WO2020238928A1 - 一种绞笼式天然气水合物连续反应装置 - Google Patents
一种绞笼式天然气水合物连续反应装置 Download PDFInfo
- Publication number
- WO2020238928A1 WO2020238928A1 PCT/CN2020/092477 CN2020092477W WO2020238928A1 WO 2020238928 A1 WO2020238928 A1 WO 2020238928A1 CN 2020092477 W CN2020092477 W CN 2020092477W WO 2020238928 A1 WO2020238928 A1 WO 2020238928A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cage
- gas
- reactor
- natural gas
- cylinder
- Prior art date
Links
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 62
- 239000007789 gas Substances 0.000 claims abstract description 134
- 239000007788 liquid Substances 0.000 claims abstract description 93
- 238000012544 monitoring process Methods 0.000 claims abstract description 19
- 238000001132 ultrasonic dispersion Methods 0.000 claims abstract description 18
- 238000000926 separation method Methods 0.000 claims abstract description 12
- 238000003756 stirring Methods 0.000 claims abstract description 5
- 238000003860 storage Methods 0.000 claims description 37
- 238000003760 magnetic stirring Methods 0.000 claims description 21
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 19
- 230000007246 mechanism Effects 0.000 claims description 18
- 239000000523 sample Substances 0.000 claims description 18
- 230000001105 regulatory effect Effects 0.000 claims description 15
- 238000007789 sealing Methods 0.000 claims description 14
- 238000001816 cooling Methods 0.000 claims description 13
- 238000002347 injection Methods 0.000 claims description 13
- 239000007924 injection Substances 0.000 claims description 13
- 230000018044 dehydration Effects 0.000 claims description 10
- 238000006297 dehydration reaction Methods 0.000 claims description 10
- 239000012495 reaction gas Substances 0.000 claims description 9
- 239000012295 chemical reaction liquid Substances 0.000 claims description 7
- 238000001125 extrusion Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- 230000008569 process Effects 0.000 claims description 4
- 238000005057 refrigeration Methods 0.000 claims description 4
- 230000033228 biological regulation Effects 0.000 claims description 3
- 239000006185 dispersion Substances 0.000 claims description 3
- 239000011521 glass Substances 0.000 claims description 3
- 230000002209 hydrophobic effect Effects 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 4
- 238000005056 compaction Methods 0.000 abstract description 4
- 238000013461 design Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract 1
- 239000003345 natural gas Substances 0.000 description 13
- 239000002002 slurry Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- -1 natural gas hydrates Chemical class 0.000 description 8
- 238000001914 filtration Methods 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 238000010297 mechanical methods and process Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000004677 hydrates Chemical class 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005453 pelletization Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000010517 secondary reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/02—Feed or outlet devices therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J3/00—Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
- B01J3/04—Pressure vessels, e.g. autoclaves
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L7/00—Fuels produced by solidifying fluid fuels
Definitions
- the invention belongs to the technical field of natural gas hydrate production equipment, and relates to a twisted cage type natural gas hydrate continuous reaction device.
- Natural gas hydrate is a non-stoichiometric clathrate crystalline compound in which guest molecules are stored in water molecule cages. Guest molecules of different sizes occupy different water molecule cages to form different types of hydrates. Due to its huge reserves and environmental friendliness, as a clean energy, natural gas hydrate is bound to occupy an important position in the future energy structure. In addition, due to the excellent trapping ability of water molecule cages in natural gas hydrates for guest molecules and the differences in capturing different guest molecules, natural gas hydrates are used in hydrogen storage, natural gas storage, seawater desalination, gas separation and other fields. It also showed unique advantages and broad application prospects.
- 1m 3 natural gas hydrate can decompose 0.8m 3 water and 160-180m 3 natural gas under standard conditions.
- CNG compressed natural gas
- LNG liquefied petroleum gas
- the relatively harsh growth environment of natural gas hydrates leads to difficult crystallization, long induction period, and slow generation speed, which restricts its promotion and application, shortens the induction period of natural gas hydrates, increases the reaction speed, and realizes efficient, rapid and continuous generation technology Is the key to further promotion and application.
- the growth of natural gas hydrate involves four stages of nucleation-crystallite-crystallization-aggregation.
- Chinese Patent 201610005395.3 discloses a continuous gas hydrate slurry synthesis device based on gas throttling technology Including ⁇ -type hydrate reactor, air intake system, collection device, circulation system, and data measurement and control system.
- the ⁇ -type hydrate reactor is directly connected with the intake system, collection device, circulation system and data measurement and control system respectively;
- the ⁇ -type hydrate reactor is divided into the left part and the right part.
- the right part is the gas hydrate generation zone.
- the density of gas hydrate is lower than that of water. After the gas hydrate particles float up, they will automatically flow to the left part. It is the separation and collection area of the hydrate slurry;
- the ⁇ -type hydrate reactor includes a refrigeration coil, a safety valve, a fine mesh filter, a hydrate slurry outlet and a water outlet.
- the refrigeration coil is located on the inner wall of the ⁇ -type hydrate reactor.
- the safety valve is located at the upper left end of the reactor;
- the fine mesh filter is located at the lower end of the left part of the ⁇ -type hydrate reactor, and is arranged obliquely on the inner wall of the ⁇ -type hydrate reactor.
- the hydrate slurry is preliminarily filtered.
- the hydrate slurry flows out from the hydrate slurry outlet.
- the hydrate slurry outlet cannot allow gas to pass through;
- the water outlet is set at the lower left end of the ⁇ -type hydrate reactor for solution circulation;
- ⁇ -type hydrate The upper and lower ends of the reactor are equipped with freely removable plugs for easy installation and maintenance;
- the air inlet system includes a high-pressure gas tank, an air inlet pump, a gas throttling device, a controllable back pressure valve and a dryer, and the high-pressure gas source passes through
- the pressure reducing valve is connected with the gas inlet pump to deliver gas into the ⁇ -type hydrate reactor to make the hydrate generation environment in a gas-saturated state to ensure continuous hydrate generation;
- the gas inlet pump is connected with the gas throttling device to deliver gas at a constant pressure To the throttling device;
- the gas throttling device is located at the lower
- the liquid level sensor is installed at the lower left of the ⁇ -type hydrate reactor to measure the height of the solution obtained after filtration; the left side of the ⁇ -type hydrate reactor
- the water outlet at the lower end of the part is connected with a one-way check valve, and only water is allowed to flow from the outlet;
- the inlet of the suction pump is connected with the one-way check valve, and the outlet is connected with the inlet pump;
- the suction pump is automatically based on the height of the solution obtained after filtration Run, the one-way check valve opens and closes following the start and stop of the suction pump; when the height of the solution obtained after filtration is greater than the set value, it means there is too much water, the suction pump automatically starts to draw out the solution, and the one-way valve opens and filters The resulting solution will be re-supplied to the reactor to achieve the weight of the solution Reuse; when the height of the solution obtained after filtration is less than the set value, the suction pump stops running, and the one-way valve is automatically closed
- the temperature sensor and pressure sensor are installed at the upper end of the reactor to detect Temperature and pressure; temperature sensor and pressure sensor are connected to the industrial computer through the A/D conversion module, and each pump and valve are automatically controlled by the industrial computer;
- Chinese patent 201811521133.8 discloses a continuous hydrate granulation device including hydration Material reactor, steady flow liquid supply system, steady flow gas supply system, temperature control system, granulation extrusion system and drive control system; hydrate reactor, a horizontally placed pressure-bearing round pipe with an air inlet at the bottom , There is a liquid inlet on the side; a steady flow liquid supply system, which feeds the solution into the hydrate reactor at a constant speed; a steady flow gas supply system, which feeds gas into the hydrate reactor at a constant speed; temperature control system, controls the flow The temperature of the gas and solution entering the hydrate reactor; the pelletizing extrusion system includes three magnetic pistons placed in the hydrate reactor and movable along the axis of the hydrate reactor.
- the magnetic pistons are cylindrical and The outer wall of the magnetic piston is in airtight contact with the inner wall of the hydrate reactor; the drive control system includes three drive magnetic strips that are placed outside the hydrate reactor and can move along the axis of the hydrate reactor, three drive magnetic strips and three The magnetic pistons correspond one to one, and the corresponding magnetic pistons move synchronously by driving the movement of the magnetic strip. Therefore, the mechanical method is the key to the industrial application of natural gas hydrate.
- the purpose of the present invention is to overcome the shortcomings of the prior art and seek to design a cage-type natural gas hydrate continuous reaction device to realize the high-efficiency, rapid and continuous reaction of natural gas hydrate, as well as separation, compaction and collection.
- the main structure of the cage-type natural gas hydrate continuous reaction device of the present invention includes a cage-cage reactor, a collection unit, an ultrasonic dispersion unit, a control and monitoring unit, a power unit, a gas supply unit, a liquid supply unit and High and low temperature thermostat; the twisting cage reactor is equipped with a collection unit, an ultrasonic dispersion unit, and a control and monitoring unit.
- the upper end of the twisting cage reactor is connected with the power unit, and the lower end of the twisting cage reactor is respectively connected with the gas supply unit and the liquid supply unit
- the stranding cage reactor, the collection unit, the partial components of the ultrasonic dispersion unit, the partial components of the control and monitoring unit, the power unit, the partial components of the air supply unit and the liquid supply unit are arranged in a high and low temperature thermostat.
- the main structure of the twisting cage reactor involved in the present invention includes a cylinder, a reaction window, a sealing ring, a No. 1 pressure plate, a discharge port, an upper plug, a lower plug, a quick opening clamp, a bearing, a cage rod, and a cage Blades and through holes; the upper and lower parts of the cylindrical structure of the ring-shaped structure respectively open a set of reaction windows, a sealing ring is arranged between the barrel and the reaction windows, and the reaction windows and the sealing ring are made of a No. 1 pressure plate bolt type Fixed, the upper end of the cylinder is provided with a discharge port with a circular structure. The top and bottom of the cylinder are respectively closed by an upper plug and a lower plug.
- a quick opening is provided between the cylinder and the upper and lower plugs.
- the clamp, the lower plug has a built-in bearing, the hollow of the cylinder is provided with a cage rod, the bearing is connected with the cage rod, the cage rod is provided with a spiral structure cage blade, and the cage blades are evenly distributed with through holes.
- the main structure of the collection unit involved in the present invention includes a ball valve, a bellows, a collection tank, a plug, a quick-opening clamp and a collection window; one end of the ball valve is connected with the discharge port, and the other end of the ball valve is flexibly connected with the collection tank through the bellows ,
- the top of the collection tank is provided with a plug, and a quick-opening clamp is installed between the collection tank and the plug.
- the upper and lower parts of the collection tank are respectively opened with a set of collection windows.
- the main structure of the ultrasonic dispersion unit involved in the present invention includes an ultrasonic probe, a sealing gasket, a No. 2 pressure plate, a wire and an ultrasonic generator; the ultrasonic probe is embedded in the lower part of the cylinder 1/4 away from the lower plug, and the cylinder and the ultrasonic probe A sealing gasket is arranged in the room, and the ultrasonic probe is fixed by a No. 2 pressure plate bolt type, and the ultrasonic probe is connected to an ultrasonic generator set outside the high and low temperature thermostat through a wire passing through the No. 2 pressure plate.
- the main structure of the control and monitoring unit involved in the present invention includes a No. 1 temperature sensor, a No. 1 pressure sensor, a cable and a data acquisition box; the No. 1 temperature sensor is buried in the lower plug, and the No. 1 pressure sensor is arranged on the upper part of the cylinder.
- the three-way connection, the three-way connection is also connected to the cylinder vent valve, the No. 1 temperature sensor and the No. 1 pressure sensor are respectively connected to the data acquisition box set outside the high and low temperature thermostat through cables.
- the main structure of the power unit involved in the present invention includes a motor and a magnetic stirring mechanism; the motor is connected to the magnetic stirring mechanism, the magnetic stirring mechanism is connected to the upper plug, and the stirring rod of the magnetic stirring mechanism extends into the cylinder through the upper plug and connects to the cage Rod connection.
- the main structure of the gas supply unit involved in the present invention includes a gas cylinder, an intake pipe, a gas storage tank, a pressure regulating valve, an intake valve, a vent valve, a No. 2 temperature sensor, a No. 2 pressure sensor, a gas pipeline, a gas valve, and gas Flow controller and No. 1 one-way valve;
- the gas cylinder set outside the high and low temperature thermostat is connected to the gas storage tank set inside the high and low temperature thermostat through the intake pipe, and the intake pipe is provided with a pressure regulating valve and an intake
- the valve and the vent valve, the pressure regulating valve are located outside the high and low temperature thermostat, the intake valve and the vent valve are located inside the high and low temperature thermostat, the upper part of the gas storage tank is equipped with the No.
- the gas supply pipeline is connected with the twisting cage reactor, and the gas supply pipeline is provided with a gas supply valve, a gas flow controller and a No. 1 one-way valve, and the tail end of the gas supply pipeline passes through the lower plug to communicate with the cylinder.
- the main structure of the liquid supply unit involved in the present invention includes a liquid storage tank, a liquid supply pipeline, a flat flow pump and a No. 2 one-way valve; the liquid storage tank is connected to the cage reactor via the liquid supply pipeline, and the liquid supply pipeline is provided with With the advection pump and the second one-way valve, the end of the liquid supply pipeline passes through the lower plug to communicate with the cylinder.
- the twisting cage reactor involved in the present invention can realize the continuous generation, separation and extrusion dehydration of natural gas hydrate.
- the pressure resistance value of the twisting cage reactor is 25MPa, the air pressure and liquid volume in the twisting cage reactor are kept constant, and the liquid volume is constant.
- the gas-liquid interface is located directly above the ultrasonic probe; the collection unit collects the natural gas hydrate after extrusion and dehydration; the ultrasonic dispersion unit is used to increase the gas-liquid contact area and accelerate the natural gas The generation of hydrate; the control and monitoring unit collects the pressure, temperature and gas flow data inside the cage reactor and displays it on the outside; the power unit provides power for the rotation of the cage rod through the magnetic stirring mechanism; the gas supply unit is used to maintain The pressure in the cage reactor is constant; the liquid supply unit is used to maintain a constant liquid volume in the cage reactor; the high and low temperature thermostat is used to control the temperature of the gas and liquid in the cage reactor, and the temperature adjustment range is -20°C -90°C, can be programmed; the inner wall of the cylinder, the upper plug, the lower plug, the surface of the cage rod and the cage blades are all treated with hydrophobic treatment; the reaction window is located on the cylinder 1/from the upper plug 6 locations and 1/4 of the
- the end of the gas injection port is embedded with a distributor.
- the distributor can Realize gas dispersion, generate micro-bubbles, and increase gas-liquid contact area; one end of the cage rod is connected with the bearing, and the other end is connected with the magnetic stirring rod to ensure the coaxiality of the rotation of the cage rod and the cylinder, and the cage rod is at a constant speed Rotation, the speed adjustment range is 0-600r/min, which can realize stepless speed regulation, the cage rod can be disassembled and replaced; the pitch of the cage blades is gradually reduced from bottom to top to compact the generated natural gas hydrate And dehydration, the through hole can realize the solid-liquid separation, the gradual pitch of the blades of the twisting cage and the size, density and hole pattern of the through hole can be adjusted according to the needs; the plug and the quick opening fixture cooperate to realize the quick opening function of the collection tank; ultra
- the specific process of the continuous gas hydrate continuous reaction of the twisted cage type natural gas hydrate continuous reaction device of the present invention includes three steps including checking the tightness, pre-cooling the reaction gas and liquid, and carrying out the continuous reaction:
- the cylinder When the pressure is maintained at the set value, the cylinder is closed to stop Inject gas, observe the changes in the internal pressure of the cage reactor within 60 minutes through the data acquisition box. The pressure remains unchanged, indicating that the cage reactor, the air inlet pipe and the gas pipe are well sealed. When the pressure changes, find out Rectify the cause of the air leakage and re-check the tightness until it is well sealed;
- the natural gas hydrate enters the collection tank through the discharge port. After the collection tank is full, close the ball valve, remove the collection tank, connect the pre-cooled reserved collection tank with the bellows, and place the new reserved collection tank on the high Pre-cooling in a low temperature thermostat for standby.
- the invention utilizes the stirring, transporting and ultrasonic dispersing unit of the cage rod in the cage reactor to realize the high-efficiency and rapid continuous reaction of natural gas hydrate, and uses the through holes on the cage blades and the cage blades
- the reduced-pitch design realizes the separation and compaction of natural gas hydrates.
- the collection unit is used to realize the collection of natural gas hydrates.
- the continuous reaction of natural gas hydrates can be further accelerated by adding kinetic and thermodynamic promoters;
- the particle's excellent transport capacity can improve the reaction and conversion efficiency of natural gas hydrate by adding porous media such as activated carbon; its structure is simple, easy to use, energy-saving and environmentally friendly, and can use natural gas hydrate slurry as a raw material to realize the secondary reaction of natural gas hydrate. Improving the conversion efficiency of natural gas hydrate has good application prospects.
- Figure 1 is a schematic diagram of the main structure of the present invention.
- Figure 2 is a schematic diagram of the main structure of the twisting cage reactor and the power unit involved in the present invention.
- Figure 3 is a schematic diagram of the main structure of the ultrasonic dispersion unit involved in the present invention.
- Figure 4 is a schematic diagram of the internal installation of the high and low temperature thermostat according to the present invention.
- Figure 5 is a process flow diagram of the present invention for continuous reaction of natural gas hydrate.
- Figure 6 is a physical diagram of the twisted cage type natural gas hydrate continuous reaction device involved in the present invention.
- Fig. 7 is a gas storage multiple curve diagram of the natural gas hydrate reaction of the present invention.
- Fig. 8 is a view of the collecting window during the continuous reaction of natural gas hydrate in the present invention.
- the main structure of the twisted cage type natural gas hydrate continuous reaction device involved in this embodiment includes a twisted cage reactor 1, a collection unit 2, an ultrasonic dispersion unit 3, a control and monitoring unit 4, a power unit 5, a gas supply unit 6, and a liquid supply unit.
- the twisting cage reactor 1 is provided with a collection unit 2, an ultrasonic dispersion unit 3 and a control and monitoring unit 4.
- the upper end of the twisting cage reactor 1 is connected with the power unit 5, and the twisting cage reactor 1
- the lower ends are respectively connected to the gas supply unit 6 and the liquid supply unit 7, the stranding cage reactor 1, the collection unit 2, some components of the ultrasonic dispersion unit 3, some components of the control and monitoring unit 4, the power unit 5, and the gas supply unit 6.
- Part of the components and the liquid supply unit 7 are set in the high and low temperature thermostat 8.
- the main structure of the twist cage reactor 1 involved in this embodiment includes a cylinder 100, a reaction window 101, a sealing ring 102, a No. 1 pressure plate 103, a discharge port 104, an upper plug 105, a lower plug 106, and a quick-opening clamp 107, the bearing 108, the cage rod 109, the cage blade 110 and the through hole 111; the upper and lower parts of the cylinder body 100 of the circular structure are divided into a set of reaction windows 101, the cylinder body 100 and the reaction window 101
- a sealing ring 102 is arranged between the reaction window 101 and the sealing ring 102 by a No.
- the upper end of the cylinder 100 is provided with a circular structure discharge port 104, the top and bottom ends of the cylinder 100 are respectively The upper plug 105 and the lower plug 106 are closed.
- a quick opening clamp 107 is arranged between the cylinder 100 and the upper plug 105 and the lower plug 106.
- the lower plug 106 has a built-in bearing 108.
- the hollow of the cylinder 100 is provided with a twist
- the cage rod 109 and the bearing 108 are connected with the cage rod 109.
- the cage rod 109 is provided with a spiral-shaped cage blade 110, and the cage blades 110 are uniformly distributed with through holes 111.
- the main structure of the collection unit 2 involved in this embodiment includes a ball valve 200, a bellows 201, a collection tank 202, a plug 203, a quick opening clamp 204, and a collection window 205; one end of the ball valve 200 is connected to the discharge port 104, and the ball valve 200 The other end is flexibly connected to the collection tank 202 through a bellows 201.
- the top of the collection tank 202 is provided with a plug 203, and a quick-opening clamp 204 is provided between the collection tank 202 and the plug 203.
- the upper and lower parts of the collection tank 202 are respectively aligned Open a set of collection windows 205.
- the main structure of the ultrasonic dispersion unit 3 involved in this embodiment includes an ultrasonic probe 300, a sealing gasket 301, a second pressure plate 302, a wire 303, and an ultrasonic generator 304; the ultrasonic probe 300 is embedded in the lower part of the cylinder 100 from the lower plug 1061/ At 4 locations, a gasket 301 is arranged between the cylinder 100 and the ultrasonic probe 300.
- the ultrasonic probe 300 is bolted to the No. 2 pressing plate 302.
- the ultrasonic probe 300 is connected to the high and low temperature thermostat through the wire 303 passing through the No. 2 pressing plate 302. 8
- the external ultrasonic generator 304 is connected.
- the main structure of the control and monitoring unit 4 involved in this embodiment includes the No. 1 temperature sensor 400, the No. 1 pressure sensor 401, the cable 402, and the data acquisition box 403; the No. 1 temperature sensor 400 is embedded in the lower plug 106, The pressure sensor 401 is connected to the tee provided on the upper part of the cylinder 100, and the tee is also connected to the cylinder vent valve. The No. 1 temperature sensor 400 and the No. 1 pressure sensor 401 are respectively connected to the data set outside the high and low temperature thermostat 8 through the cable 402. The collection box 403 is connected.
- the main structure of the power unit 5 involved in this embodiment includes a motor 500 and a magnetic stirring mechanism 501; the motor 500 is connected to the magnetic stirring mechanism 501, the magnetic stirring mechanism 501 is connected to the upper plug 105, and the stirring rod 502 of the magnetic stirring mechanism 501 passes through the upper
- the plug 105 extends into the cylinder 100 and is connected to the cage rod 109.
- the main structure of the gas supply unit 6 involved in this embodiment includes a gas cylinder 600, an intake pipe 601, a gas storage tank 602, a pressure regulating valve 603, an intake valve 604, a vent valve 605, a second temperature sensor 606, and a second pressure
- the gas storage tank 602 is connected to the air inlet pipe 601.
- a pressure regulating valve 603, an air inlet valve 604 and a vent valve 605 are arranged on the inlet pipe 601.
- the pressure regulating valve 603 is located outside the high and low temperature thermostat 8, and the inlet valve 604 and the vent valve 605 are located Inside the high and low temperature thermostat 8, the upper part of the gas storage tank 602 is provided with the No. 2 temperature sensor 606 and the No. 2 pressure sensor 607.
- the gas storage tank 602 is connected to the cage reactor 1 through the air supply pipe 608, and the air supply pipe 608 is provided with The gas supply valve 609, the gas flow controller 610 and the No. 1 one-way valve 611, the tail end of the gas supply pipe 608 passes through the lower plug 106 to communicate with the cylinder 100.
- the main structure of the liquid supply unit 7 involved in this embodiment includes a liquid storage tank 700, a liquid supply pipeline 701, an advection pump 702, and a second one-way valve 703; the liquid storage tank 700 is connected to the cage reactor through the liquid supply pipeline 701 1 connection, the liquid supply pipeline 701 is provided with an advection pump 702 and a second one-way valve 703, and the end of the liquid supply pipeline 701 passes through the lower plug 106 to communicate with the cylinder 100.
- the twisting cage reactor 1 involved in this embodiment can realize the continuous generation, separation, and extrusion dehydration of natural gas hydrate.
- the pressure resistance value of the twisting cage reactor 1 is 25 MPa, and the air pressure and liquid volume in the twisting cage reactor 1 are kept constant.
- the gas-liquid interface is located directly above the ultrasonic probe 300;
- the collection unit 2 collects the natural gas hydrate after extrusion and dehydration;
- the ultrasonic dispersion unit 3 is used for Increase the gas-liquid contact area to accelerate the formation of natural gas hydrate;
- the control and monitoring unit 4 collects the pressure, temperature and gas flow data inside the cage reactor 1 and displays it on the outside;
- the power unit 5 uses the magnetic stirring mechanism 501 as the cage
- the rotation of the rod 109 provides power;
- the gas supply unit 6 is used to maintain the pressure in the cage reactor 1 constant;
- the liquid supply unit 7 is used to maintain the liquid volume in the cage reactor 1 constant;
- the high and low temperature thermostat 8 is used to control
- the temperature of gas and liquid in the cage reactor 1 can be adjusted in the range of -20°C-90°C, which can be programmed;
- the surface of the cage blade 110
- the gas injection hole connected to unit 6 is a liquid injection hole used to connect the cage reactor 1 and the liquid supply unit 7.
- a distributor is embedded at the end of the gas injection port. The distributor can realize gas dispersion, generate microbubbles, and increase Air-liquid contact area; one end of the cage rod 109 is connected with the bearing 108, and the other end is connected with the magnetic stirring rod 502 to ensure the coaxiality of the rotation of the cage rod 109 and the cylinder 100.
- the cage rod 109 rotates at a constant speed and the rotation speed
- the adjustment range is 0-600r/min, which can realize stepless speed regulation.
- the cage rod 109 can be disassembled and replaced; the pitch of the cage blades 110 is gradually reduced from bottom to top to compact and compress the generated natural gas hydrate.
- the through hole 111 can realize solid-liquid separation.
- the gradual pitch of the cage blade 110 and the size, density and hole pattern of the through hole 111 can be adjusted according to requirements; the plug 203 is matched with the quick-opening clamp 204 to realize the quick-opening of the collection tank 202 Open function; the ultrasonic generator 304 runs in a split mode, the frequency adjustment range is 0-25kHz, the power adjustment range is 0-1000W;
- the motor 500 is a planetary reduction brushless motor; the magnetic stirring mechanism 501 can provide the motor 500
- the power is transmitted to the cage rod 109, which can realize the cage response
- the high-pressure seal inside the kettle 1; the advection pump 702 is used to continuously and smoothly supply the liquid in the liquid storage tank 700 to the cage reactor 1.
- the specific process of the continuous gas hydrate continuous reaction of the twisted cage type natural gas hydrate continuous reaction device involved in this embodiment includes three steps including checking the tightness, pre-cooling the reaction gas and liquid, and performing the continuous reaction:
- the gas cylinder 600 When the pressure is maintained at 8 MPa, the gas cylinder 600 is closed to stop the gas injection, and the change of the internal pressure of the cage reactor 1 within 60 minutes is observed through the data acquisition box 403. The pressure does not change, indicating that the twisting The cage reactor 1, the air inlet pipe 601 and the air supply pipe 608 are well sealed. When the pressure changes, find out the cause of the air leakage and make corrections, and recheck the tightness until the sealing is good;
- the pitch of the cutter cage blade 110 is gradually reduced to make the cutter cage blade 110
- the natural gas hydrate in the space is squeezed to achieve dehydration.
- the natural gas hydrate enters the collection tank 202 through the discharge port 104. After the collection tank 202 is full, close the ball valve 200, remove the collection tank 202, and reserve the pre-cooled
- the collection tank is connected with the bellows 201, and the new reserved collection tank is placed in the high and low temperature thermostat 8 for pre-cooling and standby.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明属于天然气水合物生产设备技术领域,具体涉及一种绞笼式天然气水合物连续反应装置,主体结构包括绞笼反应釜、收集单元、超声分散单元、控制和监测单元、动力单元、供气单元、供液单元和高低温恒温箱,利用绞笼反应釜中绞笼杆的搅拌和超声分散单元实现天然气水合物高效、快速的连续反应,借助绞笼叶片上的通孔和绞笼叶片的减缩式螺距设计实现天然气水合物的分离和压实,利用收集单元实现天然气水合物的收集,并可通过添加动力学和热力学促进剂进一步加快天然气水合物的连续反应;利用绞笼结构对固体优良的输送能力,通过添加活性炭等多孔介质可提高天然气水合物的反应和转化效率。
Description
本发明属于天然气水合物生产设备技术领域,涉及一种绞笼式天然气水合物连续反应装置。
天然气水合物是由客体分子储存于水分子笼中的一种非化学计量笼型结晶化合物,不同大小的客体分子占据不同的水分子笼,从而形成不同类型的水合物。由于储量巨大、环境友好等特点,作为一种清洁能源,天然气水合物势必在未来能源结构中占据重要的地位。此外,由于天然气水合物中水分子笼对客体分子优异的捕集能力,以及对不同客体分子捕集时表现出来的差异,使得天然气水合物在储氢、天然气储存、海水淡化、气体分离等领域同样表现出了独特的优势和广阔的应用前景。以天然气储存为例,1m
3天然气水合物在标况下可分解0.8m
3水和160-180m
3天然气,与压缩天然气(CNG)和液化石油气(LNG)相比,具有成本低、储存环境温和以及安全等优点。然而,天然气水合物相对苛刻的生长环境导致其结晶困难、诱导期长、生成速度缓慢,限制了推广和应用,缩短天然气水合物的诱导期,增加反应速度,实现高效、快速、连续的生成技术是进一步推广和应用的关键。天然气水合物的生长涉及成核-微晶-结晶-聚集4个阶段,通过改善相平衡条件,提高传热和传质效率,化学法和机械法被广泛用来提高天然气水合物的生成,并取得了非常好的效果。与化学法相比,机械法可以实现天然气水合物的多级、连续反应,以及分离、压实与收集,例如:中国专利201610005395.3公开的一种基于气体节流技术的连续式气体水合物浆合成装置包括π型水合物反应器、进气系统、收集装置、循环系统以及数据测量与控制系统,π型水合物反应器分别与进气系统、收集装置、循环系统以及数据测量与控制系统直接相连;π型水合物反应器分为左部和右部,右部为气体水合物的生成区,利用气体水合物密度低于水的特性,待气体水合物颗粒上浮后自动流到左部,左部为水合物浆 的分离和收集区;π型水合物反应器包括制冷盘管、安全阀、细孔滤网、水合物浆出口以及出水口,制冷盘管位于π型水合物反应器内壁,用于准确控制π型水合物反应器内的温度;安全阀位于反应器左部上端;细孔滤网位于π型水合物反应器左部的下端,倾斜布置贴于π型水合物反应器内壁,对水合物浆进行初步过滤,水合物浆从水合物浆出口流出,该水合物浆出口无法使气体通过;出水口设置在π型水合物反应器左下端,用于溶液循环;π型水合物反应器的上端和下端均设有可自由拆卸的堵头,方便安装和维修;进气系统包括高压气罐、进气泵、气体节流装置、可控背压阀及干燥器,高压气源通过减压阀与进气泵相连,向π型水合物反应器内输送气体,使水合物生成环境处于气饱和状态,保证连续生成水合物;进气泵与气体节流装置连通,以恒定压力将气体输送到节流装置;气体节流装置位于π型水合物反应器右部下端,气体经节流装置流入π型水合物反应器;该节流装置为单向流通,仅允许气体流入;可控背压阀安装在π型水合物反应器右部上端,与干燥器连通,最终接入进气管路连接进气泵;收集装置包括固液混输泵、单向逆止阀以及水合物浆储存罐,固液混输泵通过单向逆止阀与水合物浆出口相连,用于收集所形成的水合物浆;收集到的水合物浆被回收到水合物浆储存罐中;循环系统包括液位传感器、单向逆止阀、抽液泵、进液泵和溶液罐,液位传感器安装在π型水合物反应器左部下端,用于测量过滤后得到的溶液高度;π型水合物反应器左部下端的出水口与单向逆止阀相连,只允许水从出口流出;抽液泵的进口与单向逆止阀相连,出口与进液泵连通;抽液泵根据过滤后得到的溶液高度自动运行,单向逆止阀跟随抽液泵的启停而开关;当过滤后得到的溶液高度大于设定值,表示水量过多,抽液泵自动启动将溶液抽出,单向阀门跟随打开,过滤后得到的溶液将重新补给到反应器内,实现溶液的重复利用;当过滤后得到的溶液高度小于设定值,抽液泵停止运行,单向阀随之自动关闭;连通溶液罐的进液泵自动运行,向反应器内补液,直到反应器左部的溶液液位高于设定值即停止运行;数据测量与控制系统包括温度传感器、 压力传感器、数据转换模块和工控机,温度传感器和压力传感器安装在反应器上端,用于检测反应器内的温度和压力;温度传感器和压力传感器通过A/D转换模块与工控机相连,各泵、阀门均由工控机统一实行自动控制;中国专利201811521133.8公开的一种连续制备水合物的造粒装置包括水合物反应器、稳流供液系统、稳流供气体统、温度控制系统、造粒挤压系统和驱动控制系统;水合物反应器,为水平放置的承压圆管,底部设有进气口,侧面设有进液口;稳流供液系统,以恒定速度向水合物反应器通入溶液;稳流供气系统,以恒定速度向水合物反应器通入气体;温度控制系统,控制通入水合物反应器中的气体、溶液的温度;造粒挤压系统,包括三个置于水合物反应器内且可沿水合物反应器轴向移动的磁性活塞,磁性活塞呈圆柱形,且磁性活塞外壁与水合物反应器内壁气密接触;驱动控制系统,包括三个置于水合物反应器外且可沿水合物反应器轴向移动的驱动磁条,三个驱动磁条与三个磁性活塞一一对应,通过驱动磁条的运动带动与之对应的磁性活塞同步运动。因此,机械法是天然气水合物工业化应用的关键。
发明内容:
本发明的目的在于克服现有技术存在的缺点,寻求设计一种绞笼式天然气水合物连续反应装置,实现天然气水合物高效、快速、连续反应、以及分离、压实和收集。
为了实现上述目的,本发明涉及的绞笼式天然气水合物连续反应装置的主体结构包括绞笼反应釜、收集单元、超声分散单元、控制和监测单元、动力单元、供气单元、供液单元和高低温恒温箱;绞笼反应釜上设置有收集单元、超声分散单元以及控制和监测单元,绞笼反应釜的上端与动力单元连接,绞笼反应釜的下端分别与供气单元和供液单元连接,绞笼反应釜、收集单元、超声分散单元的部分组件、控制和监测单元的部分组件、动力单元、供气单元的部分组件以及供液单元设置于高低温恒温箱中。
本发明涉及的绞笼反应釜的主体结构包括筒体、反应可视窗、密封圈、一号压板、出料口、上堵头、下堵头、快开夹、轴承、绞 笼杆、绞笼叶片和通孔;圆环状结构的筒体的上部和下部分别对开一组反应可视窗,筒体与反应可视窗之间设置有密封圈,反应可视窗和密封圈由一号压板螺栓式固定,筒体的上端开设有圆形结构的出料口,筒体的顶端和底端分别由上堵头和下堵头封闭,筒体与上堵头和下堵头之间设置有快开夹,下堵头内置轴承,筒体的空心中设置有绞笼杆,轴承与绞笼杆连接,绞笼杆上设置有螺旋状结构的绞笼叶片,绞笼叶片上均布有通孔。
本发明涉及的收集单元的主体结构包括球阀、波纹管、收集罐、堵头、快开夹具和收集可视窗;球阀的一端与出料口连接,球阀的另一端通过波纹管与收集罐柔性连接,收集罐的顶部设置有堵头,收集罐与堵头之间设置有快开夹具,收集罐的上部和下部分别对开一组收集可视窗。
本发明涉及的超声分散单元的主体结构包括超声波探头、密封垫、二号压板、导线和超声波发生器;超声波探头埋置于筒体下部距离下堵头1/4处,筒体与超声波探头之间设置有密封垫,超声波探头由二号压板螺栓式固定,超声波探头通过穿过二号压板的导线与设置在高低温恒温箱外部的超声波发生器连接。
本发明涉及的控制和监测单元的主体结构包括一号温度传感器、一号压力传感器、电缆和数据采集箱;一号温度传感器埋置于下堵头中,一号压力传感器与筒体上部设置的三通连接,三通还与筒体放空阀连接,一号温度传感器和一号压力传感器分别通过电缆与设置在高低温恒温箱外部的数据采集箱连接。
本发明涉及的动力单元的主体结构包括电机和磁力搅拌机构;电机与磁力搅拌机构连接,磁力搅拌机构与上堵头连接,磁力搅拌机构的搅拌杆通过上堵头伸入筒体中与绞笼杆连接。
本发明涉及的供气单元的主体结构包括气瓶、进气管道、气体储罐、调压阀、进气阀门、放空阀、二号温度传感器、二号压力传感器、送气管道、送气阀门、气体流量控制器和一号单向阀;设置在高低温恒温箱外部的气瓶通过进气管道与设置在高低温恒温箱内部的气体储罐连接,进气管道上设置有调压阀、进气阀门和放空阀,调压阀 位于高低温恒温箱的外部,进气阀门和放空阀位于高低温恒温箱的内部,气体储罐的上部设置有二号温度传感器和二号压力传感器,气体储罐通过送气管道与绞笼反应釜连接,送气管道上设置有送气阀门、气体流量控制器和一号单向阀,送气管道的尾端穿过下堵头与筒体连通。
本发明涉及的供液单元的主体结构包括储液罐、供液管路、平流泵和二号单向阀;储液罐通过供液管路与绞笼反应釜连接,供液管路上设置有平流泵和二号单向阀,供液管路的尾端穿过下堵头与筒体连通。
本发明涉及的绞笼反应釜能够实现天然气水合物的连续生成、分离和挤压脱水,绞笼反应釜的耐压值为25MPa,绞笼反应釜内的气压和液量保持恒定,且液量小于绞笼反应釜内腔体积的1/4,气液界面位于超声波探头的正上方;收集单元对挤压脱水后的天然气水合物进行收集;超声分散单元用以增加气液接触面积,加速天然气水合物的生成;控制和监测单元采集绞笼反应釜内部的压力、温度和气体流量数据并在外部予以显示;动力单元通过磁力搅拌机构为绞笼杆的旋转提供动力;供气单元用以维持绞笼反应釜内的压力恒定;供液单元用以维持绞笼反应釜内的液量恒定;高低温恒温箱用以控制绞笼反应釜内气体和液体的温度,温度调节范围为-20℃-90℃,能够进行程序化设置;筒体的内壁、上堵头、下堵头、绞笼杆和绞笼叶片的表面均做疏水处理;反应可视窗位于筒体上距离上堵头1/6处和下堵头1/4处,收集可视窗用于观察天然气水合物的收集情况,反应可视窗和收集可视窗为采用高硼硅材质制备的高压玻璃;出料口便于天然气水合物进入收集罐的进行收集;上堵头和下堵头分别与快开夹配合以实现筒体的快开功能;下堵头开设有3个孔,一个是用以装设一号温度传感器的安装孔,一个是用以绞笼反应釜与供气单元连通的注气孔,一个是用以绞笼反应釜与供液单元连通的注液孔,注气口的尾端埋置有分布器,分布器能够实现气体分散,产生微气泡,增加气液接触面积;绞笼杆的一端与轴承连接,另一端与磁力搅拌杆连接,保证绞笼杆与筒体旋转的同轴度,绞笼杆以恒定速度旋转,转速调节范围为 0-600r/min,能够实现无级调速,绞笼杆能够拆卸和更换;绞笼叶片的螺距由下至上逐级减小,以对生成的天然气水合物进行压实和脱水,通孔能够实现固液分离,绞笼叶片的渐变螺距以及通孔的大小、密度和布孔方式根据需求进行调节;堵头与快开夹具配合以实现收集罐的快开功能;超声波发生器以间开方式运行,频率的调节范围为0-25kHz,功率的调节范围为0-1000W;电机为行星减速无刷电机;磁力搅拌机构能够将电机提供的动力传递给绞笼杆,又能实现绞笼反应釜内部的高压密封;平流泵用以将储液罐中的液体连续、平稳地供给至绞笼反应釜。
本发明涉及的绞笼式天然气水合物连续反应装置进行天然气水合物连续反应的具体工艺过程包括检查密封性,预冷反应气、液和进行连续反应共三个步骤:
(1)检查密封性:在高低温恒温箱中设置的倾角调整范围为0°-90°的旋转支架、固定支架和梯形支架上分别安装绞笼反应釜、收集罐和气体储罐,安装其余部件;设定绞笼反应釜倾角为45°,打开控制和监测单元并调零,关闭放空阀,将调压阀调节至设定值,依次打开进气阀门、送气阀门和气瓶的阀门,对绞笼反应釜、进气管道和送气管道的密封性进行检查:气体从气瓶进入绞笼反应釜,绞笼反应釜的内部压力升高,当压力维持在设定值时,关闭气瓶停止注气,通过数据采集箱观察绞笼反应釜的内部压力在60分钟内的变化情况,压力不变,表明绞笼反应釜、进气管道和送气管道的密封良好,压力有变化时,找出漏气原因进行整改,并重新检查密封性,直到密封良好;
(2)预冷反应气、液:密封性检查结束后,关闭送气阀门,打开筒体放空阀,将绞笼反应釜内的气体放空,关闭筒体放空阀,开启平流泵向绞笼反应釜内注入设定量的液体,将调压阀调节至设定值,打开送气阀门,向气体储罐和绞笼反应釜内注入气体;当绞笼反应釜的内部压力稳定在设定值时,注气自动停止,打开高低温恒温箱,将制冷温度调节为设定值,通过数据采集箱实时监测气体储 罐和绞笼反应釜的内部温度,当温度降低为设定值时,反应气、液预冷结束;
(3)进行连续反应:打开电机,设置转速为30r/min,并开启超声波发生器,设定频率为15kHz,功率为600W,超声波发生器以运行10分钟,间歇20分钟的间开方式运行,根据气体消耗量通过平流泵实时向绞笼反应釜的内部补充液体,并维持绞笼反应釜的内部液量恒定,产生的天然气水合物被绞笼叶片携带并向出料口运移,液体沿通孔回流至筒体的底部,天然气水合物在向出料口运移的过程中,螺距逐级减小的绞笼叶片使得绞笼叶片之间的天然气水合物被挤压,实现脱水处理,天然气水合物通过出料口进入收集罐,收集罐集满后,关闭球阀,取下收集罐,将已经预冷的预留收集罐与波纹管连接,并将新的预留收集罐置于高低温恒温箱中进行预冷,备用。
本发明与现有技术相比,利用绞笼反应釜中绞笼杆的搅拌、输运和超声分散单元实现天然气水合物高效、快速的连续反应,借助绞笼叶片上的通孔和绞笼叶片的减缩式螺距设计实现天然气水合物的分离和压实,利用收集单元实现天然气水合物的收集,并可通过添加动力学和热力学促进剂进一步加快天然气水合物的连续反应;利用绞笼结构对固体颗粒优良的输送能力,通过添加活性炭等多孔介质可提高天然气水合物的反应和转化效率;其结构简单,使用方便,节能环保,能够以天然气水合物浆作为原料实现天然气水合物的二次反应,提高天然气水合物的转化效率,具有良好的应用前景。
图1为本发明的主体结构原理示意图。
图2为本发明涉及的绞笼反应釜和动力单元的主体结构原理示意图。
图3为本发明涉及的超声分散单元的主体结构原理示意图。
图4为本发明涉及的高低温恒温箱的内部安装示意图。
图5为本发明进行天然气水合物连续反应的工艺流程图。
图6为本发明涉及的绞笼式天然气水合物连续反应装置的实物图。
图7为本发明的天然气水合物反应的储气倍数曲线图。
图8为本发明进行天然气水合物连续反应时的收集可视窗的视图。
下面通过实施例并结合附图对本发明作进一步说明。
实施例1:
本实施例涉及的绞笼式天然气水合物连续反应装置的主体结构包括绞笼反应釜1、收集单元2、超声分散单元3、控制和监测单元4、动力单元5、供气单元6、供液单元7和高低温恒温箱8;绞笼反应釜1上设置有收集单元2、超声分散单元3以及控制和监测单元4,绞笼反应釜1的上端与动力单元5连接,绞笼反应釜1的下端分别与供气单元6和供液单元7连接,绞笼反应釜1、收集单元2、超声分散单元3的部分组件、控制和监测单元4的部分组件、动力单元5、供气单元6的部分组件以及供液单元7设置于高低温恒温箱8中。
本实施例涉及的绞笼反应釜1的主体结构包括筒体100、反应可视窗101、密封圈102、一号压板103、出料口104、上堵头105、下堵头106、快开夹107、轴承108、绞笼杆109、绞笼叶片110和通孔111;圆环状结构的筒体100的上部和下部分别对开一组反应可视窗101,筒体100与反应可视窗101之间设置有密封圈102,反应可视窗101和密封圈102由一号压板103螺栓式固定,筒体100的上端开设有圆形结构的出料口104,筒体100的顶端和底端分别由上堵头105和下堵头106封闭,筒体100与上堵头105和下堵头106之间设置有快开夹107,下堵头106内置轴承108,筒体100的空心中设置有绞笼杆109,轴承108与绞笼杆109连接,绞笼杆109上设置有螺旋状结构的绞笼叶片110,绞笼叶片110上均布有通孔111。
本实施例涉及的收集单元2的主体结构包括球阀200、波纹管201、收集罐202、堵头203、快开夹具204和收集可视窗205;球 阀200的一端与出料口104连接,球阀200的另一端通过波纹管201与收集罐202柔性连接,收集罐202的顶部设置有堵头203,收集罐202与堵头203之间设置有快开夹具204,收集罐202的上部和下部分别对开一组收集可视窗205。
本实施例涉及的超声分散单元3的主体结构包括超声波探头300、密封垫301、二号压板302、导线303和超声波发生器304;超声波探头300埋置于筒体100下部距离下堵头1061/4处,筒体100与超声波探头300之间设置有密封垫301,超声波探头300由二号压板302螺栓式固定,超声波探头300通过穿过二号压板302的导线303与设置在高低温恒温箱8外部的超声波发生器304连接。
本实施例涉及的控制和监测单元4的主体结构包括一号温度传感器400、一号压力传感器401、电缆402和数据采集箱403;一号温度传感器400埋置于下堵头106中,一号压力传感器401与筒体100上部设置的三通连接,三通还与筒体放空阀连接,一号温度传感器400和一号压力传感器401分别通过电缆402与设置在高低温恒温箱8外部的数据采集箱403连接。
本实施例涉及的动力单元5的主体结构包括电机500和磁力搅拌机构501;电机500与磁力搅拌机构501连接,磁力搅拌机构501与上堵头105连接,磁力搅拌机构501的搅拌杆502通过上堵头105伸入筒体100中与绞笼杆109连接。
本实施例涉及的供气单元6的主体结构包括气瓶600、进气管道601、气体储罐602、调压阀603、进气阀门604、放空阀605、二号温度传感器606、二号压力传感器607、送气管道608、送气阀门609、气体流量控制器610和一号单向阀611;设置在高低温恒温箱8外部的气瓶600通过进气管道601与设置在高低温恒温箱8内部的气体储罐602连接,进气管道601上设置有调压阀603、进气阀门604和放空阀605,调压阀603位于高低温恒温箱8的外部,进气阀门604和放空阀605位于高低温恒温箱8的内部,气体储罐602的上部设置有二号温度传感器606和二号压力传感器607,气体储罐602通过送气管道608与绞笼反应釜1连接,送气管道608上 设置有送气阀门609、气体流量控制器610和一号单向阀611,送气管道608的尾端穿过下堵头106与筒体100连通。
本实施例涉及的供液单元7的主体结构包括储液罐700、供液管路701、平流泵702和二号单向阀703;储液罐700通过供液管路701与绞笼反应釜1连接,供液管路701上设置有平流泵702和二号单向阀703,供液管路701的尾端穿过下堵头106与筒体100连通。
本实施例涉及的绞笼反应釜1能够实现天然气水合物的连续生成、分离和挤压脱水,绞笼反应釜1的耐压值为25MPa,绞笼反应釜1内的气压和液量保持恒定,且液量小于绞笼反应釜1内腔体积的1/4,气液界面位于超声波探头300的正上方;收集单元2对挤压脱水后的天然气水合物进行收集;超声分散单元3用以增加气液接触面积,加速天然气水合物的生成;控制和监测单元4采集绞笼反应釜1内部的压力、温度和气体流量数据并在外部予以显示;动力单元5通过磁力搅拌机构501为绞笼杆109的旋转提供动力;供气单元6用以维持绞笼反应釜1内的压力恒定;供液单元7用以维持绞笼反应釜1内的液量恒定;高低温恒温箱8用以控制绞笼反应釜1内气体和液体的温度,温度调节范围为-20℃-90℃,能够进行程序化设置;筒体100的内壁、上堵头105、下堵头106、绞笼杆109和绞笼叶片110的表面均做疏水处理;反应可视窗101位于筒体100上距离上堵头1051/6处和下堵头1061/4处,收集可视窗205用于观察天然气水合物的收集情况,反应可视窗101和收集可视窗205为采用高硼硅材质制备的高压玻璃;出料口104便于天然气水合物进入收集罐202的进行收集;上堵头105和下堵头106分别与快开夹107配合以实现筒体100的快开功能;下堵头106开设有3个孔,一个是用以装设一号温度传感器400的安装孔,一个是用以绞笼反应釜1与供气单元6连通的注气孔,一个是用以绞笼反应釜1与供液单元7连通的注液孔,注气口的尾端埋置有分布器,分布器能够实现气体分散,产生微气泡,增加气液接触面积;绞笼杆109的一端与轴承108连接,另一端与磁力搅拌杆502连接,保 证绞笼杆109与筒体100旋转的同轴度,绞笼杆109以恒定速度旋转,转速调节范围为0-600r/min,能够实现无级调速,绞笼杆109能够拆卸和更换;绞笼叶片110的螺距由下至上逐级减小,以对生成的天然气水合物进行压实和脱水,通孔111能够实现固液分离,绞笼叶片110的渐变螺距以及通孔111的大小、密度和布孔方式根据需求进行调节;堵头203与快开夹具204配合以实现收集罐202的快开功能;超声波发生器304以间开方式运行,频率的调节范围为0-25kHz,功率的调节范围为0-1000W;电机500为行星减速无刷电机;磁力搅拌机构501能够将电机500提供的动力传递给绞笼杆109,又能实现绞笼反应釜1内部的高压密封;平流泵702用以将储液罐700中的液体连续、平稳地供给至绞笼反应釜1。
本实施例涉及的绞笼式天然气水合物连续反应装置进行天然气水合物连续反应的具体工艺过程包括检查密封性,预冷反应气、液和进行连续反应共三个步骤:
(1)检查密封性:在高低温恒温箱8中设置的倾角调整范围为0°-90°的旋转支架、固定支架和梯形支架上分别安装绞笼反应釜1、收集罐202和气体储罐602,按照主体结构示意图安装其余部件;设定绞笼反应釜1倾角为45°,打开控制和监测单元4并调零,关闭放空阀605,将调压阀603设定为8MPa,依次打开进气阀门604、送气阀门609和气瓶600的阀门,对绞笼反应釜1、进气管道601和送气管道608的密封性进行检查:气体从气瓶600进入绞笼反应釜1,绞笼反应釜1的内部压力升高,当压力维持在8MPa时,关闭气瓶600停止注气,通过数据采集箱403观察绞笼反应釜1的内部压力在60分钟内的变化情况,压力不变,表明绞笼反应釜1、进气管道601和送气管道608的密封良好,压力有变化时,找出漏气原因进行整改,并重新检查密封性,直到密封良好;
(2)预冷反应气、液:密封性检查结束后,关闭送气阀门609,打开筒体放空阀,将绞笼反应釜1内的气体放空,关闭筒体放空阀,开启平流泵702向绞笼反应釜1内注入设定量的液体,将调压阀603设定为6MPa,打开送气阀门609,向气体储罐602和绞笼 反应釜1内注入气体;当绞笼反应釜1的内部压力稳定在6MPa时,注气自动停止,打开高低温恒温箱8,将制冷温度设置为2℃,通过数据采集箱403实时监测气体储罐602和绞笼反应釜1的内部温度,当温度降低为2℃时,反应气、液预冷结束;
(3)进行连续反应:打开电机500,设置转速为30r/min,并开启超声波发生器304,设定频率为15kHz,功率为600W,超声波发生器304以运行10分钟,间歇20分钟的间开方式运行,根据气体消耗量通过平流泵702实时向绞笼反应釜1的内部补充液体,并维持绞笼反应釜1的内部液量恒定,产生的天然气水合物被绞笼叶片110携带并向出料口104运移,液体沿通孔111回流至筒体100的底部,天然气水合物在向出料口104运移的过程中,螺距逐级减小的绞笼叶片110使得绞笼叶片110之间的天然气水合物被挤压,实现脱水处理,天然气水合物通过出料口104进入收集罐202,收集罐202集满后,关闭球阀200,取下收集罐202,将已经预冷的预留收集罐与波纹管201连接,并将新的预留收集罐置于高低温恒温箱8中进行预冷,备用。
Claims (10)
- 一种绞笼式天然气水合物连续反应装置,其特征在于主体结构包括绞笼反应釜、收集单元、超声分散单元、控制和监测单元、动力单元、供气单元、供液单元和高低温恒温箱;绞笼反应釜上设置有收集单元、超声分散单元以及控制和监测单元,绞笼反应釜的上端与动力单元连接,绞笼反应釜的下端分别与供气单元和供液单元连接,绞笼反应釜、收集单元、超声分散单元的部分组件、控制和监测单元的部分组件、动力单元、供气单元的部分组件以及供液单元设置于高低温恒温箱中。
- 根据权利要求1所述的绞笼式天然气水合物连续反应装置,其特征在于绞笼反应釜的主体结构包括筒体、反应可视窗、密封圈、一号压板、出料口、上堵头、下堵头、快开夹、轴承、绞笼杆、绞笼叶片和通孔;圆环状结构的筒体的上部和下部分别对开一组反应可视窗,筒体与反应可视窗之间设置有密封圈,反应可视窗和密封圈由一号压板螺栓式固定,筒体的上端开设有圆形结构的出料口,筒体的顶端和底端分别由上堵头和下堵头封闭,筒体与上堵头和下堵头之间设置有快开夹,下堵头内置轴承,筒体的空心中设置有绞笼杆,轴承与绞笼杆连接,绞笼杆上设置有螺旋状结构的绞笼叶片,绞笼叶片上均布有通孔。
- 根据权利要求1所述的绞笼式天然气水合物连续反应装置,其特征在于收集单元的主体结构包括球阀、波纹管、收集罐、堵头、快开夹具和收集可视窗;球阀的一端与出料口连接,球阀的另一端通过波纹管与收集罐柔性连接,收集罐的顶部设置有堵头,收集罐与堵头之间设置有快开夹具,收集罐的上部和下部分别对开一组收集可视窗。
- 根据权利要求1所述的绞笼式天然气水合物连续反应装置,其特征在于超声分散单元的主体结构包括超声波探头、密封垫、二号压板、导线和超声波发生器;超声波探头埋置于筒体下部距离下堵头1/4处,筒体与超声波探头之间设置有密封垫,超声波探头由二号压 板螺栓式固定,超声波探头通过穿过二号压板的导线与设置在高低温恒温箱外部的超声波发生器连接。
- 根据权利要求1所述的绞笼式天然气水合物连续反应装置,其特征在于控制和监测单元的主体结构包括一号温度传感器、一号压力传感器、电缆和数据采集箱;一号温度传感器埋置于下堵头中,一号压力传感器与筒体上部设置的三通连接,三通还与筒体放空阀连接,一号温度传感器和一号压力传感器分别通过电缆与设置在高低温恒温箱外部的数据采集箱连接。
- 根据权利要求1所述的绞笼式天然气水合物连续反应装置,其特征在于动力单元的主体结构包括电机和磁力搅拌机构;电机与磁力搅拌机构连接,磁力搅拌机构与上堵头连接,磁力搅拌机构的搅拌杆通过上堵头伸入筒体中与绞笼杆连接。
- 根据权利要求1所述的绞笼式天然气水合物连续反应装置,其特征在于供气单元的主体结构包括气瓶、进气管道、气体储罐、调压阀、进气阀门、放空阀、二号温度传感器、二号压力传感器、送气管道、送气阀门、气体流量控制器和一号单向阀;设置在高低温恒温箱外部的气瓶通过进气管道与设置在高低温恒温箱内部的气体储罐连接,进气管道上设置有调压阀、进气阀门和放空阀,调压阀位于高低温恒温箱的外部,进气阀门和放空阀位于高低温恒温箱的内部,气体储罐的上部设置有二号温度传感器和二号压力传感器,气体储罐通过送气管道与绞笼反应釜连接,送气管道上设置有送气阀门、气体流量控制器和一号单向阀,送气管道的尾端穿过下堵头与筒体连通。
- 根据权利要求1所述的绞笼式天然气水合物连续反应装置,其特征在于供液单元的主体结构包括储液罐、供液管路、平流泵和二号单向阀;储液罐通过供液管路与绞笼反应釜连接,供液管路上设置有平流泵和二号单向阀,供液管路的尾端穿过下堵头与筒体连通。
- 根据权利要求1-8所述的绞笼式天然气水合物连续反应装置,其特征在于绞笼反应釜能够实现天然气水合物的连续生成、分离和挤 压脱水,绞笼反应釜的耐压值为25MPa,绞笼反应釜内的气压和液量保持恒定,且液量小于绞笼反应釜内腔体积的1/4,气液界面位于超声波探头的正上方;收集单元对挤压脱水后的天然气水合物进行收集;超声分散单元用以增加气液接触面积,加速天然气水合物的生成;控制和监测单元采集绞笼反应釜内部的压力、温度和气体流量数据并在外部予以显示;动力单元通过磁力搅拌机构为绞笼杆的旋转提供动力;供气单元用以维持绞笼反应釜内的压力恒定;供液单元用以维持绞笼反应釜内的液量恒定;高低温恒温箱用以控制绞笼反应釜内气体和液体的温度,温度调节范围为-20℃-90℃,能够进行程序化设置;筒体的内壁、上堵头、下堵头、绞笼杆和绞笼叶片的表面均做疏水处理;反应可视窗位于筒体上距离上堵头1/6处和下堵头1/4处,收集可视窗用于观察天然气水合物的收集情况,反应可视窗和收集可视窗为采用高硼硅材质制备的高压玻璃;出料口便于天然气水合物进入收集罐的进行收集;上堵头和下堵头分别与快开夹配合以实现筒体的快开功能;下堵头开设有3个孔,一个是用以装设一号温度传感器的安装孔,一个是用以绞笼反应釜与供气单元连通的注气孔,一个是用以绞笼反应釜与供液单元连通的注液孔,注气口的尾端埋置有分布器,分布器能够实现气体分散,产生微气泡,增加气液接触面积;绞笼杆的一端与轴承连接,另一端与磁力搅拌杆连接,保证绞笼杆与筒体旋转的同轴度,绞笼杆以恒定速度旋转,转速调节范围为0-600r/min,能够实现无级调速,绞笼杆能够拆卸和更换;绞笼叶片的螺距由下至上逐级减小,以对生成的天然气水合物进行压实和脱水,通孔能够实现固液分离,绞笼叶片的渐变螺距以及通孔的大小、密度和布孔方式根据需求进行调节;堵头与快开夹具配合以实现收集罐的快开功能;超声波发生器以间开方式运行,频率的调节范围为0-25kHz,功率的调节范围为0-1000W;电机为行星减速无刷电机;磁力搅拌机构能够将电机提供的动力传递给绞笼杆,又能实现绞笼反应釜内部的高压密封;平流泵用以将储液罐中的液体连续、平稳地供给至绞笼反应釜。
- 根据权利要求1所述的绞笼式天然气水合物连续反应装置,其特征在于进行天然气水合物连续反应的具体工艺过程包括检查密封性,预冷反应气、液和进行连续反应共三个步骤:(1)检查密封性:在高低温恒温箱中设置的倾角调整范围为0°-90°的旋转支架、固定支架和梯形支架上分别安装绞笼反应釜、收集罐和气体储罐,安装其余部件;设定绞笼反应釜倾角为45°,打开控制和监测单元并调零,关闭放空阀,将调压阀调节至设定值,依次打开进气阀门、送气阀门和气瓶的阀门,对绞笼反应釜、进气管道和送气管道的密封性进行检查:气体从气瓶进入绞笼反应釜,绞笼反应釜的内部压力升高,当压力维持在设定值时,关闭气瓶停止注气,通过数据采集箱观察绞笼反应釜的内部压力在60分钟内的变化情况,压力不变,表明绞笼反应釜、进气管道和送气管道的密封良好,压力有变化时,找出漏气原因进行整改,并重新检查密封性,直到密封良好;(2)预冷反应气、液:密封性检查结束后,关闭送气阀门,打开筒体放空阀,将绞笼反应釜内的气体放空,关闭筒体放空阀,开启平流泵向绞笼反应釜内注入设定量的液体,将调压阀调节至设定值,打开送气阀门,向气体储罐和绞笼反应釜内注入气体;当绞笼反应釜的内部压力稳定在设定值时,注气自动停止,打开高低温恒温箱,将制冷温度调节为设定值,通过数据采集箱实时监测气体储罐和绞笼反应釜的内部温度,当温度降低为设定值时,反应气、液预冷结束;(3)进行连续反应:打开电机,设置转速为30r/min,并开启超声波发生器,设定频率为15kHz,功率为600W,超声波发生器以运行10分钟,间歇20分钟的间开方式运行,根据气体消耗量通过平流泵实时向绞笼反应釜的内部补充液体,并维持绞笼反应釜的内部液量恒定,产生的天然气水合物被绞笼叶片携带并向出料口运移,液体沿通孔回流至筒体的底部,天然气水合物在向出料口运移的过程中,螺距逐级减小的绞笼叶片使得绞笼叶片之间的天然气水合物 被挤压,实现脱水处理,天然气水合物通过出料口进入收集罐,收集罐集满后,关闭球阀,取下收集罐,将已经预冷的预留收集罐与波纹管连接,并将新的预留收集罐置于高低温恒温箱中进行预冷,备用。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910464078.1 | 2019-05-30 | ||
CN201910464078.1A CN110075756A (zh) | 2019-05-30 | 2019-05-30 | 一种绞笼式天然气水合物连续反应装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020238928A1 true WO2020238928A1 (zh) | 2020-12-03 |
Family
ID=67422724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/092477 WO2020238928A1 (zh) | 2019-05-30 | 2020-05-27 | 一种绞笼式天然气水合物连续反应装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110075756A (zh) |
WO (1) | WO2020238928A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113358810A (zh) * | 2021-06-14 | 2021-09-07 | 大连理工大学 | 一种应用可视釜原位产生微气泡并生成水合物的装置及方法 |
CN115899559A (zh) * | 2022-11-04 | 2023-04-04 | 哈尔滨工程大学 | 水合物法固化储运深远海原始天然气的方法和装置 |
CN118002986A (zh) * | 2024-04-09 | 2024-05-10 | 山西银河阳光科技有限公司 | 一种铝母线带电修复焊接剂的制备方法及装置 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110075756A (zh) * | 2019-05-30 | 2019-08-02 | 青岛科技大学 | 一种绞笼式天然气水合物连续反应装置 |
CN110527573B (zh) * | 2019-10-09 | 2024-03-12 | 青岛科技大学 | 一种活性炭固载天然气水合物连续反应装置 |
CN110984977A (zh) * | 2019-12-24 | 2020-04-10 | 江西省科学院能源研究所 | 一种叠置水平井开采水合物储层实验模拟装置及方法 |
CN116990205A (zh) * | 2019-12-24 | 2023-11-03 | 江西省科学院能源研究所 | 一种测定水合物在多孔介质中分布的实验模拟装置及方法 |
CN111471504B (zh) * | 2020-03-19 | 2021-05-28 | 深圳市燃气集团股份有限公司 | 一种基于环状超分子包裹特性制备可燃冰的快捷方法 |
CN112111309B (zh) * | 2020-09-21 | 2021-05-14 | 青岛科技大学 | 一种同心双螺旋式水合物连续反应装置 |
CN112126482A (zh) * | 2020-09-21 | 2020-12-25 | 青岛科技大学 | 一种双绞笼式水合物连续反应装置 |
CN112357924B (zh) * | 2020-10-27 | 2022-05-20 | 黑龙江科技大学 | 一种二氧化碳水合物饼连续制备装置 |
CN114772665B (zh) * | 2022-05-26 | 2023-08-29 | 青岛科技大学 | 一种连续式水合物法海水淡化装置及方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101113379A (zh) * | 2007-07-11 | 2008-01-30 | 哈尔滨工业大学 | 天然气水合物合成的双级串联反应器 |
CN105670725A (zh) * | 2016-01-06 | 2016-06-15 | 大连理工大学 | 一种基于气体节流技术的连续式气体水合物浆合成方法与装置 |
CN208627255U (zh) * | 2018-08-06 | 2019-03-22 | 西南石油大学 | 一种水合物快速合成装置 |
CN110075756A (zh) * | 2019-05-30 | 2019-08-02 | 青岛科技大学 | 一种绞笼式天然气水合物连续反应装置 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4654010B2 (ja) * | 2004-11-25 | 2011-03-16 | 三井造船株式会社 | ガスハイドレート生成装置 |
KR101213770B1 (ko) * | 2010-10-05 | 2012-12-18 | 한국생산기술연구원 | 이중나선 가스하이드레이트 반응기 |
CN103645285A (zh) * | 2013-12-17 | 2014-03-19 | 中国海洋石油总公司 | 一种可视化天然气水合物模拟试验装置及方法 |
JP6660186B2 (ja) * | 2016-01-15 | 2020-03-11 | 株式会社Ihi | 分離装置 |
CN108102754A (zh) * | 2017-12-15 | 2018-06-01 | 浙江海洋大学 | 一种天然气水合物反应装置 |
CN210121465U (zh) * | 2019-05-30 | 2020-03-03 | 青岛科技大学 | 一种绞笼式天然气水合物连续反应装置 |
-
2019
- 2019-05-30 CN CN201910464078.1A patent/CN110075756A/zh active Pending
-
2020
- 2020-05-27 WO PCT/CN2020/092477 patent/WO2020238928A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101113379A (zh) * | 2007-07-11 | 2008-01-30 | 哈尔滨工业大学 | 天然气水合物合成的双级串联反应器 |
CN105670725A (zh) * | 2016-01-06 | 2016-06-15 | 大连理工大学 | 一种基于气体节流技术的连续式气体水合物浆合成方法与装置 |
CN208627255U (zh) * | 2018-08-06 | 2019-03-22 | 西南石油大学 | 一种水合物快速合成装置 |
CN110075756A (zh) * | 2019-05-30 | 2019-08-02 | 青岛科技大学 | 一种绞笼式天然气水合物连续反应装置 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113358810A (zh) * | 2021-06-14 | 2021-09-07 | 大连理工大学 | 一种应用可视釜原位产生微气泡并生成水合物的装置及方法 |
CN115899559A (zh) * | 2022-11-04 | 2023-04-04 | 哈尔滨工程大学 | 水合物法固化储运深远海原始天然气的方法和装置 |
CN118002986A (zh) * | 2024-04-09 | 2024-05-10 | 山西银河阳光科技有限公司 | 一种铝母线带电修复焊接剂的制备方法及装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110075756A (zh) | 2019-08-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020238928A1 (zh) | 一种绞笼式天然气水合物连续反应装置 | |
CN108619769B (zh) | 一种适用于固液分离的抽滤系统及固液分离方法 | |
WO2017088753A1 (zh) | 一种制造煤层气水合物的方法 | |
CN105670725A (zh) | 一种基于气体节流技术的连续式气体水合物浆合成方法与装置 | |
CN210121465U (zh) | 一种绞笼式天然气水合物连续反应装置 | |
CN209383677U (zh) | 一种肥料发酵装置 | |
CN2497861Y (zh) | 低温反应装置 | |
CN208632474U (zh) | 具有纳米干燥薄膜的天然气脱水装置及天然气脱水系统 | |
CN108579653A (zh) | 旋流式水合物生成装置 | |
CN202402266U (zh) | 一种开闭式泵试验控制系统 | |
CN203678389U (zh) | 一种反应釜 | |
CN109637328A (zh) | 深水可燃冰降压试采三维模拟试验调温高压水供给系统 | |
CN206392081U (zh) | 带网状液珠分离器的吸附微球成型设备 | |
CN112795410A (zh) | 一种基于扭矩测量的两级连续式天然气水合物的制备系统 | |
CN200946758Y (zh) | 半钢子午胎氮气站 | |
CN201096436Y (zh) | 高浓度流化冰的制冰系统 | |
CN212214942U (zh) | 一种空压机的油气分离装置 | |
CN207960906U (zh) | 一种无传感器冷冻水泵 | |
CN208704166U (zh) | 一种方便维护的壁挂式空气能热水器 | |
CN207999338U (zh) | 气液增压混输泵及气液混输装置 | |
CN208252350U (zh) | 一种自带风冷降温装置的水环真空泵气液分离器 | |
CN111923219A (zh) | 一种无机活性墙体保温隔热材料生产系统 | |
CN206661210U (zh) | 一种液体速凝剂合成搅拌装置 | |
CN205909524U (zh) | 大功率流体防爆电加热器 | |
CN110527573A (zh) | 一种活性炭固载天然气水合物连续反应装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20814352 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20814352 Country of ref document: EP Kind code of ref document: A1 |