WO2020240783A1 - Passenger detecting device for elevator, and elevator system - Google Patents

Passenger detecting device for elevator, and elevator system Download PDF

Info

Publication number
WO2020240783A1
WO2020240783A1 PCT/JP2019/021575 JP2019021575W WO2020240783A1 WO 2020240783 A1 WO2020240783 A1 WO 2020240783A1 JP 2019021575 W JP2019021575 W JP 2019021575W WO 2020240783 A1 WO2020240783 A1 WO 2020240783A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
car
floor surface
conversion
unit
Prior art date
Application number
PCT/JP2019/021575
Other languages
French (fr)
Japanese (ja)
Inventor
博行 村上
誠一 熊谷
清高 渡邊
晴之 岩間
関 真規人
淳二 堀
Original Assignee
三菱電機ビルテクノサービス株式会社
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機ビルテクノサービス株式会社, 三菱電機株式会社 filed Critical 三菱電機ビルテクノサービス株式会社
Priority to CN201980096846.0A priority Critical patent/CN113874309B/en
Priority to JP2019562445A priority patent/JP6645642B1/en
Priority to PCT/JP2019/021575 priority patent/WO2020240783A1/en
Publication of WO2020240783A1 publication Critical patent/WO2020240783A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/174Segmentation; Edge detection involving the use of two or more images

Definitions

  • the present invention relates to an elevator passenger detection device and an elevator system.
  • Patent Document 1 discloses an example of an elevator.
  • the elevator safety device is equipped with a camera that photographs the inside of the elevator car.
  • the safety device detects passengers inside the car based on the image taken by the camera.
  • An object of the present invention is to provide a passenger detection device and an elevator system capable of suppressing false detection of passengers even when the environment inside the car changes.
  • the passenger detection device for an elevator captures a first image including the floor surface of the car taken by a first camera provided in the car of the elevator and a second camera provided in the car from a direction different from that of the first camera.
  • the input unit that accepts the input of the second image including the floor surface of the car, the range of the floor surface of the car included in the first image, and the range of the floor surface of the car included in the second image overlap each other.
  • Passengers inside the car based on the difference between the conversion unit that performs homography conversion on the image and the second image and the range of the floor surface of the car that overlaps the first image and the second image after the homography conversion by the conversion unit. It is provided with a determination unit for determining the presence or absence of.
  • the car is based on the difference in the range of the floor surface of the car that overlaps the first image and the second image after the homography conversion by the conversion unit and the conversion unit that performs homography conversion on the first image and the second image. It is provided with a determination unit for determining the presence or absence of passengers inside the vehicle, and an output unit for outputting the determination result by the determination unit to the control panel.
  • FIG. It is a block diagram of the elevator system which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of setting of the floor surface parameter in the passenger detection apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of setting of the distortion parameter in the passenger detection apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the passenger detection in the passenger detection device which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the example of the operation of the passenger detection apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the hardware configuration of the main part of the passenger detection apparatus which concerns on Embodiment 1.
  • FIG. It is a figure which shows the example of the passenger detection in the passenger detection device which concerns on Embodiment 2.
  • FIG. It is a figure which shows the example of the passenger detection in the passenger detection device which concerns on Embodiment 3.
  • FIG. 1 is a configuration diagram of an elevator system according to the first embodiment.
  • the elevator system 1 includes a car 2, a control panel 3, and a passenger detection device 4.
  • the elevator system 1 is provided, for example, in a building having a plurality of floors.
  • a hoistway (not shown) is provided.
  • the hoistway is provided over multiple floors.
  • a landing (not shown) is provided on each of the multiple floors.
  • the landing is connected to the hoistway by the landing entrance.
  • the landing entrance is an opening that connects the landing and the hoistway.
  • a landing door is provided at the landing entrance / exit.
  • Car 2 is a device that transports passengers between multiple floors by traveling vertically inside the hoistway.
  • the car 2 travels inside the hoistway by, for example, a hoist (not shown).
  • the basket 2 has a floor surface 5, a wall surface 6, and a ceiling 7.
  • the space inside the car 2 is surrounded by a floor surface 5, a wall surface 6, and a ceiling 7.
  • the space inside the car 2 has, for example, a rectangular parallelepiped shape.
  • the floor surface 5 of the car 2 is a horizontal flat surface.
  • the wall surface 6 of the car 2 is, for example, a vertical flat surface.
  • the ceiling 7 of the car 2 is a plane facing the floor surface 5 above the floor surface 5 of the car 2.
  • the car 2 includes a car door 8, a lighting device 9, an air conditioner 10, a first camera 11a, and a second camera 11b.
  • the car door 8 is a device that opens and closes so that passengers can get on and off the inside of the car 2 from the landing when the car 2 is stopped on the floor where the landing is provided.
  • the car door 8 is provided on the wall surface 6 of the car 2. When the car door 8 is opened and closed, the landing door is interlocked to open and close.
  • the lighting device 9 is a device that illuminates the space inside the car 2.
  • the lighting device 9 is provided on the ceiling 7 of the car 2, for example.
  • the lighting device 9 is equipped with a function of adjusting the amount of light.
  • the air conditioner 10 is a device that adjusts the air in the space inside the car 2 by, for example, ventilation, temperature control, or humidity control.
  • the air conditioner 10 is provided, for example, in the upper part of the car 2.
  • the first camera 11a is a device that captures the first image.
  • the first image is an image including the floor surface 5 of the car 2.
  • the first camera 11a is provided, for example, on the ceiling 7 of the car 2.
  • the first camera 11a may be provided on the upper portion of the wall surface 6 of the car 2.
  • the first camera 11a is provided on the left back side of the ceiling 7 of the car 2.
  • the first camera 11a may be, for example, a wide-angle camera.
  • the second camera 11b is a device that captures a second image.
  • the second image is an image including the floor surface 5 of the car 2.
  • the second camera 11b is provided, for example, on the ceiling 7 of the car 2.
  • the second camera 11b may be provided on the upper portion of the wall surface 6 of the car 2.
  • the second camera 11b is directed toward the floor surface 5 of the car 2 from a direction different from that of the first camera 11a.
  • the second camera 11b is provided on the right back side of the ceiling 7 of the car 2.
  • the second camera 11b may be, for example, a wide-angle camera.
  • the thick solid line indicates the range of the floor surface 5 of the car 2.
  • the floor surface 5 of the car 2 is a flat surface in a closed area.
  • the floor surface 5 of the car 2 is a horizontal flat surface.
  • the floor surface 5 of the car 2 is a rectangular flat surface.
  • the floor surface 5 of the car 2 is entirely included in both the first image and the second image.
  • the thick broken line indicates the closed range of the second plane.
  • the second plane is a plane that does not overlap the floor surface 5.
  • the second plane is, for example, a plane perpendicular to the floor surface 5.
  • the second plane is a rectangular area of a portion of the surface of the car door 8.
  • the second plane may cover the entire surface of the car door 8.
  • the second plane may be a part of the wall surface 6 of the car 2. In this example, the second plane is entirely included in both the first and second images.
  • the control panel 3 is a device that controls the operation of the car 2.
  • the operation of the car 2 includes, for example, traveling on a hoistway, opening and closing a car door 8, emitting light from a lighting device 9, and operating an air conditioner 10.
  • the control panel 3 is provided, for example, at the upper part or the lower part of the hoistway.
  • the passenger detection device 4 is a device that detects the presence or absence of passengers inside the car 2.
  • the passenger detection device 4 includes an input unit 12, a conversion unit 13, a parameter setting unit 14, a parameter storage unit 15, a determination unit 16, and an output unit 17.
  • the input unit 12 is a part that receives inputs of the first image and the second image.
  • the input unit 12 is connected to the first camera 11a and the second camera 11b so that the input of the first image and the second image can be accepted.
  • the conversion unit 13 is a part that converts the first image and the second image.
  • the conversion by the conversion unit 13 includes a homography transformation in which the range of the floor surface 5 of the car 2 included in the first image and the range of the floor surface 5 of the car 2 included in the second image overlap each other. Further, the conversion by the conversion unit 13 includes lens distortion correction.
  • the conversion unit 13 is connected to the input unit 12 so that the first image and the second image can be acquired.
  • the parameter setting unit 14 is a part for setting conversion parameters by the conversion unit 13.
  • the parameter setting by the parameter setting unit 14 is performed based on, for example, the first image and the second image.
  • the parameter setting unit 14 is connected to the input unit 12 so that the first image and the second image can be acquired.
  • the parameter setting by the parameter setting unit 14 may be performed based on the input from the external input device 18.
  • the input device 18 is an information terminal such as a personal computer.
  • the input device 18 is operated by, for example, a maintenance person or an administrator of the elevator system 1.
  • the parameter setting unit 14 includes a floor surface parameter setting unit 19 and a distortion parameter setting unit 20.
  • the floor surface parameter setting unit 19 is a portion for setting floor surface parameters.
  • the floor surface parameter is a parameter that defines the range of the floor surface 5 of the car 2 included in the first image and the second image.
  • the floor surface parameters are, for example, the coordinates of the four corners of the floor surface 5 in the first image and the second image.
  • the distortion parameter setting unit 20 is a portion for setting distortion parameters.
  • the distortion parameter is a parameter used for lens distortion correction such as distortion center and distortion coefficient.
  • the parameters set by the parameter setting unit 14 include floor surface parameters and distortion parameters.
  • the parameter storage unit 15 is a unit that stores the parameters set by the parameter setting unit 14.
  • the parameter storage unit 15 is connected to the parameter setting unit 14 so that the set parameters can be acquired.
  • the parameter storage unit 15 is connected to the conversion unit 13 so that the stored parameters can be output.
  • the determination unit 16 determines the presence or absence of passengers inside the car 2 based on the difference in the range of the floor surface 5 of the car 2 that overlaps the first image and the second image after the homography conversion by the conversion unit 13. It is a part.
  • the determination unit 16 is connected to the conversion unit 13 so that the first image and the second image after the homography conversion can be acquired.
  • the output unit 17 is a part that outputs the determination result by the determination unit 16 to an external device of the passenger detection device 4.
  • the output unit 17 is connected to, for example, a control panel 3 so that the determination result can be output.
  • FIG. 2 is a diagram showing an example of setting floor surface parameters in the passenger detection device according to the first embodiment.
  • FIG. 3 is a diagram showing an example of setting distortion parameters in the passenger detection device according to the first embodiment.
  • the setting of the floor surface parameter for the first image will be described with reference to FIG. In FIG. 2, an example of the first image is shown.
  • Floor parameters are set, for example, at the time of initial setting or at the time of maintenance and inspection.
  • the maintenance personnel place the markers 21 at the four corners of the floor surface 5 of the car 2.
  • the marker 21 is, for example, a sheet on which a predetermined pattern is represented.
  • the first camera 11a captures the first image.
  • the input unit 12 receives the input of the first image from the first camera 11a.
  • the parameter setting unit 14 acquires the first image from the input unit 12.
  • the floor surface parameter setting unit 19 recognizes the marker 21 in the first image acquired by the parameter setting unit 14.
  • the broken line frame indicates the position of the marker 21 recognized by the floor parameter setting unit 19.
  • the floor surface parameter setting unit 19 recognizes the positions of the four corners of the floor surface 5 of the car 2 according to the positions of the recognized markers 21.
  • the floor surface parameter setting unit 19 sets the range of the floor surface 5 in the first image as the floor surface parameter according to the recognized positions of the four corners of the floor surface 5.
  • the floor surface parameter setting unit 19 sets the floor surface parameters for the second image in the same manner as the floor surface parameters for the first image.
  • the parameter storage unit 15 acquires the floor surface parameters set by the floor surface parameter setting unit 19.
  • the parameter storage unit 15 stores the acquired floor surface parameters.
  • the maintenance staff collects the placed marker 21.
  • FIG. 3 describes the setting of the distortion parameter for the first image.
  • FIG. 3 an example of the first image is shown.
  • FIG. 3 is a first image taken by the first camera 11a, which is a wide-angle camera.
  • the distortion parameter is set, for example, at the time of initial setting.
  • the distortion parameter may be set, for example, when the determination unit 16 determines that there are no passengers inside the car 2.
  • the first camera 11a captures the first image.
  • the input unit 12 receives the input of the first image from the first camera 11a.
  • Panel A shows an example of the first image taken by the first camera 11a.
  • the image taken of the inside of the car 2 includes features derived from the structure of the car 2.
  • a feature derived from the structure of the car 2 is a linear edge 22 in real space, such as the boundary between the floor surface 5 and the wall surface 6 or the boundary between adjacent wall surfaces 6.
  • the first image taken by the first camera 11a is distorted due to lens distortion. Therefore, the linear edge 22 in the real space becomes the curved edge 22 in the first image.
  • the parameter setting unit 14 acquires the first image from the input unit 12.
  • the distortion parameter setting unit 20 extracts the edge 22 in the first image acquired by the parameter setting unit 14.
  • the broken line indicates the edge 22 extracted from the first image.
  • the distortion parameter setting unit 20 extracts the edge 22 which is curved due to the lens distortion by approximating it with, for example, a polygonal line.
  • the strain parameter setting unit 20 sets the strain parameter by a numerical optimization method or the like so that the curved edge 22 approximated by the polygonal line approaches the linear edge 22.
  • Panel C shows an example of the first image in which the lens distortion is corrected according to the set distortion parameters.
  • the linear edge 22 in the real space becomes the linear edge 22 in the first image after the lens distortion correction.
  • the distortion parameter setting unit 20 sets the distortion parameter for the second image in the same manner as for setting the distortion parameter for the first image.
  • the parameter storage unit 15 acquires the distortion parameter set by the distortion parameter setting unit 20.
  • the parameter storage unit 15 stores the acquired distortion parameter.
  • FIG. 4 is a diagram showing an example of passenger detection in the passenger detection device according to the first embodiment.
  • the first camera 11a and the second camera 11b capture the first image and the second image inside the car 2. At this time, a passenger is on the inside of the car 2.
  • the input unit 12 accepts the input of the first image and the second image.
  • the conversion unit 13 acquires the input first image and the second image.
  • the conversion unit 13 acquires the parameters stored in the parameter storage unit 15.
  • the conversion unit 13 converts the lens distortion correction for each of the first image and the second image based on the distortion parameters acquired from the parameter storage unit 15.
  • the conversion unit 13 homogenizes the first image and the second image that have undergone lens distortion correction conversion so that the ranges of the floor surface 5 of the car 2 overlap each other based on the floor surface parameters acquired from the parameter storage unit 15. Perform graphic conversion.
  • the conversion unit 13 performs homography conversion so that the range of the floor surface 5 of the car 2 in the first image and the second image is a rectangular range having the same shape and dimensions.
  • the homography transformation By the homography transformation, the first image and the second image projected on the floor surface 5 of the car 2 from the directions of the first camera 11a and the second camera 11b are obtained. At this time, in the first image and the second image, a portion of the floor surface 5 of the car 2 is cut out.
  • the first camera 11a and the second camera 11b are photographing the floor surface 5 of the car 2 from different directions. Therefore, when there are passengers on the floor surface 5 of the car 2, the first image and the second image after the homography conversion are different images from each other. On the other hand, since the floor surface 5 of the car 2 is a flat surface, the first image and the second image after the homography conversion become images similar to each other when there are no passengers on the floor surface 5 of the car 2. ..
  • the determination unit 16 acquires the first image and the second image after the homography conversion.
  • the determination unit 16 calculates the degree of dissimilarity between the first image and the second image.
  • the determination unit 16 calculates the dissimilarity as follows, for example.
  • the determination unit 16 generates a difference image between the acquired first image and the second image.
  • the difference image is generated, for example, by taking the difference in the luminance value for each pixel between the first image and the second image.
  • the determination unit 16 calculates the dissimilarity based on, for example, the absolute value or the average value, the median value, or the maximum value of the square values of the brightness values of the difference images.
  • the determination unit 16 may calculate the dissimilarity by another method.
  • the determination unit 16 determines that there are passengers inside the car 2 when the calculated dissimilarity is larger than a preset threshold value. On the other hand, the determination unit 16 determines that there are no passengers inside the car 2 when the calculated dissimilarity is equal to or less than a preset threshold value.
  • the output unit 17 acquires the determination result of the presence or absence of passengers inside the car 2 from the determination unit 16. The output unit 17 outputs the acquired determination result to the control panel 3.
  • the control panel 3 controls the operation of the car 2 based on the input determination result.
  • the control panel 3 increases the traveling speed of the car 2.
  • the control panel 3 may increase the upper limit of the traveling speed of the car 2.
  • the control panel 3 stops the operation of the air conditioner 10.
  • the control panel 3 may weaken the operation of the air conditioner 10.
  • the control panel 3 starts the operation of the air conditioner 10 when the input determination result indicates that there are passengers inside the car 2.
  • the input determination result indicates that there are no passengers inside the car 2.
  • the control panel 3 shortens the time during which the car door 8 is open.
  • an elevator system 1 that shifts to a diagnostic operation for diagnosing an abnormality of equipment when the seismograph detects an earthquake.
  • the control panel 3 limits the transition to the diagnostic operation. That is, even if an earthquake occurs while a passenger is in the car 2, the control panel 3 does not perform the diagnostic operation until it is determined that the passenger is not in the car 2.
  • FIG. 5 is a flowchart showing an example of the operation of the passenger detection device according to the first embodiment.
  • step S1 the input unit 12 acquires the first image from the first camera 11a. Further, the input unit 12 acquires a second image from the second camera 11b. After that, the operation of the passenger detection device 4 proceeds to step S2.
  • step S2 the conversion unit 13 converts the lens distortion correction for the first image and the second image acquired by the input unit 12. After that, the operation of the passenger detection device 4 proceeds to step S3.
  • step S3 the conversion unit 13 performs homography conversion on the first image and the second image to which the lens distortion has been corrected. After that, the operation of the passenger detection device 4 proceeds to step S4.
  • step S4 the determination unit 16 calculates the degree of dissimilarity between the first image and the second image that have undergone homography conversion. After that, the operation of the passenger detection device 4 proceeds to step S5.
  • step S6 the determination unit 16 determines that there are passengers inside the car 2. After that, the operation of the passenger detection device 4 ends.
  • step S7 the determination unit 16 determines that there are no passengers inside the car 2. After that, the operation of the passenger detection device 4 ends.
  • the passenger detection device 4 includes an input unit 12, a conversion unit 13, and a determination unit 16.
  • the input unit 12 accepts inputs of the first image and the second image.
  • the first image includes the floor surface 5 of the elevator car 2.
  • the first image is taken by the first camera 11a.
  • the first camera 11a is provided in the car 2.
  • the second image includes the floor surface 5 of the car 2.
  • the second image is taken by the second camera 11b from a direction different from that of the first camera 11a.
  • the second camera 11b is provided in the car 2.
  • the conversion unit 13 homographs the first image and the second image so that the range of the floor surface 5 of the car 2 included in the first image and the range of the floor surface 5 of the car 2 included in the second image overlap each other. Perform the conversion.
  • the determination unit 16 determines the presence or absence of passengers inside the car 2 based on the difference in the range of the floor surface 5 of the car 2 that overlaps the first image and the second image after the homography conversion by the conversion unit 13. ..
  • the elevator system 1 includes a car 2, a control panel 3, an input unit 12, a conversion unit 13, a determination unit 16, and an output unit 17.
  • the car 2 transports passengers by traveling inside the hoistway.
  • the hoistway is provided over multiple floors. Passengers get on and off the inside of the car 2 through the car door 8 that opens and closes.
  • the control panel 3 controls the operation of the car 2 based on the input determination result of the presence or absence of passengers inside the car 2.
  • the input unit 12 accepts inputs of the first image and the second image.
  • the first image includes the floor surface 5 of the car 2.
  • the first image is taken by the first camera 11a.
  • the first camera 11a is provided in the car 2.
  • the second image includes the floor surface 5 of the car 2.
  • the second image is taken by the second camera 11b from a direction different from that of the first camera 11a.
  • the second camera 11b is provided in the car 2.
  • the conversion unit 13 homographs the first image and the second image so that the range of the floor surface 5 of the car 2 included in the first image and the range of the floor surface 5 of the car 2 included in the second image overlap each other. Perform the conversion.
  • the determination unit 16 determines the presence or absence of passengers inside the car 2 based on the difference in the range of the floor surface 5 of the car 2 that overlaps the first image and the second image after the homography conversion by the conversion unit 13. ..
  • the output unit 17 outputs the determination result by the determination unit 16 to the control panel 3.
  • the homography transformation By the homography transformation, the first image and the second image projected on the floor surface 5 of the car 2 from the directions of the first camera 11a and the second camera 11b can be obtained.
  • the difference between the first image and the second image changes depending on the presence or absence of passengers on the floor surface 5 of the car 2.
  • the passengers in the car 2 are on the floor surface 5, which is a closed area. Therefore, the presence or absence of passengers inside the car 2 can be determined based on the difference between the first image and the second image after the homography transformation.
  • the determination unit 16 does not need a background image. As a result, even when the internal environment of the car 2 changes, erroneous detection of passengers is suppressed.
  • the conversion unit 13 corrects the lens distortion for each of the first image and the second image before the homography conversion.
  • a wide-angle camera may be used so that the entire car 2 can be photographed. Even in this case, it is possible to suppress a decrease in the accuracy of detecting the presence or absence of passengers by the determination unit 16.
  • the passenger detection device 4 includes a distortion parameter setting unit 20.
  • the parameter setting unit 14 sets the distortion parameter based on the first image and the second image received by the input unit 12.
  • the conversion unit 13 corrects the lens distortion based on the distortion parameter set by the distortion parameter setting unit 20.
  • the passenger detection device 4 includes a floor surface parameter setting unit 19.
  • the floor surface parameter setting unit 19 sets the floor surface parameters based on the first image and the second image received by the input unit 12.
  • the floor surface parameter is a parameter that defines the range of the floor surface 5 of the car 2 included in the first image and the second image.
  • the conversion unit 13 performs homography conversion based on the floor surface parameters set by the floor surface parameter setting unit 19.
  • the distortion parameter setting unit 20 and the floor surface parameter setting unit 19 set the distortion parameter and the floor surface parameter based on the captured image. For this reason, for example, maintenance personnel do not have to directly adjust strain parameters or floor parameters.
  • the passenger detection device 4 can be easily applied to the elevator system 1.
  • the floor surface parameter setting unit 19 recognizes the marker 21 in the first image and the second image, the floor surface parameter setting unit 19 sets the floor surface parameter based on the position of the marker 21.
  • control panel 3 increases the traveling speed of the car 2 when the input determination result indicates that there are no passengers inside the car 2. Further, in the control panel 3, when the landing call is not registered in the car 2 on the floor where the car 2 is stopped by opening the car door 8, the passenger can input the determination result inside the car 2. When indicating that the car door 8 is not open, the time during which the car door 8 is open is shortened.
  • control panel 3 When there are no passengers inside the car 2, the control panel 3 can be operated to improve the operation efficiency of the car 2. As a result, the utilization efficiency of the elevator system 1 is increased.
  • control panel 3 limits the transition to the diagnostic operation when the input determination result indicates that there are passengers inside the car 2.
  • the car 2 is provided with an air conditioner 10 for adjusting the air in the internal space.
  • the control panel 3 stops the operation of the air conditioner 10 when the input determination result indicates that there are no passengers inside the car 2.
  • control panel 3 When there are no passengers inside the car 2, the control panel 3 refrains from unnecessary operation of the air conditioner 10. This increases the energy efficiency of the elevator system 1.
  • the determination unit 16 When the determination unit 16 detects the movement of a passenger in at least one of the first image and the second image, it may determine that the passenger is inside the car 2 before the homography conversion. Passenger movements are detected, for example, by the frame difference method.
  • the passenger detection device 4 can detect the presence or absence of passengers without performing image processing such as homography conversion.
  • the passenger detection device 4 can reduce the calculation load due to image processing in passenger detection. Even when the passengers are stopped inside the car 2, the determination unit 16 can determine the presence or absence of passengers based on the difference between the images after the homography conversion.
  • the determination unit 16 determines the position of the floor surface 5 of the car 2 in the first image or the second image based on the deviation of the features derived from the structure of the car 2 extracted from the first image and the second image. The deviation may be detected.
  • the car 2 is provided with a lighting device 9 in which the amount of light that illuminates the internal space can be adjusted.
  • the control panel 3 may adjust the amount of light of the lighting device 9 when the input determination result indicates that there are passengers inside the car 2.
  • the conversion unit 13 performs homography conversion on the first image and the second image taken after adjusting the light intensity of the lighting device 9 so that the ranges of the floor surface 5 of the car 2 overlap each other.
  • the determination unit 16 again determines the presence or absence of passengers inside the car 2 based on the difference in the range of the floor surface 5 of the car 2 that overlaps the first image and the second image after the homography conversion by the conversion unit 13. To do.
  • the marker 21 may be any one that can determine the range of the floor surface 5.
  • the marker 21 may be, for example, a sheet that represents a linear pattern and is arranged along four sides of a rectangular floor surface 5.
  • the marker 21 may have a pattern represented on the floor surface 5 of the car 2.
  • the floor surface 5 may be a closed flat surface on which passengers inside the car 2 ride.
  • the floor surface 5 may be a plane having a curved boundary such as an arc.
  • the conversion unit 13 does not have to perform the lens distortion correction.
  • the first camera 11a and the second camera 11b themselves may be equipped with a lens distortion correction function.
  • the building provided with the elevator system 1 may have a machine room of the elevator system 1.
  • the hoisting machine and the control panel 3 may be provided in the machine room.
  • the passenger detection device 4 may be arranged, for example, in the upper part of the car 2, the control device, the hoistway, the machine room, or the like. Some or all of the functions of the passenger detection device 4 may be realized by individual hardware. Some or all of the functions of the passenger detection device 4 are realized by, for example, the first camera 11a, the second camera 11b, or other equipment provided in the car 2, the control panel 3, or other equipment of the elevator system 1. May be good.
  • FIG. 6 is a diagram showing a hardware configuration of a main part of the passenger detection device according to the first embodiment.
  • Each function of the passenger detection device 4 can be realized by a processing circuit.
  • the processing circuit includes at least one processor 4b and at least one memory 4c.
  • the processing circuit may include at least one dedicated hardware 4a with or as a substitute for the processor 4b and the memory 4c.
  • each function of the passenger detection device 4 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. The program is stored in the memory 4c. The processor 4b realizes each function of the passenger detection device 4 by reading and executing the program stored in the memory 4c.
  • the processor 4b is also referred to as a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, and a DSP.
  • the memory 4c is composed of, for example, a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, or the like.
  • the processing circuit is provided with dedicated hardware 4a, the processing circuit is realized by, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • Each function of the passenger detection device 4 can be realized by a processing circuit. Alternatively, each function of the passenger detection device 4 can be collectively realized by a processing circuit. For each function of the passenger detection device 4, a part may be realized by the dedicated hardware 4a, and the other part may be realized by software or firmware. In this way, the processing circuit realizes each function of the passenger detection device 4 by hardware 4a, software, firmware, or a combination thereof.
  • Embodiment 2 In the second embodiment, the differences from the examples disclosed in the first embodiment will be described in detail. As for the features not described in the second embodiment, any of the features of the examples disclosed in the first embodiment may be adopted.
  • FIG. 7 is a diagram showing an example of passenger detection in the passenger detection device according to the second embodiment.
  • the conversion unit 13 generates a first image and a second image projected on the floor surface 5 of the car 2 from the directions of the first camera 11a and the second camera 11b by homography conversion or the like.
  • the determination unit 16 generates a difference image of the floor surface 5 with respect to the first image and the second image projected on the floor surface 5 of the car 2.
  • the passenger is standing in front of the car door 8 and boarding.
  • the front of the car door 8 is near the boundary of the floor surface 5. Therefore, in the difference image of the floor surface 5, the difference due to the user being on board is small.
  • the determination unit 16 determines that the dissimilarity calculated from the difference image of the floor surface 5 is larger than the preset threshold value, or the dissimilarity calculated from the difference image of the second plane is greater than the preset threshold value. If it is large, it is determined that there are passengers inside the car 2.
  • the conversion unit 13 closes the closed range of the second plane included in the first image and the second plane included in the second image. Homography conversion is performed on the first image and the second image so that the ranges overlap each other.
  • the second plane is a plane that does not overlap with the floor surface 5.
  • the determination unit 16 determines the presence or absence of passengers inside the car 2 based on the difference in the range of the second plane on which the first image and the second image overlap each other after the homography conversion by the conversion unit 13.
  • the conversion unit 13 causes the closed range of the second plane included in the first image and the closed range of the second plane included in the second image to overlap each other. , Perform homography conversion on the first image and the second image.
  • the second plane is a plane that does not overlap with the floor surface 5.
  • the determination unit 16 determines the presence or absence of passengers inside the car 2 based on the difference in the range of the second plane on which the first image and the second image overlap each other after the homography conversion by the conversion unit 13.
  • the determination unit 16 detects the presence or absence of passengers in the difference image of the floor surface 5 based on the total difference of the floor surface 5. On the other hand, when the passenger stands near the boundary of the floor surface 5, the dissimilarity calculated from the difference image of the floor surface 5 may be small. At this time, there is a possibility that the passengers on board are not detected. In this case, the determination unit 16 detects the presence or absence of passengers based on the dissimilarity calculated from the difference image of the second plane that does not overlap the floor surface 5. Therefore, even when the passengers are standing near the boundary of the floor surface 5, the omission of detection of the passengers in the car 2 is suppressed.
  • the second plane may be a plane parallel to the floor surface 5 of the car 2.
  • the second plane may be a plane having a height different from that of the floor surface 5 of the car 2.
  • the second plane may face in a direction different from that of the floor surface 5.
  • the second plane may be a plane perpendicular to the floor surface 5.
  • a plurality of second planes may be set in the passenger detection device 4.
  • the conversion unit 13 performs homography conversion with at least a part of the surface of the wall surface 6 of the car 2 or the car door 8 of the car 2 as the second plane.
  • the determination unit 16 determines the presence or absence of passengers inside the car 2 based on the difference in the range of the second plane.
  • the second plane is above the boundary of the floor surface 5. Therefore, the omission of detection of passengers in the vicinity of the boundary of the floor surface 5 is suppressed.
  • the wall surface 6 and the car door 8 of the car 2 are flat surfaces having a clear boundary inside the car 2. Therefore, it becomes easy for the parameter setting unit 14 to set the parameters based on the first image and the second image.
  • Embodiment 3 In the third embodiment, the differences from the examples disclosed in the first embodiment or the second embodiment will be described in detail. As for the features not described in the third embodiment, any of the features of the examples disclosed in the first embodiment or the second embodiment may be adopted.
  • FIG. 8 is a diagram showing an example of passenger detection in the passenger detection device according to the third embodiment.
  • FIG. 8 shows examples of the first image and the second image.
  • the car door 8 is open.
  • the passenger is standing on the floor where the car 2 is stopped.
  • the thick solid line indicates the range of the floor surface 5.
  • the dashed line indicates the closed area of the second plane.
  • the second plane is part of the floor 5 of the landing.
  • the second plane is a triangular plane.
  • the passenger detection device 4 receives a signal indicating that the car door 8 is open from, for example, the control panel 3 through the input unit 12. Alternatively, the passenger detection device 4 may detect that the car door 8 is open, for example, by image recognition.
  • the conversion unit 13 performs the first image and the second image projected onto the second plane from the directions of the first camera 11a and the second camera 11b by homography conversion or the like by the same processing as the processing on the floor surface 5.
  • the second plane is a plane at the same height parallel to the floor surface 5. Therefore, the conversion unit 13 may perform homography conversion based on the same parameters as the processing on the floor surface 5.
  • the portion cut out in the first image and the second image is the portion of the floor surface 5 of the landing.
  • the determination unit 16 generates a difference image of the second plane with respect to the first image and the second image projected on the second plane.
  • the determination unit 16 determines that the dissimilarity calculated from the difference image of the floor surface 5 is larger than the preset threshold value, or the dissimilarity calculated from the difference image of the second plane is greater than the preset threshold value. If it is large, it is determined that there are passengers at the landing.
  • the passenger detection device 4 receives a signal indicating that the car door 8 is closed from, for example, the control panel 3 through the input unit 12.
  • the passenger detection device 4 may detect that the car door 8 is closed by, for example, image recognition.
  • the passenger detection device 4 performs passenger detection with the wall surface 6 of the car 2 or the entire or part of the surface of the car door 8 as the second plane.
  • the conversion unit 13 is a landing on the floor where the car 2 is stopped by opening the car door 8 when the car door 8 is open.
  • the homography transformation is performed with at least a part of the floor surface 5 of the above as the second plane.
  • the determination unit 16 determines the presence or absence of passengers at the landing based on the difference in the range of the second plane.
  • the passenger detection device 4 can detect the passengers who are about to enter the car 2 or the passengers who have got out of the car 2. Therefore, the elevator system 1 can improve utilization efficiency or energy efficiency depending on the situation around the car 2. For example, the control panel 3 may shorten the opening time of the car door 8 when it is determined that there are no passengers inside the car 2 and in the landing.
  • the passenger detection system according to the present invention can be applied to an elevator system.
  • the passenger detection system according to the present invention can be applied to, for example, a building having a plurality of floors.
  • 1 elevator system 2 car, 3 control panel, 4 passenger detection device, 5 floor surface, 6 wall surface, 7 ceiling, 8 car door, 9 lighting device, 10 air conditioner, 11a 1st camera, 11b 2nd camera, 12 Input unit, 13 conversion unit, 14 parameter setting unit, 15 parameter storage unit, 16 judgment unit, 17 output unit, 18 input device, 19 floor surface parameter setting unit, 20 distortion parameter setting unit, 21 marker, 22 edge, 4a hardware Hardware, 4b processor, 4c memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)
  • Cage And Drive Apparatuses For Elevators (AREA)
  • Elevator Door Apparatuses (AREA)
  • Elevator Control (AREA)

Abstract

Provided are a passenger detecting device and an elevator system with which it is possible to suppress the false detection of a passenger even when the environment inside a car changes. An input unit (12) in this passenger detecting device (4) or elevator system (1) receives the inputs of a first image and a second image. The first image is captured by a first camera (11a) provided in a car (2). The second image is captured from a different direction from the first camera (11a) by a second camera (11b) provided in the car (2). The first image and the second image include the floor surface (5) of the car (2). A transforming unit (13) performs homographic transformation on the first image and the second image so that the range of the floor surface (5) of the car (2) in the first image and the range of the floor surface (5) of the car (2) in the second image overlap. A determining unit (16) determines the presence or absence of a passenger inside the car (2) on the basis of the difference between the overlapping ranges of the floor surface (5) of the car (2) in the first image and the second image after the homographic transformation.

Description

エレベーターの乗客検出装置およびエレベーターシステムElevator passenger detector and elevator system
 本発明は、エレベーターの乗客検出装置およびエレベーターシステムに関する。 The present invention relates to an elevator passenger detection device and an elevator system.
 特許文献1は、エレベーターの例を開示する。エレベーターの安全装置は、エレベーターのかごの内部を撮影するカメラを備える。安全装置は、カメラが撮影する画像に基づいて、かごの内部の乗客などを検出する。 Patent Document 1 discloses an example of an elevator. The elevator safety device is equipped with a camera that photographs the inside of the elevator car. The safety device detects passengers inside the car based on the image taken by the camera.
日本特開2008-100782号公報Japanese Patent Application Laid-Open No. 2008-100782
 しかしながら、特許文献1に記載のエレベーターにおいて、かごの内部の乗客は、カメラが撮影する画像の背景差分によって検出される。このため、時間の経過によってかごの内部の環境が変化する場合に、乗客を誤検出する可能性がある。 However, in the elevator described in Patent Document 1, passengers inside the car are detected by background subtraction of images taken by the camera. Therefore, if the environment inside the car changes over time, passengers may be erroneously detected.
 本発明は、このような課題を解決するためになされた。本発明の目的は、かごの内部の環境が変化する場合においても乗客の誤検出を抑制できる乗客検出装置およびエレベーターシステムを提供することである。 The present invention has been made to solve such a problem. An object of the present invention is to provide a passenger detection device and an elevator system capable of suppressing false detection of passengers even when the environment inside the car changes.
 本発明に係るエレベーターの乗客検出装置は、エレベーターのかごに設けられる第1カメラに撮影されかごの床面を含む第1画像、およびかごに設けられる第2カメラに第1カメラと異なる方向から撮影されかごの床面を含む第2画像の入力を受け付ける入力部と、第1画像に含まれるかごの床面の範囲および第2画像に含まれるかごの床面の範囲が互いに重なるように第1画像および第2画像にホモグラフィ変換を行う変換部と、変換部によるホモグラフィ変換の後の第1画像および第2画像の互いに重なるかごの床面の範囲の差分に基づいてかごの内部の乗客の有無を判定する判定部と、を備える。 The passenger detection device for an elevator according to the present invention captures a first image including the floor surface of the car taken by a first camera provided in the car of the elevator and a second camera provided in the car from a direction different from that of the first camera. The input unit that accepts the input of the second image including the floor surface of the car, the range of the floor surface of the car included in the first image, and the range of the floor surface of the car included in the second image overlap each other. Passengers inside the car based on the difference between the conversion unit that performs homography conversion on the image and the second image and the range of the floor surface of the car that overlaps the first image and the second image after the homography conversion by the conversion unit. It is provided with a determination unit for determining the presence or absence of.
 本発明に係るエレベーターシステムは、複数の階床にわたって設けられる昇降路の内部を走行することで、開閉するかごドアから内部に乗降する乗客を輸送するかごと、入力されるかごの内部の乗客の有無の判定結果に基づいてかごの動作を制御する制御盤と、かごに設けられる第1カメラに撮影されかごの床面を含む第1画像、およびかごに設けられる第2カメラに第1カメラと異なる方向から撮影されかごの床面を含む第2画像の入力を受け付ける入力部と、第1画像に含まれるかごの床面の範囲および第2画像に含まれるかごの床面の範囲が互いに重なるように第1画像および第2画像にホモグラフィ変換を行う変換部と、変換部によるホモグラフィ変換の後の第1画像および第2画像の互いに重なるかごの床面の範囲の差分に基づいてかごの内部の乗客の有無を判定する判定部と、判定部による判定結果を制御盤に出力する出力部と、を備える。 The elevator system according to the present invention travels inside a hoistway provided over a plurality of floors to transport passengers getting on and off the inside through a car door that opens and closes, and passengers inside the car to be input. A control panel that controls the operation of the car based on the presence / absence judgment result, a first image including the floor surface of the car taken by the first camera provided in the car, and a first camera in the second camera provided in the car. The input unit that accepts the input of the second image including the floor surface of the car taken from different directions, the floor surface range of the car included in the first image, and the floor surface range of the car included in the second image overlap each other. The car is based on the difference in the range of the floor surface of the car that overlaps the first image and the second image after the homography conversion by the conversion unit and the conversion unit that performs homography conversion on the first image and the second image. It is provided with a determination unit for determining the presence or absence of passengers inside the vehicle, and an output unit for outputting the determination result by the determination unit to the control panel.
 本発明によれば、入力部は、第1画像および第2画像の入力を受け付ける。第1画像は、エレベーターのかごに設けられる第1カメラに撮影される。第1画像は、かごの床面を含む。第2画像は、かごに設けられる第2カメラに第1カメラと異なる方向から撮影される。第2画像は、かごの床面を含む。変換部は、第1画像に含まれるかごの床面の範囲および第2画像に含まれるかごの床面の範囲が互いに重なるように第1画像および第2画像にホモグラフィ変換を行う。判定部は、変換部によるホモグラフィ変換の後の第1画像および第2画像の互いに重なるかごの床面の範囲の差分に基づいて、かごの内部の乗客の有無を判定する。これにより、かごの内部の環境が変化する場合においても、乗客の誤検出が抑制される。 According to the present invention, the input unit accepts inputs of the first image and the second image. The first image is taken by the first camera provided in the elevator car. The first image includes the floor of the car. The second image is taken by the second camera provided in the car from a direction different from that of the first camera. The second image includes the floor of the car. The conversion unit performs homography conversion on the first image and the second image so that the range of the car floor surface included in the first image and the range of the car floor surface included in the second image overlap each other. The determination unit determines the presence or absence of passengers inside the car based on the difference in the range of the floor surface of the car that overlaps the first image and the second image after the homography conversion by the conversion unit. As a result, even when the environment inside the car changes, false detection of passengers is suppressed.
実施の形態1に係るエレベーターシステムの構成図である。It is a block diagram of the elevator system which concerns on Embodiment 1. FIG. 実施の形態1に係る乗客検出装置における床面パラメーターの設定の例を示す図である。It is a figure which shows the example of setting of the floor surface parameter in the passenger detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る乗客検出装置における歪みパラメーターの設定の例を示す図である。It is a figure which shows the example of setting of the distortion parameter in the passenger detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る乗客検出装置における乗客検出の例を示す図である。It is a figure which shows the example of the passenger detection in the passenger detection device which concerns on Embodiment 1. FIG. 実施の形態1に係る乗客検出装置の動作の例を示すフローチャートである。It is a flowchart which shows the example of the operation of the passenger detection apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る乗客検出装置の主要部のハードウェア構成を示す図である。It is a figure which shows the hardware configuration of the main part of the passenger detection apparatus which concerns on Embodiment 1. FIG. 実施の形態2に係る乗客検出装置における乗客検出の例を示す図である。It is a figure which shows the example of the passenger detection in the passenger detection device which concerns on Embodiment 2. FIG. 実施の形態3に係る乗客検出装置における乗客検出の例を示す図である。It is a figure which shows the example of the passenger detection in the passenger detection device which concerns on Embodiment 3.
 本発明を実施するための形態について添付の図面を参照しながら説明する。各図において、同一または相当する部分には同一の符号を付して、重複する説明は適宜に簡略化または省略する。 The embodiment for carrying out the present invention will be described with reference to the attached drawings. In each figure, the same or corresponding parts are designated by the same reference numerals, and duplicate description will be appropriately simplified or omitted.
 実施の形態1.
 図1は、実施の形態1に係るエレベーターシステムの構成図である。
Embodiment 1.
FIG. 1 is a configuration diagram of an elevator system according to the first embodiment.
 エレベーターシステム1は、かご2と、制御盤3と、乗客検出装置4と、を備える。エレベーターシステム1は、例えば複数の階床を有する建築物に設けられる。建築物において、図示されない昇降路が設けられる。昇降路は、複数の階床にわたって設けられる。複数の階床の各々において、図示されない乗場が設けられる。乗場は、乗場出入口によって昇降路に通じる。乗場出入口は、乗場と昇降路とを繋ぐ開口である。複数の乗場の各々において、乗場ドアが、乗場出入口に設けられる。 The elevator system 1 includes a car 2, a control panel 3, and a passenger detection device 4. The elevator system 1 is provided, for example, in a building having a plurality of floors. In the building, a hoistway (not shown) is provided. The hoistway is provided over multiple floors. A landing (not shown) is provided on each of the multiple floors. The landing is connected to the hoistway by the landing entrance. The landing entrance is an opening that connects the landing and the hoistway. At each of the plurality of landings, a landing door is provided at the landing entrance / exit.
 かご2は、昇降路の内部を鉛直方向に走行することで、乗客を複数の階床の間で輸送する装置である。かご2は、例えば図示されない巻上機によって昇降路の内部を走行する。かご2は、床面5と、壁面6と、天井7と、を有する。かご2の内部の空間は、床面5、壁面6、および天井7によって囲われる。かご2の内部の空間は、例えば直方体状の形状である。かご2の床面5は、水平な平面である。かご2の壁面6は、例えば鉛直な平面である。かご2の天井7は、かご2の床面5より上方において床面5に対向する平面である。かご2は、かごドア8と、照明装置9と、空気調和装置10と、第1カメラ11aと、第2カメラ11bと、を備える。 Car 2 is a device that transports passengers between multiple floors by traveling vertically inside the hoistway. The car 2 travels inside the hoistway by, for example, a hoist (not shown). The basket 2 has a floor surface 5, a wall surface 6, and a ceiling 7. The space inside the car 2 is surrounded by a floor surface 5, a wall surface 6, and a ceiling 7. The space inside the car 2 has, for example, a rectangular parallelepiped shape. The floor surface 5 of the car 2 is a horizontal flat surface. The wall surface 6 of the car 2 is, for example, a vertical flat surface. The ceiling 7 of the car 2 is a plane facing the floor surface 5 above the floor surface 5 of the car 2. The car 2 includes a car door 8, a lighting device 9, an air conditioner 10, a first camera 11a, and a second camera 11b.
 かごドア8は、乗場が設けられる階床にかご2が停止しているときに、乗客が乗場からかご2の内部に乗降しうるように開閉する装置である。かごドア8は、かご2の壁面6に設けられる。かごドア8は、開閉するときに乗場ドアを連動して開閉させる。 The car door 8 is a device that opens and closes so that passengers can get on and off the inside of the car 2 from the landing when the car 2 is stopped on the floor where the landing is provided. The car door 8 is provided on the wall surface 6 of the car 2. When the car door 8 is opened and closed, the landing door is interlocked to open and close.
 照明装置9は、かご2の内部の空間を照らす装置である。照明装置9は、例えばかご2の天井7に設けられる。照明装置9は、光量を調整する機能を搭載する。 The lighting device 9 is a device that illuminates the space inside the car 2. The lighting device 9 is provided on the ceiling 7 of the car 2, for example. The lighting device 9 is equipped with a function of adjusting the amount of light.
 空気調和装置10は、例えば換気、調温、または調湿などによって、かご2の内部の空間の空気を調整する装置である。空気調和装置10は、例えばかご2の上部に設けられる。 The air conditioner 10 is a device that adjusts the air in the space inside the car 2 by, for example, ventilation, temperature control, or humidity control. The air conditioner 10 is provided, for example, in the upper part of the car 2.
 第1カメラ11aは、第1画像を撮影する装置である。第1画像は、かご2の床面5を含む画像である。第1カメラ11aは、例えばかご2の天井7に設けられる。あるいは、第1カメラ11aは、かご2の壁面6の上部に設けられてもよい。この例において、第1カメラ11aは、かご2の天井7の左奥側に設けられる。第1カメラ11aは、例えば広角カメラであってもよい。 The first camera 11a is a device that captures the first image. The first image is an image including the floor surface 5 of the car 2. The first camera 11a is provided, for example, on the ceiling 7 of the car 2. Alternatively, the first camera 11a may be provided on the upper portion of the wall surface 6 of the car 2. In this example, the first camera 11a is provided on the left back side of the ceiling 7 of the car 2. The first camera 11a may be, for example, a wide-angle camera.
 第2カメラ11bは、第2画像を撮影する装置である。第2画像は、かご2の床面5を含む画像である。第2カメラ11bは、例えばかご2の天井7に設けられる。あるいは、第2カメラ11bは、かご2の壁面6の上部に設けられてもよい。第2カメラ11bは、第1カメラ11aと異なる方向からかご2の床面5に向けられる。この例において、第2カメラ11bは、かご2の天井7の右奥側に設けられる。第2カメラ11bは、例えば広角カメラであってもよい。 The second camera 11b is a device that captures a second image. The second image is an image including the floor surface 5 of the car 2. The second camera 11b is provided, for example, on the ceiling 7 of the car 2. Alternatively, the second camera 11b may be provided on the upper portion of the wall surface 6 of the car 2. The second camera 11b is directed toward the floor surface 5 of the car 2 from a direction different from that of the first camera 11a. In this example, the second camera 11b is provided on the right back side of the ceiling 7 of the car 2. The second camera 11b may be, for example, a wide-angle camera.
 図1において、太い実線は、かご2の床面5の範囲を示す。かご2の床面5は、閉じた範囲の平面である。かご2の床面5は、水平な平面である。この例において、かご2の床面5は、矩形の平面である。この例において、かご2の床面5は、第1画像および第2画像の両方に全体が含まれる。 In FIG. 1, the thick solid line indicates the range of the floor surface 5 of the car 2. The floor surface 5 of the car 2 is a flat surface in a closed area. The floor surface 5 of the car 2 is a horizontal flat surface. In this example, the floor surface 5 of the car 2 is a rectangular flat surface. In this example, the floor surface 5 of the car 2 is entirely included in both the first image and the second image.
 図1において、太い破線は、第2平面の閉じた範囲を示す。第2平面は、床面5に重ならない平面である。第2平面は、例えば床面5に垂直な平面である。この例において、第2平面は、かごドア8の表面の一部の矩形の範囲である。なお、第2平面は、かごドア8の表面の全部の範囲であってもよい。第2平面は、かご2の壁面6の一部であってもよい。この例において、第2平面は、第1画像および第2画像の両方に全体が含まれる。 In FIG. 1, the thick broken line indicates the closed range of the second plane. The second plane is a plane that does not overlap the floor surface 5. The second plane is, for example, a plane perpendicular to the floor surface 5. In this example, the second plane is a rectangular area of a portion of the surface of the car door 8. The second plane may cover the entire surface of the car door 8. The second plane may be a part of the wall surface 6 of the car 2. In this example, the second plane is entirely included in both the first and second images.
 制御盤3は、かご2の動作を制御する装置である。かご2の動作は、例えば昇降路における走行、かごドア8の開閉、照明装置9の発光、および空気調和装置10の運転などを含む。制御盤3は、例えば昇降路の上部または下部などに設けられる。 The control panel 3 is a device that controls the operation of the car 2. The operation of the car 2 includes, for example, traveling on a hoistway, opening and closing a car door 8, emitting light from a lighting device 9, and operating an air conditioner 10. The control panel 3 is provided, for example, at the upper part or the lower part of the hoistway.
 乗客検出装置4は、かご2の内部などの乗客の有無を検出する装置である。乗客検出装置4は、入力部12と、変換部13と、パラメーター設定部14と、パラメーター記憶部15と、判定部16と、出力部17と、を備える。 The passenger detection device 4 is a device that detects the presence or absence of passengers inside the car 2. The passenger detection device 4 includes an input unit 12, a conversion unit 13, a parameter setting unit 14, a parameter storage unit 15, a determination unit 16, and an output unit 17.
 入力部12は、第1画像および第2画像の入力を受け付ける部分である。入力部12は、第1画像および第2画像の入力を受け付けうるように、第1カメラ11aおよび第2カメラ11bに接続される。 The input unit 12 is a part that receives inputs of the first image and the second image. The input unit 12 is connected to the first camera 11a and the second camera 11b so that the input of the first image and the second image can be accepted.
 変換部13は、第1画像および第2画像の変換を行う部分である。変換部13による変換は、第1画像に含まれるかご2の床面5の範囲および第2画像に含まれるかご2の床面5の範囲が互いに重なるようなホモグラフィ変換を含む。また、変換部13による変換は、レンズ歪み補正を含む。変換部13は、第1画像および第2画像を取得しうるように、入力部12に接続される。 The conversion unit 13 is a part that converts the first image and the second image. The conversion by the conversion unit 13 includes a homography transformation in which the range of the floor surface 5 of the car 2 included in the first image and the range of the floor surface 5 of the car 2 included in the second image overlap each other. Further, the conversion by the conversion unit 13 includes lens distortion correction. The conversion unit 13 is connected to the input unit 12 so that the first image and the second image can be acquired.
 パラメーター設定部14は、変換部13による変換のパラメーターを設定する部分である。パラメーター設定部14によるパラメーターの設定は、例えば第1画像および第2画像に基づいて行われる。このとき、パラメーター設定部14は、第1画像および第2画像を取得しうるように、入力部12に接続される。あるいは、パラメーター設定部14によるパラメーターの設定は、外部の入力装置18からの入力に基づいて行われてもよい。入力装置18は、例えばパーソナルコンピューターなどの情報端末である。入力装置18は、例えばエレベーターシステム1の保守員または管理者などによって操作される。 The parameter setting unit 14 is a part for setting conversion parameters by the conversion unit 13. The parameter setting by the parameter setting unit 14 is performed based on, for example, the first image and the second image. At this time, the parameter setting unit 14 is connected to the input unit 12 so that the first image and the second image can be acquired. Alternatively, the parameter setting by the parameter setting unit 14 may be performed based on the input from the external input device 18. The input device 18 is an information terminal such as a personal computer. The input device 18 is operated by, for example, a maintenance person or an administrator of the elevator system 1.
 パラメーター設定部14は、床面パラメーター設定部19と、歪みパラメーター設定部20と、を備える。床面パラメーター設定部19は、床面パラメーターを設定する部分である。床面パラメーターは、第1画像および第2画像に含まれるかご2の床面5の範囲を定めるパラメーターである。床面パラメーターは、例えば第1画像および第2画像における床面5の4隅の座標である。歪みパラメーター設定部20は、歪みパラメーターを設定する部分である。歪みパラメーターは、例えば歪み中心および歪み係数などのレンズ歪み補正に用いられるパラメーターである。パラメーター設定部14が設定するパラメーターは、床面パラメーターおよび歪みパラメーターを含む。 The parameter setting unit 14 includes a floor surface parameter setting unit 19 and a distortion parameter setting unit 20. The floor surface parameter setting unit 19 is a portion for setting floor surface parameters. The floor surface parameter is a parameter that defines the range of the floor surface 5 of the car 2 included in the first image and the second image. The floor surface parameters are, for example, the coordinates of the four corners of the floor surface 5 in the first image and the second image. The distortion parameter setting unit 20 is a portion for setting distortion parameters. The distortion parameter is a parameter used for lens distortion correction such as distortion center and distortion coefficient. The parameters set by the parameter setting unit 14 include floor surface parameters and distortion parameters.
 パラメーター記憶部15は、パラメーター設定部14が設定したパラメーターを記憶する部分である。パラメーター記憶部15は、設定されたパラメーターを取得しうるように、パラメーター設定部14に接続される。パラメーター記憶部15は、記憶しているパラメーターを出力しうるように、変換部13に接続される。 The parameter storage unit 15 is a unit that stores the parameters set by the parameter setting unit 14. The parameter storage unit 15 is connected to the parameter setting unit 14 so that the set parameters can be acquired. The parameter storage unit 15 is connected to the conversion unit 13 so that the stored parameters can be output.
 判定部16は、変換部13によるホモグラフィ変換の後の第1画像および第2画像の互いに重なるかご2の床面5の範囲の差分に基づいて、かご2の内部の乗客の有無を判定する部分である。判定部16は、ホモグラフィ変換の後の第1画像および第2画像を取得しうるように、変換部13に接続される。 The determination unit 16 determines the presence or absence of passengers inside the car 2 based on the difference in the range of the floor surface 5 of the car 2 that overlaps the first image and the second image after the homography conversion by the conversion unit 13. It is a part. The determination unit 16 is connected to the conversion unit 13 so that the first image and the second image after the homography conversion can be acquired.
 出力部17は、判定部16による判定結果を乗客検出装置4の外部の装置に出力する部分である。出力部17は、判定結果を出力しうるように、例えば制御盤3に接続される。 The output unit 17 is a part that outputs the determination result by the determination unit 16 to an external device of the passenger detection device 4. The output unit 17 is connected to, for example, a control panel 3 so that the determination result can be output.
 続いて、図2および図3を用いてパラメーター設定部14によるパラメーターの設定の例を説明する。
 図2は、実施の形態1に係る乗客検出装置における床面パラメーターの設定の例を示す図である。
 図3は、実施の形態1に係る乗客検出装置における歪みパラメーターの設定の例を示す図である。
Subsequently, an example of parameter setting by the parameter setting unit 14 will be described with reference to FIGS. 2 and 3.
FIG. 2 is a diagram showing an example of setting floor surface parameters in the passenger detection device according to the first embodiment.
FIG. 3 is a diagram showing an example of setting distortion parameters in the passenger detection device according to the first embodiment.
 図2を用いて、第1画像についての床面パラメーターの設定を説明する。図2において、第1画像の例が示される。 The setting of the floor surface parameter for the first image will be described with reference to FIG. In FIG. 2, an example of the first image is shown.
 床面パラメーターの設定は、例えば初期設定のとき、または保守点検のときに行われる。床面パラメーターを設定するときに、保守員は、かご2の床面5の4隅にマーカー21を配置する。マーカー21は、例えば予め定められた模様が表されるシートである。 Floor parameters are set, for example, at the time of initial setting or at the time of maintenance and inspection. When setting the floor surface parameters, the maintenance personnel place the markers 21 at the four corners of the floor surface 5 of the car 2. The marker 21 is, for example, a sheet on which a predetermined pattern is represented.
 第1カメラ11aは、第1画像を撮影する。入力部12は、第1カメラ11aからの第1画像の入力を受け付ける。 The first camera 11a captures the first image. The input unit 12 receives the input of the first image from the first camera 11a.
 パラメーター設定部14は、第1画像を入力部12から取得する。床面パラメーター設定部19は、パラメーター設定部14が取得した第1画像においてマーカー21を認識する。図2において、破線の枠は、床面パラメーター設定部19が認識しているマーカー21の位置を示す。床面パラメーター設定部19は、認識したマーカー21の位置によってかご2の床面5の4隅の位置を認識する。床面パラメーター設定部19は、認識した床面5の4隅の位置によって、第1画像における床面5の範囲を床面パラメーターとして設定する。 The parameter setting unit 14 acquires the first image from the input unit 12. The floor surface parameter setting unit 19 recognizes the marker 21 in the first image acquired by the parameter setting unit 14. In FIG. 2, the broken line frame indicates the position of the marker 21 recognized by the floor parameter setting unit 19. The floor surface parameter setting unit 19 recognizes the positions of the four corners of the floor surface 5 of the car 2 according to the positions of the recognized markers 21. The floor surface parameter setting unit 19 sets the range of the floor surface 5 in the first image as the floor surface parameter according to the recognized positions of the four corners of the floor surface 5.
 床面パラメーター設定部19は、第1画像についての床面パラメーターの設定と同様にして、第2画像についても床面パラメーターを設定する。 The floor surface parameter setting unit 19 sets the floor surface parameters for the second image in the same manner as the floor surface parameters for the first image.
 パラメーター記憶部15は、床面パラメーター設定部19が設定した床面パラメーターを取得する。パラメーター記憶部15は、取得した床面パラメーターを記憶する。 The parameter storage unit 15 acquires the floor surface parameters set by the floor surface parameter setting unit 19. The parameter storage unit 15 stores the acquired floor surface parameters.
 保守員は、配置したマーカー21を回収する。 The maintenance staff collects the placed marker 21.
 図3において、第1画像についての歪みパラメーターの設定を説明する。図3において、第1画像の例が示される。この例において、図3は、広角カメラである第1カメラ11aによって撮影された第1画像である。 FIG. 3 describes the setting of the distortion parameter for the first image. In FIG. 3, an example of the first image is shown. In this example, FIG. 3 is a first image taken by the first camera 11a, which is a wide-angle camera.
 歪みパラメーターの設定は、例えば初期設定のときに行われる。あるいは、歪みパラメーターの設定は、例えば判定部16がかご2の内部に乗客がいないと判定したときに行われてもよい。 The distortion parameter is set, for example, at the time of initial setting. Alternatively, the distortion parameter may be set, for example, when the determination unit 16 determines that there are no passengers inside the car 2.
 第1カメラ11aは、第1画像を撮影する。入力部12は、第1カメラ11aからの第1画像の入力を受け付ける。 The first camera 11a captures the first image. The input unit 12 receives the input of the first image from the first camera 11a.
 パネルAは、第1カメラ11aが撮影した第1画像の例を示す。かご2の内部を撮影した画像は、かご2の構造に由来する特徴を含む。かご2の構造に由来する特徴は、例えば床面5と壁面6との境界、または隣接する壁面6の間の境界などの実空間において直線状のエッジ22である。一方、第1カメラ11aが撮影した第1画像は、レンズ歪みによって歪んでいる。このため、実空間において直線状のエッジ22は、第1画像において曲線状のエッジ22となる。 Panel A shows an example of the first image taken by the first camera 11a. The image taken of the inside of the car 2 includes features derived from the structure of the car 2. A feature derived from the structure of the car 2 is a linear edge 22 in real space, such as the boundary between the floor surface 5 and the wall surface 6 or the boundary between adjacent wall surfaces 6. On the other hand, the first image taken by the first camera 11a is distorted due to lens distortion. Therefore, the linear edge 22 in the real space becomes the curved edge 22 in the first image.
 パラメーター設定部14は、第1画像を入力部12から取得する。歪みパラメーター設定部20は、パラメーター設定部14が取得した第1画像においてエッジ22を抽出する。 The parameter setting unit 14 acquires the first image from the input unit 12. The distortion parameter setting unit 20 extracts the edge 22 in the first image acquired by the parameter setting unit 14.
 パネルBにおいて、破線は、第1画像から抽出されたエッジ22を示す。歪みパラメーター設定部20は、レンズ歪みによって曲線状になっているエッジ22を、例えば折れ線で近似して抽出する。 In panel B, the broken line indicates the edge 22 extracted from the first image. The distortion parameter setting unit 20 extracts the edge 22 which is curved due to the lens distortion by approximating it with, for example, a polygonal line.
 歪みパラメーター設定部20は、折れ線で近似された曲線状のエッジ22が、直線状のエッジ22に近づくように、数値最適化の手法などによって歪みパラメーターを設定する。 The strain parameter setting unit 20 sets the strain parameter by a numerical optimization method or the like so that the curved edge 22 approximated by the polygonal line approaches the linear edge 22.
 パネルCは、設定された歪みパラメーターによってレンズ歪み補正が行われた第1画像の例を示す。実空間において直線状のエッジ22は、レンズ歪み補正の後の第1画像において直線状のエッジ22となる。 Panel C shows an example of the first image in which the lens distortion is corrected according to the set distortion parameters. The linear edge 22 in the real space becomes the linear edge 22 in the first image after the lens distortion correction.
 歪みパラメーター設定部20は、第1画像についての歪みパラメーターの設定と同様にして、第2画像についても歪みパラメーターを設定する。 The distortion parameter setting unit 20 sets the distortion parameter for the second image in the same manner as for setting the distortion parameter for the first image.
 パラメーター記憶部15は、歪みパラメーター設定部20が設定した歪みパラメーターを取得する。パラメーター記憶部15は、取得した歪みパラメーターを記憶する。 The parameter storage unit 15 acquires the distortion parameter set by the distortion parameter setting unit 20. The parameter storage unit 15 stores the acquired distortion parameter.
 続いて、図4を用いて、エレベーターシステム1の機能を説明する。
 図4は、実施の形態1に係る乗客検出装置における乗客検出の例を示す図である。
Subsequently, the function of the elevator system 1 will be described with reference to FIG.
FIG. 4 is a diagram showing an example of passenger detection in the passenger detection device according to the first embodiment.
 第1カメラ11aおよび第2カメラ11bは、かご2の内部の第1画像および第2画像を撮影する。このとき、かご2の内部に乗客が乗車している。 The first camera 11a and the second camera 11b capture the first image and the second image inside the car 2. At this time, a passenger is on the inside of the car 2.
 入力部12は、第1画像および第2画像の入力を受け付ける。変換部13は、入力された第1画像および第2画像を取得する。変換部13は、パラメーター記憶部15が記憶しているパラメーターを取得する。変換部13は、第1画像および第2画像の各々について、パラメーター記憶部15から取得した歪みパラメーターに基づいて、レンズ歪み補正の変換を行う。 The input unit 12 accepts the input of the first image and the second image. The conversion unit 13 acquires the input first image and the second image. The conversion unit 13 acquires the parameters stored in the parameter storage unit 15. The conversion unit 13 converts the lens distortion correction for each of the first image and the second image based on the distortion parameters acquired from the parameter storage unit 15.
 変換部13は、レンズ歪み補正の変換を行った第1画像および第2画像について、パラメーター記憶部15から取得した床面パラメーターに基づいて、かご2の床面5の範囲が互いに重なるようにホモグラフィ変換を行う。この例において、変換部13は、第1画像および第2画像におけるかご2の床面5の範囲が互いに形状および寸法の等しい矩形の範囲となるようにホモグラフィ変換を行う。ホモグラフィ変換によって、第1カメラ11aおよび第2カメラ11bの方向からかご2の床面5に射影された第1画像および第2画像が得られる。このとき、第1画像および第2画像は、かご2の床面5の範囲の部分が切り出される。 The conversion unit 13 homogenizes the first image and the second image that have undergone lens distortion correction conversion so that the ranges of the floor surface 5 of the car 2 overlap each other based on the floor surface parameters acquired from the parameter storage unit 15. Perform graphic conversion. In this example, the conversion unit 13 performs homography conversion so that the range of the floor surface 5 of the car 2 in the first image and the second image is a rectangular range having the same shape and dimensions. By the homography transformation, the first image and the second image projected on the floor surface 5 of the car 2 from the directions of the first camera 11a and the second camera 11b are obtained. At this time, in the first image and the second image, a portion of the floor surface 5 of the car 2 is cut out.
 第1カメラ11aおよび第2カメラ11bは互いに異なる方向からかご2の床面5を撮影している。このため、かご2の床面5の上に乗客がいる場合に、ホモグラフィ変換の後の第1画像および第2画像は、互いに異なる画像となる。一方、かご2の床面5は平面であるため、かご2の床面5の上に乗客がいない場合に、ホモグラフィ変換の後の第1画像および第2画像は、互いに類似する画像となる。 The first camera 11a and the second camera 11b are photographing the floor surface 5 of the car 2 from different directions. Therefore, when there are passengers on the floor surface 5 of the car 2, the first image and the second image after the homography conversion are different images from each other. On the other hand, since the floor surface 5 of the car 2 is a flat surface, the first image and the second image after the homography conversion become images similar to each other when there are no passengers on the floor surface 5 of the car 2. ..
 判定部16は、ホモグラフィ変換の後の第1画像および第2画像を取得する。判定部16は、第1画像および第2画像の間の非類似度を算出する。判定部16は、例えば次のように非類似度を算出する。 The determination unit 16 acquires the first image and the second image after the homography conversion. The determination unit 16 calculates the degree of dissimilarity between the first image and the second image. The determination unit 16 calculates the dissimilarity as follows, for example.
 判定部16は、取得した第1画像および第2画像の差分画像を生成する。差分画像は、例えば第1画像および第2画像の間において画素ごとの輝度値の差分をとることによって生成される。判定部16は、例えば差分画像の輝度値の絶対値または平方値の平均値、中央値、または最大値などによって非類似度を算出する。判定部16は、この他の方法によって非類似度を算出してもよい。 The determination unit 16 generates a difference image between the acquired first image and the second image. The difference image is generated, for example, by taking the difference in the luminance value for each pixel between the first image and the second image. The determination unit 16 calculates the dissimilarity based on, for example, the absolute value or the average value, the median value, or the maximum value of the square values of the brightness values of the difference images. The determination unit 16 may calculate the dissimilarity by another method.
 判定部16は、算出した非類似度が予め設定された閾値より大きい場合に、かご2の内部に乗客がいると判定する。一方、判定部16は、算出した非類似度が予め設定された閾値以下の場合に、かご2の内部に乗客がいないと判定する。 The determination unit 16 determines that there are passengers inside the car 2 when the calculated dissimilarity is larger than a preset threshold value. On the other hand, the determination unit 16 determines that there are no passengers inside the car 2 when the calculated dissimilarity is equal to or less than a preset threshold value.
 出力部17は、かご2の内部の乗客の有無の判定結果を判定部16から取得する。出力部17は、取得した判定結果を制御盤3に出力する。 The output unit 17 acquires the determination result of the presence or absence of passengers inside the car 2 from the determination unit 16. The output unit 17 outputs the acquired determination result to the control panel 3.
 制御盤3は、入力された判定結果に基づいて、かご2の動作を制御する。 The control panel 3 controls the operation of the car 2 based on the input determination result.
 例えば、入力される判定結果がかご2の内部に乗客がいないことを表すときに、制御盤3は、かご2の走行速度を高くする。あるいは、このときに、制御盤3は、かご2の走行速度の上限を高くしてもよい。 For example, when the input determination result indicates that there are no passengers inside the car 2, the control panel 3 increases the traveling speed of the car 2. Alternatively, at this time, the control panel 3 may increase the upper limit of the traveling speed of the car 2.
 例えば、入力される判定結果がかご2の内部に乗客がいないことを表すときに、制御盤3は、空気調和装置10の運転を停止させる。あるいは、このときに、制御盤3は、空気調和装置10の運転を弱くしてもよい。一方、制御盤3は、入力される判定結果がかご2の内部に乗客がいることを表すときに、空気調和装置10の運転を開始させる。 For example, when the input determination result indicates that there are no passengers inside the car 2, the control panel 3 stops the operation of the air conditioner 10. Alternatively, at this time, the control panel 3 may weaken the operation of the air conditioner 10. On the other hand, the control panel 3 starts the operation of the air conditioner 10 when the input determination result indicates that there are passengers inside the car 2.
 例えば、かご2がかごドア8を開いて停止している階床において当該かご2に乗場呼びが登録されていないときに、入力される判定結果がかご2の内部に乗客がいないことを表す場合に、制御盤3は、かごドア8が開いている時間を短くする。 For example, when the landing call is not registered in the car 2 on the floor where the car 2 is stopped by opening the car door 8, the input determination result indicates that there are no passengers inside the car 2. In addition, the control panel 3 shortens the time during which the car door 8 is open.
 また、地震計が地震を検出するときに、機器の異常を診断するための診断運転に移行するエレベーターシステム1がある。このようなエレベーターシステム1において、入力される判定結果がかご2の内部に乗客がいることを表すときに、制御盤3は、診断運転への移行を制限する。すなわち、かご2に乗客が乗車しているときに地震が発生した場合においても、制御盤3は、かご2に乗客が乗車していないと判定されるまで診断運転を行わない。 In addition, there is an elevator system 1 that shifts to a diagnostic operation for diagnosing an abnormality of equipment when the seismograph detects an earthquake. In such an elevator system 1, when the input determination result indicates that there are passengers inside the car 2, the control panel 3 limits the transition to the diagnostic operation. That is, even if an earthquake occurs while a passenger is in the car 2, the control panel 3 does not perform the diagnostic operation until it is determined that the passenger is not in the car 2.
 続いて、図5を用いて乗客検出装置4の動作の例を説明する。
 図5は、実施の形態1に係る乗客検出装置の動作の例を示すフローチャートである。
Subsequently, an example of the operation of the passenger detection device 4 will be described with reference to FIG.
FIG. 5 is a flowchart showing an example of the operation of the passenger detection device according to the first embodiment.
 ステップS1において、入力部12は、第1カメラ11aから第1画像を取得する。また、入力部12は、第2カメラ11bから第2画像を取得する。その後、乗客検出装置4の動作は、ステップS2に進む。 In step S1, the input unit 12 acquires the first image from the first camera 11a. Further, the input unit 12 acquires a second image from the second camera 11b. After that, the operation of the passenger detection device 4 proceeds to step S2.
 ステップS2において、変換部13は、入力部12が取得した第1画像および第2画像についてレンズ歪み補正の変換を行う。その後、乗客検出装置4の動作は、ステップS3に進む。 In step S2, the conversion unit 13 converts the lens distortion correction for the first image and the second image acquired by the input unit 12. After that, the operation of the passenger detection device 4 proceeds to step S3.
 ステップS3において、変換部13は、レンズ歪み補正が行われた第1画像および第2画像についてホモグラフィ変換を行う。その後、乗客検出装置4の動作は、ステップS4に進む。 In step S3, the conversion unit 13 performs homography conversion on the first image and the second image to which the lens distortion has been corrected. After that, the operation of the passenger detection device 4 proceeds to step S4.
 ステップS4において、判定部16は、ホモグラフィ変換が行われた第1画像および第2画像の非類似度を算出する。その後、乗客検出装置4の動作は、ステップS5に進む。 In step S4, the determination unit 16 calculates the degree of dissimilarity between the first image and the second image that have undergone homography conversion. After that, the operation of the passenger detection device 4 proceeds to step S5.
 ステップS5において、判定部16は、算出した非類似度が予め設定された閾値より大きいかを判定する。判定結果がYesの場合に、乗客検出装置4の動作は、ステップS6に進む。判定結果がNoの場合に、乗客検出装置4の動作は、ステップS7に進む。 In step S5, the determination unit 16 determines whether the calculated dissimilarity is greater than a preset threshold value. When the determination result is Yes, the operation of the passenger detection device 4 proceeds to step S6. When the determination result is No, the operation of the passenger detection device 4 proceeds to step S7.
 ステップS6において、判定部16は、かご2の内部に乗客がいると判定する。その後、乗客検出装置4の動作は、終了する。 In step S6, the determination unit 16 determines that there are passengers inside the car 2. After that, the operation of the passenger detection device 4 ends.
 ステップS7において、判定部16は、かご2の内部に乗客がいないと判定する。その後、乗客検出装置4の動作は、終了する。 In step S7, the determination unit 16 determines that there are no passengers inside the car 2. After that, the operation of the passenger detection device 4 ends.
 以上に説明したように、実施の形態1に係る乗客検出装置4は、入力部12と、変換部13と、判定部16と、を備える。入力部12は、第1画像および第2画像の入力を受け付ける。第1画像は、エレベーターのかご2の床面5を含む。第1画像は、第1カメラ11aに撮影される。第1カメラ11aは、かご2に設けられる。第2画像は、かご2の床面5を含む。第2画像は、第2カメラ11bに第1カメラ11aと異なる方向から撮影される。第2カメラ11bは、かご2に設けられる。変換部13は、第1画像に含まれるかご2の床面5の範囲および第2画像に含まれるかご2の床面5の範囲が互いに重なるように、第1画像および第2画像にホモグラフィ変換を行う。判定部16は、変換部13によるホモグラフィ変換の後の第1画像および第2画像の互いに重なるかご2の床面5の範囲の差分に基づいて、かご2の内部の乗客の有無を判定する。 As described above, the passenger detection device 4 according to the first embodiment includes an input unit 12, a conversion unit 13, and a determination unit 16. The input unit 12 accepts inputs of the first image and the second image. The first image includes the floor surface 5 of the elevator car 2. The first image is taken by the first camera 11a. The first camera 11a is provided in the car 2. The second image includes the floor surface 5 of the car 2. The second image is taken by the second camera 11b from a direction different from that of the first camera 11a. The second camera 11b is provided in the car 2. The conversion unit 13 homographs the first image and the second image so that the range of the floor surface 5 of the car 2 included in the first image and the range of the floor surface 5 of the car 2 included in the second image overlap each other. Perform the conversion. The determination unit 16 determines the presence or absence of passengers inside the car 2 based on the difference in the range of the floor surface 5 of the car 2 that overlaps the first image and the second image after the homography conversion by the conversion unit 13. ..
 また、実施の形態1に係るエレベーターシステム1は、かご2と、制御盤3と、入力部12と、変換部13と、判定部16と、出力部17と、を備える。かご2は、昇降路の内部を走行することで、乗客を輸送する。昇降路は、複数の階床にわたって設けられる。乗客は、開閉するかごドア8からかご2の内部に乗降する。制御盤3は、入力されるかご2の内部の乗客の有無の判定結果に基づいてかご2の動作を制御する。入力部12は、第1画像および第2画像の入力を受け付ける。第1画像は、かご2の床面5を含む。第1画像は、第1カメラ11aに撮影される。第1カメラ11aは、かご2に設けられる。第2画像は、かご2の床面5を含む。第2画像は、第2カメラ11bに第1カメラ11aと異なる方向から撮影される。第2カメラ11bは、かご2に設けられる。変換部13は、第1画像に含まれるかご2の床面5の範囲および第2画像に含まれるかご2の床面5の範囲が互いに重なるように、第1画像および第2画像にホモグラフィ変換を行う。判定部16は、変換部13によるホモグラフィ変換の後の第1画像および第2画像の互いに重なるかご2の床面5の範囲の差分に基づいて、かご2の内部の乗客の有無を判定する。出力部17は、判定部16による判定結果を制御盤3に出力する。 Further, the elevator system 1 according to the first embodiment includes a car 2, a control panel 3, an input unit 12, a conversion unit 13, a determination unit 16, and an output unit 17. The car 2 transports passengers by traveling inside the hoistway. The hoistway is provided over multiple floors. Passengers get on and off the inside of the car 2 through the car door 8 that opens and closes. The control panel 3 controls the operation of the car 2 based on the input determination result of the presence or absence of passengers inside the car 2. The input unit 12 accepts inputs of the first image and the second image. The first image includes the floor surface 5 of the car 2. The first image is taken by the first camera 11a. The first camera 11a is provided in the car 2. The second image includes the floor surface 5 of the car 2. The second image is taken by the second camera 11b from a direction different from that of the first camera 11a. The second camera 11b is provided in the car 2. The conversion unit 13 homographs the first image and the second image so that the range of the floor surface 5 of the car 2 included in the first image and the range of the floor surface 5 of the car 2 included in the second image overlap each other. Perform the conversion. The determination unit 16 determines the presence or absence of passengers inside the car 2 based on the difference in the range of the floor surface 5 of the car 2 that overlaps the first image and the second image after the homography conversion by the conversion unit 13. .. The output unit 17 outputs the determination result by the determination unit 16 to the control panel 3.
 ホモグラフィ変換によって、第1カメラ11aおよび第2カメラ11bの方向からかご2の床面5に射影された第1画像および第2画像が得られる。このとき、第1画像および第2画像の差分は、かご2の床面5の上の乗客の有無によって変化する。かご2に乗車している乗客は、閉じた領域である床面5の上にいる。このため、ホモグラフィ変換の後の第1画像および第2画像の間の差分に基づいて、かご2の内部の乗客の有無が判定できる。このとき、判定部16は、背景画像を必要としない。これにより、かご2の内部の環境が変化する場合においても、乗客の誤検出が抑制される。ここで、かご2の内部の環境の変化は、例えば照明装置9の光量の変化、およびかご2が窓を有する場合の時間または天候による外部の明るさの変化などを含む。また、かご2の内部の環境の変化は、かご2の壁面6または床面5などの内装の変化を含む。内装の変化は、例えばポスターなどの掲示物の変化、またはサイネージなどの動的な表示の変化を含む。 By the homography transformation, the first image and the second image projected on the floor surface 5 of the car 2 from the directions of the first camera 11a and the second camera 11b can be obtained. At this time, the difference between the first image and the second image changes depending on the presence or absence of passengers on the floor surface 5 of the car 2. The passengers in the car 2 are on the floor surface 5, which is a closed area. Therefore, the presence or absence of passengers inside the car 2 can be determined based on the difference between the first image and the second image after the homography transformation. At this time, the determination unit 16 does not need a background image. As a result, even when the internal environment of the car 2 changes, erroneous detection of passengers is suppressed. Here, changes in the environment inside the car 2 include, for example, changes in the amount of light of the lighting device 9, and changes in the external brightness due to time or weather when the car 2 has a window. Further, the change in the internal environment of the car 2 includes the change in the interior such as the wall surface 6 or the floor surface 5 of the car 2. Changes in interiors include changes in notices such as posters, or changes in dynamic display such as signage.
 また、変換部13は、ホモグラフィ変換の前に第1画像および第2画像の各々についてレンズ歪み補正を行う。 Further, the conversion unit 13 corrects the lens distortion for each of the first image and the second image before the homography conversion.
 かご2の内部を撮影する場合に、かご2の全体を撮影しうるように広角カメラが用いられることがある。この場合においても、判定部16による乗客の有無の検出の精度の低下を抑えることができる。 When photographing the inside of the car 2, a wide-angle camera may be used so that the entire car 2 can be photographed. Even in this case, it is possible to suppress a decrease in the accuracy of detecting the presence or absence of passengers by the determination unit 16.
 また、乗客検出装置4は、歪みパラメーター設定部20を備える。パラメーター設定部14は、入力部12が受け付けた第1画像および第2画像に基づいて歪みパラメーターを設定する。変換部13は、歪みパラメーター設定部20が設定した歪みパラメーターに基づいてレンズ歪み補正を行う。
 また、乗客検出装置4は、床面パラメーター設定部19を備える。床面パラメーター設定部19は、入力部12が受け付けた第1画像および第2画像に基づいて床面パラメーターを設定する。床面パラメーターは、第1画像および第2画像に含まれるかご2の床面5の範囲を定めるパラメーターである。変換部13は、床面パラメーター設定部19が設定した床面パラメーターに基づいてホモグラフィ変換を行う。
Further, the passenger detection device 4 includes a distortion parameter setting unit 20. The parameter setting unit 14 sets the distortion parameter based on the first image and the second image received by the input unit 12. The conversion unit 13 corrects the lens distortion based on the distortion parameter set by the distortion parameter setting unit 20.
Further, the passenger detection device 4 includes a floor surface parameter setting unit 19. The floor surface parameter setting unit 19 sets the floor surface parameters based on the first image and the second image received by the input unit 12. The floor surface parameter is a parameter that defines the range of the floor surface 5 of the car 2 included in the first image and the second image. The conversion unit 13 performs homography conversion based on the floor surface parameters set by the floor surface parameter setting unit 19.
 歪みパラメーター設定部20および床面パラメーター設定部19は、撮影された画像に基づいて歪みパラメーターおよび床面パラメーターを設定する。このため、例えば保守員は、歪みパラメーターまたは床面パラメーターを直接調整しなくてもよい。乗客検出装置4は、エレベーターシステム1に適用しやすくなる。 The distortion parameter setting unit 20 and the floor surface parameter setting unit 19 set the distortion parameter and the floor surface parameter based on the captured image. For this reason, for example, maintenance personnel do not have to directly adjust strain parameters or floor parameters. The passenger detection device 4 can be easily applied to the elevator system 1.
 また、床面パラメーター設定部19は、第1画像および第2画像においてマーカー21を認識する場合に、マーカー21の位置に基づいて床面パラメーターを設定する。 Further, when the floor surface parameter setting unit 19 recognizes the marker 21 in the first image and the second image, the floor surface parameter setting unit 19 sets the floor surface parameter based on the position of the marker 21.
 これにより、床面パラメーターは、マーカー21の配置によって容易に校正される。このため、判定部16による判定の精度を容易に保つことができる。 This allows the floor parameters to be easily calibrated by the placement of the markers 21. Therefore, the accuracy of the determination by the determination unit 16 can be easily maintained.
 また、制御盤3は、入力される判定結果がかご2の内部に乗客がいないことを表すときに、かご2の走行速度を高くする。
 また、制御盤3は、かご2がかごドア8を開いて停止している階床において当該かご2に乗場呼びが登録されていないときに、入力される判定結果がかご2の内部に乗客がいないことを表す場合に、かごドア8が開いている時間を短くする。
Further, the control panel 3 increases the traveling speed of the car 2 when the input determination result indicates that there are no passengers inside the car 2.
Further, in the control panel 3, when the landing call is not registered in the car 2 on the floor where the car 2 is stopped by opening the car door 8, the passenger can input the determination result inside the car 2. When indicating that the car door 8 is not open, the time during which the car door 8 is open is shortened.
 かご2の内部に乗客がいないときに、制御盤3は、かご2の運行効率を高める運転をさせることができる。これにより、エレベーターシステム1の利用効率が高くなる。 When there are no passengers inside the car 2, the control panel 3 can be operated to improve the operation efficiency of the car 2. As a result, the utilization efficiency of the elevator system 1 is increased.
 また、制御盤3は、入力される判定結果がかご2の内部に乗客がいることを表すときに、診断運転への移行を制限する。 Further, the control panel 3 limits the transition to the diagnostic operation when the input determination result indicates that there are passengers inside the car 2.
 これにより、乗客がかご2に乗車しているときに地震が発生した場合においても、診断運転への移行によって乗客がかご2に閉じ込められることが予防される。 As a result, even if an earthquake occurs while the passenger is in the car 2, the shift to the diagnostic driving prevents the passenger from being trapped in the car 2.
 また、かご2は、内部の空間の空気を調整する空気調和装置10を備える。制御盤3は、入力される判定結果がかご2の内部に乗客がいないことを表すときに、空気調和装置10の運転を停止させる。 Further, the car 2 is provided with an air conditioner 10 for adjusting the air in the internal space. The control panel 3 stops the operation of the air conditioner 10 when the input determination result indicates that there are no passengers inside the car 2.
 かご2の内部に乗客がいないときに、制御盤3は、空気調和装置10の無用な運転を控えさせる。これにより、エレベーターシステム1のエネルギー効率が高くなる。 When there are no passengers inside the car 2, the control panel 3 refrains from unnecessary operation of the air conditioner 10. This increases the energy efficiency of the elevator system 1.
 なお、判定部16は、第1画像または第2画像の少なくともいずれかにおいて乗客の動きを検出する場合に、ホモグラフィ変換の前にかご2の内部に乗客がいると判定してもよい。乗客の動きは、例えばフレーム差分法などによって検出される。 When the determination unit 16 detects the movement of a passenger in at least one of the first image and the second image, it may determine that the passenger is inside the car 2 before the homography conversion. Passenger movements are detected, for example, by the frame difference method.
 かご2の内部において動くものは、乗客または乗客が持ち込んだ物体であると推定される。このため、かご2の内部において動きが検出されることによって、乗客が乗車していると検出することができる。このとき、乗客検出装置4は、ホモグラフィ変換などの画像処理を行うことなく乗客の有無を検出できる。乗客検出装置4は、乗客検出において、画像処理による計算負荷を低減できる。なお、かご2の内部において乗客が停止している場合においても、ホモグラフィ変換の後の画像の差分に基づいて、判定部16は、乗客の有無を判定できる。 It is presumed that what moves inside the car 2 is a passenger or an object brought in by the passenger. Therefore, it is possible to detect that a passenger is on board by detecting the movement inside the car 2. At this time, the passenger detection device 4 can detect the presence or absence of passengers without performing image processing such as homography conversion. The passenger detection device 4 can reduce the calculation load due to image processing in passenger detection. Even when the passengers are stopped inside the car 2, the determination unit 16 can determine the presence or absence of passengers based on the difference between the images after the homography conversion.
 また、判定部16は、第1画像および第2画像から抽出されるかご2の構造に由来する特徴のずれに基づいて、第1画像または第2画像におけるかご2の床面5の範囲の位置のずれを検出してもよい。 Further, the determination unit 16 determines the position of the floor surface 5 of the car 2 in the first image or the second image based on the deviation of the features derived from the structure of the car 2 extracted from the first image and the second image. The deviation may be detected.
 判定部16は、例えば次のようにずれを検出する。判定部16は、かご2の構造に由来する特徴として、例えば床面5と壁面6との境界などの実空間において直線状のエッジ22を第1画像および第2画像から抽出する。判定部16は、抽出されたエッジ22の画像における位置を記憶する。判定部16は、再びエッジ22の位置を抽出するときに、抽出したエッジ22の位置と記憶しているエッジ22の位置との間に差異があるかを判定する。判定部16は、差異があると判定するときに、かご2の床面5の範囲の位置のずれを検出する。判定部16は、検出したずれに基づいてかご2の床面5の範囲の位置を補正してもよい。判定部16は、ずれを検出するときに、管理者などに報知してもよい。これにより、第1カメラ11aおよび第2カメラ11bの位置または姿勢のずれなどによる乗客の誤検出が予防される。 The determination unit 16 detects the deviation as follows, for example. As a feature derived from the structure of the car 2, the determination unit 16 extracts a linear edge 22 from the first image and the second image in a real space such as a boundary between the floor surface 5 and the wall surface 6. The determination unit 16 stores the position of the extracted edge 22 in the image. When the position of the edge 22 is extracted again, the determination unit 16 determines whether there is a difference between the position of the extracted edge 22 and the position of the stored edge 22. When determining that there is a difference, the determination unit 16 detects a deviation in the position of the floor surface 5 of the car 2. The determination unit 16 may correct the position of the floor surface 5 of the car 2 based on the detected deviation. The determination unit 16 may notify the administrator or the like when detecting the deviation. This prevents erroneous detection of passengers due to misalignment of the positions or postures of the first camera 11a and the second camera 11b.
 また、かご2は、内部の空間を照らす光量が調整可能な照明装置9を備える。制御盤3は、入力される判定結果がかご2の内部に乗客がいることを表すときに、照明装置9の光量を調整してもよい。このとき、変換部13は、照明装置9の光量の調整の後に撮影された第1画像および第2画像についてかご2の床面5の範囲が互いに重なるようにホモグラフィ変換を行う。判定部16は、変換部13による当該ホモグラフィ変換の後の第1画像および第2画像の互いに重なるかご2の床面5の範囲の差分に基づいてかご2の内部の乗客の有無を再び判定する。 Further, the car 2 is provided with a lighting device 9 in which the amount of light that illuminates the internal space can be adjusted. The control panel 3 may adjust the amount of light of the lighting device 9 when the input determination result indicates that there are passengers inside the car 2. At this time, the conversion unit 13 performs homography conversion on the first image and the second image taken after adjusting the light intensity of the lighting device 9 so that the ranges of the floor surface 5 of the car 2 overlap each other. The determination unit 16 again determines the presence or absence of passengers inside the car 2 based on the difference in the range of the floor surface 5 of the car 2 that overlaps the first image and the second image after the homography conversion by the conversion unit 13. To do.
 乗客検出装置4による乗客検出は、第1カメラ11aおよび第2カメラ11bが撮影する画像に基づいて行われる。このため、かご2の内部の照明不足による画像の黒つぶれ、およびかご2の内部の照明過剰による画像の白飛びなどが発生しうる。このとき、実際には乗客が乗車していないにも関わらず、判定部16は、乗客がいるとして誤検出する可能性がある。このような場合に、制御盤3によって、照明装置9の光量が調整される。その後、乗客検出装置4によって再び乗客検出が行われる。これにより、照明条件による乗客の誤検出が抑制される。乗客検出装置4は、乗客が乗車していないことをより確実に検出できる。このため、エレベーターシステム1の運行効率およびエネルギー効率がより効果的に高まる。 Passenger detection by the passenger detection device 4 is performed based on the images taken by the first camera 11a and the second camera 11b. For this reason, blackout of the image due to insufficient lighting inside the car 2 and whiteout of the image due to excessive lighting inside the car 2 may occur. At this time, the determination unit 16 may erroneously detect that there are passengers even though the passengers are not actually on board. In such a case, the control panel 3 adjusts the amount of light of the lighting device 9. After that, the passenger detection device 4 performs passenger detection again. As a result, erroneous detection of passengers due to lighting conditions is suppressed. The passenger detection device 4 can more reliably detect that a passenger is not on board. Therefore, the operation efficiency and energy efficiency of the elevator system 1 are more effectively enhanced.
 また、マーカー21は、床面5の範囲を定められるものであればよい。マーカー21は、例えば直線状の模様が表され、矩形である床面5の4辺に沿って配置されるシートであってもよい。あるいは、マーカー21は、かご2の床面5に表される模様であってもよい。 Further, the marker 21 may be any one that can determine the range of the floor surface 5. The marker 21 may be, for example, a sheet that represents a linear pattern and is arranged along four sides of a rectangular floor surface 5. Alternatively, the marker 21 may have a pattern represented on the floor surface 5 of the car 2.
 また、床面5は、かご2の内部の乗客が上に乗る閉じた平面であればよい。床面5は、例えば円弧などの曲線状の境界をもつ平面であってもよい。 Further, the floor surface 5 may be a closed flat surface on which passengers inside the car 2 ride. The floor surface 5 may be a plane having a curved boundary such as an arc.
 また、第1カメラ11aおよび第2カメラ11bから出力される第1画像および第2画像のレンズ歪みが小さい場合に、変換部13は、レンズ歪み補正を行わなくてもよい。例えば、第1カメラ11aおよび第2カメラ11b自体が、レンズ歪み補正の機能を搭載していてもよい。 Further, when the lens distortion of the first image and the second image output from the first camera 11a and the second camera 11b is small, the conversion unit 13 does not have to perform the lens distortion correction. For example, the first camera 11a and the second camera 11b themselves may be equipped with a lens distortion correction function.
 また、エレベーターシステム1が設けられる建築物は、エレベーターシステム1の機械室を有していてもよい。このとき、例えば巻上機および制御盤3は、機械室に設けられていてもよい。 Further, the building provided with the elevator system 1 may have a machine room of the elevator system 1. At this time, for example, the hoisting machine and the control panel 3 may be provided in the machine room.
 また、乗客検出装置4は、例えばかご2の上部、制御装置、昇降路、または機械室などに配置されてもよい。乗客検出装置4の一部または全部の機能は、個別のハードウェアによって実現されてもよい。乗客検出装置4の一部または全部の機能は、例えば第1カメラ11a、第2カメラ11b、もしくはかご2に設けられるその他の機器、制御盤3、またはその他のエレベーターシステム1の機器によって実現されてもよい。 Further, the passenger detection device 4 may be arranged, for example, in the upper part of the car 2, the control device, the hoistway, the machine room, or the like. Some or all of the functions of the passenger detection device 4 may be realized by individual hardware. Some or all of the functions of the passenger detection device 4 are realized by, for example, the first camera 11a, the second camera 11b, or other equipment provided in the car 2, the control panel 3, or other equipment of the elevator system 1. May be good.
 続いて、図6を用いて乗客検出装置4のハードウェア構成の例について説明する。
 図6は、実施の形態1に係る乗客検出装置の主要部のハードウェア構成を示す図である。
Subsequently, an example of the hardware configuration of the passenger detection device 4 will be described with reference to FIG.
FIG. 6 is a diagram showing a hardware configuration of a main part of the passenger detection device according to the first embodiment.
 乗客検出装置4の各機能は、処理回路により実現し得る。処理回路は、少なくとも1つのプロセッサ4bと少なくとも1つのメモリ4cとを備える。処理回路は、プロセッサ4bおよびメモリ4cと共に、あるいはそれらの代用として、少なくとも1つの専用のハードウェア4aを備えてもよい。 Each function of the passenger detection device 4 can be realized by a processing circuit. The processing circuit includes at least one processor 4b and at least one memory 4c. The processing circuit may include at least one dedicated hardware 4a with or as a substitute for the processor 4b and the memory 4c.
 処理回路がプロセッサ4bとメモリ4cとを備える場合、乗客検出装置4の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。そのプログラムはメモリ4cに格納される。プロセッサ4bは、メモリ4cに記憶されたプログラムを読み出して実行することにより、乗客検出装置4の各機能を実現する。 When the processing circuit includes the processor 4b and the memory 4c, each function of the passenger detection device 4 is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. The program is stored in the memory 4c. The processor 4b realizes each function of the passenger detection device 4 by reading and executing the program stored in the memory 4c.
 プロセッサ4bは、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。メモリ4cは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等により構成される。 The processor 4b is also referred to as a CPU (Central Processing Unit), a processing device, an arithmetic unit, a microprocessor, a microcomputer, and a DSP. The memory 4c is composed of, for example, a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD, or the like.
 処理回路が専用のハードウェア4aを備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。 When the processing circuit is provided with dedicated hardware 4a, the processing circuit is realized by, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
 乗客検出装置4の各機能は、それぞれ処理回路で実現することができる。あるいは、乗客検出装置4の各機能は、まとめて処理回路で実現することもできる。乗客検出装置4の各機能について、一部を専用のハードウェア4aで実現し、他部をソフトウェアまたはファームウェアで実現してもよい。このように、処理回路は、ハードウェア4a、ソフトウェア、ファームウェア、またはこれらの組み合わせで乗客検出装置4の各機能を実現する。 Each function of the passenger detection device 4 can be realized by a processing circuit. Alternatively, each function of the passenger detection device 4 can be collectively realized by a processing circuit. For each function of the passenger detection device 4, a part may be realized by the dedicated hardware 4a, and the other part may be realized by software or firmware. In this way, the processing circuit realizes each function of the passenger detection device 4 by hardware 4a, software, firmware, or a combination thereof.
 実施の形態2.
 実施の形態2では、実施の形態1で開示された例と相違する点について詳しく説明する。実施の形態2で説明しない特徴については、実施の形態1で開示された例のいずれの特徴が採用されてもよい。
Embodiment 2.
In the second embodiment, the differences from the examples disclosed in the first embodiment will be described in detail. As for the features not described in the second embodiment, any of the features of the examples disclosed in the first embodiment may be adopted.
 図7は、実施の形態2に係る乗客検出装置における乗客検出の例を示す図である。 FIG. 7 is a diagram showing an example of passenger detection in the passenger detection device according to the second embodiment.
 図7において、第1画像および第2画像の例が示される。図7の第1画像および第2画像において、太い実線は、床面5の範囲を示す。図7の第1画像および第2画像において、破線は、第2平面の閉じた範囲を示す。この例において、第2平面は、かごドア8の表面の一部である。 FIG. 7 shows examples of the first image and the second image. In the first image and the second image of FIG. 7, the thick solid line indicates the range of the floor surface 5. In the first and second images of FIG. 7, the dashed line indicates the closed area of the second plane. In this example, the second plane is part of the surface of the car door 8.
 変換部13は、ホモグラフィ変換などによって、第1カメラ11aおよび第2カメラ11bの方向からかご2の床面5に射影された第1画像および第2画像を生成する。判定部16は、かご2の床面5に射影された第1画像および第2画像について床面5の差分画像を生成する。 The conversion unit 13 generates a first image and a second image projected on the floor surface 5 of the car 2 from the directions of the first camera 11a and the second camera 11b by homography conversion or the like. The determination unit 16 generates a difference image of the floor surface 5 with respect to the first image and the second image projected on the floor surface 5 of the car 2.
 この例において、乗客は、かごドア8の前に立って乗車している。かごドア8の前は、床面5の境界の近傍である。このため、床面5の差分画像において、利用者が乗車していることによる差分は小さくなる。 In this example, the passenger is standing in front of the car door 8 and boarding. The front of the car door 8 is near the boundary of the floor surface 5. Therefore, in the difference image of the floor surface 5, the difference due to the user being on board is small.
 ここで、変換部13は、床面5における処理と同様の処理により、ホモグラフィ変換などによって第1カメラ11aおよび第2カメラ11bの方向から第2平面に射影された第1画像および第2画像を生成する。判定部16は、第2平面に射影された第1画像および第2画像について第2平面の差分画像を生成する。 Here, the conversion unit 13 performs the first image and the second image projected onto the second plane from the directions of the first camera 11a and the second camera 11b by homography conversion or the like by the same processing as the processing on the floor surface 5. To generate. The determination unit 16 generates a difference image of the second plane with respect to the first image and the second image projected on the second plane.
 判定部16は、床面5の差分画像から算出される非類似度が予め設定された閾値より大きい場合、または、第2平面の差分画像から算出される非類似度が予め設定された閾値より大きい場合に、かご2の内部に乗客がいると判定する。 The determination unit 16 determines that the dissimilarity calculated from the difference image of the floor surface 5 is larger than the preset threshold value, or the dissimilarity calculated from the difference image of the second plane is greater than the preset threshold value. If it is large, it is determined that there are passengers inside the car 2.
 以上に説明したように、実施の形態2に係る乗客検出装置4において、変換部13は、第1画像に含まれる第2平面の閉じた範囲および第2画像に含まれる第2平面の閉じた範囲が互いに重なるように、第1画像および第2画像にホモグラフィ変換を行う。第2平面は、床面5と重ならない平面である。判定部16は、変換部13によるホモグラフィ変換の後の第1画像および第2画像の互いに重なる第2平面の範囲の差分に基づいて、かご2の内部の乗客の有無を判定する。 As described above, in the passenger detection device 4 according to the second embodiment, the conversion unit 13 closes the closed range of the second plane included in the first image and the second plane included in the second image. Homography conversion is performed on the first image and the second image so that the ranges overlap each other. The second plane is a plane that does not overlap with the floor surface 5. The determination unit 16 determines the presence or absence of passengers inside the car 2 based on the difference in the range of the second plane on which the first image and the second image overlap each other after the homography conversion by the conversion unit 13.
 また、実施の形態2に係るエレベーターシステム1において、変換部13は、第1画像に含まれる第2平面の閉じた範囲および第2画像に含まれる第2平面の閉じた範囲が互いに重なるように、第1画像および第2画像にホモグラフィ変換を行う。第2平面は、床面5と重ならない平面である。判定部16は、変換部13によるホモグラフィ変換の後の第1画像および第2画像の互いに重なる第2平面の範囲の差分に基づいて、かご2の内部の乗客の有無を判定する。 Further, in the elevator system 1 according to the second embodiment, the conversion unit 13 causes the closed range of the second plane included in the first image and the closed range of the second plane included in the second image to overlap each other. , Perform homography conversion on the first image and the second image. The second plane is a plane that does not overlap with the floor surface 5. The determination unit 16 determines the presence or absence of passengers inside the car 2 based on the difference in the range of the second plane on which the first image and the second image overlap each other after the homography conversion by the conversion unit 13.
 判定部16は、床面5の差分画像において、床面5の全体の差分に基づいて乗客の有無を検出する。一方、乗客が床面5の境界の近傍に立っている場合に、床面5の差分画像から算出される非類似度が小さいことがある。このとき、乗車している乗客が検出されない可能性がある。この場合に、判定部16は、床面5に重ならない第2平面の差分画像から算出される非類似度などに基づいて乗客の有無を検出する。このため、乗客が床面5の境界の近傍に立っている場合においても、かご2に乗車している乗客の検出漏れが抑制される。 The determination unit 16 detects the presence or absence of passengers in the difference image of the floor surface 5 based on the total difference of the floor surface 5. On the other hand, when the passenger stands near the boundary of the floor surface 5, the dissimilarity calculated from the difference image of the floor surface 5 may be small. At this time, there is a possibility that the passengers on board are not detected. In this case, the determination unit 16 detects the presence or absence of passengers based on the dissimilarity calculated from the difference image of the second plane that does not overlap the floor surface 5. Therefore, even when the passengers are standing near the boundary of the floor surface 5, the omission of detection of the passengers in the car 2 is suppressed.
 なお、第2平面は、かご2の床面5と平行な平面であってもよい。第2平面は、かご2の床面5と高さが異なる平面であってもよい。第2平面は、床面5と異なる方向を向いていてもよい。第2平面は、床面5に垂直な平面であってもよい。乗客検出装置4において、複数の第2平面が設定されていてもよい。 The second plane may be a plane parallel to the floor surface 5 of the car 2. The second plane may be a plane having a height different from that of the floor surface 5 of the car 2. The second plane may face in a direction different from that of the floor surface 5. The second plane may be a plane perpendicular to the floor surface 5. A plurality of second planes may be set in the passenger detection device 4.
 また、変換部13は、かご2の壁面6またはかご2のかごドア8の表面の少なくとも一部を第2平面としてホモグラフィ変換を行う。判定部16は、当該第2平面の範囲の差分に基づいてかご2の内部の乗客の有無を判定する。 Further, the conversion unit 13 performs homography conversion with at least a part of the surface of the wall surface 6 of the car 2 or the car door 8 of the car 2 as the second plane. The determination unit 16 determines the presence or absence of passengers inside the car 2 based on the difference in the range of the second plane.
 このとき、第2平面は、床面5の境界の上にある。このため、床面5の境界の近傍における乗客の検出漏れが抑制される。また、かご2の壁面6およびかごドア8は、かご2の内部において境界が明確な平面である。このため、パラメーター設定部14による第1画像および第2画像に基づくパラメーターの設定がしやすくなる。 At this time, the second plane is above the boundary of the floor surface 5. Therefore, the omission of detection of passengers in the vicinity of the boundary of the floor surface 5 is suppressed. Further, the wall surface 6 and the car door 8 of the car 2 are flat surfaces having a clear boundary inside the car 2. Therefore, it becomes easy for the parameter setting unit 14 to set the parameters based on the first image and the second image.
 実施の形態3.
 実施の形態3では、実施の形態1または実施の形態2で開示された例と相違する点について詳しく説明する。実施の形態3で説明しない特徴については、実施の形態1または実施の形態2で開示された例のいずれの特徴が採用されてもよい。
Embodiment 3.
In the third embodiment, the differences from the examples disclosed in the first embodiment or the second embodiment will be described in detail. As for the features not described in the third embodiment, any of the features of the examples disclosed in the first embodiment or the second embodiment may be adopted.
 図8は、実施の形態3に係る乗客検出装置における乗客検出の例を示す図である。 FIG. 8 is a diagram showing an example of passenger detection in the passenger detection device according to the third embodiment.
 図8において、第1画像および第2画像の例が示される。この例において、かごドア8は開いている。この例において、乗客は、かご2が停止している階床の乗場に立っている。図8の第1画像および第2画像において、太い実線は、床面5の範囲を示す。図8の第1画像および第2画像において、破線は、第2平面の閉じた範囲を示す。この例において、第2平面は、乗場の床面5の一部である。この例において、第2平面は、三角形状の平面である。 FIG. 8 shows examples of the first image and the second image. In this example, the car door 8 is open. In this example, the passenger is standing on the floor where the car 2 is stopped. In the first image and the second image of FIG. 8, the thick solid line indicates the range of the floor surface 5. In the first and second images of FIG. 8, the dashed line indicates the closed area of the second plane. In this example, the second plane is part of the floor 5 of the landing. In this example, the second plane is a triangular plane.
 乗客検出装置4は、かごドア8が開いていることを表す信号を例えば制御盤3から入力部12を通じて受け付ける。あるいは、乗客検出装置4は、例えば画像認識によってかごドア8が開いていることを検出してもよい。 The passenger detection device 4 receives a signal indicating that the car door 8 is open from, for example, the control panel 3 through the input unit 12. Alternatively, the passenger detection device 4 may detect that the car door 8 is open, for example, by image recognition.
 ここで、変換部13は、床面5における処理と同様の処理により、ホモグラフィ変換などによって第1カメラ11aおよび第2カメラ11bの方向から第2平面に射影された第1画像および第2画像を生成する。このとき、第2平面は、床面5に平行な同じ高さの平面である。このため、変換部13は、床面5における処理と同じパラメーターに基づいてホモグラフィ変換を行ってもよい。また、第1画像および第2画像において切り出される部分は、乗場の床面5の部分である。判定部16は、第2平面に射影された第1画像および第2画像について第2平面の差分画像を生成する。 Here, the conversion unit 13 performs the first image and the second image projected onto the second plane from the directions of the first camera 11a and the second camera 11b by homography conversion or the like by the same processing as the processing on the floor surface 5. To generate. At this time, the second plane is a plane at the same height parallel to the floor surface 5. Therefore, the conversion unit 13 may perform homography conversion based on the same parameters as the processing on the floor surface 5. Further, the portion cut out in the first image and the second image is the portion of the floor surface 5 of the landing. The determination unit 16 generates a difference image of the second plane with respect to the first image and the second image projected on the second plane.
 判定部16は、床面5の差分画像から算出される非類似度が予め設定された閾値より大きい場合、または、第2平面の差分画像から算出される非類似度が予め設定された閾値より大きい場合に、乗場に乗客がいると判定する。 The determination unit 16 determines that the dissimilarity calculated from the difference image of the floor surface 5 is larger than the preset threshold value, or the dissimilarity calculated from the difference image of the second plane is greater than the preset threshold value. If it is large, it is determined that there are passengers at the landing.
 一方、かごドア8が閉じているときに、乗客検出装置4は、かごドア8が閉じていることを表す信号を例えば制御盤3から入力部12を通じて受け付ける。あるいは、乗客検出装置4は、例えば画像認識によってかごドア8が閉じていることを検出してもよい。このとき、乗客検出装置4は、かご2の壁面6またはかごドア8の表面の全部または一部を第2平面として乗客検出を行う。 On the other hand, when the car door 8 is closed, the passenger detection device 4 receives a signal indicating that the car door 8 is closed from, for example, the control panel 3 through the input unit 12. Alternatively, the passenger detection device 4 may detect that the car door 8 is closed by, for example, image recognition. At this time, the passenger detection device 4 performs passenger detection with the wall surface 6 of the car 2 or the entire or part of the surface of the car door 8 as the second plane.
 以上に説明したように、実施の形態3に係るエレベーターシステム1において、変換部13は、かごドア8が開いているときに、かご2がかごドア8を開いて停止している階床の乗場の床面5の少なくとも一部を第2平面としてホモグラフィ変換を行う。判定部16は、当該第2平面の範囲の差分に基づいて乗場の乗客の有無を判定する。 As described above, in the elevator system 1 according to the third embodiment, the conversion unit 13 is a landing on the floor where the car 2 is stopped by opening the car door 8 when the car door 8 is open. The homography transformation is performed with at least a part of the floor surface 5 of the above as the second plane. The determination unit 16 determines the presence or absence of passengers at the landing based on the difference in the range of the second plane.
 これにより、乗客検出装置4は、これからかご2に乗り込む乗客、またはかご2から降りた乗客を検出できる。このため、エレベーターシステム1は、かご2の周辺の状況に応じて、利用効率またはエネルギー効率を高めることができる。例えば、制御盤3は、かご2の内部および乗場の両方に乗客がいないと判定される場合に、かごドア8が開いている時間を短くしてもよい。 As a result, the passenger detection device 4 can detect the passengers who are about to enter the car 2 or the passengers who have got out of the car 2. Therefore, the elevator system 1 can improve utilization efficiency or energy efficiency depending on the situation around the car 2. For example, the control panel 3 may shorten the opening time of the car door 8 when it is determined that there are no passengers inside the car 2 and in the landing.
 本発明に係る乗客検出システムは、エレベーターシステムに適用できる。本発明に係る乗客検出システムは、例えば複数の階床を有する建築物に適用できる。 The passenger detection system according to the present invention can be applied to an elevator system. The passenger detection system according to the present invention can be applied to, for example, a building having a plurality of floors.
 1 エレベーターシステム、 2 かご、 3 制御盤、 4 乗客検出装置、 5 床面、 6 壁面、 7 天井、 8 かごドア、 9 照明装置、 10 空気調和装置、 11a 第1カメラ、 11b 第2カメラ、 12 入力部、 13 変換部、 14 パラメーター設定部、 15 パラメーター記憶部、 16 判定部、 17 出力部、 18 入力装置、 19 床面パラメーター設定部、 20 歪みパラメーター設定部、 21 マーカー、 22 エッジ、 4a ハードウェア、 4b プロセッサ、 4c メモリ 1 elevator system, 2 car, 3 control panel, 4 passenger detection device, 5 floor surface, 6 wall surface, 7 ceiling, 8 car door, 9 lighting device, 10 air conditioner, 11a 1st camera, 11b 2nd camera, 12 Input unit, 13 conversion unit, 14 parameter setting unit, 15 parameter storage unit, 16 judgment unit, 17 output unit, 18 input device, 19 floor surface parameter setting unit, 20 distortion parameter setting unit, 21 marker, 22 edge, 4a hardware Hardware, 4b processor, 4c memory

Claims (17)

  1.  エレベーターのかごに設けられる第1カメラに撮影され前記かごの床面を含む第1画像、および前記かごに設けられる第2カメラに前記第1カメラと異なる方向から撮影され前記かごの床面を含む第2画像の入力を受け付ける入力部と、
     前記第1画像に含まれる前記かごの床面の範囲および前記第2画像に含まれる前記かごの床面の範囲が互いに重なるように前記第1画像および前記第2画像にホモグラフィ変換を行う変換部と、
     前記変換部によるホモグラフィ変換の後の前記第1画像および前記第2画像の互いに重なる前記かごの床面の範囲の差分に基づいて前記かごの内部の乗客の有無を判定する判定部と、
     を備えるエレベーターの乗客検出装置。
    The first image taken by the first camera provided in the car of the elevator and including the floor surface of the car, and the second camera provided in the car taken from a direction different from that of the first camera and including the floor surface of the car. An input unit that accepts the input of the second image,
    Conversion that performs homography conversion on the first image and the second image so that the range of the floor surface of the car included in the first image and the range of the floor surface of the car included in the second image overlap each other. Department and
    A determination unit that determines the presence or absence of passengers inside the car based on the difference in the range of the floor surface of the car that overlaps the first image and the second image after the homography conversion by the conversion unit.
    Elevator passenger detection device equipped with.
  2.  前記変換部は、ホモグラフィ変換の前に前記第1画像および前記第2画像の各々についてレンズ歪み補正を行う
     請求項1に記載のエレベーターの乗客検出装置。
    The passenger detection device for an elevator according to claim 1, wherein the conversion unit corrects lens distortion for each of the first image and the second image before homography conversion.
  3.  前記入力部が受け付けた前記第1画像および前記第2画像に基づいて歪みパラメーターを設定する歪みパラメーター設定部
     を備え、
     前記変換部は、前記歪みパラメーター設定部が設定した前記歪みパラメーターに基づいてレンズ歪み補正を行う
     請求項2に記載のエレベーターの乗客検出装置。
    A distortion parameter setting unit for setting distortion parameters based on the first image and the second image received by the input unit is provided.
    The passenger detection device for an elevator according to claim 2, wherein the conversion unit corrects lens distortion based on the distortion parameter set by the distortion parameter setting unit.
  4.  前記入力部が受け付けた前記第1画像および前記第2画像に基づいて、前記第1画像および前記第2画像に含まれる前記かごの床面の範囲を定める床面パラメーターを設定する床面パラメーター設定部
     を備え、
     前記変換部は、前記床面パラメーター設定部が設定した前記床面パラメーターに基づいてホモグラフィ変換を行う
     請求項1から請求項3のいずれか一項に記載のエレベーターの乗客検出装置。
    Floor parameter setting for setting floor parameters that determine the range of the floor surface of the car included in the first image and the second image based on the first image and the second image received by the input unit. Equipped with a department
    The passenger detection device for an elevator according to any one of claims 1 to 3, wherein the conversion unit performs homography conversion based on the floor surface parameters set by the floor surface parameter setting unit.
  5.  前記床面パラメーター設定部は、前記第1画像および前記第2画像においてマーカーを認識する場合に、前記マーカーの位置に基づいて前記床面パラメーターを設定する
     請求項4に記載のエレベーターの乗客検出装置。
    The passenger detection device for an elevator according to claim 4, wherein the floor surface parameter setting unit sets the floor surface parameters based on the positions of the markers when the markers are recognized in the first image and the second image. ..
  6.  前記判定部は、前記第1画像または前記第2画像の少なくともいずれかにおいて乗客の動きを検出する場合に、前記ホモグラフィ変換の前に前記かごの内部に乗客がいると判定する
     請求項1から請求項5のいずれか一項に記載のエレベーターの乗客検出装置。
    From claim 1, when the determination unit detects the movement of a passenger in at least one of the first image and the second image, it determines that the passenger is inside the car before the homography conversion. The passenger detection device for an elevator according to any one of claims 5.
  7.  前記判定部は、前記第1画像および前記第2画像から抽出される前記かごの構造に由来する特徴のずれに基づいて、前記第1画像または前記第2画像における前記かごの床面の範囲の位置のずれを検出する
     請求項1から請求項6のいずれか一項に記載のエレベーターの乗客検出装置。
    The determination unit determines the range of the floor surface of the car in the first image or the second image based on the deviation of the features derived from the structure of the car extracted from the first image and the second image. The passenger detection device for an elevator according to any one of claims 1 to 6, which detects a displacement of the position.
  8.  前記変換部は、前記第1画像に含まれる前記床面と重ならない第2平面の閉じた範囲、および前記第2画像に含まれる前記第2平面の閉じた範囲が互いに重なるように前記第1画像および前記第2画像にホモグラフィ変換を行い、
     前記判定部は、前記変換部によるホモグラフィ変換の後の前記第1画像および前記第2画像の互いに重なる前記第2平面の範囲の差分に基づいて前記かごの内部の乗客の有無を判定する
     請求項1から請求項7のいずれか一項に記載のエレベーターの乗客検出装置。
    The conversion unit is such that the closed range of the second plane that does not overlap the floor surface included in the first image and the closed range of the second plane included in the second image overlap each other. Homography conversion is performed on the image and the second image,
    The determination unit determines the presence or absence of passengers inside the car based on the difference in the range of the second plane in which the first image and the second image overlap each other after the homography conversion by the conversion unit. The passenger detection device for an elevator according to any one of claims 1 to 7.
  9.  前記変換部は、前記かごの壁面または前記かごのかごドアの表面の少なくとも一部を前記第2平面としてホモグラフィ変換を行い、
     前記判定部は、当該第2平面の範囲の差分に基づいて前記かごの内部の乗客の有無を判定する
     請求項8に記載のエレベーターの乗客検出装置。
    The conversion unit performs homography conversion with at least a part of the wall surface of the car or the surface of the car door of the car as the second plane.
    The passenger detection device for an elevator according to claim 8, wherein the determination unit determines the presence or absence of passengers inside the car based on the difference in the range of the second plane.
  10.  複数の階床にわたって設けられる昇降路の内部を走行することで、開閉するかごドアから内部に乗降する乗客を輸送するかごと、
     入力される前記かごの内部の乗客の有無の判定結果に基づいて前記かごの動作を制御する制御盤と、
     前記かごに設けられる第1カメラに撮影され前記かごの床面を含む第1画像、および前記かごに設けられる第2カメラに前記第1カメラと異なる方向から撮影され前記かごの床面を含む第2画像の入力を受け付ける入力部と、
     前記第1画像に含まれる前記かごの床面の範囲および前記第2画像に含まれる前記かごの床面の範囲が互いに重なるように前記第1画像および前記第2画像にホモグラフィ変換を行う変換部と、
     前記変換部によるホモグラフィ変換の後の前記第1画像および前記第2画像の互いに重なる前記かごの床面の範囲の差分に基づいて前記かごの内部の乗客の有無を判定する判定部と、
     前記判定部による判定結果を前記制御盤に出力する出力部と、
     を備えるエレベーターシステム。
    A car that transports passengers getting in and out of the interior through a car door that opens and closes by traveling inside a hoistway that spans multiple floors.
    A control panel that controls the operation of the car based on the input determination result of the presence or absence of passengers inside the car.
    A first image taken by a first camera provided in the car and including the floor surface of the car, and a second image taken by a second camera provided in the car from a direction different from that of the first camera and including the floor surface of the car. 2 Input section that accepts image input and
    Conversion that performs homography conversion on the first image and the second image so that the range of the floor surface of the car included in the first image and the range of the floor surface of the car included in the second image overlap each other. Department and
    A determination unit that determines the presence or absence of passengers inside the car based on the difference in the range of the floor surface of the car that overlaps the first image and the second image after the homography conversion by the conversion unit.
    An output unit that outputs the determination result by the determination unit to the control panel,
    Elevator system with.
  11.  前記制御盤は、入力される判定結果が前記かごの内部に乗客がいないことを表すときに、前記かごの走行速度を高くする
     請求項10に記載のエレベーターシステム。
    The elevator system according to claim 10, wherein the control panel increases the traveling speed of the car when the input determination result indicates that there are no passengers inside the car.
  12.  前記制御盤は、前記かごが前記かごドアを開いて停止している階床において当該かごに乗場呼びが登録されていないときに、入力される判定結果が前記かごの内部に乗客がいないことを表す場合に、前記かごドアが開いている時間を短くする
     請求項10または請求項11に記載のエレベーターシステム。
    The control panel indicates that there are no passengers inside the car as a determination result to be input when the landing call is not registered in the car on the floor where the car is stopped by opening the car door. The elevator system according to claim 10 or 11, wherein when represented, the car door is open for a shorter period of time.
  13.  前記制御盤は、入力される判定結果が前記かごの内部に乗客がいることを表すときに、診断運転への移行を制限する
     請求項10から請求項12のいずれか一項に記載のエレベーターシステム。
    The elevator system according to any one of claims 10 to 12, wherein the control panel limits the transition to diagnostic operation when the input determination result indicates that there are passengers inside the car. ..
  14.  前記かごは、内部の空間の空気を調整する空気調和装置を備え、
     前記制御盤は、入力される判定結果が前記かごの内部に乗客がいないことを表すときに、前記空気調和装置の運転を停止させる
     請求項10から請求項13のいずれか一項に記載のエレベーターシステム。
    The car is equipped with an air conditioner that regulates the air in the internal space.
    The elevator according to any one of claims 10 to 13, wherein the control panel stops the operation of the air conditioner when the input determination result indicates that there are no passengers inside the car. system.
  15.  前記かごは、内部の空間を照らす光量が調整可能な照明装置を備え、
     前記制御盤は、入力される判定結果が前記かごの内部に乗客がいることを表すときに、前記照明装置の光量を調整し、
     前記変換部は、前記照明装置の光量の調整の後に撮影された前記第1画像および前記第2画像について前記かごの床面の範囲が互いに重なるようにホモグラフィ変換を行い、
     前記判定部は、前記変換部による当該ホモグラフィ変換の後の前記第1画像および前記第2画像の互いに重なる前記かごの床面の範囲の差分に基づいて前記かごの内部の乗客の有無を再び判定する
     請求項10から請求項14のいずれか一項に記載のエレベーターシステム。
    The car is equipped with a lighting device that can adjust the amount of light that illuminates the internal space.
    The control panel adjusts the amount of light of the lighting device when the input determination result indicates that a passenger is inside the car.
    The conversion unit performs homography conversion on the first image and the second image taken after adjusting the amount of light of the lighting device so that the range of the floor surface of the car overlaps with each other.
    The determination unit again determines the presence or absence of passengers inside the car based on the difference in the range of the floor surface of the car that overlaps the first image and the second image after the homography conversion by the conversion unit. The elevator system according to any one of claims 10 to 14.
  16.  前記変換部は、前記第1画像に含まれる前記床面と重ならない第2平面の閉じた範囲、および前記第2画像に含まれる前記第2平面の閉じた範囲が互いに重なるように前記第1画像および前記第2画像にホモグラフィ変換を行い、
     前記判定部は、前記変換部によるホモグラフィ変換の後の前記第1画像および前記第2画像の互いに重なる前記第2平面の範囲の差分に基づいて前記かごの内部の乗客の有無を判定する
     請求項10から請求項15のいずれか一項に記載のエレベーターシステム。
    The conversion unit is such that the closed range of the second plane that does not overlap the floor surface included in the first image and the closed range of the second plane included in the second image overlap each other. Homography conversion is performed on the image and the second image,
    The determination unit determines the presence or absence of passengers inside the car based on the difference in the range of the second plane in which the first image and the second image overlap each other after the homography conversion by the conversion unit. The elevator system according to any one of claims 10 to 15.
  17.  前記変換部は、前記かごドアが開いているときに、前記かごが前記かごドアを開いて停止している階床の乗場の床面の少なくとも一部を前記第2平面としてホモグラフィ変換を行い、
     前記判定部は、当該第2平面の範囲の差分に基づいて前記乗場の乗客の有無を判定する
     請求項16に記載のエレベーターシステム。
    When the car door is open, the conversion unit performs homography conversion using at least a part of the floor surface of the landing on the floor where the car is stopped by opening the car door as the second plane. ,
    The elevator system according to claim 16, wherein the determination unit determines the presence or absence of passengers at the landing based on the difference in the range of the second plane.
PCT/JP2019/021575 2019-05-30 2019-05-30 Passenger detecting device for elevator, and elevator system WO2020240783A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980096846.0A CN113874309B (en) 2019-05-30 2019-05-30 Passenger detection device for elevator and elevator system
JP2019562445A JP6645642B1 (en) 2019-05-30 2019-05-30 Elevator passenger detection device and elevator system
PCT/JP2019/021575 WO2020240783A1 (en) 2019-05-30 2019-05-30 Passenger detecting device for elevator, and elevator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/021575 WO2020240783A1 (en) 2019-05-30 2019-05-30 Passenger detecting device for elevator, and elevator system

Publications (1)

Publication Number Publication Date
WO2020240783A1 true WO2020240783A1 (en) 2020-12-03

Family

ID=69568017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021575 WO2020240783A1 (en) 2019-05-30 2019-05-30 Passenger detecting device for elevator, and elevator system

Country Status (3)

Country Link
JP (1) JP6645642B1 (en)
CN (1) CN113874309B (en)
WO (1) WO2020240783A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230573A (en) * 1986-03-31 1987-10-09 株式会社東芝 Door open-close controller for elevator
JPH09208143A (en) * 1996-02-07 1997-08-12 Hitachi Ltd Operation control method for elevator to be driven by linear motor
JP2001328771A (en) * 2000-05-19 2001-11-27 Hitachi Building Systems Co Ltd Air conditioning system of elevator
JP2005272073A (en) * 2004-03-24 2005-10-06 Fujitec Co Ltd In-car illumination controller of elevator
JP2008114930A (en) * 2006-10-31 2008-05-22 Toshiba Elevator Co Ltd Elevator control device
JP2014038401A (en) * 2012-08-13 2014-02-27 Honda Motor Co Ltd Vehicle periphery monitoring device
JP2015120584A (en) * 2013-12-25 2015-07-02 株式会社日立製作所 Image monitoring device and elevator monitoring device
JP2016179887A (en) * 2015-03-24 2016-10-13 株式会社日立ビルシステム Elevator in-car monitoring device
JP2017091284A (en) * 2015-11-12 2017-05-25 三菱電機株式会社 Image processing device for vehicle and image processing system for vehicle
WO2018225531A1 (en) * 2017-06-09 2018-12-13 ソニー株式会社 Image processing device and method
JP2019006535A (en) * 2017-06-22 2019-01-17 株式会社日立ビルシステム Elevator and escalator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108632589A (en) * 2017-03-15 2018-10-09 株式会社理光 Information processing unit, camera system and recording medium

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62230573A (en) * 1986-03-31 1987-10-09 株式会社東芝 Door open-close controller for elevator
JPH09208143A (en) * 1996-02-07 1997-08-12 Hitachi Ltd Operation control method for elevator to be driven by linear motor
JP2001328771A (en) * 2000-05-19 2001-11-27 Hitachi Building Systems Co Ltd Air conditioning system of elevator
JP2005272073A (en) * 2004-03-24 2005-10-06 Fujitec Co Ltd In-car illumination controller of elevator
JP2008114930A (en) * 2006-10-31 2008-05-22 Toshiba Elevator Co Ltd Elevator control device
JP2014038401A (en) * 2012-08-13 2014-02-27 Honda Motor Co Ltd Vehicle periphery monitoring device
JP2015120584A (en) * 2013-12-25 2015-07-02 株式会社日立製作所 Image monitoring device and elevator monitoring device
JP2016179887A (en) * 2015-03-24 2016-10-13 株式会社日立ビルシステム Elevator in-car monitoring device
JP2017091284A (en) * 2015-11-12 2017-05-25 三菱電機株式会社 Image processing device for vehicle and image processing system for vehicle
WO2018225531A1 (en) * 2017-06-09 2018-12-13 ソニー株式会社 Image processing device and method
JP2019006535A (en) * 2017-06-22 2019-01-17 株式会社日立ビルシステム Elevator and escalator

Also Published As

Publication number Publication date
JPWO2020240783A1 (en) 2021-09-13
CN113874309A (en) 2021-12-31
JP6645642B1 (en) 2020-02-14
CN113874309B (en) 2023-06-30

Similar Documents

Publication Publication Date Title
JP5483702B2 (en) Elevator stagnant detector
CN109928290B (en) User detection system
JP6367411B1 (en) Elevator system
JP6798937B2 (en) Elevators and escalators
JP6713837B2 (en) Transport equipment control system and transport equipment control method
JP6693627B1 (en) Image processing device
JP6239376B2 (en) Image monitoring device and elevator monitoring device
JP7009537B2 (en) Elevator user detection system
JP6295191B2 (en) Elevator car image monitoring device
WO2020240783A1 (en) Passenger detecting device for elevator, and elevator system
CN112429609B (en) User detection system for elevator
JP2009242045A (en) Door device
CN117246862A (en) Elevator system
CN113428751B (en) User detection system of elevator
JP7019740B2 (en) Elevator user detection system
JP6729980B1 (en) Elevator user detection system
CN111717742B (en) Image processing apparatus and method
CN111453588B (en) Elevator system
JP7375105B1 (en) elevator system
WO2023199520A1 (en) Object detection device and elevator system
CN112551292B (en) User detection system for elevator
CN115108425B (en) Elevator user detection system
JP6828108B1 (en) Elevator user detection system
CN112520525A (en) User detection system for elevator
JP2022036276A (en) User detection system of elevator

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019562445

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931247

Country of ref document: EP

Kind code of ref document: A1