WO2020240648A1 - Sublimation thermal transfer printing device and method for controlling sublimation thermal transfer printing device - Google Patents

Sublimation thermal transfer printing device and method for controlling sublimation thermal transfer printing device Download PDF

Info

Publication number
WO2020240648A1
WO2020240648A1 PCT/JP2019/020851 JP2019020851W WO2020240648A1 WO 2020240648 A1 WO2020240648 A1 WO 2020240648A1 JP 2019020851 W JP2019020851 W JP 2019020851W WO 2020240648 A1 WO2020240648 A1 WO 2020240648A1
Authority
WO
WIPO (PCT)
Prior art keywords
printing
print
temperature
energy
partial
Prior art date
Application number
PCT/JP2019/020851
Other languages
French (fr)
Japanese (ja)
Inventor
宏一 田中
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/020851 priority Critical patent/WO2020240648A1/en
Publication of WO2020240648A1 publication Critical patent/WO2020240648A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection
    • B41J2/36Print density control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/35Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads providing current or voltage to the thermal head
    • B41J2/355Control circuits for heating-element selection
    • B41J2/36Print density control
    • B41J2/365Print density control by compensation for variation in temperature

Definitions

  • the present invention relates to a sublimation type thermal transfer type printing apparatus and a control method of a sublimation type thermal transfer type printing apparatus.
  • the ink sheet includes an ink sheet film, a yellow (Y) ink layer, a magenta (M) ink layer, a cyan (C) ink layer, and an overcoat (OP) material layer.
  • the Y ink layer, the M ink layer, the C ink layer, and the OP material layer are arranged on the ink sheet film.
  • the Y ink layer, the M ink layer, the C ink layer, and the OP material layer are arranged in the longitudinal direction of the ink sheet.
  • the Y ink layer, the M ink layer, the C ink layer, and the OP material layer are formed by applying Y ink, M ink, C ink, and OP material on the ink sheet film, respectively.
  • roll paper is attached to the sublimation type thermal transfer printing device.
  • recording paper is wrapped.
  • the sublimation type thermal transfer type printing device is equipped with a transport mechanism and a thermal head.
  • the transport mechanism transports the ink sheet and the recording paper in the transport direction.
  • the thermal head includes a plurality of heat generating resistors arranged in the main scanning direction perpendicular to the transport direction.
  • a heat generating resistor selected from a plurality of heat generating resistors is energized while the transport mechanism is transporting the ink sheet and the recording paper in the transport direction. Be done. As a result, the energized heat-generating resistor generates heat. Further, the Y ink, C ink, M ink and OP material applied to the ink sheet are sublimated. Further, the sublimated Y ink, C ink, M ink and OP material are adhered to the recording paper. As a result, the Y ink, the C ink, the M ink, and the OP material are transferred from the ink sheet to the recording paper.
  • the Y ink, C ink, M ink and OP material are transferred from the ink sheet to the recording paper, the Y ink, C ink, M ink and OP material are transferred over the same area of the recording paper. As a result, an image is formed on the recording paper, and the formed image is protected by the OP made of the OP material.
  • the energy per unit time supplied to the thermal head is increased, and Y ink, C ink, M ink and OP material are transferred from the ink sheet. It is effective to transfer to recording paper at high speed.
  • the time required for printing is shortened in this way, the temperature of the thermal head rises, and it may be difficult to obtain a printed matter having good print quality.
  • the ink sheet film may shrink significantly due to heat, and wrinkles may occur in the ink sheet film.
  • a large amount of heat is accumulated in the thermal head, and the ink sheet may be heat-sealed to the recording paper, causing sticking.
  • the thermal head is cooled for each color (paragraph 0024).
  • overheating of the thermal head can be prevented and image quality can be improved (paragraph 0024).
  • the thermal head is cooled for each color, the printing of the next color is started after the thermal head is cooled to a temperature at which the temperature at which the thermal head rises at the maximum printing rate of the previous color is expected. Paragraph 0024).
  • the average density is calculated for each of the images of a plurality of image data to be continuously printed (paragraph 0020). Further, based on the calculation result, the printing order of the plurality of image data is determined (paragraph 0020). The printing order is determined so that images having an average density higher than a predetermined number are not continuously printed in a predetermined number or more (paragraph 0020). As a result, the temperature rise of the thermal head can be suppressed, and the printing time can be shortened (paragraph 0027).
  • the temperature rise of the thermal head cannot be sufficiently suppressed, and the printing time may not be sufficiently shortened.
  • the temperature rise of the thermal head cannot be sufficiently suppressed by changing the printing order, and the printing time cannot be sufficiently shortened.
  • the present invention has been made in view of these problems.
  • the problem to be solved by the present invention is a sublimation type thermal transfer type printing apparatus and a sublimation type thermal transfer type printing apparatus that can obtain a printed matter having good printing quality even when the time required for printing is shortened. Is to provide a control method for.
  • the present invention is directed to a sublimation thermal transfer printing apparatus.
  • the sublimation type thermal transfer type printing apparatus includes a thermal head, a head temperature detection unit, a print data division unit, a print energy calculation unit, a print permission temperature determination unit, and a print startability determination unit.
  • the head temperature detector detects the head temperature of the thermal head.
  • the print data division unit divides the print data into a plurality of partial print data. Each of the plurality of partial print data is used for printing a plurality of partial areas.
  • the printing energy calculation unit calculates a plurality of partial printing energies indicating the energy supplied to the thermal head when a plurality of partial printing data are used for printing according to the printing energy calculation conditions, and prints from the plurality of partial printing energies. Calculate the printing energy that is the basis for determining the allowed temperature.
  • the print permission temperature determination unit determines the print permission temperature based on the print energy according to the print permission conditions.
  • the print startability determination unit determines whether or not printing using the print data can be started based on the head temperature and the print permission temperature.
  • the present invention is also directed to a control method for a sublimation thermal transfer printing apparatus.
  • the energy supplied to the thermal head is reflected in the print permission temperature. Further, it is determined whether or not printing using the print data can be started based on the print permission temperature. Therefore, the temperature of the thermal head when printing using the print data can be set to an appropriate temperature. As a result, even when the time required for printing is shortened, it is possible to obtain a printed matter having good print quality.
  • FIG. 5 is a functional block diagram illustrating a configuration for determining whether or not printing can be started, which is provided in the printing apparatus of the first embodiment. It is a figure which illustrates the area where printing is performed using the print data in the printing apparatus of Embodiment 1-3 and the modification of Embodiment 1. It is a figure which shows the example of the printing energy calculation condition stored in the storage part provided in the printing apparatus of Embodiment 1.
  • FIG. 5 is a functional block diagram illustrating a configuration for determining whether or not printing can be started, which is provided in the printing apparatus of the modified example of the first embodiment. It is a figure which illustrates the example of the printing energy calculation condition stored in the storage part provided in the printing apparatus of the modification of Embodiment 1.
  • FIG. 5 is a functional block diagram illustrating a configuration for determining whether or not printing can be started, which is provided in the printing apparatus of the second embodiment.
  • FIG. 5 is a functional block diagram illustrating a configuration for determining whether or not printing can be started, which is provided in the printing apparatus of the third embodiment. It is a figure which illustrates the example of the time change of the head temperature TH of the thermal head provided in the printing apparatus of Embodiment 3 during the printing of Y on one screen. It is a figure which illustrates the example of the time change of the head temperature TH of the thermal head provided in the printing apparatus of Embodiment 3 during continuous printing.
  • FIG. 1 is a schematic view schematically showing the printing device of the first embodiment.
  • the printing device 1 illustrated in FIG. 1 is a sublimation type thermal transfer printing device.
  • a sublimation type thermal transfer type printing device is also called a thermal printer or the like.
  • a roll paper 11 and an ink cassette 12 are mounted on the printing device 1.
  • the roll paper 11 includes a recording paper 11a.
  • the recording paper 11a is wound in a roll shape.
  • the ink cassette 12 includes an ink sheet 12a, an ink unwinding reel 12b, and an ink winding reel 12c.
  • the ink sheet 12a includes a plastic film, a yellow (Y) dye layer, a magenta (M) dye layer, a cyan (C) dye layer, and an overcoat (OP) material layer.
  • the plastic film has heat resistance.
  • the Y dye layer, the M dye layer, the C dye layer and the OP material layer are arranged on the plastic film.
  • the Y dye layer, the M dye layer, the C dye layer, and the OP material layer are arranged in this order in the longitudinal direction of the plastic film.
  • the type, arrangement order, and the like of the dye layer provided on the ink sheet 12a may be changed.
  • the ink sheet 12a may include a black (K) dye layer, a spot color dye layer, and the like.
  • the special color dye layer is gold leaf, silver leaf, or the like.
  • One end of the ink sheet 12a in the longitudinal direction is wound around the ink unwinding reel 12b.
  • the other end of the ink sheet 12a in the longitudinal direction is wound around the ink take-up reel 12c.
  • the printing device 1 further includes a recording paper transport unit 13, a thermal head 14, a platen roller 15, a paper discharge roller unit 16, and a cutter 17.
  • the recording paper 11a drawn out from the roll paper 11 reaches the cutter 17 in sequence through the recording paper transport section 13, the gap between the thermal head 14 and the platen roller 15, and the paper ejection roller section 16.
  • the ink sheet 12a unwound from the ink unwinding reel 12b reaches the ink winding reel 12c via the gap between the thermal head 14 and the platen roller 15, and is wound around the ink winding reel 12c.
  • the recording paper transport unit 13 includes a grip roller 13a and a pinch roller 13b.
  • the grip roller 13a and the pinch roller 13b rotate with the recording paper 11a sandwiched between them.
  • the recording paper transport unit 13 transports the recording paper 11a in the transport direction D1.
  • the transport direction D1 is parallel to the longitudinal direction of the recording paper 11a.
  • the rotation of the ink unwinding reel 12b and the ink take-up reel 12c is controlled so that the ink sheet 12a is conveyed together with the recording paper 11a and an appropriate tension is applied to the ink sheet 12a when printing is performed on the recording paper 11a. Reel.
  • the thermal head 14 and the platen roller 15 press-heat the recording paper 11a and the ink sheet 12a that are overlapped with each other.
  • the Y dye, M dye, C dye, and OP material contained in the Y dye layer, M dye layer, C dye layer, and OP material layer provided in the ink sheet 12a are transferred from the ink sheet 12a to the recording paper 11a.
  • the printing that forms the image and the OP image on the recording paper 11a is performed on the recording paper 11a.
  • the printed recording paper 11a is conveyed to the paper ejection roller portion 16 and cut by the cutter 17. As a result, a printed recording paper piece is formed.
  • the formed recording paper piece is discharged from the printing apparatus 1.
  • the thermal head 14 includes a plurality of heat generating resistors.
  • the plurality of heat generating resistors are arranged in the main scanning direction perpendicular to the transport direction D1.
  • the printing device 1 further includes a head temperature sensor 14a.
  • the head temperature sensor 14a is provided in the thermal head 14.
  • the head temperature sensor 14a measures the head temperature TH of the thermal head 14.
  • the head temperature sensor 14a is a thermistor or the like.
  • the printing device 1 further includes a heat sink 18 and a cooling fan 19.
  • the heat sink 18 is attached to the thermal head 14, takes heat from the thermal head 14, and releases the taken heat to the outside.
  • the cooling fan 19 cools the heat sink 18.
  • the printing device 1 further includes an environmental temperature sensor 20 and a control unit 21.
  • the environmental temperature sensor 20 measures the environmental temperature of the environment in which the printing device 1 is installed.
  • the control unit 21 controls the operation of the printing device 1.
  • the printing device 1 further includes an ink sheet sensor 22.
  • the ink sheet sensor 22 detects the type of ink sheet 12a.
  • FIG. 2 is a block diagram illustrating a control unit provided in the printing apparatus of the first embodiment.
  • control unit 21 includes an interface (I / F) 21a, a memory 21b, a CPU 21c, a sensor signal input unit 21d, a control signal output unit 21e, a print data processing unit 21f, and a data bus 21g. ..
  • the I / F 21a receives print data and print conditions from an external information processing device (not shown).
  • the external information processing device is a personal computer or the like.
  • the printing conditions are conditions related to printing.
  • the printing conditions include the printing size, printing speed, image quality adjustment value, and the like.
  • the memory 21b includes a temporary storage memory and a non-volatile memory.
  • the temporary storage memory stores the received print data and print conditions.
  • the temporary storage memory is a random access memory (RAM) or the like.
  • the non-volatile memory stores a control program, initial setting values, and the like.
  • the CPU 21c controls the entire printing device 1 according to the control program stored in the memory 21b, and controls the printing performed by the printing device 1.
  • Sensor signals output by sensors such as the head temperature sensor 14a, the environmental temperature sensor 20, and the ink sheet sensor 22 are input to the sensor signal input unit 21d.
  • the control signal output unit 21e outputs a control signal to drive units such as an ink unwinding reel 12b, an ink take-up reel 12c, a recording paper transport unit 13, and a cutter 17.
  • the print data processing unit 21f processes the print data stored in the memory 21b.
  • the data bus 21g serves as a transmission path for data transmitted by data communication performed between the I / F 21a, the memory 21b, the CPU 21c, the sensor signal input unit 21d, the control signal output unit 21e, and the print data processing unit 21f.
  • FIG. 3 is a functional block diagram illustrating a configuration for determining whether or not printing can be started provided in the printing apparatus of the first embodiment.
  • FIG. 4 is a diagram illustrating an area where printing is performed using print data in the printing apparatus of the first embodiment.
  • the printing device 1 includes a storage unit 101, a processing unit 102, and a head temperature detecting unit 103.
  • the storage unit 101 is mainly composed of the memory 21b.
  • the processing unit 102 is mainly composed of the CPU 21c.
  • the head temperature detection unit 103 is mainly composed of a head temperature sensor 14a.
  • the storage unit 101 stores the print data 111, the print condition 112, the print energy calculation condition 113, and the print permission condition 114.
  • the printing device 1 includes a printing data dividing unit 121, a printing energy calculating unit 122, a printing permission temperature determining unit 123, and a printing start possibility determination unit 124.
  • the print data division unit 121, the print energy calculation unit 122, the print permission temperature determination unit 123, and the print start possibility determination unit 124 are provided in the processing unit 102.
  • the printing area 131 shown in FIGS. 4A, 4B and 4C includes a plurality of partial areas 131a, 131b and 131c.
  • the head temperature detection unit 103 illustrated in FIG. 3 detects the head temperature TH of the thermal head 14.
  • the print data dividing unit 121 illustrated in FIG. 3 reads the print data 111 from the storage unit 101. Further, the print data dividing unit 121 divides the read print data 111 into a plurality of partial print data 111a, 111b and 111c.
  • the partial print data 111a, 111b and 111c are used for printing the partial regions 131a, 131b and 131c shown in FIG. 4, respectively.
  • FIG. 3 illustrates a case where the partial print data 111a, 111b and 111c are three partial print data.
  • FIG. 4 illustrates a case where the partial regions 131a, 131b and 131c are three partial regions.
  • the print data 111 may be divided into two or four or more partial print data. Further, the region 131 may include two or four or more partial regions.
  • the print energy calculation unit 122 illustrated in FIG. 3 reads the print condition 112 and the print energy calculation condition 113 from the storage unit 101. Further, the print energy calculation unit 122 supplies energy to the thermal head 14 when printing is performed using the plurality of partial print data 111a, 111b and 111c according to the read print condition 112 and the print energy calculation condition 113. A plurality of partial printing energies Ya, Yb and Yc indicating each of the above are calculated, and the final printing energy Y'is calculated from the calculated partial printing energies Ya, Yb and Yc. The final printing energy Y'is the printing energy that is the basis for determining the print permission temperature described below.
  • the print permission temperature determination unit 123 illustrated in FIG. 3 reads the print permission condition 114 from the storage unit 101. Further, the print permission temperature determination unit 123 determines the print permission temperature T based on the calculated final print energy Y'according to the read print permission condition 114.
  • the print startability determination unit 124 reads the head temperature TH from the head temperature detection unit 103. Further, the print start possibility determination unit 124 determines whether or not to start printing using the print data 111 based on the read head temperature TH and the determined print permission temperature T.
  • the energy supplied to the thermal head 14 when printing is performed using the plurality of partial print data 111a, 111b and 111c is reflected in the print permission temperature T. Further, it is determined whether or not printing using the print data 111 can be started based on the print permission temperature T. Therefore, the temperature of the thermal head 14 when printing is performed using the print data 111 can be set to an appropriate temperature. As a result, even when the time required for printing is shortened, printing with good printing quality can be performed. For example, it is possible to suppress the occurrence of wrinkles, sticking and the like.
  • the final printing energy Y' is calculated in consideration of the printing data 111 and the printing condition 112. Therefore, it is possible to accurately predict an increase in the head temperature TH of the thermal head 14. Further, the print permission temperature T can be determined based on the calculated final print energy Y'. As a result, printing can be performed efficiently without waste.
  • the reference printing energy which is the printing energy when black having the highest density is printed in the entire area requiring the maximum size that can be printed using the ink sheet 12a. Pmax is defined.
  • the defined reference printing energy Pmax is included in the printing energy calculation condition 113.
  • the print energy Y is the sum Dn of the pixel data of the nth pixels of the formed image, the sum of the pixel data of the nth pixels of the formed OP image, and the sum of the pixel data of the nth pixels of the formed OP image.
  • Number of pixels when printing is performed on the entire area requiring the maximum size
  • the print energy Y represented by the formula (2) is a relative value having a value of 0 or more and 200 or less.
  • the printing speed when the Y dye, the M dye, and the C dye are transferred is 1.0 ms / line
  • the printing speed when the OP material is transferred is 2.0 ms / line, which is the former printing speed.
  • the speed correction coefficient Argb is set to 1, and the ratio between the speed correction coefficient Argb and the speed correction coefficient Aop is determined from the ratio between the printing speed of the former and the printing speed of the latter.
  • the speed correction coefficient Argb becomes 1, and the speed correction coefficient Aop becomes 0.5.
  • the increase in the head temperature TH for each printing speed is measured, and the speed correction coefficient may be set based on the measurement result.
  • the printing speed may be provided from the outside of the printing device 1, or may be determined inside the printing device 1 according to a determination criterion.
  • an increase in the head temperature TH when black is printed is measured, and by using the increase in the head temperature and the reference printing energy Pmax as a reference, printing is performed using the print data 111. It is possible to easily predict an increase in the head temperature TH in the case of printing.
  • the rise in head temperature TH for each print energy may be measured, and a reference table may be created for deriving the rise in head temperature TH from the print energy.
  • the printing energy Y is calculated from the pixel data of R, G, and B.
  • the pixel data of R, G and B may be converted into the pixel data of Y, M and C, and the print energy Y may be calculated from the pixel data of Y, M and C.
  • the print energy Y is calculated from the pixel data of Y, M, and C, it is possible to predict an increase in the head temperature TH when printing each color of Y, M, and C, and an increase in the head temperature TH. Can be predicted accurately.
  • the print energy Y to be printed may be calculated directly, or a plurality of print energies Y1, Y2, ..., Yn supplied to the thermal head 14 when printing is performed using a plurality of print data.
  • the print energy Y may be calculated via. In the latter case, the printing energy Y is represented by the equation (3).
  • the printing energy Y is the sum of a plurality of printing energies Y1, Y2, ..., Yn.
  • the print energy Y is a relative value of 0 or more and 200 or less.
  • Each of the plurality of printing energies Y1, Y2, ..., Yn is a relative value of 0 or more and 200 or less.
  • the plurality of partial printing energies Ya, Yb and Yc are the printing energies after considering the ratio of the sizes of the plurality of partial regions 131a, 131b and 131c to the maximum size that can be printed using the ink sheet 12a, respectively. It can be calculated in the same way as Y.
  • the print permission temperature determination unit 123 determines the print permission temperature T based on the final print energy Y'according to the print permission condition 114.
  • the print permission condition 114 is information for deriving the print permission temperature T from the final print energy Y'.
  • the print permission condition 114 is set so that the higher the final print energy Y', the lower the print permission temperature T derived from the final print energy Y'.
  • the print permission condition 114 is the print permission condition 1) that leads to the print permission temperature T being 65 ° C. or less when the final print energy Y'is 100 or less, as shown below, and the final printing. If the energy Y'is greater than 100 and 125 or less, the print permission temperature T leads to 60 ° C. or less 2), and if the final print energy Y'is greater than 125, the print permission temperature T Includes print permission condition 3) that leads to a temperature of 55 ° C or lower. According to the print permission condition 114, the print permission temperature T is given in three stages.
  • Printing permission conditions 1 Y' ⁇ 100: Printing permission temperature T ⁇ 65 ° C.
  • Print permission condition 2) 100 ⁇ Y' ⁇ 125: Print permission temperature T ⁇ 60 ° C
  • Printing permission condition 3) 125 ⁇ Y': Printing permission temperature T ⁇ 55 ° C
  • the print permission temperature T may be given steplessly.
  • the head temperature TH is predicted to rise by using the reference printing energy Pmax and the rise ⁇ Tmax of the head temperature TH when the reference printing energy Pmax is supplied to the thermal head 14, and the predicted head temperature TH rises.
  • the print permission temperature T is determined based on the above. Thereby, the print permission temperature T can be appropriately determined.
  • the print permission temperature T is the head specified temperature which is the upper limit of the allowable head temperature TH, the final print energy Y', the reference print energy Pmax, and the reference print energy Pmax are supplied to the thermal head 14. It is expressed by, for example, the equation (4) by using the increase ⁇ Tmax of the head temperature TH when the head temperature is increased.
  • T (head specified temperature)-(Y'/ Pmax x ⁇ Tmax) ... (4)
  • FIG. 5 is a diagram illustrating an example of printing energy calculation condition stored in the storage unit provided in the printing apparatus of the first embodiment.
  • the printing energy calculation condition 113 illustrated in FIG. 5 is a plurality of distributions of partial printing energies Ya, Yb and Yc corresponding to a plurality of types 141p, 141q, 141r and 141s and a plurality of types 141p, 141q, 141r and 141s, respectively. It includes 142p, 142q, 142r and 142s, and a plurality of printing energy calculation conditions 143p, 143q, 143r and 143s corresponding to the plurality of distributions 142p, 142q, 142r and 142s, respectively. Each of the plurality of printing energy calculation conditions 143p, 143q, 143r and 143s includes a correction coefficient ⁇ 1.
  • the distributions 142q and 142r of the partial printing energies Ya, Yb, and Yc are the cases where the images formed by printing using the print data 111 are the images shown in FIGS. 4 (b) and 4 (c), respectively. It is a distribution of partial printing energies Ya, Yb and Yc.
  • the printing energy calculation unit 122 obtains printing energy calculation conditions corresponding to a plurality of calculated partial printing energies Ya, Yb, and Yc from the printing energy calculation condition 113, and finally print energy according to the obtained printing energy calculation condition. Calculate Y'.
  • the print energy calculation unit 122 uses the calculated partial print energies Ya, Yb and Yc, and the correction coefficient ⁇ 1 included in the obtained print energy calculation conditions, and the final print energy Y represented by the equation (5). 'Calculate.
  • the print permission temperature T can be appropriately determined, and printing can be efficiently performed without waste.
  • the printing energy calculation unit 122 obtains printing energy calculation conditions according to the distribution of a plurality of partial printing energies Ya, Yb, and Yc from the printing energy calculation condition 113, and according to the obtained printing energy calculation conditions.
  • the final printing energy Y' is calculated.
  • the print permission temperature determination unit 123 obtains the print permission condition according to the distribution of the partial print energies Ya, Yb and Yc from the print permission condition 114, and determines the print permission temperature T according to the obtained print permission condition. May be good. In this case as well, the same effect can be obtained.
  • the plurality of partial regions 131a, 131b and 131c in the dividing direction are a plurality of partial regions divided in the transport direction D1 as shown in FIG.
  • the plurality of partial regions 131a, 131b and 131c may be a plurality of partial regions divided into the main scanning direction D2 perpendicular to the transport direction D1.
  • the influence of the position of the head temperature sensor 14a with respect to the main scanning direction D2 on the measured head temperature TH In consideration, the increase in the overall head temperature TH of the thermal head 14 can be predicted in detail.
  • the increase in the overall head temperature TH of the thermal head 14 is increased. It can be predicted in detail.
  • FIG. 6 is a diagram illustrating another example of an area in which printing is performed using print data in the printing apparatus of the first embodiment.
  • the plurality of partial regions are a plurality of partial regions divided in a matrix in the transport direction D1 and the main scanning direction D2. You may. As a result, an increase in the head temperature TH of the thermal head 14 can be predicted in detail, and the print permission temperature T can be appropriately determined.
  • FIG. 6B shows an image that does not have a large density change in the transport direction D1 but has a large density change in the main scanning direction D2.
  • FIG. 6C shows an image having a large density change in the transport direction D1 but not a large density change in the main scanning direction D2.
  • the head temperature TH of the thermal head 14 is in the main scanning direction D2 as compared with the case where the image shown in FIG. 6C is formed.
  • the distribution is biased, and the head temperature TH of the thermal head 14 rises locally. Therefore, wrinkles, sticking, etc. may occur locally. Therefore, the print energy calculation condition 113 and the print permission condition 114 are set so that local wrinkles, sticking, and the like are suppressed when the image shown in FIG. 6B is formed.
  • the collective print energy Y is calculated according to the set print energy calculation condition 113 and the print permission condition 114, and the print permission temperature T is determined.
  • FIG. 7 is a flowchart illustrating the flow of operation of the printing device according to the first embodiment.
  • step S101 illustrated in FIG. 7 the I / F 21a receives the print data 111 and the print condition 112. Further, the memory 21b stores the received print data 111 and the print condition 112.
  • the print data dividing unit 121 reads the stored print data 111 and divides the read print data 111 into a plurality of partial print data 111a, 111b and 111c.
  • the print energy calculation unit 122 reads the stored print condition 112 and print energy calculation condition 113.
  • the print energy calculation unit 122 calculates the final print energy Y'according to the read print condition 112 and print energy calculation condition 113.
  • step S105 the print permission temperature determination unit 123 reads the stored print permission condition 114.
  • the print permission temperature determination unit 123 determines the print permission temperature T according to the read print permission condition 114.
  • the print startability determination unit 124 confirms the head temperature TH of the thermal head 14.
  • the print start possibility determination unit 124 compares the confirmed head temperature TH with the determined print permission temperature T, and determines whether or not the head temperature TH is equal to or lower than the print permission temperature T. If it is determined that the head temperature TH is equal to or lower than the print permission temperature T, step S109 is executed. If it is determined that the head temperature TH is not equal to or lower than the print permission temperature T, step S108 is repeatedly executed. Therefore, when the head temperature TH is higher than the print permission temperature T, the start of printing is suspended until the head temperature TH drops to the print permission temperature T or less.
  • step S109 printing is performed using the read print data 111.
  • step S110 it is determined whether or not all printing is completed. When it is determined that all printing has been completed, the operation of the printing device 1 ends. If it is determined that all printing has not been completed, step S103 is executed again.
  • processing outside the printing apparatus The processing described above is performed inside the printing apparatus 1. However, the processing that can be performed outside the printing device 1 may be performed outside the printing device 1. For example, processing that can be performed by an external information processing device that transmits print data, printing conditions, and the like to the printing device 1 may be performed by the external information processing device. As a result, it takes time to calculate the printing energy Y', which occurs when all of the above-mentioned processing is performed inside the printing apparatus 1, and a waiting time is given between the end of the previous printing and the start of the next printing. The problem of time generation can be solved. As a result, printing can be performed efficiently.
  • FIG. 1 is also a schematic diagram schematically showing a printing apparatus of the modified example of the first embodiment.
  • FIG. 2 is also a block diagram illustrating a control unit provided in the printing apparatus of the modified example of the first embodiment.
  • FIG. 4 is also a diagram illustrating a region where printing is performed using print data in the printing apparatus of the modified example of the first embodiment.
  • FIG. 6 is a diagram illustrating another example of a region in which printing is performed using print data in the printing apparatus of the modified example of the first embodiment.
  • FIG. 7 is also a flowchart illustrating the flow of operation of the printing apparatus according to the modified example of the first embodiment.
  • FIG. 8 is a functional block diagram illustrating a configuration for determining whether or not printing can be started, which is provided in the printing apparatus of the modified example of the first embodiment.
  • FIG. 9 is a diagram illustrating an example of printing energy calculation conditions stored in a storage unit provided in the printing apparatus of the modified example of the first embodiment.
  • the printing device 1A of the modified example of the first embodiment shown in FIG. 8 is different from the printing device 1 of the first embodiment mainly in the following points. Regarding points not described below, the same configuration as that adopted in the printing apparatus 1 of the first embodiment is adopted in the printing apparatus 1A of the modified example of the first embodiment.
  • the printing device 1A further includes a ratio calculation unit 125 as shown in FIG.
  • the storage unit 101 further stores the threshold value 115 as shown in FIG.
  • the printing energy calculation condition 113 illustrated in FIG. 9 includes a plurality of printing energy calculation conditions 152p, 152q and 152r corresponding to a plurality of ratios 151p, 151q and 151r, and a plurality of ratios 151p, 151q and 151r, respectively.
  • Each of the plurality of printing energy calculation conditions 152p, 152q and 152r includes a correction coefficient ⁇ 2.
  • the ratio calculation unit 125 calculates the ratio 161 of the pixels having a density higher than the threshold value 115 in the print data 111 to all the pixels. For example, when the threshold value 115 is 64 gradations of gray, the ratio calculation unit 125 counts the number of pixels having a density higher than that of 64 gradations of gray, and ratios the counted number to the total number of pixels. Set to 161.
  • the print energy calculation unit 122 obtains a print energy calculation condition according to the calculated ratio 161 from the print energy calculation condition 113, and calculates the final print energy Y'according to the obtained print energy calculation condition.
  • the print energy calculation unit 122 uses the calculated partial print energies Ya, Yb and Yc, and the correction coefficient ⁇ 2 included in the obtained print energy calculation conditions, and finally prints represented by the equation (6). Calculate the energy Y'.
  • the print energy calculation condition 113 is such that the correction coefficient ⁇ 2 becomes large when the print data 111 has a large change in density, and the correction coefficient ⁇ 2 becomes small when the print data 111 does not have a large change in density.
  • the print energy calculation condition according to the pixel density distribution may be obtained from the print energy calculation condition 113.
  • printing energy calculation conditions may be obtained according to the number of peaks appearing in the pixel density distribution, the position, and the like.
  • the correction coefficient ⁇ 2 may differ depending on whether the number of peaks is one or the number of hooks is two. Further, the correction coefficient ⁇ 2 may be different depending on whether the peak is located near the high concentration and the peak is located near the low concentration.
  • the print permission temperature T can be appropriately determined, and printing can be efficiently performed without waste.
  • the process of calculating the ratio 161 is a simple process, the print permission temperature T can be appropriately determined by the simple process, and printing can be efficiently performed without waste. For example, it is possible to suppress the occurrence of wrinkles, sticking and the like.
  • the printing energy calculation unit 122 obtains a printing energy calculation condition corresponding to the calculated ratio 161 from the printing energy calculation condition 113, and finally print energy Y'according to the obtained printing energy calculation condition. Is calculated.
  • the print permission temperature determination unit 123 may obtain the print permission condition corresponding to the calculated ratio 161 from the print permission condition 114, and determine the print permission temperature T according to the obtained print permission condition. In this case as well, the same effect can be obtained.
  • FIG. 1 is also a schematic diagram schematically showing the printing apparatus of the second embodiment.
  • FIG. 2 is also a block diagram illustrating a control unit provided in the printing apparatus of the second embodiment.
  • FIG. 4 is also a diagram illustrating an area where printing is performed using print data in the printing apparatus of the second embodiment.
  • FIG. 6 is also a diagram illustrating another example of a region in which printing is performed using print data in the printing apparatus of the second embodiment.
  • FIG. 7 is also a flowchart illustrating the flow of operation of the printing apparatus according to the second embodiment.
  • FIG. 10 is a functional block diagram illustrating a configuration for determining whether or not printing can be started, which is provided in the printing apparatus of the second embodiment.
  • FIG. 11 is a diagram illustrating an example of printing energy calculation conditions stored in a storage unit provided in the printing apparatus of the second embodiment.
  • the printing device 2 of the second embodiment shown in FIG. 10 is different from the printing device 1 of the first embodiment mainly in the following points. Regarding points not described below, the same configuration as that adopted in the printing apparatus 1 of the first embodiment is adopted in the printing apparatus 2 of the second embodiment.
  • the printing device 2 further includes an environmental temperature detection unit 104.
  • the environmental temperature detection unit 104 is mainly composed of the environmental temperature sensor 20.
  • the printing energy calculation condition 113 illustrated in FIG. 11 includes a plurality of environmental temperatures 171p, 171q and 171r, and a plurality of printing energy calculation conditions 172p, 172q and 172r corresponding to the plurality of environmental temperatures 171p, 171q and 171r, respectively. ..
  • Each of the plurality of printing energy calculation conditions 172p, 172q and 172r includes a correction coefficient ⁇ 3.
  • the environmental temperature detection unit 104 detects the environmental temperature TE.
  • the print energy calculation unit 122 obtains a print energy calculation condition corresponding to the detected environmental temperature TE from the print energy calculation condition 113, and calculates the final print energy Y'according to the obtained print energy calculation condition.
  • the print energy calculation unit 122 uses the calculated sum Y of the plurality of partial print energies Ya, Yb and Yc, and the correction coefficient ⁇ 3 included in the obtained print energy calculation conditions, and finally represents the final result by the equation (7). Printing energy Y'is calculated.
  • the print permission temperature T can be appropriately determined, and printing can be efficiently performed without waste. For example, it is possible to suppress the occurrence of wrinkles, sticking and the like.
  • the printing energy calculation unit 122 obtains a printing energy calculation condition corresponding to the detected environmental temperature TE from the printing energy calculation condition 113, and finally print energy Y according to the obtained printing energy calculation condition. 'Calculate.
  • the print permission temperature determination unit 123 may obtain the print permission condition corresponding to the detected ambient temperature TE from the print permission condition 114, and determine the print permission temperature T according to the obtained print permission condition. In this case as well, the same effect can be obtained.
  • the printing energy calculation unit 122 may obtain printing energy calculation conditions according to the environmental temperature TE and other factors, and calculate the final printing energy Y'according to the obtained printing energy calculation conditions.
  • the print permission temperature determination unit 123 may obtain print permission conditions corresponding to the environmental temperature TE and other factors, and determine the print permission temperature T according to the obtained print permission conditions.
  • Factors other than the environmental temperature TE are factors that affect the cooling performance of the thermal head 14.
  • Factors that affect the cooling performance of the thermal head 14 are the temperature inside the printing apparatus 2, the cooling performance of the cooling fan 19, and the like. Multiple factors may be combined.
  • FIG. 1 is also a schematic diagram schematically showing the printing apparatus of the third embodiment.
  • FIG. 2 is also a block diagram illustrating a control unit provided in the printing apparatus of the third embodiment.
  • FIG. 4 is also a diagram illustrating an area where printing is performed using print data in the printing apparatus of the third embodiment.
  • FIG. 6 is also a diagram illustrating another example of a region in which printing is performed using print data in the printing apparatus of the third embodiment.
  • FIG. 7 is also a flowchart illustrating the flow of operation of the printing apparatus according to the third embodiment.
  • FIG. 12 is a functional block diagram illustrating a configuration for determining whether or not printing can be started, which is provided in the printing apparatus of the third embodiment.
  • the printing device 3 of the third embodiment illustrated in FIG. 12 differs from the printing device 1 of the first embodiment mainly in the following points. Regarding points not described below, the same configuration as that adopted in the printing apparatus 1 of the first embodiment is adopted in the printing apparatus 3 of the third embodiment.
  • the printing device 3 further includes an environmental temperature detection unit 104.
  • the environmental temperature detection unit 104 is mainly composed of the environmental temperature sensor 20.
  • the storage unit 101 stores the history 116 of the temperature change.
  • the temperature change history 116 includes a history of changes in head temperature TH detected during printing.
  • the environmental temperature detection unit 104 detects the environmental temperature TE.
  • the print energy calculation unit 122 obtains a print energy calculation condition according to the stored history of changes in the head temperature TH from the print energy calculation condition 113, and finally print energy Y'according to the obtained print energy calculation condition. Is calculated.
  • FIG. 13 is a diagram illustrating an example of a time change of the head temperature TH of the thermal head provided in the printing apparatus of the third embodiment during printing of Y on one screen.
  • the plurality of periods 181a, 181b and 181c shown in FIG. 13 are periods during which printing is performed on the plurality of partial regions 131a, 131b and 131c, respectively.
  • the time change 191d of the head temperature TH shown in FIG. 13 is a time change of the head temperature TH when the average concentrations of the plurality of partial regions 131a, 131b and 131c are all medium concentrations and are substantially uniform.
  • the medium average density is, for example, about 50% gray.
  • the time change 191e of the head temperature TH illustrated in FIG. 13 is a time change of the head temperature TH when the average concentrations of the plurality of partial regions 131a, 131b and 131c are low concentration, low concentration and high concentration, respectively.
  • the time change of the head temperature TH of the thermal head 14 changes in a complicated manner as shown in FIG. 13 depending on the balance between heating and cooling of the thermal head 14.
  • FIG. 14 is a diagram illustrating an example of a time change in the head temperature TH of the thermal head provided in the printing apparatus of the third embodiment during continuous printing.
  • the plurality of periods 200i and 200j shown in FIG. 14 are periods during which the first and second sheets are printed, respectively.
  • the plurality of periods 201y, 201m, 201c and 201op shown in FIG. 14 are periods during which Y, M, C and OP on one screen are printed, respectively.
  • the time change of the head temperature TH shown in FIG. 14 is the time change of the head temperature TH when the average concentrations of the plurality of partial regions 131a, 131b and 131c are all medium concentrations and are substantially uniform.
  • the period 201y in which Y is printed and the period in which M is printed between the period 200i in which the first sheet is printed and the period 200j in which the second sheet is printed.
  • the period 201y in which Y is printed between the period 201y in which Y is printed and the period in which M is printed.
  • the head temperature TH of the thermal head 14 decreases. The amount of decrease in the head temperature TH of the thermal head 14 is strongly influenced by the cooling performance of the thermal head 14.
  • the printing energy calculation condition 113 is set so that the head temperature TH of the thermal head 14 becomes equal to or lower than the specified temperature even when the time change of the head temperature TH of the thermal head 14 changes as shown in FIGS. 13 and 14. Will be done. For example, when the actual value of the increase in the head temperature TH of the thermal head 14 is 5% larger than the predicted value on average, the printing energy calculation condition 113 is set so that the calculated final printing energy Y is 5% larger. Will be done.
  • the amount of decrease in the head temperature TH of the thermal head 14 may be strongly affected not only by the cooling performance of the thermal head 14 but also by the environmental temperature TE. Therefore, the history of temperature change 116 may include the history of change in environmental temperature TE, and the print energy calculation unit 122 stores the print energy according to the history of change in environmental temperature TE stored from the print energy calculation condition 113. You may obtain the calculation condition and calculate the final print energy Y'according to the obtained print energy calculation condition. As a result, it is possible to flexibly respond to changes in the installation state of the printing apparatus 3 or changes in the environmental temperature TE.
  • the history 116 of the temperature change referred to when the printing energy calculation unit 122 obtains the printing energy calculation condition is the period during which the latest one month was printed, the period during which the latest 100 sheets were printed, and the like. It may be limited to the history of temperature changes. Thereby, it is possible to determine the print permission temperature T that is more suitable for the change in the installation state of the printing apparatus 3 or the change in the environmental temperature TE.
  • the rate of increase in the printing energy Y'when the head temperature TH of the thermal head 14 rises may be 100% of the rate of increase in the head temperature TH of the thermal head 14, or the category to which the printing energy Y'belongs, thermal. It may be set according to the magnitude of the rate of increase in the head temperature TH of the head 14.
  • the print permission temperature T can be appropriately determined, and printing can be efficiently performed without waste. For example, it is possible to suppress the occurrence of wrinkles, sticking and the like. Further, by changing the printing energy calculation condition according to the printing energy calculation unit 122 according to the history of the change of the environmental temperature TE, the print permission temperature more suitable for the change of the installation state of the printing apparatus 3 or the change of the environmental temperature TE. T can be determined.
  • the printing energy calculation unit 122 obtains the printing energy calculation condition according to the stored temperature change history 116 from the printing energy calculation condition 113, and finally according to the obtained printing energy calculation condition.
  • the printing energy Y' is calculated.
  • the print permission temperature determination unit 123 obtains the print permission condition according to the stored temperature change history 116 from the print permission condition 114, and determines the print permission temperature T according to the obtained print permission condition. May be good. In this case as well, the same effect can be obtained.
  • each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within the scope of the invention.
  • 1,1A, 2,3 printing device 11a recording paper, 12a ink sheet, 13 recording paper transport unit, 14 thermal head, 14a head temperature sensor, 20 environmental temperature sensor, 21 control unit, 101 storage unit, 102 processing unit, 103 head temperature detection unit, 104 environmental temperature detection unit, 111 print data, 111a, 111b, 111c partial print data, 112 print conditions, 113 print energy calculation conditions, 114 print permission conditions, 115 thresholds, 116 temperature change history, 121 print data division unit, 122 print energy calculation unit, 123 print permission temperature determination unit, 124 print startability determination unit, 125 ratio calculation unit, 131a, 131b, 131c partial area, D1 transport direction, D2 main scanning direction.

Abstract

The purpose of the present invention is to obtain printed matter having excellent printing quality even when a time required for printing is shortened. In a sublimation thermal transfer printing device, the head temperature of a thermal head is detected. Printing data is divided into a plurality of partial printing data items. Each of the plurality of partial printing data items is used to perform printing on each of a plurality of partial regions. According to a printing energy calculation condition, a plurality of partial printing energy each indicating energy that is to be supplied to the thermal head when the plurality of partial printing data items are used to perform printing is calculated, and printing energy forming a foundation for determining a printing allowable temperature is calculated from the plurality of partial printing energy. According to a printing allowable condition, the printing allowable temperature is determined on the basis of the printing energy. On the basis of the head temperature and the printing allowable temperature, a determination is made as to whether printing using printing data is started.

Description

昇華型熱転写方式の印刷装置、及び昇華型熱転写方式の印刷装置の制御方法Control method of sublimation type thermal transfer type printing device and sublimation type thermal transfer type printing device
 本発明は、昇華型熱転写方式の印刷装置、及び昇華型熱転写方式の印刷装置の制御方法に関する。 The present invention relates to a sublimation type thermal transfer type printing apparatus and a control method of a sublimation type thermal transfer type printing apparatus.
 昇華型熱転写方式の印刷装置には、インクシートが取り付けられる。インクシートは、インクシートフィルム、イエロー(Y)インク層、マゼンダ(M)インク層、シアン(C)インク層及びオーバーコート(OP)材料層を備える。Yインク層、Mインク層、Cインク層及びOP材料層は、インクシートフィルム上に配置される。Yインク層、Mインク層、Cインク層及びOP材料層は、インクシートの長手方向に配列される。Yインク層、Mインク層、Cインク層及びOP材料層は、それぞれ、Yインク、Mインク、Cインク及びOP材料をインクシートフィルム上に塗布することにより形成される。 An ink sheet is attached to the sublimation type thermal transfer printing device. The ink sheet includes an ink sheet film, a yellow (Y) ink layer, a magenta (M) ink layer, a cyan (C) ink layer, and an overcoat (OP) material layer. The Y ink layer, the M ink layer, the C ink layer, and the OP material layer are arranged on the ink sheet film. The Y ink layer, the M ink layer, the C ink layer, and the OP material layer are arranged in the longitudinal direction of the ink sheet. The Y ink layer, the M ink layer, the C ink layer, and the OP material layer are formed by applying Y ink, M ink, C ink, and OP material on the ink sheet film, respectively.
 また、昇華型熱転写方式の印刷装置には、ロール紙が取り付けられる。ロール紙においては、記録紙が巻かれている。 In addition, roll paper is attached to the sublimation type thermal transfer printing device. In roll paper, recording paper is wrapped.
 昇華型熱転写方式の印刷装置は、搬送機構及びサーマルヘッドを備える。搬送機構は、インクシート及び記録紙を搬送方向に搬送する。サーマルヘッドは、搬送方向と垂直をなす主走査方向に配列される複数の発熱抵抗体を備える。 The sublimation type thermal transfer type printing device is equipped with a transport mechanism and a thermal head. The transport mechanism transports the ink sheet and the recording paper in the transport direction. The thermal head includes a plurality of heat generating resistors arranged in the main scanning direction perpendicular to the transport direction.
 昇華型熱転写方式の印刷装置により印刷が行われる際には、搬送機構がインクシート及び記録紙を搬送方向に搬送している間に、複数の発熱抵抗体から選択された発熱抵抗体が通電させられる。これにより、通電させられた発熱抵抗体が発熱する。また、インクシートに塗布されたYインク、Cインク、Mインク及びOP材料が昇華させられる。また、昇華させられたYインク、Cインク、Mインク及びOP材料が記録紙に付着させられる。これにより、Yインク、Cインク、Mインク及びOP材料がインクシートから記録紙に転写される。Yインク、Cインク、Mインク及びOP材料がインクシートから記録紙に転写される際には、Yインク、Cインク、Mインク及びOP材料が記録紙の同じ領域に重ねて転写される。これにより、記録紙に画像が形成され、形成された画像がOP材料からなるOPにより保護される。 When printing is performed by a sublimation type thermal transfer printing device, a heat generating resistor selected from a plurality of heat generating resistors is energized while the transport mechanism is transporting the ink sheet and the recording paper in the transport direction. Be done. As a result, the energized heat-generating resistor generates heat. Further, the Y ink, C ink, M ink and OP material applied to the ink sheet are sublimated. Further, the sublimated Y ink, C ink, M ink and OP material are adhered to the recording paper. As a result, the Y ink, the C ink, the M ink, and the OP material are transferred from the ink sheet to the recording paper. When the Y ink, C ink, M ink and OP material are transferred from the ink sheet to the recording paper, the Y ink, C ink, M ink and OP material are transferred over the same area of the recording paper. As a result, an image is formed on the recording paper, and the formed image is protected by the OP made of the OP material.
 昇華型熱転写方式の印刷装置により行われる印刷に要する時間を短縮するためには、サーマルヘッドに供給される単位時間当たりのエネルギーを増やし、Yインク、Cインク、Mインク及びOP材料をインクシートから記録紙に高速に転写することが有効である。しかし、このようにして印刷に要する時間が短縮された場合は、サーマルヘッドの温度が上昇し、良好な印画品質を有する印刷物を得ることが困難になる場合がある。例えば、高い濃度を有する画像が連続で形成される場合に、インクシートフィルムが熱により大きく収縮し、インクシートフィルムにシワが生じる場合がある。また、サーマルヘッドに多くの熱が蓄積され、インクシートが記録紙に熱融着し、スティッキングが生じる場合がある。 In order to shorten the time required for printing performed by the sublimation type thermal transfer printing device, the energy per unit time supplied to the thermal head is increased, and Y ink, C ink, M ink and OP material are transferred from the ink sheet. It is effective to transfer to recording paper at high speed. However, when the time required for printing is shortened in this way, the temperature of the thermal head rises, and it may be difficult to obtain a printed matter having good print quality. For example, when images having a high density are continuously formed, the ink sheet film may shrink significantly due to heat, and wrinkles may occur in the ink sheet film. In addition, a large amount of heat is accumulated in the thermal head, and the ink sheet may be heat-sealed to the recording paper, causing sticking.
 これらの問題は、サーマルヘッドのヘッド温度が設定された温度まで上昇した場合に、印刷動作を停止してサーマルヘッドを冷却し、サーマルヘッドのヘッド温度が設定された温度まで下降した後に印刷動作を再開するという解決手段により、解決することができる。すなわち、当該解決手段により、シワ、スティッキング等が生じることを防ぎ、良好な印画品質を有する印刷物を得ることができる。しかし、当該解決手段が採用された場合は、印刷に要する時間を短縮することが困難になる。 These problems are that when the head temperature of the thermal head rises to the set temperature, the printing operation is stopped to cool the thermal head, and after the head temperature of the thermal head drops to the set temperature, the printing operation is started. It can be solved by the solution means of restarting. That is, by the solution, it is possible to prevent wrinkles, sticking and the like from occurring, and to obtain a printed matter having good printing quality. However, if the solution is adopted, it becomes difficult to reduce the time required for printing.
 特許文献1に記載された技術においては、各色毎にサーマルヘッドの冷却が行われる(段落0024)。これにより、サーマルヘッドのオーバーヒートを防ぐことができ、画質を向上することができる(段落0024)。各色毎にサーマルヘッドの冷却が行われる際には、前色の最大印画率でのサーマルヘッド上昇温度を見込んだ温度までサーマルヘッドの冷却が行われた後に、次色の印画が開始される(段落0024)。 In the technique described in Patent Document 1, the thermal head is cooled for each color (paragraph 0024). As a result, overheating of the thermal head can be prevented and image quality can be improved (paragraph 0024). When the thermal head is cooled for each color, the printing of the next color is started after the thermal head is cooled to a temperature at which the temperature at which the thermal head rises at the maximum printing rate of the previous color is expected. Paragraph 0024).
 特許文献2に記載された技術においては、連続して印画すべき複数の画像データの画像のそれぞれについて平均濃度が算出される(段落0020)。また、算出結果に基づいて、複数の画像データの印画順序が決定される(段落0020)。印画順序は、平均濃度が所定よりも高い画像が所定数以上連続して印刷されないように決定される(段落0020)。これにより、サーマルヘッドの温度上昇を抑制することができ、印画時間を短縮することができる(段落0027)。 In the technique described in Patent Document 2, the average density is calculated for each of the images of a plurality of image data to be continuously printed (paragraph 0020). Further, based on the calculation result, the printing order of the plurality of image data is determined (paragraph 0020). The printing order is determined so that images having an average density higher than a predetermined number are not continuously printed in a predetermined number or more (paragraph 0020). As a result, the temperature rise of the thermal head can be suppressed, and the printing time can be shortened (paragraph 0027).
特開平5-8423号公報Japanese Unexamined Patent Publication No. 5-8423 特開2012-179775号公報Japanese Unexamined Patent Publication No. 2012-179775
 特許文献1に記載された技術においては、専ら印画率に基づいてサーマルヘッド上昇温度が見込まれる。このため、サーマルヘッド上昇温度を正確に見込むことができない場合がある。 In the technique described in Patent Document 1, the thermal head rise temperature is expected exclusively based on the printing rate. Therefore, it may not be possible to accurately estimate the temperature rise of the thermal head.
 また、特許文献2に記載された技術においては、印画される画像によっては、サーマルヘッドの温度上昇を十分に抑制することができず、印画時間を十分に短縮することができない場合がある。例えば、平均濃度が高い画像のみが印画される場合は、印画順序の変更によっては、サーマルヘッドの温度上昇を十分に抑制することができず、印画時間を十分に短縮することができない。 Further, in the technique described in Patent Document 2, depending on the image to be printed, the temperature rise of the thermal head cannot be sufficiently suppressed, and the printing time may not be sufficiently shortened. For example, when only an image having a high average density is printed, the temperature rise of the thermal head cannot be sufficiently suppressed by changing the printing order, and the printing time cannot be sufficiently shortened.
 本発明は、これらの問題に鑑みてなされた。本発明が解決しようとする課題は、印刷に要する時間が短縮された場合においても、良好な印画品質を有する印刷物を得ることができる昇華型熱転写方式の印刷装置、及び昇華型熱転写方式の印刷装置の制御方法を提供することである。 The present invention has been made in view of these problems. The problem to be solved by the present invention is a sublimation type thermal transfer type printing apparatus and a sublimation type thermal transfer type printing apparatus that can obtain a printed matter having good printing quality even when the time required for printing is shortened. Is to provide a control method for.
 本発明は、昇華型熱転写方式の印刷装置に向けられる。 The present invention is directed to a sublimation thermal transfer printing apparatus.
 昇華型熱転写方式の印刷装置は、サーマルヘッド、ヘッド温度検出部、印刷データ分割部、印刷エネルギー算出部、印刷許可温度決定部及び印刷開始可否判定部を備える。 The sublimation type thermal transfer type printing apparatus includes a thermal head, a head temperature detection unit, a print data division unit, a print energy calculation unit, a print permission temperature determination unit, and a print startability determination unit.
 ヘッド温度検出部は、サーマルヘッドのヘッド温度を検出する。 The head temperature detector detects the head temperature of the thermal head.
 印刷データ分割部は、印刷データを複数の部分印刷データに分割する。複数の部分印刷データは、それぞれ複数の部分領域の印刷にそれぞれ用いられる。 The print data division unit divides the print data into a plurality of partial print data. Each of the plurality of partial print data is used for printing a plurality of partial areas.
 印刷エネルギー算出部は、印刷エネルギー算出条件に従って、複数の部分印刷データが印刷に用いられる場合にサーマルヘッドに供給されるエネルギーをそれぞれ示す複数の部分印刷エネルギーを算出し、複数の部分印刷エネルギーから印刷許可温度の決定の基礎となる印刷エネルギーを算出する。 The printing energy calculation unit calculates a plurality of partial printing energies indicating the energy supplied to the thermal head when a plurality of partial printing data are used for printing according to the printing energy calculation conditions, and prints from the plurality of partial printing energies. Calculate the printing energy that is the basis for determining the allowed temperature.
 印刷許可温度決定部は、印刷許可条件に従って、印刷エネルギーに基づいて印刷許可温度を決定する。 The print permission temperature determination unit determines the print permission temperature based on the print energy according to the print permission conditions.
 印刷開始可否判定部は、ヘッド温度及び印刷許可温度に基づいて印刷データを用いる印刷の開始の可否を判定する。 The print startability determination unit determines whether or not printing using the print data can be started based on the head temperature and the print permission temperature.
 本発明は、昇華型熱転写方式の印刷装置の制御方法にも向けられる。 The present invention is also directed to a control method for a sublimation thermal transfer printing apparatus.
 本発明によれば、複数の部分印刷データが印刷に用いられる場合にサーマルヘッドに供給されるエネルギーが印刷許可温度に反映される。また、当該印刷許可温度に基づいて印刷データを用いる印刷の開始の可否が判定される。このため、印刷データを用いる印刷が行われる際のサーマルヘッドの温度を適切な温度にすることができる。これにより、印刷に要する時間が短縮された場合においても、良好な印画品質を有する印刷物を得ることができる。 According to the present invention, when a plurality of partial print data is used for printing, the energy supplied to the thermal head is reflected in the print permission temperature. Further, it is determined whether or not printing using the print data can be started based on the print permission temperature. Therefore, the temperature of the thermal head when printing using the print data can be set to an appropriate temperature. As a result, even when the time required for printing is shortened, it is possible to obtain a printed matter having good print quality.
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objectives, features, aspects, and advantages of the present invention will be made clearer by the following detailed description and accompanying drawings.
実施の形態1-3及び実施の形態1の変形例の印刷装置を模式的に図示する模式図である。It is a schematic diagram which shows typically the printing apparatus of Embodiment 1-3 and the modification of Embodiment 1. 実施の形態1-3及び実施の形態1の変形例の印刷装置に備えられる制御部を図示するブロック図である。It is a block diagram which illustrates the control part provided in the printing apparatus of Embodiment 1-3 and the modification of Embodiment 1. 実施の形態1の印刷装置に備えられる、印刷の開始の可否の判定のための構成を図示する機能ブロック図である。FIG. 5 is a functional block diagram illustrating a configuration for determining whether or not printing can be started, which is provided in the printing apparatus of the first embodiment. 実施の形態1-3及び実施の形態1の変形例の印刷装置において印刷データを用いて印刷が行われる領域を図示する図である。It is a figure which illustrates the area where printing is performed using the print data in the printing apparatus of Embodiment 1-3 and the modification of Embodiment 1. 実施の形態1の印刷装置に備えられる記憶部に記憶される印刷エネルギー算出条件の例を図示する図である。It is a figure which shows the example of the printing energy calculation condition stored in the storage part provided in the printing apparatus of Embodiment 1. FIG. 実施の形態1-3及び実施の形態1の変形例の印刷装置において印刷データを用いて印刷が行われる領域の別例を図示する図である。It is a figure which shows another example of the area where printing is performed using the print data in the printing apparatus of the modified example of Embodiment 1-3 and Embodiment 1. FIG. 実施の形態1-3及び実施の形態1の変形例の印刷装置の動作の流れを図示するフローチャートである。It is a flowchart which illustrates the operation flow of the printing apparatus of Embodiment 1-3 and the modification of Embodiment 1. 実施の形態1の変形例の印刷装置に備えられる、印刷の開始の可否の判定のための構成を図示する機能ブロック図である。FIG. 5 is a functional block diagram illustrating a configuration for determining whether or not printing can be started, which is provided in the printing apparatus of the modified example of the first embodiment. 実施の形態1の変形例の印刷装置に備えられる記憶部に記憶される印刷エネルギー算出条件の例を図示する図である。It is a figure which illustrates the example of the printing energy calculation condition stored in the storage part provided in the printing apparatus of the modification of Embodiment 1. 実施の形態2の印刷装置に備えられる、印刷の開始の可否の判定のための構成を図示する機能ブロック図である。FIG. 5 is a functional block diagram illustrating a configuration for determining whether or not printing can be started, which is provided in the printing apparatus of the second embodiment. 実施の形態2の印刷装置に備えられる記憶部に記憶される印刷エネルギー算出条件の例を図示する図である。It is a figure which illustrates the example of the printing energy calculation condition stored in the storage part provided in the printing apparatus of Embodiment 2. 実施の形態3の印刷装置に備えられる、印刷の開始の可否の判定のための構成を図示する機能ブロック図である。FIG. 5 is a functional block diagram illustrating a configuration for determining whether or not printing can be started, which is provided in the printing apparatus of the third embodiment. 実施の形態3の印刷装置に備えられるサーマルヘッドのヘッド温度THの、1画面のYの印刷が行われる間の時間変化の例を図示する図である。It is a figure which illustrates the example of the time change of the head temperature TH of the thermal head provided in the printing apparatus of Embodiment 3 during the printing of Y on one screen. 実施の形態3の印刷装置に備えられるサーマルヘッドのヘッド温度THの、連続印刷が行われる間の時間変化の例を図示する図である。It is a figure which illustrates the example of the time change of the head temperature TH of the thermal head provided in the printing apparatus of Embodiment 3 during continuous printing.
 1 実施の形態1
 1.1 印刷装置
 図1は、実施の形態1の印刷装置を模式的に図示する模式図である。
1 Embodiment 1
1.1 Printing device FIG. 1 is a schematic view schematically showing the printing device of the first embodiment.
 図1に図示される印刷装置1は、昇華型熱転写方式の印刷装置である。昇華型熱転写方式の印刷装置は、サーマルプリンタ等とも呼ばれる。 The printing device 1 illustrated in FIG. 1 is a sublimation type thermal transfer printing device. A sublimation type thermal transfer type printing device is also called a thermal printer or the like.
 印刷装置1には、ロール紙11及びインクカセット12が装着される。 A roll paper 11 and an ink cassette 12 are mounted on the printing device 1.
 ロール紙11は、記録紙11aを備える。記録紙11aは、ロール状に巻かれている。 The roll paper 11 includes a recording paper 11a. The recording paper 11a is wound in a roll shape.
 インクカセット12は、インクシート12a、インク巻き出しリール12b及びインク巻き取りリール12cを備える。 The ink cassette 12 includes an ink sheet 12a, an ink unwinding reel 12b, and an ink winding reel 12c.
 インクシート12aは、プラスチックフィルム、イエロー(Y)染料層、マゼンダ(M)染料層、シアン(C)染料層及びオーバーコート(OP)材料層を備える。プラスチックフィルムは、耐熱性を有する。Y染料層、M染料層、C染料層及びOP材料層は、プラスチックフィルム上に配置される。Y染料層、M染料層、C染料層及びOP材料層は、プラスチックフィルムの長手方向に順に配列される。インクシート12aに備えられる染料層の種類、配列順等が変更されてもよい。例えば、インクシート12aが、ブラック(K)染料層、特色染料層等を備えてもよい。特色染料層は、金箔、銀箔等である。 The ink sheet 12a includes a plastic film, a yellow (Y) dye layer, a magenta (M) dye layer, a cyan (C) dye layer, and an overcoat (OP) material layer. The plastic film has heat resistance. The Y dye layer, the M dye layer, the C dye layer and the OP material layer are arranged on the plastic film. The Y dye layer, the M dye layer, the C dye layer, and the OP material layer are arranged in this order in the longitudinal direction of the plastic film. The type, arrangement order, and the like of the dye layer provided on the ink sheet 12a may be changed. For example, the ink sheet 12a may include a black (K) dye layer, a spot color dye layer, and the like. The special color dye layer is gold leaf, silver leaf, or the like.
 インクシート12aの長手方向の一端は、インク巻き出しリール12bに巻かれる。インクシート12aの長手方向の他端は、インク巻き取りリール12cに巻かれる。 One end of the ink sheet 12a in the longitudinal direction is wound around the ink unwinding reel 12b. The other end of the ink sheet 12a in the longitudinal direction is wound around the ink take-up reel 12c.
 印刷装置1は、記録紙搬送部13、サーマルヘッド14、プラテンローラ15、排紙ローラ部16及びカッター17をさらに備える。 The printing device 1 further includes a recording paper transport unit 13, a thermal head 14, a platen roller 15, a paper discharge roller unit 16, and a cutter 17.
 ロール紙11から引き出された記録紙11aは、記録紙搬送部13、サーマルヘッド14とプラテンローラ15との間隙、及び排紙ローラ部16を順次に経由してカッター17に至る。 The recording paper 11a drawn out from the roll paper 11 reaches the cutter 17 in sequence through the recording paper transport section 13, the gap between the thermal head 14 and the platen roller 15, and the paper ejection roller section 16.
 インク巻き出しリール12bから巻き出されたインクシート12aは、サーマルヘッド14とプラテンローラ15との間隙を経由してインク巻き取りリール12cに至り、インク巻き取りリール12cに巻き取られる。 The ink sheet 12a unwound from the ink unwinding reel 12b reaches the ink winding reel 12c via the gap between the thermal head 14 and the platen roller 15, and is wound around the ink winding reel 12c.
 記録紙搬送部13は、グリップローラ13a及びピンチローラ13bを備える。グリップローラ13a及びピンチローラ13bは、記録紙11aを挟んだ状態で回転する。これにより、記録紙搬送部13は、記録紙11aを搬送方向D1に搬送する。搬送方向D1は、記録紙11aの長手方向と平行をなす。 The recording paper transport unit 13 includes a grip roller 13a and a pinch roller 13b. The grip roller 13a and the pinch roller 13b rotate with the recording paper 11a sandwiched between them. As a result, the recording paper transport unit 13 transports the recording paper 11a in the transport direction D1. The transport direction D1 is parallel to the longitudinal direction of the recording paper 11a.
 インク巻き出しリール12b及びインク巻き取りリール12cの回転は、記録紙11aに印刷が行われる際に、インクシート12aが記録紙11aとともに搬送され、インクシート12aに適切な張力が加わるように制御される。 The rotation of the ink unwinding reel 12b and the ink take-up reel 12c is controlled so that the ink sheet 12a is conveyed together with the recording paper 11a and an appropriate tension is applied to the ink sheet 12a when printing is performed on the recording paper 11a. Reel.
 サーマルヘッド14及びプラテンローラ15は、互いに重ねあわされた記録紙11a及びインクシート12aを圧着加熱する。これにより、インクシート12aに備えられるY染料層、M染料層、C染料層及びOP材料層にそれぞれ含まれるY染料、M染料、C染料及びOP材料がインクシート12aから記録紙11aに転写され、画像及びOP画像を記録紙11aに形成する印刷が記録紙11aに行われる。印刷が行われた記録紙11aは、排紙ローラ部16まで搬送され、カッター17により切断される。これにより、印刷が行われた記録紙片が形成される。形成された記録紙片は、印刷装置1から排紙される。 The thermal head 14 and the platen roller 15 press-heat the recording paper 11a and the ink sheet 12a that are overlapped with each other. As a result, the Y dye, M dye, C dye, and OP material contained in the Y dye layer, M dye layer, C dye layer, and OP material layer provided in the ink sheet 12a are transferred from the ink sheet 12a to the recording paper 11a. , The printing that forms the image and the OP image on the recording paper 11a is performed on the recording paper 11a. The printed recording paper 11a is conveyed to the paper ejection roller portion 16 and cut by the cutter 17. As a result, a printed recording paper piece is formed. The formed recording paper piece is discharged from the printing apparatus 1.
 サーマルヘッド14は、複数の発熱抵抗体を備える。複数の発熱抵抗体は、搬送方向D1と垂直をなす主走査方向に配列される。 The thermal head 14 includes a plurality of heat generating resistors. The plurality of heat generating resistors are arranged in the main scanning direction perpendicular to the transport direction D1.
 印刷装置1は、ヘッド温度センサ14aをさらに備える。ヘッド温度センサ14aは、サーマルヘッド14に備えられる。ヘッド温度センサ14aは、サーマルヘッド14のヘッド温度THを測定する。ヘッド温度センサ14aは、サーミスタ等である。 The printing device 1 further includes a head temperature sensor 14a. The head temperature sensor 14a is provided in the thermal head 14. The head temperature sensor 14a measures the head temperature TH of the thermal head 14. The head temperature sensor 14a is a thermistor or the like.
 印刷装置1は、ヒートシンク18及び冷却ファン19をさらに備える。ヒートシンク18は、サーマルヘッド14に取り付けられ、サーマルヘッド14から熱を奪い、奪った熱を外部に放つ。冷却ファン19は、ヒートシンク18を冷却する。 The printing device 1 further includes a heat sink 18 and a cooling fan 19. The heat sink 18 is attached to the thermal head 14, takes heat from the thermal head 14, and releases the taken heat to the outside. The cooling fan 19 cools the heat sink 18.
 印刷装置1は、環境温度センサ20及び制御部21をさらに備える。環境温度センサ20は、印刷装置1が設置された環境の環境温度を測定する。制御部21は、印刷装置1の動作を制御する。 The printing device 1 further includes an environmental temperature sensor 20 and a control unit 21. The environmental temperature sensor 20 measures the environmental temperature of the environment in which the printing device 1 is installed. The control unit 21 controls the operation of the printing device 1.
 印刷装置1は、インクシートセンサ22をさらに備える。インクシートセンサ22は、インクシート12aの種類を検出する。 The printing device 1 further includes an ink sheet sensor 22. The ink sheet sensor 22 detects the type of ink sheet 12a.
 1.2 制御部
 図2は、実施の形態1の印刷装置に備えられる制御部を図示するブロック図である。
1.2 Control unit FIG. 2 is a block diagram illustrating a control unit provided in the printing apparatus of the first embodiment.
 制御部21は、図2に図示されるように、インターフェース(I/F)21a、メモリ21b、CPU21c、センサ信号入力部21d、制御信号出力部21e、印刷データ処理部21f及びデータバス21gを備える。 As shown in FIG. 2, the control unit 21 includes an interface (I / F) 21a, a memory 21b, a CPU 21c, a sensor signal input unit 21d, a control signal output unit 21e, a print data processing unit 21f, and a data bus 21g. ..
 I/F21aは、図示されない外部の情報処理装置から印刷データ及び印刷条件を受信する。外部の情報処理装置は、パーソナルコンピュータ等である。印刷条件は、印刷に関する条件である。印刷条件は、印刷サイズ、印刷速度、画質調整値等を含む。 The I / F 21a receives print data and print conditions from an external information processing device (not shown). The external information processing device is a personal computer or the like. The printing conditions are conditions related to printing. The printing conditions include the printing size, printing speed, image quality adjustment value, and the like.
 メモリ21bは、一時記憶メモリ及び不揮発性メモリを備える。一時記憶メモリは、受信された印刷データ及び印刷条件を記憶する。一時記憶メモリは、ランダムアクセスメモリ(RAM)等である。不揮発性メモリは、制御プログラム、初期設定値等を記憶する。 The memory 21b includes a temporary storage memory and a non-volatile memory. The temporary storage memory stores the received print data and print conditions. The temporary storage memory is a random access memory (RAM) or the like. The non-volatile memory stores a control program, initial setting values, and the like.
 CPU21cは、メモリ21bに記憶された制御プログラムに従って、印刷装置1の全体を制御し、印刷装置1により行われる印刷を制御する。 The CPU 21c controls the entire printing device 1 according to the control program stored in the memory 21b, and controls the printing performed by the printing device 1.
 センサ信号入力部21dには、ヘッド温度センサ14a、環境温度センサ20、インクシートセンサ22等のセンサにより出力されるセンサ信号が入力される。 Sensor signals output by sensors such as the head temperature sensor 14a, the environmental temperature sensor 20, and the ink sheet sensor 22 are input to the sensor signal input unit 21d.
 制御信号出力部21eは、インク巻き出しリール12b、インク巻き取りリール12c、記録紙搬送部13、カッター17等の駆動部に制御信号を出力する。 The control signal output unit 21e outputs a control signal to drive units such as an ink unwinding reel 12b, an ink take-up reel 12c, a recording paper transport unit 13, and a cutter 17.
 印刷データ処理部21fは、メモリ21bに記憶された印刷データを処理する。 The print data processing unit 21f processes the print data stored in the memory 21b.
 データバス21gは、I/F21a、メモリ21b、CPU21c、センサ信号入力部21d、制御信号出力部21e及び印刷データ処理部21fの間で行われるデータ通信により伝送されるデータの伝送路となる。 The data bus 21g serves as a transmission path for data transmitted by data communication performed between the I / F 21a, the memory 21b, the CPU 21c, the sensor signal input unit 21d, the control signal output unit 21e, and the print data processing unit 21f.
 1.3 印刷の開始の可否の判定のための構成
 図3は、実施の形態1の印刷装置に備えられる、印刷の開始の可否の判定のための構成を図示する機能ブロック図である。図4は、実施の形態1の印刷装置において印刷データを用いて印刷が行われる領域を図示する図である。
1.3 Configuration for determining whether or not printing can be started FIG. 3 is a functional block diagram illustrating a configuration for determining whether or not printing can be started provided in the printing apparatus of the first embodiment. FIG. 4 is a diagram illustrating an area where printing is performed using print data in the printing apparatus of the first embodiment.
 印刷装置1は、図3に図示されるように、記憶部101、処理部102及びヘッド温度検出部103を備える。 As shown in FIG. 3, the printing device 1 includes a storage unit 101, a processing unit 102, and a head temperature detecting unit 103.
 記憶部101は、主にメモリ21bにより構成される。処理部102は、主にCPU21cにより構成される。ヘッド温度検出部103は、主にヘッド温度センサ14aにより構成される。 The storage unit 101 is mainly composed of the memory 21b. The processing unit 102 is mainly composed of the CPU 21c. The head temperature detection unit 103 is mainly composed of a head temperature sensor 14a.
 記憶部101は、印刷データ111、印刷条件112、印刷エネルギー算出条件113及び印刷許可条件114を記憶する。 The storage unit 101 stores the print data 111, the print condition 112, the print energy calculation condition 113, and the print permission condition 114.
 印刷装置1は、印刷データ分割部121、印刷エネルギー算出部122、印刷許可温度決定部123及び印刷開始可否判定部124を備える。印刷データ分割部121、印刷エネルギー算出部122、印刷許可温度決定部123及び印刷開始可否判定部124は、処理部102に備えられる。 The printing device 1 includes a printing data dividing unit 121, a printing energy calculating unit 122, a printing permission temperature determining unit 123, and a printing start possibility determination unit 124. The print data division unit 121, the print energy calculation unit 122, the print permission temperature determination unit 123, and the print start possibility determination unit 124 are provided in the processing unit 102.
 図4(a)、図4(b)及び図4(c)に図示される印刷が行われる領域131は、複数の部分領域131a,131b及び131cを備える。 The printing area 131 shown in FIGS. 4A, 4B and 4C includes a plurality of partial areas 131a, 131b and 131c.
 図3に図示されるヘッド温度検出部103は、サーマルヘッド14のヘッド温度THを検出する。 The head temperature detection unit 103 illustrated in FIG. 3 detects the head temperature TH of the thermal head 14.
 図3に図示される印刷データ分割部121は、記憶部101から印刷データ111を読み込む。また、印刷データ分割部121は、読み込んだ印刷データ111を複数の部分印刷データ111a,111b及び111cに分割する。部分印刷データ111a,111b及び111cは、それぞれ、図4に図示される部分領域131a,131b及び131cの印刷に用いられる。図3は、部分印刷データ111a,111b及び111cが3個の部分印刷データである場合を例示する。図4は、部分領域131a,131b及び131cが3個の部分領域である場合を例示する。しかし、印刷データ111が2個又は4個以上の部分印刷データに分割されてもよい。また、領域131が2個又は4個以上の部分領域を備えてもよい。 The print data dividing unit 121 illustrated in FIG. 3 reads the print data 111 from the storage unit 101. Further, the print data dividing unit 121 divides the read print data 111 into a plurality of partial print data 111a, 111b and 111c. The partial print data 111a, 111b and 111c are used for printing the partial regions 131a, 131b and 131c shown in FIG. 4, respectively. FIG. 3 illustrates a case where the partial print data 111a, 111b and 111c are three partial print data. FIG. 4 illustrates a case where the partial regions 131a, 131b and 131c are three partial regions. However, the print data 111 may be divided into two or four or more partial print data. Further, the region 131 may include two or four or more partial regions.
 図3に図示される印刷エネルギー算出部122は、記憶部101から印刷条件112及び印刷エネルギー算出条件113を読み込む。また、印刷エネルギー算出部122は、読み込んだ印刷条件112及び印刷エネルギー算出条件113にしたがって、複数の部分印刷データ111a,111b及び111cを用いて印刷が行われる場合にサーマルヘッド14に供給されるエネルギーをそれぞれ示す複数の部分印刷エネルギーYa,Yb及びYcを算出し、算出した部分印刷エネルギーYa,Yb及びYcから最終的な印刷エネルギーY’を算出する。最終的な印刷エネルギーY’は、下述する印刷許可温度を決定する基礎となる印刷エネルギーである。 The print energy calculation unit 122 illustrated in FIG. 3 reads the print condition 112 and the print energy calculation condition 113 from the storage unit 101. Further, the print energy calculation unit 122 supplies energy to the thermal head 14 when printing is performed using the plurality of partial print data 111a, 111b and 111c according to the read print condition 112 and the print energy calculation condition 113. A plurality of partial printing energies Ya, Yb and Yc indicating each of the above are calculated, and the final printing energy Y'is calculated from the calculated partial printing energies Ya, Yb and Yc. The final printing energy Y'is the printing energy that is the basis for determining the print permission temperature described below.
 図3に図示される印刷許可温度決定部123は、記憶部101から印刷許可条件114を読み込む。また、印刷許可温度決定部123は、読み込んだ印刷許可条件114にしたがって、算出された最終的な印刷エネルギーY’に基づいて印刷許可温度Tを決定する。 The print permission temperature determination unit 123 illustrated in FIG. 3 reads the print permission condition 114 from the storage unit 101. Further, the print permission temperature determination unit 123 determines the print permission temperature T based on the calculated final print energy Y'according to the read print permission condition 114.
 印刷開始可否判定部124は、ヘッド温度検出部103からヘッド温度THを読み込む。また、印刷開始可否判定部124は、読み込んだヘッド温度TH、及び決定された印刷許可温度Tに基づいて印刷データ111を用いる印刷の開始の可否を決定する。 The print startability determination unit 124 reads the head temperature TH from the head temperature detection unit 103. Further, the print start possibility determination unit 124 determines whether or not to start printing using the print data 111 based on the read head temperature TH and the determined print permission temperature T.
 印刷装置1によれば、複数の部分印刷データ111a,111b及び111cを用いて印刷が行われる場合にサーマルヘッド14に供給されるエネルギーが印刷許可温度Tに反映される。また、当該印刷許可温度Tに基づいて印刷データ111を用いる印刷の開始の可否が判定される。このため、印刷データ111を用いて印刷が行われる際のサーマルヘッド14の温度を適切な温度にすることができる。これにより、印刷に要する時間が短縮された場合においても、良好な印画品質を有する印刷を行うことができる。例えば、シワ、スティッキング等が発生することを抑制することができる。 According to the printing apparatus 1, the energy supplied to the thermal head 14 when printing is performed using the plurality of partial print data 111a, 111b and 111c is reflected in the print permission temperature T. Further, it is determined whether or not printing using the print data 111 can be started based on the print permission temperature T. Therefore, the temperature of the thermal head 14 when printing is performed using the print data 111 can be set to an appropriate temperature. As a result, even when the time required for printing is shortened, printing with good printing quality can be performed. For example, it is possible to suppress the occurrence of wrinkles, sticking and the like.
 また、印刷装置1によれば、印刷データ111及び印刷条件112を考慮して最終的な印刷エネルギーY’が算出される。このため、サーマルヘッド14のヘッド温度THの上昇を精度よく予測することができる。また、算出された最終的な印刷エネルギーY’に基づいて印刷許可温度Tを決定することができる。これにより、印刷を無駄なく効率的に行うことができる。 Further, according to the printing apparatus 1, the final printing energy Y'is calculated in consideration of the printing data 111 and the printing condition 112. Therefore, it is possible to accurately predict an increase in the head temperature TH of the thermal head 14. Further, the print permission temperature T can be determined based on the calculated final print energy Y'. As a result, printing can be performed efficiently without waste.
 1.4 部分印刷エネルギーの算出
 以下では、複数の部分印刷エネルギーYa,Yb及びYcの算出の手順が説明される。以下では、部分印刷エネルギーYa,Yb及びYcの算出の手順の理解を容易にするために、まず、分割数が1であり印刷データ111が分割されない場合の、印刷データ111を用いて印刷が行われるときにサーマルヘッド14に供給されるエネルギーを示す印刷エネルギーYの算出の手順が説明される。
1.4 Calculation of partial printing energy The procedure for calculating a plurality of partial printing energies Ya, Yb and Yc will be described below. In the following, in order to facilitate the understanding of the procedure for calculating the partial print energies Ya, Yb, and Yc, first, when the number of divisions is 1 and the print data 111 is not divided, printing is performed using the print data 111. The procedure for calculating the print energy Y, which indicates the energy supplied to the thermal head 14 at the time of printing, will be described.
 印刷エネルギーYが算出される場合は、インクシート12aを用いて印刷を行うことができる最大のサイズを要する領域の全体に最高の濃度を有する黒が印刷される場合の印刷エネルギーである基準印刷エネルギーPmaxが定義される。 When the printing energy Y is calculated, the reference printing energy which is the printing energy when black having the highest density is printed in the entire area requiring the maximum size that can be printed using the ink sheet 12a. Pmax is defined.
 基準印刷エネルギーPmaxは、形成される画像の第nの画素の赤(R)、緑(G)及び青(B)の画素データの和Dn、並びに最大のサイズを要する領域の全体に印刷が行われる場合の画素数Nを用いて、式(1)により表される。式(1)に含まれるΣは、n=1,2,・・・,Nについての和をとることを意味する。 The reference printing energy Pmax is the sum Dn of the red (R), green (G), and blue (B) pixel data of the nth pixel of the formed image, and the entire area requiring the maximum size is printed. It is expressed by the equation (1) using the number of pixels N in the case of the above. Σ included in the equation (1) means to take the sum of n = 1, 2, ..., N.
 Pmax=Σ(255×3-Dn)・・・(1) Pmax = Σ (255 × 3-Dn) ・ ・ ・ (1)
 定義された基準印刷エネルギーPmaxは、印刷エネルギー算出条件113に含められる。 The defined reference printing energy Pmax is included in the printing energy calculation condition 113.
 印刷エネルギーYは、形成される画像の第nの画素のR、G及びBの画素データの和Dn、形成されるOP画像の第nの画素のR、G及びBの画素データの和Dopn、最大のサイズを要する領域の全体に印刷が行われる場合の画素数N、Y染料、M染料及びC染料が転写される際の印刷速度に応じた補正を行うための速度補正係数Argb、並びにOP材料が転写される際の印刷速度に応じた補正を行うための速度補正係数Aopを用いて、式(2)により表される。式(2)に含まれるΣは、n=1,2,・・・,Nについての和をとることを意味する。式(2)により表される印刷エネルギーYは、0以上200以下の値をとる相対値である。 The print energy Y is the sum Dn of the pixel data of the nth pixels of the formed image, the sum of the pixel data of the nth pixels of the formed OP image, and the sum of the pixel data of the nth pixels of the formed OP image. Number of pixels when printing is performed on the entire area requiring the maximum size The speed correction coefficient Argb for performing correction according to the printing speed when the N, Y dye, M dye, and C dye are transferred, and OP. It is expressed by the equation (2) using the speed correction coefficient Aop for performing correction according to the printing speed when the material is transferred. Σ included in the equation (2) means to take the sum of n = 1, 2, ..., N. The print energy Y represented by the formula (2) is a relative value having a value of 0 or more and 200 or less.
 Y={Argb×(Σ{255×3-Dn})}/Pmax×100
  +{Aop×(Σ{255×3-Dopn})}/Pmax×100・・・(2)
Y = {Argb × (Σ {255 × 3-Dn})} / Pmax × 100
+ {Aop × (Σ {255 × 3-Doppn})} / Pmax × 100 ... (2)
 例えば、Y染料、M染料及びC染料が転写される際の印刷速度が1.0ms/lineであり、OP材料が転写される際の印刷速度が2.0ms/lineであり、前者の印刷速度が基準とされた場合は、速度補正係数Argbが1とされ、前者の印刷速度と後者の印刷速度との比から速度補正係数Argbと速度補正係数Aopとの比が決定される。その結果として、速度補正係数Argbが1となり、速度補正係数Aopが0.5となる。 For example, the printing speed when the Y dye, the M dye, and the C dye are transferred is 1.0 ms / line, and the printing speed when the OP material is transferred is 2.0 ms / line, which is the former printing speed. When is used as a reference, the speed correction coefficient Argb is set to 1, and the ratio between the speed correction coefficient Argb and the speed correction coefficient Aop is determined from the ratio between the printing speed of the former and the printing speed of the latter. As a result, the speed correction coefficient Argb becomes 1, and the speed correction coefficient Aop becomes 0.5.
 印刷エネルギーYの算出において、印刷速度ごとのヘッド温度THの上昇が計測され、計測の結果に基づいて速度補正係数が設定されてもよい。印刷速度は、印刷装置1の外部から提供されてもよいし、印刷装置1の内部において判断基準にしたがって決定されてもよい。 In the calculation of the printing energy Y, the increase in the head temperature TH for each printing speed is measured, and the speed correction coefficient may be set based on the measurement result. The printing speed may be provided from the outside of the printing device 1, or may be determined inside the printing device 1 according to a determination criterion.
 基準印刷エネルギーPmaxによれば、黒が印刷される場合のヘッド温度THの上昇を計測し、当該ヘッド温度の上昇及び基準印刷エネルギーPmaxを基準とすることにより、印刷データ111を用いて印刷が行われる場合のヘッド温度THの上昇を容易に予測することができる。印刷エネルギーごとのヘッド温度THの上昇が計測され、印刷エネルギーからヘッド温度THの上昇を導くための参照テーブルが作成されてもよい。 According to the reference printing energy Pmax, an increase in the head temperature TH when black is printed is measured, and by using the increase in the head temperature and the reference printing energy Pmax as a reference, printing is performed using the print data 111. It is possible to easily predict an increase in the head temperature TH in the case of printing. The rise in head temperature TH for each print energy may be measured, and a reference table may be created for deriving the rise in head temperature TH from the print energy.
 印刷エネルギーYは、R、G及びBの画素データから算出される。R、G及びBの画素データがY、M及びCの画素データに変換され、Y、M及びCの画素データから印刷エネルギーYが算出されてもよい。Y、M及びCの画素データから印刷エネルギーYが算出される場合は、Y、M及びCの各色の印刷が行われる場合のヘッド温度THの上昇を予測することができ、ヘッド温度THの上昇を精度よく予測することができる。 The printing energy Y is calculated from the pixel data of R, G, and B. The pixel data of R, G and B may be converted into the pixel data of Y, M and C, and the print energy Y may be calculated from the pixel data of Y, M and C. When the print energy Y is calculated from the pixel data of Y, M, and C, it is possible to predict an increase in the head temperature TH when printing each color of Y, M, and C, and an increase in the head temperature TH. Can be predicted accurately.
 複数の印刷データが合成された合成印刷データが生成され、生成された合成印刷データを用いて印刷が一度に行われる場合は、合成印刷データを用いて印刷が行われる場合にサーマルヘッド14に供給される印刷エネルギーYが直接的に算出されてもよいし、複数の印刷データを用いて印刷が行われる場合にサーマルヘッド14にそれぞれ供給される複数の印刷エネルギーY1,Y2,・・・,Ynを介して印刷エネルギーYが算出されてもよい。後者の場合は、印刷エネルギーYは、式(3)により表される。印刷エネルギーYは、複数の印刷エネルギーY1,Y2,・・・,Ynの和である。印刷エネルギーYは、0以上200以下の相対値である。複数の印刷エネルギーY1,Y2,・・・,Ynの各々は、0以上200以下の相対値である。これにより、ヘッド温度THの上昇を精度よく予測することができる。 When composite print data is generated by combining a plurality of print data and printing is performed using the generated composite print data at one time, it is supplied to the thermal head 14 when printing is performed using the composite print data. The print energy Y to be printed may be calculated directly, or a plurality of print energies Y1, Y2, ..., Yn supplied to the thermal head 14 when printing is performed using a plurality of print data. The print energy Y may be calculated via. In the latter case, the printing energy Y is represented by the equation (3). The printing energy Y is the sum of a plurality of printing energies Y1, Y2, ..., Yn. The print energy Y is a relative value of 0 or more and 200 or less. Each of the plurality of printing energies Y1, Y2, ..., Yn is a relative value of 0 or more and 200 or less. As a result, an increase in the head temperature TH can be predicted with high accuracy.
 Y=Y1+Y2+・・・+Y3・・・(3) Y = Y1 + Y2 + ... + Y3 ... (3)
 複数の部分印刷エネルギーYa,Yb及びYcは、それぞれ、インクシート12aを用いて印刷することができる最大のサイズに対する複数の部分領域131a,131b及び131cのサイズの比を考慮した上で、印刷エネルギーYと同様に算出することができる。 The plurality of partial printing energies Ya, Yb and Yc are the printing energies after considering the ratio of the sizes of the plurality of partial regions 131a, 131b and 131c to the maximum size that can be printed using the ink sheet 12a, respectively. It can be calculated in the same way as Y.
 1.5 印刷許可温度の決定
 上述したように、印刷許可温度決定部123は、印刷許可条件114にしたがって、最終的な印刷エネルギーY’に基づいて印刷許可温度Tを決定する。
1.5 Determination of print permission temperature As described above, the print permission temperature determination unit 123 determines the print permission temperature T based on the final print energy Y'according to the print permission condition 114.
 印刷許可条件114は、最終的な印刷エネルギーY’から印刷許可温度Tを導く情報である。 The print permission condition 114 is information for deriving the print permission temperature T from the final print energy Y'.
 最終的な印刷エネルギーY’が低い場合は、サーマルヘッド14のヘッド温度THが高い場合でも印刷データ111を用いて印刷を行うことができる。一方、最終的な印刷エネルギーY’が高い場合は、サーマルヘッド14のヘッド温度THが低い場合しか印刷データ111を用いて印刷を行うことができない。このため、印刷許可条件114は、最終的な印刷エネルギーY’が高くなるほど当該最終的な印刷エネルギーY’から導かれる印刷許可温度Tが低くなるように設定される。 When the final printing energy Y'is low, printing can be performed using the print data 111 even when the head temperature TH of the thermal head 14 is high. On the other hand, when the final printing energy Y'is high, printing can be performed using the print data 111 only when the head temperature TH of the thermal head 14 is low. Therefore, the print permission condition 114 is set so that the higher the final print energy Y', the lower the print permission temperature T derived from the final print energy Y'.
 例えば、印刷許可条件114は、下記のように、最終的な印刷エネルギーY’が100以下である場合は印刷許可温度Tが65℃以下であることを導く印刷許可条件1)、最終的な印刷エネルギーY’が100より大きく125以下である場合は印刷許可温度Tが60℃以下であることを導く印刷許可条件2)、及び最終的な印刷エネルギーY’が125より大きい場合は印刷許可温度Tが55℃以下であることを導く印刷許可条件3)を含む。この印刷許可条件114によれば、印刷許可温度Tは、3段階で与えられる。 For example, the print permission condition 114 is the print permission condition 1) that leads to the print permission temperature T being 65 ° C. or less when the final print energy Y'is 100 or less, as shown below, and the final printing. If the energy Y'is greater than 100 and 125 or less, the print permission temperature T leads to 60 ° C. or less 2), and if the final print energy Y'is greater than 125, the print permission temperature T Includes print permission condition 3) that leads to a temperature of 55 ° C or lower. According to the print permission condition 114, the print permission temperature T is given in three stages.
 印刷許可条件1)Y’≦100:印刷許可温度T≦65℃
 印刷許可条件2)100<Y’≦125:印刷許可温度T≦60℃
 印刷許可条件3)125<Y’:印刷許可温度T≦55℃
Printing permission conditions 1) Y'≤100: Printing permission temperature T≤65 ° C.
Print permission condition 2) 100 <Y'≦ 125: Print permission temperature T ≦ 60 ° C
Printing permission condition 3) 125 <Y': Printing permission temperature T ≤ 55 ° C
 印刷許可温度Tが無段階で与えられてもよい。この場合は、基準印刷エネルギーPmax、及び基準印刷エネルギーPmaxがサーマルヘッド14に供給された場合のヘッド温度THの上昇ΔTmaxを用いてヘッド温度THの上昇が予測され、予測されたヘッド温度THの上昇に基づいて印刷許可温度Tが決定される。これにより、印刷許可温度Tを適切に決定することができる。この場合は、印刷許可温度Tは、許容することができるヘッド温度THの上限であるヘッド規定温度、最終的な印刷エネルギーY’、基準印刷エネルギーPmax、及び基準印刷エネルギーPmaxがサーマルヘッド14に供給された場合のヘッド温度THの上昇ΔTmaxを用いて、例えば、式(4)により表される。 The print permission temperature T may be given steplessly. In this case, the head temperature TH is predicted to rise by using the reference printing energy Pmax and the rise ΔTmax of the head temperature TH when the reference printing energy Pmax is supplied to the thermal head 14, and the predicted head temperature TH rises. The print permission temperature T is determined based on the above. Thereby, the print permission temperature T can be appropriately determined. In this case, the print permission temperature T is the head specified temperature which is the upper limit of the allowable head temperature TH, the final print energy Y', the reference print energy Pmax, and the reference print energy Pmax are supplied to the thermal head 14. It is expressed by, for example, the equation (4) by using the increase ΔTmax of the head temperature TH when the head temperature is increased.
 T=(ヘッド規定温度)-(Y’/Pmax×ΔTmax)・・・(4) T = (head specified temperature)-(Y'/ Pmax x ΔTmax) ... (4)
 1.6 印刷エネルギー算出条件及び印刷許可条件の補正
 図5は、実施の形態1の印刷装置に備えられる記憶部に記憶される印刷エネルギー算出条件の例を図示する図である。
1.6 Correction of Printing Energy Calculation Condition and Printing Permission Condition FIG. 5 is a diagram illustrating an example of printing energy calculation condition stored in the storage unit provided in the printing apparatus of the first embodiment.
 図5に図示される印刷エネルギー算出条件113は、複数のタイプ141p,141q,141r及び141s、複数のタイプ141p,141q,141r及び141sにそれぞれ対応する部分印刷エネルギーYa,Yb及びYcの複数の分布142p,142q,142r及び142s、並びに複数の分布142p,142q,142r及び142sにそれぞれ応じた複数の印刷エネルギー算出条件143p,143q,143r及び143sを含む。複数の印刷エネルギー算出条件143p,143q,143r及び143sの各々は、補正係数α1を含む。部分印刷エネルギーYa,Yb及びYcの分布142q及び142rは、それぞれ、印刷データ111を用いた印刷により形成される画像が図4(b)及び図4(c)に図示される画像である場合の部分印刷エネルギーYa,Yb及びYcの分布である。 The printing energy calculation condition 113 illustrated in FIG. 5 is a plurality of distributions of partial printing energies Ya, Yb and Yc corresponding to a plurality of types 141p, 141q, 141r and 141s and a plurality of types 141p, 141q, 141r and 141s, respectively. It includes 142p, 142q, 142r and 142s, and a plurality of printing energy calculation conditions 143p, 143q, 143r and 143s corresponding to the plurality of distributions 142p, 142q, 142r and 142s, respectively. Each of the plurality of printing energy calculation conditions 143p, 143q, 143r and 143s includes a correction coefficient α1. The distributions 142q and 142r of the partial printing energies Ya, Yb, and Yc are the cases where the images formed by printing using the print data 111 are the images shown in FIGS. 4 (b) and 4 (c), respectively. It is a distribution of partial printing energies Ya, Yb and Yc.
 印刷エネルギー算出部122は、印刷エネルギー算出条件113から、算出された複数の部分印刷エネルギーYa,Yb及びYcに応じた印刷エネルギー算出条件を得、得た印刷エネルギー算出条件にしたがって最終的な印刷エネルギーY’を算出する。印刷エネルギー算出部122は、算出された部分印刷エネルギーYa,Yb及びYc、並びに得た印刷エネルギー算出条件に含まれる補正係数α1を用いて、式(5)により表される最終的な印刷エネルギーY’を算出する。 The printing energy calculation unit 122 obtains printing energy calculation conditions corresponding to a plurality of calculated partial printing energies Ya, Yb, and Yc from the printing energy calculation condition 113, and finally print energy according to the obtained printing energy calculation condition. Calculate Y'. The print energy calculation unit 122 uses the calculated partial print energies Ya, Yb and Yc, and the correction coefficient α1 included in the obtained print energy calculation conditions, and the final print energy Y represented by the equation (5). 'Calculate.
 Y’=α1×{Ya+Yb+Yc}・・・(5) Y'= α1 × {Ya + Yb + Yc} ... (5)
 複数の部分印刷エネルギーYa,Yb及びYcの分布に応じて印刷エネルギー算出部122がしたがう印刷エネルギー算出条件を変更することにより、サーマルヘッド14のヘッド温度THの上昇を精度よく予測することができる。また、算出される最終的な印刷エネルギーY’に基づいて印刷許可温度Tを決定することにより、印刷許可温度Tを適切に決定することができ、印刷を無駄なく効率的に行うことができる。 By changing the printing energy calculation conditions according to the printing energy calculation unit 122 according to the distribution of the plurality of partial printing energies Ya, Yb and Yc, it is possible to accurately predict the increase in the head temperature TH of the thermal head 14. Further, by determining the print permission temperature T based on the calculated final print energy Y', the print permission temperature T can be appropriately determined, and printing can be efficiently performed without waste.
 印刷装置1においては、印刷エネルギー算出部122が、印刷エネルギー算出条件113から、複数の部分印刷エネルギーYa,Yb及びYcの分布に応じた印刷エネルギー算出条件を得、得た印刷エネルギー算出条件にしたがって最終的な印刷エネルギーY’を算出する。しかし、印刷許可温度決定部123が、印刷許可条件114から、部分印刷エネルギーYa,Yb及びYcの分布に応じた印刷許可条件を得、得た印刷許可条件にしたがって印刷許可温度Tを決定してもよい。この場合も、同様の効果が得られる。 In the printing apparatus 1, the printing energy calculation unit 122 obtains printing energy calculation conditions according to the distribution of a plurality of partial printing energies Ya, Yb, and Yc from the printing energy calculation condition 113, and according to the obtained printing energy calculation conditions. The final printing energy Y'is calculated. However, the print permission temperature determination unit 123 obtains the print permission condition according to the distribution of the partial print energies Ya, Yb and Yc from the print permission condition 114, and determines the print permission temperature T according to the obtained print permission condition. May be good. In this case as well, the same effect can be obtained.
 1.7 分割方向
 複数の部分領域131a,131b及び131cは、図4に図示されるように、搬送方向D1に分割された複数の部分領域である。しかし、複数の部分領域131a,131b及び131cが、搬送方向D1と垂直をなす主走査方向D2に分割された複数の部分領域であってもよい。複数の部分領域131a,131b及び131cが主走査方向D2に分割された複数の部分領域である場合は、ヘッド温度センサ14aの主走査方向D2についての位置が計測されるヘッド温度THに与える影響を考慮して、サーマルヘッド14の全体のヘッド温度THの上昇を詳細に予測することができる。例えば、ヘッド温度センサ14aがサーマルヘッド14の中央、左端及び右端のいずれに配置されるのかが計測されるヘッド温度THに与える影響を考慮して、サーマルヘッド14の全体のヘッド温度THの上昇を詳細に予測することができる。
1.7 The plurality of partial regions 131a, 131b and 131c in the dividing direction are a plurality of partial regions divided in the transport direction D1 as shown in FIG. However, the plurality of partial regions 131a, 131b and 131c may be a plurality of partial regions divided into the main scanning direction D2 perpendicular to the transport direction D1. When the plurality of partial regions 131a, 131b and 131c are a plurality of partial regions divided in the main scanning direction D2, the influence of the position of the head temperature sensor 14a with respect to the main scanning direction D2 on the measured head temperature TH. In consideration, the increase in the overall head temperature TH of the thermal head 14 can be predicted in detail. For example, in consideration of the influence on the measured head temperature TH whether the head temperature sensor 14a is arranged at the center, the left end, or the right end of the thermal head 14, the increase in the overall head temperature TH of the thermal head 14 is increased. It can be predicted in detail.
 図6は、実施の形態1の印刷装置において印刷データを用いて印刷が行われる領域の別例を図示する図である。 FIG. 6 is a diagram illustrating another example of an area in which printing is performed using print data in the printing apparatus of the first embodiment.
 複数の部分領域は、図6(a)図6(b)及び図6(c)に図示されるように、搬送方向D1及び主走査方向D2にマトリクス状に分割された複数の部分領域であってもよい。これにより、サーマルヘッド14のヘッド温度THの上昇を詳細に予測することができ、印刷許可温度Tを適切に決定することができる。 As shown in FIGS. 6 (a), 6 (b) and 6 (c), the plurality of partial regions are a plurality of partial regions divided in a matrix in the transport direction D1 and the main scanning direction D2. You may. As a result, an increase in the head temperature TH of the thermal head 14 can be predicted in detail, and the print permission temperature T can be appropriately determined.
 図6(b)には、搬送方向D1について大きな濃度の変化を有しないが、主走査方向D2について大きな濃度の変化を有する画像が図示される。図6(c)には、搬送方向D1について大きな濃度の変化を有するが、主走査方向D2について大きな濃度の変化を有しない画像が図示される。図6(b)に図示される画像が形成される場合は、図6(c)に図示される画像が形成される場合と比較して、サーマルヘッド14のヘッド温度THの主走査方向D2の分布に偏りが生じ、サーマルヘッド14のヘッド温度THが局所的に上昇する。このため、局所的にシワ、スティッキング等が生じるおそれがある。このため、図6(b)に図示される画像が形成される場合に局所的なシワ、スティッキング等が生じることが抑制されるように、印刷エネルギー算出条件113及び印刷許可条件114が設定され、設定された印刷エネルギー算出条件113及び印刷許可条件114にしたがって参集的な印刷エネルギーYが算出され印刷許可温度Tが決定される。 FIG. 6B shows an image that does not have a large density change in the transport direction D1 but has a large density change in the main scanning direction D2. FIG. 6C shows an image having a large density change in the transport direction D1 but not a large density change in the main scanning direction D2. When the image shown in FIG. 6B is formed, the head temperature TH of the thermal head 14 is in the main scanning direction D2 as compared with the case where the image shown in FIG. 6C is formed. The distribution is biased, and the head temperature TH of the thermal head 14 rises locally. Therefore, wrinkles, sticking, etc. may occur locally. Therefore, the print energy calculation condition 113 and the print permission condition 114 are set so that local wrinkles, sticking, and the like are suppressed when the image shown in FIG. 6B is formed. The collective print energy Y is calculated according to the set print energy calculation condition 113 and the print permission condition 114, and the print permission temperature T is determined.
 1.8 印刷装置の動作
 図7は、実施の形態1の印刷装置の動作の流れを図示するフローチャートである。
1.8 Operation of the printing device FIG. 7 is a flowchart illustrating the flow of operation of the printing device according to the first embodiment.
 図7に図示されるステップS101においては、I/F21aが、印刷データ111及び印刷条件112を受信する。また、メモリ21bが、受信された印刷データ111及び印刷条件112を記憶する。 In step S101 illustrated in FIG. 7, the I / F 21a receives the print data 111 and the print condition 112. Further, the memory 21b stores the received print data 111 and the print condition 112.
 続くステップS102においては、印刷データ分割部121が、記憶された印刷データ111を読み込み、読み込んだ印刷データ111を複数の部分印刷データ111a,111b及び111cに分割する。 In the following step S102, the print data dividing unit 121 reads the stored print data 111 and divides the read print data 111 into a plurality of partial print data 111a, 111b and 111c.
 続くステップS103においては、印刷エネルギー算出部122が、記憶された印刷条件112及び印刷エネルギー算出条件113を読み込む。 In the following step S103, the print energy calculation unit 122 reads the stored print condition 112 and print energy calculation condition 113.
 続くステップS104においては、印刷エネルギー算出部122が、読み込んだ印刷条件112及び印刷エネルギー算出条件113にしたがって、最終的な印刷エネルギーY’を算出する。 In the following step S104, the print energy calculation unit 122 calculates the final print energy Y'according to the read print condition 112 and print energy calculation condition 113.
 続くステップS105においては、印刷許可温度決定部123が、記憶された印刷許可条件114を読み込む。 In the following step S105, the print permission temperature determination unit 123 reads the stored print permission condition 114.
 続くステップS106においては、印刷許可温度決定部123が、読み込んだ印刷許可条件114にしたがって印刷許可温度Tを決定する。 In the following step S106, the print permission temperature determination unit 123 determines the print permission temperature T according to the read print permission condition 114.
 続くステップS107においては、印刷開始可否判定部124が、サーマルヘッド14のヘッド温度THを確認する。 In the following step S107, the print startability determination unit 124 confirms the head temperature TH of the thermal head 14.
 続くステップS108においては、印刷開始可否判定部124が、確認したヘッド温度THと決定された印刷許可温度Tとを比較し、ヘッド温度THが印刷許可温度T以下であるか否かを判定する。ヘッド温度THが印刷許可温度T以下であると判定された場合は、ステップS109が実行される。ヘッド温度THが印刷許可温度T以下でないと判定された場合は、ステップS108が繰り返し実行される。したがって、ヘッド温度THが印刷許可温度Tより高い場合は、ヘッド温度THが印刷許可温度T以下まで低下するまで印刷の開始が保留される。 In the following step S108, the print start possibility determination unit 124 compares the confirmed head temperature TH with the determined print permission temperature T, and determines whether or not the head temperature TH is equal to or lower than the print permission temperature T. If it is determined that the head temperature TH is equal to or lower than the print permission temperature T, step S109 is executed. If it is determined that the head temperature TH is not equal to or lower than the print permission temperature T, step S108 is repeatedly executed. Therefore, when the head temperature TH is higher than the print permission temperature T, the start of printing is suspended until the head temperature TH drops to the print permission temperature T or less.
 ステップS109においては、読み込まれた印刷データ111を用いて印刷が行われる。 In step S109, printing is performed using the read print data 111.
 続くステップS110においては、全ての印刷が終了したか否かが判定される。全ての印刷が終了したと判定された場合は、印刷装置1の動作が終了する。全ての印刷が終了していないと判定された場合は、再びステップS103が実行される。 In the following step S110, it is determined whether or not all printing is completed. When it is determined that all printing has been completed, the operation of the printing device 1 ends. If it is determined that all printing has not been completed, step S103 is executed again.
 1.9 印刷装置の外部における処理
 上述した処理は、印刷装置1の内部において行われる。しかし、印刷装置1の外部において行うことができる処理が、印刷装置1の外部において行なわれてもよい。例えば、印刷装置1に印刷データ、印刷条件等を送信する外部の情報処理装置において行うことができる処理が、当該外部の情報処理装置において行われてもよい。これにより、上述した処理の全部が印刷装置1の内部において行われる場合に生じる、印刷エネルギーY’の算出に時間を要し前の印刷の終了から次の印刷の開始までの間に付与な待ち時間が発生するという問題を、解消することができる。これにより、印刷を効率よく行うことができる。
1.9 Processing outside the printing apparatus The processing described above is performed inside the printing apparatus 1. However, the processing that can be performed outside the printing device 1 may be performed outside the printing device 1. For example, processing that can be performed by an external information processing device that transmits print data, printing conditions, and the like to the printing device 1 may be performed by the external information processing device. As a result, it takes time to calculate the printing energy Y', which occurs when all of the above-mentioned processing is performed inside the printing apparatus 1, and a waiting time is given between the end of the previous printing and the start of the next printing. The problem of time generation can be solved. As a result, printing can be performed efficiently.
 1.10 変形例
 図1は、実施の形態1の変形例の印刷装置を模式的に図示する模式図でもある。図2は、実施の形態1の変形例の印刷装置に備えられる制御部を図示するブロック図でもある。図4は、実施の形態1の変形例の印刷装置において印刷データを用いて印刷が行われる領域を図示する図でもある。図6は、実施の形態1の変形例の印刷装置において印刷データを用いて印刷が行われる領域の別例を図示する図である。図7は、実施の形態1の変形例の印刷装置の動作の流れを図示するフローチャートでもある。
1.10 Modified Example FIG. 1 is also a schematic diagram schematically showing a printing apparatus of the modified example of the first embodiment. FIG. 2 is also a block diagram illustrating a control unit provided in the printing apparatus of the modified example of the first embodiment. FIG. 4 is also a diagram illustrating a region where printing is performed using print data in the printing apparatus of the modified example of the first embodiment. FIG. 6 is a diagram illustrating another example of a region in which printing is performed using print data in the printing apparatus of the modified example of the first embodiment. FIG. 7 is also a flowchart illustrating the flow of operation of the printing apparatus according to the modified example of the first embodiment.
 図8は、実施の形態1の変形例の印刷装置に備えられる、印刷の開始の可否の判定のための構成を図示する機能ブロック図である。図9は、実施の形態1の変形例の印刷装置に備えられる記憶部に記憶される印刷エネルギー算出条件の例を図示する図である。 FIG. 8 is a functional block diagram illustrating a configuration for determining whether or not printing can be started, which is provided in the printing apparatus of the modified example of the first embodiment. FIG. 9 is a diagram illustrating an example of printing energy calculation conditions stored in a storage unit provided in the printing apparatus of the modified example of the first embodiment.
 図8に図示される実施の形態1の変形例の印刷装置1Aは、実施の形態1の印刷装置1と主に下述する点で相違する。下述されない点については、実施の形態1の印刷装置1において採用される構成と同様の構成が実施の形態1の変形例の印刷装置1Aにおいても採用される。 The printing device 1A of the modified example of the first embodiment shown in FIG. 8 is different from the printing device 1 of the first embodiment mainly in the following points. Regarding points not described below, the same configuration as that adopted in the printing apparatus 1 of the first embodiment is adopted in the printing apparatus 1A of the modified example of the first embodiment.
 印刷装置1Aは、図8に図示されるように、比率算出部125をさらに備える。 The printing device 1A further includes a ratio calculation unit 125 as shown in FIG.
 記憶部101は、図8に図示されるように、閾値115をさらに記憶する。 The storage unit 101 further stores the threshold value 115 as shown in FIG.
 図9に図示される印刷エネルギー算出条件113は、複数の比率151p,151q及び151r、並びに複数の比率151p,151q及び151rにそれぞれ応じた複数の印刷エネルギー算出条件152p,152q及び152rを含む。複数の印刷エネルギー算出条件152p,152q及び152rの各々は、補正係数α2を含む。 The printing energy calculation condition 113 illustrated in FIG. 9 includes a plurality of printing energy calculation conditions 152p, 152q and 152r corresponding to a plurality of ratios 151p, 151q and 151r, and a plurality of ratios 151p, 151q and 151r, respectively. Each of the plurality of printing energy calculation conditions 152p, 152q and 152r includes a correction coefficient α2.
 比率算出部125は、印刷データ111において閾値115より高い濃度を有する画素が全画素に占める比率161を算出する。例えば、比率算出部125は、閾値115が64階調のグレーである場合は、64階調のグレーより高い濃度を有する画素の数をカウントし、カウントした数の全画素の数に対する比率を比率161にする。 The ratio calculation unit 125 calculates the ratio 161 of the pixels having a density higher than the threshold value 115 in the print data 111 to all the pixels. For example, when the threshold value 115 is 64 gradations of gray, the ratio calculation unit 125 counts the number of pixels having a density higher than that of 64 gradations of gray, and ratios the counted number to the total number of pixels. Set to 161.
 印刷エネルギー算出部122は、印刷エネルギー算出条件113から、算出された比率161に応じた印刷エネルギー算出条件を得、得た印刷エネルギー算出条件にしたがって最終的な印刷エネルギーY’を算出する。印刷エネルギー算出部122は、算出された複数の部分印刷エネルギーYa,Yb及びYc、並びに得た印刷エネルギー算出条件に含まれる補正係数α2を用いて、式(6)により表される最終的な印刷エネルギーY’を算出する。 The print energy calculation unit 122 obtains a print energy calculation condition according to the calculated ratio 161 from the print energy calculation condition 113, and calculates the final print energy Y'according to the obtained print energy calculation condition. The print energy calculation unit 122 uses the calculated partial print energies Ya, Yb and Yc, and the correction coefficient α2 included in the obtained print energy calculation conditions, and finally prints represented by the equation (6). Calculate the energy Y'.
 Y’=α2×{Ya+Yb+Yc}・・・(6) Y'= α2 × {Ya + Yb + Yc} ... (6)
 一般的に言って、大きな濃度の変化を有する印刷データ、及び大きな濃度の変化を有しない印刷データが同じ平均濃度を有する場合は、大きな濃度の変化を有する印刷データを用いて印刷が行われる場合のエネルギー効率は、大きな濃度の変化を有しない印刷データを用いて印刷が行われる場合のエネルギー効率より悪くなる。このため、大きな濃度の変化を有する印刷データを用いて印刷が行われる場合にサーマルヘッド14に供給される印刷エネルギーは、大きな濃度の変化を有しない印刷データを用いて印刷が行われる場合にサーマルヘッド14に供給される印刷エネルギーより大きくなる。また、大きな濃度の変化を有する印刷データを用いて印刷が行われる場合のサーマルヘッド14のヘッド温度THの上昇は、大きな濃度の変化を有しない印刷データを用いて印刷が行われる場合のサーマルヘッド14のヘッド温度THの上昇より大きくなる。このため、印刷エネルギー算出条件113は、印刷データ111が大きな濃度の変化を有する場合は補正係数α2が大きくなり、印刷データ111が大きな濃度の変化を有しない場合は補正係数α2が小さくなるように設定される。 Generally speaking, when the print data having a large change in density and the print data having no large change in density have the same average density, when printing is performed using the print data having a large change in density. The energy efficiency of is worse than the energy efficiency when printing is performed using print data that does not have a large change in density. Therefore, the printing energy supplied to the thermal head 14 when printing is performed using print data having a large density change is thermal when printing is performed using print data having no large density change. It is larger than the printing energy supplied to the head 14. Further, the increase in the head temperature TH of the thermal head 14 when printing is performed using print data having a large density change is the thermal head when printing is performed using print data having no large density change. It becomes larger than the rise of the head temperature TH of 14. Therefore, the print energy calculation condition 113 is such that the correction coefficient α2 becomes large when the print data 111 has a large change in density, and the correction coefficient α2 becomes small when the print data 111 does not have a large change in density. Set.
 印刷エネルギー算出条件113から画素の濃度の分布に応じた印刷エネルギー算出条件が得られてもよい。例えば、画素の濃度の分布に現れるピークの数、位置等に応じた印刷エネルギー算出条件が得られてもよい。例えば、ピークの数が1個の場合とークの数が2個の場合とで補正係数α2が異なってよい。また、ピークが高濃度寄りに存在する場合とピークが低濃度寄りに存在する場合とで補正係数α2が異なってもよい。 The print energy calculation condition according to the pixel density distribution may be obtained from the print energy calculation condition 113. For example, printing energy calculation conditions may be obtained according to the number of peaks appearing in the pixel density distribution, the position, and the like. For example, the correction coefficient α2 may differ depending on whether the number of peaks is one or the number of hooks is two. Further, the correction coefficient α2 may be different depending on whether the peak is located near the high concentration and the peak is located near the low concentration.
 比率161に応じて印刷エネルギー算出部122がしたがう印刷エネルギー算出条件を変更することにより、サーマルヘッド14のヘッド温度THの上昇を精度よく予測することができる。また、算出される最終的な印刷エネルギーY’に基づいて印刷許可温度Tを決定することにより、印刷許可温度Tを適切に決定することができ、印刷を無駄なく効率的に行うことができる。また、比率161を算出する処理は簡単な処理であるので、簡単な処理で、印刷許可温度Tを適切に決定することができ、印刷を無駄なく効率的に行うことができる。例えば、シワ、スティッキング等が発生することを抑制することができる。 By changing the printing energy calculation conditions according to the printing energy calculation unit 122 according to the ratio 161 it is possible to accurately predict the rise in the head temperature TH of the thermal head 14. Further, by determining the print permission temperature T based on the calculated final print energy Y', the print permission temperature T can be appropriately determined, and printing can be efficiently performed without waste. Further, since the process of calculating the ratio 161 is a simple process, the print permission temperature T can be appropriately determined by the simple process, and printing can be efficiently performed without waste. For example, it is possible to suppress the occurrence of wrinkles, sticking and the like.
 印刷装置1Aにおいては、印刷エネルギー算出部122が、印刷エネルギー算出条件113から、算出された比率161に応じた印刷エネルギー算出条件を得、得た印刷エネルギー算出条件にしたがって最終的な印刷エネルギーY’を算出する。しかし、印刷許可温度決定部123が、印刷許可条件114から、算出された比率161に応じた印刷許可条件を得、得た印刷許可条件にしたがって印刷許可温度Tを決定してもよい。この場合も、同様の効果が得られる。 In the printing apparatus 1A, the printing energy calculation unit 122 obtains a printing energy calculation condition corresponding to the calculated ratio 161 from the printing energy calculation condition 113, and finally print energy Y'according to the obtained printing energy calculation condition. Is calculated. However, the print permission temperature determination unit 123 may obtain the print permission condition corresponding to the calculated ratio 161 from the print permission condition 114, and determine the print permission temperature T according to the obtained print permission condition. In this case as well, the same effect can be obtained.
 2 実施の形態2
 図1は、実施の形態2の印刷装置を模式的に図示する模式図でもある。図2は、実施の形態2の印刷装置に備えられる制御部を図示するブロック図でもある。図4は、実施の形態2の印刷装置において印刷データを用いて印刷が行われる領域を図示する図でもある。図6は、実施の形態2の印刷装置において印刷データを用いて印刷が行われる領域の別例を図示する図でもある。図7は、実施の形態2の印刷装置の動作の流れを図示するフローチャートでもある。
2 Embodiment 2
FIG. 1 is also a schematic diagram schematically showing the printing apparatus of the second embodiment. FIG. 2 is also a block diagram illustrating a control unit provided in the printing apparatus of the second embodiment. FIG. 4 is also a diagram illustrating an area where printing is performed using print data in the printing apparatus of the second embodiment. FIG. 6 is also a diagram illustrating another example of a region in which printing is performed using print data in the printing apparatus of the second embodiment. FIG. 7 is also a flowchart illustrating the flow of operation of the printing apparatus according to the second embodiment.
 図10は、実施の形態2の印刷装置に備えられる、印刷の開始の可否の判定のための構成を図示する機能ブロック図である。図11は、実施の形態2の印刷装置に備えられる記憶部に記憶される印刷エネルギー算出条件の例を図示する図である。 FIG. 10 is a functional block diagram illustrating a configuration for determining whether or not printing can be started, which is provided in the printing apparatus of the second embodiment. FIG. 11 is a diagram illustrating an example of printing energy calculation conditions stored in a storage unit provided in the printing apparatus of the second embodiment.
 図10に図示される実施の形態2の印刷装置2は、実施の形態1の印刷装置1と主に下述する点で相違する。下述されない点については、実施の形態1の印刷装置1において採用される構成と同様の構成が実施の形態2の印刷装置2においても採用される。 The printing device 2 of the second embodiment shown in FIG. 10 is different from the printing device 1 of the first embodiment mainly in the following points. Regarding points not described below, the same configuration as that adopted in the printing apparatus 1 of the first embodiment is adopted in the printing apparatus 2 of the second embodiment.
 印刷装置2は、図10に図示されるように、環境温度検出部104をさらに備える。環境温度検出部104は、主に環境温度センサ20により構成される。 As shown in FIG. 10, the printing device 2 further includes an environmental temperature detection unit 104. The environmental temperature detection unit 104 is mainly composed of the environmental temperature sensor 20.
 図11に図示される印刷エネルギー算出条件113は、複数の環境温度171p、171q及び171r、及び複数の環境温度171p、171q及び171rにそれぞれ応じた複数の印刷エネルギー算出条件172p、172q及び172rを含む。複数の印刷エネルギー算出条件172p、172q及び172rの各々は、補正係数α3を含む。 The printing energy calculation condition 113 illustrated in FIG. 11 includes a plurality of environmental temperatures 171p, 171q and 171r, and a plurality of printing energy calculation conditions 172p, 172q and 172r corresponding to the plurality of environmental temperatures 171p, 171q and 171r, respectively. .. Each of the plurality of printing energy calculation conditions 172p, 172q and 172r includes a correction coefficient α3.
 環境温度検出部104は、環境温度TEを検出する。 The environmental temperature detection unit 104 detects the environmental temperature TE.
 印刷エネルギー算出部122は、印刷エネルギー算出条件113から、検出された環境温度TEに応じた印刷エネルギー算出条件を得、得た印刷エネルギー算出条件にしたがって最終的な印刷エネルギーY’を算出する。印刷エネルギー算出部122は、算出された複数の部分印刷エネルギーYa,Yb及びYcの和Y、並びに得た印刷エネルギー算出条件に含まれる補正係数α3を用いて、式(7)により表される最終的な印刷エネルギーY’を算出する。 The print energy calculation unit 122 obtains a print energy calculation condition corresponding to the detected environmental temperature TE from the print energy calculation condition 113, and calculates the final print energy Y'according to the obtained print energy calculation condition. The print energy calculation unit 122 uses the calculated sum Y of the plurality of partial print energies Ya, Yb and Yc, and the correction coefficient α3 included in the obtained print energy calculation conditions, and finally represents the final result by the equation (7). Printing energy Y'is calculated.
 Y’=α3×Y・・・(7) Y'= α3 x Y ... (7)
 環境温度TEに応じて印刷エネルギー算出部122がしたがう印刷エネルギー算出条件を変更することにより、サーマルヘッド14のヘッド温度THの上昇を精度よく予測することができる。また、算出される最終的な印刷エネルギーY’に基づいて印刷許可温度Tを決定することにより、印刷許可温度Tを適切に決定することができ、印刷を無駄なく効率的に行うことができる。例えば、シワ、スティッキング等が発生することを抑制することができる。 By changing the printing energy calculation condition according to the printing energy calculation unit 122 according to the environmental temperature TE, it is possible to accurately predict the increase in the head temperature TH of the thermal head 14. Further, by determining the print permission temperature T based on the calculated final print energy Y', the print permission temperature T can be appropriately determined, and printing can be efficiently performed without waste. For example, it is possible to suppress the occurrence of wrinkles, sticking and the like.
 印刷装置2においては、印刷エネルギー算出部122が、印刷エネルギー算出条件113から、検出された環境温度TEに応じた印刷エネルギー算出条件を得、得た印刷エネルギー算出条件にしたがって最終的な印刷エネルギーY’を算出する。しかし、印刷許可温度決定部123が、印刷許可条件114から、検出された環境温度TEに応じた印刷許可条件を得、得た印刷許可条件にしたがって印刷許可温度Tを決定してもよい。この場合も、同様の効果が得られる。 In the printing apparatus 2, the printing energy calculation unit 122 obtains a printing energy calculation condition corresponding to the detected environmental temperature TE from the printing energy calculation condition 113, and finally print energy Y according to the obtained printing energy calculation condition. 'Calculate. However, the print permission temperature determination unit 123 may obtain the print permission condition corresponding to the detected ambient temperature TE from the print permission condition 114, and determine the print permission temperature T according to the obtained print permission condition. In this case as well, the same effect can be obtained.
 印刷エネルギー算出部122が、環境温度TE及びそれ以外の因子に応じた印刷エネルギー算出条件を得、得た印刷エネルギー算出条件にしたがって最終的な印刷エネルギーY’を算出してもよい。印刷許可温度決定部123が、環境温度TE及びそれ以外の因子に応じた印刷許可条件を得、得た印刷許可条件にしたがって印刷許可温度Tを決定してもよい。環境温度TE以外の因子は、サーマルヘッド14の冷却性能に影響する因子等である。サーマルヘッド14の冷却性能に影響する因子は、印刷装置2の内部の温度、冷却ファン19の冷却性能等である。複数の因子が組み合わされてもよい。 The printing energy calculation unit 122 may obtain printing energy calculation conditions according to the environmental temperature TE and other factors, and calculate the final printing energy Y'according to the obtained printing energy calculation conditions. The print permission temperature determination unit 123 may obtain print permission conditions corresponding to the environmental temperature TE and other factors, and determine the print permission temperature T according to the obtained print permission conditions. Factors other than the environmental temperature TE are factors that affect the cooling performance of the thermal head 14. Factors that affect the cooling performance of the thermal head 14 are the temperature inside the printing apparatus 2, the cooling performance of the cooling fan 19, and the like. Multiple factors may be combined.
 3 実施の形態3
 図1は、実施の形態3の印刷装置を模式的に図示する模式図でもある。図2は、実施の形態3の印刷装置に備えられる制御部を図示するブロック図でもある。図4は、実施の形態3の印刷装置において印刷データを用いて印刷が行われる領域を図示する図でもある。図6は、実施の形態3の印刷装置において印刷データを用いて印刷が行われる領域の別例を図示する図でもある。図7は、実施の形態3の印刷装置の動作の流れを図示するフローチャートでもある。
3 Embodiment 3
FIG. 1 is also a schematic diagram schematically showing the printing apparatus of the third embodiment. FIG. 2 is also a block diagram illustrating a control unit provided in the printing apparatus of the third embodiment. FIG. 4 is also a diagram illustrating an area where printing is performed using print data in the printing apparatus of the third embodiment. FIG. 6 is also a diagram illustrating another example of a region in which printing is performed using print data in the printing apparatus of the third embodiment. FIG. 7 is also a flowchart illustrating the flow of operation of the printing apparatus according to the third embodiment.
 図12は、実施の形態3の印刷装置に備えられる、印刷の開始の可否の判定のための構成を図示する機能ブロック図である。 FIG. 12 is a functional block diagram illustrating a configuration for determining whether or not printing can be started, which is provided in the printing apparatus of the third embodiment.
 図12に図示される実施の形態3の印刷装置3は、実施の形態1の印刷装置1と主に下述する点で相違する。下述されない点については、実施の形態1の印刷装置1において採用される構成と同様の構成が実施の形態3の印刷装置3においても採用される。 The printing device 3 of the third embodiment illustrated in FIG. 12 differs from the printing device 1 of the first embodiment mainly in the following points. Regarding points not described below, the same configuration as that adopted in the printing apparatus 1 of the first embodiment is adopted in the printing apparatus 3 of the third embodiment.
 印刷装置3は、図12に図示されるように、環境温度検出部104をさらに備える。環境温度検出部104は、主に環境温度センサ20により構成される。 As shown in FIG. 12, the printing device 3 further includes an environmental temperature detection unit 104. The environmental temperature detection unit 104 is mainly composed of the environmental temperature sensor 20.
 記憶部101は、図12に図示されるように、温度の変化の履歴116を記憶する。温度の変化の履歴116は、印刷が行われている間に検出されたヘッド温度THの変化の履歴を含む。 As shown in FIG. 12, the storage unit 101 stores the history 116 of the temperature change. The temperature change history 116 includes a history of changes in head temperature TH detected during printing.
 環境温度検出部104は、環境温度TEを検出する。 The environmental temperature detection unit 104 detects the environmental temperature TE.
 印刷エネルギー算出部122は、印刷エネルギー算出条件113から、記憶されているヘッド温度THの変化の履歴に応じた印刷エネルギー算出条件を得、得た印刷エネルギー算出条件にしたがって最終的な印刷エネルギーY’を算出する。 The print energy calculation unit 122 obtains a print energy calculation condition according to the stored history of changes in the head temperature TH from the print energy calculation condition 113, and finally print energy Y'according to the obtained print energy calculation condition. Is calculated.
 図13は、実施の形態3の印刷装置に備えられるサーマルヘッドのヘッド温度THの、1画面のYの印刷が行われる間の時間変化の例を図示する図である。 FIG. 13 is a diagram illustrating an example of a time change of the head temperature TH of the thermal head provided in the printing apparatus of the third embodiment during printing of Y on one screen.
 図13に図示される複数の期間181a,181b及び181cは、それぞれ、複数の部分領域131a,131b及び131cに印刷が行われる期間である。 The plurality of periods 181a, 181b and 181c shown in FIG. 13 are periods during which printing is performed on the plurality of partial regions 131a, 131b and 131c, respectively.
 図13に図示されるヘッド温度THの時間変化191dは、複数の部分領域131a,131b及び131cの平均濃度がいずれも中濃度でありほぼ均一である場合のヘッド温度THの時間変化である。中程度の平均濃度は、例えば、50%グレー程度である。図13に図示されるヘッド温度THの時間変化191eは、複数の部分領域131a,131b及び131cの平均濃度がそれぞれ低濃度、低濃度及び高濃度である場合のヘッド温度THの時間変化である。図13に図示されるヘッド温度THの時間変化191fは、複数の部分領域131a,131b及び131cの平均濃度がそれぞれ高濃度、低濃度及び高濃度である場合のヘッド温度THの時間変化である。サーマルヘッド14のヘッド温度THの時間変化は、サーマルヘッド14の加熱及び冷却のバランスにより、図13に図示されるように複雑に変化する。 The time change 191d of the head temperature TH shown in FIG. 13 is a time change of the head temperature TH when the average concentrations of the plurality of partial regions 131a, 131b and 131c are all medium concentrations and are substantially uniform. The medium average density is, for example, about 50% gray. The time change 191e of the head temperature TH illustrated in FIG. 13 is a time change of the head temperature TH when the average concentrations of the plurality of partial regions 131a, 131b and 131c are low concentration, low concentration and high concentration, respectively. The time change 191f of the head temperature TH illustrated in FIG. 13 is a time change of the head temperature TH when the average concentrations of the plurality of partial regions 131a, 131b and 131c are high concentration, low concentration and high concentration, respectively. The time change of the head temperature TH of the thermal head 14 changes in a complicated manner as shown in FIG. 13 depending on the balance between heating and cooling of the thermal head 14.
 図14は、実施の形態3の印刷装置に備えられるサーマルヘッドのヘッド温度THの、連続印刷が行われる間の時間変化の例を図示する図である。 FIG. 14 is a diagram illustrating an example of a time change in the head temperature TH of the thermal head provided in the printing apparatus of the third embodiment during continuous printing.
 図14に図示される複数の期間200i及び200jは、それぞれ、1枚目及び2枚目の印刷が行われる期間である。図14に図示される複数の期間201y,201m,201c及び201opは、それぞれ、1画面のY、M、C及びOPの印刷が行われる期間である。 The plurality of periods 200i and 200j shown in FIG. 14 are periods during which the first and second sheets are printed, respectively. The plurality of periods 201y, 201m, 201c and 201op shown in FIG. 14 are periods during which Y, M, C and OP on one screen are printed, respectively.
 図14に図示されるヘッド温度THの時間変化は、複数の部分領域131a,131b及び131cの平均濃度がいずれも中濃度でありほぼ均一である場合のヘッド温度THの時間変化である。 The time change of the head temperature TH shown in FIG. 14 is the time change of the head temperature TH when the average concentrations of the plurality of partial regions 131a, 131b and 131c are all medium concentrations and are substantially uniform.
 図14に図示されるように、1枚目の印刷が行われる期間200iと2枚目の印刷が行われる期間200jとの間、Yの印刷が行われる期間201yとMの印刷が行われる期間201mとの間、Mの印刷が行われる期間201mとCの印刷が行われる期間201cとの間、及びCの印刷が行われる期間201cとOPの印刷が行われる期間201opとの間においては、サーマルヘッド14のヘッド温度THが低下する。サーマルヘッド14のヘッド温度THの低下量は、サーマルヘッド14の冷却性能の影響を強く受ける。 As shown in FIG. 14, between the period 200i in which the first sheet is printed and the period 200j in which the second sheet is printed, the period 201y in which Y is printed and the period in which M is printed. Between 201m, between the period 201m where M is printed and 201c where C is printed, and between the period 201c where C is printed and the period 201op where OP is printed, The head temperature TH of the thermal head 14 decreases. The amount of decrease in the head temperature TH of the thermal head 14 is strongly influenced by the cooling performance of the thermal head 14.
 印刷エネルギー算出条件113は、図13及び図14に図示されるようにサーマルヘッド14のヘッド温度THの時間変化が変化した場合においてもサーマルヘッド14のヘッド温度THが規定温度以下となるように設定される。例えば、サーマルヘッド14のヘッド温度THの上昇の実績値が予測値よりも平均で5%大きい場合は、算出される最終的な印刷エネルギーYが5%大きくなるように印刷エネルギー算出条件113が設定される。 The printing energy calculation condition 113 is set so that the head temperature TH of the thermal head 14 becomes equal to or lower than the specified temperature even when the time change of the head temperature TH of the thermal head 14 changes as shown in FIGS. 13 and 14. Will be done. For example, when the actual value of the increase in the head temperature TH of the thermal head 14 is 5% larger than the predicted value on average, the printing energy calculation condition 113 is set so that the calculated final printing energy Y is 5% larger. Will be done.
 サーマルヘッド14のヘッド温度THの低下量は、サーマルヘッド14の冷却性能の影響だけでなく、環境温度TEの影響を強く受ける場合がある。このため、温度の変化の履歴116が環境温度TEの変化の履歴を含んでもよく、印刷エネルギー算出部122が印刷エネルギー算出条件113から記憶されている環境温度TEの変化の履歴に応じた印刷エネルギー算出条件を得、得た印刷エネルギー算出条件にしたがって最終的な印刷エネルギーY’を算出してもよい。これにより、印刷装置3の設置状態の変化又は環境温度TEの変化に対しても柔軟に対応することができる。 The amount of decrease in the head temperature TH of the thermal head 14 may be strongly affected not only by the cooling performance of the thermal head 14 but also by the environmental temperature TE. Therefore, the history of temperature change 116 may include the history of change in environmental temperature TE, and the print energy calculation unit 122 stores the print energy according to the history of change in environmental temperature TE stored from the print energy calculation condition 113. You may obtain the calculation condition and calculate the final print energy Y'according to the obtained print energy calculation condition. As a result, it is possible to flexibly respond to changes in the installation state of the printing apparatus 3 or changes in the environmental temperature TE.
 印刷エネルギー算出部122が印刷エネルギー算出条件を得る際に参照される温度の変化の履歴116が、直近の1ケ月の印刷が行われた期間、直近の100枚の印刷が行われた期間等における温度の変化の履歴に限定されてもよい。これにより、印刷装置3の設置状態の変化又は環境温度TEの変化にさらに適した印刷許可温度Tを決定することができる。 The history 116 of the temperature change referred to when the printing energy calculation unit 122 obtains the printing energy calculation condition is the period during which the latest one month was printed, the period during which the latest 100 sheets were printed, and the like. It may be limited to the history of temperature changes. Thereby, it is possible to determine the print permission temperature T that is more suitable for the change in the installation state of the printing apparatus 3 or the change in the environmental temperature TE.
 サーマルヘッド14のヘッド温度THが上昇した場合の印刷エネルギーY’の上昇率は、サーマルヘッド14のヘッド温度THの上昇率の100%であってもよいし、印刷エネルギーY’が属する区分、サーマルヘッド14のヘッド温度THの上昇率の大きさに応じて設定されてもよい。 The rate of increase in the printing energy Y'when the head temperature TH of the thermal head 14 rises may be 100% of the rate of increase in the head temperature TH of the thermal head 14, or the category to which the printing energy Y'belongs, thermal. It may be set according to the magnitude of the rate of increase in the head temperature TH of the head 14.
 ヘッド温度THの変化の履歴に応じて印刷エネルギー算出部122がしたがう印刷エネルギー算出条件を変更することにより、サーマルヘッド14のヘッド温度THの上昇を精度よく予測することができる。また、算出される最終的な印刷エネルギーY’に基づいて印刷許可温度Tを決定することにより、印刷許可温度Tを適切に決定することができ、印刷を無駄なく効率的に行うことができる。例えば、シワ、スティッキング等が発生することを抑制することができる。また、環境温度TEの変化の履歴に応じて印刷エネルギー算出部122がしたがう印刷エネルギー算出条件を変更することにより、印刷装置3の設置状態の変化又は環境温度TEの変化にさらに適した印刷許可温度Tを決定することができる。 By changing the printing energy calculation conditions according to the printing energy calculation unit 122 according to the history of changes in the head temperature TH, it is possible to accurately predict the increase in the head temperature TH of the thermal head 14. Further, by determining the print permission temperature T based on the calculated final print energy Y', the print permission temperature T can be appropriately determined, and printing can be efficiently performed without waste. For example, it is possible to suppress the occurrence of wrinkles, sticking and the like. Further, by changing the printing energy calculation condition according to the printing energy calculation unit 122 according to the history of the change of the environmental temperature TE, the print permission temperature more suitable for the change of the installation state of the printing apparatus 3 or the change of the environmental temperature TE. T can be determined.
 印刷装置3においては、印刷エネルギー算出部122が、印刷エネルギー算出条件113から、記憶されている温度の変化の履歴116に応じた印刷エネルギー算出条件を得、得た印刷エネルギー算出条件にしたがって最終的な印刷エネルギーY’を算出する。しかし、印刷許可温度決定部123が、印刷許可条件114から、記憶されている温度の変化の履歴116に応じた印刷許可条件を得、得た印刷許可条件にしたがって印刷許可温度Tを決定してもよい。この場合も、同様の効果が得られる。 In the printing apparatus 3, the printing energy calculation unit 122 obtains the printing energy calculation condition according to the stored temperature change history 116 from the printing energy calculation condition 113, and finally according to the obtained printing energy calculation condition. The printing energy Y'is calculated. However, the print permission temperature determination unit 123 obtains the print permission condition according to the stored temperature change history 116 from the print permission condition 114, and determines the print permission temperature T according to the obtained print permission condition. May be good. In this case as well, the same effect can be obtained.
 なお、本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。 In the present invention, each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted within the scope of the invention.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is exemplary in all aspects and the invention is not limited thereto. It is understood that a myriad of variations not illustrated can be envisioned without departing from the scope of the invention.
 1,1A,2,3 印刷装置、11a 記録紙、12a インクシート、13 記録紙搬送部、14 サーマルヘッド、14a ヘッド温度センサ、20 環境温度センサ、21 制御部、101 記憶部、102 処理部、103 ヘッド温度検出部、104 環境温度検出部、111 印刷データ、111a,111b,111c 部分印刷データ、112 印刷条件、113 印刷エネルギー算出条件、114 印刷許可条件、115 閾値、116 温度の変化の履歴、121 印刷データ分割部、122 印刷エネルギー算出部、123 印刷許可温度決定部、124 印刷開始可否判定部、125 比率算出部、131a,131b,131c 部分領域、D1 搬送方向、D2 主走査方向。 1,1A, 2,3 printing device, 11a recording paper, 12a ink sheet, 13 recording paper transport unit, 14 thermal head, 14a head temperature sensor, 20 environmental temperature sensor, 21 control unit, 101 storage unit, 102 processing unit, 103 head temperature detection unit, 104 environmental temperature detection unit, 111 print data, 111a, 111b, 111c partial print data, 112 print conditions, 113 print energy calculation conditions, 114 print permission conditions, 115 thresholds, 116 temperature change history, 121 print data division unit, 122 print energy calculation unit, 123 print permission temperature determination unit, 124 print startability determination unit, 125 ratio calculation unit, 131a, 131b, 131c partial area, D1 transport direction, D2 main scanning direction.

Claims (14)

  1.  サーマルヘッド(14)と、
     前記サーマルヘッド(14)のヘッド温度を検出するヘッド温度検出部(103)と、
     印刷データ(111)を複数の部分印刷データ(111a,111b,111c)に分割する印刷データ分割部(121)と、
     印刷エネルギー算出条件(113)に従って、前記複数の部分印刷データ(111a,111b,111c)を用いて印刷が行われる場合に前記サーマルヘッド(14)に供給されるエネルギーをそれぞれ示す複数の部分印刷エネルギーを算出し、前記複数の部分印刷エネルギーから印刷許可温度の決定の基礎となる印刷エネルギーを算出する印刷エネルギー算出部(122)と、
     印刷許可条件(114)に従って、前記印刷エネルギーに基づいて前記印刷許可温度を決定する印刷許可温度決定部(123)と、
     前記ヘッド温度及び前記印刷許可温度に基づいて前記印刷データ(111)を用いる印刷の開始の可否を判定する印刷開始可否判定部(124)と、
    を備える昇華型熱転写方式の印刷装置(1,1A,2,3)。
    With the thermal head (14)
    A head temperature detection unit (103) that detects the head temperature of the thermal head (14),
    A print data dividing unit (121) that divides the print data (111) into a plurality of partial print data (111a, 111b, 111c), and
    A plurality of partial printing energies indicating the energy supplied to the thermal head (14) when printing is performed using the plurality of partial printing data (111a, 111b, 111c) according to the printing energy calculation condition (113). The printing energy calculation unit (122), which calculates the printing energy that is the basis for determining the print permission temperature from the plurality of partial printing energies, and
    A print permission temperature determination unit (123) that determines the print permission temperature based on the print energy according to the print permission condition (114).
    A print start possibility determination unit (124) for determining whether or not printing using the print data (111) can be started based on the head temperature and the print permission temperature, and
    Sublimation type thermal transfer type printing apparatus (1,1A, 2,3).
  2.  前記印刷エネルギー算出部(122)は、前記印刷エネルギー算出条件(113)から前記複数の部分印刷エネルギーの分布に応じた印刷エネルギー算出条件を得、前記複数の部分印刷エネルギーの分布に応じた印刷エネルギー算出条件にしたがって前記印刷エネルギーを算出する
    請求項1の昇華型熱転写方式の印刷装置(1)。
    The printing energy calculation unit (122) obtains printing energy calculation conditions according to the distribution of the plurality of partial printing energies from the printing energy calculation condition (113), and print energy according to the distribution of the plurality of partial printing energies. The sublimation type thermal transfer type printing apparatus (1) according to claim 1, which calculates the printing energy according to the calculation conditions.
  3.  前記印刷許可温度決定部(123)は、前記印刷許可条件(114)から前記複数の部分印刷エネルギーの分布に応じた印刷許可条件を得、前記複数の部分印刷エネルギーの分布に応じた印刷許可条件にしたがって前記印刷許可温度を決定する
    請求項1の昇華型熱転写方式の印刷装置(1)。
    The print permission temperature determination unit (123) obtains print permission conditions according to the distribution of the plurality of partial print energies from the print permission condition (114), and print permission conditions according to the distribution of the plurality of partial print energies. The sublimation type thermal transfer type printing apparatus (1) according to claim 1, which determines the print permission temperature according to the above.
  4.  前記印刷データ(111)において閾値の濃度より高い濃度を有する画素が全画素中に占める比率(161)を算出する比率算出部(125)をさらに備え、
     前記印刷エネルギー算出部(122)は、前記印刷エネルギー算出条件(113)から前記比率(161)に応じた印刷エネルギー算出条件を得、前記比率(161)に応じた印刷エネルギー算出条件にしたがって前記印刷エネルギーを算出する
    請求項1から3までのいずれかの昇華型熱転写方式の印刷装置(1A)。
    A ratio calculation unit (125) for calculating the ratio (161) of pixels having a density higher than the threshold density in the print data (111) to all the pixels is further provided.
    The printing energy calculation unit (122) obtains a printing energy calculation condition according to the ratio (161) from the printing energy calculation condition (113), and prints according to the printing energy calculation condition according to the ratio (161). The sublimation type thermal transfer type printing apparatus (1A) according to any one of claims 1 to 3 for calculating energy.
  5.  前記印刷データ(111)において閾値の濃度より高い濃度を有する画素が全画素中に占める比率(161)を算出する比率算出部(125)をさらに備え、
     前記印刷許可温度決定部(123)は、前記印刷許可条件(114)から前記比率(161)に応じた印刷許可条件を得、前記比率(161)に応じた印刷許可条件にしたがって前記印刷許可温度を決定する
    請求項1から3までのいずれかの昇華型熱転写方式の印刷装置(1A)。
    Further, a ratio calculation unit (125) for calculating the ratio (161) of pixels having a density higher than the threshold density in the print data (111) to all the pixels is further provided.
    The print permission temperature determination unit (123) obtains a print permission condition according to the ratio (161) from the print permission condition (114), and obtains the print permission temperature according to the print permission condition according to the ratio (161). The sublimation type thermal transfer printing apparatus (1A) according to any one of claims 1 to 3.
  6.  環境温度を検出する環境温度検出部(104)をさらに備え、
     前記印刷エネルギー算出部(122)は、前記印刷エネルギー算出条件(113)から前記環境温度に応じた印刷エネルギー算出条件を得、前記環境温度に応じた印刷エネルギー算出条件にしたがって前記印刷エネルギーを算出する
    請求項1から5までのいずれかの昇華型熱転写方式の印刷装置(2)。
    Further equipped with an environmental temperature detection unit (104) for detecting the environmental temperature,
    The print energy calculation unit (122) obtains the print energy calculation condition according to the environmental temperature from the print energy calculation condition (113), and calculates the print energy according to the print energy calculation condition according to the environmental temperature. The sublimation type thermal transfer printing apparatus (2) according to any one of claims 1 to 5.
  7.  環境温度を検出する環境温度検出部(104)をさらに備え、
     前記印刷許可温度決定部(123)は、前記印刷許可条件(114)から前記環境温度に応じた印刷許可条件を得、前記環境温度に応じた印刷許可条件にしたがって前記印刷許可温度を算出する
    請求項1から5までのいずれかの昇華型熱転写方式の印刷装置(2)。
    Further equipped with an environmental temperature detection unit (104) for detecting the environmental temperature,
    The print permission temperature determination unit (123) obtains a print permission condition according to the environment temperature from the print permission condition (114), and calculates the print permission temperature according to the print permission condition according to the environment temperature. The sublimation type thermal transfer printing apparatus (2) according to any one of Items 1 to 5.
  8.  温度の変化の履歴(116)を記憶する記憶部をさらに備え、
     前記印刷エネルギー算出部(122)は、前記印刷エネルギー算出条件(113)から前記温度の変化の履歴(116)に応じた印刷エネルギー算出条件を得、前記温度の変化の履歴(116)に応じた印刷エネルギー算出条件にしたがって前記印刷エネルギーを算出する
    請求項1から7までのいずれかの昇華型熱転写方式の印刷装置(3)。
    Further equipped with a storage unit for storing the history of temperature changes (116),
    The print energy calculation unit (122) obtained the print energy calculation condition according to the temperature change history (116) from the print energy calculation condition (113), and corresponded to the temperature change history (116). The sublimation type thermal transfer type printing apparatus (3) according to any one of claims 1 to 7, wherein the printing energy is calculated according to the printing energy calculation conditions.
  9.  温度の変化の履歴(116)を記憶する記憶部をさらに備え、
     前記印刷許可温度決定部(123)は、前記印刷許可条件(114)から前記温度の変化の履歴(116)に応じた印刷許可条件を得、前記温度の変化の履歴(116)に応じた印刷許可条件にしたがって前記印刷許可温度を決定する
    請求項1から7までのいずれかの昇華型熱転写方式の印刷装置(3)。
    Further equipped with a storage unit for storing the history of temperature changes (116),
    The print permission temperature determination unit (123) obtains print permission conditions according to the temperature change history (116) from the print permission conditions (114), and prints according to the temperature change history (116). The sublimation type thermal transfer printing apparatus (3) according to any one of claims 1 to 7, which determines the print permission temperature according to the permission conditions.
  10.  前記温度の変化の履歴(116)は、前記ヘッド温度の変化の履歴を含む
    請求項8又は9の昇華型熱転写方式の印刷装置(3)。
    The sublimation type thermal transfer type printing apparatus (3) according to claim 8 or 9, wherein the history of temperature change (116) includes a history of change in head temperature.
  11.  環境温度を検出する環境温度検出部(104)をさらに備え、
     前記温度の変化の履歴(116)は、前記環境温度の変化の履歴を含む
    請求項8から10までのいずれかの昇華型熱転写方式の印刷装置(3)。
    Further equipped with an environmental temperature detection unit (104) for detecting the environmental temperature,
    The sublimation type thermal transfer type printing apparatus (3) according to any one of claims 8 to 10, wherein the temperature change history (116) includes a history of changes in the environmental temperature.
  12.  印刷が行われる記録紙(11a)を搬送方向(D1)に搬送する記録紙搬送部(13)をさらに備え、
     前記複数の部分印刷データ(111a,111b,111c)は、複数の部分領域(131a,131b,131c)の印刷にそれぞれ用いられ、
     前記複数の部分領域(131a,131b,131c)は、前記搬送方向(D1)に分割された複数の部分領域である
    請求項1から11までのいずれかの昇華型熱転写方式の印刷装置(1,1A,2,3)。
    A recording paper transport unit (13) for transporting the recording paper (11a) to be printed in the transport direction (D1) is further provided.
    The plurality of partial print data (111a, 111b, 111c) are used for printing the plurality of partial regions (131a, 131b, 131c), respectively.
    The plurality of partial regions (131a, 131b, 131c) are the plurality of partial regions divided in the transport direction (D1), which is any sublimation type thermal transfer printing apparatus (1, 1A, 2, 3).
  13.  印刷が行われる記録紙(11a)を搬送方向(D1)に搬送する記録紙搬送部(13)をさらに備え、
     前記サーマルヘッド(14)は、前記搬送方向(D1)と垂直をなす主走査方向(D2)に配列される複数の発熱抵抗体を備え、
     前記複数の部分印刷データ(111a,111b,111c)は、複数の部分領域(131a,131b,131c)の印刷にそれぞれ用いられ、
     前記複数の部分領域(131a,131b,131c)は、前記搬送方向(D1)及び前記主走査方向(D2)にマトリクス状に分割された複数の部分領域である
    請求項1から11までの昇華型熱転写方式の印刷装置(1,1A,2,3)。
    A recording paper transport unit (13) for transporting the recording paper (11a) to be printed in the transport direction (D1) is further provided.
    The thermal head (14) includes a plurality of heat generating resistors arranged in a main scanning direction (D2) perpendicular to the transport direction (D1).
    The plurality of partial print data (111a, 111b, 111c) are used for printing the plurality of partial regions (131a, 131b, 131c), respectively.
    The sublimation type according to claims 1 to 11, wherein the plurality of partial regions (131a, 131b, 131c) are a plurality of partial regions divided in a matrix in the transport direction (D1) and the main scanning direction (D2). Thermal transfer type printing device (1,1A, 2,3).
  14.  a) サーマルヘッド(14)のヘッド温度を検出する工程と、
     b) 印刷データ(111)を、複数の部分領域(131a,131b,131c)の印刷にそれぞれ用いられる複数の部分印刷データ(111a,111b,111c)に分割する工程と、
     c) 印刷エネルギー算出条件(113)に従って、前記複数の部分印刷データ(111a,111b,111c)が印刷に用いられる場合に前記サーマルヘッド(14)に供給されるエネルギーをそれぞれ示す複数の部分印刷エネルギーを算出し、前記複数の部分印刷エネルギーから印刷許可温度の決定の基礎となる印刷エネルギーを算出する工程と、
     d) 印刷許可条件(114)に従って、前記印刷エネルギーに基づいて前記印刷許可温度を決定する工程と、
     e) 前記ヘッド温度及び前記印刷許可温度に基づいて前記印刷データ(111)を用いる印刷の開始の可否を判定する工程と、
    を備える昇華型熱転写方式の印刷装置(1,1A,2,3)の制御方法。
    a) The process of detecting the head temperature of the thermal head (14) and
    b) A step of dividing the print data (111) into a plurality of partial print data (111a, 111b, 111c) used for printing a plurality of partial regions (131a, 131b, 131c), respectively.
    c) A plurality of partial printing energies indicating the energy supplied to the thermal head (14) when the plurality of partial printing data (111a, 111b, 111c) are used for printing according to the printing energy calculation condition (113). And the process of calculating the printing energy that is the basis for determining the print permission temperature from the plurality of partial printing energies.
    d) A step of determining the print permission temperature based on the print energy according to the print permission condition (114), and
    e) A step of determining whether or not printing using the print data (111) can be started based on the head temperature and the print permission temperature, and
    A method for controlling a sublimation type thermal transfer printing apparatus (1,1A, 2,3).
PCT/JP2019/020851 2019-05-27 2019-05-27 Sublimation thermal transfer printing device and method for controlling sublimation thermal transfer printing device WO2020240648A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/020851 WO2020240648A1 (en) 2019-05-27 2019-05-27 Sublimation thermal transfer printing device and method for controlling sublimation thermal transfer printing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/020851 WO2020240648A1 (en) 2019-05-27 2019-05-27 Sublimation thermal transfer printing device and method for controlling sublimation thermal transfer printing device

Publications (1)

Publication Number Publication Date
WO2020240648A1 true WO2020240648A1 (en) 2020-12-03

Family

ID=73553107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020851 WO2020240648A1 (en) 2019-05-27 2019-05-27 Sublimation thermal transfer printing device and method for controlling sublimation thermal transfer printing device

Country Status (1)

Country Link
WO (1) WO2020240648A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317361A (en) * 1987-06-22 1988-12-26 Minolta Camera Co Ltd Thermal transfer recording device
JPH02121853A (en) * 1988-10-31 1990-05-09 Toshiba Corp Thermal head control circuit
US5132703A (en) * 1991-03-08 1992-07-21 Yokogawa Electric Corporation Thermal history control in a recorder using a line thermal head
JPH04261873A (en) * 1991-02-15 1992-09-17 Canon Inc Recording device
JPH04319450A (en) * 1991-04-18 1992-11-10 Canon Inc Recording method and device
JPH10217529A (en) * 1997-02-10 1998-08-18 Nikon Corp Image-recording apparatus
JP2012045827A (en) * 2010-08-27 2012-03-08 Riso Kagaku Corp Thermal head control apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317361A (en) * 1987-06-22 1988-12-26 Minolta Camera Co Ltd Thermal transfer recording device
JPH02121853A (en) * 1988-10-31 1990-05-09 Toshiba Corp Thermal head control circuit
JPH04261873A (en) * 1991-02-15 1992-09-17 Canon Inc Recording device
US5132703A (en) * 1991-03-08 1992-07-21 Yokogawa Electric Corporation Thermal history control in a recorder using a line thermal head
JPH04319450A (en) * 1991-04-18 1992-11-10 Canon Inc Recording method and device
JPH10217529A (en) * 1997-02-10 1998-08-18 Nikon Corp Image-recording apparatus
JP2012045827A (en) * 2010-08-27 2012-03-08 Riso Kagaku Corp Thermal head control apparatus

Similar Documents

Publication Publication Date Title
US8780156B2 (en) Print control device
EP1707383B1 (en) Thermal head printer and printing method in thermal head printer
US8164607B2 (en) Printing apparatus and method
TWI478820B (en) Thermal transfer printer
WO2020240648A1 (en) Sublimation thermal transfer printing device and method for controlling sublimation thermal transfer printing device
JP2004155060A (en) Thermal printer
US10131157B2 (en) Image forming apparatus, recording medium and image forming system
JP5773689B2 (en) Printing device
JP4062294B2 (en) Printing apparatus and printing method
WO2021166106A1 (en) Printing device and printing control method
JP4997828B2 (en) Printer, heat storage correction control method, and print control method
JP2005153416A (en) Method and device for correcting printing of stripe by thermal head, thermal head, and thermal printer
JP4100384B2 (en) Printing apparatus and printing method
JP2010269459A (en) Method for controlling rewinding amount of ink ribbon of sublimation type printer apparatus
JP2006082425A (en) Color thermal printer and printer
JP2005271361A (en) Printing method
JPH10297009A (en) Thermal transfer recorder
JP2006240172A (en) Thermal printer, density unevenness correcting method, and density unevenness correcting program
KR20190139982A (en) Thermal transfer printing device and thermal transfer printing method
JP2020199665A (en) Thermal-transfer printer
JPH06320776A (en) Thermal head driving device
JP2004082334A (en) Printing method
JP2015112771A (en) Thermal transfer printer
JP2004009327A (en) Thermal printer
JPH10129028A (en) Serial thermal head type recorder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP