WO2020240895A1 - Rfidタグ - Google Patents

Rfidタグ Download PDF

Info

Publication number
WO2020240895A1
WO2020240895A1 PCT/JP2019/048067 JP2019048067W WO2020240895A1 WO 2020240895 A1 WO2020240895 A1 WO 2020240895A1 JP 2019048067 W JP2019048067 W JP 2019048067W WO 2020240895 A1 WO2020240895 A1 WO 2020240895A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
rfid tag
rfic chip
connection terminal
chip
Prior art date
Application number
PCT/JP2019/048067
Other languages
English (en)
French (fr)
Inventor
紀行 植木
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020524264A priority Critical patent/JP6729843B1/ja
Priority to DE212019000180.7U priority patent/DE212019000180U1/de
Priority to CN201990000371.6U priority patent/CN213715966U/zh
Priority to US16/901,068 priority patent/US11205107B2/en
Publication of WO2020240895A1 publication Critical patent/WO2020240895A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/335Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors at the feed, e.g. for impedance matching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths

Definitions

  • the present invention relates to an RFID (Radio frequency Identification) tag, which is a wireless communication device used for non-contact information management of articles using short-range wireless communication.
  • RFID Radio frequency Identification
  • an article is communicated between an RFID tag attached to the article and a reader device that reads the tag information of the RFID tag by using an electromagnetic field in a non-contact manner. Information about is managed.
  • the resonance frequency band is narrow and the application is limited. Further, when the RFID tag is attached to a metal surface, for example, the resonance frequency band becomes narrower.
  • Patent Document 1 describes a two-resonant antenna mounted on a metal surface.
  • FIG. 13 shows the VSWR (Voltage Standing Wave Ratio) characteristics of the two-resonant antenna in Patent Document 1 in which the midpoint of the half-wavelength ⁇ / 2 plane antenna of the communication frequency wavelength ⁇ is short-circuited. From FIG. 13, it is shown that the antenna in Patent Document 1 resonates at two locations near 3400 MHz and 4600 MHz.
  • FIG. 14 shows the directivity of the electric field surface at each resonance point on the low frequency side and the high frequency side in Patent Document 1. It shows the directivity standardized based on the maximum peak value of each of the low frequency side and the high frequency side.
  • the peak of directivity at an angle ⁇ is near an angle of 50 °
  • the peak of directivity at an angle ⁇ is near an angle of 0 °.
  • the directivity peak angle on the high frequency side and the directivity peak angle on the low frequency side are different from each other. Therefore, if the RFID tag is placed on the article according to the directivity on the high frequency side, the directivity on the low frequency side is lowered.
  • an object of the present invention is to provide an RFID tag having the characteristics of a two-resonant antenna and having improved directivity in solving the above-mentioned problems.
  • an RFID tag An RFIC chip with a first connection terminal and a second connection terminal, A first electrode electrically connected to the first connection terminal of the RFIC chip, A capacitance element connected in series between the first electrode and the RFIC chip, A short-circuit portion for connecting the first electrode and the ground at an intermediate position of the electric length of the first electrode is provided.
  • the electrical length of the first electrode is half the wavelength of the carrier frequency of the RFIC chip.
  • the first connection terminal of the RFIC chip is connected to the first electrode at a position within one-third of the electrical length from the end of the first electrode.
  • the second connection terminal of the RFIC chip is connected to the ground.
  • the RFID tag according to the present invention it is possible to provide an RFID tag having the characteristics of a two-resonant antenna and having improved directivity.
  • FIG. It is a schematic perspective view which shows the RFID tag of Embodiment 1.
  • FIG. It is a partially enlarged view of FIG. 1A.
  • the RFID tag includes an RFID chip having a first connection terminal and a second connection terminal, a first electrode electrically connected to the first connection terminal of the RFID chip, and the first electrode.
  • a capacitance element connected in series with the RFID chip and a short-circuit portion connecting the first electrode and the ground at an intermediate position of the electrical length of the first electrode, and the electrical length of the first electrode. Is one half of the wavelength of the carrier frequency of the RFID chip, and the first connection terminal of the RFID chip is located within one third of the electrical length from the end of the first electrode. It is connected to one electrode, and the second connection terminal of the RFID chip is connected to the ground.
  • the capacitance element is connected in series between the first electrode and the RFIC chip, the current distribution of the first electrode can be changed.
  • the null point located at the intermediate position of the first electrode can be shifted to the end side, and the peak angle of directivity on the low frequency side can be shifted toward 0 °.
  • the deviation between the directional peak angle on the high frequency side and the directional peak angle on the low frequency side can be reduced, and an RFID tag having the characteristics of a two-resonant antenna and having improved directivity is provided. can do.
  • the first connection terminal of the RFIC chip may be connected to the first electrode via the capacitance element at a position within one-third of the electrical length from the end of the first electrode.
  • An inductance element that is connected in parallel with the first connection terminal and the second connection terminal of the RFIC chip may be provided. As a result, the capacitance between the first connection terminal and the second connection terminal of the RFIC chip can be canceled.
  • the first connection terminal of the RFIC chip is connected to the first electrode at a position within one sixth of the electrical length from the end of the first electrode, and the second connection terminal of the RFIC chip is connected.
  • the ground may be connected to the ground at a position within 1/6 of the electric length from the end of the first electrode.
  • a second electrode facing the first electrode may be provided.
  • An insulating substrate may be provided between the first electrode and the second electrode.
  • the electric length can be shortened by the dielectric material of the insulating substrate, and the RFID tag can be miniaturized.
  • the first electrode and the second electrode have a rectangular shape, and the electric lengths of the first electrode and the second electrode are the electric lengths of the first electrode and the second electrode in the longitudinal direction. May be good.
  • the open ends of the first electrode and the second electrode in the longitudinal direction may be bent so as to approach each other. As a result, a capacitance can be generated between the bent open ends of the first electrode and the second electrode, respectively.
  • the short-circuited portion may be connected to the intermediate positions of the first electrode and the second electrode in the longitudinal direction, respectively.
  • a connecting conductor that electrically connects the first electrode and the second electrode through the insulating substrate is provided, and the second connecting terminal of the RFIC chip is electrically connected to the connecting conductor.
  • the connecting conductor may be located within one-third of the electrical length from the end of the first electrode.
  • the connecting conductor may be located within one sixth of the electrical length from the end of the first electrode.
  • the "electrical length” is a length considering the wavelength shortening effect of the dielectric.
  • FIG. 1A is a schematic perspective view of the RFID tag 10 of the first embodiment.
  • FIG. 1B is a partially enlarged view of FIG. 1A.
  • the XYZ coordinate system facilitates the understanding of the invention and does not limit the invention.
  • the X-axis direction indicates the longitudinal direction of the RFID tag 10
  • the Y-axis direction indicates the width direction of the RFID tag 10
  • the Z-axis direction indicates the thickness direction of the RFID tag 10.
  • the X, Y, and Z directions are orthogonal to each other.
  • the RFID tag 10 is arranged so as to face the first electrode 12 as a flat plate antenna and the first electrode 12, and is arranged between the second electrode 14 as a ground and the first electrode 12 and the second electrode 14. ,
  • An insulating substrate 16 as a dielectric, an RFIC (Radio-Frequency Integrated Circuit) chip 18, an inductance element 20 connected to the RFIC chip 18, and a capacitance element 22 connected to the RFIC chip 18 and the first electrode 12.
  • the first electrode 12 and the second electrode 14 are, for example, metal plates such as copper or aluminum.
  • the first electrode 12 is formed from two long sides of a rectangular main body 12a, an opening 12b formed on one end side of the main body 12a, and a main body 12a at the center in the longitudinal direction of the main body 12a. It has a first short-circuited portion 12c and a second short-circuited portion 12d, which are bent toward the second electrode 14, respectively. Further, the first electrode 12 has a bent portion 12e in which the open end of the main body portion 12a in the longitudinal direction is bent toward the second electrode 14.
  • the electrical length of the first electrode 12 is the length La of the first electrode 12 including the main body portion 12a and the bent portion 12e in the longitudinal direction because the first electrode 12 has a rectangular shape. Therefore, the longitudinal length La of the first electrode 12 is designed to include half of the wavelength ⁇ of the communication frequency of the RFIC chip 18.
  • the first electrode 12 is a field emission antenna.
  • the lower ends of the first short-circuited portion 12c and the second short-circuited portion 12d are connected to the second electrode, respectively. Therefore, the first short-circuit portion 12c and the second short-circuit portion 12d connect the intermediate positions of the first electrode 12 and the second electrode 14 in the longitudinal direction, respectively.
  • the first short-circuit portion 12c and the second short-circuit portion 12d may be bent from the second electrode 14 side toward the first electrode 12, or may be a member different from the first electrode 12 and the second electrode 14. Good.
  • the lengths of the first and second short-circuited portions 12c and 12d in the longitudinal direction have an arbitrary length for adjusting the resonance frequency.
  • the second electrode 14 includes a rectangular main body portion 14a and a bent portion 14e whose open end in the longitudinal direction is bent toward the first electrode 12.
  • the second electrode 14 may have the same shape as the first electrode 12, or may have a shape different from that of the first electrode 12.
  • the second electrode 14 may have a main body portion 14a having a larger area or a narrower area than the first electrode 12, for example.
  • the first electrode 12 and the second electrode 14 may have a square shape or a disk shape in addition to the rectangular shape.
  • the electric length of the first electrode 12 is the length of the diameter. Therefore, the diameter of the disk-shaped first electrode 12 has ⁇ / 2, which is a half wavelength of the communication frequency.
  • the center points of the first short-circuit portion 12c and the second short-circuit portion 12d are on the circumference of the disk-shaped first electrode 12, and the first short-circuit portion 12c and the second short-circuit portion 12d are There is a mirror image relationship with the central axis of the circle.
  • the distances between the first short-circuit portion 12c and the second short-circuit portion 12d and the RFIC chip 18 are equal to each other, and are ⁇ ⁇ 1/4 wavelength ⁇ or less.
  • the first electrode 12 has a square shape, it has a side length.
  • a rectangular opening 12b is provided on one side of the first electrode 12 in the longitudinal direction. As shown in FIG. 1B, the opening 12b of the first electrode 12 and a part of the region 16a of the insulating substrate 16 overlap each other in the top view. Therefore, a part of the region 16a of the insulating substrate 16 is exposed.
  • the wiring portion 24 and the electrode surface 26 are formed on the region 16a of the insulating substrate 16 surrounded by the opening 12b.
  • the wiring portion 24 is a conductor pattern that connects the capacitance element 22 and the RFIC chip 18.
  • a connecting conductor 28 is formed on the electrode surface 26 so as to penetrate the insulating substrate 16 and electrically connect to the second electrode 14.
  • the connecting conductor 28 is, for example, a through hole or a via hole. The inside of the through hole or the via hole may be plated with a metal conductor or may be filled with a metal conductor.
  • the insulating substrate 16 is an insulating substrate made of resin or paper, for example, a PET (Polyethylene terephthalate) substrate. In addition to PET, a PEN (Polyethylene naphthalate) substrate or a polyimide (polyimide) substrate may be used. Although the insulating substrate 16 has a rectangular shape, it may have a square shape or a disk shape according to the shapes of the first electrode 12 and the second electrode 14.
  • the RFIC chip 18 is composed of, for example, a multilayer substrate composed of three layers. Specifically, the RFIC chip 18 is formed by laminating a plurality of flexible insulating sheets made of a resin material such as polyimide or a liquid crystal polymer. The RFIC chip 18 has a structure in which various elements are built in a semiconductor substrate made of a semiconductor such as silicon. The RFIC chip 18 has a first connection terminal 18a and a second connection terminal 18b. In the case of the first embodiment, for example, the first and second connection terminals 18a and 18b are composed of a conductor pattern made of a conductive material such as copper.
  • the inductance element 20 is, for example, a chip inductor. One end of the inductance element 20 is connected to the wiring portion 24, and the other end is connected to the electrode surface 26. Therefore, the inductance element 20 is connected in parallel with each of the first connection terminal 18a and the second connection terminal 18b of the RFIC chip 18.
  • the capacitance element 22 is, for example, a capacitor chip or a capacitance pattern by wiring. One end of the capacitance element 22 is connected to the main body portion 12a of the first electrode 12, and the other end is connected to the wiring portion 24. Therefore, the capacitance element 22 is connected in series with the first electrode 12 and the RFIC chip 18.
  • the capacitance element 22 has a capacitance of, for example, 0.3 pF.
  • the first connection terminal 18a of the RFIC chip 18 is connected to the first electrode 12 at a position within one-third of the electrical length from the end of the first electrode 12.
  • the second connection terminal 18b of the RFIC chip 18 is connected to the second electrode 14 at a position within one-third of the electrical length from the end of the first electrode 12.
  • the first connection terminal 18a of the RFIC chip 18 is connected to the first electrode 12 at a position within 1/6 of the electrical length from the end of the first electrode 12, and the second connection terminal of the RFIC chip 18 is connected.
  • the end of the first electrode 12 may be connected to the second electrode 14 at a position within one sixth of the electric length.
  • the capacitance element 22 is also connected to the first electrode 12 at a position within one-third of the electric length from the end of the first electrode 12, and further, from the end of the first electrode 12, the electric length is 6 It may be connected to the first electrode 12 at a position within one-third.
  • the RFIC chip 18, the inductance element 20, and the capacitance element 22 are arranged at the center in the width direction (Y direction) of the first electrode 12.
  • FIG. 2 is an equivalent circuit diagram of the RFID tag 10.
  • the bending of the ends of the first electrode 12 and the second electrode 14 is omitted, and the two electrodes are shown in a flat plate shape.
  • the RFIC chip 18 has an internal capacitance (capacitance) C1 which is the self-capacitance of the RFIC chip 18 itself. Further, the RFIC chip 18 functions as a feeding portion of the antenna element by the first electrode 12.
  • the capacitance element 22 and the inductance element 20 constitute a matching circuit for matching the impedance between the RFIC chip 18 and the antenna element by the first electrode 12.
  • the impedance Z of the RFIC chip 18 is, for example, about 1.2 k ⁇ .
  • the length La in the longitudinal direction of the first electrode 12 has ⁇ / 2, which is a half wavelength of the communication frequency.
  • the first and second short-circuited portions 12c and 12d connecting the first electrode 12 as the antenna element and the second electrode 14 as the ground are located at intermediate positions which are the central portions in the longitudinal direction of the first electrode 12. To do.
  • the current flowing from each end of the first electrode 12 in the longitudinal direction toward the center has the direction of the current at this intermediate position. Invert and hit. The point where the direction of this current changes is the null point. Due to the generation of this null point, the directivity of the radio wave transmitted and received by the first electrode 12 as the antenna element is lowered.
  • the position of the null point shifts from the intermediate position in the longitudinal direction of the first electrode 12 toward the end in the longitudinal direction.
  • the electric line of force EL2a extending from the end on the side where the RFIC chip 18 is arranged extends beyond the intermediate position toward the end on the opposite side of the first electrode 12. This is close to the directivity of a microstrip antenna (patch antenna) in which lines of electric force extend from one side of the electrode as an antenna element to the other side facing the electrode.
  • FIG. 4 is a graph showing the VSWR characteristics of the RFID tag of the first embodiment.
  • FIG. 5 is a graph showing the directivity of the RFID tag of the first embodiment.
  • FIG. 6 is a graph showing the VSWR characteristics of an RFID tag without a capacitance element 22 connected in series as a comparative example.
  • FIG. 7 is a graph showing the directivity of an RFID tag without a capacitance element 22 connected in series as a comparative example.
  • 8A and 8B are explanatory views illustrating the angle of directivity.
  • ⁇ in FIGS. 5 and 7 indicates the angle between the Z axis and the X axis in the XZ plane, as shown in FIGS. 8A and 8B.
  • the RFID tag 10 of the first embodiment has the smallest reflected voltage at 903 MHz and 928 MHz.
  • FIG. 5 shows a normalized antenna gain for an angle ⁇ .
  • the position of the null point, which was around 6 ° in the comparative example, is shifted to around ⁇ 44 ° as shown in FIG.
  • the directivity peaks in the vicinity of ⁇ 40 ° to -60 ° and 60 ° to 80 ° in the comparative example shift to the vicinity of 20 ° to 40 ° as shown in FIG. doing. Therefore, the deviation of the directivity peaks of the low frequency side G1 and the high frequency side G2 in the RFID tag 10 of the first embodiment is smaller than the deviation of the directivity peaks of the low frequency side G3 and the high frequency side G4 of the comparative example. doing. Further, in the RFID tag 10 of the first embodiment, the gain near 0 °, which requires the most directivity, can be increased.
  • FIG. 9 is an explanatory diagram showing a model for simulating the current characteristics of the RFID tag 10 of the first embodiment.
  • the RFID tag 10 is placed on the metal plate Ma with the lower surface of the second electrode 14 in contact with the metal plate Ma.
  • the length Lp in the longitudinal direction of the metal plate Ma is 183 mm, and the length Wp in the width direction is 105 mm.
  • the thickness of the first electrode 12 and the second electrode 14 made of copper is 4 um.
  • the insulating substrate 16 is made of resin, has a length in the longitudinal direction of 103 mm, a length in the width direction of 25 mm, and a thickness of 4 mm.
  • the dielectric constant ⁇ r of the insulating substrate 16 is 3.1. Note that these sizes are examples of a model for simulation, and the size in which the RFID tag 10 is used is not limited to these values.
  • FIG. 10A is a plan view showing the direction of the current at resonance on the low frequency side of the comparative example.
  • FIG. 10B is a plan view showing the direction of the current at the time of resonance on the high frequency side of the comparative example.
  • the RFID tag 10 shown in FIGS. 10A and 10B does not include a capacitance element 22 connected in series. Therefore, as shown in FIG. 10A, the null point Np1 is located at an intermediate position in the longitudinal direction of the first electrode 12. Further, as shown in FIG. 10B, since the RFIC chip 18 is arranged on the end side of the first electrode 12, the current is transferred from one end side to the other end side of the first electrode 12 at the time of resonance on the high frequency side. It is flowing in one direction.
  • FIG. 11A is a plan view showing the direction of the current at resonance on the low frequency side of the simulation model. Since the capacitance element 22 is arranged in series with the first electrode 12 and the RFIC chip 18, the null point Np2 moves toward the end opposite to the end where the RFIC chip 18 is arranged. As a result, the directivity of the RFIC chip 18 changes.
  • FIG. 11B is a plan view showing the direction of the current at resonance on the high frequency side of the simulation model. Since the RFIC chip 18 is arranged on the end side of the first electrode 12, the direction of the current at resonance on the high frequency side is directed from one end side to the other end side of the first electrode 12, as in the comparative example. It is flowing in one direction.
  • the RFID tag 10 of the first embodiment has an RFID chip 18 having a first connection terminal 18a and a second connection terminal 18b, and a first electrode electrically connected to the first connection terminal 18a of the RFID chip 18. 12, a capacitance element 22 connected in series between the first electrode 12 and the RFID chip 18, and a first electrode 12 and a second electrode 14 as a ground at an intermediate position of the electrical length of the first electrode 12.
  • a first short-circuit portion 12c and a second short-circuit portion 12d to be connected are provided.
  • the electrical length of the first electrode 12 is one half of the wavelength of the communication frequency of the RFIC chip 18, and the first connection terminal 18a of the RFIC chip 18 is one third of the electrical length from the end of the first electrode 12. It is connected to the first electrode 12 at a position within 1.
  • the second connection terminal 18b of the RFIC chip 18 is connected to the second electrode 14.
  • the first electrode 12 functions as a two-resonant antenna by short-circuiting it with the ground at an intermediate position of the electrical length of the first electrode 12. Further, by arranging the RFIC chip 18 on the end side of the first electrode 12, it can be arranged on the portion of the first electrode 12 having a low current density. Thereby, the influence on the high frequency resonance can be reduced. Further, by connecting the RFIC chip 18, the first electrode 12, and the capacitance element 22 in series, the null point on the low frequency side can be shifted. As a result, the deviation of the peak angle of the directivity between the high frequency side and the low frequency side can be reduced, and the directivity of the RFID tag 10 can be improved.
  • the first connection terminal 18a of the RFIC chip 18 is connected to the first electrode 12 via the capacitance element 22 at a position within one-third of the electrical length from the end of the first electrode 12.
  • an inductance element 20 connected in parallel with the first connection terminal 18a and the second connection terminal 18b of the RFIC chip 18 is provided. As a result, the capacitance between the terminals 18a and the second connection terminal 18b of the RFIC chip 18 can be canceled.
  • first connection terminal 18a of the RFIC chip 18 is connected to the first electrode 12 at a position within 1/6 of the electrical length from the end of the first electrode 12, and the second connection terminal of the RFIC chip 18 is connected. , It is connected to the second electrode 14 from the end of the first electrode 12 at a position within one sixth of the electric length.
  • an insulating substrate 16 is provided between the first electrode 12 and the second electrode 14.
  • the dielectric constant becomes larger than that of air, so that the communication frequency can be shortened.
  • the lengths of the first electrode 12 and the second electrode 14 in the longitudinal direction can be shortened, and the RFID tag 10 can be miniaturized.
  • first electrode 12 and the second electrode 14 have a rectangular shape, and the electric lengths of the first electrode 12 and the second electrode 14 are the electric lengths of the first electrode 12 and the second electrode 14 in the longitudinal direction. is there.
  • the open ends of the first electrode 12 and the second electrode 14 in the longitudinal direction are bent so as to approach each other.
  • a capacitance is generated between the bent portions 12e and 14e of the first electrode 12 and the second electrode 14, respectively, and the communication frequency can be adjusted.
  • first and second short-circuited portions 12c and 12d connect the intermediate positions of the first electrode 12 and the second electrode 14 in the longitudinal direction, respectively.
  • a connecting conductor 28 that electrically connects the first electrode 12 and the second electrode 14 through the insulating substrate 16 is provided, and the second connecting terminal 18b of the RFIC chip 18 is electrically connected to the connecting conductor 28.
  • the connecting conductor 28 is located within one-third of the electrical length from the end of the first electrode 12.
  • the connecting conductor 28 is located within one sixth of the electrical length from the end of the first electrode 12.
  • the present invention is not limited to the above embodiment, and can be modified as follows.
  • the RFID tag 10 is assumed to be attached to a metal surface, and the second electrode 14 functions as a ground, but the present invention is not limited to this.
  • the second electrode 14 When the second electrode 14 is not attached to the metal surface, a current flows in the second electrode 14 in the direction opposite to that of the first electrode 12, and the second electrode 14 exhibits the same function as the first electrode 12 as a radiation plate.
  • the RFID tag 10 includes the second electrode 14 as a ground, but the present invention is not limited to this.
  • the second electrode 14 may be omitted, and the first electrode 12 may be connected to the metal surface 30a of the metal article 30, for example, as shown in FIG.
  • the first short-circuit portion 12c and the second short-circuit portion 12d connect the central portion of the main body portion 12a of the first electrode 12 to the metal surface 30a of the article 30.
  • the second connection terminal 18b of the RFIC chip 18 may be connected to the metal surface 30a of the article 30 via, for example, a metal plate-shaped connecting conductor 28A.
  • the RFIC chip 18 and the first electrode 12 are connected via the capacitance element 22, but the present invention is not limited to this.
  • the first connection terminal 18a of the RFIC chip 18 is connected to the first electrode 12, and the capacitance element 22 may be connected in series between the second connection terminal 18b and the second electrode 14 which is the ground.
  • the RFID tag according to the present invention is useful for being used by being attached to a metal surface.
  • RFID tag 12 1st electrode 12a Main body 12b Opening 12c 1st short circuit 12d 2nd short circuit 12e Bent part 14 2nd electrode 14a Main body 14e Bending part 16 Insulated substrate 16a Area 18 RFIC chip 18a 1st connection terminal 18b 2nd connection terminal 20 Inductance element 22 Capacitance element 24 Wiring part 26 Electrode surface 28 Connection conductor

Abstract

第1接続端子および第2接続端子を有するRFICチップと、RFICチップの第1接続端子と電気的に接続される第1電極と、第1電極およびRFICチップに直列に接続されるキャパシタンス素子と、第1電極の電気長の中間位置で第1電極とグランド面とを接続する短絡部と、を備え、第1電極の電気長は、RFICチップの通信周波数の波長の2分の1であり、RFICチップの第1接続端子は、第1電極の端部から電気長の3分の1以内の箇所において第1電極と接続され、RFICチップの第2接続端子は、グランドに接続される、RFIDタグである。

Description

RFIDタグ
 本発明は、近距離無線通信を利用して非接触で物品の情報管理等を行うために用いられる無線通信デバイスであるRFID(Radio frequency Identification)タグに関する。
 従来、物品の情報管理を行うシステムにおいて、物品に取り付けられたRFIDタグと、RFIDタグのタグ情報を読み取るリーダ装置との間で、非接触方式で電磁界を利用して通信することで、物品に関する情報が管理される。
 RFIDタグにおいて、アンテナの共振周波数を決定する際に、例えば、マイクロストリップアンテナのような、1つの共振モードだけであると、共振周波数の帯域が狭いので用途が限定される。また、RFIDタグを、例えば金属面に取り付ける場合、共振周波数の帯域がより狭くなる。
 そこで、共振周波数の帯域を広げるために2つの共振を組み合わせる方法が利用される。この方法は、異なるモードの共振を組み合わせることで実施されている。例えば、マイクロストリップアンテナがダイポールのモードであれば、モノポールのモードが組み合わせられる。しかしながら、モノポールのモードは、アンテナ上で電流の向きが変わるヌル点が発生し、通信方向の指向性が弱くなる。例えば、特許文献1には、金属面に取り付けられる2共振のアンテナが記載されている。
 図13は、特許文献1における、通信周波数の波長λの半波長λ/2の平面アンテナの中間点を短絡した2共振アンテナのVSWR(Voltage Standing Wave Ratio)特性を示す。図13より、特許文献1におけるアンテナは、3400MHzと4600MHz近傍の2箇所で共振することが示されている。図14は、特許文献1における、低周波数側と高周波数側のそれぞれの共振点での電界面の指向性を示している。低周波数側と高周波数側のそれぞれのピーク最大値を基準に規格化された指向性を示している。
 低周波数側の特性線aにおいて、角度θの指向性のピークは角度50°近傍にあり、高周波数側の特性線bにおいて、角度θの指向性のピークは角度0°近傍にある。
国際公開第2008/072411号パンフレット
 図14に示すように、従来の2共振アンテナにおいて、高周波数側の指向性のピーク角度と低周波数側の指向性のピーク角度とがずれている。したがって、高周波数側の指向性に合わせてRFIDタグを物品に配置すると、低周波数側の指向性が低下する。
 したがって、本発明の目的は、前記課題を解決することにあって、2共振アンテナの特性を有し、指向性を向上したRFIDタグを提供することにある。
 前記目的を達成するために、本発明の一態様によれば、RFIDタグであって、
 第1接続端子および第2接続端子を有するRFICチップと、
 前記RFICチップの前記第1接続端子と電気的に接続される第1電極と、
 前記第1電極と前記RFICチップとの間に直列に接続されるキャパシタンス素子と、
 前記第1電極の電気長の中間位置で前記第1電極とグランドとを接続する短絡部と、を備え、
 前記第1電極の電気長は、前記RFICチップの搬送周波数の波長の2分の1であり、
 前記RFICチップの前記第1接続端子は、前記第1電極の端部から電気長の3分の1以内の箇所において前記第1電極と接続され、
 前記RFICチップの前記第2接続端子は、前記グランドに接続される。
 本発明に係るRFIDタグによれば、2共振アンテナの特性を有し、指向性を向上したRFIDタグを提供することができる。
実施形態1のRFIDタグを示す模式斜視図である。 図1Aの部分拡大図である。 実施形態1のRFIDタグの等価回路図である。 RFIDタグのヌル点が移動することを示す説明図である。 実施形態1のRFIDタグのVSWR特性を示すグラフである。 実施形態1のRFIDタグの指向性を示すグラフである。 比較例のRFIDタグのVSWR特性を示すグラフである。 比較例のRFIDタグの指向性を示すグラフである。 指向性の角度を説明する説明図である。 指向性の角度を説明する説明図である。 シミュレーションのモデルを示す説明図である。 比較例の低周波数側の共振の電流の向きを示す平面図である。 比較例の高周波数側の共振の電流の向きを示す平面図である。 シミュレーションのモデルの低周波数側の共振の電流の向きを示す平面図である。 シミュレーションのモデルの高周波数側の共振の電流の向きを示す平面図である。 変形例のRFIDタグを示す側面図である。 従来例の2共振アンテナのVSWR特性を示すグラフである。 従来例の2共振アンテナの指向性を示すグラフである。
 本発明の一態様のRFIDタグは、第1接続端子および第2接続端子を有するRFICチップと、前記RFICチップの前記第1接続端子と電気的に接続される第1電極と、前記第1電極と前記RFICチップとに直列に接続されるキャパシタンス素子と、前記第1電極の電気長の中間位置で前記第1電極とグランドとを接続する短絡部と、を備え、前記第1電極の電気長は、前記RFICチップの搬送周波数の波長の2分の1であり、前記RFICチップの前記第1接続端子は、前記第1電極の端部から電気長の3分の1以内の箇所において前記第1電極と接続され、前記RFICチップの前記第2接続端子は、前記グランドに接続される。
 この態様によれば、第1電極とRFICチップとの間にキャパシタンス素子が直列に接続されるので、第1電極の電流分布を変化させることができる。この結果、第1電極の中間位置に位置していたヌル点を端部側へシフトさせることができ、低周波数側の指向性のピーク角度を0°の方へシフトすることができる。これにより、高周波数側の指向性のピーク角度と低周波数側の指向性のピーク角度とのズレを低減することができ、2共振アンテナの特性を有し、指向性を向上したRFIDタグを提供することができる。
 前記RFICチップの前記第1接続端子は、前記第1電極の端部から電気長の3分の1以内の箇所において前記キャパシタンス素子を介して前記第1電極と接続されてもよい。
 前記RFICチップの前記第1接続端子および前記第2接続端子とそれぞれ並列に接続されるインダクタンス素子を備えてもよい。これにより、RFICチップの第1接続端子と第2接続端子との間の容量をキャンセルすることができる。
 前記RFICチップの前記第1接続端子は、前記第1電極の端部から、前記電気長の6分の1以内の箇所において前記第1電極と接続され、前記RFICチップの前記第2接続端子は、前記第1電極の端部から、前記電気長の6分の1以内の箇所において前記グランドに接続されてもよい。このように、RFICチップが第1電極のより端部側に配置されることで、より通信特性を向上させることができる。
 前記グランドとして、前記第1電極と対向する第2電極を備えてもよい。RFIDタグを金属物品に取り付ける際に第2電極を金属面に貼り付けるだけでよいので、金属面への取り付けが容易になる。
 前記第1電極と前記第2電極との間に絶縁基板を備えてもよい。絶縁基板の誘電体により電気長を短縮することができ、RFIDタグの小型化をすることができる。
 前記第1電極および前記第2電極は矩形形状を有し、前記第1電極および前記第2電極のそれぞれの電気長は、前記第1電極および前記第2電極の長手方向における電気長であってもよい。
 前記第1電極および前記第2電極の長手方向のそれぞれの開放端が、互いに近づくように折り曲げられていてもよい。これにより、第1電極および第2電極それぞれの折り曲げられた開放端間で容量を発生させることができる。
 前記短絡部は、前記第1電極および前記第2電極の長手方向の中間位置をそれぞれ接続してもよい。
 前記絶縁基板を貫通して、前記第1電極と前記第2電極とを電気的に接続する接続導体を備え、前記RFICチップの前記第2接続端子は、前記接続導体と電気的に接続され、前記接続導体は、前記第1電極の端部から電気長の3分の1以内の箇所に位置してもよい。
 前記接続導体は、前記第1電極の端部から電気長の6分の1以内の箇所に位置してもよい。
 以下、本発明に係るRFIDタグについて、図面を参照しながら説明する。なお、図面において、実質的に同じ機能、構成を有する部材については同一の符号を付して、明細書においてはその説明を省略する場合がある。また、図面は理解しやすくするために、それぞれの構成要素を主体に模式的に示している。
 なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものであり、本発明がこの構成に限定されるものではない。また、以下の実施の形態において具体的に示される数値、形状、構成、ステップ、ステップの順序などは、一例を示すものであり、本発明を限定するものではない。以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、全ての実施の形態において、各変形例における構成も同様であり、各変形例に記載した構成をそれぞれ組み合わせてもよい。
 また、本明細書において、「電気長」とは、誘電体の波長短縮効果を考慮した長さである。
(実施形態1)
 以下に、本発明の実施形態1にかかるRFID(Radio-Frequency IDentification)タグについて説明する。図1Aは、実施の形態1のRFIDタグ10の模式斜視図である。図1Bは、図1Aの部分拡大図である。図中において、X-Y-Z座標系は、発明の理解を容易にするものであって、発明を限定するものではない。X軸方向はRFIDタグ10の長手方向を示し、Y軸方向はRFIDタグ10の幅方向を示し、Z軸方向はRFIDタグ10の厚さ方向を示している。X、Y、Z方向は互いに直交する。
 RFIDタグ10は、平板アンテナとしての第1電極12と、第1電極12と対向して配置され、グランドとしての第2電極14と、第1電極12と第2電極14との間に配置され、誘電体としての絶縁基板16と、RFIC(Radio-Frequency Integrated Circuit)チップ18と、RFICチップ18と接続されるインダクタンス素子20と、RFICチップ18および第1電極12と接続されるキャパシタンス素子22とを備える。第1電極12、および、第2電極14は、例えば、銅またはアルミ等の金属板である。
 第1電極12は、矩形形状の本体部12aと、本体部12aの一方の端部側に形成された開口部12bと、本体部12aの長手方向中央部に本体部12aの2つの長辺から第2電極14に向けてそれぞれ折り曲げられた第1短絡部12c、第2短絡部12dと、を有する。また、第1電極12は、本体部12aの長手方向の開放端が第2電極14側へ折り曲げられた折り曲げ部12eを有する。
 第1電極12の電気長は、第1電極12が矩形形状を有するので、本体部12aおよび折り曲げ部12eを含む第1電極12の長手方向の長さLaになる。したがって、第1電極12の長手方向の長さLaは、RFICチップ18の通信周波数の波長λの2分の1を含むように設計されている。第1電極12は、電界放射型アンテナである。
 第1短絡部12cおよび第2短絡部12dの下端は第2電極にそれぞれ接続されている。したがって、第1短絡部12cおよび第2短絡部12dは、第1電極12および第2電極14の長手方向の中間位置をそれぞれ接続する。なお、第1短絡部12cおよび第2短絡部12dは、第2電極14側から第1電極12に向けて折り曲げられていてもよいし、第1電極12および第2電極14とは別部材でもよい。第1および第2短絡部12c、12dの長手方向の長さは、共振周波数を調整するために任意の長さを有する。
 第2電極14は、矩形形状の本体部14aと、長手方向の開放端が第1電極12側へ折り曲げられた折り曲げ部14eを備える。第2電極14は、このように、第1電極12と同じ形状を有していてもよいし、第1電極12と異なる形状を有していてもよい。第2電極14は、例えば、第1電極12よりも面積の広い、または、狭い本体部14aを有していてもよい。なお、第1電極12および第2電極14は、矩形形状の他にも、正方形状や円板形状でもよい。なお、第1電極12が円板形状の場合、第1電極12の電気長は直径の長さとなる。したがって、円板形状の第1電極12の直径は通信周波数の半波長であるλ/2を有する。また、この場合、第1短絡部12cおよび第2短絡部12dの中心点は、円板形状の第1電極12の円周上にあって、第1短絡部12cおよび第2短絡部12dは、円の中心軸に対して鏡像の関係になる。第1短絡部12cおよび第2短絡部12dとRFICチップ18とのそれぞれの距離は等間隔であり、π×4分の1波長λ以下になっている。また、第1電極12が正方形状の場合一辺の長さとなる。
 第1電極12の長手方向の一方側には、矩形形状の開口部12bを有する。図1Bに示すように、上面視で、第1電極12の開口部12bと絶縁基板16の一部の領域16aとが重なる。したがって、絶縁基板16の一部の領域16aが露出している。
 開口部12bに囲まれた、絶縁基板16の領域16a上に配線部24および電極面26が形成されている。配線部24は、キャパシタンス素子22とRFICチップ18を接続する導体パターンである。電極面26には、絶縁基板16を貫通して第2電極14と電気的に接続する接続導体28が形成されている。接続導体28は、例えば、スルーホールまたはビアホールである。スルーホールまたはビアホールのホール内は、金属導体がメッキされていてもよいし、金属導体が充填されていてもよい。
 絶縁基板16は、樹脂または紙製の絶縁基板であり、例えば、PET(Polyethylene terephthalate)基板である。PETの他にもPEN(Polyethylene naphthalate)基板やポリイミド(polyimide)製の基板でもよい。絶縁基板16は、矩形の形状を有しているが、第1電極12および第2電極14の形状に合わせて正方形状や円板形状を有してもよい。
 RFICチップ18は、例えば、3層からなる多層基板で構成されている。具体的には、RFICチップ18は、ポリイミドや液晶ポリマなどの樹脂材料から作製されて可撓性を備える複数の絶縁シートを積層して構成されている。RFICチップ18は、シリコン等の半導体を素材とする半導体基板に各種の素子を内蔵した構造を有する。RFICチップ18は、第1接続端子18aおよび第2接続端子18bを有する。実施形態1の場合、例えば、第1および第2接続端子18a、18bは、銅などの導電材料から作製された導体パターンから構成されている。
 インダクタンス素子20は、例えば、チップインダクタである。インダクタンス素子20は、一端が配線部24に接続され、他端が電極面26に接続されている。したがって、インダクタンス素子20は、RFICチップ18の第1接続端子18aおよび第2接続端子18bそれぞれと並列に接続されている。
 キャパシタンス素子22は、例えば、コンデンサチップ、または、配線による容量パターンである。キャパシタンス素子22は、一端が第1電極12の本体部12aに接続され、他端が配線部24に接続されている。したがって、キャパシタンス素子22は、第1電極12およびRFICチップ18と直列に接続されている。キャパシタンス素子22は、例えば、0.3pFの容量を有する。
 RFICチップ18の第1接続端子18aは、第1電極12の端部から電気長の3分の1以内の箇所において第1電極12と接続されている。RFICチップ18の第2接続端子18bは、第1電極12の端部から電気長の3分の1以内の箇所において第2電極14に接続される。また、RFICチップ18の第1接続端子18aは、第1電極12の端部から、電気長の6分の1以内の箇所において第1電極12と接続され、RFICチップ18の第2接続端子は、第1電極12の端部から、電気長の6分の1以内の箇所において第2電極14に接続されてもよい。このように、RFICチップ18をより第1電極12の端部側に配置することで、高周波共振への影響をより低減することができる。
 また、キャパシタンス素子22も、第1電極12の端部から電気長の3分の1以内の箇所において第1電極12に接続され、さらには、第1電極12の端部から、電気長の6分の1以内の箇所において第1電極12と接続されてもよい。
 また、RFICチップ18、インダクタンス素子20およびキャパシタンス素子22は、第1電極12の幅方向(Y方向)において、中央部に配置されている。
 次に、図2を参照してRFIDタグ10の電気的構成を説明する。図2は、RFIDタグ10の等価回路図である。なお、図2においては、簡略して図示するために第1電極12および第2電極14の端部の折り曲げを省略し、平板状に示している。
 RFICチップ18は、RFICチップ18自身が持つ自己容量である内部容量(キャパシタンス)C1を有する。また、RFICチップ18は、第1電極12によるアンテナ素子の給電部として機能する。キャパシタンス素子22とインダクタンス素子20により、RFICチップ18と第1電極12によるアンテナ素子との間のインピーダンスの整合をとる整合回路が構成されている。
 RFICチップ18のインピーダンスZが大きいほど、給電部としてのRFICチップ18を第1電極12の端部により近づけて配置することができる。RFICチップ18のインピーダンスZは、例えば、1.2kΩ程度である。
 図3に示すように、第1電極12の長手方向の長さLaは、通信周波数の半波長であるλ/2を有する。また、アンテナ素子としての第1電極12とグランドとしての第2電極14とを接続する第1および第2短絡部12c、12dは、第1電極12の長手方向の中央部である中間位置に位置する。RFICチップ18と第1電極12と直列に接続されるキャパシタンス素子22がない場合、第1電極12の長手方向のそれぞれの端部から中心に向けて流れる電流が、この中間位置で電流の向きが反転してぶつかる。この電流の向きが変わる箇所がヌル点である。このヌル点の発生により、アンテナ素子としての第1電極12で送受信する電波の指向性が低下する。
 RFICチップ18と第1電極12とに直列に接続されるキャパシタンス素子22がない場合、第1電極12の長手方向のそれぞれの端部は電位が高く、中間位置は電位がゼロになる。したがって、第1電極12の長手方向のそれぞれの端部から中間位置に向けて電界が発生し、矢印EL1で示すような電気力線が発生する。すなわち、モノポールアンテナのモードの指向性を有する。
 RFICチップ18と第1電極12と直列に接続されるキャパシタンス素子22がある場合、ヌル点の位置が第1電極12の長手方向の中間位置から長手方向の端部の方へシフトする。このヌル点のシフトに伴い、RFICチップ18が配置されている側の端部から延びる電気力線EL2aが中間位置を越えて第1電極12の反対側の端部側へ延びる。これは、アンテナ素子としての電極の一方の辺から対向する他方の辺まで電気力線が延びるマイクロストリップアンテナ(パッチアンテナ)の指向性に近づけられている。このように、ヌル点をシフトすることで電波の指向性が低下する箇所をシフトすることができ、指向性を必要とする、第1電極12に対して垂直な方向(θ=0°)の指向性の低下を抑制することができる。
 実施形態1の通信特性について、さらに詳細に説明する。図4は、実施形態1のRFIDタグのVSWR特性を示すグラフである。図5は、実施形態1のRFIDタグの指向性を示すグラフである。図6は、比較例として、直列に接続されたキャパシタンス素子22の無いRFIDタグのVSWR特性を示すグラフである。図7は、比較例として、直列に接続されたキャパシタンス素子22の無いRFIDタグの指向性を示すグラフである。図8A、図8Bは、指向性の角度を説明する説明図である。
 図5、図7におけるθは、図8Aおよび図8Bに示されるように、X-Z平面において、Z軸とX軸との間の角度を示す。θ=0°は、グランドとは反対側の第1電極12に垂直な方向であり、Z軸方向の指向性を示す。θ=90°は、給電部側の第1電極12の長手方向に平行な方向であり、図8AのX軸方向の指向性を示す。θ=-90°は、給電部と反対側の第1電極12の長手方向に平行な方向である。θ=180°、-180°は、第2電極14側(グランド側)の第1電極12に垂直な方向である。
 図4に示すように、実施形態1のRFIDタグ10は、903MHzと928MHzで反射電圧が最も少ない。図5は、角度θに対する規格化されたアンテナ利得を示す。図5に示すように、実施形態1のRFIDタグ10において、928MHzの高周波数側G2の特性線は、利得のピークがθ=0°付近にある。また、903MHzの低周波数側では、利得のピークがθ=20°~40°付近にある。
 図7に示すように比較例において6°付近にあったヌル点の位置が、図5に示すように-44°付近までシフトしている。また、図7に示すように、比較例において-40°~-60°および60°~80°付近にあった指向性のピークが、図5に示すように、20°~40°付近にシフトしている。したがって、実施形態1のRFIDタグ10における低周波数側G1と高周波数側G2の指向性のピークのズレは、比較例の低周波数側G3と高周波数側G4の指向性のピークのズレよりも低減している。また、実施形態1のRFIDタグ10において指向性を最も必要とする0°付近の利得を高くすることができる。
 図9は、実施形態1のRFIDタグ10の電流特性をシミュレーションするためのモデルを示す説明図である。RFIDタグ10は、第2電極14の下面を金属板Maに接触した状態で、金属板Ma上に載置されている。金属板Maの長手方向の長さLpは、183mmであり、幅方向の長さWpは105mmである。銅製の第1電極12および第2電極14の厚みは4umである。絶縁基板16は樹脂製であり、長手方向の長さは103mmであり、幅方向の長さは25mmであり、厚みは4mmである。絶縁基板16の誘電率εrは3.1である。なお、これらのサイズは、シミュレーションするためのモデルの一例であって、RFIDタグ10が使用されるサイズはこれらの値に限定されるものではない。
 図10Aは、比較例の低周波数側の共振時の電流の向きを示す平面図である。図10Bは、比較例の高周波数側の共振時の電流の向きを示す平面図である。図10Aおよび図10Bに示されるRFIDタグ10は、直列に接続されたキャパシタンス素子22を備えていない。したがって、図10Aに示すように、ヌル点Np1が第1電極12の長手方向の中間位置に位置する。また、図10Bに示すように、RFICチップ18が第1電極12の端部側に配置されているので、高周波数側の共振時において、電流は第1電極12の一端側から他端側に向けて一方向に流れている。
 図11Aは、シミュレーションのモデルの低周波数側の共振時の電流の向きを示す平面図である。キャパシタンス素子22が第1電極12およびRFICチップ18に直列に配置されているので、ヌル点Np2がRFICチップ18が配置されている端部とは反対側の端部の方へ移動している。これにより、RFICチップ18の指向性が変化する。
 図11Bは、シミュレーションのモデルの高周波側の共振時の電流の向きを示す平面図である。RFICチップ18が第1電極12の端部側に配置されているので、比較例と同様に、高周波数側の共振時の電流の向きは、第1電極12の一端側から他端側に向けて一方向に流れている。
 以上より、実施の形態1のRFIDタグ10は、第1接続端子18aおよび第2接続端子18bを有するRFICチップ18と、RFICチップ18の第1接続端子18aと電気的に接続される第1電極12と、第1電極12とRFICチップ18との間に直列に接続されるキャパシタンス素子22と、第1電極12の電気長の中間位置で第1電極12とグランドとしての第2電極14とを接続する第1短絡部12cおよび第2短絡部12dと、を備える。第1電極12の電気長は、RFICチップ18の通信周波数の波長の2分の1であり、RFICチップ18の第1接続端子18aは、第1電極12の端部から電気長の3分の1以内の箇所において第1電極12と接続されている。RFICチップ18の第2接続端子18bは、第2電極14に接続される。
 第1電極12の電気長の中間位置でグランドと短絡させることで、第1電極12は2共振アンテナとして機能する。また、RFICチップ18を第1電極12の端部側に配置することで、第1電極12の電流密度の低い部分に配置することができる。これにより、高周波共振への影響を低減することができる。また、RFICチップ18と第1電極12とキャパシタンス素子22とをそれぞれ直列で接続することで、低周波数側のヌル点をシフトすることができる。この結果、高周波数側と低周波数側とのそれぞれの指向性のピーク角度のズレを低減することができ、RFIDタグ10の指向性を向上させることができる。
 RFICチップ18の第1接続端子18aは、第1電極12の端部から電気長の3分の1以内の箇所においてキャパシタンス素子22を介して第1電極12と接続される。
 また、RFICチップ18の第1接続端子18aおよび第2接続端子18bとそれぞれと並列に接続されるインダクタンス素子20を備える。これにより、RFICチップ18の第1接続端子18aおよび第2接続端子18b間の端子間容量をキャンセルすることができる。
 また、RFICチップ18の第1接続端子18aは、第1電極12の端部から、電気長の6分の1以内の箇所において第1電極12と接続され、RFICチップ18の第2接続端子は、第1電極12の端部から、電気長の6分の1以内の箇所において第2電極14に接続される。このように、RFICチップ18をより第1電極12の端部側に配置することで、高周波共振への影響をより低減することができる。
 また、第1電極12と第2電極14との間に絶縁基板16を備える。これにより、誘電率が空気よりも大きくなるので、通信周波数を短くすることができる。通信周波数を短くすることで、第1電極12および第2電極14の長手方向の長さを短縮することができ、RFIDタグ10を小型化することができる。
 また、第1電極12および第2電極14は矩形形状を有し、第1電極12および第2電極14のそれぞれの電気長は、第1電極12および第2電極14の長手方向における電気長である。
 また、第1電極12および第2電極14の長手方向のそれぞれの開放端が、互いに近づくように折り曲げられている。これにより、第1電極12と第2電極14のそれぞれ折り曲げられた折り曲げ部12eと14eとの間で、容量が発生し、通信周波数を調整することができる。
 また、第1および第2短絡部12c、12dは、第1電極12および第2電極14の長手方向の中間位置をそれぞれ接続する。
 絶縁基板16を貫通して、第1電極12と第2電極14とを電気的に接続する接続導体28を備え、RFICチップ18の第2接続端子18bは、接続導体28と電気的に接続され、接続導体28は、第1電極12の端部から電気長の3分の1以内の箇所に位置する。
 接続導体28は、第1電極12の端部から電気長の6分の1以内の箇所に位置する。
 本発明は、上記実施の形態のものに限らず、次のように変形実施することができる。
 (1)上記実施形態において、RFIDタグ10は金属面に貼り付けることを想定して第2電極14はグランドとして機能していたがこれに限られない。第2電極14が金属面に貼り付けられない場合は、第2電極14においても第1電極12と逆向きの電流が流れ、放射板として第1電極12と同様の機能を発揮する。
 (2)上記実施形態において、RFIDタグ10はグランドとして第2電極14を備えていたがこれに限られない。RFIDタグ10は、第2電極14を省略して、例えば、図14に示すように、金属製の物品30の金属面30aに第1電極12を接続してもよい。第1短絡部12cと第2短絡部12dは、第1電極12の本体部12aの中央部と物品30の金属面30aとを接続する。また、RFICチップ18の第2接続端子18bは、例えば、金属製の板状の接続導体28Aを介して物品30の金属面30aと接続してもよい。
 (3)上記実施形態において、RFICチップ18と第1電極12とは、キャパシタンス素子22を介して接続されていたがこれに限られない。RFICチップ18の第1接続端子18aは第1電極12と接続され、第2接続端子18bとグランドである第2電極14との間にキャパシタンス素子22を直列に接続してもよい。
 本発明にかかるRFIDタグは、金属面に取り付けて使用するのに有用である。
 10  RFIDタグ
 12  第1電極
 12a 本体部
 12b 開口部
 12c 第1短絡部
 12d 第2短絡部
 12e 折り曲げ部
 14  第2電極
 14a 本体部
 14e 折り曲げ部
 16  絶縁基板
 16a 領域
 18  RFICチップ
 18a 第1接続端子
 18b 第2接続端子
 20  インダクタンス素子
 22  キャパシタンス素子
 24  配線部
 26  電極面
 28  接続導体

Claims (11)

  1.  第1接続端子および第2接続端子を有するRFICチップと、
     前記RFICチップの前記第1接続端子と電気的に接続される第1電極と、
     前記第1電極および前記RFICチップと直列に接続されるキャパシタンス素子と、
     前記第1電極の電気長の中間位置で前記第1電極とグランドとを接続する短絡部と、を備え、
     前記第1電極の電気長は、前記RFICチップの通信周波数の波長の2分の1であり、
     前記RFICチップの前記第1接続端子は、前記第1電極の端部から電気長の3分の1以内の箇所において前記第1電極と接続され、
     前記RFICチップの前記第2接続端子は、前記グランドに接続される、
     RFIDタグ。
  2.  前記RFICチップの前記第1接続端子は、前記第1電極の端部から電気長の3分の1以内の箇所において前記キャパシタンス素子を介して前記第1電極と接続される、
     請求項1に記載のRFIDタグ。
  3.  前記RFICチップの前記第1接続端子および前記第2接続端子とそれぞれ並列に接続されるインダクタンス素子を備える、
     請求項1または2に記載のRFIDタグ。
  4.  前記RFICチップの前記第1接続端子は、前記第1電極の端部から、前記電気長の6分の1以内の箇所において前記第1電極と接続され、
     前記RFICチップの前記第2接続端子は、前記第1電極の端部から、前記電気長の6分の1以内の箇所において前記グランドに接続される、
     請求項1から3のいずれか1つに記載のRFIDタグ。
  5.  前記グランドとして、前記第1電極と対向する第2電極を備える、
     請求項1から4のいずれか1つに記載のRFIDタグ。
  6.  前記第1電極と前記第2電極との間に絶縁基板を備える、
     請求項5に記載のRFIDタグ。
  7.  前記第1電極および前記第2電極は矩形形状を有し、
     前記第1電極および前記第2電極のそれぞれの電気長は、前記第1電極および前記第2電極の長手方向における電気長である、
     請求項5または6に記載のRFIDタグ。
  8.  前記第1電極および前記第2電極の長手方向のそれぞれの開放端が、互いに近づくように折り曲げられている、
     請求項7に記載のRFIDタグ。
  9.  前記短絡部は、前記第1電極および前記第2電極の長手方向の中間位置をそれぞれ接続する、
     請求項5から8のいずれか1つに記載のRFIDタグ。
  10.  前記絶縁基板を貫通して、前記第1電極と前記第2電極とを電気的に接続する接続導体を備え、
     前記RFICチップの前記第2接続端子は、前記接続導体と電気的に接続され、
     前記接続導体は、前記第1電極の端部から電気長の3分の1以内の箇所に位置する、
     請求項6に記載のRFIDタグ。
  11.  前記接続導体は、前記第1電極の端部から電気長の6分の1以内の箇所に位置する、
     請求項10に記載のRFIDタグ。
PCT/JP2019/048067 2019-05-27 2019-12-09 Rfidタグ WO2020240895A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020524264A JP6729843B1 (ja) 2019-05-27 2019-12-09 Rfidタグ
DE212019000180.7U DE212019000180U1 (de) 2019-05-27 2019-12-09 RFID-Etikett
CN201990000371.6U CN213715966U (zh) 2019-05-27 2019-12-09 Rfid标签
US16/901,068 US11205107B2 (en) 2019-05-27 2020-06-15 RFID tag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-098741 2019-05-27
JP2019098741 2019-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/901,068 Continuation US11205107B2 (en) 2019-05-27 2020-06-15 RFID tag

Publications (1)

Publication Number Publication Date
WO2020240895A1 true WO2020240895A1 (ja) 2020-12-03

Family

ID=73552906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048067 WO2020240895A1 (ja) 2019-05-27 2019-12-09 Rfidタグ

Country Status (2)

Country Link
CN (1) CN213715966U (ja)
WO (1) WO2020240895A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167214A (ja) * 1996-12-02 1997-06-24 Matsushita Electric Works Ltd 非接触idカードシステム
JP2007221774A (ja) * 2006-01-23 2007-08-30 Yokowo Co Ltd 平面型アンテナ
JP2008258670A (ja) * 2007-03-30 2008-10-23 Matsushita Electric Ind Co Ltd アンテナ装置及び携帯端末
WO2012096365A1 (ja) * 2011-01-14 2012-07-19 株式会社村田製作所 Rfidチップパッケージ及びrfidタグ
JP2016027715A (ja) * 2012-12-21 2016-02-18 株式会社村田製作所 アンテナ装置および電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09167214A (ja) * 1996-12-02 1997-06-24 Matsushita Electric Works Ltd 非接触idカードシステム
JP2007221774A (ja) * 2006-01-23 2007-08-30 Yokowo Co Ltd 平面型アンテナ
JP2008258670A (ja) * 2007-03-30 2008-10-23 Matsushita Electric Ind Co Ltd アンテナ装置及び携帯端末
WO2012096365A1 (ja) * 2011-01-14 2012-07-19 株式会社村田製作所 Rfidチップパッケージ及びrfidタグ
JP2016027715A (ja) * 2012-12-21 2016-02-18 株式会社村田製作所 アンテナ装置および電子機器

Also Published As

Publication number Publication date
CN213715966U (zh) 2021-07-16

Similar Documents

Publication Publication Date Title
US11392784B2 (en) RFID system
US9558440B2 (en) Wireless IC device
EP2667447B1 (en) Antenna device and wireless communication device
US8179329B2 (en) Composite antenna
US7405664B2 (en) Radio frequency IC tag and method for manufacturing the same
WO2010026939A1 (ja) Rfidタグ、rfidタグセット及びrfidシステム
US20120038443A1 (en) Communication terminal
US8981906B2 (en) Printed wiring board and wireless communication system
US10552724B2 (en) RFID tag and article having RFID tag attached thereto
WO2013012078A1 (ja) アンテナ及び無線タグ
WO2017022511A1 (ja) 給電コイル、アンテナ装置および電子機器
JP5482964B2 (ja) 無線icデバイス及び無線通信端末
US8770489B2 (en) Radio communication device
WO2007099926A1 (ja) チップアンテナ
US8944335B2 (en) Wireless IC device
JP2012253699A (ja) 無線通信デバイス、その製造方法及び無線通信デバイス付き金属物品
US20220121898A1 (en) Rfid tag
JP6729843B1 (ja) Rfidタグ
WO2020240895A1 (ja) Rfidタグ
US9024837B2 (en) Antenna and wireless communication device
JP6760545B2 (ja) アンテナ結合素子、アンテナ装置及び通信端末装置
JP2012085234A (ja) 伝送システム及び伝送装置
US11875212B2 (en) RFID tag
CN214280210U (zh) 天线装置以及电子设备
CN114944547A (zh) 无线通信设备

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020524264

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930445

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19930445

Country of ref document: EP

Kind code of ref document: A1