WO2020240739A1 - To-can型光モジュール - Google Patents

To-can型光モジュール Download PDF

Info

Publication number
WO2020240739A1
WO2020240739A1 PCT/JP2019/021365 JP2019021365W WO2020240739A1 WO 2020240739 A1 WO2020240739 A1 WO 2020240739A1 JP 2019021365 W JP2019021365 W JP 2019021365W WO 2020240739 A1 WO2020240739 A1 WO 2020240739A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor layer
fpc
optical module
lens
type optical
Prior art date
Application number
PCT/JP2019/021365
Other languages
English (en)
French (fr)
Inventor
瑞基 白尾
和樹 山路
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/021365 priority Critical patent/WO2020240739A1/ja
Publication of WO2020240739A1 publication Critical patent/WO2020240739A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings

Definitions

  • the present invention relates to a TO-CAN (Transistor Outlined CAN) type optical module.
  • a conventional TO-CAN type optical module has a cylindrical metal stem and a lead wire (hereinafter referred to as "glass lead") inserted into a through hole formed in the metal stem and fixed by a sealing glass. Be prepared. Further, on one surface of the metal stem, a semiconductor optical element connected to the glass lead and a lens cap covering the glass lead and the semiconductor optical element are installed. FPCs (Flexible Printed Circuits) connected to glass leads are installed on the other surface of the metal stem. The glass lead and the metal stem form a coaxial line, and transmit a high frequency signal between the semiconductor optical element and the substrate.
  • Patent Document 1 discloses a TO-CAN type TOSA (Transmitter Optical Sub-Assembly) module.
  • a relay line substrate made of a ceramic material is fixed to the upper surface of a metal stem so that stable microwave propagation can be performed.
  • a ground pattern and a relay line are provided on the relay line board, and a signal lead wire for a high-frequency modulated signal is connected to the relay line.
  • the metal stem is used as a component of the coaxial line, it is necessary to install the glass lead in the through hole formed in the metal stem. Further, in the conventional TO-CAN type optical module, it is necessary to install various parts on the metal stem, for example, like the relay line substrate described in Patent Document 1, for the purpose of improving the high frequency characteristics. Therefore, the conventional TO-CAN type optical module has a problem that the entire structure becomes complicated.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a TO-CAN type optical module that does not require a metal stem.
  • the TO-CAN type optical module according to the present invention is an FPC having a front surface and a back surface, and is a surface opposite to the surface side of the first conductor layer and the first conductor layer installed on the front surface side.
  • the FPC including the base layer installed in contact with the base layer and the second conductor layer on the back surface side installed in contact with the surface opposite to the surface of the base layer in contact with the first conductor layer, and the lens.
  • the base layer includes a through hole for electrically connecting the front surface ground and the back surface ground, and a semiconductor optical element is installed on the surface of the front surface ground facing the lens.
  • FIG. 2A shows a plan view of the TO-CAN type optical module according to the first embodiment.
  • FIG. 2B shows a plan view of the TO-CAN type optical module with the lens cap removed.
  • FIG. 2C shows a cross-sectional view of the TO-CAN type optical module cut along the dotted line ⁇ 'of FIG. 2B.
  • It is sectional drawing which shows the structure of the TO-CAN type optical module which concerns on Embodiment 2.
  • FIG. It is sectional drawing which shows the structure of the TO-CAN type optical module which concerns on Embodiment 3.
  • FIG. 6A is a plan view showing the configuration of the TO-CAN type optical module with the lens cap removed.
  • FIG. 6B is a cross-sectional view taken along the dotted line ⁇ 'of FIG. 6A.
  • FIG. 7A is a plan view showing the configuration of the TO-CAN type optical module with the lens cap 1 removed.
  • FIG. 7B is a cross-sectional view taken along the dotted line ⁇ 'of FIG. 7A. It is sectional drawing which shows the structure of the TO-CAN type optical module which concerns on Embodiment 7.
  • FIG. 1 is a perspective view showing the configuration of the TO-CAN type optical module 100 according to the first embodiment.
  • the TO-CAN type optical module 100 having a function of receiving signal light will be described, but the TO-CAN type optical module may have a function of transmitting signal light. ..
  • the TO-CAN type optical module 100 includes a lens cap 1 and an FPC 2.
  • FPC2 has a front surface and a back surface.
  • the lens cap 1 is installed on the surface side of the FPC 2.
  • the lens cap 1 has a cap 1a and a lens 1b.
  • the cap 1a has a hollow cylindrical shape.
  • One end of the cap 1a has a bottom surface, and a hole for mounting the lens 1b is formed in a substantially central portion of the bottom surface.
  • the other end of the cap 1a is open.
  • the lens 1b is fitted and installed in a hole formed in the bottom surface of the cap 1a.
  • the lens cap 1 is installed so that the other end of the cap 1a faces the surface side of the FPC 2.
  • the material of the cap 1a is, for example, metal.
  • FIG. 2A shows a plan view of the TO-CAN type optical module 100 according to the first embodiment.
  • FIG. 2B shows a plan view of the TO-CAN type optical module 100 with the lens cap 1 removed.
  • FIG. 2C shows a cross-sectional view of the TO-CAN type optical module 100 cut along the dotted line ⁇ 'of FIG. 2B.
  • the FPC 2 includes a first conductor layer 21 installed on the surface side, a base layer 22 installed in contact with a surface of the first conductor layer 21 opposite to the surface on the surface side, and , The second conductor layer 23 on the back surface side, which is installed in contact with the surface of the base layer 22 opposite to the surface in contact with the first conductor layer 21.
  • the first conductor layer 21 and the second conductor layer 23 are insulated by the base layer 22.
  • the first conductor layer 21 includes a surface ground 21d having a surface facing the lens 1b.
  • the first conductor layer 21 is formed on two surface signal wirings 21a for transmitting high frequency signals, two ground pads 21b connected to the ground, and a photodiode described later. Includes two DC wirings 21c that supply power.
  • the two surface signal wirings 21a and the two DC wirings 21c each extend from the end of the FPC2 in the lower part of FIG. 2B toward the surface ground 21d in the upper part of FIG. 2B.
  • the two surface signal wirings 21a and the two DC wirings 21c are connected to another printed circuit board (not shown) at the end of the FPC 2 at the lower part of FIG. 2B. Further, the two surface signal wirings 21a and the two DC wirings 21c are partially covered with the surface coverlay 24 described later, respectively. Therefore, in FIG. 2B, a part of the two surface signal wirings 21a and the two DC wirings 21c is not visible.
  • the thickness of FPC2 is, for example, 50 ⁇ m.
  • the two surface signal wirings 21a are signal wirings for transmitting a differential signal.
  • the two surface signal wirings 21a can be, for example, microstrip lines having a characteristic impedance of 100 ⁇ .
  • a photodiode 3, two capacitors 4, and a TIA 5 Transimpedance Amplifier are installed on the surface of the surface ground 21d on the surface side facing the lens 1b.
  • the photodiode 3, the two capacitors 4, and the TIA 5 are connected to the ground by being installed on the surface ground 21d.
  • the photodiode 3 is a semiconductor optical element, receives input signal light incident on the lens 1b from the outside, and converts the received input signal light into an input signal which is an electric signal.
  • the capacitor 4 is connected to the DC wiring 21c by the gold wire 6a and is connected to the TIA 5 by the gold wire 6b to remove noise contained in the electric power from the DC wiring 21c.
  • the TIA 5 is connected to the photodiode 3 by a gold wire 6c, is connected to the capacitor 4 by a gold wire 6b, is connected to the surface signal wiring 21a by a gold wire 6d, and is connected to the surface ground 21d by a gold wire 6e.
  • the TIA 5 amplifies the input signal by using the electric power from the capacitor 4, and outputs the amplified input signal to the surface signal wiring 21a.
  • an IC is mounted on another printed circuit board (not shown) connected to the surface signal wiring 21a, and the surface signal wiring 21a transmits an input signal to the IC.
  • the FPC 2 further includes a surface coverlay 24 installed on the surface side surface of the first conductor layer 21.
  • the surface coverlay 24 is installed on the surface side surface of the first conductor layer 21 in a portion where the photodiode 3 and the TIA 5 are not installed.
  • the FPC 2 further includes a back surface coverlay 25 installed on the back surface side surface of the second conductor layer 23.
  • the other end of the cap 1a of the lens cap 1 is adhered to the surface side surface of the surface coverlay 24 with an adhesive or the like.
  • the lens cap 1 is installed at a predetermined position on the surface coverlay 24 using, for example, a known passive mounting technique.
  • the passive mounting technique the photodiode 3 is aligned with the lens 1b of the lens cap 1 without the photodiode 3 being energized. Alignment using the passive mounting technique is performed, for example, by recognizing the reference as an image with reference to the alignment mark provided on the surface side surface of the surface coverlay 24.
  • the first conductor layer 21 includes a surface ground 21d having a surface of the lens cap 1 facing the lens 1b.
  • the above-mentioned photodiode 3 and TIA5 are installed on the surface of the surface ground 21d facing the lens 1b of the lens cap 1, respectively.
  • the first conductor layer 21 further includes a surface signal wiring 21a connected to the TIA 5.
  • the second conductor layer 23 includes a back surface ground 23a. The back surface ground 23a is arranged at a position corresponding to the front surface ground 21d and the surface signal wiring 21a in the second conductor layer 23.
  • the base layer 22 includes a through hole 22a for electrically connecting the front surface ground 21d and the back surface ground 23a.
  • the through hole 22a also has a function of a heat pipe that diffuses the heat generated by the photodiode 3 or TIA5 installed on the front surface ground 21d to the back surface ground 23a side.
  • the photodiode 3 receives the input signal light A that has passed through the lens 1b.
  • the photodiode 3 converts the received input signal light A into an input signal which is an electric signal.
  • the input signal is input to the TIA 5 via the gold wire 6c.
  • the TIA 5 amplifies the input signal and outputs the amplified input signal to the surface signal wiring 21a via the gold wire 6d.
  • the input signal is transmitted toward the lower part of FIG. 2C in the surface signal wiring 21a.
  • the TO-CAN type optical module 100 is an FPC 2 having a front surface and a back surface, and is a first conductor layer 21 and a first conductor layer 21 installed on the front surface side.
  • the base layer 22 installed in contact with the surface opposite to the surface on the front surface side, and the second surface on the back surface side installed in contact with the surface opposite to the surface of the base layer 22 in contact with the first conductor layer 21.
  • the FPC 2 including the conductor layer 23 of 2 and the lens cap 1 having the lens 1b and installed on the surface side of the FPC 2 are provided, and the first conductor layer 21 faces the lens 1b.
  • the second conductor layer 23 includes a back surface ground 23a, and the base layer 22 includes a through hole 22a for electrically connecting the front surface ground 21d and the back surface ground 23a.
  • a photodiode 3 as a semiconductor optical element is installed on the surface of the surface ground 21d facing the lens 1b.
  • the photodiode 3 since the photodiode 3 is directly installed on the FPC 2, no metal stem is required. Moreover, since a metal stem is not required and a glass lead is not required, it contributes to cost reduction. In addition, it is not necessary to install a component such as a relay line board for improving high frequency characteristics, and a simple structure is sufficient.
  • the glass lead protruding from the metal stem generates an inductance component and deteriorates the high frequency characteristics of the TO-CAN type optical module.
  • the metal stem and the glass lead are not used, such deterioration of high frequency characteristics does not occur.
  • the inside and the outside of the space surrounded by the lens cap 1 are connected via each wiring of the FPC2 which is easy to manage the impedance, the impedance mismatch is compared with the case where the lead wire is used as in the conventional case. It has few points and has excellent high-frequency characteristics.
  • Embodiment 2 In the first embodiment, the configuration in which the first conductor layer 21 on the front surface side of the FPC 2 includes the surface signal wiring 21a connected to the photodiode 3 has been described. In the second embodiment, the configuration in which the second conductor layer 23 on the back surface side of the FPC 2 includes the signal wiring connected to the photodiode 3 will be described. The second embodiment will be described below with reference to the drawings. The same reference numerals are given to the configurations having the same functions as those described in the first embodiment, and the description thereof will be omitted.
  • FIG. 3 is a cross-sectional view showing the configuration of the TO-CAN type optical module 101 according to the second embodiment.
  • the first conductor layer 26 of the FPC 10 included in the TO-CAN type optical module 101 includes a first surface ground 26a, a second surface ground 26b, and a first surface ground 26a and a second surface ground 26b.
  • a photodiode 3, TIA 5, and the like are installed on the surface of the first surface ground 26a facing the lens 1b of the lens cap 1.
  • the signal pad 26c is connected to the photodiode 3 via the gold wire 6c with the TIA 5 connected via the gold wire 6d.
  • the base layer 27 of the FPC 10 included in the TO-CAN type optical module 101 includes a through hole 27a and a signal pad through hole 27b.
  • the through hole 27a is electrically connected to the first surface ground 26a of the first conductor layer 26.
  • the signal pad through hole 27b is electrically connected to the signal pad 26c of the first conductor layer 26.
  • the second conductor layer 28 of the FPC 10 included in the TO-CAN type optical module 101 includes a back surface ground 28a and a back surface signal wiring 28b.
  • the back surface ground 28a is arranged at a position corresponding to the first surface ground 26a of the first conductor layer 26 in the second conductor layer 28, and is electrically connected to the through hole 27a of the base layer 27.
  • the back surface signal wiring 28b is arranged in the second conductor layer 28 at a position corresponding to the second surface ground 26b and the signal pad 26c of the first conductor layer 26, and the signal pad through hole 27b of the base layer 27. Is electrically connected to.
  • the photodiode 3 receives the input signal light A that has passed through the lens 1b.
  • the photodiode 3 converts the received input signal light A into an input signal which is an electric signal.
  • the input signal is input to the TIA 5 via the gold wire 6c.
  • the TIA 5 amplifies the input signal and outputs the amplified input signal to the signal pad 26c of the first conductor layer 26 via the gold wire 6d.
  • the input signal is input from the signal pad 26c of the first conductor layer 26 on the front surface side to the back surface signal wiring 28b of the second conductor layer 28 on the back surface side via the signal pad through hole 27b of the base layer 27. To.
  • the input signal is transmitted toward the lower part of FIG. 3 in the back surface signal wiring 28b.
  • the input signal is transmitted by the surface signal wiring 21a of the first conductor layer 21 on the surface side located in the vicinity of the cap 1a. Therefore, there is a problem that an electrical connection is generated between the surface signal wiring 21a and the cap 1a, and an impedance deviation may occur.
  • the input signal is transmitted by the back surface signal wiring 28b of the second conductor layer 28 on the back surface side, the impedance deviation due to the influence of the cap 1a can be suppressed.
  • the first conductor layer 26 of the TO-CAN type optical module 101 further includes a signal pad 26c connected to the photodiode 3 as a semiconductor optical element, and is a second conductor.
  • the layer 28 further includes a backside signal wiring 28b
  • the base layer 27 further includes a signal pad through hole 27b for electrically connecting the signal pad 26c and the backside signal wiring 28b.
  • the impedance deviation due to the influence of the cap 1a of the lens cap 1 can be suppressed.
  • Embodiment 3 In the first embodiment, the configuration in which the surface coverlay 24 is installed on the surface side surface of the first conductor layer 21 of the FPC 2 has been described. In the third embodiment, the configuration in which the additional base layer and the additional conductor layer are installed on the surface side surface of the first conductor layer 21 of the FPC 2 will be described. Hereinafter, the third embodiment will be described with reference to the drawings. The same reference numerals are given to the configurations having the same functions as those described in the first embodiment, and the description thereof will be omitted.
  • FIG. 4 is a cross-sectional view showing the configuration of the TO-CAN type optical module 102 according to the third embodiment.
  • the FPC 11 included in the TO-CAN type optical module 102 is an additional base layer installed in contact with a portion of the surface side of the first conductor layer 21 other than the portion where the photodiode 3 and the TIA 5 are installed.
  • 29 includes an additional conductor layer 30 installed in contact with a surface of the additional base layer 29 opposite to the surface in contact with the first conductor layer 21.
  • the first conductor layer 21 and the additional conductor layer 30 are insulated by an additional base layer 29.
  • the additional conductor layer 30 is installed between the additional base layer 29 and the other end of the cap 1a of the lens cap 1.
  • the other end of the cap 1a is fixed to the surface side surface of the additional conductor layer 30 with solder (not shown).
  • the other end of the cap 1a is preferably surface-treated with good wettability with the solder so that the other end of the cap 1a and the additional conductor layer 30 can be easily fixed by the solder.
  • the FPC 11 of the TO-CAN type optical module 102 is other than the portion on the surface side surface side of the first conductor layer 21 where the photodiode 3 as a semiconductor optical element is installed.
  • the cap 1a includes an additional base layer 29 installed in contact with the portion and an additional conductor layer 30 installed in contact with a surface of the additional base layer 29 opposite to the surface in contact with the first conductor layer 21. Is fixed by solder to the surface side surface of the additional conductor layer 30.
  • solder has advantages such as a smaller coefficient of linear expansion, stronger bonding strength, and higher heat resistance than an adhesive, and therefore, as compared with the case where an adhesive is used for the connection portion between the lens cap 1 and the FPC 11. , It is possible to suppress the deviation of the connection portion due to temperature change or aging deterioration. Therefore, fluctuations in the coupling efficiency between the input signal light passing through the lens 1b and the photodiode 3 can be suppressed.
  • the solder since the solder has a higher thermal conductivity than the adhesive, heat generated from the photodiode 3 or the TIA 5 or the like is likely to diffuse to the lens cap 1 side via the solder, and the TO -The heat dissipation of the CAN type optical module 102 is improved. Even if the above configuration is applied to the FPC 10 and the lens cap 1 of the TO-CAN type optical module 101 according to the second embodiment, the same effects as the above effects are obtained.
  • Embodiment 4 In the first embodiment, since the photodiode 3 and the lens cap 1 are installed directly on the FPC 2, when the lower part of the FPC 2 in FIG. 2C is bent, the portion of the lens cap 1 on the FPC 2 facing the lens 1b is distorted. May cause the relative position of the photodiode 3 and the lens 1b to shift. As a result, the optical axis of the lens 1b shifts, and the coupling efficiency between the signal light and the photodiode 3 decreases. Therefore, in the fourth embodiment, the support plate is installed on the back surface of the FPC 2.
  • the fourth embodiment will be described with reference to the drawings. The same reference numerals are given to the configurations having the same functions as those described in the first embodiment, and the description thereof will be omitted.
  • FIG. 5 is a cross-sectional view showing the configuration of the TO-CAN type optical module 103 according to the fourth embodiment.
  • a configuration different from the TO-CAN type optical module 100 according to the first embodiment shown in FIG. 2C will be described with reference to FIG. ..
  • a metal support plate 31 and a back surface coverlay 32 are installed on the back surface side surface of the back surface ground 23a of the second conductor layer 23.
  • one surface of the support plate 31 may be wider than the two-dimensional region surrounded by a circle having the other end of the cap 1a as the circumference, and its shape is not particularly limited.
  • the lower end of the support plate 31 is, for example, 1 mm longer than the lower end of the lens cap 1 in the direction parallel to the front surface and the back surface of the FPC 12 in the cross section of the cross section of FIG.
  • one surface of the TO-CAN type optical module 103 is more than a portion of the back surface of the back surface ground 23a corresponding to the lens cap 1 installed on the front surface side. Further, a metal support plate 31 installed so as to be in contact with a wide portion is provided.
  • the heat generated from the photodiode 3 or TIA5 and diffused to the front surface ground 21d, the through hole 22a and the back surface ground 23a is easily dissipated through the support plate 31, and is a TO-CAN type.
  • the heat dissipation of the optical module 103 can be improved. Therefore, it is possible to prevent the characteristics of the photodiode 3 or the characteristics of the IC connected to the surface signal wiring 21a from deteriorating due to high temperature. Therefore, at the same environmental temperature, the performance can be improved as compared with the conventional TO-CAN type optical module. In addition, the range of usable environmental temperature can be expanded as compared with the conventional TO-CAN type optical module.
  • the support plate 31 and the back surface signal wiring 28b of the second conductor layer 28 need to have a shape that does not contact or face each other so as not to affect the impedance of the back surface signal wiring 28b.
  • the shape of the support plate 31 so that the portion facing the back surface signal wiring 28b does not exist, it is possible to avoid contact between the support plate 31 and the back surface signal wiring 28b of the second conductor layer 28. ..
  • Embodiment 5 In the first embodiment, the configuration in which the other end portion of the cap 1a is adhered to the surface side surface of the surface coverlay 24 of the FPC2 has been described. In the fifth embodiment, a configuration in which a spacer is provided between the surface coverlay 24 of the FPC 2 and the other end of the cap 1a will be described.
  • the fifth embodiment will be described below with reference to the drawings. The same reference numerals are given to the configurations having the same functions as those described in the first embodiment, and the description thereof will be omitted.
  • FIG. 6A is a plan view showing the configuration of the TO-CAN type optical module 104 with the lens cap 1 removed.
  • FIG. 6B is a cross-sectional view taken along the dotted line ⁇ 'of FIG. 6A.
  • the configuration different from the TO-CAN type optical module 100 according to the first embodiment shown in FIG. 2C. Will be described.
  • the other end of the cap 1a is installed on the surface side of the FPC 2 via the spacer 33.
  • the spacer 33 is installed on the surface side surface of the surface coverlay 24, and the other end portion of the cap 1a is installed on the surface of the spacer 33 opposite to the surface in contact with the surface coverlay 24. ing.
  • the thickness of the spacer 33 is, for example, about 200 ⁇ m.
  • the material of the spacer 33 is, for example, a resin.
  • the spacer 33 has an opening 33a in a portion of the first conductor layer 21 corresponding to the surface signal wiring 21a. More specifically, the spacer 33 has a cylindrical shape, and the opening 33a is formed by missing a portion of the side surface of the cylinder corresponding to the surface signal wiring 21a of the first conductor layer 21. It is formed.
  • the opening 33a of the spacer 33 is interposed between the cap 1a and the surface signal wiring 21a.
  • the influence of the cap 1a on the impedance of the surface signal wiring 21a can be suppressed. Therefore, stable high frequency characteristics can be obtained.
  • Embodiment 6 In the first embodiment, the TO-CAN type optical module 100 having a function of receiving signal light has been described. In the sixth embodiment, a TO-CAN type optical module having a function of transmitting signal light will be described. The sixth embodiment will be described below with reference to the drawings. The same reference numerals are given to the configurations having the same functions as those described in the first embodiment, and the description thereof will be omitted.
  • the surface signal wiring 34a and the DC wiring 34c each extend from the lower portion of FIG. 7A toward the upper surface ground 34d.
  • the surface signal wiring 34a and the DC wiring 34c are connected to another printed circuit board at the end of the FPC 13 at the lower part of FIG. 7A. Further, the surface signal wiring 34a and the DC wiring 34c are partially covered with the surface coverlay 24, respectively.
  • a ceramic substrate 35, a mirror 36, and a capacitor 37 are installed on a surface of the surface ground 34d on the surface side facing the lens 1b of the lens cap 1.
  • the mirror 36 is fixed to, for example, the surface ground 34d with an adhesive or solder.
  • an EML 38 and a terminating resistor 39 are installed on the surface side surface of the ceramic substrate 35.
  • the EML 38 is connected to the ceramic substrate 35 by the gold wire 6f, and is installed on the surface ground 34d via the ceramic substrate 35. This is because when the EML38 is directly installed on the surface ground 34d, the characteristics of the EML38 fluctuate when a force is applied to the EML38 due to the expansion of the surface ground 34d due to heat and a stress is generated. Since the ceramic substrate 35 has a linear expansion coefficient close to that of the compound semiconductor EML38, the EML38 expands to the same extent even if it expands due to heat, so that no force is applied to the EML38. On the other hand, if there is no problem even if the characteristics of the EML 38 vary slightly, the EML 38 may be installed directly on the surface ground 34d. Further, in the present embodiment, EML38 is used as the semiconductor laser, but DML (Directly Modulated Laser) may be used.
  • DML Directly Modulated Laser
  • the capacitor 37 is connected to the DC wiring 34c by the gold wire 6g and is connected to the ceramic substrate 35 by the gold wire 6h, and removes noise included in the electric power from the DC wiring 21c.
  • the ceramic substrate 35 supplies the electric power from the capacitor 37 to the EML 38. Further, the ceramic substrate 35 is connected to the surface signal wiring 34a by a gold wire 6i, and supplies an electric signal from the surface signal wiring 34a to the EML 38.
  • the terminating resistor 39 is connected to the EML 38 by a gold wire 6j, and has an impedance that matches the impedance of the driver IC that drives the EML 38 to prevent signal reflection.
  • the impedance is, for example, 50 ⁇ .
  • the EML 38 transmits signal light toward the mirror 36 based on the electric signal from the surface signal wiring 34a. More specifically, the EML 38 is an end face emitting type light source, and emits signal light in a direction parallel to the front surface and the back surface of the FPC 13.
  • the mirror 36 reflects the signal light toward the lens 1b of the lens cap 1 so that the traveling direction of the signal light changes by 90 degrees. As a result, the output signal light B is emitted from the lens 1b.
  • the semiconductor optical element of the TO-CAN type optical module 105 according to the sixth embodiment is a semiconductor laser that transmits an optical signal.
  • the EML 38 as a semiconductor laser is directly installed in the FPC 13, so that no metal stem is required. Even if the above configuration is applied to any one of the embodiments from the second embodiment to the fifth embodiment, the same effect as the above effect can be obtained.
  • Embodiment 7 In the first embodiment, a configuration in which a photodiode 3, two capacitors 4, and a TIA 5 are installed in a portion of the lens cap 1 facing the lens 1b on the surface side surface of the surface ground 21d has been described. In the seventh embodiment, the configuration in which these members are installed on the metal carrier will be described. Hereinafter, the seventh embodiment will be described with reference to the drawings. The same reference numerals are given to the configurations having the same functions as those described in the first embodiment, and the description thereof will be omitted.
  • FIG. 8 is a cross-sectional view showing the configuration of the TO-CAN type optical module 106 according to the seventh embodiment.
  • the FPC 14 included in the TO-CAN type optical module 106 includes a first conductor layer 40 on the surface side, and a base layer 41 installed in contact with a surface of the first conductor layer 40 opposite to the surface on the surface side.
  • a second conductor layer 42 on the back surface side which is installed in contact with a surface of the base layer 41 opposite to the surface in contact with the first conductor layer 40.
  • the first conductor layer 40 and the second conductor layer 42 are insulated by the base layer 41.
  • the first conductor layer 40 includes a surface signal wiring 40a.
  • the second conductor layer 42 includes a back surface ground 42a.
  • a convex metal carrier 43 is installed on the back surface side of the FPC 14. More specifically, the metal carrier 43 has a first portion 43a in contact with the back ground 42a of the second conductor layer 42 and a second portion 43b inserted into the through hole 14a. The first portion 43a of the metal carrier 43 is connected to the ground by contacting the back surface ground 42a of the second conductor layer 42. The first portion 43a of the metal carrier 43 is fixed to, for example, the back surface ground 42a with solder or an adhesive.
  • the material of the metal carrier 43 is preferably a material having excellent heat dissipation. The material is, for example, a copper-tungsten alloy, copper, aluminum, Kovar, or the like.
  • a photodiode 3, a TIA 5, and two capacitors 4 are installed on the surface of the second portion 43b of the metal carrier 43 facing the lens 1b of the lens cap 1.
  • the heat generated from the photodiode 3 or the TIA 5 is dissipated to the outside via the metal carrier 43.
  • the FPC 14 further includes a surface coverlay 44 installed on a surface of the first conductor layer 21 on the surface side other than the through hole 14a. Further, the FPC 14 further includes a back surface coverlay 45 installed on a portion of the second conductor layer 42 on the back surface side other than the portion where the metal carrier 43 is installed. The other end of the cap 1a is adhered to the surface side surface of the surface coverlay 44 with an adhesive or the like.
  • the TO-CAN type optical module 106 is an FPC 14 having a front surface and a back surface, and is a first conductor layer 40 and a first conductor layer 40 installed on the front surface side.
  • the base layer 41 installed in contact with the surface opposite to the surface on the front surface side, and the second surface on the back surface side installed in contact with the surface opposite to the surface in contact with the first conductor layer 40 in the base layer 41.
  • the FPC 14 including the conductor layer 42 of 2 and the lens cap 1 having the lens 1b and installed on the front surface side of the FPC 14 are provided, and the second conductor layer 42 has a back surface ground 42a.
  • the FPC 14 has a through hole 14a penetrating the first conductor layer 40, the base layer 41 and the second conductor layer 42 in a portion facing the lens 1b, and the back surface ground 42a on the back surface side of the FPC 14.
  • a metal carrier 43 having a first portion 43a in contact with the lens cap 1 and a second portion 43b inserted into the through hole 14a is installed, and the surface of the second portion 43b facing the lens 1b of the lens cap 1 is provided.
  • a photodiode 3 as a semiconductor optical element is installed.
  • the photodiode 3 since the photodiode 3 is directly installed in the metal carrier 43 inserted into the through hole 14a of the FPC 14, the metal stem is unnecessary. Moreover, since a metal stem is not required and a glass lead is not required, it contributes to cost reduction. In addition, it is not necessary to install a component such as a relay line board for improving high frequency characteristics, and a simple structure is sufficient. Further, according to the above configuration, since the photodiode 3 is mounted on the metal carrier 43, the heat dissipation performance from the photodiode 3 is superior to the heat dissipation performance by the through hole 22a in the first embodiment. realizable.
  • the metal carrier 43 having higher rigidity than the FPC 14 since the metal carrier 43 having higher rigidity than the FPC 14 is hard to be deformed, the optical axis of the photodiode 3 mounted on the metal carrier 43 is hard to be displaced, and the photodiode 3 and the input signal are signaled. Stable optical coupling efficiency with light can be obtained. Even if the above configuration is applied to the FPC 10 of the TO-CAN type optical module 101 according to the second embodiment, the same effects as those of the above effects can be obtained. In the present invention, within the scope of the invention, it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component in each embodiment. ..
  • the TO-CAN type optical module according to the present invention can be used as a TO-CAN type optical module because it can provide a TO-CAN type optical module that does not require a metal stem.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Light Receiving Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

TO-CAN型光モジュール(100)は、表面及び裏面を有するFPC(2)であって、表面側に設置された第1の導体層(21)、第1の導体層(21)における表面側の面とは反対の面に接して設置されたベース層(22)、及び、ベース層(22)における第1の導体層(21)に接する面とは反対の面に接して設置された、裏面側の第2の導体層(23)、を含むFPC(2)と、レンズ(1b)を有するレンズキャップ(1)であって、FPC(2)の表面側に設置されたレンズキャップ(1)と、を備え、第1の導体層(21)は、レンズ(1b)に対向する面を有する表面グラウンド(21d)を含み、第2の導体層(23)は、裏面グラウンド(23a)を含み、ベース層(22)は、表面グラウンド(21d)と裏面グラウンド(23a)とを電気的に接続するためのスルーホール(22a)を含み、表面グラウンド(21d)におけるレンズ(1b)に対向する面には、半導体光素子としてのフォトダイオード(3)が設置されている。

Description

TO-CAN型光モジュール
 本発明は、TO-CAN(Transistor Outlined CAN)型光モジュールに関する。
 従来のTO-CAN型光モジュールは、円筒状の金属ステムと、金属ステムに形成された貫通孔に挿入され、封止用ガラスにより固定されたリード線(以下「ガラスリード」という。)とを備える。また、金属ステムの一方の面には、ガラスリードに接続された半導体光素子と、ガラスリード及び半導体光素子を覆うレンズキャップとが設置される。金属ステムの他方の面には、ガラスリードに接続されたFPC(Flexible Printed Circuits)が設置される。ガラスリードと金属ステムとは、同軸線路を構成しており、半導体光素子と基板との間で高周波信号を伝達する。
 従来のTO-CAN型光モジュールとして、例えば、特許文献1には、TO-CAN型TOSA(Transmitter Optical Sub-Assembly)モジュールが開示されている。特許文献1に記載されたTO-CAN型TOSAモジュールでは、安定なマイクロ波の伝搬ができるように、セラミック材料で構成された中継線路基板が金属ステム上面に固定されている。中継線路基板には、グランドパターンと中継線路とが設けられ、高周波変調信号用の信号リード線が当該中継線路に接続されている。
特開2011-108937号公報
 従来のTO-CAN型光モジュールでは、金属ステムが同軸線路の構成要素として使用されるため、金属ステムに形成された貫通孔内に、ガラスリードを設置する必要がある。また、従来のTO-CAN型光モジュールでは、高周波特性を改善する等の目的で、例えば特許文献1に記載の中継線路基板のように、金属ステム上に種々の部品を設置する必要がある。したがって、従来のTO-CAN型光モジュールには、全体の構造が複雑になるという問題がある。
 この発明は、上記のような問題点を解決するためになされたものであり、金属ステムの不要なTO-CAN型光モジュールを提供することを目的とする。
 この発明に係るTO-CAN型光モジュールは、表面及び裏面を有するFPCであって、表面側に設置された第1の導体層、第1の導体層における前記表面側の面とは反対の面に接して設置されたベース層、及び、ベース層における第1の導体層に接する面とは反対の面に接して設置された、裏面側の第2の導体層、を含むFPCと、レンズを有するレンズキャップであって、FPCの表面側に設置されたレンズキャップと、を備え、第1の導体層は、レンズに対向する面を有する表面グラウンドを含み、第2の導体層は、裏面グラウンドを含み、ベース層は、表面グラウンドと裏面グラウンドとを電気的に接続するためのスルーホールを含み、表面グラウンドにおけるレンズに対向する面には、半導体光素子が設置されている。
 この発明によれば、金属ステムの不要なTO-CAN型光モジュールを提供することができる。
実施の形態1に係るTO-CAN型光モジュールの構成を示す斜視図である。 図2Aは、実施の形態1に係るTO-CAN型光モジュールの平面図を示す。図2Bは、レンズキャップを外したTO-CAN型光モジュールの平面図を示す。図2Cは、図2Bの点線αα´で切断したTO-CAN型光モジュールの断面図を示す。 実施の形態2に係るTO-CAN型光モジュールの構成を示す断面図である。 実施の形態3に係るTO-CAN型光モジュールの構成を示す断面図である。 実施の形態4に係るTO-CAN型光モジュールの構成を示す断面図である。 図6Aは、レンズキャップを外したTO-CAN型光モジュールの構成を示す平面図である。図6Bは、図6Aの点線ββ´で切断した断面図である。 図7Aは、レンズキャップ1を外したTO-CAN型光モジュールの構成を示す平面図である。図7Bは、図7Aの点線γγ´で切断した断面図である。 実施の形態7に係るTO-CAN型光モジュールの構成を示す断面図である。
 以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1に係るTO-CAN型光モジュール100の構成を示す斜視図である。なお、実施の形態1では、信号光を受信する機能を有するTO-CAN型光モジュール100について説明するが、TO-CAN型光モジュールは、信号光を送信する機能を有するものであってもよい。図1が示すように、TO-CAN型光モジュール100は、レンズキャップ1と、FPC2とを備えている。FPC2は、表面及び裏面を有する。レンズキャップ1は、FPC2の表面側に設置されている。レンズキャップ1は、キャップ1aと、レンズ1bとを有する。キャップ1aは、中空円筒形状である。キャップ1aの一方の端部は、底面を有しており、当該底面の略中央部分には、レンズ1bを設置するための穴が形成されている。キャップ1aの他方の端部は開放されている。レンズ1bは、キャップ1aの底面に形成された穴に嵌め込まれて設置されている。レンズキャップ1は、キャップ1aの他方の端部がFPC2の表面側と対向する姿勢で、設置されている。キャップ1aの材料は、例えば、金属である。
 次に、実施の形態1に係るTO-CAN型光モジュール100のより詳細な構成について説明する。図2Aは、実施の形態1に係るTO-CAN型光モジュール100の平面図を示す。図2Bは、レンズキャップ1を外したTO-CAN型光モジュール100の平面図を示す。図2Cは、図2Bの点線αα´で切断したTO-CAN型光モジュール100の断面図を示す。
 図2Cが示すように、FPC2は、表面側に設置された第1の導体層21、第1の導体層21における表面側の面とは反対の面に接して設置されたベース層22、及び、ベース層22における第1の導体層21に接する面とは反対の面に接して設置された、裏面側の第2の導体層23、を含む。第1の導体層21と第2の導体層23とは、ベース層22により絶縁されている。
 図2Bが示すように、第1の導体層21は、レンズ1bに対向する面を有する表面グラウンド21dを含む。また、図2A及び図2Bが示すように、第1の導体層21は、高周波信号を伝送する2つの表面信号配線21a、グラウンドに接続された2つのグラウンドパッド21b、及び、後述するフォトダイオードに電力を供給する2つのDC配線21cを含む。
 2つの表面信号配線21a及び2つのDC配線21cは、それぞれ、図2Bの下部におけるFPC2の端部から、図2Bの上部の表面グラウンド21dに向かって延伸している。なお、2つの表面信号配線21a及び2つのDC配線21cは、図2Bの下部におけるFPC2の端部において、図示しない別のプリント基板に接続される。また、2つの表面信号配線21a及び2つのDC配線21cは、それぞれ、後述する表面カバーレイ24により部分的に覆われている。このため、図2Bでは、2つの表面信号配線21a及び2つのDC配線21cの一部が見えていない。
 FPC2の厚さは、例えば、50μmである。2つの表面信号配線21aは、差動信号を伝達する信号配線である。2つの表面信号配線21aは、例えば、100Ωの特性インピーダンスを有するマイクロストリップ線路であり得る。
 図2Bが示すように、表面グラウンド21dの表面側の面における、レンズ1bに対向する面には、フォトダイオード3、2つのコンデンサ4、及びTIA5(Transimpedance Amplifier)が設置されている。このように、フォトダイオード3、2つのコンデンサ4、及びTIA5は、表面グラウンド21dに設置されることにより、グラウンドに接続されている。フォトダイオード3は、半導体光素子であり、レンズ1bに外部から入射した入力信号光を受信して、受信した入力信号光を電気信号である入力信号に変換する。
 コンデンサ4は、DC配線21cと金ワイヤ6aで接続され、TIA5と金ワイヤ6bで接続されており、DC配線21cからの電力に含まれるノイズを除去する。TIA5は、フォトダイオード3と金ワイヤ6cで接続され、コンデンサ4と金ワイヤ6bで接続され、表面信号配線21aと金ワイヤ6dで接続され、表面グラウンド21dと金ワイヤ6eで接続されている。TIA5は、フォトダイオード3から入力信号が入力されると、コンデンサ4からの電力を用いて当該入力信号を増幅し、増幅後の入力信号を表面信号配線21aに出力する。表面信号配線21aに接続される上述の図示しない別のプリント基板には、例えばICが実装されており、表面信号配線21aは、入力信号を当該ICに伝達する。
 実施の形態1において、FPC2は、第1の導体層21の表面側の面に設置された表面カバーレイ24をさらに含む。表面カバーレイ24は、第1の導体層21の表面側の面における、フォトダイオード3及びTIA5等が設置されていない部分に設置されている。また、FPC2は、第2の導体層23における裏面側の面に設置された裏面カバーレイ25をさらに含む。
 表面カバーレイ24の表面側の面には、レンズキャップ1のキャップ1aの他方の端部が接着剤等により接着されている。レンズキャップ1は、例えば、公知のパッシブ実装技術を用いて、表面カバーレイ24上の所定の位置に設置される。パッシブ実装技術においては、フォトダイオード3が通電されることなく、当該フォトダイオード3とレンズキャップ1のレンズ1bとの位置合わせが行われる。パッシブ実装技術を用いた位置合わせは、例えば、表面カバーレイ24の表面側の面に設けられた位置合わせマークを基準として、当該基準を画像認識することにより行われる。
 上述のように、第1の導体層21は、レンズキャップ1のレンズ1bに対向する面を有する表面グラウンド21dを含む。表面グラウンド21dにおけるレンズキャップ1のレンズ1bに対向する面には、上述のフォトダイオード3及びTIA5等がそれぞれ設置されている。また、上述のように、第1の導体層21は、TIA5と接続された表面信号配線21aをさらに含む。第2の導体層23は、裏面グラウンド23aを含む。裏面グラウンド23aは、第2の導体層23において、表面グラウンド21dと表面信号配線21aとに対応する位置に配置されている。
 ベース層22は、表面グラウンド21dと裏面グラウンド23aとを電気的に接続するためのスルーホール22aを含む。スルーホール22aは、表面グラウンド21dに設置されたフォトダイオード3又はTIA5の発熱を、裏面グラウンド23a側に拡散させるヒートパイプの機能も有する。
 次に、実施の形態1に係るTO-CAN型光モジュール100の動作について説明する。図2Cが示すように、フォトダイオード3は、レンズ1bを通過した入力信号光Aを受信する。フォトダイオード3は、受信した入力信号光Aを、電気信号である入力信号に変換する。当該入力信号は、金ワイヤ6cを介してTIA5に入力される。TIA5は、当該入力信号を増幅し、増幅後の入力信号を金ワイヤ6dを介して表面信号配線21aに出力する。当該入力信号は、表面信号配線21aにおいて、図2Cの下部に向かって伝達される。
 上記のように、フォトダイオード3が入力信号光Aを変換して生成した入力信号は、従来技術におけるガラスリードと当該ガラスリードの周囲の金属ステムとから構成された同軸線路を介さずに、FPC2の表面信号配線21aに伝達される。これにより、TO-CAN型光モジュール100の高周波特性の劣化を抑制することができる。
 以上のように、実施の形態1に係るTO-CAN型光モジュール100は、表面及び裏面を有するFPC2であって、表面側に設置された第1の導体層21、第1の導体層21における表面側の面とは反対の面に接して設置されたベース層22、及び、ベース層22における第1の導体層21に接する面とは反対の面に接して設置された、裏面側の第2の導体層23、を含むFPC2と、レンズ1bを有するレンズキャップ1であって、FPC2の表面側に設置されたレンズキャップ1と、を備え、第1の導体層21は、レンズ1bに対向する面を有する表面グラウンド21dを含み、第2の導体層23は、裏面グラウンド23aを含み、ベース層22は、表面グラウンド21dと裏面グラウンド23aとを電気的に接続するためのスルーホール22aを含み、表面グラウンド21dにおけるレンズ1bに対向する面には、半導体光素子としてのフォトダイオード3が設置されている。
 上記の構成によれば、FPC2にフォトダイオード3が直接設置されるため、金属ステムが不要である。
 また、金属ステムが不要であるのに加えて、ガラスリードも不要であるため、コスト削減に寄与する。また、高周波特性を改善するための中継線路基板のような部品を設置する必要がなく、単純な構造で済む。
 また、従来技術において、金属ステムから突出するガラスリードは、インダクタンス成分を発生させ、TO-CAN型光モジュールの高周波特性を劣化させるという問題がある。しかし、上記の構成によれば、金属ステム及びガラスリードを用いないため、そのような高周波特性の劣化が生じない。また、インピーダンス管理が容易なFPC2の各配線を介して、レンズキャップ1に囲まれた空間の内と外とを接続するため、従来のようにリード線を用いる場合と比較して、インピーダンス不整合点が少なく、高周波特性に優れている。
実施の形態2.
 実施の形態1では、FPC2における表面側の第1の導体層21が、フォトダイオード3と接続された表面信号配線21aを含む構成を説明した。実施の形態2では、FPC2における裏面側の第2の導体層23が、フォトダイオード3と接続された信号配線を含む構成を説明する。
 以下で、実施の形態2について図面を参照して説明する。なお、実施の形態1で説明した構成と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
 図3は、実施の形態2に係るTO-CAN型光モジュール101の構成を示す断面図である。以下では図3を参照して、実施の形態2に係るTO-CAN型光モジュール101の構成のうち、図2Cが示す実施の形態1に係るTO-CAN型光モジュール100と異なる構成について説明する。
 TO-CAN型光モジュール101が備えているFPC10の第1の導体層26は、第1の表面グラウンド26a、第2の表面グラウンド26b、及び、第1の表面グラウンド26aと第2の表面グラウンド26bとの間に設置された信号パッド26cを含む。第1の表面グラウンド26aにおけるレンズキャップ1のレンズ1bに対向する面には、フォトダイオード3及びTIA5等がそれぞれ設置されている。信号パッド26cは、フォトダイオード3に金ワイヤ6cを介して接続されたTIA5と、金ワイヤ6dを介して接続している。
 また、TO-CAN型光モジュール101が備えているFPC10のベース層27は、スルーホール27a及び信号パッドスルーホール27bを含む。スルーホール27aは、第1の導体層26の第1の表面グラウンド26aと電気的に接続している。信号パッドスルーホール27bは、第1の導体層26の信号パッド26cと電気的に接続している。
 また、TO-CAN型光モジュール101が備えているFPC10の第2の導体層28は、裏面グラウンド28a及び裏面信号配線28bを含む。裏面グラウンド28aは、第2の導体層28において、第1の導体層26の第1の表面グラウンド26aに対応する位置に配置されており、ベース層27のスルーホール27aと電気的に接続している。裏面信号配線28bは、第2の導体層28において、第1の導体層26の第2の表面グラウンド26b及び信号パッド26cに対応する位置に配置されており、ベース層27の信号パッドスルーホール27bと電気的に接続している。
 次に、実施の形態2に係るTO-CAN型光モジュール101の動作について説明する。図3が示すように、フォトダイオード3は、レンズ1bを通過した入力信号光Aを受信する。フォトダイオード3は、受信した入力信号光Aを、電気信号である入力信号に変換する。当該入力信号は、金ワイヤ6cを介してTIA5に入力される。TIA5は、当該入力信号を増幅し、増幅後の入力信号を金ワイヤ6dを介して第1の導体層26の信号パッド26cに出力する。当該入力信号は、表面側の第1の導体層26の信号パッド26cから、ベース層27の信号パッドスルーホール27bを介して、裏面側の第2の導体層28の裏面信号配線28bに入力される。当該入力信号は、裏面信号配線28bにおいて、図3の下部に向かって伝達される。
 上述の実施の形態1では、レンズキャップ1のキャップ1aの材料が金属である場合、入力信号が、キャップ1aの近傍に位置する表面側の第1の導体層21の表面信号配線21aによって伝達されるため、表面信号配線21aとキャップ1aとの間に電気的な接続が生じてしまい、インピーダンスのずれが生じる可能性があるという問題がある。しかし、実施の形態2では、入力信号が、裏面側の第2の導体層28の裏面信号配線28bによって伝達されるため、キャップ1aの影響によるインピーダンスのずれを抑制することができる。
 以上のように、実施の形態2に係るTO-CAN型光モジュール101の第1の導体層26は、半導体光素子としてのフォトダイオード3と接続された信号パッド26cをさらに含み、第2の導体層28は、裏面信号配線28bをさらに含み、ベース層27は、信号パッド26cと裏面信号配線28bとを電気的に接続するための信号パッドスルーホール27bをさらに含む。
 上記の構成によれば、入力信号が、裏面側の第2の導体層28の裏面信号配線28bによって伝達されるため、レンズキャップ1のキャップ1aの影響によるインピーダンスのずれを抑制することができる。
実施の形態3.
 実施の形態1では、FPC2の第1の導体層21における表面側の面に表面カバーレイ24が設置されている構成について説明した。実施の形態3では、FPC2の第1の導体層21における表面側の面に、追加ベース層と追加導体層が設置されている構成について説明する。
 以下で、実施の形態3について図面を参照して説明する。なお、実施の形態1で説明した構成と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
 図4は、実施の形態3に係るTO-CAN型光モジュール102の構成を示す断面図である。以下では図4を参照して、実施の形態3に係るTO-CAN型光モジュール102の構成のうち、図2Cが示す実施の形態1に係るTO-CAN型光モジュール100と異なる構成について説明する。
 TO-CAN型光モジュール102が備えているFPC11は、第1の導体層21の表面側の面における、フォトダイオード3及びTIA5等が設置された部分以外の部分に接して設置された追加ベース層29と、追加ベース層29における、第1の導体層21に接する面とは反対の面に接して設置された追加導体層30と、を含む。第1の導体層21と追加導体層30とは、追加ベース層29により絶縁されている。
 より詳細には、追加導体層30は、追加ベース層29とレンズキャップ1のキャップ1aの他方の端部との間に設置されている。また、キャップ1aの他方の端部は、追加導体層30における表面側の面に、図示しないはんだにより固定されている。キャップ1aの他方の端部と追加導体層30とがはんだにより固定されやすいように、キャップ1aの他方の端部は、はんだとの濡れ性が良好な表面処理が施されることが好ましい。
 以上のように、実施の形態3に係るTO-CAN型光モジュール102のFPC11は、第1の導体層21の表面側の面における、半導体光素子としてのフォトダイオード3が設置された部分以外の部分に接して設置された追加ベース層29と、追加ベース層29における、第1の導体層21に接する面とは反対の面に接して設置された追加導体層30と、を含み、キャップ1aは、追加導体層30における表面側の面に、はんだにより固定されている。
 上記の構成によれば、追加導体層30は、追加ベース層29により第1の導体層21と絶縁されているため、キャップ1aを、追加導体層30に、はんだにより固定しても、キャップ1aと第1の導体層21との間の絶縁を保つことができる。また、はんだは、接着剤と比較して線膨張係数が小さく、接合強度が強く、耐熱性が高いといった利点があるため、レンズキャップ1とFPC11との接続部分に接着剤を用いた場合よりも、温度変化又は経年劣化による当該接続部分のずれを抑制することができる。よって、レンズ1bを通過する入力信号光とフォトダイオード3との結合効率の変動を抑制することができる。
 また、上記の構成によれば、はんだは、接着剤よりも熱伝導率が高いため、フォトダイオード3又はTIA5等からの発熱が、はんだを介して、レンズキャップ1側に拡散しやすくなり、TO-CAN型光モジュール102の放熱性が向上する。
 なお、上記の構成を実施の形態2に係るTO-CAN型光モジュール101のFPC10とレンズキャップ1とに適用しても上記の各効果と同様の効果を奏する。
実施の形態4.
 実施の形態1では、FPC2に直接、フォトダイオード3及びレンズキャップ1がそれぞれ設置されているため、図2CにおけるFPC2の下部が屈曲した場合、FPC2におけるレンズキャップ1のレンズ1bに対向する部分にひずみが生じ、フォトダイオード3とレンズ1bとの相対位置がずれてしまう虞がある。これにより、レンズ1bの光軸がずれ、信号光とフォトダイオード3との結合効率が低下してしまう。そこで、実施の形態4では、FPC2の裏面に支持板が設置される。
 以下で、実施の形態4について図面を参照して説明する。なお、実施の形態1で説明した構成と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
 図5は、実施の形態4に係るTO-CAN型光モジュール103の構成を示す断面図である。以下では図5を参照して、実施の形態4に係るTO-CAN型光モジュール103の構成のうち、図2Cが示す実施の形態1に係るTO-CAN型光モジュール100と異なる構成について説明する。
 TO-CAN型光モジュール103が備えているFPC12は、第2の導体層23の裏面グラウンド23aにおける裏面側の面に、金属製の支持板31と裏面カバーレイ32とが設置されている。より詳細には、支持板31は、一方の面が、裏面グラウンド23aの裏面側の面における、FPC12の表面側に設置されたレンズキャップ1に対応する部分よりも広い部分に接するように設置されている。例えば、支持板31は、裏面グラウンド23aに接着剤により固定される。裏面カバーレイ32は、裏面グラウンド23aの裏面側の面における、支持板31が設置された部分以外の部分に設置されている。
 なお、裏面グラウンド23aの裏面側の面における、レンズキャップ1に対応する部分は、換言すれば、裏面グラウンド23aの裏面側の面における、キャップ1aの他方の端部を円周とした円に囲まれた2次元領域に対応する部分である。つまり、支持板31の一方の面は、キャップ1aの他方の端部を円周とした円に囲まれた2次元領域よりも広ければよく、その形状は特に限定されない。なお、図5では、支持板31の下端は、図5の断面図の断面におけるFPC12の表面及び裏面に平行な方向に関し、レンズキャップ1の下端よりも例えば1mm長い。
 以上のように、実施の形態4に係るTO-CAN型光モジュール103は、一方の面が、裏面グラウンド23aの裏面側の面における、表面側に設置されたレンズキャップ1に対応する部分よりも広い部分に接するように設置された金属製の支持板31をさらに備えている。
 上記の構成によれば、FPC2におけるレンズキャップ1のレンズ1bに対向する部分のひずみを抑制し、フォトダイオード3とレンズ1bとの相対位置のずれを抑制することができる。よって、レンズ1bの光軸のずれによる信号光とフォトダイオード3との結合効率の低下を抑制することができる。
 また、上記の構成によれば、フォトダイオード3又はTIA5から発生し、表面グラウンド21d、スルーホール22a及び裏面グラウンド23aに拡散した熱は、支持板31を介して放熱されやすくなり、TO-CAN型光モジュール103の放熱性を向上することができる。よって、フォトダイオード3の特性、又は表面信号配線21aに接続されたICの特性が高温により劣化することを抑制することができる。よって、同一環境温度において、従来のTO-CAN型光モジュールよりも性能を向上することができる。また、従来のTO-CAN型光モジュールよりも使用可能な環境温度の範囲を拡大することができる。
 また、上記の構成を実施の形態2に係るTO-CAN型光モジュール101のFPC10に適用しても上記の各効果と同様の効果を奏する。なお、その場合、裏面信号配線28bのインピーダンスに影響を与えることがないように、支持板31と第2の導体層28の裏面信号配線28bとが接触又は対向しない形状とする必要がある。例えば、支持板31の形状を、裏面信号配線28bに対向する部分が存在しない形状とすることにより、支持板31と第2の導体層28の裏面信号配線28bとの接触を回避することができる。
 なお、TO-CAN型光モジュール103を光トランシーバ内部に設置する場合、TO-CAN型光モジュール103の製造時にFPC12に支持板31を設置する必要はなく、トランシーバ筐体放熱ブロックに支持板31を取り付けた上で、TO-CAN型光モジュール103を当該支持板31の上に設置してもよい。
 実施の形態5.
 実施の形態1では、FPC2の表面カバーレイ24における表面側の面に、キャップ1aの他方の端部が接着されている構成を説明した。実施の形態5では、FPC2の表面カバーレイ24と、キャップ1aの他方の端部との間にスペーサが設けられた構成について説明する。
 以下で、実施の形態5について図面を参照して説明する。なお、実施の形態1で説明した構成と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
 図6Aは、レンズキャップ1を外したTO-CAN型光モジュール104の構成を示す平面図である。図6Bは、図6Aの点線ββ´で切断した断面図である。以下では図6A及び図6Bを参照して、実施の形態5に係るTO-CAN型光モジュール104の構成のうち、図2Cが示す実施の形態1に係るTO-CAN型光モジュール100と異なる構成について説明する。
 図6Bが示すように、キャップ1aの他方の端部は、スペーサ33を介して、FPC2の表面側に設置されている。より詳細には、表面カバーレイ24における表面側の面にスペーサ33が設置されており、スペーサ33における表面カバーレイ24に接する面とは反対の面に、キャップ1aの他方の端部が設置されている。スペーサ33の厚さは、例えば、約200μmである。スペーサ33の材料は、例えば、樹脂である。
 図6Aが示すように、スペーサ33は、第1の導体層21の表面信号配線21aに対応する部分に開口部33aを有する。より詳細には、スペーサ33は、円筒の形状を有しており、当該円筒の側面における、第1の導体層21の表面信号配線21aに対応する部分が欠損していることにより開口部33aが形成されている。
 以上のように、実施の形態5に係るTO-CAN型光モジュール104の第1の導体層21は、半導体光素子としてのフォトダイオード3と接続された表面信号配線21aを含み、キャップ1aは、スペーサ33を介して、FPC2の表面側に設置され、スペーサ33は、表面信号配線21aに対応する部分に開口部33aを有する。
 上記の構成によれば、キャップ1aと表面信号配線21aとの間に、スペーサ33の開口部33aが介在する。これにより、キャップ1aが表面信号配線21aのインピーダンスに及ぼす影響を抑制することができる。よって、安定した高周波特性が得られる。
 実施の形態6.
 実施の形態1では、信号光を受信する機能を有するTO-CAN型光モジュール100について説明した。実施の形態6では、信号光を送信する機能を有するTO-CAN型光モジュールについて説明する。
 以下で、実施の形態6について図面を参照して説明する。なお、実施の形態1で説明した構成と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
 図7Aは、レンズキャップ1を外したTO-CAN型光モジュール105の構成を示す平面図である。図7Bは、図7Aの点線γγ´で切断した断面図である。以下では図7A及び図7Bを参照して、実施の形態6に係るTO-CAN型光モジュール105の構成のうち、図2Cが示す実施の形態1に係るTO-CAN型光モジュール100と異なる構成について説明する。
 図7Aが示すように、FPC13は、表面側に、第1の導体層34を備え、第1の導体層34は、高周波信号を伝送する表面信号配線34a、グラウンドに接続された2つのグラウンドパッド34b、及び、後述する半導体レーザのEML(Electro-absorption Modulator Laser)に電力を供給するDC配線34c、及びグラウンドに接続された表面グラウンド34dを含む。表面信号配線34a及びDC配線34cは、それぞれ、図7Aの下部から上部の表面グラウンド34dに向かって延伸している。なお、図示しないが、表面信号配線34a及びDC配線34cは、図7Aの下部におけるFPC13の端部において、別のプリント基板に接続される。また、表面信号配線34a及びDC配線34cは、それぞれ、表面カバーレイ24により部分的に覆われている。
 図7A又は図7Bが示すように、表面グラウンド34dの表面側の面における、レンズキャップ1のレンズ1bに対向する部分には、セラミック基板35、ミラー36、及びコンデンサ37が設置されている。ミラー36は、例えば、表面グラウンド34dに接着剤又ははんだにより固定されている。また、セラミック基板35における表面側の面には、EML38及び終端抵抗39が設置されている。
 なお、本実施形態では、EML38は、金ワイヤ6fでセラミック基板35に接続されており、セラミック基板35を介して表面グラウンド34dに設置されている。これは、EML38が表面グラウンド34dに直接設置された場合、表面グラウンド34dが熱により膨張することによりEML38に力が加わり応力が生じると、EML38の特性が変動してしまうためである。セラミック基板35は、化合物半導体であるEML38と線膨張係数が近いため、熱により膨張してもEML38も同程度膨張するため、EML38に力が加わることがない。一方で、EML38の特性が多少変動しても問題がない場合、EML38は、表面グラウンド34dに直接設置されてもよい。また、本実施形態では、半導体レーザとしてEML38を用いるが、DML(Directly Modulated Laser)を用いてもよい。
 コンデンサ37は、DC配線34cと金ワイヤ6gで接続され、セラミック基板35と金ワイヤ6hで接続されており、DC配線21cからの電力に含まれるノイズを除去する。セラミック基板35は、コンデンサ37からの電力を、EML38に供給する。また、セラミック基板35は、表面信号配線34aと金ワイヤ6iで接続されており、表面信号配線34aからの電気信号をEML38に供給する。
 終端抵抗39は、EML38と金ワイヤ6jで接続されており、EML38を駆動するドライバICのインピーダンスと一致するインピーダンスを有することにより信号の反射を防ぐ。当該インピーダンスは、例えば、50Ωである。
 EML38は、表面信号配線34aからの電気信号に基づき、ミラー36に向けて信号光を送信する。より詳細には、EML38は、端面出射型の光源であり、FPC13の表面及び裏面と平行な方向に信号光を出射する。ミラー36は、当該信号光の進行方向が90度変化するように、当該信号光をレンズキャップ1のレンズ1bに向けて反射する。これにより、レンズ1bから出力信号光Bが出射される。
 以上のように、実施の形態6に係るTO-CAN型光モジュール105の半導体光素子は、光信号を送信する半導体レーザである。
 上記の構成によれば、実施の形態1に係るTO-CAN型光モジュール100と同様に、FPC13に半導体レーザとしてのEML38が直接設置されるため、金属ステムが不要である。
 なお、上記の構成を実施の形態2から実施の形態5の何れか1つの実施の形態に適用しても上記の効果と同様の効果を奏する。
 実施の形態7.
 実施の形態1では、表面グラウンド21dの表面側の面における、レンズキャップ1のレンズ1bに対向する部分にフォトダイオード3、2つのコンデンサ4、及びTIA5が設置されている構成について説明した。実施の形態7では、これらの部材が金属キャリアに設置されている構成について説明する。
 以下で、実施の形態7について図面を参照して説明する。なお、実施の形態1で説明した構成と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
 図8は、実施の形態7に係るTO-CAN型光モジュール106の構成を示す断面図である。以下では図8を参照して、実施の形態7に係るTO-CAN型光モジュール106の構成のうち、図2Cが示す実施の形態1に係るTO-CAN型光モジュール100と異なる構成について説明する。
 TO-CAN型光モジュール106が備えているFPC14は、表面側の第1の導体層40、第1の導体層40における表面側の面とは反対の面に接して設置されたベース層41、及び、ベース層41における第1の導体層40に接する面とは反対の面に接して設置された、裏面側の第2の導体層42、を含む。第1の導体層40と第2の導体層42とは、ベース層41により絶縁されている。第1の導体層40は、表面信号配線40aを含む。第2の導体層42は、裏面グラウンド42aを含む。
 実施の形態1に係るTO-CAN型光モジュール100と異なる点として、TO-CAN型光モジュール106のFPC14は、レンズキャップ1のレンズ1bに対向する部分に、第1の導体層40、ベース層41及び第2の導体層42を貫通する貫通孔14aを有している。
 また、FPC14の裏面側には、凸形状の金属キャリア43が設置されている。より詳細には、金属キャリア43は、第2の導体層42の裏面グラウンド42aに接する第1の部分43aと、貫通孔14aに挿入される第2の部分43bとを有する。金属キャリア43の第1の部分43aは、第2の導体層42の裏面グラウンド42aと接することにより、グラウンドに接続している。金属キャリア43の第1の部分43aは、例えば、裏面グラウンド42aに、はんだ又は接着剤により固定される。金属キャリア43の材料は、放熱性に優れる材料であることが好ましい。当該材料は、例えば、銅タングステン合金、銅、アルミニウム、又はコバール等である。
 また、金属キャリア43の第2の部分43bにおける、レンズキャップ1のレンズ1bに対向する面には、フォトダイオード3、TIA5、及び図示しない2つのコンデンサ4が設置されている。フォトダイオード3又はTIA5から発生した熱は、金属キャリア43を介して外部に放熱される。
 なお、FPC14は、第1の導体層21の、表面側の面における、貫通孔14a以外の部分に設置された表面カバーレイ44をさらに含む。また、FPC14は、第2の導体層42の、裏面側の面における、金属キャリア43が設置された部分以外の部分に設置された裏面カバーレイ45をさらに含む。表面カバーレイ44の表面側の面には、キャップ1aの他方の端部が接着剤等により接着されている。
 以上のように、実施の形態7に係るTO-CAN型光モジュール106は、表面及び裏面を有するFPC14であって、表面側に設置された第1の導体層40、第1の導体層40における表面側の面とは反対の面に接して設置されたベース層41、及び、ベース層41における第1の導体層40に接する面とは反対の面に接して設置された、裏面側の第2の導体層42、を含むFPC14と、レンズ1bを有するレンズキャップ1であって、FPC14の表面側に設置されたレンズキャップ1と、を備え、第2の導体層42は、裏面グラウンド42aを含み、FPC14は、レンズ1bに対向する部分に、第1の導体層40、ベース層41及び第2の導体層42を貫通する貫通孔14aを有し、FPC14の裏面側には、裏面グラウンド42aに接する第1の部分43aと、貫通孔14aに挿入される第2の部分43bとを有する金属キャリア43が設置され、第2の部分43bにおける、レンズキャップ1のレンズ1bに対向する面には、半導体光素子としてのフォトダイオード3が設置されている。
 上記の構成によれば、FPC14の貫通孔14aに挿入された金属キャリア43に、フォトダイオード3が直接設置されているため、金属ステムが不要である。
 また、金属ステムが不要であるのに加えて、ガラスリードも不要であるため、コスト削減に寄与する。また、高周波特性を改善するための中継線路基板のような部品を設置する必要がなく、単純な構造で済む。
 また、上記の構成によれば、金属キャリア43上にフォトダイオード3が搭載されているため、フォトダイオード3からの発熱に関し、実施の形態1におけるスルーホール22aによる放熱性能よりも優れた放熱性能を実現できる。
 また、上記の構成によれば、FPC14よりも剛性が高い金属キャリア43は、変形しづらいため、金属キャリア43上に搭載されたフォトダイオード3の光軸ずれが起きにくく、フォトダイオード3と入力信号光との安定した光学的な結合効率が得られる。
 なお、上記の構成を実施の形態2に係るTO-CAN型光モジュール101のFPC10に適用しても上記の各効果と同様の効果を奏する。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係るTO-CAN型光モジュールは、金属ステムの不要なTO-CAN型光モジュールを提供することができるため、TO-CAN型光モジュールに利用可能である。
 1 レンズキャップ、1a キャップ、1b レンズ、2 FPC、3 フォトダイオード、4 コンデンサ、6a,6b,6c,6d,6e,6f,6g,6h,6i,6j 金ワイヤ,10,11,12,13,14 FPC、14a 貫通孔、21 第1の導体層、21a 表面信号配線、21b グラウンドパッド、21c DC配線、21d 表面グラウンド、22 ベース層、22a スルーホール、23 第2の導体層、23a 裏面グラウンド、24 表面カバーレイ、25 裏面カバーレイ、26 第1の導体層、26a 第1の表面グラウンド、26b 第2の表面グラウンド、26c 信号パッド、27 ベース層、27a スルーホール、27b 信号パッドスルーホール、28 第2の導体層、28a 裏面グラウンド、28b 裏面信号配線、29 追加ベース層、30 追加導体層、31 支持板、32 裏面カバーレイ、33 スペーサ、33a 開口部、34 第1の導体層、34a 表面信号配線、34b グラウンドパッド、34c DC配線、34d 表面グラウンド、35 セラミック基板、36 ミラー、37 コンデンサ、38 EML、39 終端抵抗、40 第1の導体層、40a 表面信号配線、41 ベース層、42 第2の導体層、42a 裏面グラウンド、43 金属キャリア、43a 第1の部分、43b 第2の部分、44 表面カバーレイ、45 裏面カバーレイ、100,101,102,103,104,105,106 TO-CAN型光モジュール。

Claims (8)

  1.  表面及び裏面を有するFPCであって、前記表面側に設置された第1の導体層、前記第1の導体層における前記表面側の面とは反対の面に接して設置されたベース層、及び、前記ベース層における前記第1の導体層に接する面とは反対の面に接して設置された、前記裏面側の第2の導体層、を含むFPCと、
     レンズを有するレンズキャップであって、前記FPCの前記表面側に設置されたレンズキャップと、を備え、
     前記第1の導体層は、前記レンズに対向する面を有する表面グラウンドを含み、
     前記第2の導体層は、裏面グラウンドを含み、
     前記ベース層は、前記表面グラウンドと前記裏面グラウンドとを電気的に接続するためのスルーホールを含み、
     前記表面グラウンドにおける前記レンズに対向する面には、半導体光素子が設置されている
    ことを特徴とするTO-CAN型光モジュール。
  2.  前記第1の導体層は、前記半導体光素子と接続された表面信号配線をさらに含む
    ことを特徴とする請求項1に記載のTO-CAN型光モジュール。
  3.  前記第1の導体層は、前記半導体光素子と接続された信号パッドをさらに含み、
     前記第2の導体層は、裏面信号配線をさらに含み、
     前記ベース層は、前記信号パッドと前記裏面信号配線とを電気的に接続するための信号パッドスルーホールをさらに含む
    ことを特徴とする請求項1に記載のTO-CAN型光モジュール。
  4.  前記FPCは、前記第1の導体層の前記表面側の面における、前記半導体光素子が設置された部分以外の部分に接して設置された追加ベース層と、前記追加ベース層における、前記第1の導体層に接する面とは反対の面に接して設置された追加導体層と、を含み、
     前記レンズキャップは、前記追加導体層における前記表面側の面に、はんだにより固定されている
    ことを特徴とする請求項1に記載のTO-CAN型光モジュール。
  5.  一方の面が、前記裏面グラウンドの前記裏面側の面における、前記表面側に設置された前記レンズキャップに対応する部分よりも広い部分に接するように設置された金属製の支持板をさらに備えている
    ことを特徴とする請求項1に記載のTO-CAN型光モジュール。
  6.  前記第1の導体層は、前記半導体光素子と接続された表面信号配線を含み、
     前記レンズキャップは、スペーサを介して、前記FPCの前記表面側に設置され、
     前記スペーサは、前記表面信号配線に対応する部分に開口部を有することを特徴とする、請求項1に記載のTO-CAN型光モジュール。
  7.  前記半導体光素子は、光信号を受信するフォトダイオード、又は、光信号を送信する半導体レーザである
    ことを特徴とする請求項1から請求項6の何れか1項に記載のTO-CAN型光モジュール。
  8.  表面及び裏面を有するFPCであって、前記表面側に設置された第1の導体層、前記第1の導体層における前記表面側の面とは反対の面に接して設置されたベース層、及び、前記ベース層における前記第1の導体層に接する面とは反対の面に接して設置された、前記裏面側の第2の導体層、を含むFPCと、
     レンズを有するレンズキャップであって、前記FPCの前記表面側に設置されたレンズキャップと、を備え、
     前記第2の導体層は、裏面グラウンドを含み、
     前記FPCは、前記レンズに対向する部分に、前記第1の導体層、前記ベース層及び前記第2の導体層を貫通する貫通孔を有し、
     前記FPCの前記裏面側には、前記裏面グラウンドに接する第1の部分と、前記貫通孔に挿入される第2の部分とを有する金属キャリアが設置され、
     前記第2の部分における、前記レンズに対向する面には、半導体光素子が設置されている
    ことを特徴とするTO-CAN型光モジュール。
PCT/JP2019/021365 2019-05-29 2019-05-29 To-can型光モジュール WO2020240739A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/021365 WO2020240739A1 (ja) 2019-05-29 2019-05-29 To-can型光モジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/021365 WO2020240739A1 (ja) 2019-05-29 2019-05-29 To-can型光モジュール

Publications (1)

Publication Number Publication Date
WO2020240739A1 true WO2020240739A1 (ja) 2020-12-03

Family

ID=73552065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021365 WO2020240739A1 (ja) 2019-05-29 2019-05-29 To-can型光モジュール

Country Status (1)

Country Link
WO (1) WO2020240739A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08235979A (ja) * 1995-02-28 1996-09-13 Omron Corp フレキシブル基板及び光電センサ
JP2005136224A (ja) * 2003-10-30 2005-05-26 Asahi Kasei Electronics Co Ltd 発光ダイオード照明モジュール
JP2007287767A (ja) * 2006-04-13 2007-11-01 Sumitomo Electric Ind Ltd 光サブアセンブリ
JP2008098389A (ja) * 2006-10-12 2008-04-24 Sumitomo Electric Ind Ltd 光電変換モジュール
US20080273111A1 (en) * 2003-03-31 2008-11-06 Digital Imaging Systems Gmbh Miniature camera module
JP2012181157A (ja) * 2011-03-02 2012-09-20 Omron Corp 赤外線温度センサ、電子機器、および赤外線温度センサの製造方法
JP2013026601A (ja) * 2011-07-26 2013-02-04 Mitsubishi Electric Corp プリント配線板、プリント配線板モジュール、光通信モジュール、光通信装置、および演算処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08235979A (ja) * 1995-02-28 1996-09-13 Omron Corp フレキシブル基板及び光電センサ
US20080273111A1 (en) * 2003-03-31 2008-11-06 Digital Imaging Systems Gmbh Miniature camera module
JP2005136224A (ja) * 2003-10-30 2005-05-26 Asahi Kasei Electronics Co Ltd 発光ダイオード照明モジュール
JP2007287767A (ja) * 2006-04-13 2007-11-01 Sumitomo Electric Ind Ltd 光サブアセンブリ
JP2008098389A (ja) * 2006-10-12 2008-04-24 Sumitomo Electric Ind Ltd 光電変換モジュール
JP2012181157A (ja) * 2011-03-02 2012-09-20 Omron Corp 赤外線温度センサ、電子機器、および赤外線温度センサの製造方法
JP2013026601A (ja) * 2011-07-26 2013-02-04 Mitsubishi Electric Corp プリント配線板、プリント配線板モジュール、光通信モジュール、光通信装置、および演算処理装置

Similar Documents

Publication Publication Date Title
US6976795B2 (en) Optical device and optical module
JP7295634B2 (ja) 光サブアッセンブリ及び光モジュール
JP4923542B2 (ja) 光素子用ステムとこれを用いた光半導体装置
US10624204B2 (en) Optical module and optical transmission equipment
JP2018186130A (ja) 光アセンブリ、光モジュール、及び光伝送装置
US7484967B2 (en) Optical module with a flexible printed circuit board to be electrically connected with a host board
US10135223B2 (en) Optical module
US20210033806A1 (en) Optical module
US10852493B2 (en) Optical subassembly and optical module
JP2007019411A (ja) 光−電気変換装置
JP2020021911A (ja) 光サブアッセンブリ及び光モジュール
JP2015204398A (ja) 光モジュール
JP2019186380A (ja) 光モジュール
JP4968311B2 (ja) 光データリンク
JP2016015405A (ja) 光モジュール、及び光アクティブケーブル
JP2007287767A (ja) 光サブアセンブリ
JP2004093606A (ja) 光モジュール及び光伝送装置
JP2022143754A (ja) 光モジュール
US20040080039A1 (en) Coplanar line, and a module using the coplanar line
WO2020240739A1 (ja) To-can型光モジュール
JP2008103774A (ja) 高周波光伝送モジュールおよび光伝送器
JP4699138B2 (ja) 光半導体素子モジュール及びその製造方法
JP2019186379A (ja) 光モジュール
JP4882481B2 (ja) フレキシブル回路基板による接続構造を有する光モジュール
JP2005259762A (ja) 半導体レーザモジュール及び光伝送器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930849

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP