WO2020240607A1 - Vehicle mounted charging device - Google Patents

Vehicle mounted charging device Download PDF

Info

Publication number
WO2020240607A1
WO2020240607A1 PCT/JP2019/020570 JP2019020570W WO2020240607A1 WO 2020240607 A1 WO2020240607 A1 WO 2020240607A1 JP 2019020570 W JP2019020570 W JP 2019020570W WO 2020240607 A1 WO2020240607 A1 WO 2020240607A1
Authority
WO
WIPO (PCT)
Prior art keywords
relay
temperature
vehicle
contact
wiring layer
Prior art date
Application number
PCT/JP2019/020570
Other languages
French (fr)
Japanese (ja)
Inventor
雄一郎 大林
喬士 平塚
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2019/020570 priority Critical patent/WO2020240607A1/en
Priority to JP2021522567A priority patent/JP6958764B2/en
Publication of WO2020240607A1 publication Critical patent/WO2020240607A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present disclosure relates to an in-vehicle charger for charging a traveling battery that supplies electric power to an electric motor for an electric vehicle.
  • In-vehicle chargers for charging running batteries that supply power to electric motors for electric vehicles such as EVs (electric vehicles) and PHEVs (plug-in hybrid electric vehicles) are AC for home use as an external power source. It is equipped with an AC / DC converter that converts the AC voltage from the AC power supply into a DC voltage so that the traveling battery can be charged using the power supply. This makes it possible to charge the traveling battery that is charged by the DC voltage. Further, in the power supply device of an electric vehicle, a capacitor for suppressing the pulsation of the DC voltage output from the AC / DC converter is connected between the output end of the AC / DC converter and the traveling battery.
  • an inrush current is generated when an AC power supply is connected to the in-vehicle charger.
  • the capacitor is first charged via a resistor. After that, when the charging of the capacitor is completed, the energization path is switched and the charging of the traveling battery is started without going through the resistor. The switching of the energization path for charging the traveling battery is performed by switching the relay provided in the in-vehicle charger from the off state to the on state.
  • the contacts of the relay are warmed by the electric resistance.
  • the ambient temperature around the contacts covered by the case also rises.
  • the connection pattern connected to the contact is colder than the contact, so that the temperature of the contact is higher than the temperature of the atmosphere around the contact due to heat conduction. It goes down fast.
  • the temperature of the contact becomes lower than the ambient temperature around the contact, and the contact may condense. In such a situation, if the vehicle is stopped in an environment below the freezing point, the contacts may freeze and the traveling battery may not be charged.
  • Patent Document 1 in order to prevent freezing of the relay contacts, another on-state switching element is placed in a case covering the contacts. The heat is used to prevent the contacts from freezing.
  • An object of the present disclosure is to provide an in-vehicle charger capable of suppressing dew condensation on relay contacts and freezing of relay contacts due to this.
  • the in-vehicle charger includes an AC / DC converter that converts an AC voltage from an AC power supply into a DC voltage, a capacitor provided between the output end of the AC / DC converter and a traveling battery, and a capacitor.
  • a relay having a contact for switching the energization path to the circuit, the contact being covered with a case, a multilayer substrate having a connection pattern in which the relay is provided on one main surface and connected to the contacts, and a main surface of the multilayer substrate.
  • a heating resistor provided in a second wiring layer that overlaps the connection pattern when viewed from the orthogonal orthogonal directions and is different from the first wiring layer in which the connection pattern is located, and a traveling battery. It is provided with a control circuit that energizes the temperature rising resistor within a predetermined time after the energization is completed and the relay is switched from the on state to the off state.
  • FIG. It is a figure which shows the circuit structure of the vehicle-mounted charger which concerns on Embodiment 1.
  • FIG. It is a figure which shows the positional relationship of the component concerning the precharge circuit provided in the vehicle-mounted charger which concerns on Embodiment 1, and shows the cross section of the multilayer board included in the precharge circuit.
  • FIG. It is a figure which shows the relationship between the relay contact temperature of the vehicle-mounted charger which has no resistance for raising temperature, the temperature of the atmosphere around the relay contact, and time.
  • FIG. 1 is a diagram showing a circuit configuration of the vehicle-mounted charger 10 according to the first embodiment.
  • FIG. 2 is a diagram showing the positional relationship of parts related to the precharge circuit 22 included in the vehicle-mounted charger 10 according to the first embodiment, and showing a cross section of the multilayer board 36 included in the precharge circuit 22.
  • FIG. 3 is a view of the multilayer substrate 36 included in the vehicle-mounted charger 10 according to the first embodiment as viewed from a direction orthogonal to the main surface thereof. In FIG. 3, the parts built in the multilayer board 36 and the parts hidden by the multilayer board 36 are shown by broken lines.
  • an AC power source 12 as an external power source is connected to the input side of the vehicle-mounted charger 10.
  • a traveling battery 14 as a load is connected to the output side of the vehicle-mounted charger 10. The traveling battery 14 supplies electric power to an electric motor for driving a vehicle.
  • the vehicle-mounted charger 10 includes an AC / DC converter 16 and a DC / DC converter 18. Further, a capacitor 20 for smoothing the output from the AC / DC converter 16 is connected between the AC / DC converter 16 and the DC / DC converter 18 included in the vehicle-mounted charger 10. Further, a precharge circuit 22 is connected between the input terminal of the AC power supply 12 and the AC / DC converter 16 in the vehicle-mounted charger 10. In addition to this, the vehicle-mounted charger 10 includes a temperature rising resistor 34, a control circuit 24, and a charger internal temperature sensor 25 that detects the temperature inside the vehicle-mounted charger 10.
  • the in-vehicle charger 10 is used in the drive circuit 26 for driving the AC / DC converter 16, the drive circuit 27 for driving the DC / DC converter 18, and the precharge circuit 22 by the signal from the control circuit 24.
  • a drive circuit 28 for driving the included relay 30 and a drive circuit 29 for driving the temperature rising resistor 34 are also provided.
  • the AC / DC converter 16 is a converter for converting an AC voltage into a DC voltage, and is composed of a PFC coil, a diode, a semiconductor switch element (for example, MOSFET or IGBT) and the like. Examples of the power supply topology of the AC / DC converter 16 include a half-bridge system.
  • the DC / DC converter 18 boosts the DC voltage generated by the AC / DC converter 16 and applies the boosted DC voltage to the traveling battery 14 to supply power to the traveling battery 14. Further, the DC / DC converter 18 has an isolation transformer for insulating the AC power supply side and the traveling battery 14 side from the viewpoint of safety to prevent electric leakage or electric shock, and has a diode and a semiconductor switch element (for example,). , MOSFET and IGBT). Examples of the power supply topology of the DC / DC converter 18 include a circuit configuration such as a full bridge system.
  • the capacitor 20 is a component for suppressing the pulsation of the DC voltage output from the AC / DC converter 16, and is provided between the output end of the AC / DC converter 16 and the input end of the DC / DC converter 18. There is. Here, the output end of the DC / DC converter 18 is connected to the traveling battery 14. Therefore, the capacitor 20 is provided between the output end of the AC / DC converter 16 and the traveling battery 14.
  • the control circuit 24 shown in FIG. 1 is a so-called microcomputer, and switches the on / off state of the relay 30 included in the precharge circuit 22 via the drive circuit 28, and switches the AC / DC converter 16 via the drive circuit 26.
  • the DC / DC converter 18 is operated via the drive circuit 27.
  • the control circuit 24 is connected to a charger internal temperature sensor 25 that detects the internal temperature of the vehicle-mounted charger 10, and based on the value of this temperature sensor, the temperature rise is described later via the drive circuit 29. Controls the energization of the resistance 34.
  • the precharge circuit 22 is a circuit for charging the capacitor 20 prior to charging the traveling battery 14.
  • the precharge circuit 22 is composed of a relay 30, a precharge resistor 32, and a multilayer board 36 (shown in FIG. 2) on which these are mounted.
  • one end of the relay 30 is connected to an input terminal connected to the AC power supply 12, and the other end is connected to the AC / DC converter 16. Further, the relay 30 has a movable contact 40 and a fixed contact 42. Then, the relay 30 is switched on / off by bringing the movable contact 40 and the fixed contact 42 into contact or non-contact state. As a result, the energization path to the capacitor 20 is also switched. Further, as shown in FIGS. 2 and 3, the movable contact 40 and the fixed contact 42 of the relay 30 are surrounded by a resin case 43 on a rectangular parallelepiped.
  • the relay 30 is held in an on state, that is, in a state where the movable contact 40 and the fixed contact 42 are in contact with each other in a state where power is supplied from the AC power source 12 to the traveling battery 14. Therefore, in the on state, the relay 30 generates heat due to Joule heat due to the contact resistance of the movable contact 40 and the fixed contact 42. In the state where power is not supplied from the AC power supply 12 to the traveling battery 14, the movable contact 40 and the fixed contact 42 are held in a non-contact state, that is, the relay 30 is held in an off state.
  • the precharge resistor 32 is connected in parallel with the relay 30.
  • the relay 30 is held in the off state. Therefore, when charging the capacitor 20, the capacitor 20 is charged via the precharge resistor 32. This alleviates the influence of the inrush current generated when the in-vehicle charger 10 is connected to the AC power supply.
  • the relay 30 is arranged on one of the main surfaces of the multilayer board 36. Further, the relay 30 is connected to another circuit of the vehicle-mounted charger 10 via the multilayer board 36. For example, the relay 30 is connected to a drive circuit 28 that drives a coil included in the relay 30 via a multilayer board 36. Further, as shown in FIG. 2, the multilayer board 36 has a movable contact terminal connection pattern 44 connected to the terminal of the movable contact 40 and a fixed contact terminal connection pattern 46 connected to the terminal of the fixed contact 42. The movable contact terminal connection pattern 44 and the fixed contact terminal connection pattern 46 are located on the same wiring layer 50 in the multilayer board 36.
  • the temperature rising resistor 34 is a rectangular parallelepiped resistor called a surface mount resistor or a chip resistor, and is provided along the other main surface of the multilayer substrate 36. Further, the other main surface of the multilayer board 36 provided with the temperature rising resistor 34 is the wiring layer 52.
  • the wiring layer 52 is a wiring layer adjacent to the wiring layer 50. That is, the wiring layer 52 provided with the temperature rising resistor 34 and the wiring layer 50 provided with the movable contact terminal connection pattern 44 and the fixed contact terminal connection pattern 46 are different wiring layers.
  • the temperature rising resistor 34 does not directly touch the movable contact terminal connection pattern 44 and the fixed contact terminal connection pattern 46, so that the movable contact terminal connection pattern 44 and the fixed contact terminal connection are connected. The insulation against the pattern 46 is maintained. Further, as shown in FIG. 3, the temperature rising resistor 34 is provided at a position overlapping the fixed contact terminal connection pattern 46 when viewed from a direction orthogonal to the main surface of the multilayer substrate 36. In addition to this, the temperature rising resistor 34 is contained inside the fixed contact terminal connection pattern 46 when viewed from a direction orthogonal to the main surface of the multilayer substrate 36.
  • the temperature rising resistor 34 is a resistor for warming each contact of the relay 30 when the charging of the traveling battery 14 is completed. The details of the operation of the temperature rising resistor 34 will be described later.
  • the charger internal temperature sensor 25 is a thermistor located inside the housing of the vehicle-mounted charger 10 and measuring the temperature inside the vehicle-mounted charger 10.
  • FIG. 4 is a flowchart relating to the control of the temperature rising resistance in the vehicle-mounted charger according to the first embodiment.
  • the control for preventing dew condensation on the contacts of the relay 30 is started when the running battery 14 is fully charged and the relay 30 is switched from the on state to the off state.
  • step ST1 the control circuit 24 determines whether or not to energize the temperature rising resistor 34. This determination is made based on the temperature inside the vehicle-mounted charger 10 detected by the charger internal temperature sensor 25. Specifically, when the temperature detected by the charger internal temperature sensor 25 is within the range of + 5 ° C. to ⁇ 10 ° C., it is determined that the temperature rising resistor 34 is energized. On the other hand, when the temperature detected by the charger internal temperature sensor 25 is other than + 5 ° C. to ⁇ 10 ° C., it is determined that the temperature rising resistor 34 is not energized.
  • step ST2 When it is determined to energize the temperature rising resistor 34, this control proceeds to step ST2, and when it is determined not to energize the temperature rising resistor 34, this control ends. If the temperature detected by the charger internal temperature sensor 25 is other than + 5 ° C. to ⁇ 10 ° C., the temperature rising resistor 34 is not energized. This is because it is unlikely that the contacts of the relay 30 will freeze when the temperature detected by the charger internal temperature sensor 25 is higher than + 5 ° C, and dew condensation will occur when the temperature is lower than -10 ° C. This is because it is difficult.
  • step ST2 the control circuit 24 starts energizing the temperature rising resistor 34 via the drive circuit 29.
  • step ST3 the control circuit 24 starts measuring the elapsed time by the timer built in the control circuit 24.
  • the control circuit 24 confirms whether or not the elapsed time of the timer has reached a predetermined time as the time for energizing the temperature rising resistor 34. Then, this step is repeated until the elapsed time of the timer reaches a predetermined time.
  • the predetermined time is, for example, a value obtained by an experiment in advance. Specifically, if the time for energizing the temperature rising resistor 34 is too short, the temperature of the contact of the relay 30 will be changed to the temperature of the contact of the relay 30 after the energization of the temperature rising resistor 34 is completed, due to the heat conduction of the connection pattern connected to the relay.
  • the predetermined time is such that the temperature of the contacts of the relay 30 does not fall below the temperature of the atmosphere around the contacts of the relay 30 even after the energization of the temperature rising resistor 34 is completed. It is time to continue energizing the heating resistor 34.
  • step ST5 the control circuit 24 ends energization of the temperature rising resistor 34 via the drive circuit 29. As a result, this control ends.
  • FIG. 5 is a diagram showing the relationship between the relay contact temperature of the vehicle-mounted charger and the temperature and time of the atmosphere around the relay contact according to the comparative example having no resistance for raising temperature.
  • FIG. 6 is a diagram showing the relationship between the relay contact temperature of the vehicle-mounted charger according to the first embodiment, the temperature of the atmosphere around the relay contact, and the time.
  • the relay 30 travels from the charging start time Ti1 when the relay 30 is switched to the on state to the charging end time Ti2 when the relay 30 is turned off.
  • the contact temperature Te1 of the relay 30 rises, and accordingly, the temperature Te2 of the atmosphere around the contacts of the relay 30 also rises.
  • the contact temperature Te1 of the relay 30 and the temperature Te2 of the atmosphere around the contact of the relay 30 both decrease.
  • the connection pattern connected to the relay contacts is colder than that of the relay contacts, the temperature of the relay contacts drops faster than the temperature of the atmosphere around the contacts covered with the case due to heat conduction.
  • the contact temperature Te1 of the relay 30 temporarily falls below the temperature Te2 of the atmosphere around the contacts of the relay 30.
  • the contacts of the relay 30 will condense.
  • the running battery 14 is charged up to the charging end time Ti2 after the charging start time Ti1 when the relay 30 is switched to the on state.
  • the contact temperature Te1 of the relay 30 rises, and the temperature Te2 around the contacts of the relay 30 also rises accordingly.
  • the control circuit 24 energizes the temperature rising resistor 34 after the charging end time Ti2, that is, within a predetermined time after the relay is switched from the on state to the off state.
  • the heat of the temperature rising resistor 34 is transferred to the fixed contact 42 of the relay 30 via the fixed contact terminal connection pattern 46.
  • the temperature of the fixed contact 42 drops more slowly than the temperature of the atmosphere around the contact of the relay 30.
  • the temperature of the movable contact 40 which is located close to the fixed contact 42 of the relay 30, also drops more slowly than the temperature of the atmosphere around the contact of the relay 30 due to the heat from the fixed contact 42.
  • the contact temperature Te1 of the relay 30 does not fall below the temperature Te2 of the atmosphere around the contacts of the relay 30, and the contact temperature Te1 of the relay 30 and the temperature Te2 of the atmosphere around the contacts of the relay 30 are the temperatures around the relay 30. That is, the temperature gradually decreases toward the internal temperature of the vehicle-mounted charger 10. As a result, in the vehicle-mounted charger 10, dew condensation on the contacts of the relay 30 can be prevented.
  • the case covering the relay is heated by a switching element to keep the temperature of the atmosphere around the relay contacts high and prevent the relay contacts from freezing.
  • the connection pattern connected to the relay contacts is colder than that of the relay contacts, the temperature of the relay contacts drops faster than the temperature of the atmosphere around the contacts due to heat conduction.
  • the temperature of the contact of the relay becomes lower than the ambient temperature around the contact, and dew condensation occurs on the contact. Therefore, when the switching element is turned off, the contacts of the relay may freeze.
  • the contact temperature Te1 of the relay 30 is temporarily lowered to the temperature Te2 of the atmosphere around the contacts of the relay 30 for raising the temperature.
  • the heat from the resistor 34 prevents dew condensation on each contact of the relay 30.
  • the contacts of the relay 30 do not freeze because the dew condensation that causes freezing does not occur at the contacts of the relay 30. From the above, in the vehicle-mounted charger 10, dew condensation on the relay contacts and freezing of the relay contacts due to this can be suppressed.
  • the wiring layer 52 provided with the temperature rising resistor 34 is a wiring layer adjacent to the wiring layer 50 provided with the fixed contact terminal connection pattern 46. Therefore, in the vehicle-mounted charger 10, heat from the temperature rising resistor 34 is more likely to be transferred to the fixed contact terminal connection pattern 46 as compared with the case where a plurality of wiring layers are included between the wiring layer 52 and the wiring layer 50. .. As a result, the vehicle-mounted charger 10 can efficiently heat the contacts of the relay 30 as compared with the case where a plurality of wiring layers are included between the wiring layer 52 and the wiring layer 50.
  • the temperature rising resistor 34 is provided at a position overlapping the fixed contact terminal connection pattern 46 when viewed from a direction orthogonal to the main surface of the multilayer board 36. Further, the temperature rising resistor 34 is contained inside the fixed contact terminal connection pattern 46 when viewed from a direction orthogonal to the main surface of the multilayer substrate 36.
  • the temperature rising resistor 34 protrudes from the fixed contact terminal connection pattern 46 as compared with the case where the temperature rising resistor 34 protrudes from the fixed contact terminal connection pattern 46.
  • the heat of the temperature rising resistor 34 can be efficiently transferred to the fixed contact terminal connection pattern 46.
  • the contacts of the relay 30 can be efficiently heated as compared with the case where the temperature rising resistor 34 protrudes from the fixed contact terminal connection pattern 46.
  • FIG. 7 is a diagram showing the positional relationship of parts related to the precharge circuit included in the vehicle-mounted charger according to the second embodiment, and showing a cross section of a multilayer substrate included in the precharge circuit.
  • the difference between the vehicle-mounted charger 10A according to the second embodiment and the vehicle-mounted charger 10 according to the first embodiment is the position of the temperature rising resistor 34. This will be described in detail below.
  • the temperature rising resistor 34 is provided on the other main surface side of the multilayer substrate 36, and the multilayer substrate 36 When viewed from a direction orthogonal to the main surface, it fits inside the movable contact terminal connection pattern 44.
  • the temperature rising resistor 34 is arranged at a position overlapping the relay 30 when viewed from a direction orthogonal to the main surface of the multilayer substrate 36.
  • vehicle-mounted charger 10A Other configurations of the vehicle-mounted charger 10A are the same as those of the vehicle-mounted charger 10. Therefore, other configurations in the vehicle-mounted charger 10A are as described in the vehicle-mounted charger 10.
  • a plurality of temperature rising resistors 34 may be provided on the multilayer substrate 36. Further, in the above embodiment, after the traveling battery 14 is fully charged, the temperature rise resistor 34 is determined to be energized, but the charger is charged before the battery is charged, that is, before the relay 30 is turned on. From the temperature detected by the internal temperature sensor 25, it may be determined to energize the temperature rising resistor 34. At this time, in the control performed by the control circuit 24 to prevent dew condensation on the contacts of the relay 30, the temperature rising resistor 34 may be energized immediately before the relay 30 is turned from the on state to the off state.
  • the control circuit 24 energizes the temperature rising resistor 34 within a predetermined time after the relay 30 is switched from the on state to the off state.
  • the temperature rising resistor 34 may be located at a position overlapping the movable contact terminal connection pattern 44 or the fixed contact terminal connection pattern 46 when viewed from a direction orthogonal to the main surface of the multilayer board 36, and the multilayer board 36 When viewed from a direction orthogonal to the main surface, the temperature rising resistor 34 may protrude from the movable contact terminal connection pattern 44 or the fixed contact terminal connection pattern 46.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided is a vehicle mounted charging device which can prevent condensation on a relay contact and freezing of the relay due to the same. A vehicle mounted charging device 10 comprising: an AC/DC converter 16; a condenser 20 which is provided between an output end of the AC/DC converter 16 and a battery 14 for traveling; a relay 30 which has a contact 42 switching an energizing path to the condenser 20, said contact 42 being covered by a case 43; a multilayer substrate 36 to which the relay 30 is provided, and which has a connecting pattern 46 connected to the contact 42; a temperature raising resistor 34 which is arranged on a wiring layer 52 in a position which overlaps with the connecting pattern 46 when viewed from a direction orthogonal to a main surface of the multilayer substrate 36, said wiring layer 52 being different from a wiring layer 50 where the connecting pattern 46 is positioned; and a control circuit 24 which energizes the temperature raising resistor 34 within a predetermined time period after the relay 30 switches from an on state to an off state.

Description

車載用充電器Car charger
 本開示は、電動車両用の電動モーターに対して電力を供給する走行用バッテリーを充電するための車載用充電器に関する。 The present disclosure relates to an in-vehicle charger for charging a traveling battery that supplies electric power to an electric motor for an electric vehicle.
 EV(電気自動車)やPHEV(プラグインハイブリッド電気自動車)等の電動車両用の電動モーターに対して電力を供給する走行用バッテリーを充電するための車載用充電器では、外部電源として家庭用の交流電源を用いて走行用バッテリーを充電することができるように、交流電源からの交流電圧を直流電圧に変換するAC/DCコンバータを備えている。これにより、直流電圧により充電される走行用バッテリーの充電が可能となる。また、電気自動車の電源装置では、AC/DCコンバータの出力端と走行用バッテリーとの間に、AC/DCコンバータから出力される直流電圧の脈動を抑制するためのコンデンサが接続されている。 In-vehicle chargers for charging running batteries that supply power to electric motors for electric vehicles such as EVs (electric vehicles) and PHEVs (plug-in hybrid electric vehicles) are AC for home use as an external power source. It is equipped with an AC / DC converter that converts the AC voltage from the AC power supply into a DC voltage so that the traveling battery can be charged using the power supply. This makes it possible to charge the traveling battery that is charged by the DC voltage. Further, in the power supply device of an electric vehicle, a capacitor for suppressing the pulsation of the DC voltage output from the AC / DC converter is connected between the output end of the AC / DC converter and the traveling battery.
 しかし、AC/DCコンバータの出力端と走行用バッテリーとの間にコンデンサが接続されていることで、車載用充電器に交流電源を接続した際、突入電流が発生する。この突入電流による影響を緩和するため、電気自動車の電源装置を交流電源に接続した際、まず、抵抗を介してコンデンサを充電する。その後、コンデンサの充電が終了した時点で、通電経路を切り替えて、抵抗を介さずに走行用バッテリーの充電を始める。この走行用バッテリーの充電のための通電経路の切り替えは、車載用充電器に設けられたリレーをオフ状態からオン状態に切り替えることで行われる。 However, because a capacitor is connected between the output end of the AC / DC converter and the running battery, an inrush current is generated when an AC power supply is connected to the in-vehicle charger. In order to mitigate the influence of this inrush current, when the power supply device of an electric vehicle is connected to an AC power supply, the capacitor is first charged via a resistor. After that, when the charging of the capacitor is completed, the energization path is switched and the charging of the traveling battery is started without going through the resistor. The switching of the energization path for charging the traveling battery is performed by switching the relay provided in the in-vehicle charger from the off state to the on state.
 ところで、走行用バッテリーを充電する際、つまり、リレーがオン状態では、リレーの接点がその電気抵抗により温まる。これと同時に、ケースで覆われた接点周囲の雰囲気温度も高まる。そして、走行用バッテリーへの充電が終了し、リレーがオフ状態になると、接点と接続される接続パターンが接点よりも冷たいため、熱伝導により、接点の温度は、接点周囲の雰囲気の温度よりも速く下がる。その結果、接点の温度が接点周囲の雰囲気温度よりも低くなり、接点が結露することがある。このような状況で、車両が氷点下を下回るような環境に停止すると、接点が凍結し、走行用バッテリーの充電ができなくなるおそれがある。ここで、特許文献1に記載の電源装置(以下で、従来の車載用充電器と称す)では、リレーの接点の氷結を防止するために、接点を覆うケースに、別のオン状態のスイッチング素子を接触させて、その熱で接点の氷結を防いでいる。 By the way, when charging the running battery, that is, when the relay is on, the contacts of the relay are warmed by the electric resistance. At the same time, the ambient temperature around the contacts covered by the case also rises. Then, when the charging of the traveling battery is completed and the relay is turned off, the connection pattern connected to the contact is colder than the contact, so that the temperature of the contact is higher than the temperature of the atmosphere around the contact due to heat conduction. It goes down fast. As a result, the temperature of the contact becomes lower than the ambient temperature around the contact, and the contact may condense. In such a situation, if the vehicle is stopped in an environment below the freezing point, the contacts may freeze and the traveling battery may not be charged. Here, in the power supply device described in Patent Document 1 (hereinafter, referred to as a conventional in-vehicle charger), in order to prevent freezing of the relay contacts, another on-state switching element is placed in a case covering the contacts. The heat is used to prevent the contacts from freezing.
特開2015-156254号公報Japanese Unexamined Patent Publication No. 2015-156254
 しかし、リレーの接点を覆うケースを温めても、リレーの接点周囲の雰囲気の温度が高く維持されるだけである。従って、接点と接続される接続パターンが接点よりも冷たいため、熱伝導により、接点の温度が、接点周囲の雰囲気の温度よりも低くなり、接点への結露が発生する。その結果、スイッチング素子がオフ状態になり、リレーの接点周囲の雰囲気の温度が下がると、リレーの接点が凍結してしまうという問題があった。 However, even if the case covering the relay contacts is warmed, the temperature of the atmosphere around the relay contacts is only maintained high. Therefore, since the connection pattern connected to the contact is colder than that of the contact, the temperature of the contact becomes lower than the temperature of the atmosphere around the contact due to heat conduction, and dew condensation occurs on the contact. As a result, when the switching element is turned off and the temperature of the atmosphere around the relay contacts drops, there is a problem that the relay contacts freeze.
 本開示は、リレーの接点への結露及びこれによるリレーの接点の凍結を抑制することができる車載用充電器を提供することを目的とする。 An object of the present disclosure is to provide an in-vehicle charger capable of suppressing dew condensation on relay contacts and freezing of relay contacts due to this.
 本開示に係る車載用充電器は、交流電源からの交流電圧を直流電圧に変換するAC/DCコンバータと、AC/DCコンバータの出力端と走行用バッテリーとの間に設けられたコンデンサと、コンデンサへの通電経路を切り替える接点を有し、接点がケースに覆われたリレーと、リレーが一方の主面に設けられ、接点に接続される接続パターンを有する多層基板と、多層基板の主面と直交する直交方向から見たときに接続パターンと重なる位置であって、接続パターンが位置する第1の配線層と異なる第2の配線層に設けられた昇温用抵抗と、走行用バッテリーへの通電が終了しリレーがオン状態からオフ状態に切り替わった後のあらかじめ定められた時間内は、昇温用抵抗に通電する制御回路と、を備えるものである。 The in-vehicle charger according to the present disclosure includes an AC / DC converter that converts an AC voltage from an AC power supply into a DC voltage, a capacitor provided between the output end of the AC / DC converter and a traveling battery, and a capacitor. A relay having a contact for switching the energization path to the circuit, the contact being covered with a case, a multilayer substrate having a connection pattern in which the relay is provided on one main surface and connected to the contacts, and a main surface of the multilayer substrate. A heating resistor provided in a second wiring layer that overlaps the connection pattern when viewed from the orthogonal orthogonal directions and is different from the first wiring layer in which the connection pattern is located, and a traveling battery. It is provided with a control circuit that energizes the temperature rising resistor within a predetermined time after the energization is completed and the relay is switched from the on state to the off state.
 本開示によれば、車載用充電器のリレーの接点への結露及びこれによるリレーの接点の凍結を抑制することができる。 According to the present disclosure, it is possible to suppress dew condensation on the relay contacts of the in-vehicle charger and freezing of the relay contacts due to this.
実施の形態1に係る車載用充電器の回路構成を示す図である。It is a figure which shows the circuit structure of the vehicle-mounted charger which concerns on Embodiment 1. FIG. 実施の形態1に係る車載用充電器が備えるプリチャージ回路に関する部品の位置関係を示すとともに、プリチャージ回路に含まれる多層基板の断面を示す図である。It is a figure which shows the positional relationship of the component concerning the precharge circuit provided in the vehicle-mounted charger which concerns on Embodiment 1, and shows the cross section of the multilayer board included in the precharge circuit. 実施の形態1に係る車載用充電器が備える多層基板をその主面と直交する方向から見た図である。It is a figure which looked at the multilayer substrate provided with the vehicle-mounted charger which concerns on Embodiment 1 from the direction orthogonal to the main surface. 実施の形態1に係る車載用充電器における昇温用抵抗の制御に関するフローチャートである。It is a flowchart about control of the temperature rise resistance in the vehicle-mounted charger which concerns on Embodiment 1. FIG. 昇温用抵抗を有さない比較例に係る車載用充電器のリレー接点温度及びリレー接点周囲の雰囲気の温度並びに時間との関係を示す図である。It is a figure which shows the relationship between the relay contact temperature of the vehicle-mounted charger which has no resistance for raising temperature, the temperature of the atmosphere around the relay contact, and time. 実施の形態1に係る車載用充電器のリレー接点温度及びリレー接点周囲の雰囲気の温度並びに時間との関係を示す図である。It is a figure which shows the relationship between the relay contact temperature of the vehicle-mounted charger which concerns on Embodiment 1, the temperature of the atmosphere around a relay contact, and time. 実施の形態2に係る車載用充電器が備えるプリチャージ回路に関係する部品の位置関係を示すとともに、プリチャージ回路に含まれる多層基板の断面を示す図である。It is a figure which shows the positional relationship of the component which concerns on the precharge circuit included in the vehicle-mounted charger which concerns on Embodiment 2, and shows the cross section of the multilayer board included in the precharge circuit.
 以下で、一実施形態である車載用充電器ついて、添付した図面を参照しながら説明する。各実施の形態において同一の構成については、同一の符号を付す。 Below, the in-vehicle charger, which is one embodiment, will be described with reference to the attached drawings. The same reference numerals are given to the same configurations in each embodiment.
 実施の形態1.
 図1は、実施の形態1に係る車載用充電器10の回路構成を示す図である。図2は、実施の形態1に係る車載用充電器10が備えるプリチャージ回路22に関する部品の位置関係を示すとともに、プリチャージ回路22に含まれる多層基板36の断面を示す図である。図3は、実施の形態1に係る車載用充電器10が備える多層基板36をその主面と直交する方向から見た図である。なお、図3において、多層基板36に内蔵される部品及び多層基板36により隠される部品については、破線で示している。図1に示すように、車載用充電器10の入力側には、外部電源としての交流電源12が接続される。また、車載用充電器10の出力側には、負荷としての走行用バッテリー14が接続される。この走行用バッテリー14は、車両駆動用の電動モーターに電力を供給する。
Embodiment 1.
FIG. 1 is a diagram showing a circuit configuration of the vehicle-mounted charger 10 according to the first embodiment. FIG. 2 is a diagram showing the positional relationship of parts related to the precharge circuit 22 included in the vehicle-mounted charger 10 according to the first embodiment, and showing a cross section of the multilayer board 36 included in the precharge circuit 22. FIG. 3 is a view of the multilayer substrate 36 included in the vehicle-mounted charger 10 according to the first embodiment as viewed from a direction orthogonal to the main surface thereof. In FIG. 3, the parts built in the multilayer board 36 and the parts hidden by the multilayer board 36 are shown by broken lines. As shown in FIG. 1, an AC power source 12 as an external power source is connected to the input side of the vehicle-mounted charger 10. Further, a traveling battery 14 as a load is connected to the output side of the vehicle-mounted charger 10. The traveling battery 14 supplies electric power to an electric motor for driving a vehicle.
 図1に示すように、車載用充電器10は、AC/DCコンバータ16と、DC/DCコンバータ18とを備える。また、車載用充電器10が有するAC/DCコンバータ16とDC/DCコンバータ18との間には、AC/DCコンバータ16からの出力を平滑化するためのコンデンサ20が接続されている。さらに、車載用充電器10における交流電源12の入力端子とAC/DCコンバータ16との間には、プリチャージ回路22が接続されている。これに加え、車載用充電器10は、昇温用抵抗34、制御回路24及び車載用充電器10の内部の温度を検出する充電器内部温度センサ25を備えている。また、車載用充電器10は、制御回路24からの信号によって、AC/DCコンバータ16を駆動させるための駆動回路26、DC/DCコンバータ18を駆動させるための駆動回路27、プリチャージ回路22に含まれるリレー30を駆動させるための駆動回路28、及び昇温用抵抗34を駆動させるための駆動回路29も備える。 As shown in FIG. 1, the vehicle-mounted charger 10 includes an AC / DC converter 16 and a DC / DC converter 18. Further, a capacitor 20 for smoothing the output from the AC / DC converter 16 is connected between the AC / DC converter 16 and the DC / DC converter 18 included in the vehicle-mounted charger 10. Further, a precharge circuit 22 is connected between the input terminal of the AC power supply 12 and the AC / DC converter 16 in the vehicle-mounted charger 10. In addition to this, the vehicle-mounted charger 10 includes a temperature rising resistor 34, a control circuit 24, and a charger internal temperature sensor 25 that detects the temperature inside the vehicle-mounted charger 10. Further, the in-vehicle charger 10 is used in the drive circuit 26 for driving the AC / DC converter 16, the drive circuit 27 for driving the DC / DC converter 18, and the precharge circuit 22 by the signal from the control circuit 24. A drive circuit 28 for driving the included relay 30 and a drive circuit 29 for driving the temperature rising resistor 34 are also provided.
 AC/DCコンバータ16は、交流電圧を直流電圧に変換するための変換器で,PFCコイル、ダイオード、及び半導体スイッチ素子(例えば、MOSFETやIGBT)などから構成される。AC/DCコンバータ16の電源トポロジーとしては、例えば、ハーフブリッジ方式などが挙げられる。 The AC / DC converter 16 is a converter for converting an AC voltage into a DC voltage, and is composed of a PFC coil, a diode, a semiconductor switch element (for example, MOSFET or IGBT) and the like. Examples of the power supply topology of the AC / DC converter 16 include a half-bridge system.
 DC/DCコンバータ18は、AC/DCコンバータ16が生成した直流電圧を昇圧し、走行用バッテリー14に対して昇圧後の直流電圧を印可して走行用バッテリー14に電力を供給する。また、DC/DCコンバータ18は、漏電や感電等を防ぐための安全上の観点から交流電源側と走行用バッテリー14側を絶縁させるための絶縁トランスを有し、ダイオード、及び半導体スイッチ素子(例えば、MOSFETやIGBT)などから構成される。DC/DCコンバータ18の電源トポロジーとしては、フルブリッジ方式などの回路構成が挙げられる。 The DC / DC converter 18 boosts the DC voltage generated by the AC / DC converter 16 and applies the boosted DC voltage to the traveling battery 14 to supply power to the traveling battery 14. Further, the DC / DC converter 18 has an isolation transformer for insulating the AC power supply side and the traveling battery 14 side from the viewpoint of safety to prevent electric leakage or electric shock, and has a diode and a semiconductor switch element (for example,). , MOSFET and IGBT). Examples of the power supply topology of the DC / DC converter 18 include a circuit configuration such as a full bridge system.
 コンデンサ20は、AC/DCコンバータ16から出力される直流電圧の脈動を抑制するための部品であり、AC/DCコンバータ16の出力端とDC/DCコンバータ18の入力端との間に設けられている。ここで、DC/DCコンバータ18の出力端は、走行用バッテリー14と接続されている。従って、コンデンサ20は、AC/DCコンバータ16の出力端と走行用バッテリー14との間に設けられている。 The capacitor 20 is a component for suppressing the pulsation of the DC voltage output from the AC / DC converter 16, and is provided between the output end of the AC / DC converter 16 and the input end of the DC / DC converter 18. There is. Here, the output end of the DC / DC converter 18 is connected to the traveling battery 14. Therefore, the capacitor 20 is provided between the output end of the AC / DC converter 16 and the traveling battery 14.
 図1に示される制御回路24は、いわゆるマイコンであり、駆動回路28を介してプリチャージ回路22が有するリレー30のオン・オフ状態を切り替えるとともに、駆動回路26を介してAC/DCコンバータ16を、駆動回路27を介してDC/DCコンバータ18を作動させる。また、制御回路24は、車載用充電器10の内部の温度を検出する充電器内部温度センサ25と接続され、この温度センサの値をもとに、駆動回路29を介して、後述する昇温用抵抗34への通電を制御する。 The control circuit 24 shown in FIG. 1 is a so-called microcomputer, and switches the on / off state of the relay 30 included in the precharge circuit 22 via the drive circuit 28, and switches the AC / DC converter 16 via the drive circuit 26. , The DC / DC converter 18 is operated via the drive circuit 27. Further, the control circuit 24 is connected to a charger internal temperature sensor 25 that detects the internal temperature of the vehicle-mounted charger 10, and based on the value of this temperature sensor, the temperature rise is described later via the drive circuit 29. Controls the energization of the resistance 34.
 プリチャージ回路22は、走行用バッテリー14の充電に先立ち、コンデンサ20の充電を行うための回路である。プリチャージ回路22は、リレー30、プリチャージ抵抗32、及びこれらが実装された多層基板36(図2に示す)から構成されている。 The precharge circuit 22 is a circuit for charging the capacitor 20 prior to charging the traveling battery 14. The precharge circuit 22 is composed of a relay 30, a precharge resistor 32, and a multilayer board 36 (shown in FIG. 2) on which these are mounted.
 図1に示すように、リレー30は、その一端が交流電源12と接続される入力端子と接続され、他端がAC/DCコンバータ16と接続されている。また、リレー30は、可動接点40及び固定接点42を有する。そして、可動接点40と固定接点42とを接触した状態、又は非接触状態とすることにより、リレー30のオン・オフが切り替えられる。その結果、コンデンサ20への通電経路も切り替えられる。さらに、リレー30が有する可動接点40及び固定接点42は、図2及び図3に示すように、その周囲が直方体上の樹脂製のケース43に覆われている。ここで、リレー30は、交流電源12から走行用バッテリー14に電力を供給する状態では、オン状態、つまり、可動接点40と固定接点42とを接触した状態に保持される。したがって、オン状態においては、可動接点40及び固定接点42の接触抵抗によるジュール熱により、リレー30は発熱する。なお、交流電源12から走行用バッテリー14に電力を供給しない状態では、可動接点40と固定接点42とは非接触状態、つまり、リレー30はオフ状態に保持される。 As shown in FIG. 1, one end of the relay 30 is connected to an input terminal connected to the AC power supply 12, and the other end is connected to the AC / DC converter 16. Further, the relay 30 has a movable contact 40 and a fixed contact 42. Then, the relay 30 is switched on / off by bringing the movable contact 40 and the fixed contact 42 into contact or non-contact state. As a result, the energization path to the capacitor 20 is also switched. Further, as shown in FIGS. 2 and 3, the movable contact 40 and the fixed contact 42 of the relay 30 are surrounded by a resin case 43 on a rectangular parallelepiped. Here, the relay 30 is held in an on state, that is, in a state where the movable contact 40 and the fixed contact 42 are in contact with each other in a state where power is supplied from the AC power source 12 to the traveling battery 14. Therefore, in the on state, the relay 30 generates heat due to Joule heat due to the contact resistance of the movable contact 40 and the fixed contact 42. In the state where power is not supplied from the AC power supply 12 to the traveling battery 14, the movable contact 40 and the fixed contact 42 are held in a non-contact state, that is, the relay 30 is held in an off state.
 図1に示すように、プリチャージ抵抗32は、リレー30と並列に接続されている。ここで、プリチャージ回路22によりコンデンサ20を充電する際には、リレー30はオフ状態に保持される。したがって、コンデンサ20を充電する際には、プリチャージ抵抗32を介してコンデンサ20は充電される。これにより、車載用充電器10を交流電源に接続した際に発生する突入電流の影響を緩和している。 As shown in FIG. 1, the precharge resistor 32 is connected in parallel with the relay 30. Here, when the capacitor 20 is charged by the precharge circuit 22, the relay 30 is held in the off state. Therefore, when charging the capacitor 20, the capacitor 20 is charged via the precharge resistor 32. This alleviates the influence of the inrush current generated when the in-vehicle charger 10 is connected to the AC power supply.
 図2に示すように、多層基板36は、その一方の主面にリレー30が配置されている。また、リレー30は多層基板36を介して車載用充電器10が有する他の回路と接続されている。例えば、リレー30は、多層基板36を介して、リレー30が有するコイルを駆動させる駆動回路28と接続されている。また、多層基板36は、図2に示すように、可動接点40の端子と接続される可動接点端子接続パターン44、及び固定接点42の端子と接続される固定接点端子接続パターン46を有する。可動接点端子接続パターン44及び固定接点端子接続パターン46は、多層基板36内の同一の配線層50に位置している。 As shown in FIG. 2, the relay 30 is arranged on one of the main surfaces of the multilayer board 36. Further, the relay 30 is connected to another circuit of the vehicle-mounted charger 10 via the multilayer board 36. For example, the relay 30 is connected to a drive circuit 28 that drives a coil included in the relay 30 via a multilayer board 36. Further, as shown in FIG. 2, the multilayer board 36 has a movable contact terminal connection pattern 44 connected to the terminal of the movable contact 40 and a fixed contact terminal connection pattern 46 connected to the terminal of the fixed contact 42. The movable contact terminal connection pattern 44 and the fixed contact terminal connection pattern 46 are located on the same wiring layer 50 in the multilayer board 36.
図2に示すように、昇温用抵抗34は、面実装抵抗器またはチップ抵抗器と言われる直方体状の抵抗であり、多層基板36の他方の主面に沿うように設けられている。また、昇温用抵抗34が設けられた多層基板36の他方の主面は、配線層52である。そして、配線層52は、配線層50の隣の配線層である。つまり、昇温用抵抗34が設けられた配線層52と、可動接点端子接続パターン44及び固定接点端子接続パターン46が設けられた配線層50とは、異なる配線層である。従って、昇温用抵抗34に通電しても、昇温用抵抗34は、可動接点端子接続パターン44及び固定接点端子接続パターン46に直接触れないので、可動接点端子接続パターン44及び固定接点端子接続パターン46に対する絶縁性は保たれる。さらに、図3に示すように、昇温用抵抗34は、多層基板36の主面と直交する方向から見たときに、固定接点端子接続パターン46と重なる位置に設けられている。これに加え、昇温用抵抗34は、多層基板36の主面と直交する方向から見たときに、固定接点端子接続パターン46の内側に収まっている。なお、昇温用抵抗34は、走行用バッテリー14の充電が完了した際に、リレー30の各接点を温めるための抵抗である。昇温用抵抗34の動作の詳細については、後述する。 As shown in FIG. 2, the temperature rising resistor 34 is a rectangular parallelepiped resistor called a surface mount resistor or a chip resistor, and is provided along the other main surface of the multilayer substrate 36. Further, the other main surface of the multilayer board 36 provided with the temperature rising resistor 34 is the wiring layer 52. The wiring layer 52 is a wiring layer adjacent to the wiring layer 50. That is, the wiring layer 52 provided with the temperature rising resistor 34 and the wiring layer 50 provided with the movable contact terminal connection pattern 44 and the fixed contact terminal connection pattern 46 are different wiring layers. Therefore, even if the temperature rising resistor 34 is energized, the temperature rising resistor 34 does not directly touch the movable contact terminal connection pattern 44 and the fixed contact terminal connection pattern 46, so that the movable contact terminal connection pattern 44 and the fixed contact terminal connection are connected. The insulation against the pattern 46 is maintained. Further, as shown in FIG. 3, the temperature rising resistor 34 is provided at a position overlapping the fixed contact terminal connection pattern 46 when viewed from a direction orthogonal to the main surface of the multilayer substrate 36. In addition to this, the temperature rising resistor 34 is contained inside the fixed contact terminal connection pattern 46 when viewed from a direction orthogonal to the main surface of the multilayer substrate 36. The temperature rising resistor 34 is a resistor for warming each contact of the relay 30 when the charging of the traveling battery 14 is completed. The details of the operation of the temperature rising resistor 34 will be described later.
 図3に示すように、充電器内部温度センサ25は、車載用充電器10が有する筐体の内部に位置し、車載用充電器10内部の温度を測定するサーミスタである。 As shown in FIG. 3, the charger internal temperature sensor 25 is a thermistor located inside the housing of the vehicle-mounted charger 10 and measuring the temperature inside the vehicle-mounted charger 10.
 次に、図4のフローチャートを参照して、制御回路24によって行われるリレー30の接点の結露を防止する制御について説明する。図4は、実施の形態1に係る車載用充電器における昇温用抵抗の制御に関するフローチャートである。リレー30の接点の結露を防止する制御は、走行用バッテリー14の充電が完了し、リレー30がオン状態からオフ状態に切り替わることで開始される。 Next, with reference to the flowchart of FIG. 4, the control for preventing dew condensation on the contacts of the relay 30 performed by the control circuit 24 will be described. FIG. 4 is a flowchart relating to the control of the temperature rising resistance in the vehicle-mounted charger according to the first embodiment. The control for preventing dew condensation on the contacts of the relay 30 is started when the running battery 14 is fully charged and the relay 30 is switched from the on state to the off state.
 リレー30がオン状態からオフ状態に切り替わると、ステップST1にて、制御回路24は、昇温用抵抗34に通電するか否かについて決定する。この決定は、充電器内部温度センサ25で検知した車載用充電器10内部の温度に基づいて行われる。具体的には、充電器内部温度センサ25が検知した温度が、+5℃~-10℃の範囲内であるときに、昇温用抵抗34に通電すると決定する。一方、充電器内部温度センサ25が検知した温度が、+5℃~-10℃以外の温度では、昇温用抵抗34に通電しないと決定する。昇温用抵抗34に通電すると決定した場合には、本制御はステップST2に移行し、昇温用抵抗34に通電しないと決定した場合には、本制御は終了する。なお、充電器内部温度センサ25が検知した温度が、+5℃~-10℃以外の温度では、昇温用抵抗34に通電しない。これは、充電器内部温度センサ25が検知した温度が+5℃より高い場合には、リレー30の接点が氷結するような事態は考えにくく、また、-10℃より低い場合には、結露が生じにくいためである。 When the relay 30 is switched from the on state to the off state, in step ST1, the control circuit 24 determines whether or not to energize the temperature rising resistor 34. This determination is made based on the temperature inside the vehicle-mounted charger 10 detected by the charger internal temperature sensor 25. Specifically, when the temperature detected by the charger internal temperature sensor 25 is within the range of + 5 ° C. to −10 ° C., it is determined that the temperature rising resistor 34 is energized. On the other hand, when the temperature detected by the charger internal temperature sensor 25 is other than + 5 ° C. to −10 ° C., it is determined that the temperature rising resistor 34 is not energized. When it is determined to energize the temperature rising resistor 34, this control proceeds to step ST2, and when it is determined not to energize the temperature rising resistor 34, this control ends. If the temperature detected by the charger internal temperature sensor 25 is other than + 5 ° C. to −10 ° C., the temperature rising resistor 34 is not energized. This is because it is unlikely that the contacts of the relay 30 will freeze when the temperature detected by the charger internal temperature sensor 25 is higher than + 5 ° C, and dew condensation will occur when the temperature is lower than -10 ° C. This is because it is difficult.
 次いで、ステップST2にて、制御回路24は、駆動回路29を介して昇温用抵抗34への通電を開始する。 Next, in step ST2, the control circuit 24 starts energizing the temperature rising resistor 34 via the drive circuit 29.
 ステップST3にて、制御回路24は、制御回路24に内蔵されたタイマーによる経過時間の計測を開始する。 In step ST3, the control circuit 24 starts measuring the elapsed time by the timer built in the control circuit 24.
 続くステップST4において、制御回路24は、タイマーの経過時間が、昇温用抵抗34に通電させる時間として予め定められた時間になったか否かを確認する。そして、タイマーの経過時間が予め定められた時間になるまで、本ステップは繰り返される。なお、予め定められた時間とは、例えば、事前に実験により求められた値である。具体的には、昇温用抵抗34に通電する時間が短すぎると、昇温用抵抗34の通電終了後に、リレー30の接点の温度が、これと接続される接続パターンの熱伝導により、リレー30の接点周囲の温度よりも速く下がり、リレー30の接点が結露してしまう。これを防ぐために、予め定められた時間とは、昇温用抵抗34への通電が終了した後も、リレー30の接点の温度がリレー30の接点周囲の雰囲気の温度を下回らない程度に、昇温用抵抗34に通電を継続する時間である。 In the following step ST4, the control circuit 24 confirms whether or not the elapsed time of the timer has reached a predetermined time as the time for energizing the temperature rising resistor 34. Then, this step is repeated until the elapsed time of the timer reaches a predetermined time. The predetermined time is, for example, a value obtained by an experiment in advance. Specifically, if the time for energizing the temperature rising resistor 34 is too short, the temperature of the contact of the relay 30 will be changed to the temperature of the contact of the relay 30 after the energization of the temperature rising resistor 34 is completed, due to the heat conduction of the connection pattern connected to the relay. The temperature drops faster than the temperature around the contacts of the relay 30, and the contacts of the relay 30 condense. In order to prevent this, the predetermined time is such that the temperature of the contacts of the relay 30 does not fall below the temperature of the atmosphere around the contacts of the relay 30 even after the energization of the temperature rising resistor 34 is completed. It is time to continue energizing the heating resistor 34.
 タイマーの経過時間が、昇温用抵抗34に通電させる時間として予め定められた時間になると、本制御はステップST5に進む。ステップST5では、制御回路24は、駆動回路29を介して、昇温用抵抗34への通電を終了する。これにより、本制御は終了する。 When the elapsed time of the timer reaches a predetermined time as the time for energizing the temperature rising resistor 34, this control proceeds to step ST5. In step ST5, the control circuit 24 ends energization of the temperature rising resistor 34 via the drive circuit 29. As a result, this control ends.
 以上のように構成された車載用充電器10では、リレーの接点への結露及びこれによるリレーの接点の凍結を抑制することができる。具体的に、図5及び図6を参照しながら説明する。図5は、昇温用抵抗を有さない比較例に係る車載用充電器のリレー接点温度及びリレー接点周囲の雰囲気の温度並びに時間との関係を示す図である。図6は、実施の形態1に係る車載用充電器のリレー接点温度及びリレー接点周囲の雰囲気の温度並びに時間との関係を示す図である。 In the vehicle-mounted charger 10 configured as described above, it is possible to suppress dew condensation on the relay contacts and freezing of the relay contacts due to this. Specifically, it will be described with reference to FIGS. 5 and 6. FIG. 5 is a diagram showing the relationship between the relay contact temperature of the vehicle-mounted charger and the temperature and time of the atmosphere around the relay contact according to the comparative example having no resistance for raising temperature. FIG. 6 is a diagram showing the relationship between the relay contact temperature of the vehicle-mounted charger according to the first embodiment, the temperature of the atmosphere around the relay contact, and the time.
 図5に示すように、昇温用抵抗34を有さない比較例に係る車載用充電器では、リレー30がオン状態に切り替わる充電開始時間Ti1後、オフ状態になる充電終了時間Ti2までの走行用バッテリー14の充電中に、リレー30の接点温度Te1が上昇し、これに伴ってリレー30の接点周囲の雰囲気の温度Te2も上昇する。そして、充電終了時間Ti2後、リレー30の接点温度Te1及びリレー30の接点周囲の雰囲気の温度Te2が共に低下する。このとき、リレーの接点と接続される接続パターンがリレーの接点よりも冷たいため、熱伝導により、リレーの接点はケースで覆われた接点周囲の雰囲気の温度よりも速く温度が下がる。これにより、リレー30の接点温度Te1がリレー30の接点周囲の雰囲気の温度Te2を一時的に下回る状態になる。その結果、リレー30の接点が結露してしまう。 As shown in FIG. 5, in the vehicle-mounted charger according to the comparative example which does not have the temperature rising resistor 34, the relay 30 travels from the charging start time Ti1 when the relay 30 is switched to the on state to the charging end time Ti2 when the relay 30 is turned off. While charging the battery 14, the contact temperature Te1 of the relay 30 rises, and accordingly, the temperature Te2 of the atmosphere around the contacts of the relay 30 also rises. Then, after the charging end time Ti2, the contact temperature Te1 of the relay 30 and the temperature Te2 of the atmosphere around the contact of the relay 30 both decrease. At this time, since the connection pattern connected to the relay contacts is colder than that of the relay contacts, the temperature of the relay contacts drops faster than the temperature of the atmosphere around the contacts covered with the case due to heat conduction. As a result, the contact temperature Te1 of the relay 30 temporarily falls below the temperature Te2 of the atmosphere around the contacts of the relay 30. As a result, the contacts of the relay 30 will condense.
 図6に示すように、昇温用抵抗34を有する車載用充電器10では、リレー30がオン状態に切り替わる充電開始時間Ti1後、オフ状態になる充電終了時間Ti2までの走行用バッテリー14の充電中に、リレー30の接点温度Te1が上昇し、これに伴ってリレー30の接点周囲の温度Te2も上昇する。そして、充電終了時間Ti2後、リレー30の接点温度Te1及びリレー30の接点周囲の雰囲気の温度Te2が共に低下する。このとき、制御回路24は、充電終了時間Ti2後、つまり、リレーがオン状態からオフ状態に切り替わった後のあらかじめ定められた時間内は、昇温用抵抗34に通電する。これにより、リレー30の固定接点42には、固定接点端子接続パターン46を介して昇温用抵抗34の熱が伝えられる。その結果、固定接点42は、リレー30の接点周囲の雰囲気の温度よりもゆっくりと温度が低下していく。リレー30の固定接点42の間近に位置する可動接点40も、固定接点42からの熱により、リレー30の接点周囲の雰囲気の温度よりもゆっくりと温度が低下していく。これにより、リレー30の接点温度Te1がリレー30の接点周囲の雰囲気の温度Te2を下回ることなく、リレー30の接点温度Te1及びリレー30の接点周囲の雰囲気の温度Te2が、リレー30の周囲の温度、つまり、車載用充電器10の内部の温度に向かって徐々に低下していく。その結果、車載用充電器10では、リレー30の接点の結露を防止できる。 As shown in FIG. 6, in the vehicle-mounted charger 10 having the temperature rising resistor 34, the running battery 14 is charged up to the charging end time Ti2 after the charging start time Ti1 when the relay 30 is switched to the on state. During this, the contact temperature Te1 of the relay 30 rises, and the temperature Te2 around the contacts of the relay 30 also rises accordingly. Then, after the charging end time Ti2, the contact temperature Te1 of the relay 30 and the temperature Te2 of the atmosphere around the contact of the relay 30 both decrease. At this time, the control circuit 24 energizes the temperature rising resistor 34 after the charging end time Ti2, that is, within a predetermined time after the relay is switched from the on state to the off state. As a result, the heat of the temperature rising resistor 34 is transferred to the fixed contact 42 of the relay 30 via the fixed contact terminal connection pattern 46. As a result, the temperature of the fixed contact 42 drops more slowly than the temperature of the atmosphere around the contact of the relay 30. The temperature of the movable contact 40, which is located close to the fixed contact 42 of the relay 30, also drops more slowly than the temperature of the atmosphere around the contact of the relay 30 due to the heat from the fixed contact 42. As a result, the contact temperature Te1 of the relay 30 does not fall below the temperature Te2 of the atmosphere around the contacts of the relay 30, and the contact temperature Te1 of the relay 30 and the temperature Te2 of the atmosphere around the contacts of the relay 30 are the temperatures around the relay 30. That is, the temperature gradually decreases toward the internal temperature of the vehicle-mounted charger 10. As a result, in the vehicle-mounted charger 10, dew condensation on the contacts of the relay 30 can be prevented.
 ところで、従来の車載用充電器では、リレーを覆うケースをスイッチング素子で温めることで、リレーの接点周囲の雰囲気の温度を高温に保ってリレーの接点の氷結を防いでいる。この場合、リレーの接点と接続される接続パターンがリレーの接点よりも冷たいため、熱伝導により、リレーの接点は、接点周囲の雰囲気の温度よりも速く温度が下がる。その結果、リレーの接点の温度が接点の周囲の雰囲気温度よりも低くなり、接点に結露が発生する。従って、スイッチング素子がオフ状態になると、リレーの接点は、氷結してしまう可能性がある。一方、車載用充電器10では、リレー30がオン状態からオフ状態に切り替わった直後に、リレー30の接点温度Te1がリレー30の接点周囲の雰囲気の温度Te2を一時的に下回る状態を昇温用抵抗34からの熱で防止し、リレー30の各接点の結露を防止している。この場合、昇温用抵抗34への通電を終了しても、リレー30の接点には、氷結の原因となる結露が発生していないため、リレー30の接点が氷結することはない。以上より、車載用充電器10では、リレーの接点への結露及びこれによるリレーの接点の凍結を抑制することができる。 By the way, in the conventional in-vehicle charger, the case covering the relay is heated by a switching element to keep the temperature of the atmosphere around the relay contacts high and prevent the relay contacts from freezing. In this case, since the connection pattern connected to the relay contacts is colder than that of the relay contacts, the temperature of the relay contacts drops faster than the temperature of the atmosphere around the contacts due to heat conduction. As a result, the temperature of the contact of the relay becomes lower than the ambient temperature around the contact, and dew condensation occurs on the contact. Therefore, when the switching element is turned off, the contacts of the relay may freeze. On the other hand, in the in-vehicle charger 10, immediately after the relay 30 is switched from the on state to the off state, the contact temperature Te1 of the relay 30 is temporarily lowered to the temperature Te2 of the atmosphere around the contacts of the relay 30 for raising the temperature. The heat from the resistor 34 prevents dew condensation on each contact of the relay 30. In this case, even if the energization of the temperature rising resistor 34 is terminated, the contacts of the relay 30 do not freeze because the dew condensation that causes freezing does not occur at the contacts of the relay 30. From the above, in the vehicle-mounted charger 10, dew condensation on the relay contacts and freezing of the relay contacts due to this can be suppressed.
 また、車載用充電器10では、昇温用抵抗34が設けられた配線層52は固定接点端子接続パターン46が設けられた配線層50の隣の配線層である。従って、車載用充電器10では、配線層52と配線層50との間に複数の配線層を含む場合と比較して、昇温用抵抗34からの熱が固定接点端子接続パターン46に伝わりやすい。その結果、車載用充電器10では、配線層52と配線層50との間に複数の配線層を含む場合と比較して、リレー30の接点を効率よく温めることが可能になる。 Further, in the vehicle-mounted charger 10, the wiring layer 52 provided with the temperature rising resistor 34 is a wiring layer adjacent to the wiring layer 50 provided with the fixed contact terminal connection pattern 46. Therefore, in the vehicle-mounted charger 10, heat from the temperature rising resistor 34 is more likely to be transferred to the fixed contact terminal connection pattern 46 as compared with the case where a plurality of wiring layers are included between the wiring layer 52 and the wiring layer 50. .. As a result, the vehicle-mounted charger 10 can efficiently heat the contacts of the relay 30 as compared with the case where a plurality of wiring layers are included between the wiring layer 52 and the wiring layer 50.
 昇温用抵抗34は、多層基板36の主面と直交する方向から見たときに、固定接点端子接続パターン46と重なる位置に設けられている。さらに、昇温用抵抗34は、多層基板36の主面と直交する方向から見たときに、固定接点端子接続パターン46の内側に収まっている。このように昇温用抵抗34が配置されていることで、例えば、多層基板36と直交する方向から見たときに、昇温用抵抗34が固定接点端子接続パターン46からはみ出している場合と比較して、車載用充電器10では、昇温用抵抗34の熱を固定接点端子接続パターン46に効率的に伝えることができる。その結果、車載用充電器10では、昇温用抵抗34が固定接点端子接続パターン46からはみ出している場合と比較して、リレー30の接点を効率よく温めることが可能になる。 The temperature rising resistor 34 is provided at a position overlapping the fixed contact terminal connection pattern 46 when viewed from a direction orthogonal to the main surface of the multilayer board 36. Further, the temperature rising resistor 34 is contained inside the fixed contact terminal connection pattern 46 when viewed from a direction orthogonal to the main surface of the multilayer substrate 36. By arranging the temperature rising resistor 34 in this way, for example, when viewed from a direction orthogonal to the multilayer board 36, the temperature rising resistor 34 protrudes from the fixed contact terminal connection pattern 46 as compared with the case where the temperature rising resistor 34 protrudes from the fixed contact terminal connection pattern 46. Then, in the vehicle-mounted charger 10, the heat of the temperature rising resistor 34 can be efficiently transferred to the fixed contact terminal connection pattern 46. As a result, in the vehicle-mounted charger 10, the contacts of the relay 30 can be efficiently heated as compared with the case where the temperature rising resistor 34 protrudes from the fixed contact terminal connection pattern 46.
 実施の形態2.
 図7は、実施の形態2に係る車載用充電器が備えるプリチャージ回路に関係する部品の位置関係を示すとともに、プリチャージ回路に含まれる多層基板の断面を示す図である。実施の形態2である車載用充電器10Aと実施の形態1である車載用充電器10との相違点は、昇温用抵抗34の位置である。以下で、具体的に説明する。
Embodiment 2.
FIG. 7 is a diagram showing the positional relationship of parts related to the precharge circuit included in the vehicle-mounted charger according to the second embodiment, and showing a cross section of a multilayer substrate included in the precharge circuit. The difference between the vehicle-mounted charger 10A according to the second embodiment and the vehicle-mounted charger 10 according to the first embodiment is the position of the temperature rising resistor 34. This will be described in detail below.
 図7に示すように、車載用充電器10Aでは、車載用充電器10と同様に、昇温用抵抗34は、多層基板36の他方の主面側に設けられているとともに、多層基板36の主面と直交する方向から見たときに、可動接点端子接続パターン44の内側に収まっている。これに加え、車載用充電器10Aでは、多層基板36の主面と直交する方向から見たときに、昇温用抵抗34が、リレー30と重なる位置に配置されている。このように、昇温用抵抗34を配置することで、例えば、昇温用抵抗34がある位置まで可動接点端子接続パターン44又は固定接点端子接続パターン46を延伸する必要がない。結果として、多層基板36の主面と平行な方向における車載用充電器10Aの省スペース化に寄与する。 As shown in FIG. 7, in the vehicle-mounted charger 10A, similarly to the vehicle-mounted charger 10, the temperature rising resistor 34 is provided on the other main surface side of the multilayer substrate 36, and the multilayer substrate 36 When viewed from a direction orthogonal to the main surface, it fits inside the movable contact terminal connection pattern 44. In addition to this, in the vehicle-mounted charger 10A, the temperature rising resistor 34 is arranged at a position overlapping the relay 30 when viewed from a direction orthogonal to the main surface of the multilayer substrate 36. By arranging the temperature rising resistor 34 in this way, for example, it is not necessary to extend the movable contact terminal connection pattern 44 or the fixed contact terminal connection pattern 46 to the position where the temperature rising resistor 34 is located. As a result, it contributes to space saving of the vehicle-mounted charger 10A in the direction parallel to the main surface of the multilayer substrate 36.
 車載用充電器10Aにおける他の構成は、車載用充電器10と同様である。従って、車載用充電器10Aにおける他の構成は、車載用充電器10での説明のとおりである。 Other configurations of the vehicle-mounted charger 10A are the same as those of the vehicle-mounted charger 10. Therefore, other configurations in the vehicle-mounted charger 10A are as described in the vehicle-mounted charger 10.
 他の実施の形態.
 各実施の形態を、適宜、組み合わせたり、変形や省略することも、本開示の範囲に含まれる。例えば、昇温用抵抗34は、多層基板36上に複数設けられていてもよい。また、上記の実施の形態では、走行用バッテリー14の充電完了後に、昇温用抵抗34への通電の決定を行ったが、バッテリー充電前、つまり、リレー30がオン状態になる前に充電器内部温度センサ25が検知した温度から、昇温用抵抗34への通電の決定をしてもよい。このとき、制御回路24によって行われるリレー30の接点の結露を防止する制御において、リレー30がオン状態からオフ状態になる直前から、昇温用抵抗34に通電してもよい。ただし、この場合でも、制御回路24は、リレー30がオン状態からオフ状態に切り替わった後のあらかじめ定められた時間内は、昇温用抵抗34に対して通電を行う。また、昇温用抵抗34は、多層基板36の主面と直交する方向から見たときに、可動接点端子接続パターン44又は固定接点端子接続パターン46と重なる位置にあればよく、多層基板36の主面と直交する方向から見たときに、昇温用抵抗34が可動接点端子接続パターン44又は固定接点端子接続パターン46からはみ出していてもよい。
Other embodiments.
It is also included in the scope of the present disclosure that each embodiment is appropriately combined, modified or omitted. For example, a plurality of temperature rising resistors 34 may be provided on the multilayer substrate 36. Further, in the above embodiment, after the traveling battery 14 is fully charged, the temperature rise resistor 34 is determined to be energized, but the charger is charged before the battery is charged, that is, before the relay 30 is turned on. From the temperature detected by the internal temperature sensor 25, it may be determined to energize the temperature rising resistor 34. At this time, in the control performed by the control circuit 24 to prevent dew condensation on the contacts of the relay 30, the temperature rising resistor 34 may be energized immediately before the relay 30 is turned from the on state to the off state. However, even in this case, the control circuit 24 energizes the temperature rising resistor 34 within a predetermined time after the relay 30 is switched from the on state to the off state. Further, the temperature rising resistor 34 may be located at a position overlapping the movable contact terminal connection pattern 44 or the fixed contact terminal connection pattern 46 when viewed from a direction orthogonal to the main surface of the multilayer board 36, and the multilayer board 36 When viewed from a direction orthogonal to the main surface, the temperature rising resistor 34 may protrude from the movable contact terminal connection pattern 44 or the fixed contact terminal connection pattern 46.
 10,10A 車載用充電器、12 交流電源、14 走行用バッテリー、16 AC/DCコンバータ、20 コンデンサ、24 制御回路、30 リレー、34 昇温用抵抗、36 多層基板、40 可動接点(接点)、42 固定接点(接点)、43 ケース、44 可動接点端子接続パターン(接続パターン)、46 固定接点端子接続パターン(接続パターン)、50 配線層(第1の配線層)、52 配線層(第2の配線層) 10, 10A in-vehicle charger, 12 AC power supply, 14 running battery, 16 AC / DC converter, 20 capacitors, 24 control circuits, 30 relays, 34 heating resistance, 36 multilayer boards, 40 movable contacts (contacts), 42 fixed contact (contact), 43 case, 44 movable contact terminal connection pattern (connection pattern), 46 fixed contact terminal connection pattern (connection pattern), 50 wiring layer (first wiring layer), 52 wiring layer (second) Wiring layer)

Claims (4)

  1.  交流電源からの交流電圧を直流電圧に変換するAC/DCコンバータと、
     前記AC/DCコンバータの出力端と走行用バッテリーとの間に設けられたコンデンサと、
     前記コンデンサへの通電経路を切り替える接点を有し、前記接点がケースに覆われたリレーと、
     前記リレーが一方の主面に設けられ、前記接点に接続される接続パターンを有する多層基板と、
     前記多層基板の主面と直交する直交方向から見たときに前記接続パターンと重なる位置であって、前記接続パターンが位置する第1の配線層と異なる第2の配線層に設けられた昇温用抵抗と、
     前記走行用バッテリーへの通電が終了し前記リレーがオン状態からオフ状態に切り替わった後のあらかじめ定められた時間内は、前記昇温用抵抗に通電する制御回路と、を備える車載用充電器。
    An AC / DC converter that converts AC voltage from an AC power supply to DC voltage,
    A capacitor provided between the output end of the AC / DC converter and the traveling battery,
    A relay that has a contact that switches the energization path to the capacitor, and the contact is covered with a case.
    A multilayer board in which the relay is provided on one main surface and has a connection pattern connected to the contact.
    A temperature rise provided in a second wiring layer that overlaps the connection pattern when viewed from an orthogonal direction orthogonal to the main surface of the multilayer substrate and is different from the first wiring layer in which the connection pattern is located. Resistance and
    An in-vehicle charger including a control circuit that energizes the temperature rising resistor within a predetermined time after the energization of the traveling battery is completed and the relay is switched from the on state to the off state.
  2. 前記第2の配線層は、前記第1の配線層の隣の配線層である請求項1に記載の車載用充電器。 The vehicle-mounted charger according to claim 1, wherein the second wiring layer is a wiring layer adjacent to the first wiring layer.
  3.  前記昇温用抵抗は、前記直交方向から見たときに、前記接続パターンの内側に収まっている請求項1または請求項2に記載の車載用充電器。 The vehicle-mounted charger according to claim 1 or 2, wherein the heating resistance is contained inside the connection pattern when viewed from the orthogonal direction.
  4.  前記昇温用抵抗は、前記多層基板の他方の主面に設けられるとともに、前記直交方向から見たときに、前記リレーと重なる位置に設けられている請求項1から請求項3のいずれか1項に記載の車載用充電器。 Any one of claims 1 to 3 is provided on the other main surface of the multilayer substrate and is provided at a position overlapping the relay when viewed from the orthogonal direction. The in-vehicle charger described in the section.
PCT/JP2019/020570 2019-05-24 2019-05-24 Vehicle mounted charging device WO2020240607A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2019/020570 WO2020240607A1 (en) 2019-05-24 2019-05-24 Vehicle mounted charging device
JP2021522567A JP6958764B2 (en) 2019-05-24 2019-05-24 Car charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/020570 WO2020240607A1 (en) 2019-05-24 2019-05-24 Vehicle mounted charging device

Publications (1)

Publication Number Publication Date
WO2020240607A1 true WO2020240607A1 (en) 2020-12-03

Family

ID=73552849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020570 WO2020240607A1 (en) 2019-05-24 2019-05-24 Vehicle mounted charging device

Country Status (2)

Country Link
JP (1) JP6958764B2 (en)
WO (1) WO2020240607A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104281A (en) * 2006-10-18 2008-05-01 Toyota Motor Corp Power supply device
JP2015156254A (en) * 2012-05-31 2015-08-27 三洋電機株式会社 Power supply and electric vehicle having the same
WO2017022009A1 (en) * 2015-07-31 2017-02-09 日産自動車株式会社 Method and device for controlling relays of onboard motor
JP2017103976A (en) * 2015-12-04 2017-06-08 トヨタ自動車株式会社 Charger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008104281A (en) * 2006-10-18 2008-05-01 Toyota Motor Corp Power supply device
JP2015156254A (en) * 2012-05-31 2015-08-27 三洋電機株式会社 Power supply and electric vehicle having the same
WO2017022009A1 (en) * 2015-07-31 2017-02-09 日産自動車株式会社 Method and device for controlling relays of onboard motor
JP2017103976A (en) * 2015-12-04 2017-06-08 トヨタ自動車株式会社 Charger

Also Published As

Publication number Publication date
JPWO2020240607A1 (en) 2021-09-27
JP6958764B2 (en) 2021-11-02

Similar Documents

Publication Publication Date Title
JP6229539B2 (en) Vehicle battery control device
JP2001206236A (en) Current-carrying control device and electric power steering system
US20080180058A1 (en) Plug-in battery charging booster for electric vehicle
JP2006280109A (en) Voltage converting circuit for electric vehicle
US20130033232A1 (en) Storage battery device
US10940768B2 (en) Main relay protection device
US11135928B2 (en) Electric system of a road vehicle provided with a DC-DC electronic power converter
US20190366861A1 (en) Dc/dc conversion unit
JP2014075297A (en) Power storage system
JP6579320B2 (en) In-vehicle battery temperature control device
US6215277B1 (en) Electrical charging system
KR101000160B1 (en) Device for protecting battery switch and method thereof
JP2010200529A (en) Apparatus and method for charging control, charging device, and program
JP4771172B2 (en) Smoothing capacitor discharge device for vehicle power converter
JP6958764B2 (en) Car charger
WO2013180018A1 (en) Power supply device, and electric vehicle equipped with said power supply device
KR20210036348A (en) Power supply device with fuel cell device and voltage drop method in fuel cell device
CN111971870B (en) Auxiliary power supply control device for vehicle and auxiliary power supply device for vehicle
CN101722864A (en) Power supply device and electric vehicle incorporating said device
CN111316557A (en) Power conversion device
CN115136496A (en) Active discharge device and method
JP6726249B2 (en) Main relay protection device
US20200101848A1 (en) Junction box controller
JP6054648B2 (en) Printed circuit board for compressor housing
JP7363949B2 (en) Vehicle control method, vehicle control device and vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522567

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930508

Country of ref document: EP

Kind code of ref document: A1