform of the correct (actual) driving element.
- the alternate long and short dash line in these figures indicates the positions and waveforms of randomly set drive element candidates.
- the thick solid line in these figures shows the waveform of the signal obtained by adding the signals of the randomly set drive element candidates.
- the thin solid line in these figures shows the thin solid line in these figures (for example, the thin solid line shown in FIG.
- waveforms R1, R2, and R3 are randomly set as waveforms of drive element candidates.
- the position and waveform CA of the correct (actual) driving element cannot be recognized.
- FIG. 16C shows the wave height at each grid point g1, g2, g3, g4, g5, g6, g7, and the waveform SR estimated from each wave height. Further, FIG. 16C shows a waveform SRm in which a margin is added to the waveform SR.
- grid points g2, g6, and g7 are specified as points where the total waveform IS exceeds the waveform SRm. Then, the over amount (the amount by which the total waveform IS exceeds the waveform SRm) Ov1, Ov2, and Ov3 at each of the specified grid points g2, g6, and g7 are specified (see FIG. 16D).
- FIG. 17A shows an image of deriving the degree of influence of the drive element candidate related to the waveform R2.
- FIG. 17B shows an image of deriving the degree of influence of the drive element candidate related to the waveform R3.
- the degree of influence Im2 is the value affected by the waveform R2.
- the degree of influence Im3 is the value affected by the waveform R3. is there.
- the influence degree Im2 and the influence degree Im3 are compared, the influence degree Im2 of the waveform R2 is clearly larger.
- the waveform R3 of the drive element candidates determined to have a small influence by the above comparison is deleted.
- FIG. 17D only the waveforms R1 and R2 of the two drive element candidates remain. That is, it is specified that the drive element candidate related to the waveform R3 is incorrect (not the drive element).
- the grid point g2 is subsequently focused on, and all the driving elements that affect the position thereof. Candidates are extracted.
- the drive element candidate that affects the grid point g2 is only one drive element candidate related to the waveform R1.
- FIG. 18B when there is one drive element candidate and the total waveform IS exceeds the waveform SRm at a certain grid point (grid point g2), the drive element related to the waveform R1. It is identified that the candidate is incorrect (not the driving element).
- the waveform R1 of the drive element candidate identified as an error is deleted, and FIG. 18 (d) ), Only the waveform R2 of one drive element candidate remains.
- the positions of all drive elements can be estimated.
- the position of the driving element it is possible to estimate the waveform signal of each driving element (separate the waveform signal of each driving element from the interference waveform) by using the above-mentioned method or the like. In the above, only the over is taken up and calculated, but it is also possible to take up the under and calculate. However, in that case, it is necessary to devise such that the underside is calculated by inverting the sign.
- control device 20 may reconstruct the waveform signal at an arbitrary position in the light beam spot based on the plurality of interference waveforms. That is, the control device 20 separates the waveform from the interference waveform for each driving element by the above-mentioned method or the like, and reconstructs the waveform signal at an arbitrary position in the light beam spot based on the information of the separated waveform. May be good. By reconstructing the waveform signal at an arbitrary position in this way, it is possible to identify the abnormal occurrence location (defective position) with higher accuracy.
- FIG. 19 is a diagram illustrating a process of identifying an abnormality occurrence location in consideration of a waveform signal reconstructed at an arbitrary position.
- reconstruction is performed at two grid points gr (probe points) and a waveform reconstruction point rp sandwiched between the two grid points gr.
- the waveform signal is acquired by.
- the waveform signal is acquired by the same reconstruction.
- the waveforms of the same points in the defective sample and the reference sample are compared with each other, and the degree of coincidence of the waveforms is derived for each point. Assuming that the signal is transmitted from the left side to the right side shown in FIG.
- the most upstream side (the degree of coincidence of the waveforms is deteriorated).
- the point on the left side (the point where the degree of coincidence of the waveforms is 0.8059) can be identified as the location where the abnormality occurs.
- Such an abnormality occurrence location is, for example, a location where a defect exists in the wiring or via connected to the driving element (transistor) at the location.
- the points suspected to be abnormal occurrence points may be displayed in color or may be displayed in a graph of the correlation coefficient.
- control device 20 when the control device 20 separates the waveform based on the interference waveform and reconstructs the waveform signal at an arbitrary position, the control device 20 is based on the comparison result between the separated waveform signal and the waveform signal generated by the logic simulation. Further, the alignment of the semiconductor device 100 and the layout image Li of the semiconductor device may be further executed (see FIG. 20).
- the layout image Li of the semiconductor device is, for example, a CAD image.
- FIG. 20 is a diagram for explaining the alignment between the semiconductor device 100 and the layout image Li.
- the waveform signals at arbitrary positions rp1, rp2, rp3, rp4, rp5 are reconstructed based on the interference waveforms acquired at the plurality of grid points gr. (See FIG. 20 (b)).
- the logic simulation waveform shown in FIG. 20 (d) has been acquired for the center point cp of the layout image Li shown in FIG. 20 (c).
- the logic simulation waveform of FIG. 20D has a high degree of agreement with the waveform of the position rp3 of the semiconductor device 100 (see FIG. 20B). From this, as shown in FIG.
- control device 20 may align the semiconductor device 100 with the layout image based on the position of each specified drive element. Good.
- FIG. 21 is a flowchart showing a process related to the semiconductor device inspection method performed by the semiconductor device inspection apparatus 1.
- FIG. 21 is a flowchart showing a process related to the semiconductor device inspection method performed by the semiconductor device inspection apparatus 1.
- FIG. 22 to 30 an example of a screen image on the monitor 30 (FIGS. 22 to 30) will also be described.
- the image of the semiconductor device 100 of the first sample is read and displayed on the monitor 30 (see FIG. 22), and the coordinate system of the semiconductor device 100 and the coordinate system of the layout image The coordinate system is locked based on (step S1).
- the image of the semiconductor device 100 is displayed in the GUI (Graphical User Interface) for waveform analysis, but it is displayed in various existing windows without being read in the GUI for probing. The position and the like may be set.
- the analysis area of the semiconductor device 100 is accessed (step S2), and an appropriate lens is selected (step S3).
- the waveform acquisition condition is set in the control device 20 (step S4).
- the target drive element (or a group of target drive elements) is set to be the probe point pp (see FIG. 23) (step S5).
- each process such as setting the probe point pp is executed by pressing the setting button (for example, the “probe point setting” button).
- the setting button for example, the “probe point setting” button.
- the grid point gr (see FIG. 24) is set so as to surround the probe point pp (step S6).
- the "grid setting" button is pressed, a pop-up for inputting the X pitch and the Y pitch of the grid points may be displayed.
- the input value in this case may be selected from a plurality of numerical values stored in advance, or may be a value arbitrarily input by the user.
- the number of vertical and horizontal grids may also be input to the user.
- the number of waveform displays (number of lines) on the right side of FIG. 24 may change according to the number of grids. In the example shown in FIG. 24, since the number of grids is 9, the number of waveform displays (number of lines) is set to 9.
- step S7 the voltage pattern (test pattern) is swept over the semiconductor device 100 (step S7), and drift correction is performed (step S8).
- the drift correction may be performed on a screen different from the waveform display screen on the monitor 30.
- interference waveforms based on signals from a plurality of driving elements are acquired according to the light from each grid point gr, and each is displayed in the acquired waveform column (see FIG. 25) on the monitor 30 (step). S9).
- the interference waveforms are acquired sequentially.
- the control device 20 may shape the acquired interference waveform (EPO waveform) by performing noise removal filtering using deep learning or the like.
- the steps S8 and S9 may be repeated for all the set grid points.
- the waveform signal is separated for each driving element based on the plurality of interference waveforms (step S10).
- Each of the separated waveform signals is displayed in the separated waveform column on the monitor 30, as shown in FIG.
- the number of lines of the separation waveform on the monitor 30 changes according to the number of driving elements. Note that the waveforms cannot always be separated at each grid point gr, and a process of reconstructing the waveform at an arbitrary location between the grids may be performed to pick up the location with the least interference.
- the interference waveform is acquired and displayed in the same manner as in the first sample (see FIG. 27), and the waveform signal is separated based on the interference waveform (see FIG. 28).
- the first sample may be a defective sample and the second sample may be a reference sample, or the first sample may be a reference sample and the second sample may be a defective sample.
- the monitor 30 displays the separated waveform signal and the reference waveform signal side by side.
- control device 20 compares the waveforms with respect to the same points of the two samples, derives the degree of coincidence for each point, and displays the degree of coincidence on the monitor 30 (see FIG. 29). Then, the waveform is analyzed in consideration of the degree of agreement (step S11), and the abnormality occurrence location (defective position) is specified. In the example shown in FIG. 29, for example, the position where the degree of coincidence is 0.796 is specified as the location where the abnormality occurs.
- a logic simulation waveform may be provided as a reference waveform (see FIG. 30). That is, the monitor 30 may display the separated waveform signal and the logic simulation side by side. In this case, the process can be simplified as compared with the case where the waveform is acquired by two samples.
- the semiconductor device inspection method is a first interference waveform based on signals from a plurality of driving elements in response to light from a first light beam spot including a plurality of driving elements in the semiconductor device 100. And a second based on signals from the plurality of drive elements according to the light from the second light beam spot in which a part of the first spot and the region overlap and include the plurality of drive elements.
- the step of acquiring the interference waveform of the above, and the step of separating the waveform signal for each driving element in the first and second spots based on the first and second interference waveforms are provided.
- the first interference waveform based on the light from the first light beam spot including a plurality of driving elements and a part of the first light beam spot and a plurality of overlapping regions is acquired, and in the first and second light beam spots based on the first and second interference waveforms.
- the waveform signal is separated for each driving element of. For example, by acquiring the time change of the interference waveform of each optical beam spot whose region overlaps with each other, the degree of influence according to the position of a plurality of driving elements included in the optical beam spot related to the interference waveform (each interference). The state of involvement of signals of each driving element in the waveform) can be estimated.
- the semiconductor device inspection can be performed with high accuracy based on the waveform signal of the drive element after the separation.
- the semiconductor device inspection method includes a step of displaying the waveform signal after separation and the waveform signal of the semiconductor device for reference or the waveform signal generated by the logic simulation side by side.
- the semiconductor device inspection method further includes a step of comparing the waveform signal after separation with the waveform signal of the semiconductor device for reference or the waveform signal generated by the logic simulation.
- the semiconductor device inspection method further includes a step of aligning the semiconductor device 100 with the layout image of the semiconductor device 100 based on the comparison result between the separated waveform signal and the waveform signal generated by the logic simulation. ing.
- the above alignment can be performed based on the similarity of the waveform signals, and after the alignment, the semiconductor device inspection (identification of the failure position, etc.) can be performed with higher accuracy based on the layout image.
- the positions of the respective drive elements in the first and second light beam spots are specified based on the waveform signal after separation, and the semiconductor device 100 and the semiconductor are based on the positions of the specified drive elements. It further includes a step of aligning with the layout image of the device 100.
- the separation distance between the center of the first light beam spot and the center of the second light beam spot is four times or less the separation distance between the gates constituting the driving element.
- the waveform corresponding to the light from the first light beam spot and the waveform corresponding to the light from the second light beam spot are appropriately interfering with the waveform (first interference based on signals from a plurality of driving elements). It can be a waveform and a second interference waveform based on signals from a plurality of driving elements).
- the semiconductor device inspection method further includes a step of performing noise removal filtering on the first and second interference waveforms.
- noise removal filtering By removing noise by using, for example, deep learning, it is possible to appropriately separate the waveform signal based on the interference waveform from which the noise has been removed.
- the semiconductor device inspection method further includes a step of reconstructing a waveform signal at an arbitrary position in the first and second spots based on the first and second interference waveforms.
- the semiconductor device inspection method includes a step of irradiating the first and second light beam spots with light, and light from the first light beam spot which is reflected light with respect to the light radiated to the first light beam spot. Further, the step of detecting the light from the second light beam spot, which is the reflected light with respect to the light applied to the second light beam spot, is further provided. As a result, the semiconductor device inspection can be performed with high accuracy by using an optical probing technique such as EOP according to the reflected light.
- the semiconductor device inspection device 1 inspects the semiconductor device 100 by time-resolved emission analysis (TREM: Time Resolved Emission Microscopy).
- TREM is a method of detecting light emission at the time of on / off or off-on transition of a transistor whose gate passes through an intermediate potential by operating the semiconductor device 100, and performing analysis based on the detection timing of light emission.
- the light emission is generated when the voltage pattern (operating pulse signal) is swept by the gate 100a of the semiconductor device 100 and the voltage passes through the intermediate potential.
- the semiconductor device inspection device 1 according to the present embodiment has a high-sensitivity detector such as a superconducting nanowire single photon detector (SSPD) as the photodetector 16. Then, in the semiconductor device inspection device 1, the light source 11 irradiates the semiconductor device 100 with excitation light, and the photodetector 16 detects light emission (fluorescence) from the semiconductor device 100 in response to the excitation light.
- SSPD superconducting nanowire single photon detector
- FIG. 31 is a diagram showing a setting example of the light detection spot DS.
- the photodetection spots DS101, DS102, DS103, DS104, and DS105 are set so that a part of each region overlaps with each other.
- the light detection spot DS101 straddles the drive element 150 represented by "element a”, “element b”, and “element c”
- the light detection spot DS102 is "element a", “element b", “element c", and "element d”.
- the light detection spot DS103 straddles the drive element 150 indicated by “element a”, “element b”, “element c”, and “element d”
- the light detection spot DS104 straddles the drive element 150 indicated by "element d”.
- the light detection spot DS105 straddles the drive element 150 represented by the element a, the element b, the element c, and the element d, and the light detection spot DS105 is attached to the drive element 150 indicated by the element b, the element c, and the element d. Straddling.
- the interference waveform acquired in response to the light emission from the light detection spot 101 is most affected by the "element a” due to its positional relationship, and the influences of the "element b" and the “element c” are about the same.
- the interference waveform acquired in response to the light emission from the light detection spot 102 is most affected by the "element b", followed by the "element a” and the “element d", and the “element c" is the second largest. The influence of "is the smallest.
- the interference waveform acquired in response to the light emission from the light detection spot 103 is most influenced by the "element b" and the “element c" due to its positional relationship, and the influences of the "element a” and the “element d” are the same. Degree.
- the interference waveform acquired in response to the light emission from the light detection spot 104 has the largest influence of the "element c", the second largest influence of the "element a” and the “element d", and the "element b" due to its positional relationship. The influence of "is the smallest.
- the interference waveform acquired in response to the light emission from the light detection spot 105 has the greatest influence of the "element d" due to its positional relationship, and the influence of the "element b” and the “element c" is about the same.
- FIG. 32 is a diagram illustrating the operation timing of each drive element 150.
- 32 (a) to 32 (d) show waveforms (upper side) and light emission waveforms (lower side) of each drive element 150.
- the broken line indicates the basic clock of the operation pulse signal.
- the light emission of the "element a” is detected earlier than the basic clock (broken line).
- the semiconductor device inspection device 1 pays attention to such a difference in operation timing for each drive element 150, and separates the waveform signal of each drive element 150 from the interference waveform. That is, in the semiconductor device inspection device 1 of the second embodiment, the control device 20 acquires the interference waveform, and based on the operation timings of the plurality of drive elements related to the interference waveform, the waveform signal of each drive element is obtained from the interference waveform. Is configured to perform isolation.
- FIG. 33 is a diagram showing each emission waveform included in the interference waveform.
- the interference waveform of BS101 usually includes a light emission waveform of "element a" having an early operation timing (hereinafter, referred to as an early timing light emission waveform EWa) and an operation timing.
- the light emission waveforms of "element b" and “element c” (hereinafter, referred to as medium timing light emission waveforms EWb and EWc) are included. Further, as shown in FIG.
- the interference waveform of BS102 includes an early timing emission waveform EWa, a medium timing emission waveform EWb, EWc, and an emission waveform of the “element d” whose operation timing is late.
- the interference waveform of BS103 includes an early timing emission waveform EWa, a medium timing emission waveform EWb, EWc, and a late timing emission waveform EWd.
- the interference waveform of BS104 includes an early timing emission waveform EWa, a medium timing emission waveform EWb, EWc, and a late timing emission waveform EWd.
- the interference waveform of BS105 includes medium-timing emission waveforms EWb and EWc and late-timing emission waveforms EWd.
- FIG. 34 is a diagram for explaining the separation of the waveform signal based on the signal timing.
- FIG. 34A is a diagram illustrating a process of separating a waveform signal from the interference waveform of BS101.
- the control device 20 separates the early timing emission waveform EWa and the middle timing emission waveforms EWb and EWc from the interference waveform of BS101 based on the signal timing.
- FIG. 34B is a diagram illustrating a process of separating a waveform signal from the interference waveform of BS102. As shown in FIG.
- FIG. 34 (c) is a diagram illustrating a process of separating a waveform signal from the interference waveform of BS103. As shown in FIG. 34 (c), the control device 20 uses the interference waveform of the BS 103 to obtain the early timing emission waveform EWa, the middle timing emission waveforms EWb, EWc, and the late timing emission waveform EWd based on the signal timing. And are separated.
- FIG. 34 (c) is a diagram illustrating a process of separating a waveform signal from the interference waveform of BS103. As shown in FIG. 34 (c), the control device 20 uses the interference waveform of the BS 103 to obtain the early timing emission waveform EWa, the middle timing emission waveforms EWb, EWc, and the late timing emission waveform EWd based on the signal timing. And are separated.
- FIG. 34 (c) is a diagram illustrating a process of separating a waveform signal from the interference waveform of BS103. As shown in FIG. 34 (
- FIG. 34 (d) is a diagram illustrating a process of separating a waveform signal from the interference waveform of BS104.
- the control device 20 uses the interference waveform of the BS 104 to obtain the early timing emission waveform EWa, the middle timing emission waveforms EWb, EWc, and the late timing emission waveform EWd based on the signal timing. And are separated.
- FIG. 34 (e) is a diagram illustrating a process of separating a waveform signal from the interference waveform of BS105.
- the control device 20 separates the medium-timing emission waveforms EWb and EWc and the late-timing emission waveform EWd from the interference waveform of the BS 105 based on the signal timing.
- the early timing emission waveform EWa includes only the emission waveform of "element a”. Therefore, the waveform signal of the drive element 150 represented by the “element a” can be obtained based on the light emission waveform EWa of the early timing.
- the control device 20 is driven by the “element a” based on the early timing emission waveform EWa (see FIG. 34 (a)) separated from the interference waveform of the BS 101 in which the “element a” is a typical signal.
- the waveform signal of the element 150 is reconstructed (see FIG. 35 (a)).
- the late timing emission waveform EWd includes only the emission waveform of the "element d".
- the waveform signal of the drive element 150 represented by the “element d” can be obtained based on the late timing emission waveform EWd.
- the control device 20 is a drive element represented by the “element d” based on a late timing emission waveform (see FIG. 34 (e)) separated from the interference waveform of the BS 105 in which the “element d” is a typical signal.
- the 150 waveform signals are reconstructed (see FIG. 35 (d)).
- the light emission waveform at the middle timing includes both the light emission waveforms of "element b" and "element c". Therefore, it is difficult to obtain the individual emission waveforms of the "element b" and the “element c” only from the signal timing.
- the control device 20 can reconstruct the waveform signals of the "element b” and the “element c” by the method described in the first embodiment (separation of the waveform signal in consideration of the position dependence of the signal). That is, the control device 20 reconstructs the waveform signal of the drive element 150 represented by the “element b” by using the method described in the first embodiment (see FIG. 35 (b)), and the “element c”.
- the waveform signal of the drive element 150 shown by "" is reconstructed (see FIG. 35 (c)).
- the processing of the semiconductor device inspection method according to the second embodiment may be performed prior to the processing of the semiconductor device inspection method according to the first embodiment. That is, each process of the semiconductor device inspection method described in the first embodiment may be executed following the semiconductor device inspection method according to the second embodiment (along with the semiconductor device inspection method according to the second embodiment).
- the semiconductor device inspection method is a first interference waveform based on signals from a plurality of driving elements in response to light from a first photodetection spot including a plurality of driving elements in the semiconductor device 100.
- the first interference waveform based on the light from the first photodetection spot including the plurality of driving elements is acquired, and the first interference waveform is acquired based on the operation timing of the plurality of driving elements.
- the waveform signal is separated from the interference waveform of 1 for each driving element.
- the plurality of drive elements included in the semiconductor device 100 have different operation timings according to the operation pulse signal. Therefore, by considering the timing (operation timing) of the signals from the plurality of drive elements included in the first interference waveform, the waveform signal of each drive element can be appropriately separated from the first interference waveform. it can. By appropriately separating the waveform signal (original waveform) of each drive element from the interference waveform in this way, the semiconductor device inspection can be performed with high accuracy based on the waveform signal of the drive element after the separation.
- the semiconductor device inspection method is light emission from the semiconductor device 100 at the first photodetection spot, light emission from the first light detection spot, and light emission from the semiconductor device 100 at the second photodetection spot.
- the step of detecting the light from the light detection spot of 2 may be provided. Thereby, according to the light emission from the semiconductor device 100, the waveform signal can be appropriately separated based on the above-mentioned operation timing by using a technique such as time-resolved light emission analysis, and the semiconductor device inspection can be performed with high accuracy. it can.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Electromagnetism (AREA)
- Toxicology (AREA)
- Mathematical Physics (AREA)
- Tests Of Electronic Circuits (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
半導体デバイス検査方法は、半導体デバイスにおける複数の駆動素子が含まれた第1の光ビームスポットからの光に応じて、複数の駆動素子からの信号に基づく第1の混信波形を取得するステップと、第1のスポットの一部と領域が重複し複数の駆動素子が含まれた第2の光ビームスポットからの光に応じて、複数の駆動素子からの信号に基づく第2の混信波形を取得するステップと、第1及び第2の混信波形に基づいて、第1及び第2のスポット内の駆動素子毎に波形信号を分離するステップと、を備える。
Description
本発明の一態様は、半導体デバイス検査方法及び半導体デバイス検査装置に関する。
半導体デバイスを検査する技術として、EOP(Electro Optical Probing)やEOFM(Electro-Optical Frequency Mapping)と称される光プロービング技術が知られている(例えば特許文献1及び特許文献2参照)。光プロービング技術では、光源から出射された光を半導体デバイスに照射し、半導体デバイスで反射された反射光を光センサで検出して、検出信号を取得する。そして、取得した検出信号において、信号の時間変化を波形として表示したり、目的とする周波数を選び出し、その振幅エネルギーの時間的な経過を2次元のマッピングとして表示したりする。これにより、指定箇所の動作が正常か異常かを判断したり、目的とした周波数で動作している回路の位置を特定することができる。光プロービング技術は、半導体デバイスにおける故障個所及び故障原因などを特定し解析し得ることから、極めて有効な検査技術である。
ここで、半導体デバイスが小型化することにより、半導体デバイスに向けて出射される光のビームスポットが半導体デバイスにおける複数の駆動素子に跨ることが考えられる。この場合、検出信号においては混信(複数の駆動素子それぞれの反射光に応じた信号の混在)が生じる。混信状態の検出信号に基づく波形(混信波形)からは、半導体デバイスの検査を高精度に行うことができないおそれがある。
本発明の一態様は上記実情に鑑みてなされたものであり、半導体デバイス検査の高精度化を図ることができる半導体デバイス検査方法及び半導体デバイス検査装置に関する。
本発明の一態様に係る半導体デバイス検査方法は、半導体デバイスにおける複数の駆動素子が含まれた第1のスポットからの光に応じて、複数の駆動素子からの信号に基づく第1の混信波形を取得するステップと、複数の駆動素子の動作タイミングに基づいて、第1の混信波形から、駆動素子毎に波形信号を分離するステップと、を備える。
本発明の一態様に係る半導体デバイス検査方法では、複数の駆動素子が含まれた第1のスポットからの光に基づく第1の混信波形が取得され、複数の駆動素子の動作タイミングに基づき、第1の混信波形から駆動素子毎に波形信号が分離される。半導体デバイスに含まれる複数の駆動素子は、動作パルス信号に応じた動作タイミングが互いに異なっている。このため、第1の混信波形に含まれる複数の駆動素子からの信号のタイミング(動作タイミング)を考慮することによって、第1の混信波形から、各駆動素子の波形信号を適切に分離することができる。このように、混信波形から各駆動素子の波形信号(本来の波形)が適切に分離されることによって、分離後の駆動素子の波形信号に基づき、半導体デバイス検査を高精度に行うことができる。
上記半導体デバイス検査方法は、分離後の波形信号と、参照用の半導体デバイスの波形信号又は論理シミュレーションによって生成された波形信号とを並べて表示するステップを更に備えていてもよい。これにより、半導体デバイスの検査時において、参照サンプル(参照用の半導体デバイスの波形信号又は論理シミュレーションによって生成された波形信号)との差異を分かり易くユーザに表示することができる。このことで、半導体デバイス検査をより高精度に行うことができる。
上記半導体デバイス検査方法は、分離後の波形信号と、参照用の半導体デバイスの波形信号又は論理シミュレーションによって生成された波形信号とを比較するステップを更に備えていてもよい。これにより、半導体デバイスの検査時において、参照サンプル(参照用の半導体デバイスの波形信号又は論理シミュレーションによって生成された波形信号)との差異を特定することができる。このことで、半導体デバイス検査をより高精度に行うことができる。
上記半導体デバイス検査方法は、分離後の波形信号と、論理シミュレーションによって生成された波形信号との比較結果に基づき、半導体デバイスと、半導体デバイスのレイアウト画像との位置合わせを行うステップを更に備えていてもよい。これにより、波形信号の類似度に基づいて上記位置合わせを行い、位置合わせ後においてはレイアウト画像に基づき半導体デバイス検査(故障位置の特定等)をより高精度に行うことができる。
上記半導体デバイス検査方法は、分離後の波形信号に基づき第1のスポット内の各駆動素子の位置を特定し、特定した各駆動素子の位置に基づき、半導体デバイスと、半導体デバイスのレイアウト画像との位置合わせを行うステップを更に備えていてもよい。駆動素子の位置に基づいて位置合わせが行われることにより、波形信号を比較する場合等と比較してより容易に上記位置合わせを行うことができ、位置合わせ後においてはレイアウト画像に基づき半導体デバイス検査(故障位置の特定等)をより高精度に行うことができる。
上記半導体デバイス検査方法は、第1の混信波形に対してノイズ除去フィルタリングを行うステップを更に備えていてもよい。例えばディープラーニング等を利用してノイズを除去することによって、ノイズを除去した混信波形に基づき、波形信号の分離を適切に行うことができる。
上記半導体デバイス検査方法は、第1のスポットの一部と領域が重複し複数の駆動素子が含まれた第2のスポットからの光に応じて、複数の駆動素子からの信号に基づく第2の混信波形を取得するステップと、第1及び第2の混信波形に基づいて、第1及び第2のスポット内の駆動素子毎に波形信号を分離するステップと、を更に備えていてもよい。
上記半導体デバイス検査方法は、第1及び第2の混信波形に基づいて、第1及び第2のスポット内における任意の位置の波形信号を再構成するステップを更に備えていてもよい。これにより、単に駆動素子の波形信号(混信波形から分離した波形信号)を取得するだけでなく、分離した波形信号に基づいて任意の位置の波形信号を取得することができる。
上記半導体デバイス検査方法は、第1のスポットに光を照射するステップと、第1のスポットに照射された光に対する反射光である第1のスポットからの光を検出するステップと、を更に備えていてもよい。これにより、反射光に応じて、例えばEOP等の光プロービング技術を用いて、半導体デバイス検査を高精度に行うことができる。
上記半導体デバイス検査方法は、第1のスポットにおける半導体デバイスからの発光である第1のスポットからの光を検出するステップと、を更に備えていてもよい。これにより、半導体デバイスからの発光に応じて、例えば時間分解発光解析等の技術を用いて、半導体デバイス検査を高精度に行うことができる。
本発明の一態様に係る半導体デバイス検査装置は、半導体デバイスからの光を検出する光検出器と、解析部と、を備え、解析部は、光検出器が検出する光のうち、半導体デバイスにおける複数の駆動素子が含まれた第1のスポットからの光に応じて、複数の駆動素子からの信号に基づく第1の混信波形を取得することと、複数の駆動素子の動作タイミングに基づいて、第1の混信波形から、駆動素子毎に波形信号を分離することと、を実行するように構成されている。
上記半導体デバイス検査装置は、分離後の波形信号と、参照用の半導体デバイスの波形信号又は論理シミュレーションによって生成された波形信号とを並べて表示する表示部を更に備えていてもよい。
解析部は、分離後の波形信号と、参照用の半導体デバイスの波形信号又は論理シミュレーションによって生成された波形信号とを比較することを更に実行するように構成されていてもよい。
解析部は、分離後の波形信号と、論理シミュレーションによって生成された波形信号との比較結果に基づき、半導体デバイスと、半導体デバイスのレイアウト画像との位置合わせを行うことを更に実行するように構成されていてもよい。
解析部は、分離後の波形信号に基づき第1のスポット内の各駆動素子の位置を特定し、特定した各駆動素子の位置に基づき、半導体デバイスと、半導体デバイスのレイアウト画像との位置合わせを行うことを更に実行するように構成されていてもよい。
解析部は、第1の混信波形に対してノイズ除去フィルタリングを行うことを更に実行するように構成されていてもよい。
解析部は、第1のスポットの一部と領域が重複し複数の駆動素子が含まれた第2のスポットからの光に応じて、複数の駆動素子からの信号に基づく第2の混信波形を取得することと、第1及び第2の混信波形に基づいて、第1及び第2のスポット内の駆動素子毎に波形信号を分離することと、を更に実行するように構成されていてもよい。
解析部は、第1及び第2の混信波形に基づいて、第1及び第2のスポット内における任意の位置の波形信号を再構成することを更に実行するように構成されていてもよい。
上記半導体デバイス検査装置は、第1のスポットに照射される光を発生する光発生部を更に備え、光検出器は、第1のスポットに照射された光に対する反射光である第1のスポットからの光を検出してもよい。
上記半導体デバイス検査装置は、光検出器は、第1のスポットにおける半導体デバイスからの発光である第1のスポットからの光を検出してもよい。
本発明の一態様によれば、半導体デバイス検査の高精度化を図ることができる半導体デバイス検査方法及び半導体デバイス検査装置を提供することがきる。
以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
[第1実施形態]
図1は、第1実施形態に係る半導体デバイス検査装置1の構成図である。半導体デバイス検査装置1は、被検査デバイス(DUT:Device Under Test)である半導体デバイス100において異常発生箇所を特定するなど、半導体デバイス100を検査(計測)するための装置である。
図1は、第1実施形態に係る半導体デバイス検査装置1の構成図である。半導体デバイス検査装置1は、被検査デバイス(DUT:Device Under Test)である半導体デバイス100において異常発生箇所を特定するなど、半導体デバイス100を検査(計測)するための装置である。
半導体デバイス100としては、トランジスタ等のPNジャンクションを有する集積回路(IC:Integrated Circuit)、あるいは大規模集積回路(LSI:Large Scale Integration)であるロジックデバイス、メモリデバイス、アナログデバイス、さらに、それらを組み合わせたミックスドシグナルデバイス、または、大電流用/高圧用MOSトランジスタ、バイポーラトランジスタ、IGBT等の電力用半導体デバイス(パワーデバイス)であってもよい。
半導体デバイス検査装置1は、光プロービング技術を利用して半導体デバイス100を検査する。本実施形態では、半導体デバイス検査装置1は、EOP(Electro Optical Probing)と称される光プロービング技術を利用して半導体デバイス100を検査するとして説明する。なお、半導体デバイス検査装置1は、その他の光プロービング技術によって半導体デバイス100を検査するものであってもよい。EOPにより半導体デバイス100を検査する場合には、半導体デバイス100のゲート100aに電圧パターン(動作パルス信号)がテスタ(不図示)により掃引されることによって半導体デバイス100のドレインポテンシャルが変化し、半導体デバイス100のキャリア密度が変化し、半導体デバイス100の屈折率及び光吸収率が変化する。この状態において、光源11から出射された光が半導体デバイス100に照射されると、屈折率及び光吸収率の変化に応じて、反射光の強度及び位相が変化する。このような反射光を光検出器16で検出して、検出信号を取得する。そして、取得した検出信号において、その振幅エネルギーを時間的な経過として表示することによって、波形(EOP波形)を得ることができる。半導体デバイス検査装置1は、例えばEOP波形に基づいて、半導体デバイス100における異常発生個所の特定を行う。
半導体デバイス検査装置1は、EOP波形を得るに際して、半導体デバイス100の駆動素子毎に波形信号を分離する。以下では、図2~図8を参照して、半導体デバイス検査装置1が行う波形信号の分離に関する説明を行う。
図2は、デバイスパターンと光ビームスポットの関係の一例を示す図である。図2(a)は180nmプロセスを用いた半導体デバイスのデバイスパターンと光ビームスポットBSの関係を示しており、図2(b)は45nmプロセスを用いた半導体デバイスのデバイスパターンと光ビームスポットBSの関係を示しており、図2(c)は10nmプロセスを用いた半導体デバイスのデバイスパターンと光ビームスポットBSの関係を示している。ここで、波長1300nmの光を固浸レンズ(SIL:Solid Immersion Lens)と呼ばれる像分解能を向上させる特殊なレンズで集光した時、固浸レンズの性能を決定する開口率(NA:Numerical Aperture)と呼ばれる物理量が3.1とした場合、理論的にレイリーの計算式に従うと、256nmが像分解能と計算される。その時の光のスポットはFWHMに対応する直径が214nm、エアリーディスクと呼ばれるスポット全体の直径に対応する大きさが512nmとなる。図2では、光ビームスポットBSの中央部の色の濃い部分の直径が214nmのFWHM、周辺の色の薄い部分の直径が512nmのエアリーディスクとして表記している。図2(a)に示される180nmプロセスを用いた半導体デバイスにおいては、コンタクトゲートのピッチが比較的大きく設計されているため、光ビームスポットBSが1つの駆動素子150aにのみ重なっている(すなわち、1つの駆動素子150aにのみ光を照射することができる)。この場合には、1つの駆動素子の反射光に応じた検出信号が取得される。一方で、図2(b)に示される45nmプロセスを用いた半導体デバイスにおいては、180nmプロセスを用いた半導体デバイスと比較してコンタクトゲートのピッチが小さくなるため、光ビームスポットBSが複数の駆動素子150bに跨っている(すなわち、複数の駆動素子150bに光が照射される)。この場合には、検出信号においては混信(複数の駆動素子150bそれぞれの反射光に応じた信号の混在)が生じる。同様に、更に小型化された図2(c)に示される10nmプロセスを用いた半導体デバイスにおいても、光ビームスポットBSが複数の駆動素子150cに跨っており、検出信号においては混信が生じる。このように、近年の小型化された半導体デバイスを光プロービング技術により検査する場合には、検出信号における混信が問題となる。
図3は、混信波形を説明する図である。混信状態の検出信号に基づくEOP波形(混信波形)は、複数の駆動信号の波形信号が重ね合わされて形成されている。例えば図3に示される例では、駆動素子Aの波形信号と駆動素子Bの波形信号との位相差がπ/4程度ある。このような2つの波形信号が重ね合わされた混信波形においては、波高が2段階になっている。
半導体デバイス検査装置1は、上記のような混信波形から、各駆動素子の波形信号を分離することによって、半導体デバイス100の検査精度を高めるものである。図4は、光ビームスポットBSの設定例を示す図である。図4に示される例では、複数の駆動素子150(図4中に示される「素子1~素子9」)がグリッド状に配置されている。そして、半導体デバイス検査装置1では、複数の光ビームスポットBSが互いの領域の一部が重なり合うようにして、グリッド状に設定される。例えば、図4に示される例では、光ビームスポットBS1は、光ビームスポットBS2,BS3,BS4,BS5,BS6と、その領域の一部が重なり合うように設定されており、光ビームスポットBS2は、光ビームスポットBS1,BS3,BS4,BS5,BS6と、その領域の一部が重なり合うように設定されている。そして、本実施形態では、半導体デバイス100として、例えば45nmプロセスを用いた半導体デバイス(又はそれよりも小型化された半導体デバイス)が用いられており、各光ビームスポットBSが複数の駆動素子150に跨っている。例えば図4に示される例では、光ビームスポットBS1は、「素子1」「素子2」「素子4」「素子5」で示される駆動素子150に跨っており、光ビームスポットBS2は、「素子1」「素子2」「素子3」「素子4」「素子5」「素子6」で示される駆動素子150に跨っている。このため、各光ビームスポットからの光(反射光)に応じて取得される信号には、複数の駆動素子150からの信号が混信している。すなわち、半導体デバイス検査装置1は、各光ビームスポットからの光に応じて、それぞれ混信波形を取得することができる。なお、光ビームスポットBSの設定時においては、各光ビームスポットBSとどの駆動素子150とが重なっているかは分かっていない。
図5は、各光ビームスポットBSにおける混信波形について説明する図である。図5(a)は、各駆動素子150(「素子1」~「素子9」)の波形信号を示す図である。図5(b)は、各光ビームスポットBS(BS1~BS9)における混信波形を示す図である。上述したように、各光ビームスポットBSにおいて取得される信号には複数の駆動素子150からの信号が混信しているため、図5(b)に示されるように、各光ビームスポットBSにおいて取得される波形は混信波形となる。半導体デバイス100における異常発生個所を特定する場合等においては、図5(a)に示されるような各駆動素子150(「素子1」~「素子9」)毎の波形信号を取得することが重要である。そこで、本実施形態の半導体デバイス検査装置1は、図5(b)に示されるような、各光ビームスポットBSにおいて取得される混信波形から、図5(a)に示されるような各駆動素子150(「素子1」~「素子9」)の波形信号を取得(分離)する。波形信号の分離手法については後述する。
そして、半導体デバイス検査装置1は、混信波形から分離して得た分離波形(駆動素子毎の波形信号)に基づいて、異常発生個所の特定を行う。図6は、異常発生個所の特定手法の概要を説明する図である。図6(a)においては、異常発生が疑われる半導体デバイス(不良サンプル)の複数の混信波形から分離波形を取得することが示されている。また、図6(b)においては、異常が発生していない半導体デバイス(参照サンプル)の複数の混信波形から分離波形を取得することが示されている。半導体デバイス検査装置1は、不良サンプルの分離波形と参照サンプルの分離波形とを比較し、波形同士が類似しているものの、タイミングずれ等が生じており互いの一致度が低い箇所を特定する。半導体デバイス検査装置1は、このようなタイミングずれ等が生じている箇所に基づいて、不良サンプルにおける異常発生個所を特定する。
不良サンプルと参照サンプルの分離波形同士を比較して異常発生個所を特定することの優位性(混信波形同士を比較する場合と比べた、精度面での有意性)について、図7及び図8を参照して説明する。図7は、不良サンプルと参照サンプルの混信波形同士を比較する場合の、各波形の一致度を示す図である。図7に示されるように、上から5個目の波形において、不良サンプルの波形と参照サンプルの波形との一致度が0.8603となっている。図8は、不良サンプルと参照サンプルの分離波形同士を比較する場合の、各波形の一致度を示す図である。図8に示されるように、上から5番目の波形において、不良サンプルの波形と参照サンプルの波形との一致度が0.8059となっている。上述したように、異常発生個所を特定するに際しては、不良サンプルの波形と参照サンプルの波形との一致度が低い箇所を特定するところ、分離波形同士を比較する場合のほうが、異常発生個所における不良サンプルの波形と参照サンプルの波形との一致度を低く導出することができている。このことから、分離波形同士を比較することによって、異常発生個所の特定を、より確実且つ高精度に行うことができると言える。なお、一致度は、例えばピアソンの相関係数が計算されることにより導出される。
図1に戻り、半導体デバイス検査装置1の構成について説明する。半導体デバイス検査装置1は、光源11(光発生部)と、導光レンズ12と、光分岐光学系13と、対物レンズ14と、集光レンズ15と、光検出器16と、制御装置20(解析部)と、モニタ30(表示部)と、暗箱50とを備えている。暗箱50は、上述した構成のうち制御装置20及びモニタ30以外の構成を収容しており、収容した各構成に外部の光の影響が及ぼされることを回避するために設けられている。
光源11は、半導体デバイス検査装置1の光ビームスポットに照射される光を発生させ、該光を出力する。光源11は例えばSLD(Super Luminescent Diode)で構成されている。なお、光源11は、LD(LaserDiode)などのレーザー光源やLED(Light Emitting Diode)、又はランプ光源を用いたインコヒーレント光源等であってもよい。導光レンズ12は、例えば単独又は複合の凸レンズであり、光源11から出力された光を光分岐光学系13に導く。
ここで、互いに隣り合う光ビームスポット同士の間隔と、互いに隣り合う駆動素子を構成するゲート同士の間隔との関係について説明する。本実施形態に係る波形信号の分離手法においては、隣り合う光ビームスポットに同じ駆動素子が含まれた状態で各光ビームスポットにおいて混信状態となっている必要がある。そのため、光ビームスポットの間隔(グリッドピッチ)及びゲートの間隔(ゲートピッチ)は、上述した混信状態となるように、特定の範囲内に設定される。例えばグリッドピッチをゲートピッチと無関係に設定された場合においては、光ビームスポット毎に混信比率が変化してしまう。光ビームスポット毎の混信比率を互いに一定とするためには、グリッドピッチを例えばゲートピッチの整数倍等としてもよい。また、グリッドピッチをゲートピッチに対して過度に大きくした場合には、混信しない(適切に情報が入らない)光ビームスポットが生じてしまう。例えば、ビーム条件を、波長λ=1300nm、対物レンズ14の開口率NA=3.1、半値全幅FWHM(full width at half maximum)=214nmとし、半導体デバイス100のデバイス条件として、ゲート長l=28nm、ゲートピッチをゲート長lの4倍程度としたような場合においては、グリッドピッチをゲートピッチの4倍よりも大きくすると、適切に混信が生じないおそれがある。すなわち、第1の光ビームスポットの中心と、該第1の光ビームスポットと隣り合う第2の光ビームスポットの中心との離間距離は、駆動素子を構成するゲート間の離間距離の4倍以下とされてもよい。
光分岐光学系13は、光源11から出力されると共に導光レンズ12を経て到達した光を半導体デバイス100方向に透過する。光分岐光学系13は、半導体デバイス100上を照射光で走査する光走査光学系を更に備えていてもよい。対物レンズ14は、光分岐光学系13によって導かれた光(照射光)を半導体デバイス100に集光する。なお、半導体デバイス100における集光ポイントである光ビームスポットは、例えば、半導体デバイス100を保持するチャック(不図示)がXY方向(前後・左右方向)、すなわちチャックにおける半導体デバイス100の載置面に沿った方向に移動させられることによって切り替えられる。このようなチャックは、例えばXYステージ(不図示)によってXY方向(前後・左右方向)に移動させられる。XYステージは、制御装置20による制御に応じて、予め設定されている複数の光ビームスポットが順次、照射光の照射領域とされるように、チャックをXY方向に移動させる。
また、光分岐光学系13は、半導体デバイス100に照射された光に対して半導体デバイス100が反射した反射光を光検出器16方向に導く。集光レンズ15は、反射光を光検出器16に集光する。
光検出器16は、光分岐光学系13及び集光レンズ15を経て到達した反射光を検出し、該反射光に応じた検出信号を出力する。光検出器16は、APD(Avalanche Photo Diode)やPD(Photo Diode)、PMT(Photo Multiplier Tube)等である。
制御装置20は、XYステージ(不図示)、光源11、及び光検出器16を制御する。具体的には、制御装置20は、XYステージを制御することにより照射光の照射領域(光ビームスポット)の切り替えを制御する。制御装置20は、光源11を制御することにより照射の出射調整並びに照射光の波長及び振幅等の調整を行う。制御装置20は、光検出器16を制御することにより反射光の検出に係る調整を行う。また、制御装置20は、各光ビームスポットにおいて取得される反射光に応じて各混信波形を取得し、各混信波形に基づいて、各光ビームスポット内の駆動素子毎に波形信号を分離する。波形信号の分離に係る制御装置20の機能については後述する。
なお、制御装置20は、コンピュータであって、物理的には、RAM、ROM等のメモリ、CPU等のプロセッサ(演算回路)、通信インターフェイス、ハードディスク等の格納部を備えて構成されている。かかる制御装置20としては、例えばパーソナルコンピュータ、クラウドサーバ、スマートデバイス(スマートフォン、タブレット端末など)などが挙げられる。制御装置20は、メモリに格納されるプログラムをコンピュータシステムのCPUで実行することにより機能する。また、制御装置20はマイコンやFPGAで構成されていてもよい。
次に、波形信号の分離に係る制御装置20の機能について詳細に説明する。
制御装置20は、光検出器16が検出する反射光のうち、半導体デバイス100における複数の駆動素子が含まれた第1の光ビームスポットからの光に応じて、複数の駆動素子からの信号に基づく第1の混信波形を取得することと、光検出器16が検出する反射光のうち、第1の光ビームスポットの一部と領域が重複し複数の駆動素子が含まれた第2の光ビームスポットからの光に応じて、複数の駆動素子からの信号に基づく第2の混信波形を取得することと、第1及び第2の混信波形に基づいて、第1及び第2の光ビームスポット内の駆動素子毎に波形信号を分離することと、を実行するように構成されている。第1及び第2の光ビームスポットとは、互いに領域の一部が重複する光ビームスポットが複数(少なくとも2つ以上)あることを示している。また、第1及び第2の混信波形とは、駆動素子毎に波形信号を分離するに際して複数(少なくとも2つ以上)の混信波形を用いることを示している。以下では、各光ビームスポットの中心(混信波形を取得する点)をグリッド点と記載する場合がある。
具体的な波形信号の分離処理の一例について説明する。ここでは、各混信波形の時間変化を取得し、各時間における各混信波形の波高を実現するように、各駆動素子の位置及び波形信号(混信波形から分離される各波形信号)を推定する手法を説明する。
図9は、互いに領域の一部が重複する3つの光ビームスポットそれぞれのグリッド点I~IIIに関して取得した、混信波形の時間変化を示している。図9(a)はグリッド点Iについての混信波形の時間変化(時刻:t1~t3を含む)を示している。図9(b)はグリッド点IIについての混信波形の時間変化(時刻:t1~t3を含む)を示している。図9(c)はグリッド点IIIについての混信波形の時間変化(時刻:t1~t3を含む)を示している。図10は、図9に示されるグリッド点I~IIIを含む、各グリッド点の波高の時間変化を表現した図である。図10(a)は、時刻:t1における各グリッド点の波高を示している。図10(b)は、時刻:t2における各グリッド点の波高を示している。図10(c)は、時刻:t3における各グリッド点の波高を示している。本手法では、グリッド点毎の波高を再現することによって、混信以前の波形(すなわち、各駆動素子の波形信号)を求める。
図11は、図10(c)に示される時刻:t3における各グリッド点の波高を再現する信号分布を示す図である。制御装置20は、例えばグリッド設定範囲内に、複数の解析点を設定する。解析点は、例えばグリッド内を画像表示した際の各ピクセルとされてもよい。そして、制御装置20は、例えば各解析点にビーム径に相当するガウス分布を適宜仮定して計算を繰り返し、各グリッド点の特定時刻における波高(図11に示される縦棒線の長さ)を再現する組み合わせ(各解析点の波形信号の組み合わせ)を求める。これにより、各解析点の中から駆動素子に相当する点(位置)及び波形信号を推定することができる。なお、上述したガウス分布を仮定することに変えて、ビーム収束分布により近いベッセル関数を使用してもよい。適当な位置にガウス分布(又はベッセル関数)を設定し、各位置の寄与を加算することにより、グリッド設定平面上の混信波形変化を求めることができる。
図12は、混信波形の時間変化から駆動素子の位置を推定する処理を説明する図である。図12においては、上段から順に、時刻:t1における各グリッド点での波高、時刻:t2における各グリッド点での波高、時刻:t3における各グリッド点での波高を示している。図12においては、横軸が位置、縦軸が波高を示しており、縦棒線がグリッド点で検出された波高を示している。制御装置20は、各時刻について、グリッド点での波高を再現する信号の組み合わせを求める。すなわち、制御装置20は、グリッド点での波高が再現されるように、グリッド範囲内のグリッド内域点(解析点)からの信号の関与状況を表すガウス分布の位置を計算し、各信号によってグリッド点での波高を再現することによって、混信状態を示す曲線(図12参照)を導出する。混信状態を再現するグリッド内域点は、最初は適宜ランダムに設定され、グリッド点での波高が再現されるように繰り返し計算され、計算が収束することによって座標(位置)が求まる。このような計算を、異なった時刻においてそれぞれ実施することによって、グリッド内域点は複数の定まった座標に収束することとなる。
図12に示される例では、例えばグリッド内域点は、座標:a,b,c,e,f,hとなり、座標:a,b,c,e,f,hからの信号の寄与だけで各時刻におけるグリッド点での波高を再現することができる。このことは、座標:a,b,c,e,f,hに、ハイ/ロー変化を示す信号の発生源(すなわち駆動素子)が存在していることを意味している。一方で、図12に示される座標:d,gについては、どの時刻においても波高変化の再現には用いられておらず、座標:d,gには駆動素子が存在していないと言える。上述したような駆動素子の位置は、多くの時刻に関して計算を行うことによって、より高精度に導出することができる。駆動素子の座標の一部を求めた後においては、その座標に信号発生源が存在するとして、その座標でガウス分布をオン/オフして波高を再現することが可能となり、他の駆動素子の座標を求める際の計算時間を短縮することができる。
図13は、各時刻について再現された混信波形の波高曲面を示す図である。図13(a)は時刻:t1における混信波形の波高曲面、図13(b)は時刻:t2における混信波形の波高曲面、図13(c)は時刻:t3における混信波形の波高曲面を示す図である。図14は、駆動素子の位置分布について説明する図である。図13(a)~図13(c)に示されるように混信波形の波高曲面が時間変化している場合において、該波高曲面を形成するガウス分布の設定座標(波高曲面再現ポイント)が図14(a)のハッチングで示される各位置であったとする。このような波高曲面再現ポイントとは、駆動素子の位置であると言い換えることができるので、駆動素子(信号出力素子)の分布は図14(b)に示されるようになる。一方、半導体デバイス100のレイアウト画像からは、信号を出力可能な駆動素子(トランジスタ)を特定することができる。図14(c)に示されるレイアウト画像においては、模式的に駆動素子(トランジスタ)が狭い3本の長方形、信号を発しないパターンが広い長方形で示されている。そして、図14(b)に示される駆動素子の分布と、図14(c)に示されるレイアウト画像とが比較対照されることによって、図14(d)に示されるスーパーインポーズイメージを生成することが可能である。図14(d)のスーパーインポーズイメージを用いることにより、レイアウト画像上のどの位置から信号を検出しているかを認識することができる。
上述したように駆動素子の座標が求められた後においては、各駆動素子の信号の時間変化を認識することによって、混信波形に関与する駆動素子毎に波形信号を分離することができる。図15は、駆動素子毎に波形信号を分離する処理を説明する図である。図15(a)は各時刻における混信波形、及び混信波形を再現する信号(各駆動素子の信号)を示す図である。図15(b)は、各駆動素子の信号レベル時間変化を示す図である。図15(a)に示されるように、駆動素子が存在すると想定される座標:a,b,c,e,f,hにおけるガウス分布形状信号の存在有無によって混信波形が再現できている場合を考える。図15(a)において、信号が存在することはハイ(図中において数字「1」で示した四角)、信号が存在しないことはロー(図中において数字「0」で示した四角)で出力されていることに相当する。図15(b)は、このような各駆動素子の時間毎のハイローレベル(信号レベル)を表示したものである。このような、各駆動素子(座標毎)の信号レベル時間変化を示した波形が、混信波形から分離される各駆動素子の波形信号に相当する。
具体的な波形信号の分離処理の他の例について説明する。ここでは、駆動素子の位置をランダムに設定して、設定した駆動素子の影響を合算した信号の波高と、グリッド点で取得された波高とを比較する処理を繰り返すことにより、各駆動素子の波形信号(混信波形から分離される各波形信号)を推定する手法を説明する。
図16、図17、及び図18は、波形信号の分離処理を説明する図である。これらの図においては、横軸が位置、縦軸が波高を示している。これらの図における破線(例えば図16(a)に示される破線)は、正解(実際)の駆動素子の位置及び波形を示している。また、これらの図における一点鎖線(例えば図16(a)に示される一点鎖線)は、ランダムに設定された駆動素子候補の位置及び波形を示している。また、これらの図における太い実線(例えば図16(b)に示される太い実線)は、ランダムに設定された駆動素子候補の信号を合算した信号の波形を示している。また、これらの図における細い実線(例えば図16(c)に示される細い実線)は、各グリッド点g1,g2,g3,g4,g5,g6,g7における波高、及び各波高から推定される波形を示す図である。また、これらの図における点線(例えば図16(c)に示される点線)は、各グリッド点に関する波形にマージン(ノイズを考慮したばらつきのα値)を付加した波形を示している。
例えば、図16(a)に示されるように、駆動素子候補の波形として、ランダムに波形R1,R2,R3が設定されたとする。この状態においては、正解(実際)の駆動素子の位置及び波形CAについては認識できていない。
そして、図16(b)に示されるように、ランダムに設定された波形R1,R2,R3が合算されることにより、駆動素子候補の周辺への影響を示した合算波形ISが導出される。
図16(c)には、各グリッド点g1,g2,g3,g4,g5,g6,g7における波高、及び各波高から推定される波形SRが示されている。また、図16(c)には、波形SRにマージンを付加した波形SRmが示されている。いま、合算波形ISと波形SRmとを比較すると、合算波形ISが波形SRmをオーバーする点として、グリッド点g2,g6,g7が特定される。そして特定された各グリッド点g2,g6,g7における、オーバー量(合算波形ISが波形SRmをオーバーする量)Ov1,Ov2,Ov3が特定される(図16(d)参照)。
そして、最もオーバー量が大きいオーバー量Ov3のグリッド点g7に着目し、その位置に影響を与える全ての駆動素子候補が抽出される。今回の例では、図16(e)に示されるように、波形R2,R3に係る2つの駆動素子候補が抽出される。そして、抽出された2つの駆動素子候補の波形R2,R3について、合算波形ISが波形SRmをオーバーしていない箇所(グリッド点)での影響度(関与状況)が導出される。
図17(a)には、波形R2に係る駆動素子候補についての影響度導出イメージが示されている。図17(b)には、波形R3に係る駆動素子候補についての影響度導出イメージが示されている。図17(a)に示されるように、合算波形ISが波形SRmをオーバーしていないグリッド点g5において取得される波高のうち、影響度Im2が、波形R2の影響を受けた値である。同様に、図17(b)に示されるように、合算波形ISが波形SRmをオーバーしていないグリッド点g5において取得される波高のうち、影響度Im3が、波形R3の影響を受けた値である。そして、影響度Im2及び影響度Im3を比較すると、明らかに、波形R2の影響度Im2が大きい。この場合には、図17(c)に示されるように元々3つであった駆動素子候補の波形のうち、上述した比較によって影響度が小さいと判定された駆動素子候補の波形R3が削除され、図17(d)に示されるように、2つの駆動素子候補の波形R1,R2のみが残る。すなわち、波形R3に係る駆動素子候補が、間違いである(駆動素子ではない)ことが特定される。
そして、図17(e)に示されるように、グリッド点g2においても合算波形ISが波形SRmをオーバーしているため、続いてグリッド点g2に着目し、その位置に影響を与える全ての駆動素子候補が抽出される。いま、図18(a)に示されるように、グリッド点g2に影響を与える駆動素子候補は波形R1に係る1つの駆動素子候補のみである。図18(b)に示されるように、駆動素子候補が1つであって、あるグリッド点(グリッド点g2)において合算波形ISが波形SRmをオーバーしている時点で、波形R1に係る駆動素子候補が間違いである(駆動素子ではない)ことが特定される。この場合には、図18(c)に示されるように元々2つであった駆動素子候補の波形のうち、間違いであると特定された駆動素子候補の波形R1が削除され、図18(d)に示されるように、1つの駆動素子候補の波形R2のみが残る。
このような、駆動素子候補のランダム設定、判定、削除が繰り返し行われることにより、全ての駆動素子の位置を推定することができる。駆動素子の位置が推定されることにより、上述した手法等を用いて、各駆動素子の波形信号を推定する(混信波形から各駆動素子の波形信号を分離する)ことができる。なお、上記ではオーバーだけを採り上げて計算しているが、アンダーも採り上げて計算することも可能である。ただし、その場合、アンダー側は符号を反転させて計算するような工夫が必要である。
また、制御装置20は、複数の混信波形に基づいて、光ビームスポット内における任意の位置の波形信号を再構成してもよい。すなわち、制御装置20は、上述した手法等によって混信波形から駆動素子毎に波形を分離し、該分離した波形の情報に基づいて、光ビームスポット内の任意の位置の波形信号を再構成してもよい。このように任意の位置の波形信号が再構成されることによって、異常発生個所(不良位置)をより高精度に特定することが可能となる。
図19は、任意の位置に再構成された波形信号を考慮して異常発生個所を特定する処理を説明する図である。図19に示される例では、不良発生が疑われるサンプル(不良サンプル)において、2つのグリッド点gr(プローブポイント)と、該2つのグリッド点grに挟まれる波形再構成ポイントrpとにおいて、再構成によって波形信号が取得されている。また、参照サンプルの同じポイントに関して、同様に再構成によって波形信号が取得されている。そして、不良サンプル及び参照サンプルにおける同一ポイントの波形同士が比較されて、それぞれのポイントに関して波形の一致度が導出されている。いま、図19に示される左側から右側に信号が伝達しているとして、図19に示されるような波形の一致度となった場合、波形の一致度が悪化している中で最も上流側(左側)のポイント(波形の一致度が0.8059のポイント)が異常発生個所であると特定することができる。このような異常発生個所は、例えば該箇所の駆動素子(トランジスタ)につながる配線又はビアに欠陥が存在する箇所である。モニタ30(詳細は後述)においては、図19に示されるように、異常発生個所であると疑われる点を色で表示してもよいし、相関係数のグラフで表示してもよい。
また、制御装置20は、混信波形に基づいて波形を分離し任意の位置の波形信号を再構成した場合において、分離後の波形信号と、論理シミュレーションによって生成された波形信号との比較結果に基づき、半導体デバイス100と半導体デバイスのレイアウト画像Liとの位置合わせを行うことを更に実行してもよい(図20参照)。半導体デバイスのレイアウト画像Liとは、例えばCAD画像である。
図20は、半導体デバイス100とレイアウト画像Liとの位置合わせについて説明する図である。図20(a)に示されるように、半導体デバイス100について、複数のグリッド点grにおいて取得された混信波形に基づいて、任意の位置rp1,rp2,rp3,rp4,rp5の波形信号が再構成されているとする(図20(b)参照)。また、図20(c)に示されるレイアウト画像Liの中心点cpについて、図20(d)に示される論理シミュレーション波形が取得されているとする。いま、図20(d)の論理シミュレーション波形は、半導体デバイス100の位置rp3の波形(図20(b)参照)との一致度が高い。このことから、図20(e)に示されるように、レイアウト画像Liの中心点cpが半導体デバイス100の位置rp3に一致するように、半導体デバイス100の画像にレイアウト画像Liを重畳させることにより、半導体デバイス100と半導体デバイスのレイアウト画像Liとを正確に位置合わせすることができる。
なお、制御装置20は、波形信号の分離処理において駆動素子の位置が特定されている場合には、特定した各駆動素子の位置に基づき、半導体デバイス100とレイアウト画像との位置合わせを行ってもよい。
次に、半導体デバイス検査装置1が行う半導体デバイス検査方法に係る処理について、図21を参照して説明する。図21は、半導体デバイス検査装置1が行う半導体デバイス検査方法に係る処理を示すフローチャートである。各処理の説明においては、モニタ30における画面イメージの一例(図22~図30)についても併せて説明する。
図21に示されるように、最初に、1つ目のサンプルの半導体デバイス100の画像が読み込まれてモニタ30に表示され(図22参照)、半導体デバイス100の座標系とレイアウト画像の座標系とに基づいて座標系のロックが行われる(ステップS1)。なお、図22に示される例では、半導体デバイス100の画像は波形解析のためのGUI(Graphical User Interface)内に表示されているが、GUI内に読み込まずに既存の各種ウィンドウに表示してプロービング位置等を設定してもよい。つづいて、半導体デバイス100の解析領域にアクセスされて(ステップS2)、適切なレンズが選択される(ステップS3)。つづいて、制御装置20に波形取得条件が設定される(ステップS4)。
つづいて、対象とする駆動素子(又は対象とする駆動素子のまとまり)がプローブポイントpp(図23参照)となるように設定される(ステップS5)。プローブポイントppの設定等の各処理については、図23に示されるように、それぞれ設定ボタン(例えば「プローブ点設定」ボタン)が押下されることにより実行される。なお、図23においては、レイアウトパターンに近い画像が示されているが、実際にはLSM画像が表示されていてもよい。
つづいて、プローブポイントppを囲うようにグリッド点gr(図24参照)が設定される(ステップS6)。モニタ30においては、「グリッド設定」ボタンが押下されることにより、グリッド点のXピッチ及びYピッチを入力するポップアップが表示されてもよい。この場合の入力値は、予め記憶されている複数の数値から選択されてもよいし、ユーザによって任意に入力される値であってもよい。また、縦横のグリッド数についてもユーザに入力されてもよい。この場合、グリッド数に応じて、図24の右側の波形表示数(行数)が変化してもよい。図24に示される例では、グリッド数が9つであるので、波形表示数(行数)が9つとされている。
つづいて、半導体デバイス100に電圧パターン(テストパターン)が掃引され(ステップS7)、ドリフト補正が行われる(ステップS8)。なお、ドリフト補正は、モニタ30における波形表示画面とは別画面で実施されてもよい。
つづいて、各グリッド点grからの光に応じて、複数の駆動素子からの信号に基づく混信波形がそれぞれ取得され、それぞれ、モニタ30における取得波形の欄(図25参照)に表示される(ステップS9)。混信波形はシーケンシャルに取得される。なお、制御装置20は、取得した混信波形(EPO波形)について、ディープラーニング等を利用したノイズ除去フィルタリングを行うことにより整形してもよい。上記ステップS8、ステップS9は、設定した全グリッド点について繰り返して実施してもよい。
つづいて、複数の混信波形に基づいて、駆動素子毎に波形信号が分離される(ステップS10)。分離された各波形信号は、図26に示されるように、モニタ30における分離波形の欄に表示される。モニタ30における分離波形の行数は、駆動素子の数に応じて変化する。なお、必ずしも各グリッド点grで波形が分離できるとは限らず、グリッド間の任意の箇所の波形を再構成する処理を行って、最も混信の少ない箇所をピックアップしてもよい。
そして、2つ目のサンプルの半導体デバイスについて、1つ目のサンプルと同様に混信波形が取得されて表示され(図27参照)、混信波形に基づいて波形信号が分離される(図28参照)。この場合、1つ目のサンプルが不良サンプルで2つ目のサンプルが参照サンプルであってもよいし、1つ目のサンプルが参照サンプルで2つ目のサンプルが不良サンプルであってもよい。図28に示されるように、モニタ30は、分離後の波形信号と参照用の波形信号とを並べて表示する。
つづいて、制御装置20によって、2つのサンプルの同じポイントに関して波形が比較され、ポイント毎に一致度が導出されて、該一致度がモニタ30に表示される(図29参照)。そして、一致度を考慮して波形の解析が行われ(ステップS11)、異常発生個所(不良位置)が特定される。図29に示される例では、例えば一致度が0.796の位置について、異常発生個所であると特定される。
なお、上述した2つのサンプルで波形を取得して相互に対照する方式に代えて、参照波形として論理シミュレーション波形を提供してもよい(図30参照)。すなわち、モニタ30が、分離後の波形信号と論理シミュレーションとを並べて表示してもよい。この場合には、2つのサンプルで波形を取得する場合と比較して処理を簡易化することができる。
次に、第1実施形態に係る半導体デバイス検査装置1及び半導体デバイス検査方法の作用効果について説明する。
本実施形態に係る半導体デバイス検査方法は、半導体デバイス100における複数の駆動素子が含まれた第1の光ビームスポットからの光に応じて、複数の駆動素子からの信号に基づく第1の混信波形を取得するステップと、第1のスポットの一部と領域が重複し複数の駆動素子が含まれた第2の光ビームスポットからの光に応じて、複数の駆動素子からの信号に基づく第2の混信波形を取得するステップと、第1及び第2の混信波形に基づいて、第1及び第2のスポット内の駆動素子毎に波形信号を分離するステップと、を備える。
このような半導体デバイス検査方法では、複数の駆動素子が含まれた第1の光ビームスポットからの光に基づく第1の混信波形と、第1の光ビームスポットの一部と領域が重複し複数の駆動素子が含まれた第2の光ビームスポットからの光に基づく第2の混信波形とが取得され、第1及び第2の混信波形に基づいて、第1及び第2の光ビームスポット内の駆動素子毎に波形信号が分離される。例えば、互いに領域が重複する光ビームスポットそれぞれの混信波形の時間変化が取得されることにより、混信波形に係る光ビームスポットに含まれた複数の駆動素子の位置に応じた影響度(それぞれの混信波形における各駆動素子の信号の関与状況)を推定することができる。このような複数の駆動素子の位置に応じた影響度を考慮することによって、混信波形から、光ビームスポット内の各駆動素子の波形信号を適切に分離することができる。このように、混信波形から各駆動素子の波形信号(本来の波形)が適切に分離されることによって、分離後の駆動素子の波形信号に基づき、半導体デバイス検査を高精度に行うことができる。
上記半導体デバイス検査方法は、分離後の波形信号と、参照用の半導体デバイスの波形信号又は論理シミュレーションによって生成された波形信号とを並べて表示するステップを備えている。これにより、半導体デバイス100の検査時において、参照サンプル(参照用の半導体デバイスの波形信号又は論理シミュレーションによって生成された波形信号)との差異を分かり易くユーザに表示することができる。このことで、半導体デバイス検査をより高精度に行うことができる。
上記半導体デバイス検査方法は、分離後の波形信号と、参照用の半導体デバイスの波形信号又は論理シミュレーションによって生成された波形信号とを比較するステップを更に備えている。これにより、半導体デバイス100の検査時において、参照サンプル(参照用の半導体デバイスの波形信号又は論理シミュレーションによって生成された波形信号)との差異を特定することができる。このことで、半導体デバイス検査をより高精度に行うことができる。
上記半導体デバイス検査方法は、分離後の波形信号と、論理シミュレーションによって生成された波形信号との比較結果に基づき、半導体デバイス100と、半導体デバイス100のレイアウト画像との位置合わせを行うステップを更に備えている。これにより、波形信号の類似度に基づいて上記位置合わせを行い、位置合わせ後においてはレイアウト画像に基づき半導体デバイス検査(故障位置の特定等)をより高精度に行うことができる。
上記半導体デバイス検査方法は、分離後の波形信号に基づき第1及び第2の光ビームスポット内の各駆動素子の位置を特定し、特定した各駆動素子の位置に基づき、半導体デバイス100と、半導体デバイス100のレイアウト画像との位置合わせを行うステップを更に備えている。駆動素子の位置に基づいて位置合わせが行われることにより、波形信号を比較する場合等と比較してより容易に上記位置合わせを行うことができ、位置合わせ後においてはレイアウト画像に基づき半導体デバイス検査(故障位置の特定等)をより高精度に行うことができる。
上記半導体デバイス検査方法において、第1の光ビームスポットの中心と第2の光ビームスポットの中心との離間距離は、駆動素子を構成するゲート間の離間距離の4倍以下である。これにより、第1の光ビームスポットからの光に応じた波形及び第2の光ビームスポットからの光に応じた波形を、適切に混信波形(複数の駆動素子からの信号に基づく第1の混信波形、及び、複数の駆動素子からの信号に基づく第2の混信波形)とすることができる。
上記半導体デバイス検査方法は、第1及び第2の混信波形に対してノイズ除去フィルタリングを行うステップを更に備えている。例えばディープラーニング等を利用してノイズを除去することによって、ノイズを除去した混信波形に基づき、波形信号の分離を適切に行うことができる。
上記半導体デバイス検査方法は、第1及び第2の混信波形に基づいて、第1及び第2のスポット内における任意の位置の波形信号を再構成するステップを更に備えている。これにより、単に駆動素子の波形信号(混信波形から分離した波形信号)を取得するだけでなく、分離した波形信号に基づいて任意の位置の波形信号を取得することができる。
上記半導体デバイス検査方法は、第1及び第2の光ビームスポットに光を照射するステップと、第1の光ビームスポットに照射された光に対する反射光である第1の光ビームスポットからの光、及び、第2の光ビームスポットに照射された光に対する反射光である第2の光ビームスポットからの光を検出するステップと、を更に備えている。これにより、反射光に応じて、例えばEOP等の光プロービング技術を用いて、半導体デバイス検査を高精度に行うことができる。
[第2実施形態]
次に、本発明の第2実施形態について説明する。第2実施形態では、第1実施形態と異なる点について主に説明する。
次に、本発明の第2実施形態について説明する。第2実施形態では、第1実施形態と異なる点について主に説明する。
第2実施形態では、半導体デバイス検査装置1が、時間分解発光解析(TREM:Time Resolved Emission Microscopy)により半導体デバイス100を検査する。TREMは、半導体デバイス100を動作させることによってゲートが中間電位を通過するトランジスタのオンオフ又はオフオンの遷移時の発光を検出し、発光の検出タイミングに基づいて解析を行う手法である。発光は、半導体デバイス100のゲート100aに電圧パターン(動作パルス信号)が掃引され、電圧が中間電位を通過する際に発生する。本実施形態に係る半導体デバイス検査装置1は、超伝導ナノワイヤ単一光子検出器(SSPD:Super conducting nanowire Single Photon Detector)等の高感度のディテクタを光検出器16として有している。そして、半導体デバイス検査装置1では、光源11が励起光を半導体デバイス100に照射し、該励起光に応じた半導体デバイス100からの発光(蛍光)を、光検出器16が検出する。
図31は、光検出スポットDSの設定例を示す図である。いま、図31に示されるように、互いの領域の一部が重なり合うように、光検出スポットDS101,DS102,DS103,DS104,DS105が設定されているとする。そして、光検出スポットDS101は「素子a」「素子b」「素子c」で示される駆動素子150に跨っており、光検出スポットDS102は「素子a」「素子b」「素子c」「素子d」で示される駆動素子150に跨っており、光検出スポットDS103は「素子a」「素子b」「素子c」「素子d」で示される駆動素子150に跨っており、光検出スポットDS104は「素子a」「素子b」「素子c」「素子d」で示される駆動素子150に跨っており、光検出スポットDS105は「素子b」「素子c」「素子d」で示される駆動素子150に跨っている。
光検出スポット101からの発光に応じて取得される混信波形は、その位置関係から、「素子a」の影響が最も大きく、「素子b」及び「素子c」の影響は同程度である。光検出スポット102からの発光に応じて取得される混信波形は、その位置関係から、「素子b」の影響が最も大きく、「素子a」及び「素子d」の影響が次いで大きく、「素子c」の影響が最も小さい。光検出スポット103からの発光に応じて取得される混信波形は、その位置関係から、「素子b」及び「素子c」の影響が最も大きく、「素子a」及び「素子d」の影響は同程度である。光検出スポット104からの発光に応じて取得される混信波形は、その位置関係から、「素子c」の影響が最も大きく、「素子a」及び「素子d」の影響が次いで大きく、「素子b」の影響が最も小さい。光検出スポット105からの発光に応じて取得される混信波形は、その位置関係から、「素子d」の影響が最も大きく、「素子b」及び「素子c」の影響は同程度である。
ここで、各駆動素子150(「素子a」「素子b」「素子c」「素子d」)は、その位置や回路構成によって動作パルス信号が届くタイミング(すなわち動作タイミング。動作クロック)が異なっている。図32は、各駆動素子150の動作タイミングを説明する図である。図32(a)~(d)は、各駆動素子150の波形(上側)及び発光波形(下側)を示している。また、図32(a)~(d)においては、破線が動作パルス信号の基本クロックを示している。図32(a)に示されるように「素子a」は、基本クロック(破線)よりも早く、発光が検出されている。また、図32(b),(c)に示されるように、「素子b」「素子c」は、基本クロックと同じタイミングで発光が検出されている。また、図32(d)に示されるように、「素子d」は基本クロックよりも遅く発光が検出されている。本実施形態に係る半導体デバイス検査装置1は、このような駆動素子150毎の動作タイミングの違いに着目し、混信波形から各駆動素子150の波形信号を分離するものである。すなわち、第2実施形態の半導体デバイス検査装置1では、制御装置20が、混信波形を取得すると共に、混信波形に係る複数の駆動素子の動作タイミングに基づいて、混信波形から各駆動素子の波形信号を分離することを実行するように構成されている。
図33は、混信波形に含まれる各発光波形を示す図である。図33(a)に示されるように、BS101の混信波形には、動作タイミングが早い「素子a」の発光波形(以下、早タイミングの発光波形EWaと記載する)と、動作タイミングが普通である「素子b」及び「素子c」の発光波形(以下、中タイミングの発光波形EWb,EWcと記載する)とが含まれている。また、図33(b)に示されるように、BS102の混信波形には、早タイミングの発光波形EWaと、中タイミングの発光波形EWb,EWcと、動作タイミングが遅い「素子d」の発光波形(以下、遅タイミングの発光波形EWdと記載する)とが含まれている。図33(c)に示されるように、BS103の混信波形には、早タイミングの発光波形EWaと、中タイミングの発光波形EWb,EWcと、遅タイミングの発光波形EWdとが含まれている。図33(d)に示されるように、BS104の混信波形には、早タイミングの発光波形EWaと、中タイミングの発光波形EWb,EWcと、遅タイミングの発光波形EWdとが含まれている。図33(e)に示されるように、BS105の混信波形には、中タイミングの発光波形EWb,EWcと、遅タイミングの発光波形EWdとが含まれている。
図34は、信号のタイミングに基づく波形信号の分離を説明する図である。図34(a)はBS101の混信波形から波形信号を分離する処理を説明する図である。図34(a)に示されるように、制御装置20は、信号のタイミングに基づいて、BS101の混信波形から早タイミングの発光波形EWaと中タイミングの発光波形EWb,EWcとを分離している。図34(b)はBS102の混信波形から波形信号を分離する処理を説明する図である。図34(b)に示されるように、制御装置20は、信号のタイミングに基づいて、BS102の混信波形から早タイミングの発光波形EWaと中タイミングの発光波形EWb,EWcと遅タイミングの発光波形EWdとを分離している。図34(c)はBS103の混信波形から波形信号を分離する処理を説明する図である。図34(c)に示されるように、制御装置20は、信号のタイミングに基づいて、BS103の混信波形から早タイミングの発光波形EWaと中タイミングの発光波形EWb,EWcと遅タイミングの発光波形EWdとを分離している。図34(d)はBS104の混信波形から波形信号を分離する処理を説明する図である。図34(d)に示されるように、制御装置20は、信号のタイミングに基づいて、BS104の混信波形から早タイミングの発光波形EWaと中タイミングの発光波形EWb,EWcと遅タイミングの発光波形EWdとを分離している。図34(e)はBS105の混信波形から波形信号を分離する処理を説明する図である。図34(e)に示されるように、制御装置20は、信号のタイミングに基づいて、BS105の混信波形から中タイミングの発光波形EWb,EWcと遅タイミングの発光波形EWdとを分離している。
ここで、早タイミングの発光波形EWaには、「素子a」の発光波形のみが含まれている。このため、早タイミングの発光波形EWaに基づいて、「素子a」で示される駆動素子150の波形信号を得ることができる。制御装置20は、「素子a」が代表的信号である、BS101の混信波形から分離された早タイミングの発光波形EWa(図34(a)参照)に基づいて、「素子a」で示される駆動素子150の波形信号を再構成する(図35(a)参照)。また、遅タイミングの発光波形EWdには、「素子d」の発光波形のみが含まれている。このため、遅タイミングの発光波形EWdに基づいて、「素子d」で示される駆動素子150の波形信号を得ることができる。制御装置20は、「素子d」が代表的信号である、BS105の混信波形から分離された遅タイミングの発光波形(図34(e)参照)に基づいて、「素子d」で示される駆動素子150の波形信号を再構成する(図35(d)参照)。
一方で、中タイミングの発光波形には、「素子b」及び「素子c」の発光波形の両方が含まれている。このため、信号のタイミングだけから、「素子b」及び「素子c」それぞれの個別の発光波形を得ることは困難である。制御装置20は、第1実施形態において説明した手法(信号の位置依存を考慮した波形信号の分離)によって、「素子b」及び「素子c」の波形信号を再構成することができる。すなわち、制御装置20は、第1実施形態において説明した手法を用いることにより、「素子b」で示される駆動素子150の波形信号を再構成すると共に(図35(b)参照)、「素子c」で示される駆動素子150の波形信号を再構成する(図35(c)参照)。このように、第2実施形態に係る半導体デバイス検査方法の処理は、第1実施形態に係る半導体デバイス検査方法の処理に先んじて行われてもよい。すなわち、第1実施形態において説明した半導体デバイス検査方法の各処理は、第2実施形態に係る半導体デバイス検査方法に続けて(第2実施形態に係る半導体デバイス検査方法と共に)実行されてもよい。
次に、第2実施形態に係る半導体デバイス検査装置1及び半導体デバイス検査方法の作用効果について説明する。
本実施形態に係る半導体デバイス検査方法は、半導体デバイス100における複数の駆動素子が含まれた第1の光検出スポットからの光に応じて、複数の駆動素子からの信号に基づく第1の混信波形を取得するステップと、複数の駆動素子の動作タイミングに基づいて、第1の混信波形から、駆動素子毎に波形信号を分離するステップと、を備える。本実施形態に係る半導体デバイス検査方法では、複数の駆動素子が含まれた第1の光検出スポットからの光に基づく第1の混信波形が取得され、複数の駆動素子の動作タイミングに基づき、第1の混信波形から駆動素子毎に波形信号が分離される。半導体デバイス100に含まれる複数の駆動素子は、動作パルス信号に応じた動作タイミングが互いに異なっている。このため、第1の混信波形に含まれる複数の駆動素子からの信号のタイミング(動作タイミング)を考慮することによって、第1の混信波形から、各駆動素子の波形信号を適切に分離することができる。このように、混信波形から各駆動素子の波形信号(本来の波形)が適切に分離されることによって、分離後の駆動素子の波形信号に基づき、半導体デバイス検査を高精度に行うことができる。
上記半導体デバイス検査方法は、第1の光検出スポットにおける半導体デバイス100からの発光である第1の光検出スポットからの光、及び、第2の光検出スポットにおける半導体デバイス100からの発光である第2の光検出スポットからの光を検出するステップと、を備えていてもよい。これにより、半導体デバイス100からの発光に応じて、例えば時間分解発光解析等の技術を用いて、上述した動作タイミングに基づく波形信号の分離を適切に行い、半導体デバイス検査を高精度に行うことができる。
1…半導体デバイス検査装置、11…光源(光発生部)、16…光検出器、20…制御装置(解析部)、30…モニタ(表示部)、100…半導体デバイス。
Claims (20)
- 半導体デバイスにおける複数の駆動素子が含まれた第1のスポットからの光に応じて、複数の駆動素子からの信号に基づく第1の混信波形を取得するステップと、
複数の駆動素子の動作タイミングに基づいて、前記第1の混信波形から、駆動素子毎に波形信号を分離するステップと、を備える半導体デバイス検査方法。 - 分離後の前記波形信号と、参照用の半導体デバイスの波形信号又は論理シミュレーションによって生成された波形信号とを並べて表示するステップを更に備える、請求項1記載の半導体デバイス検査方法。
- 分離後の前記波形信号と、参照用の半導体デバイスの波形信号又は論理シミュレーションによって生成された波形信号とを比較するステップを更に備える、請求項2記載の半導体デバイス検査方法。
- 分離後の前記波形信号と、論理シミュレーションによって生成された波形信号との比較結果に基づき、前記半導体デバイスと、前記半導体デバイスのレイアウト画像との位置合わせを行うステップを更に備える、請求項3記載の半導体デバイス検査方法。
- 分離後の前記波形信号に基づき前記第1のスポット内の各駆動素子の位置を特定し、特定した各駆動素子の位置に基づき、前記半導体デバイスと、前記半導体デバイスのレイアウト画像との位置合わせを行うステップを更に備える、請求項1~4のいずれか一項記載の半導体デバイス検査方法。
- 前記第1の混信波形に対してノイズ除去フィルタリングを行うステップを更に備える、請求項1~5のいずれか一項記載の半導体デバイス検査方法。
- 前記第1のスポットの一部と領域が重複し複数の駆動素子が含まれた第2のスポットからの光に応じて、複数の駆動素子からの信号に基づく第2の混信波形を取得するステップと、
前記第1及び第2の混信波形に基づいて、前記第1及び第2のスポット内の駆動素子毎に波形信号を分離するステップと、を更に備える、請求項1~6のいずれか一項記載の半導体デバイス検査方法。 - 前記第1及び第2の混信波形に基づいて、前記第1及び第2のスポット内における任意の位置の波形信号を再構成するステップを更に備える、請求項1~7のいずれか一項記載の半導体デバイス検査方法。
- 前記第1のスポットに光を照射するステップと、
前記第1のスポットに照射された光に対する反射光である前記第1のスポットからの光を検出するステップと、を更に備える、請求項1~8のいずれか一項記載の半導体デバイス検査方法。 - 前記第1のスポットにおける前記半導体デバイスからの発光である前記第1のスポットからの光を検出するステップと、を更に備える、請求項1~8のいずれか一項記載の半導体デバイス検査方法。
- 半導体デバイスからの光を検出する光検出器と、
解析部と、を備え、
前記解析部は、
前記光検出器が検出する光のうち、前記半導体デバイスにおける複数の駆動素子が含まれた第1のスポットからの光に応じて、複数の駆動素子からの信号に基づく第1の混信波形を取得することと、
複数の駆動素子の動作タイミングに基づいて、前記第1の混信波形から、駆動素子毎に波形信号を分離することと、を実行するように構成されている、半導体デバイス検査装置。 - 分離後の前記波形信号と、参照用の半導体デバイスの波形信号又は論理シミュレーションによって生成された波形信号とを並べて表示する表示部を更に備える、請求項11記載の半導体デバイス検査装置。
- 前記解析部は、分離後の前記波形信号と、参照用の半導体デバイスの波形信号又は論理シミュレーションによって生成された波形信号とを比較することを更に実行するように構成されている、請求項12記載の半導体デバイス検査装置。
- 前記解析部は、分離後の前記波形信号と、論理シミュレーションによって生成された波形信号との比較結果に基づき、前記半導体デバイスと、前記半導体デバイスのレイアウト画像との位置合わせを行うことを更に実行するように構成されている、請求項13記載の半導体デバイス検査装置。
- 前記解析部は、分離後の前記波形信号に基づき前記第1のスポット内の各駆動素子の位置を特定し、特定した各駆動素子の位置に基づき、前記半導体デバイスと、前記半導体デバイスのレイアウト画像との位置合わせを行うことを更に実行するように構成されている、請求項11~14のいずれか一項記載の半導体デバイス検査装置。
- 前記解析部は、前記第1の混信波形に対してノイズ除去フィルタリングを行うことを更に実行するように構成されている、請求項11~15のいずれか一項記載の半導体デバイス検査装置。
- 前記解析部は、
前記第1のスポットの一部と領域が重複し複数の駆動素子が含まれた第2のスポットからの光に応じて、複数の駆動素子からの信号に基づく第2の混信波形を取得することと、
前記第1及び第2の混信波形に基づいて、前記第1及び第2のスポット内の駆動素子毎に波形信号を分離することと、を更に実行するように構成されている、請求項11~16のいずれか一項記載の半導体デバイス検査装置。 - 前記解析部は、前記第1及び第2の混信波形に基づいて、前記第1及び第2のスポット内における任意の位置の波形信号を再構成することを更に実行するように構成されている、請求項11~17のいずれか一項記載の半導体デバイス検査装置。
- 前記第1のスポットに照射される光を発生する光発生部を更に備え、
前記光検出器は、前記第1のスポットに照射された光に対する反射光である前記第1のスポットからの光を検出する、請求項11~18のいずれか一項記載の半導体デバイス検査装置。 - 前記光検出器は、前記第1のスポットにおける前記半導体デバイスからの発光である前記第1のスポットからの光を検出する、請求項11~18のいずれか一項記載の半導体デバイス検査装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217032093A KR20220015374A (ko) | 2019-05-31 | 2020-04-09 | 반도체 디바이스 검사 방법 및 반도체 디바이스 검사 장치 |
EP20814768.6A EP3951846A4 (en) | 2019-05-31 | 2020-04-09 | SEMICONDUCTOR DEVICE INSPECTION METHOD AND SEMICONDUCTOR DEVICE INSPECTION DEVICE |
CN202080039909.1A CN113906543A (zh) | 2019-05-31 | 2020-04-09 | 半导体器件检查方法及半导体器件检查装置 |
SG11202113168SA SG11202113168SA (en) | 2019-05-31 | 2020-04-09 | Semiconductor device examination method and semiconductor device examination device |
US17/606,829 US12044729B2 (en) | 2019-05-31 | 2020-04-09 | Semiconductor device examination method and semiconductor device examination device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019102282A JP7164488B2 (ja) | 2019-05-31 | 2019-05-31 | 半導体デバイス検査方法及び半導体デバイス検査装置 |
JP2019-102282 | 2019-05-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020241082A1 true WO2020241082A1 (ja) | 2020-12-03 |
Family
ID=73552021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/015978 WO2020241082A1 (ja) | 2019-05-31 | 2020-04-09 | 半導体デバイス検査方法及び半導体デバイス検査装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US12044729B2 (ja) |
EP (1) | EP3951846A4 (ja) |
JP (1) | JP7164488B2 (ja) |
KR (1) | KR20220015374A (ja) |
CN (1) | CN113906543A (ja) |
SG (1) | SG11202113168SA (ja) |
TW (1) | TW202100986A (ja) |
WO (1) | WO2020241082A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020241083A1 (ja) * | 2019-05-31 | 2020-12-03 | 浜松ホトニクス株式会社 | 半導体デバイス検査方法及び半導体デバイス検査装置 |
KR102708172B1 (ko) * | 2022-04-06 | 2024-09-20 | 동국대학교 산학협력단 | 반도체 소자의 분석 방법 및 이를 위한 분석 장치 |
JP2024014220A (ja) * | 2022-07-22 | 2024-02-01 | 国立研究開発法人産業技術総合研究所 | 高周波イメージング装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007064975A (ja) | 2005-08-26 | 2007-03-15 | Credence Systems Corp | 変調マップ表示システム及び方法 |
JP2010271307A (ja) | 2009-05-01 | 2010-12-02 | Dcg Systems Inc | レーザ電圧画像化状態マッピングのためのシステム及び方法 |
WO2019102682A1 (ja) * | 2017-11-27 | 2019-05-31 | 浜松ホトニクス株式会社 | 解析方法、解析装置、解析プログラム、及び解析プログラムを記録する記録媒体 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7502104B2 (en) | 2006-08-10 | 2009-03-10 | Kla-Tencor Corporation | Probe beam profile modulated optical reflectance system and methods |
US9581642B2 (en) * | 2010-05-12 | 2017-02-28 | International Business Machines Corporation | Method and system for quickly identifying circuit components in an emission image |
SG10201604835TA (en) * | 2013-02-01 | 2016-07-28 | Hamamatsu Photonics Kk | Semiconductor device inspection device and semiconductor device inspection method |
JP2018072290A (ja) | 2016-11-04 | 2018-05-10 | ルネサスエレクトロニクス株式会社 | 故障箇所特定装置および故障箇所特定方法 |
WO2020241083A1 (ja) | 2019-05-31 | 2020-12-03 | 浜松ホトニクス株式会社 | 半導体デバイス検査方法及び半導体デバイス検査装置 |
KR20220031996A (ko) | 2019-07-10 | 2022-03-15 | 하마마츠 포토닉스 가부시키가이샤 | 반도체 디바이스 검사 방법 및 반도체 디바이스 검사 장치 |
-
2019
- 2019-05-31 JP JP2019102282A patent/JP7164488B2/ja active Active
-
2020
- 2020-04-09 EP EP20814768.6A patent/EP3951846A4/en active Pending
- 2020-04-09 US US17/606,829 patent/US12044729B2/en active Active
- 2020-04-09 KR KR1020217032093A patent/KR20220015374A/ko not_active Application Discontinuation
- 2020-04-09 CN CN202080039909.1A patent/CN113906543A/zh active Pending
- 2020-04-09 WO PCT/JP2020/015978 patent/WO2020241082A1/ja unknown
- 2020-04-09 SG SG11202113168SA patent/SG11202113168SA/en unknown
- 2020-05-11 TW TW109115531A patent/TW202100986A/zh unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007064975A (ja) | 2005-08-26 | 2007-03-15 | Credence Systems Corp | 変調マップ表示システム及び方法 |
JP2010271307A (ja) | 2009-05-01 | 2010-12-02 | Dcg Systems Inc | レーザ電圧画像化状態マッピングのためのシステム及び方法 |
WO2019102682A1 (ja) * | 2017-11-27 | 2019-05-31 | 浜松ホトニクス株式会社 | 解析方法、解析装置、解析プログラム、及び解析プログラムを記録する記録媒体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3951846A4 |
Also Published As
Publication number | Publication date |
---|---|
CN113906543A (zh) | 2022-01-07 |
KR20220015374A (ko) | 2022-02-08 |
EP3951846A1 (en) | 2022-02-09 |
JP2020198335A (ja) | 2020-12-10 |
US12044729B2 (en) | 2024-07-23 |
US20220206063A1 (en) | 2022-06-30 |
TW202100986A (zh) | 2021-01-01 |
SG11202113168SA (en) | 2021-12-30 |
JP7164488B2 (ja) | 2022-11-01 |
EP3951846A4 (en) | 2023-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020241082A1 (ja) | 半導体デバイス検査方法及び半導体デバイス検査装置 | |
US9714978B2 (en) | At-speed integrated circuit testing using through silicon in-circuit logic analysis | |
US10895596B2 (en) | Method and system for quickly identifying circuit components in an emission image | |
WO2020241083A1 (ja) | 半導体デバイス検査方法及び半導体デバイス検査装置 | |
WO2007144970A1 (ja) | 半導体不良解析装置、不良解析方法、及び不良解析プログラム | |
US9958502B2 (en) | Defect isolation methods and systems | |
TWI805625B (zh) | 光測量方法、光測量裝置、光測量程式以及記錄光測量程式之記錄媒體 | |
CN111417860B (zh) | 解析方法、解析装置、解析程序以及记录解析程序的存储介质 | |
US20230273253A1 (en) | Semiconductor inspection device and method for inspecting semiconductor sample | |
US11480612B2 (en) | Scanning methods for creating time-resolved emission images of integrated circuits using a single-point single-photon detector and a scanning system | |
US11307250B2 (en) | Creating time-resolved emission images of integrated circuits using a single-point single-photon detector and a scanning system | |
US11287630B2 (en) | Imaging integrated circuits using a single-point single-photon detector and a scanning system and calculating of a per-pixel value | |
JP4036712B2 (ja) | 非破壊検査装置 | |
JP2014135314A (ja) | 半導体装置の不良解析方法 | |
JPH09152472A (ja) | Ic不良解析方法及びic不良解析装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20814768 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020814768 Country of ref document: EP Effective date: 20211026 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |