WO2020239129A1 - 一种基于组合透镜的线激光匀化发生装置 - Google Patents

一种基于组合透镜的线激光匀化发生装置 Download PDF

Info

Publication number
WO2020239129A1
WO2020239129A1 PCT/CN2020/094736 CN2020094736W WO2020239129A1 WO 2020239129 A1 WO2020239129 A1 WO 2020239129A1 CN 2020094736 W CN2020094736 W CN 2020094736W WO 2020239129 A1 WO2020239129 A1 WO 2020239129A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
laser
plano
cylindrical lens
line laser
Prior art date
Application number
PCT/CN2020/094736
Other languages
English (en)
French (fr)
Inventor
吴彦林
Original Assignee
西安精英光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安精英光电技术有限公司 filed Critical 西安精英光电技术有限公司
Publication of WO2020239129A1 publication Critical patent/WO2020239129A1/zh
Priority to US17/534,470 priority Critical patent/US11960097B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0916Adapting the beam shape of a semiconductor light source such as a laser diode or an LED, e.g. for efficiently coupling into optical fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0911Anamorphotic systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/06Simple or compound lenses with non-spherical faces with cylindrical or toric faces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the utility model relates to a line laser generating device, in particular to a line laser homogenizing generating device based on a combined lens.
  • Semiconductor lasers are a class of lasers that use semiconductor materials as laser working materials. They have the characteristics of small size, light weight, wide wavelength range, and high coherence, and are suitable for mass production. In the early 1980s, semiconductor lasers were mainly applied in optical fiber communication technology, and they are still indispensable and vital devices in the field of optical communication. Since the 1990s, due to the continuous maturity of optoelectronic technology, the demand for optoelectronic technology in various fields has become higher and higher, which has made the practical field of optoelectronic technology continue to expand. An indispensable device in the fields of material processing, printing, and optical communications.
  • the line laser is converted from a point laser through an optical lens. It can be applied to button sewing machines, riveting machines, bag opening machines, cutting beds, tacking machines, spreading machines, etc. It is convenient and quick to use, intuitive and practical, and can be used to a large extent Improve work efficiency.
  • the one-line laser has clear lines, compact and easy to install, and can provide supporting products and technical support for various clothing equipment manufacturers.
  • the installation machine of the laser marking device is simple and convenient to use. It can be installed on the vertical or horizontal surface of the machine to provide a visible laser marking line, so that there is a visible, non-contact positioning line to guide the operation process during the entire production process , It has the advantages of convenient production operation and improved production efficiency.
  • the laser line can be fine-tuned arbitrarily in the three-dimensional space, and the best use effect has been achieved. At present, line lasers on the market are mainly obtained through two methods: cylindrical mirror and Powell prism.
  • the ordinary spherical cylindrical mirror can make the laser beam pass through and turn it into a line laser.
  • the production process is relatively simple and can be mass-produced.
  • the spot of the laser diode light source is basically Gaussian
  • the line obtained by the ordinary spherical cylindrical mirror For laser the spot is still approximately Gaussian, and the energy distribution is uneven. Due to the development of 3D structured light and machine vision, the accuracy requirements for one-dimensional laser line projection are getting higher and higher, which is mainly reflected in the straightness, central symmetry and uniformity of the line energy, straightness and symmetry of the line.
  • Powell Lens is a kind of optical scribing prism (aspherical cylindrical lens), which allows the laser beam to pass through and can be optimally classified into a straight line with uniform optical density, good stability and good linearity.
  • the uniformity of Powell prism projection is better than that of cylindrical lens, which can eliminate the central hot spot and faded edge distribution of Gaussian beam.
  • Powell prisms one of the characteristics of Powell prisms is that there are strict requirements on the size of the incident beam.
  • the special DOE diffractive lens can also realize the one-dimensional beam, and can realize more complicated beam projection, but DOE has strict requirements on the laser wavelength and spectral width, and it is difficult to achieve the linewidth accuracy of the micron level, and the stray light is serious.
  • the DOE diffractive lens The high processing cost still limits its scope of application.
  • the purpose of the present utility model is to solve the above-mentioned problems in the prior art and provide a line laser homogenization generator based on a combined lens, which can generate a line laser with uniform optical density, good stability and good linearity, low cost and easy achieve.
  • the technical solution adopted by the present utility model is: a laser diode and an aspheric focusing lens and a combined lens that are sequentially arranged after the laser diode.
  • the combined lens is composed of a cylindrical lens and a plano-convex cylindrical lens, and Cylindrical lenses and plano-convex cylindrical lenses are arranged in order on the optical path; one end of the aspherical focusing lens is aspherical, the light emitted by the laser diode is focused by the aspherical focusing lens, and the combined lens can disperse the focused beam It is a uniform line laser.
  • the cylindrical mirror and plano-convex cylindrical lens are coaxial, the cylindrical mirror disperses the laser beam into a line laser, and the plano-convex cylindrical lens can focus the light diverging from both ends of the line light source to the middle, so that the energy distribution is not distributed. Uniform line laser homogenization.
  • the convex surface of the plano-convex cylindrical lens faces the cylindrical lens or the flat surface faces the cylindrical lens.
  • plano-convex cylindrical lens There is a detector on the optical path behind the plano-convex cylindrical lens. The closer the plano-convex cylindrical lens is to the detector, the narrower the line width.
  • the aspheric focusing lens is made of D-ZK3 material optical glass.
  • the cylindrical lens and plano-convex cylindrical lens are all made of BK7 material optical glass.
  • the utility model has the following beneficial effects: the laser diode adopts standard photoelectric devices, and its electro-optical conversion efficiency is high.
  • the light emitted by the laser diode is focused by an aspherical focusing lens, and the combined lens can focus
  • the beam is dispersed into a uniform line laser.
  • the plano-convex cylindrical lens will focus the light diverging from both ends of the line light source to the middle, so that the energy distribution of the entire line source is uniform.
  • the cylindrical mirror and the plano-convex cylindrical lens follow certain optical laws , The distribution of the two can be determined according to the requirements of the entire optical system.
  • the utility model integrates the advantages of the above two line laser optical structures in the device structure.
  • the combined lens can not only generate a line laser with uniform optical density, good stability and good linearity, but also realize large-scale industrial mass production. And it is cheap, easy to implement, and has good application prospects.
  • the utility model has relatively low requirements on parameters such as the size, diameter, and thickness of the incident beam, and devices of the same specification can meet different target requirements through adjustment.
  • Figure 1 is a schematic diagram of the structure of the plano-convex cylindrical lens of the utility model with the convex surface facing the cylindrical lens;
  • Figure 2 is a schematic structural view of the plano-convex cylindrical lens of the present invention with the plane facing the cylindrical lens;
  • Figure 3 is a schematic diagram of the structure of the cylindrical mirror of the utility model
  • Figure 4 is a schematic diagram of the structure of the plano-convex cylindrical lens of the present invention.
  • Fig. 5 is a schematic diagram of the linear long optical path with the convex surface of the plano-convex cylindrical lens of the present invention facing the cylindrical lens;
  • FIG. 6 is a schematic diagram of the long optical path of the plano-convex cylindrical lens of the present invention facing the cylindrical lens;
  • Figure 7 is a schematic diagram of the linewidth optical path of the present invention.
  • Figure 8 is a test diagram of the utility model's beam lateral distribution
  • Figure 9 is a test diagram of the longitudinal distribution of the beam of the utility model.
  • 1-Laser diode 2-Aspheric focusing lens; 3-Combined lens; 4-Detector; 21-Cylindrical lens; 22-Plano-convex cylindrical lens;
  • the present utility model includes a laser diode 1, an aspherical focusing lens 2 and a combined lens 3 in structure; the light emitted by the laser diode 1 is focused by the aspherical focusing lens 2, and then the beam is dispersed by the combined lens 3 It is a uniform line laser; laser diode 1 is a standard optoelectronic device with high electro-optical conversion efficiency; one end of aspherical focusing lens 2 is aspherical and the material is D-ZK3; combined lens 3 is composed of cylindrical lens 21 and flat convex column The surface lens 22 is made of BK7.
  • the combined lens 3 of the present invention is composed of a cylindrical lens 21 and a plano-convex cylindrical lens 22.
  • the cylindrical lens 21 is coaxial with the plano-convex cylindrical lens 22.
  • the convex surface or plane of the plano-convex cylindrical lens 22 Toward the cylindrical mirror 21, the cylindrical mirror 21 disperses the laser beam into a line laser.
  • the plano-convex cylindrical lens 22 can focus the light diverging from both ends of the line light source toward the middle, so that the energy distribution of the entire line light source is even.
  • Plano-convex cylindrical lens 22 can determine the distance between the two according to the requirements of the entire optical system.
  • Cylindrical lens 21 and plano-convex cylindrical lens 22 follow the following rule: the closer the distance between cylindrical lens 21 and aspheric focusing lens 2, the line width The narrower; the closer the cylindrical lens 21 and the plano-convex cylindrical lens 22 are, the wider the line width; the closer the plano-convex cylindrical lens 22 is to the detector, the narrower the line width.
  • the present utility model emits laser light from laser diode 1 after focusing the laser light through aspherical focusing lens 2, and then passing through a combined lens 3.
  • the cylindrical mirror 21 in the combined lens 3 diverges the laser beam into a line laser.
  • the plano-convex cylindrical lens 22 homogenizes the line laser with uneven energy distribution, and finally irradiates the detector 4.
  • the linewidth distribution of the entire optical system of the present invention is basically determined by the aspherical focusing lens 2.
  • the laser beam emitted by the laser diode 1 is focused by the aspherical focusing lens 2, and passes through the combined lens 3 to reach the detector 4. During this period, the light path of the beam does not change significantly.
  • the line width is the thinnest at the focal length of the entire optical system, and the further away from the focal length, the wider the line width.
  • the energy distribution of the beam is basically uniform except for a small distance between the two ends of the beam.
  • the beam energy distribution is concentrated, and there is only one peak, and the beam quality is excellent.

Abstract

一种基于组合透镜(3)的线激光匀化发生装置,包括激光二极管(1)以及依次设置在激光二极管(1)之后的非球聚焦镜(2)和组合透镜(3),组合透镜(3)由柱面镜(21)和平凸柱面透镜(22)组成,且柱面镜(21)和平凸柱面透镜(22)依次布置在光路上;非球聚焦镜(2)的其中一端面为非球面,激光二极管(1)发出的光经过非球聚焦镜(2)进行聚焦,组合透镜(3)能够将聚焦后的光束分散为均匀的线激光。整合了两种线激光光学结构的优点,利用组合透镜(3)既可以生成光密度均匀、稳定性好、直线性好的线激光,又可以实现工业上的大规模量产,价格便宜,易于实现,方便普及,对入射光束尺寸,直径和厚度等参数要求较低,同样规格的器件通过调整可达到不同要求。

Description

一种基于组合透镜的线激光匀化发生装置 技术领域
本实用新型涉及线激光发生装置,具体涉及一种基于组合透镜的线激光匀化发生装置。
背景技术
半导体激光器是以半导体材料作为激光工作物质的一类激光器,具有体积小、重量轻、波长范围广、相干性高等特性,并且适宜大量生产。半导体激光器在20世纪80年代初期,其主要的应用领域是在光纤通信技术方面,并且至今仍是光通信领域不可或缺、至关重要的器件。20世纪90年代开始,由于光电子技术的不断成熟,各个领域对于光电子技术的需求越来越高,使得光电子技术的实用领域不断扩大,随着半导体激光器研究的不断深入,目前已经成为军事、医疗、材料加工、印刷业以及光通信等领域不可或缺的装置。
线激光是点激光通过光学透镜变换而来的,能够应用于钉扣机、铆钉机、开袋机、裁床、套结机、拉布机等,使用方便快捷且直观实用,能较大幅度的提高工作效率。一字线激光器线条清晰,小巧且易于安装,能够为各种服装设备生产厂家提供配套产品和技术支持。激光标线器的安装机使用简单方便,可安装在使用机械的垂直或水平面上,提供一条可见的激光标线,使得在整个生产过程中有一条可见的、非接触的定位线来指导操作过程,具有方便生产操作,提高生产效率的优点,激光线可在三维空间任意微调,已达到最佳使用效果。目前市场上线激光主要通过柱面镜和鲍威尔棱镜这两种方法来获得。
普通球面柱面镜可使激光束通过后变为线激光,生产工艺较为简单,可以大规模量产,但因为激光二极管光源的光斑基本上为高斯分布,所以用普通球面柱面镜得到的线激光,光斑仍然近似为高斯分布,能量分布不均匀。由于3D结构光和机器视觉的发展,对激光一维投线的精度要求越来越高,主要体现在投线的直线度、中心对称度以及投线能量的均匀度上,直线度和对称度可以通过透镜精调达到相当高的精度,而能量均匀度受制于半导体激光二极 管的光束特性,难以改变中心能量远高于边缘能量的缺点。鲍威尔棱镜(Powell Lenses)是一种光学划线棱镜(非球面柱面镜),它使激光束通过后可以最优化地划归成光密度均匀、稳定性好、直线性好的一条直线。鲍威尔棱镜投线均匀度优于柱面透镜的划线模式,能够消除高斯光束的中心热点和褪色边缘分布。但鲍威尔棱镜的特性之一,就是对入射光束的尺寸有严格要求,或大或小都会影响出射光线在目标位置的均匀性,而且一般要求入射光束的尺寸都比较小,工作距离较远时小出口尺寸会极大的影响投线宽度;同时轴心的对准度也有影响,所以实际生产中在工艺上很不方便。厚度虽然不会影响出射光线的角度,但也会影响目标位置的均匀性。因此,鲍威尔棱镜的产品指标都会指明入射光束尺寸的要求,标注直径和厚度等参数。并且,鲍威尔棱镜的顶部是复杂的二维非球面曲面,也正是由于这些特性,使得鲍威尔棱镜无法大规模量产,并且价格昂贵。特殊DOE衍射镜片也能实现光束一维化,而且可以实现更复杂的光束投影,但DOE对激光波长和谱宽要求严格,形成的难以达到微米级的线宽精度,杂散光严重,DOE衍射镜片加工成本高,仍然限制了它的应用范围。
实用新型内容
本实用新型的目的在于针对上述现有技术中的问题,提供一种基于组合透镜的线激光匀化发生装置,能够生成光密度均匀、稳定性好、直线性好的线激光,成本低,易于实现。
为了实现上述目的,本实用新型采用的技术方案为:包括激光二极管以及依次设置在激光二极管之后的非球聚焦镜和组合透镜,所述的组合透镜由柱面镜和平凸柱面透镜组成,且柱面镜和平凸柱面透镜依次布置在光路上;所述非球聚焦镜的其中一端面为非球面,激光二极管发出的光经过非球聚焦镜进行聚焦,组合透镜能够将聚焦后的光束分散为均匀的线激光。
所述的柱面镜和平凸柱面透镜同轴,所述的柱面镜把激光束分散成线激光,平凸柱面透镜能够将线光源两端发散的光向中间聚焦,使能量分布不均匀的线激光均匀化。
所述的平凸柱面透镜的凸面朝柱面镜或者平面朝柱面镜。
所述柱面镜与非球聚焦镜的距离越近则激光线宽越窄,反之则激光线宽越宽。
平凸柱面透镜后方光路上设有探测器,平凸柱面透镜与探测器越近则线宽越窄。
所述的非球聚焦镜通过D-ZK3材质光学玻璃制备而成。
所述的柱面镜和平凸柱面透镜均通过BK7材质光学玻璃制备而成。
与现有技术相比,本实用新型具有如下的有益效果:激光二极管采用标准光电器件,其电-光转化效率高,激光二极管发出的光经过非球聚焦镜进行聚焦,组合透镜能够将聚焦后的光束分散为均匀的线激光,平凸柱面透镜会将线光源两端发散的光向中间聚焦,使整个线光源的能量分布均匀,柱面镜与平凸柱面透镜遵循一定的光学规律,可按整个光学系统的要求来确定二者分布。本实用新型在装置结构整合了上述两种线激光光学结构的优点,利用组合透镜既可以生成光密度均匀、稳定性好、直线性好的线激光,又可以实现工业上的大规模量产,且价格便宜,易于实现,具备较好的应用前景。此外,本实用新型对入射光束尺寸、直径和厚度等参数要求较低,同样规格的器件通过调整即能够达到不同的目标要求。
附图说明
图1本实用新型平凸柱面透镜的凸面朝柱面镜的结构示意图;
图2本实用新型平凸柱面透镜的平面朝柱面镜的结构示意图;
图3本实用新型柱面镜的结构示意图;
图4本实用新型平凸柱面透镜的结构示意图;
图5本实用新型平凸柱面透镜的凸面朝柱面镜的线长光路示意图;
图6本实用新型平凸柱面透镜的平面朝柱面镜的线长光路示意图;
图7本实用新型线宽光路示意图;
图8本实用新型光束横向分布测试图;
图9本实用新型光束纵向分布测试图;
1-激光二极管;2-非球聚焦镜;3-组合透镜;4-探测器;21-柱面镜;22-平凸柱面透镜;
具体实施方式
下面结合附图对本实用新型做进一步的详细说明。
参见图1-2,本实用新型在结构上包括激光二极管1、非球聚焦镜2和组合透镜3;激光二极管1发出的光经过非球聚焦镜2聚焦后,再经过组合透镜3将光束分散为均匀的线激光;激光二极管1是标准光电器件,电-光转化效率高;非球聚焦镜2其中一端面为非球面,材质是D-ZK3;组合透镜3由柱面镜21和平凸柱面透镜22构成,材质均为BK7。
参见图3-4,本实用新型的组合透镜3由柱面镜21和平凸柱面透镜22构成,柱面镜21与平凸柱面透镜22同轴,平凸柱面透镜22的凸面或平面朝柱面镜21,柱面镜21将激光束分散为线激光,平凸柱面透镜22可以把线光源两端发散的光向中间聚焦,使整个线光源能量分布均匀,柱面镜21与平凸柱面透镜22可按整个光学系统的要求来确定二者距离,柱面镜21与平凸柱面透镜22遵循以下规律:柱面镜21与非球聚焦镜2距离越近,线宽越窄;柱面镜21与平凸柱面透镜22越近,线宽越宽;平凸柱面透镜22与探测器越近,线宽越窄。
参见图5-6,本实用新型通过激光二极管1发出激光经过非球聚焦镜2聚焦激光后,经过组合透镜3,其中,组合透镜3当中的柱面镜21把激光束发散成线激光,由平凸柱面透镜22将能量分布不均匀的线激光均匀化,最后照射在探测器4上。
参见图7,本实用新型整个光学系统的线宽分布基本上由非球聚焦镜2决定,激光二极管1发出的激光束由非球聚焦镜2聚焦,经过组合透镜3,到达探测器4,这期间光束光路改变不明显。整个光学系统焦距处线宽最细,离焦距越远,线宽越宽。
参见图8,通过探测器4探测结果分析得出,光束除两端些许距离能量特别高外,其余各处能量分布基本均匀。参见图9,光束能量分布集中,且仅有一个波峰,光束质量优良。
以上所述仅仅是本实用新型的较佳实施例,并不用以对方案做任何形式上的限定,本领域技术人员应当理解的是,在不脱离本实用新型精神和原则的前提下,该技术方案还可以进行若干简单的修改和替换,这些修改和替换也均会落入由权利要求所划定的保护范围之内。

Claims (7)

  1. 一种基于组合透镜的线激光匀化发生装置,其特征在于:包括激光二极管(1)以及依次设置在激光二极管(1)之后的非球聚焦镜(2)和组合透镜(3),所述的组合透镜(3)由柱面镜(21)和平凸柱面透镜(22)组成,且柱面镜(21)和平凸柱面透镜(22)依次布置在光路上;所述非球聚焦镜(2)的其中一端面为非球面,激光二极管(1)发出的光经过非球聚焦镜(2)进行聚焦,组合透镜(3)能够将聚焦后的光束分散为均匀的线激光。
  2. 根据权利要求1所述基于组合透镜的线激光匀化发生装置,其特征在于:所述的柱面镜(21)和平凸柱面透镜(22)同轴,所述的柱面镜(21)把激光束分散成线激光,平凸柱面透镜(22)能够将线光源两端发散的光向中间聚焦,使能量分布不均匀的线激光均匀化。
  3. 根据权利要求1或2所述基于组合透镜的线激光匀化发生装置,其特征在于:所述的平凸柱面透镜(22)的凸面朝柱面镜(21)或者平面朝柱面镜(21)。
  4. 根据权利要求1或2所述基于组合透镜的线激光匀化发生装置,其特征在于:所述柱面镜(21)与非球聚焦镜(2)的距离越近则激光线宽越窄,反之则激光线宽越宽。
  5. 根据权利要求1所述基于组合透镜的线激光匀化发生装置,其特征在于:平凸柱面透镜(22)后方光路上设有探测器(4),平凸柱面透镜(22)与探测器(4)越近则线宽越窄。
  6. 根据权利要求1所述基于组合透镜的线激光匀化发生装置,其特征在于:所述的非球聚焦镜(2)通过D-ZK3材质光学玻璃制备而成。
  7. 根据权利要求1所述基于组合透镜的线激光匀化发生装置,其特征在于:所述的柱面镜(21)和平凸柱面透镜(22)均通过BK7材质光学玻璃制备而成。
PCT/CN2020/094736 2019-05-30 2020-06-05 一种基于组合透镜的线激光匀化发生装置 WO2020239129A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/534,470 US11960097B2 (en) 2019-05-30 2021-11-24 Combined lenses-based apparatus for line laser uniformity generation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920805160.1U CN209803465U (zh) 2019-05-30 2019-05-30 一种基于组合透镜的线激光匀化发生装置
CN201920805160.1 2019-05-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/534,470 Continuation US11960097B2 (en) 2019-05-30 2021-11-24 Combined lenses-based apparatus for line laser uniformity generation

Publications (1)

Publication Number Publication Date
WO2020239129A1 true WO2020239129A1 (zh) 2020-12-03

Family

ID=68833301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/094736 WO2020239129A1 (zh) 2019-05-30 2020-06-05 一种基于组合透镜的线激光匀化发生装置

Country Status (3)

Country Link
US (1) US11960097B2 (zh)
CN (1) CN209803465U (zh)
WO (1) WO2020239129A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115061283A (zh) * 2022-06-30 2022-09-16 中国科学院西安光学精密机械研究所 一种基于全固态反高斯滤光镜的激光光场均匀性整形装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209803465U (zh) * 2019-05-30 2019-12-17 西安精英光电技术有限公司 一种基于组合透镜的线激光匀化发生装置
CN112260053B (zh) * 2020-10-23 2023-01-03 长春理工大学 高效率的叠阵型半导体激光器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301755A (ja) * 2003-03-31 2004-10-28 Matsushita Electric Works Ltd ライン表示器
CN203241622U (zh) * 2013-03-15 2013-10-16 浙江师范大学 带状光束产生装置
CN103701026A (zh) * 2013-12-30 2014-04-02 青岛镭创光电技术有限公司 激光器及线状激光器
CN109143594A (zh) * 2018-09-18 2019-01-04 深圳市深视智能科技有限公司 一种像差控制的线激光能量匀化系统
CN109581671A (zh) * 2018-11-15 2019-04-05 合肥富煌君达高科信息技术有限公司 一种新型激光二极管整形光路设计
CN209803465U (zh) * 2019-05-30 2019-12-17 西安精英光电技术有限公司 一种基于组合透镜的线激光匀化发生装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355800B2 (en) * 2005-02-07 2008-04-08 Coherent, Inc. Apparatus for projecting a line of light from a diode-laser array

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301755A (ja) * 2003-03-31 2004-10-28 Matsushita Electric Works Ltd ライン表示器
CN203241622U (zh) * 2013-03-15 2013-10-16 浙江师范大学 带状光束产生装置
CN103701026A (zh) * 2013-12-30 2014-04-02 青岛镭创光电技术有限公司 激光器及线状激光器
CN109143594A (zh) * 2018-09-18 2019-01-04 深圳市深视智能科技有限公司 一种像差控制的线激光能量匀化系统
CN109581671A (zh) * 2018-11-15 2019-04-05 合肥富煌君达高科信息技术有限公司 一种新型激光二极管整形光路设计
CN209803465U (zh) * 2019-05-30 2019-12-17 西安精英光电技术有限公司 一种基于组合透镜的线激光匀化发生装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115061283A (zh) * 2022-06-30 2022-09-16 中国科学院西安光学精密机械研究所 一种基于全固态反高斯滤光镜的激光光场均匀性整形装置
CN115061283B (zh) * 2022-06-30 2024-01-30 中国科学院西安光学精密机械研究所 一种基于全固态反高斯滤光镜的激光光场均匀性整形装置

Also Published As

Publication number Publication date
US20220082844A1 (en) 2022-03-17
US11960097B2 (en) 2024-04-16
CN209803465U (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
WO2020239129A1 (zh) 一种基于组合透镜的线激光匀化发生装置
CN103658140B (zh) 一种手持式激光清洗机的光学整型装置
CN107662046B (zh) 一种离轴光路的水导激光加工耦合装置
CN101140196A (zh) 透镜焦距的测量装置及其测量方法和光学质量评估方法
CN105571834A (zh) 一种ccd器件量子效率测量装置
CN103176226A (zh) 用于对半导体激光光束整形的匀光异形透镜、匀光激光光源及光学系统
CN101774089A (zh) 同轴测温成像的激光聚焦系统
CN105406334B (zh) 空间光束耦合系统及其闭环控制方法
CN104191089A (zh) 基于激光器输出光束的三维动态聚焦标刻系统及方法
CN110076449A (zh) 实现大深径比加工的激光头装置
CN202780232U (zh) 同轴测温成像的激光聚焦系统
CN201152808Y (zh) 透镜焦距的测量装置
CN102589428A (zh) 基于非对称入射的样品轴向位置跟踪校正的方法和装置
CN205942120U (zh) 一种带有偏振分束元件的自准光路系统
CN106773025A (zh) 调焦镜头及振镜式激光扫描系统
CN109932826B (zh) 一种用于光学元件缺陷检测的拼接式条形激光装置
CN102980873A (zh) 同轴检测光正入射获得干涉图像的装置
CN104714289A (zh) 一种光路放大的自动对焦装置
CN108152991A (zh) 一种光学镜头的装配方法及装置
CN209147932U (zh) 一种激光成像测距系统
CN108663823A (zh) 光纤激光器qbh中石英端帽的位置调校装置、方法及应用
CN211238806U (zh) 一种基于组合柱面镜的线式激光器
CN203101668U (zh) 用于对半导体激光光束整形的匀光透镜、匀光激光光源及光学系统
CN107807451A (zh) 一种便携式可变焦点长度光学系统
CN201645044U (zh) 一种激光加工系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814257

Country of ref document: EP

Kind code of ref document: A1