WO2020238665A1 - 光源系统及应用其的投影设备 - Google Patents

光源系统及应用其的投影设备 Download PDF

Info

Publication number
WO2020238665A1
WO2020238665A1 PCT/CN2020/090760 CN2020090760W WO2020238665A1 WO 2020238665 A1 WO2020238665 A1 WO 2020238665A1 CN 2020090760 W CN2020090760 W CN 2020090760W WO 2020238665 A1 WO2020238665 A1 WO 2020238665A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
polarized
polarized light
light source
source system
Prior art date
Application number
PCT/CN2020/090760
Other languages
English (en)
French (fr)
Inventor
侯海雄
廖英岚
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020238665A1 publication Critical patent/WO2020238665A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources

Definitions

  • the invention relates to the field of projection, in particular to a light source system and a projection device using the same.
  • laser light sources Compared with light bulbs and light-emitting diodes, laser light sources have the advantages of low power consumption, high brightness, good monochromaticity, and good directionality. It has unparalleled advantages in the field of projection display, which can achieve rich colors, high contrast and high brightness.
  • the light source is linearly polarized.
  • the linearly polarized light passes through the beam splitter in the optical machine, it will be refracted and reflected, and the linearly polarized light will remain in the state after reflection and refraction.
  • Linearly polarized light but the vector of linearly polarized light is changed relative to the vector of linearly polarized light when the incident light is incident, thus forming a polarized light that is different from the polarization state vector of the incident light. Because the component light of the formed polarized light is not distributed Uniform, the polarized light formed is partially polarized light.
  • Partially polarized light with uneven polarization distribution enters the 3D modulation device from the lens, and emits polarized light through the polarizer. Due to the uneven distribution of the linearly polarized component light in the partially polarized light, the image projected on the screen appears uneven and the unevenness is obvious, which affects the 3D display effect.
  • the present invention provides a light source system and a projection device using the same to solve the problem in the prior art that the uneven distribution of the component light of the polarization state vector causes the uneven picture to affect the display effect.
  • a technical solution adopted by the present invention is to provide a light source system, the light source system comprising: a first laser light source for generating first polarized light; a polarization conversion device for combining the first One polarized light is converted into a second polarized light, and the second polarized light can be decomposed into a first linear polarization component light and a second linear polarization component light that are orthogonal to each other, and the first linear polarization component light is within a predetermined period.
  • the luminous flux of the second linearly polarized component light is equal to or similar to that of the second linearly polarized component light, and the preset period is less than the visual retention time of human eyes.
  • the polarization conversion device includes a phase retarder.
  • the polarization conversion device includes a half-wave plate area and a blank area, and the first polarized light passes through the blank area and the half-wave plate area at the same time, and passes through the blank area.
  • the first polarized light forms the first linearly polarized component light
  • the first polarized light passing through the half-wave plate region forms the second linearly polarized component light.
  • the polarization conversion device includes a motor and a half-wave plate, the motor drives the half-wave plate to rotate, and the first polarized light is incident on the half-wave plate so that the The angle between the polarization direction of the first polarized light and the fast axis and the slow axis of the half-wave plate changes periodically with the rotation of the half-wave plate, and the rotation period of the motor is less than the visual dwell time.
  • the polarization conversion device is a ⁇ /4 wave plate to convert the first polarized light into elliptically polarized light or circularly polarized light.
  • the polarization conversion device is a liquid crystal panel
  • the first polarized light is incident on the liquid crystal panel
  • the liquid crystal panel is periodically switched to alternately output the first linear polarization component light
  • the second linear polarization component light the switching period of the liquid crystal panel is less than the visual retention time
  • the ratio between the luminous flux of the first linearly polarized component light and the second linearly polarized component light in a preset period is 0.8-1.2.
  • the number of the first laser light source is at least two, and the first polarized light of different wavelengths are respectively generated
  • the light source system includes a first light combining system, and the first laser light source
  • the light combining system is used to combine the first polarized light or the second polarized light transmitted along the respective transmission paths into a same light combining path for transmission;
  • the number of the polarization conversion devices corresponds to the number of the first polarized light , And are respectively arranged on the respective transmission paths of each of the first polarized lights, or the number of the polarization conversion device is one, and arranged on the combined light path of the at least two first polarized lights.
  • the light source system further includes: a second laser light source for generating excitation light; a color wheel assembly for generating a received laser under the action of the excitation light; and a second light combining system , Used to guide the excitation light to the color wheel assembly to form a received laser light and further combine the second polarized light and the received laser light into a same combined light path for transmission
  • another technical solution adopted by the present invention is to provide a projection device including the light source system according to any one of the above claims.
  • the projection device further includes a polarizer and a phase modulation component
  • the polarizer is used to convert the polarized light emitted by the light source system into a third polarized light, and the third polarized light
  • the light is linearly polarized light
  • the polarization direction of the third polarized light is the same as that of one of the first linearly polarized component light and the second linearly polarized component light
  • the phase modulation component further converts the third polarized light Make left-handed circularly polarized light and right-handed circularly polarized light, and project.
  • the beneficial effect of the present invention is: different from the prior art, the present invention converts the first polarized light emitted by the first laser light source to form a second polarized light, and the second polarized light can be decomposed into the first linear polarization orthogonal to each other.
  • Component light and second linearly polarized component light, and the luminous flux ratio of the first linearly polarized component light and the second linearly polarized component light is controlled to be around 1 within the preset period, so that the first linearly polarized
  • the luminous fluxes of the component light and the second linearly polarized component light are equal or similar, thereby ensuring the display effect.
  • Figure 1 is a schematic structural diagram of a first embodiment of a light source system provided by the present invention
  • FIG. 2 is a schematic diagram of the structure of the polarization conversion device in FIG. 1;
  • FIG. 3 is a schematic structural diagram of a second embodiment of the light source system provided by the present invention.
  • FIG. 4 is a schematic structural diagram of a third embodiment of a light source system provided by the present invention.
  • FIG. 5 is a schematic structural diagram of a fourth embodiment of a light source system provided by the present invention.
  • Fig. 6 is a schematic structural diagram of a first embodiment of a projection device provided by the present invention.
  • the present invention provides a light source system 10, which can be specifically applied to projection equipment.
  • the light source system 10 includes a first laser light source 100 and a polarization conversion device 200.
  • the first laser light source 100 is used to generate first polarized light, and the first polarized light may specifically be linearly polarized light or elliptically polarized light.
  • the first polarized light is described below as linearly polarized light.
  • the polarization conversion device 200 is used to convert the first polarized light into the second polarized light, and the second polarized light can be decomposed into the first linear polarization component light and the second linear polarization component light orthogonal to each other. And within the preset period, the luminous fluxes of the first linear polarization component light and the second linear polarization component light are equal or similar. Wherein, the preset period is less than the visual retention time of human eyes.
  • the ratio between the luminous flux of the first linear polarization component light and the second linear polarization component light is 0.8-1.2, and specifically may be 0.8, 0.9, 1, and 1.2, which is not limited here.
  • the polarization state of the first linearly polarized light will change due to refraction, reflection and other influencing factors.
  • part of the first linearly polarized light is converted to the second linearly polarized component light, and since the conversion is mainly affected by the angle of the incident direction of the first linearly polarized light, the first linearly polarized light is converted to the second linearly polarized component light. It is uncontrollable, and it is impossible to determine the amount of change, so that the light emitted from the optical machine will produce two linear polarization components. Due to the unevenness of the two linear polarization state components, when passing through the 3D demodulator, the projected light on the screen will cause the image to appear uneven.
  • the polarization conversion device 200 is arranged after the first laser light source 100, so as to convert the first polarized light emitted by the first laser light source 100 into the second polarized light, wherein the second polarized light can be decomposed into mutually orthogonal light sources.
  • the first linear polarization component light and the second linear polarization component light, and within the preset period, the luminous flux of the first linear polarization component light and the second linear polarization component light are equal or similar, specifically, the first linear polarization component light and the first linear polarization component light
  • the ratio between the luminous fluxes of the two linearly polarized component lights is 0.8-1.2.
  • the second linear polarization component light will also be partially converted into the second linear polarization component light.
  • the first linear polarization component light ensures that the ratio between the luminous flux of the first linear polarization component light and the second linear polarization component light remains at about 1 during the preset period, so that the distribution of the first linear polarization component light and the second linear polarization component light is uniform. Since the preset period is shorter than the duration of the human eye, in the subsequent 3D demodulation process, the image display in the human eye will be uniform and the display effect will be better.
  • the polarization conversion device 200 specifically includes a phase retarder, which can convert the polarization vector direction of polarized light. Specifically, it can be a half wave plate, a ⁇ /4 wave plate, and so on.
  • the polarization conversion device 200 includes a half-wave plate area 210 and a blank area 220. Specifically, the area ratio of the half-wave plate area 210 and the blank area 220 is close to 1:1.
  • the polarized light passes through the blank area 220 and the half-wave plate area 210 at the same time, wherein the first polarized light passing through the blank area 220 forms the first linear polarization component light, and the first polarized light passing through the half-wave plate area 210 forms the second Two-linear polarization component light.
  • a part of the first polarized light passes through the blank area 220 to form the first linear polarization component light.
  • the blank area 220 does not affect the polarization state of the beam, the first linear polarization component light and the first linear polarization component light The polarization direction of the light is the same. Another part of the first polarized light passes through the half-wave plate area 210 to form the second linearly polarized component light.
  • the direction of the fast axis (or slow axis) of the half-wave plate area 210 and the polarization direction of the first linearly polarized light are set
  • the included angle is 45 degrees, so that the polarization direction of the first polarized light passing through the half-wave plate area 210 is rotated by 90 degrees to form the second linear polarization component light, thereby obtaining the first linear polarization component and the second linear polarization component light orthogonal to each other.
  • the luminous flux of the first polarized light passing through the blank area 220 and the first polarized light passing through the half-wave plate area 210 is equal to or close to 1:1. Therefore, at each time period or time point in the preset period, the luminous flux of the first linearly polarized component light and the second linearly polarized component light is equal to or close to 1:1.
  • the polarization conversion device 200 includes a motor (not shown) and a half-wave plate.
  • the motor drives the half-wave plate to rotate, and the first polarized light is incident on the half-wave plate to make the polarization direction of the first polarized light
  • the angle between the fast axis or the slow axis of the half-wave plate changes periodically with the rotation of the half-wave plate, and the rotation period of the motor is less than the visual dwell time.
  • a rotation period is 2 ⁇ .
  • the first polarized light is converted into the second polarized light, and the second polarized light is regarded as the first linear polarization component light.
  • the combined light with the second linearly polarized component light in which the luminous flux of the first linearly polarized component light with the same polarization direction as the first polarized light gradually decreases, and when it is rotated to ⁇ /4, the luminous flux of the first linearly polarized component light is 0, That is, all the first polarized light is converted into the second linearly polarized light.
  • the luminous flux of the second linear polarization component light gradually increases from 0, and reaches a maximum at ⁇ /4, and the luminous flux of the second linear polarization component light is the same as the luminous flux of the first linear polarization component light at 0 ⁇ .
  • the luminous flux of the first linearly polarized component light gradually increases and reaches the luminous flux of the first linearly polarized component light when it reaches 0 ⁇ at ⁇ /2, and the luminous flux of the second linearly polarized component light Then gradually decrease until it is 0. Then in the process of ⁇ /2 rotating to ⁇ 3/4, the luminous flux change from 0 ⁇ rotating to ⁇ /4 is repeated.
  • the others are analogized in turn, so that within a period of 2 ⁇ , the ratio of the luminous flux of the first linearly polarized component light to the luminous flux of the second linearly polarized component light is equal or close.
  • the luminous flux of the first linearly polarized component light and the luminous flux of the second linearly polarized component light are the same.
  • the polarization conversion device 200 may also be a liquid crystal panel, the first polarized light is incident into the liquid crystal panel, and the liquid crystal panel may be periodically switched to alternately output the first linear polarization component light and the second linear polarization component light. Component light, and the switching cycle of the liquid crystal panel is less than the visual retention time.
  • the polarization conversion device 200 may also be a ⁇ /4 wave plate to convert the first polarized light into elliptically polarized light or circularly polarized light.
  • the polarization direction of the first polarized light and the fast and slow axis of the ⁇ /4 wave plate present a position of ⁇ /4, so that the first polarized light can be converted into an ellipse Polarized light or circularly polarized light, elliptically polarized light or circularly polarized light is still elliptically polarized light or circularly polarized light in the subsequent reflection or refraction process.
  • the elliptically polarized light or circularly polarized light can be decomposed into the first linear polarization component light and the second linear polarization component light with a uniform range ratio.
  • the ratio of the luminous flux of the first linearly polarized component light to the second linearly polarized component light is within 0.92-1.08 by ensuring that the ratio of the luminous flux of the first linearly polarized component light to the second linearly polarized component light is within 0.92-1.08 to ensure that the human vision Bottom, the picture is uniform, thus improving the display effect.
  • the luminous fluxes of the first linearly polarized component light and the second linearly polarized component light are equal, that is, the ratio of the luminous flux of the first linearly polarized component light to the second linearly polarized component light Is 1, so as to achieve the best display effect.
  • the number of the first laser light source 100 is at least two, and they respectively generate first polarized light of different wavelengths.
  • the first laser light source 100 may be three, which respectively generate red, yellow, The first polarized light of the three primary colors of blue.
  • the light source system 10 includes a first light combining system 300, and the first light combining system 300 is used to combine the first polarized light transmitted along respective transmission paths into a same light combining path for transmission.
  • the first light combining system 300 may also combine the second polarized lights transmitted along respective transmission paths into a same light combining path for transmission. Or the first light combining system 300 can combine the first polarized light and the second polarized light transmitted along the respective transmission paths into the same light combining path for transmission.
  • the number of the first laser light source 100 may specifically be two, and the two first laser light sources 100 may generate the first polarized light of the same wavelength, or may generate the first polarized light of different wavelengths.
  • the polarization directions of the first polarized light generated by the two first laser light sources 100 may be different, and one of the first laser light sources
  • the polarization direction of the first polarized light generated by 100 may be the same as the first linear polarization component light
  • the polarization direction of the first polarized light generated by another first laser light source 100 may be the same as the second linear polarization component light.
  • the ratio of the luminous flux of the first polarized light generated by the two first laser light sources 100 is close to 1, and specifically may be 0.8-1.2, such as 0.8, 1 or 1.2, which is not limited here.
  • the multiple first laser light sources 100 can generate first polarized light in different directions, preferably, polarized light with the first linear polarization component.
  • the ratio of the first polarized light with the same direction and the first polarized light with the same polarization direction as the second linearly polarized component light is close to 1, and specifically can be 0.8-1.2, such as 0.8, 1 or 1.2, which is not limited here.
  • the first polarized light generated by the first laser light source 100 is not limited to linearly polarized light, but also other polarized light, which can be decomposed into two polarized lights orthogonal to each other.
  • the polarization directions are the same as the polarization directions of the first linear polarization component light and the second linear polarization component light, respectively.
  • the ratio of the luminous flux of the two polarized lights is close to 1.
  • the number of polarization conversion devices 200 corresponds to the number of first polarized lights, and they are respectively disposed on the respective transmission paths of each first polarized light, or the number of polarization conversion devices 200 is one and is disposed in At least two first polarized lights are on the combined light path.
  • the number of the first laser light source 100 is three, and three first polarized lights are generated, and three polarization conversion devices 200 are respectively provided on the transmission paths of the three first polarized lights. Then the light is combined by the first light combining system 300.
  • the polarization conversion device 200 may specifically include a half-wave plate area 210 and a blank area 220. Or the polarization conversion device 200 may be a ⁇ /4 wave plate.
  • the number of the first laser light source 100 is three, and the three first polarized lights generated are synthesized by the first light combining system 300 and transmitted on the same light combining path.
  • the device 200 performs conversion into the second polarized light.
  • the polarization conversion device 200 includes a half-wave plate and a motor, or the polarization conversion device 200 is a liquid crystal panel.
  • the light source system 10 further includes a second laser light source 400, a color wheel assembly 500 and a second light combining system 600.
  • the second laser light source 400 is used to generate excitation light
  • the color wheel assembly 500 is used to generate a received laser under the action of the excitation light, and the received laser may specifically be a kind of fluorescence.
  • the second light combining system 600 is used to guide the excitation light generated by the second laser light source 400 to the color wheel assembly 500, and further combine the second polarized light from the first light combining system 600 into the same path with the received laser light. Then it transmits along the same combined light path.
  • the light source system 10 further includes a light-emitting lens and a square rod of the optical machine, so that the second polarized light and the received laser light are combined and the light is processed and then emitted.
  • the first light combining system 300 may specifically include a plurality of dichroic mirrors 310, a plurality of mirrors 320, and a lens 330.
  • the first polarized light generated by the three first laser light sources 100 can be reflected by the mirror 320, the dichroic mirror 310 and the lens 330, combined and focused, and then combined into the same path of the first polarized light by the polarization conversion device 200 is converted to form a second polarized light.
  • the first light combining system 300 may further include a relay lens 340 to focus the second polarized light onto the second light combining system 600.
  • the second light combining system 600 may specifically be a regional transflective film.
  • the mirror 610 may specifically include different transflective regions, and can reflect or transmit light of different wavelengths.
  • the regional transflective film is to set different transflective films on different regions for different wavelengths to achieve selection. Sexual penetration effect.
  • the color wheel assembly 500 includes a color wheel 510 and a collecting lens 520.
  • the second laser light source 400 may specifically be two. The excitation light emitted by the two second laser light sources 400 is reflected by the regional transflective film to the collecting lens 520, and The received laser light is condensed on the color wheel 510 to form the received laser light, and then the received laser light passes through the collection lens 520 to the regional transflective film again, and combines the light of the same path with the second polarized light 340.
  • the color wheel 510 may specifically include a plurality of regions (not labeled), the plurality of regions includes three primary color light regions and a mixed color light region, wherein the three primary color light regions receive the excitation light of the second laser light source 400 and emit three types of light.
  • Primary color light wherein each primary color light area emits a primary color light
  • the mixed color light area receives the first laser light and emits mixed color light.
  • the surface of the color wheel 510 may be provided with a fluorescent layer.
  • the fluorescent layer may be formed by a mixture of fluorescent powder and its carrier.
  • the carrier may be glue, glass, etc., and the fluorescent powder may be yellow fluorescent powder. Green phosphors, red phosphors, or mixtures, etc., in specific embodiments, the phosphors are excited to perform wavelength conversion of their light.
  • the present invention also provides a projection device 1, which includes the light source system 10 described in any of the above embodiments. Furthermore, the projection device 1 further includes a polarizer 20 and a phase modulation component 30.
  • the polarizer 20 is used to convert the polarized light emitted by the light source system 10 into a third polarized light, wherein the third polarized light is linearly polarized light. And the third polarized light has the same polarization direction as one of the first linearly polarized component light and the second linearly polarized component light.
  • the phase modulation component 30 further converts the third polarized light into left-handed circularly polarized light and right-handed circularly polarized light, and performs projection, thereby forming an image on the screen 40.
  • the projection device 1 may include two sets of phase modulation components 30.
  • One of the two sets of phase modulation components 30 is used to convert the third polarized light into left-handed circularly polarized light. Used to convert the third polarized light into right-handed circularly polarized light and perform projection at the same time.
  • the present invention converts the first polarized light emitted by the first laser light source to form the second polarized light, and the second polarized light can be decomposed into the first linear polarization component light and the second polarized light that are orthogonal to each other.
  • Two linearly polarized component light, and the luminous flux ratio of the first linearly polarized component light and the second linearly polarized component light is controlled to be around 1 within a preset period, so that the first linearly polarized component light and the first linearly polarized component light are The luminous flux of the two linearly polarized component lights is equal or similar, thereby ensuring the display effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Polarising Elements (AREA)

Abstract

一种光源系统及应用其的投影设备,该光源系统(10)包括第一激光光源(100),用于产生第一偏振光;偏振转换器件(200),用于将第一偏振光转化成第二偏振光,第二偏振光能够分解成相互正交的第一线偏振分量光和第二线偏振分量光,在预设周期内第一线偏振分量光和第二线偏振分量光的光通量相等或相近,预设周期小于人眼的视觉暂留时间。通过这种方式能够保证在预设周期内,第一线偏振分量光和第二线偏振分量光的光通量相等或相近,从而保证了显示效果。

Description

光源系统及应用其的投影设备 技术领域
本发明涉及投影领域,特别涉及一种光源系统及应用其的投影设备。
背景技术
激光光源与灯泡、发光二极管相比,具有功耗低、亮度高、单色性好、方向性好的优点,在投影显示领域拥有无可比拟的优势,可以实现色彩丰富,高对比度和高亮度的图像显示,尤其是在应用于三维立体(3D显示)显示时,优势更是不言而喻。
在使用激光器的偏振光源的情况下,光源为线偏振态,线偏振态的光在经过光机中的分光棱镜时,会发生折射和反射,线偏振态光在发生反射和折射后还是保持为线偏振态光,但是线偏振光的矢量相对于入射光时的线偏振光矢量发生了改变,从而形成与入射光的偏振态矢量不同的偏振光,由于所形成的偏振光的分量光分布不均匀,则形成的偏振光为部分偏振光。偏振态分布不均匀的部分偏振光由镜头进入3D调制器件,经过起偏器出射线偏振光。由于部分偏振光中线偏振分量光分布不均匀,投影到屏幕上的画面出现不均匀,不均匀度明显,影响3D显示效果。
发明内容
本发明提供一种光源系统及应用其的投影设备,以解决现有技术中由于偏振态矢量的分量光分布不均匀而导致画面不均匀影响显示效果的问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种光源系统,所述光源系统包括:第一激光光源,用于产生第一偏振光;偏振转换器件,用于将所述第一偏振光转化成第二偏振光,所述第二偏振光能够分解成相互正交的第一线偏振分量光和第二线偏振分量光,且在预设周期内所述第一线偏振分量光和所述第二线偏振分量光的光通量相等或相近, 所述预设周期小于人眼的视觉暂留时间。
根据本发明提供的一实施方式,所述偏振转换器件包括相位延迟片。
根据本发明提供的一实施方式,所述偏振转换器件包括半波片区域和空白区域,所述第一偏振光同时穿过所述空白区域和半波片区域,经过所述空白区域的所述第一偏振光形成所述第一线偏振分量光,而经过所述半波片区域的所述第一偏振光形成所述第二线偏振分量光。
根据本发明提供的一实施方式,所述偏振转换器件包括马达和半波片,所述马达带动所述半波片旋转,所述第一偏振光入射到所述半波片上,以使得所述第一偏振光的偏振方向与所述半波片的快轴和慢轴之间的夹角随所述半波片的旋转周期性变化,所述马达的转动周期小于所述视觉暂留时间。
根据本发明提供的一实施方式,所述偏振转换器件为λ/4波片,以将所述第一偏振光转化成椭圆偏振光或圆偏振光。
根据本发明提供的一实施方式,所述偏振转换器件为液晶面板,所述第一偏振光入射到所述液晶面板,所述液晶面板周期性切换,以交替输出所述第一线偏振分量光和第二线偏振分量光,所述液晶面板的切换周期小于所述视觉暂留时间。
根据本发明提供的一实施方式,在预设周期内所述第一线偏振分量光和所述第二线偏振分量光的光通量之间比值为0.8-1.2。
根据本发明提供的一实施方式,所述第一激光光源的数量为至少两个,并分别产生不同波长的所述第一偏振光,所述光源系统包括第一合光系统,所述第一合光系统用于将沿各自传输路径传输的所述第一偏振光或第二偏振光合光成沿同一合光路径进行传输;所述偏振转换器件的数量与所述第一偏振光的数量对应,且分别设置于各所述第一偏振光各自的传输路径上,或者所述偏振转换器件的数量为一个,且设置于所述至少两个第一偏振光的合光路径上。
根据本发明提供的一实施方式,所述光源系统还包括:第二激光光源,用于产生激发光;色轮组件,用于在所述激发光的作用下产生受激光;第二合光系统,用于将所述激发光引导至所述色轮组件上形成受激光并进一 步将所述第二偏振光和所述受激光合光成沿同一合光路径进行传输
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种投影设备,所述投影设备包括上述权利要求任一项所述的光源系统。
根据本发明提供的一实施方式,所述投影设备进一步包括起偏器和相位调制组件,所述起偏器用于将所述光源系统发射的偏振光转化为第三偏振光,所述第三偏振光为线偏振光,且所述第三偏振光与所述第一线偏振分量光和第二线偏振分量光中的一个的偏振方向相同,所述相位调制组件进一步将所述第三偏振光转化成左旋圆偏振光和右旋圆偏振光,并进行投影。
本发明的有益效果是:区别于现有技术,本发明通过第一激光光源发射的第一偏振光进行转化从而形成第二偏振光,第二偏振光能够分解成相互正交的第一线偏振分量光和第二线偏振分量光,且在预设周期内将第一线偏振分量光和第二线偏振分量光的光通量比值控制在1附近,使得在人眼视觉暂留时间下,第一线偏振分量光与第二线偏振分量光的光通量相等或相近,从而保证了显示效果。
附图说明
图1是本发明提供的光源系统的第一实施例结构示意图;
图2是图1中偏振转换器件的一结构示意图;
图3是本发明提供的光源系统的第二实施例结构示意图;
图4是本发明提供的光源系统的第三实施例结构示意图;
图5是本发明提供的光源系统的第四实施例结构示意图;
图6是本发明提供投影设备的第一实施例结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的 范围。
另外,若本发明实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
请参阅图1-图5,本发明提供一种光源系统10,该光源系统10具体可以应用于投影设备。
如图1所示,该光源系统10包括第一激光光源100与偏振转换器件200。其中,第一激光光源100用于产生第一偏振光,该第一偏振光具体可以为线偏振光,也可以是椭圆偏振光,以下以第一偏振光为线偏振光进行说明。
偏振转换器件200则用于将第一偏振光转化成第二偏振光,该第二偏振光能够分解成相互正交的第一线偏振分量光和第二线偏振分量光。且在预设周期内,第一线偏振分量光和第二线偏振分量光的光通量相等或相近。其中,该预设周期小于人眼的视觉暂留时间。
在具体实施例中,第一线偏振分量光和第二线偏振分量光的光通量之间的比值为0.8-1.2,具体可以是0.8、0.9、1以及1.2,这里不做限定。
在现有技术中,第一激光光源100发射的第一线偏振光在经过光机分光棱镜以后,由于折射和反射以及其他的一些影响因素,会引起第一线偏振光的偏振状态发生改变,从而会有部分第一线偏振光向第二线偏振分量光进行转化,且由于转化主要是受到第一线偏振光的入射方向的角度影响,因此在第一线偏振光向第二线偏振分量光转变是不可控的,也是无法确定转变量的,从而造成从光机出射的光会产生两种线偏振态分量。由于两种线偏振态分量的不均匀从而会导致在经过3D解调器时,出射后的光投射在屏幕上会导致画面表现不均匀的现象。
上述实施例中通过在第一激光光源100后设置偏振转换器件200,从 而将第一激光光源100发射的第一偏振光转化成第二偏振光,其中该第二偏振光可以分解成相互正交的第一线偏振分量光和第二线偏振分量光,且在预设周期内,第一线偏振分量光和第二线偏振分量光的光通量相等或相近,具体地,第一线偏振分量光和第二线偏振分量光的光通量之间比值为0.8-1.2。
因此,在第二偏振光在后续的反射或折射等过程中,虽然第一线偏振分量光有部分转化成第二线偏振分量光,但同时,第二线偏振分量光也会有相应的部分转化成第一线偏振分量光。从而保证在预设周期第一线偏振分量光和第二线偏振分量光的光通量之间比值仍然保持在1左右,从而使得其第一线偏振分量光和第二线偏振分量光的分布是均匀的。由于该预设周期是小于人眼的时间暂留时间的,因此在后面的3D解调过程中,在人眼视觉内,其画面显示会均匀,显示效果较好。
在具体实施例中,偏振转换器件200具体包括相位延迟片,相位延迟片可以对偏振光进行偏振矢量方向的转换。其具体可以是半波片,λ/4波片等等。
如图2,在一具体实施例中,偏振转换器件200包括半波片区域210和空白区域220,具体地,半波片区域210和空白区域220的面积比值接近于1:1,其第一偏振光同时穿过空白区域220和半波片区域210,其中,经过空白区域220的第一偏振光形成第一线偏振分量光,而经过半波片区域210的第一偏振光形成所述第二线偏振分量光。在该实施例中,第一偏振光的一部分经过空白区域220形成第一线偏振分量光,由于空白区域220对光束的偏振状态不产生影响,因此,第一线偏振分量光与第一线偏振光的偏振方向相同。第一偏振光的另一部分经过半波片区域210形成所述第二线偏振分量光,具体地,设置半波片区域210的快轴(或慢轴)方向与第一线偏振光的偏振方向的夹角为45度,使得经过半波片区域210的第一偏振光的偏振方向旋转90度,形成第二线偏振分量光,从而得到相互正交的第一线偏振分量和光第二线偏振分量光。
且具体地,穿过空白区域220的第一偏振光与穿过半波片区域210的第一偏振光的光通量等于或接近于1:1。因此,在预设周期内的每个时间段 或者时间点上,第一线偏振分量光和第二线偏振分量光的光通量等于或者接近于1:1。
在另一具体实施例中,偏振转换器件200包括马达(图未示)和半波片,马达带动半波片旋转,第一偏振光入射到半波片上,以使得第一偏振光的偏振方向与半波片的快轴或慢轴之间的夹角随半波片的旋转周期性变化,所述马达的转动周期小于所述视觉暂留时间。
具体地,一个转动周期为2π,当半波片从0π旋转到π/4的过程中,第一偏振光则转化成第二偏振光,其中,第二偏振光视为第一线偏振分量光与第二线偏振分量光的合成光,其中与第一偏振光偏振方向相同的第一线偏振分量光的光通量逐渐减少,并旋转至π/4时,第一线偏振分量光的光通量为0,即所有的第一偏振光全部转换为第二线偏振光。而第二线偏振分量光的光通量从0则逐渐变多,并在π/4达到最大,且此时第二线偏振分量光的光通量与0π时第一线偏振分量光的光通量相同。
在下一个π/4到π/2的过程中,则第一线偏振分量光的光通量逐渐增多并在π/2时达到0π时第一线偏振分量光的光通量,而第二线偏振分量光的光通量则逐渐减少直到为0。然后在π/2旋转到π3/4的过程中,则重复0π旋转到π/4的光通量变化。其他依次类推,从而使得在一个2π的周期内,第一线偏振分量光的光通量与第二线偏振分量光的光通量的比值相等或者相近。
具体如图3所示,在一个2π的周期内,即360°内,第一线偏振分量光的光通量与第二线偏振分量光的光通量是相同的。
在另一个具体实施例中,偏振转换器件200还可以为液晶面板,第一偏振光入射到液晶面板中,该液晶面板可以呈周期性切换,以交替输出第一线偏振分量光和第二线偏振分量光,且液晶面板的切换周期小于视觉暂留时间。
在另一个具体实施例中,偏振转换器件200还可以为λ/4波片,以将第一偏振光转化成椭圆偏振光或圆偏振光。具体地,该第一偏振光入射λ/4波片时,该第一偏振光的偏振方向与λ/4波片的快慢轴呈现π/4的位置,从而使得第一偏振光能够转化成椭圆偏振光或圆偏振光,椭圆偏振光或圆 偏振光在后续的反射或者折射等过程中依然为椭圆偏振光或圆偏振光。而椭圆偏振光或圆偏振光可以分解为范围比值均匀的第一线偏振分量光与第二线偏振分量光。
上述实施例中,通过在小于人眼的视觉暂留时间的预设周期内,保证第一线偏振分量光与第二线偏振分量光的光通量的比值在0.92-1.08内,以保证在人眼视觉下,画面是均匀的,从而提高了显示效果。
在一具体实施例中,在预设周期内,第一线偏振分量光和所述第二线偏振分量光的光通量是相等的,即第一线偏振分量光与第二线偏振分量光的光通量的比值为1,从而达到最佳的显示效果。
如图4所示,第一激光光源100的数量为至少两个,并分别产生不同波长的第一偏振光,具体地,该第一激光光源100可以为三个,分别为产生红、黄、蓝三基色的第一偏振光。光源系统10包括第一合光系统300,第一合光系统300则用于将沿各自传输路径传输的第一偏振光合光成沿同一合光路径进行传输。
在具体实施例中,第一合光系统300也可以将沿各自传输路径传输的第二偏振光合光成沿同一合光路径进行传输。或者第一合光系统300可以将沿各自传输路径传输的第一偏振光与第二偏振光合光成沿同一合光路径进行传输
在其他实施例中,该第一激光光源100的数量具体可以为两个,且两个第一激光光源100可以产生相同波长的第一偏振光,也可以产生不同波长的第一偏振光。
在具体实施例中,第一激光光源100的数量为至少两个时,例如为两个时,两个第一激光光源100产生的第一偏振光的偏振方向可以不同,其中一个第一激光光源100产生的第一偏振光的偏振方向可以与第一线偏振分量光相同,另外一个第一激光光源100产生的第一偏振光的偏振方向可以与第二线偏振分量光相同。且两个第一激光光源100产生的第一偏振光的光通量的比值接近1,具体可以是0.8-1.2,如0.8,1或者1.2,这里不做限定。
在一具体实施例中,第一激光光源100的数量大于或等于3个时,则 多个第一激光光源100可以产生不同方向的第一偏振光,优选地,与第一线偏振分量光偏振方向相同的第一偏振光及与第二线偏振分量光偏振方向相同的第一偏振光的比值要接近1,具体可以是0.8-1.2,如0.8,1或者1.2,这里不做限定。
在一具体实施例中,第一激光光源100产生的第一偏振光不仅仅限于线偏振光,也可以是其他偏振光,则可以分解为相互正交的两个偏振光,两个偏振光的偏振方向分别与第一线偏振分量光及第二线偏振分量光的偏振方向相同。且两个偏振光的光通量的比值接近于1。
在一具体实施例中,偏振转换器件200的数量与第一偏振光的数量对应,且分别设置于各第一偏振光各自的传输路径上,或者偏振转换器件200的数量为一个,且设置于至少两个第一偏振光的合光路径上。
如图4所示,第一激光光源100的数量为三个,产生三个第一偏振光,其三个第一偏振光的传输路径上分别设置有三个偏振转换器件200。然后在通过第一合光系统300进行合光。其中,偏振转换器件200具体可以包括半波片区域210和空白区域220。或者该偏振转换器件200可以为λ/4波片。
如图5所示,第一激光光源100的数量为三个,产生的三个第一偏振光后通过第一合光系统300合成同一合光路径上的光并进行传输,随后在被偏振转换器件200进行转化成第二偏振光。其中,偏振转换器件200包括半波片与马达,或者偏振转换器件200为液晶面板。
如图6所示,光源系统10还包括第二激光光源400,色轮组件500以及第二合光系统600。其中第二激光光源400用于产生激发光,色轮组件500用于在激发光的作用下产生受激光,该受激光具体可以是一种荧光。第二合光系统600用于将第二激光光源400产生的激发光引导至色轮组件500上,并进一步将来自第一合光系统600合成同一路径的第二偏振光与受激光进行合光后沿着同一合光路径进行传输。
在具体实施例中,该光源系统10还包括出光透镜与光机方棒,从而对第二偏振光与受激光进行合光后光进行处理后出射。
在如图6所示,在一个具体实施例中,该第一合光系统300具体可以 包括多个二向色镜310,多个反射镜320,透镜330。三个第一激光光源100产生的第一偏振光可以通过反射镜320、二向色镜310以及透镜330进行反射,合光以及聚焦,随后合光成同一路径的第一偏振光被偏振转换器件200进行转化形成第二偏振光。该第一合光系统300还可以包括中继透镜340,以将第二偏振光进行聚焦到第二合光系统600上,第二合光系统600具体可以是区域透反膜,该区域透反镜610具体可以包括不同的透反区域,且可以针对不同的波长的光进行反射或者透射,具体地,区域透反膜是针对不同波长在不同的区域上设置不同的透反膜,以达到选择性透反效果。该色轮组件500则包括有色轮510与收集透镜520,该第二激光光源400具体可以为两个,两个第二激光光源400发射的激发光被区域透反膜反射到收集透镜520,并被汇聚到色轮510上形成受激光,随后受激光又重新通过收集透镜520到区域透反膜,并与第二偏振光340一起合成同一路径的光。
色轮510具体可以包括多个区域(未标示),该多个区域包括三个基色光区域和一混合色光区域,其中三个基色光区域接收第二激光光源400的激发光而出射三种的基色光,其中每一基色光区域出射一种基色光,混合色光区域接收第一激光而出射混合色光。
在具体实施例中,色轮510的表面可以设置有荧光层,荧光层可以是荧光粉及其载体的混合物而形成,载体例如可以是胶水,玻璃等,荧光粉例如可以是是黄色荧光粉,绿色荧光粉,红色荧光粉,或混合物等等,在具体实施例中,通过激发荧光粉来对其光进行波长转换。
如图7所示,本发明还提供一种投影设备1,该投影设备1包括上述任一实施例中所述的光源系统10。进一步的该投影设备1还包括起偏器20与相位调制组件30。该起偏器20用于将光源系统10发出的偏振光转化成第三偏振光,其中该第三偏振光为线偏振光。且第三偏振光与所述第一线偏振分量光和第二线偏振分量光中的一个的偏振方向相同。该相位调制组件30进一步将第三偏振光转化成左旋圆偏振光和右旋圆偏振光,并进行投影,从而在屏幕40上形成图像。
在其他实施例中,投影设备1可以包括两组相位调制组件30,两组相 位调制组件30中的一组相位调制组件30用于将第三偏振光转换成左旋圆偏振光,另一组则用于将第三偏振光转换成右旋圆偏振光,并同时进行投影。
综上,上述实施例中,本发明通过第一激光光源发射的第一偏振光进行转化从而形成第二偏振光,且第二偏振光能够分解成相互正交的第一线偏振分量光和第二线偏振分量光,且在预设周期内将第一线偏振分量光和第二线偏振分量光的光通量比值控制在1附近,使得在人眼视觉暂留时间下,第一线偏振分量光与第二线偏振分量光的光通量相等或相近,从而保证了显示效果。
以上仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结果或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

  1. 一种光源系统,其特征在于,所述光源系统包括:
    第一激光光源,用于产生第一偏振光;
    偏振转换器件,用于将所述第一偏振光转化成第二偏振光,所述第二偏振光能够分解成相互正交的第一线偏振分量光和第二线偏振分量光,且在预设周期内所述第一线偏振分量光和所述第二线偏振分量光的光通量相等或相近,所述预设周期小于人眼的视觉暂留时间。
  2. 根据权利要求1所述的光源系统,其特征在于,所述偏振转换器件包括相位延迟片。
  3. 根据权利要求2所述的光源系统,其特征在于,所述偏振转换器件包括半波片区域和空白区域,所述第一偏振光同时穿过所述空白区域和半波片区域,经过所述空白区域的所述第一偏振光形成所述第一线偏振分量光,而经过所述半波片区域的所述第一偏振光形成所述第二线偏振分量光。
  4. 根据权利要求2所述的光源系统,其特征在于,所述偏振转换器件包括马达和半波片,所述马达带动所述半波片旋转,所述第一偏振光入射到所述半波片上,以使得所述第一偏振光的偏振方向与所述半波片的快轴或慢轴之间的夹角随所述半波片的旋转周期性变化,所述马达的转动周期小于所述视觉暂留时间。
  5. 根据权利要求2所述的光源系统,其特征在于,所述偏振转换器件为λ/4波片,以将所述第一偏振光转化成椭圆偏振光或圆偏振光。
  6. 根据权利要求1所述的光源系统,其特征在于,所述偏振转换器件为液晶面板,所述第一偏振光入射到所述液晶面板,所述液晶面板周期性切换,以交替输出所述第一线偏振分量光和第二线偏振分量光,所述液晶面板的切换周期小于所述视觉暂留时间。
  7. 根据权利要求1所述的光源系统,其特征在于,在预设周期内所述第一线偏振分量光和所述第二线偏振分量光的光通量之间比值为0.8-1.2。
  8. 根据权利要求1-7所述的光源系统,其特征在于,所述第一激光光源的数量为至少两个,并分别产生不同波长的所述第一偏振光,所述光源 系统包括第一合光系统,所述第一合光系统用于将沿各自传输路径传输的所述第一偏振光或第二偏振光合光成沿同一合光路径进行传输;
    所述偏振转换器件的数量与所述第一偏振光的数量对应,且分别设置于各所述第一偏振光各自的传输路径上,或者所述偏振转换器件的数量为一个,且设置于所述至少两个第一偏振光的合光路径上。
  9. 根据权利要求8所述的光源系统,其特征在于,所述光源系统还包括:
    第二激光光源,用于产生激发光;
    色轮组件,用于在所述激发光的作用下产生受激光;
    第二合光系统,用于将所述激发光引导至所述色轮组件上形成受激光并进一步将所述第二偏振光和所述受激光合光成沿同一合光路径进行传输。
  10. 一种投影设备,其特征在于,所述投影设备包括权利要求1-9中任一项所述的光源系统。
  11. 根据权利要求10所述的投影设备,其特征在于,所述投影设备进一步包括起偏器和相位调制组件,所述起偏器用于将所述光源系统发射的偏振光转化为第三偏振光,所述第三偏振光为线偏振光,且所述第三偏振光与所述第一线偏振分量光和第二线偏振分量光中的一个的偏振方向相同,所述相位调制组件进一步将所述第三偏振光转化成左旋圆偏振光和右旋圆偏振光,并进行投影。
PCT/CN2020/090760 2019-05-31 2020-05-18 光源系统及应用其的投影设备 WO2020238665A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910470934.4 2019-05-31
CN201910470934.4A CN112015038A (zh) 2019-05-31 2019-05-31 光源系统及应用其的投影设备

Publications (1)

Publication Number Publication Date
WO2020238665A1 true WO2020238665A1 (zh) 2020-12-03

Family

ID=73501576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090760 WO2020238665A1 (zh) 2019-05-31 2020-05-18 光源系统及应用其的投影设备

Country Status (2)

Country Link
CN (1) CN112015038A (zh)
WO (1) WO2020238665A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932973A (zh) * 2007-12-31 2010-12-29 康宁股份有限公司 用于光信号的偏振调制的系统和方法
US20120147279A1 (en) * 2010-12-10 2012-06-14 Asahi Glass Company, Limited Projection display apparatus
CN102985869B (zh) * 2010-09-08 2015-02-04 青岛海信信芯科技有限公司 立体显示光源模块、立体显示成像装置和立体显示系统
US20160370696A1 (en) * 2015-06-18 2016-12-22 Seiko Epson Corporation Light source device, lighting apparatus, and projector
CN109388004A (zh) * 2017-08-04 2019-02-26 深圳光峰科技股份有限公司 投影系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011048071A (ja) * 2009-08-26 2011-03-10 Sanyo Electric Co Ltd 光学素子、光学ユニットおよび投写型映像表示装置
CN102854731B (zh) * 2012-07-24 2015-11-25 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
JP2018072570A (ja) * 2016-10-28 2018-05-10 リコーインダストリアルソリューションズ株式会社 スペックル解消素子及びスペックル解消機構
CN107991835B (zh) * 2017-11-15 2019-10-25 北京理工大学 基于微纳结构偏振复用短焦扩束投影系统和方法
CN207457625U (zh) * 2017-11-22 2018-06-05 歌尔科技有限公司 消散斑装置、激光光源及激光投影系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932973A (zh) * 2007-12-31 2010-12-29 康宁股份有限公司 用于光信号的偏振调制的系统和方法
CN102985869B (zh) * 2010-09-08 2015-02-04 青岛海信信芯科技有限公司 立体显示光源模块、立体显示成像装置和立体显示系统
US20120147279A1 (en) * 2010-12-10 2012-06-14 Asahi Glass Company, Limited Projection display apparatus
US20160370696A1 (en) * 2015-06-18 2016-12-22 Seiko Epson Corporation Light source device, lighting apparatus, and projector
CN109388004A (zh) * 2017-08-04 2019-02-26 深圳光峰科技股份有限公司 投影系统

Also Published As

Publication number Publication date
CN112015038A (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
US8840253B2 (en) Light source apparatus and image display apparatus using the same
US9939718B2 (en) Light source apparatus and projector
JP5617288B2 (ja) 照明装置及びプロジェクター
CN204389864U (zh) 光源系统和投影系统
US10154252B2 (en) Projection-type image display apparatus
CN110543072B (zh) 激光光源和激光投影机
US10509303B2 (en) Laser projection device with reflective component and 1/4 wave plate
TW200811447A (en) Polarizing beam splitters incorporating reflective and absorptive polarizers and image display systems thereof
CN105991980B (zh) 投影系统及其控制方法
US10514595B2 (en) Dual-color laser light source and laser projector
JP2010204333A (ja) プロジェクター
US11860526B2 (en) Beam modulation apparatus and projection system
WO2020238665A1 (zh) 光源系统及应用其的投影设备
US20200142290A1 (en) Composite phase conversion element and projection apparatus
US10313644B2 (en) Fluorescense wheel, projection light source, projector and its control method
CN209149051U (zh) 复合相位转换元件及投影装置
CN109564377A (zh) 投影仪
CN212905878U (zh) 一种投影照明装置及投影设备
US20210302819A1 (en) Illumination system, illumination control method and projection apparatus
TW201339641A (zh) 用於一投影裝置之光學模組及投影裝置
JP2016066086A (ja) 照明装置及びプロジェクター
JP2014081644A (ja) プロジェクター
WO2022057675A1 (zh) 光源装置及激光投影系统
CN219039558U (zh) 一种光源装置及投影设备
KR100716959B1 (ko) 광원 어셈블리 및 이를 채용한 프로젝션 디스플레이장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814430

Country of ref document: EP

Kind code of ref document: A1