WO2020238316A1 - 波像差测量装置、测量方法及光刻机 - Google Patents

波像差测量装置、测量方法及光刻机 Download PDF

Info

Publication number
WO2020238316A1
WO2020238316A1 PCT/CN2020/078349 CN2020078349W WO2020238316A1 WO 2020238316 A1 WO2020238316 A1 WO 2020238316A1 CN 2020078349 W CN2020078349 W CN 2020078349W WO 2020238316 A1 WO2020238316 A1 WO 2020238316A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
object surface
array
small hole
marks
Prior art date
Application number
PCT/CN2020/078349
Other languages
English (en)
French (fr)
Inventor
赵灿武
马明英
Original Assignee
上海微电子装备(集团)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微电子装备(集团)股份有限公司 filed Critical 上海微电子装备(集团)股份有限公司
Publication of WO2020238316A1 publication Critical patent/WO2020238316A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0242Testing optical properties by measuring geometrical properties or aberrations
    • G01M11/0271Testing optical properties by measuring geometrical properties or aberrations by using interferometric methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • This application relates to lithography technology, for example, to a wave aberration measuring device, a measuring method, and a lithography machine.
  • One goal of the semiconductor industry is to integrate more electronic components in a single integrated circuit (IC). To achieve this goal, it is necessary to continuously reduce the component size, that is, to continuously improve the resolution of the lithography projection system.
  • Objective wave aberration is an important factor that limits the resolution of the projection system, and it is also an important cause of linewidth changes.
  • the objective lens has undergone strict inspection and optimization during the manufacturing and assembly processes to minimize its wave aberration, it is still necessary to perform online wave aberration measurement after the objective lens system is integrated into the lithography machine. This is because the aging of the lens material or the thermal effect of the objective lens will cause wave aberration.
  • the wave aberration measurement needs to be performed more frequently. At this time, the real-time performance of the wave aberration measurement is particularly important.
  • phase-shift shearing interferometry uses an illuminating beam for measurement.
  • a small hole is used to generate a detection light source on the object surface.
  • the small hole is imaged by the objective lens to the image shearing grating and produces shearing interference fringes in the far field.
  • a two-dimensional array of photosensitive elements is used in the pupil of the objective.
  • the conjugate surface records the interference image.
  • the relative position (phase shift) of the light source and the grating needs to be changed to obtain interference fringes under different phase shift conditions, and the wave aberration of the objective lens can be obtained by analyzing these interference images.
  • the time to measure the wavefront aberration of the entire field of view using this method is proportional to the following factors: 1. The number of field points Nf; 2. The number of measured directions (at least 2) Nd; 3. If the number of phase shifting steps is Np, the theoretical measurement time Ttheory is proportional to Nf ⁇ Nd ⁇ Np.
  • the previous phase-shift shearing method used a serial measurement method to measure wave aberration, that is, measure each field of view point in turn, and measure the two directions of the field of view point in turn when measuring each field point.
  • the phase-shift shearing method is used to serially measure the wave aberration of each field of view point, which cannot meet the real-time requirements of the lithography device for the wave aberration measurement, and the detection efficiency is low. And when the wave aberration detection is performed on a projection objective with a large numerical aperture, signal crosstalk is likely to occur.
  • the embodiments of the present application provide a wave aberration measuring device, a measuring method, and a lithography machine, so as to improve the detection efficiency and avoid signal crosstalk.
  • An embodiment of the present application provides a wave aberration measuring device, including:
  • the lighting system is set to produce an illuminating beam
  • the object surface small hole plate is located on the light emitting side of the illumination system and is fixed on the mask table.
  • the object surface small hole plate is provided with a plurality of object surface small holes, and each of the object surface small holes includes g Object surface small hole marks in different grating directions, g is a positive integer greater than or equal to 2, and a plurality of the object surface small hole marks on the object surface small hole plate are arranged in an array;
  • the object surface small hole marks in the same array row have the same grating direction; along the array row direction, the distance between two adjacent object surface small hole marks in the same array row is h1; along the array row direction In the upward direction, the smallest distance between the two smallest hole marks on the object surface in two array rows with the same grating direction is h2, where m is a positive integer greater than or equal to 2; any two rows with the same grating direction Array arrangement of small hole marks on the object surface;
  • Projection objective lens located on the side of the small aperture plate of the object plane away from the illumination system
  • the image cutting grating plate is located on the side of the projection objective lens away from the small orifice plate of the object surface, and is fixed on the workpiece table;
  • a two-dimensional array photosensitive element and a data processing unit the two-dimensional array photosensitive element is located on the conjugate plane of the pupil of the projection objective lens, and the two-dimensional array photosensitive element is used to receive the photosensitive element formed on the two-dimensional array
  • the data processing unit is used to calculate the wave aberration of the projection objective lens according to the shear interference pattern.
  • the embodiment of the present application provides a lithography machine including the above-mentioned wave aberration measuring device.
  • the embodiment of the present application provides a method for measuring wave aberration, which is executed by the above-mentioned device for measuring wave aberration, and the method includes:
  • the illumination beam generated by the illumination system scans and illuminates the object surface small hole mark array of the object surface small hole plate by line to form a measurement beam, and the measurement beam passes through the projection objective lens and irradiates the image shearing grating plate to form a shearing interference pattern;
  • the two-dimensional array photosensitive element receives the shearing interference pattern row by row and sends it to a data processing unit; the data processing unit calculates the wave aberration of the projection objective lens according to the shearing interference pattern;
  • the illumination beam generated by the illumination system irradiates and reads two small hole marks on the object surface two adjacent times with at least one field of view point.
  • FIG. 1 is a schematic structural diagram of a wave aberration measuring device provided by an embodiment of the application.
  • FIG. 2 is a schematic diagram of a small orifice plate provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of another material surface small orifice plate provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of an image cutting grating plate provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of another small orifice plate provided by an embodiment of the application.
  • FIG. 6 is a schematic diagram of another image shearing grating plate provided by an embodiment of the application.
  • FIG. 7 is a schematic diagram of another image shearing grating plate provided by an embodiment of the application.
  • FIG. 8 is a flowchart of a method for measuring wave aberration according to an embodiment of the application.
  • Fig. 9 is a schematic diagram of another small orifice plate provided by an embodiment of the application.
  • FIG. 1 is a schematic structural diagram of a wave aberration measuring device provided by an embodiment of this application
  • FIG. 2 is a schematic diagram of a small aperture plate on an object plane provided by an embodiment of this application.
  • wave aberration measurement The device includes an illumination system 10, a mask stage 20, an object surface aperture plate 30, a projection objective lens 40, a workpiece stage 50, an image plane shearing grating plate 60, a two-dimensional array photosensitive element 70 and a data processing unit 80.
  • the illumination system 10 generates an illumination beam.
  • the small aperture plate 30 on the object surface is located on the light emitting side of the illumination system 10 and is fixed on the mask table 20.
  • a plurality of object surface small holes 31 are provided on the object surface small hole plate 30, and each object surface small hole 31 includes g object surface small hole marks 310 with different grating directions. g is a positive integer greater than or equal to 2.
  • a plurality of object surface small hole marks 310 on the small hole plate 30 are arranged in an array. The row direction of the array formed by a plurality of object surface small hole marks 310 is parallel to the X direction, and the array column direction formed by a plurality of object surface small hole marks 310 is parallel to the Y direction. The small hole marks 310 on the object surface in the same array row have the same grating direction.
  • Any two rows of small hole marks 310 on the object surface with the same grating direction are arranged in an array.
  • any two rows of small hole marks 310 on the object surface with the same grating direction are arranged in a staggered manner.
  • an object surface small hole 31 includes two object surface small hole marks 310 with different grating directions.
  • the grating directions of the object hole marks in the first array row and the object hole marks in the second array row are all along the X direction
  • the object hole marks in the third array row and the objects in the fourth array row are The grating directions of the face hole marks are all along the Y direction.
  • the object surface small hole marks in the first array row and the object surface small hole marks in the second array row are arranged in an array.
  • the object surface small hole marks in the third array row and the object surface small hole marks in the fourth array row are arranged in an array.
  • the object surface small hole mark O1U1 and the object surface small hole mark O1V1 constitute one object surface small hole 31, and the object surface small hole mark O5U1 and the object surface small hole mark O5V1 constitute another object surface small hole 31.
  • the distance between the object hole mark O1U1 and the object surface hole mark O3U1 in the first array row along the X direction is h1
  • the projection objective lens 40 is located on the side of the small aperture plate 30 of the object plane away from the illumination system 10.
  • the image shearing grating plate 60 is located on the side of the projection objective lens 40 away from the small orifice plate 30 of the object surface, and is fixed on the workpiece table 50.
  • the two-dimensional array photosensitive element 70 is located on the conjugate plane of the pupil 41 of the projection objective lens 40.
  • the two-dimensional array photosensitive element 70 is used to receive the shearing interference pattern formed on the two-dimensional array photosensitive element 70.
  • the shearing interference pattern is illuminated by The light beam is formed after passing through the small aperture plate 30 on the object surface, the projection objective lens 40 and the image shearing grating plate 60.
  • the data processing unit 80 is used to calculate the wave aberration of the projection objective lens 40 according to the shear interference pattern.
  • the object surface aperture plate 30 is located below the illumination system 10 and on the object surface of the projection objective lens 40, is connected to the mask table 20 and can move with the mask table 20.
  • the object surface aperture plate 30 receives the illumination beam from the illumination system 10, generates an ideal point light source through the object surface aperture 31, and the measurement light beam emitted by the ideal point light source enters the projection objective lens 40.
  • the measurement light beam carrying the wave aberration information of the projection objective lens pupil 41 is converged by the projection objective lens 40 to the image shearing grating plate 60.
  • the image cutting grating plate 60 is located on the image surface of the projection objective lens 40, is connected to the workpiece table 50, and can move with the workpiece table 50.
  • the converged measuring beam passes through the image shearing grating plate 60 to form a shearing interference pattern, which is detected by the two-dimensional array photosensitive element 70 in the far field.
  • the interference patterns in different directions and different phase shift positions are measured at each field of view point, and transmitted to the data processing unit 80, and the wave aberration information of the projection objective pupil 41 is obtained through calculation processing.
  • the phase is shifted by changing the relative positions of the object plane aperture plate 30 and the image plane shearing grating plate 60, that is, by moving the mask table 20 or the workpiece table 50, or simultaneously moving the mask table 20 and the workpiece
  • the stage 50 changes the relative position of the small aperture plate 30 connected to the mask stage 20 and the image cutting grating plate 60 connected to the workpiece stage 50. Since the two-dimensional array photosensitive element 70 is located on the far-field detection surface of the image shearing grating plate 60, that is, the Fraunhofer diffraction approximate area, the detection surface of the two-dimensional array photosensitive element 70 and the image shearing grating plate 60 It is the Fourier transform relationship. In this way, the change in the position of the measurement mark on the image shearing grating plate 60 is equivalent to the change in the phase of the received light beam on the two-dimensional array photosensitive element 70.
  • the embodiment of the present application provides a wave aberration measuring device.
  • the object surface aperture plate 30 of the wave aberration measuring device is provided with object surface aperture marks 310 arranged in an array, and the illumination beam emitted by the illumination system 10 scans and illuminates a row of The small holes on the object surface are marked 310, thereby improving the detection efficiency. If an object hole mark 310 is set at each field of view point, when the wave aberration detection is performed on the projection objective lens 40 with a large numerical aperture, the illumination beams of the adjacent field of view points are formed on the two-dimensional array photosensitive element 70 The light spots are prone to overlap and cause signal crosstalk.
  • the above-mentioned field of view point is a virtual observation point on the small aperture plate of the object surface.
  • an object surface small aperture mark 310 can be arranged at the position of each field of view point, so that the illumination beam illuminates the small object surface at the field of view point.
  • the holes are marked to form an image of the detection spot. It is also possible not to arrange small hole marks on the object surface at some points of the field of view.
  • the object surface aperture 31 includes an object surface aperture mark 310 in the first grating direction and an object surface aperture mark 310 in the second grating direction.
  • the first grating direction is perpendicular to the second grating direction.
  • the object surface small hole mark 310 in the first grating direction and the object surface small hole mark 310 in the second grating direction are separated by m-1 array rows.
  • the first grating direction and the second grating direction may have an included angle greater than 0° and less than 90°, which is not limited in the embodiment of the present application.
  • the first grating direction is set to be perpendicular to the second grating direction, which can reduce the later calculation complexity, thereby reducing the difficulty of measurement.
  • the object surface hole mark O1U1 is located in the first row (the row in this application refers to the array row, and the column in this application refers to the column of the array), and the object surface hole mark O1U1 has In the first grating direction, the object surface small hole mark O1V1 is located in the third row, the object surface small hole mark O1V1 has the second grating direction, the object surface small hole mark O1U1 and the object surface small hole mark O1V1 belong to the same object surface small hole 31, and The object surface hole mark O1U1 and the object surface hole mark O1V1 are separated by an array row.
  • FIG. 3 is a schematic diagram of another object surface small hole plate provided by an embodiment of the application.
  • the object surface small hole 31 includes the object surface small hole mark 310 in the first grating direction and the object surface small hole in the second grating direction.
  • the first grating direction is perpendicular to the second grating direction.
  • the first grating direction and the second grating direction may not be set perpendicularly, which will increase the later calculation complexity accordingly.
  • the object surface small hole marks 310 in the first grating direction and the object surface small hole marks 310 in the second grating direction are sequentially arranged along the array column direction.
  • the object surface small hole mark O1U1 is located in the first row
  • the object surface small hole mark O1U1 has the first grating direction
  • the object surface small hole mark O1V1 is located in the second row
  • the object surface small hole mark O1V1 has the first row.
  • the object surface small hole mark O1U1 and the object surface small hole mark O1V1 belong to the same object surface small hole 31, and the object surface small hole mark O1U1 and the object surface small hole mark O1V1 are sequentially arranged along the Y direction.
  • the first grating direction is parallel to the X direction
  • the second grating direction is parallel to the Y direction
  • the first grating direction is parallel to the array row direction
  • the second grating direction is parallel to the array column direction.
  • the angle between the first grating direction and the array row direction may also be 45°.
  • Fig. 4 is a schematic diagram of an image shearing grating plate provided by an embodiment of the application.
  • the image shearing grating plate 60 is provided with a plurality of image shearing gratings 61, each An image cut grating 61 includes g image cut grating marks 610 with different grating directions, and a plurality of image cut grating marks 610 on the image cut grating plate 60 are arranged in an array.
  • the array row direction of the object surface small hole marks 310 on the object surface small hole plate 30 is the same as the array row direction of the image surface cropping grating mark transparent array on the image surface cropping grating plate 60.
  • the array direction of the array formed by the object surface small hole marks 310 on the object surface small hole plate 30 is the same as the array column direction of the image surface cropping grating mark transparent array on the image surface cropping grating plate 60.
  • the image cut raster marks 610 in the same array row have the same raster direction.
  • the array row direction of the image-cutting raster marks 610 is parallel to the X direction
  • the array column direction of the image-cutting grating marks 610 is parallel to the Y direction.
  • the g object surface aperture marks 310 with different grating directions in the same object surface aperture 31 correspond to the g image surface cutting grating marks 610 in the same image surface cutting grating 61 with different grating directions one-to-one, one-to-one correspondence
  • the grating direction of the small hole mark 310 on the object plane is perpendicular to the grating direction of the image cutting raster mark 610.
  • the same object surface small hole 31 includes two object surface small hole marks 310 with different grating directions, such as object surface small hole mark O1U1 and object surface small hole mark O1V1.
  • the same image-cutting grating 61 includes two image-cutting grating marks 610 with different grating directions, for example, the image-cutting grating mark IV11 and the image-cutting grating mark IU12.
  • the object surface small hole mark O1U1 corresponds to the image surface cut grating mark IV11, and the grating direction of the object surface small hole mark O1U1 is perpendicular to the image surface cut grating mark IV11.
  • the object surface small hole mark O1V1 corresponds to the image surface cut grating mark IU12, and the grating direction of the object surface small hole mark O1V1 is perpendicular to the image surface cut grating mark IU12.
  • the object surface small hole plate 30 is arrayed with n object surface small hole marks 310 in the first grating direction and n object surface small holes in the second grating direction.
  • n is a positive integer greater than or equal to 2.
  • Each array row includes A small hole on the surface is marked 310, and It is a positive integer greater than or equal to 2.
  • the number of image-cutting raster marks 610 in an array row is greater than or equal to the number of object-surface aperture marks 310 in an array row.
  • the number of image cutting grating marks 610 in an array row on the image cutting grating plate 60 can be arranged at most n.
  • FIG. 5 is a schematic diagram of another small aperture plate for an object surface provided by an embodiment of the application
  • FIG. 6 is a schematic diagram of another image shearing grating plate provided by an embodiment of the application.
  • the object surface The small hole mark O1U1 has a first grating direction
  • the object surface small hole mark O1V1 has a second grating direction
  • the object surface small hole mark O1U1 and the object surface small hole mark O1V1 belong to the same object surface small hole 31.
  • the angle between the first grating direction and the array row direction is 45°
  • the angle between the second grating direction and the array row direction is 45°.
  • the angle between the first grating direction and the array row direction may also be 10°, 20°, 30°, 40°, 50°, 60°, 70°, or 80°, depending on the product.
  • the angle between the first grating direction and the array row direction is not limited. In the embodiment of the present application, by setting the angle between the second grating direction and the array row direction to be 45°, the measurement difficulty can be reduced.
  • the array row direction of the small hole marks 310 on the object plane is parallel to the X direction, and the array column direction of the small hole marks 310 on the object plane is parallel to the Y direction.
  • the object surface small hole mark O1U1 corresponds to the image surface cut grating mark IV11, and the grating direction of the object surface small hole mark O1U1 is perpendicular to the image surface cut grating mark IV11.
  • the object surface small hole mark O1V1 corresponds to the image surface cut grating mark IU12, and the grating direction of the object surface small hole mark O1V1 is perpendicular to the image surface cut grating mark IU12.
  • FIG. 7 is a schematic diagram of another image shearing grating plate provided by an embodiment of the application.
  • the image shearing grating plate 60 includes a checkered grating array, and the checkered grating array includes a plurality of light-transmitting units Grid 602 and a plurality of non-light-transmitting cells 601. Along the row direction and column direction of the checkered grating array, the light-transmitting unit cells 602 and the non-light-transmitting unit cells 601 are arranged at intervals.
  • the image-cutting grating plate 60 provided by the embodiment of the present application no longer has g image-cutting grating marks 610 with different grating directions, but a checkered grating array.
  • the measurement of the wave aberration of the projection objective lens is realized by the coordinated use of the checkerboard grating array and the small hole marks 310 arranged on the object surface.
  • the angle between the row direction of the checkerboard grating array and the array row direction of the small hole marks 310 on the object plane is 45°.
  • the array row direction of the small hole marks 310 on the object plane is parallel to the X direction, the angle between the row direction of the checkerboard grating array and the X direction is 45°, and the angle between the column direction of the checkerboard grating array and the X direction is 45° .
  • the numerical aperture of the projection objective lens 40 is greater than or equal to 0.85.
  • the projection objective 40 with a numerical aperture greater than or equal to 0.85 is a projection objective with a large numerical aperture.
  • the numerical aperture of the projection objective lens 40 in the embodiment of the present application refers to the maximum numerical aperture that the projection objective lens 40 can reach.
  • the numerical aperture of the projection objective 40 can be adjusted to any value smaller than 0.85 by adjusting the diaphragm and other elements in the projection objective 40.
  • a numerical aperture of 8 can be achieved.
  • the numerical aperture of the projection objective lens 40 may be less than 0.85, depending on the product requirements.
  • the projection objective lens 40 with a large numerical aperture is prone to signal crosstalk during wave aberration detection, and the interference to the projection objective lens 40 with a numerical aperture greater than or equal to 0.85 is more likely to occur. Therefore, in the embodiment of the present application, by setting the numerical aperture of the projection objective 40 to be greater than or equal to 0.85, signal crosstalk during wave aberration detection is avoided for a projection objective with a large numerical aperture.
  • An embodiment of the present application also provides a lithography machine, including the wave aberration measuring device in any of the above embodiments.
  • the small hole plate of the object surface of the wave aberration measuring device is provided with small hole marks on the object surface arranged in an array, and the illumination beam emitted by the illumination system scans and illuminates a row of small hole marks on the object surface. Thereby improving the detection efficiency.
  • Fig. 8 is a flow chart of a method for measuring wave aberration according to an embodiment of the application. Referring to Fig. 1 to Fig. 7 and Fig. 8, the method for measuring wave aberration includes the following steps:
  • the illumination beam generated by the illumination system 10 scans and illuminates the object surface small aperture plate 30 on the object surface aperture mark 310 array to form a measurement beam.
  • the measurement beam passes through the projection objective lens 40 and then irradiates the image shearing grating plate 60 to form Shear the interference pattern.
  • the two-dimensional array photosensitive element 70 receives the shearing interference pattern row by row, and sends it to the data processing unit 80.
  • the data processing unit 80 calculates the wave aberration of the projection objective lens 40 based on the shear interference pattern.
  • the illumination beam generated by the illumination system irradiates and reads two small hole marks on the object surface two adjacent times with at least one field of view point.
  • each object surface aperture 31 includes g object surface aperture marks 310 with different grating directions, and g is a positive value greater than or equal to 2.
  • g is a positive value greater than or equal to 2.
  • the multiple object surface small hole marks 310 on the object surface small hole plate 30 are arranged in an array.
  • the row direction of the array formed by a plurality of object surface small hole marks 310 is the X direction
  • the array column direction formed by the multiple object surface small hole marks 310 is the Y direction.
  • the small hole marks 310 on the object surface in the same array row have the same grating direction.
  • Any two rows of small hole marks 310 on the object surface with the same grating direction are arranged in an array.
  • along the array row direction there is at least one field of view point between two adjacent small hole marks on the object plane. For each scan along the array row direction, the illumination beam generated by the illumination system illuminates one by one to read all the small hole marks on the object surface on the array row.
  • step S110 includes the following sub-steps:
  • the illumination beam generated by the illumination system 10 irradiates an array of the object surface small hole marks 310 on the object surface small hole plate 30 array to form a measurement beam, and the measurement beam passes through the projection objective lens 40 and then irradiates and
  • the array row of object surface small hole marks 310 correspond one-to-one and the image surface of the array row of object surface small hole marks 310 perpendicular to the grating direction cuts the grating marks 610 to form a shearing interference pattern.
  • the image cutting grating plate 60 is provided with a plurality of image cutting gratings 61, and each image cutting grating 61 includes g image cutting grating marks 610 with different grating directions.
  • the image cutting grating plate 60 The multiple image plane cropping grating marks 610 are arranged in an array.
  • the image cut raster marks 610 in the same array row have the same raster direction.
  • the array row direction of the image-cutting raster marks 610 forming an array is parallel to the X direction, and the array column direction of the image-cutting grating marks 610 forming an array is parallel to the Y direction.
  • the g object surface aperture marks 310 with different grating directions in the same object surface aperture 31 correspond to the g image surface cutting grating marks 610 with different grating directions in the same image surface cutting grating 61 one-to-one, one-to-one correspondence
  • the grating direction of the small hole mark 310 on the object plane is perpendicular to the grating direction of the image cutting raster mark 610.
  • the process of using the object-plane small aperture plate 30 shown in FIG. 2 and the image-plane shearing grating plate 60 shown in FIG. 4 to perform wave aberration detection of the projection objective lens 40 is as follows:
  • the illuminating beam is irradiated to the object surface small hole mark 310 (object surface small hole mark O1U1, object surface small hole mark O3U1, object surface small hole mark O5U1...) in the first row of the grating direction parallel to the X direction.
  • the measurement is performed on the image cutting raster mark 610 (image cutting raster mark IV11, image cutting raster mark IV21...image cutting raster mark IVn1) whose grating direction is parallel to the Y direction.
  • the illumination beam passes through the second row of object surface hole marks 310 (object surface hole mark O2U2, object surface hole mark O4U2...object surface hole mark OnU2) with the grating direction parallel to the X direction to illuminate the grating direction
  • the measurement is performed on the image cutting raster mark 610 (image cutting raster mark IV11, image cutting raster mark IV21...Image cutting raster mark IVn1) parallel to the Y direction.
  • the illumination beam illuminates the grating through the third row of small hole marks 310 on the object surface (the small hole mark on the object surface O1V1, the small hole mark on the object surface O3V1, the small hole mark on the object surface O5V1...) whose grating direction is parallel to the Y direction.
  • the measurement is performed on the image cutting raster mark 610 (image cutting raster mark IU12, image cutting raster mark IU22...image cutting raster mark IUn2) whose direction is parallel to the X direction.
  • the illumination beam illuminates the direction of the grating through the fourth row of small hole marks on the object surface 310 (the small hole mark on the object surface O2V2, the small hole mark on the object surface O4V2...the small hole mark on the object surface OnV2) whose grating direction is parallel to the Y direction
  • the measurement is performed on the image cut raster mark 610 (image cut raster mark IU12, image cut raster mark IU22...image cut raster mark IUn2) parallel to the X direction.
  • the process of using the small aperture plate 30 shown in FIG. 3 and the image shear grating plate 60 shown in FIG. 4 to perform wave aberration detection of the projection objective lens is as follows:
  • the illuminating beam is irradiated to the object surface small hole mark 310 (object surface small hole mark O1U1, object surface small hole mark O3U1, object surface small hole mark O5U1”) in the first row of the grating direction parallel to the X direction.
  • the raster direction is parallel to the Y-direction image cutting raster mark (Image cutting raster mark IV11, image cutting raster mark IV21...Image cutting raster mark IVn1) 610 for measurement.
  • the illumination beam passes through the grating direction parallel to the Y direction.
  • the second row of the object surface small hole marks (object surface small hole mark O1V1, object surface small hole mark O3V1, object surface small hole mark O5V1”) irradiates to the grating direction parallel Measure on the image cut raster mark in the X direction (image cut raster mark IU12, image cut raster mark IU22...Image cut raster mark IUn2).
  • the illumination beam passes through the third row of small hole marks on the object surface with the grating direction parallel to the X direction (object surface small hole mark O2U2, object surface small hole mark O4U2...object surface small hole mark OnU2) irradiated to the grating direction parallel Measure on the image cut raster mark in the Y direction (image cut raster mark IV11, image cut raster mark IV21...Image cut raster mark IVn1).
  • the illumination beam passes through the fourth row of small hole marks on the object surface with the grating direction parallel to the Y direction (object surface small hole mark O2V2, object surface small hole mark O4V2...object surface small hole mark OnV2) irradiated to the grating direction parallel Measure on the image cut raster mark in the X direction (image cut raster mark IU12, image cut raster mark IU22...Image cut raster mark IUn2).
  • step S110 includes the following sub-steps:
  • the illumination beam generated by the illumination system 10 irradiates an array of the object surface small hole marks 310 on the object surface small hole mark array of the object surface small hole plate 30 to form a measurement beam, and the measurement beam passes through the projection objective lens 40 and then irradiates the chess grid Shape grating array to form a shear interference pattern.
  • the image-cutting grating plate 60 includes a checkered grating array, and the checkered grating array includes a plurality of light-transmitting cells 602 and a plurality of non-light-transmitting cells 601. Along the row direction and column direction of the checkered grating array, the light-transmitting unit cells 602 and the non-light-transmitting unit cells 601 are arranged at intervals.
  • the process of using the small aperture plate 30 shown in FIG. 2 and the image shear grating plate 60 shown in FIG. 7 to perform wave aberration detection of the projection objective lens is as follows:
  • the illuminating beam illuminates the object surface small hole marks (object surface small hole mark O1U1, object surface small hole mark O3U1, object surface small hole mark O5U1...) through the first row of the grating direction parallel to the X direction.
  • the measurement is performed on a lattice grating array.
  • the illumination beam passes through the second row of small hole marks on the object surface (the small hole mark on the object surface O2U2, the small hole mark on the object surface O4U2...the small hole mark OnU2 on the object surface) that is parallel to the X direction through the grating direction to irradiate the checkerboard pattern
  • the measurement is performed on the grating array.
  • the illumination beam passes through the third row of small hole marks on the object surface (object surface small hole mark O1V1, object surface small hole mark O3V1, object surface small hole mark O5V1...) with the grating direction parallel to the Y direction to illuminate the chess grid Measured on a grating array.
  • the illuminating beam irradiates the object surface hole marks (object surface hole mark O2V2, object surface hole mark O4V2...object surface hole mark OnV2) through the fourth row of the grating direction parallel to the Y direction to the chess grid The measurement is performed on the grating array.
  • FIG. 9 is a schematic diagram of another object surface small hole plate provided by an embodiment of the application, and each field point is provided with an object surface small hole mark 310.
  • the array row direction ie, the X direction
  • the illumination beam generated by the illumination system is irradiated at intervals to read the small hole marks on the part of the object surface on the array row. All the small hole marks on the object surface on the array row need to be scanned and read multiple times.
  • the process of using the small aperture plate 30 shown in FIG. 9 and the image shearing grating plate 60 shown in FIG. 7 to perform wave aberration detection of the projection objective lens is as follows:
  • the illuminating beam passes through a part of the small hole marks on the object surface (the small hole mark on the object surface O1U1, the small hole mark on the object surface O3U1, the small hole mark on the object surface O5U1...) in the first row where the grating direction is parallel to the X direction.
  • the measurement is performed on a checkered grating array.
  • the illuminating beam is irradiated to the other part of the object surface small hole mark (object surface small hole mark O2U1, object surface small hole mark O4U1...object surface small hole mark OnU1) in the first row of the grating direction parallel to the X direction
  • the measurement is performed on a checkered grating array.
  • the illumination beam passes through a part of the small hole marks on the object surface (the small hole mark on the object surface O1V1, the small hole mark on the object surface O3V1, the small hole mark on the object surface O5V1...) in the second row where the grating direction is parallel to the Y direction.
  • the measurement is performed on a checkered grating array.
  • the illumination beam illuminates the other part of the object surface small hole mark (object surface small hole mark O2V1, object surface small hole mark O4V1, object surface small hole mark OnV1%) in the second row of the grating direction parallel to the Y direction. Measure on the checkered grating array.
  • the embodiment of the application provides a wave aberration measuring device.
  • the object surface small hole plate of the wave aberration measuring device is provided with object surface small hole marks arranged in an array, and the illumination beam emitted by the illumination system scans and illuminates a row of small object surface. Holes are marked to improve detection efficiency. If a small hole mark on the object plane is set at each field of view point, when performing wave aberration detection for a projection objective with a large numerical aperture, the light spot formed by the illumination beam of the adjacent field point on the two-dimensional array photosensitive element is easy to produce Overlap, causing signal crosstalk.
  • two adjacent small hole marks on the object plane in the same array row are separated by m-1 field of view points, which avoids signal crosstalk when performing wave aberration detection on a projection objective with a large numerical aperture.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Geometry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

本申请提供一种波像差测量装置、测量方法及光刻机,波像差测量装置包括:照明系统,被设置为产生照明光束;物面小孔板,位于照明系统的出光侧,固定在掩模台上,物面小孔板上设置有多个物面小孔,每一物面小孔包括g个不同光栅方向的物面小孔标记,g为大于或者等于2的正整数,物面小孔板上的多个物面小孔标记阵列排布;同一阵列行中的物面小孔标记具有相同的光栅方向;沿阵列行方向上,同一阵列行中相邻两个物面小孔标记之间的距离为h1;沿阵列行方向上,光栅方向相同的两阵列行中距离最近的两个物面小孔标记之间的最小距离为h2,h1=m×h2,m为大于或者等于2的正整数;光栅方向相同的任意两行物面小孔标记阵列式排布。

Description

波像差测量装置、测量方法及光刻机
本申请要求在2019年5月31日提交中国专利局、申请号为201910471627.8的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及光刻技术,例如涉及一种波像差测量装置、测量方法及光刻机。
背景技术
半导体行业的一个目标是在单个集成线路(IC)中集成更多的电子元件。要实现这个目标需不断地缩小元件尺寸,即不断地提高光刻投影系统的分辨率。物镜波像差是限制投影系统分辨率的重要因素,也是造成线宽变化的重要原因。虽然物镜在加工制造和装配过程中都经过了严格的检验和优化,使其波像差最小化,但在物镜系统集成到光刻机后进行在线的波像差测量仍然必要。这是因为镜片材料的老化或者物镜热效应会造成波像差,因此,在光刻机工作过程中需经常的测量波像差,并根据测量结果调整物镜中特定镜片的位置以减小波像差。若需在短时间范围内校正物镜热效应,则需更频繁地进行波像差测量,这时波像差测量的实时性尤为重要。
在线测量波像差的一种方法是移相剪切干涉法。该方法使用照明光束进行测量,在物面使用小孔产生探测光源,小孔经物镜成像到像面剪切光栅并在远场产生剪切干涉条纹,使用二维阵列光敏元件在物镜光瞳的共轭面记录干涉图像。测量过程中需改变光源与光栅的相对位置(移相)以获得不同移相条件下的干涉条纹,分析这些干涉图像可得到物镜波像差。为了重建完整的波前信息,需在每个视场点同时测量两个相互垂直方向上的位相信息,也可测量多个方向上的位相信息,例如测量夹角互为120度的三个方向上的位相信息。同时,为了获得整个物镜视场范围内的波像差信息,需对选定的场点进行逐个测量。这 样,使用该方法对整个视场进行波像差测量的时间正比于以下几个因素:1、场点数目Nf;2、测量的方向数(至少2个)Nd;3、每个方向上的移相步数Np,则理论测量时间Ttheory与Nf×Nd×Np成正比例。为了保证一定的测量精度,上述每个项目的测量数量必须保持在一定的下限以上。以往的移相剪切法测波像差采用串行测量的方法,即依次测量每个视场点,在测量每个视场点时依次测量该视场点的两个方向,在测量每个方向时依次进行移相操作。因此,实际测量时间Tmeasure>=理论测量时间Ttheory。由于无法进一步缩短波像差测量的时间,这种串行测量方法将影响光刻机产率和波像差测量的实时性。
使用移相剪切法串行测量每个视场点的波像差,不能满足光刻装置对波像差测量的实时性要求,检测效率低。且对于大数值孔径的投影物镜进行波像差检测时,容易发生信号串扰。
发明内容
本申请实施例提供一种波像差测量装置、测量方法及光刻机,以实现提高检测效率,以及避免信号串扰。
本申请实施例提供一种波像差测量装置,包括:
照明系统,被设置为产生照明光束;
物面小孔板,位于所述照明系统的出光侧,固定在掩模台上,所述物面小孔板上设置有多个物面小孔,每一所述物面小孔包括g个不同光栅方向的物面小孔标记,g为大于或者等于2的正整数,所述物面小孔板上的多个所述物面小孔标记阵列排布;
同一阵列行中的所述物面小孔标记具有相同的光栅方向;沿阵列行方向上,同一阵列行中相邻两个所述物面小孔标记之间的距离为h1;沿所述阵列行方向上,光栅方向相同的两阵列行中距离最近的两个所述物面小孔标记之间的最小 距离为h2,,m为大于或者等于2的正整数;光栅方向相同的任意两行所述物面小孔标记阵列式排布;
投影物镜,位于所述物面小孔板远离所述照明系统一侧;
像面剪切光栅板,位于所述投影物镜远离所述物面小孔板一侧,固定在工件台上;
二维阵列光敏元件和数据处理单元,所述二维阵列光敏元件位于所述投影物镜的光瞳的共轭面上,所述二维阵列光敏元件用于接收形成在所述二维阵列光敏元件上的剪切干涉图案,所述数据处理单元用于根据所述剪切干涉图案计算所述投影物镜的波像差。
本申请实施例提供一种光刻机,包括上述的波像差测量装置。
本申请实施例提供一种波像差测量方法,由上述的波像差测量装置执行,所述方法包括:
照明系统产生的照明光束逐行扫描照射物面小孔板的物面小孔标记阵列形成测量光束,所述测量光束通过投影物镜后照射到像面剪切光栅板,以形成剪切干涉图案;
二维阵列光敏元件逐行接收所述剪切干涉图案,并发送至数据处理单元;所述数据处理单元根据所述剪切干涉图案计算所述投影物镜的波像差;
其中,沿阵列行方向上,所述照明系统产生的照明光束相邻两次照射读取的两个物面小孔标记之间间隔至少一个视场点。
附图说明
图1为本申请实施例提供的一种波像差测量装置的结构示意图;
图2为本申请实施例提供的一种物面小孔板的示意图;
图3为本申请实施例提供的另一种物面小孔板的示意图;
图4为本申请实施例提供的一种像面剪切光栅板的示意图;
图5为本申请实施例提供的另一种物面小孔板的示意图;
图6为本申请实施例提供的另一种像面剪切光栅板的示意图;
图7为本申请实施例提供的另一种像面剪切光栅板的示意图;
图8为本申请实施例提供的一种波像差测量方法的流程图;
图9为本申请实施例提供的另一种物面小孔板的示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。
图1为本申请实施例提供的一种波像差测量装置的结构示意图,图2为本申请实施例提供的一种物面小孔板的示意图,参考图1和图2,波像差测量装置包括照明系统10、掩模台20、物面小孔板30、投影物镜40、工件台50、像面剪切光栅板60、二维阵列光敏元件70和数据处理单元80。照明系统10产生照明光束。物面小孔板30位于照明系统10的出光侧,且固定在掩模台20上。物面小孔板30上设置有多个物面小孔31,每一物面小孔31包括g个不同光栅方向的物面小孔标记310,g为大于或者等于2的正整数,物面小孔板30上的多个物面小孔标记310阵列排布。多个物面小孔标记310构成的阵列行方向平行于X方向,多个物面小孔标记310构成的阵列列方向平行于Y方向。同一阵列行中的物面小孔标记310具有相同的光栅方向。沿阵列行方向上,同一阵列行中相邻两个物面小孔标记310之间的距离为h1;沿阵列行方向上,光栅方向相同的两阵列行中距离最近的两个物面小孔标记310之间的最小距离为h2,h1=m×h2,m为大于或者等于2的正整数。光栅方向相同的任意两行物面小孔标记310阵列式排布。可选地,光栅方向相同的任意两行物面小孔标记310交错排列。
示例性地,参考图2,g=2,m=2,一个物面小孔31包括2个不同光栅方向的物面小孔标记310。第一阵列行中的物面小孔标记和第二阵列行中的物面小孔标记的光栅方向均沿X方向,第三阵列行中的物面小孔标记和第四阵列行中的物面小孔标记的光栅方向均沿Y方向。第一阵列行中的物面小孔标记和第二阵列行中的物面小孔标记阵列式排布。第三阵列行中的物面小孔标记和第四阵列行中的物面小孔标记阵列式排布。物面小孔标记O1U1和物面小孔标记O1V1构成一个物面小孔31,物面小孔标记O5U1和物面小孔标记O5V1构成另一个物面小孔31。第一阵列行中的物面小孔标记O1U1和物面小孔标记O3U1沿X方向上的距离为h1,第一阵列行中的物面小孔标记O1U1和第二阵列行中的物面小孔标记O2U2沿X方向上的距离为h2,h1=2×h2。
参考图1,投影物镜40位于物面小孔板30远离照明系统10一侧。像面剪切光栅板60位于投影物镜40远离物面小孔板30一侧,并固定在工件台50上。二维阵列光敏元件70位于投影物镜40的光瞳41的共轭面上,二维阵列光敏元件70用于接收形成在二维阵列光敏元件70上的剪切干涉图案,剪切干涉图案由照明光束通过物面小孔板30、投影物镜40和像面剪切光栅板60后形成。数据处理单元80用于根据剪切干涉图案计算投影物镜40的波像差。
物面小孔板30位于照明系统10的下方,且位于投影物镜40的物面上,与掩模台20连接,并能随掩模台20一起运动。物面小孔板30接收来自照明系统10的照明光束,通过物面小孔31产生理想点光源,理想点光源发出的测量光束进入投影物镜40。携带投影物镜光瞳41的波像差信息的测量光束被投影物镜40汇聚到像面剪切光栅板60。像面剪切光栅板60位于投影物镜40的像面,与工件台50连接,并能随工件台50一起运动。汇聚的测量光束经过像面剪切光栅板60后形成剪切干涉图案,被位于远场的二维阵列光敏元件70探测到。通 过上述测量流程,在每个视场点测量不同方向、不同移相位置的干涉图案,并传输到数据处理单元80,经过计算处理获得投影物镜光瞳41的波像差信息。在具体实施方式中,通过改变物面小孔板30和像面剪切光栅板60的相对位置进行移相,即通过运动掩模台20或工件台50,或同时运动掩模台20和工件台50,改变与掩模台20连接的物面小孔板30和与工件台50连接的像面剪切光栅板60的相对位置。由于二维阵列光敏元件70位于像面剪切光栅板60的远场探测面,即夫琅和费衍射近似区,因此二维阵列光敏元件70的探测面与像面剪切光栅板60之间为傅立叶变换关系。这样,像面剪切光栅板60上测量标记的位置变化等同于二维阵列光敏元件70上接收光束的位相变化。
本申请实施例提供一种波像差测量装置,波像差测量装置的物面小孔板30上设置有阵列排布的物面小孔标记310,照明系统10发出的照明光束扫描照射一行的物面小孔标记310,从而提高了检测效率。如果在每个视场点设置一个物面小孔标记310,则对于大数值孔径的投影物镜40进行波像差检测时,相邻视场点的照明光束在二维阵列光敏元件70上形成的光斑容易产生重叠,造成信号串扰。本申请实施例中,同一阵列行中相邻两个物面小孔标记310之间间隔m-1个视场点,避免了对于大数值孔径的投影物镜进行波像差检测时的信号串扰。上述视场点为物面小孔板上的虚拟观察点,例如可以在每一个视场点的位置上布置一个物面小孔标记310,从而使照明光束照射该视场点处的物面小孔标记以形成一个检测光斑图像。也可以在某些视场点不布置物面小孔标记。
参考图2,物面小孔31包括第一光栅方向的物面小孔标记310和第二光栅方向的物面小孔标记310,第一光栅方向与第二光栅方向垂直。同一物面小孔31中,第一光栅方向的物面小孔标记310和第二光栅方向的物面小孔标记310间隔m-1个阵列行。在其他实施方式中,第一光栅方向与第二光栅方向之间可 以具有一大于0°且小于90°的夹角,本申请实施例对此不做限定。本申请实施例中,设置第一光栅方向与第二光栅方向垂直,可以降低后期计算复杂度,从而降低了测量的难度。
示例性地,参考图2,物面小孔标记O1U1位于第一行(本申请中的行指的是阵列行,本申请中的列指的是阵列的列),物面小孔标记O1U1具有第一光栅方向,物面小孔标记O1V1位于第三行,物面小孔标记O1V1具有第二光栅方向,物面小孔标记O1U1和物面小孔标记O1V1属于同一物面小孔31,且物面小孔标记O1U1和物面小孔标记O1V1间隔一个阵列行。
图3为本申请实施例提供的另一种物面小孔板的示意图,参考图3,物面小孔31包括第一光栅方向的物面小孔标记310和第二光栅方向的物面小孔标记310,第一光栅方向与第二光栅方向垂直。第一光栅方向与第二光栅方向也可以不垂直设置,相应的会增加后期计算复杂度。同一物面小孔31中,第一光栅方向的物面小孔标记310和第二光栅方向的物面小孔标记310沿阵列列方向依次设置。
示例性地,参考图3,物面小孔标记O1U1位于第一行,物面小孔标记O1U1具有第一光栅方向,物面小孔标记O1V1位于第二行,物面小孔标记O1V1具有第二光栅方向,物面小孔标记O1U1和物面小孔标记O1V1属于同一物面小孔31,且物面小孔标记O1U1和物面小孔标记O1V1沿Y方向依次设置。物面小孔标记O1U1和物面小孔标记O1V1之间未间隔第二光栅方向的物面小孔标记310。
参考图2和图3,第一光栅方向平行于X方向,第二光栅方向平行于Y方向。第一光栅方向平行于阵列行方向,第二光栅方向平行于阵列列方向。在其他实施方式中,第一光栅方向与阵列行方向的夹角还可以为45°。
图4为本申请实施例提供的一种像面剪切光栅板的示意图,参考图2、图3和图4,像面剪切光栅板60上设置有多个像面剪切光栅61,每一像面剪切光栅61包括g个不同光栅方向的像面剪切光栅标记610,像面剪切光栅板60上的多个像面剪切光栅标记610阵列排布。物面小孔板30上物面小孔标记310构成阵列的阵列行方向与像面剪切光栅板60上像面剪切光栅标记透彻阵列的阵列行方向相同。物面小孔板30上物面小孔标记310构成阵列的阵列列方向与像面剪切光栅板60上像面剪切光栅标记透彻阵列的阵列列方向相同。同一阵列行中的像面剪切光栅标记610具有相同的光栅方向。图4中示例性地,像面剪切光栅标记610形成阵列的阵列行方向平行于X方向,像面剪切光栅标记610形成阵列的阵列列方向平行于Y方向。同一个物面小孔31中g个不同光栅方向的物面小孔标记310与同一个像面剪切光栅61中g个不同光栅方向的像面剪切光栅标记610一一对应,一一对应的物面小孔标记310的光栅方向与像面剪切光栅标记610的光栅方向垂直。
示例性地,参考图2和图4,同一个物面小孔31中包括2个不同光栅方向的物面小孔标记310,例如物面小孔标记O1U1和物面小孔标记O1V1。同一个像面剪切光栅61中包括2个不同光栅方向的像面剪切光栅标记610,例如像面剪切光栅标记IV11和像面剪切光栅标记IU12。物面小孔标记O1U1与像面剪切光栅标记IV11对应,物面小孔标记O1U1的光栅方向与像面剪切光栅标记IV11的光栅方向垂直。物面小孔标记O1V1与像面剪切光栅标记IU12对应,物面小孔标记O1V1的光栅方向与像面剪切光栅标记IU12的光栅方向垂直。
参考图2、图3和图4,沿X方向上,物面小孔板30上阵列设置了n个第一光栅方向的物面小孔标记310和n个第二光栅方向的物面小孔标记310,n为 大于或者等于2的正整数。每一阵列行包括
Figure PCTCN2020078349-appb-000001
个物面小孔标记310,且
Figure PCTCN2020078349-appb-000002
为大于或者等于2的正整数。为了对物面小孔板30上一阵列行的物面小孔标记310同时检测,需要设置像面剪切光栅板60上一阵列行中像面剪切光栅标记610的数量至少为
Figure PCTCN2020078349-appb-000003
个。即,一阵列行中像面剪切光栅标记610的数量大于或者等于一阵列行中物面小孔标记310的数量。另外,像面剪切光栅板60上一阵列行中像面剪切光栅标记610的数量最多可以布置n个。
图5为本申请实施例提供的另一种物面小孔板的示意图,图6为本申请实施例提供的另一种像面剪切光栅板的示意图,参考图5和图6,物面小孔标记O1U1具有第一光栅方向,物面小孔标记O1V1具有第二光栅方向,物面小孔标记O1U1和物面小孔标记O1V1属于同一物面小孔31。本申请实施例中,第一光栅方向与阵列行方向的夹角为45°,第二光栅方向与阵列行方向的夹角为45°。在其他实施方式中,第一光栅方向与阵列行方向的夹角还可以为10°、20°、30°、40°、50°、60°、70°或者80°,具体需要根据产品而定,本申请实施例对于第一光栅方向与阵列行方向的夹角不做限定。本申请实施例中,通过设置第二光栅方向与阵列行方向的夹角为45°,可以降低测量的难度。
物面小孔标记310形成阵列的阵列行方向平行于X方向,物面小孔标记310形成阵列的阵列列方向平行于Y方向。物面小孔标记O1U1与像面剪切光栅标记IV11对应,物面小孔标记O1U1的光栅方向与像面剪切光栅标记IV11的光栅方向垂直。物面小孔标记O1V1与像面剪切光栅标记IU12对应,物面小孔标记O1V1的光栅方向与像面剪切光栅标记IU12的光栅方向垂直。
图7为本申请实施例提供的另一种像面剪切光栅板的示意图,参考图7,像面剪切光栅板60包括棋格状光栅阵列,棋格状光栅阵列包括多个透光单元格602 和多个非透光单元格601。沿棋格状光栅阵列的行方向以及列方向,透光单元格602和非透光单元格601均间隔排列。本申请实施例提供的像面剪切光栅板60上不再设置g个不同光栅方向的像面剪切光栅标记610,而是采用了棋格状光栅阵列。通过棋格状光栅阵列与阵列排布的物面小孔标记310的配合使用实现对投影物镜波像差的测量。
参考图7,棋格状光栅阵列的行方向与物面小孔标记310的阵列行方向之间的夹角为45°。物面小孔标记310的阵列行方向平行于X方向,棋格状光栅阵列的行方向与X方向的夹角为45°,棋格状光栅阵列的列方向与X方向的夹角为45°。
参考图1,投影物镜40的数值孔径大于或等于0.85。在光刻机领域,数值孔径大于或等于0.85的投影物镜40为大数值孔径的投影物镜。可以理解的是,本申请实施例中投影物镜40的数值孔径指的是投影物镜40可以达到的最大数值孔径。对于数值孔径大于或者等于0.85的投影物镜40,可以通过调节投影物镜40中的光阑等元件来使投影物镜40的数值孔径实现小于0.85的任一个数值,例如可以实现数值孔径为8。在其他实施方式中,投影物镜40的数值孔径可以小于0.85,具体需要根据产品需求而定。由于大数值孔径的投影物镜40进行波像差检测时容易出现信号串扰,且对于数值孔径大于或等于0.85的投影物镜40的干扰越容易发生。因此,本申请实施例中,通过设置投影物镜40的数值孔径大于或等于0.85,避免了对于大数值孔径的投影物镜进行波像差检测时的信号串扰。
本申请实施例还提供一种光刻机,包括上述任一实施例中的的波像差测量装置。本申请实施例提供光刻机中,波像差测量装置的物面小孔板上设置有阵列排布的物面小孔标记,照明系统发出的照明光束扫描照射一行的物面小孔标 记,从而提高了检测效率。同一阵列行中相邻两个物面小孔标记之间间隔m-1个视场点,避免了对于大数值孔径的投影物镜进行波像差检测时的信号串扰。
图8为本申请实施例提供的一种波像差测量方法的流程图,参考图1-图7,以及图8,波像差测量方法包括如下步骤:
S110、照明系统10产生的照明光束逐行扫描照射物面小孔板30的物面小孔标记310阵列形成测量光束,测量光束通过投影物镜40后照射到像面剪切光栅板60,以形成剪切干涉图案。
S120、二维阵列光敏元件70逐行接收剪切干涉图案,并发送至数据处理单元80。数据处理单元80根据剪切干涉图案计算投影物镜40的波像差。
其中,沿阵列行方向上,所述照明系统产生的照明光束相邻两次照射读取的两个物面小孔标记之间间隔至少一个视场点。
波像差测量方法由上述任一实施例中的波像差测量装置执行时,每一物面小孔31包括g个不同光栅方向的物面小孔标记310,g为大于或者等于2的正整数,物面小孔板30上的多个物面小孔标记310阵列排布。多个物面小孔标记310构成的阵列行方向为X方向,多个物面小孔标记310构成的阵列列方向为Y方向。同一阵列行中的物面小孔标记310具有相同的光栅方向。沿阵列行方向上,同一阵列行中相邻两个物面小孔标记310之间的距离为h1;沿阵列行方向上,光栅方向相同的两阵列行中距离最近的两个物面小孔标记310之间的最小距离为h2,h1=m×h2,m为大于或者等于2的正整数。光栅方向相同的任意两行物面小孔标记310阵列式排布。本申请实施例中,沿阵列行方向上,相邻两个物面小孔标记之间间隔至少一个视场点。沿阵列行方向上的每次扫描,照明系统产生的照明光束逐个照射读取该阵列行上所有的物面小孔标记。
照明系统10产生的照明光束逐行扫描照射物面小孔板30的物面小孔标记 310阵列形成测量光束,测量光束通过投影物镜40后照射到像面剪切光栅板60,以形成剪切干涉图案;(即步骤S110)包括如下子步骤:
S1111、照明系统10产生的照明光束照射至物面小孔板30的物面小孔标记310阵列上的一阵列行物面小孔标记310形成测量光束,测量光束通过投影物镜40后照射到与该阵列行物面小孔标记310一一对应且与该阵列行物面小孔标记310光栅方向垂直的像面剪切光栅标记610以形成剪切干涉图案。
S1112、移动以下至少之一的装置,以使照明光束扫描所有阵列行的物面小孔标记310:掩模台20和工件台50。
像面剪切光栅板60上设置有多个像面剪切光栅61,每一像面剪切光栅61包括g个不同光栅方向的像面剪切光栅标记610,像面剪切光栅板60上的多个像面剪切光栅标记610阵列排布。同一阵列行中的像面剪切光栅标记610具有相同的光栅方向。像面剪切光栅标记610形成阵列的阵列行方向平行于X方向,像面剪切光栅标记610形成阵列的阵列列方向平行于Y方向。同一个物面小孔31中g个不同光栅方向的物面小孔标记310与同一个像面剪切光栅61中g个不同光栅方向的像面剪切光栅标记610一一对应,一一对应的物面小孔标记310的光栅方向与像面剪切光栅标记610的光栅方向垂直。
示例性地,采用如图2所示的物面小孔板30和如图4所示的像面剪切光栅板60配合进行投影物镜40的波像差检测的过程如下:
第一步,照明光束通过光栅方向平行于X方向的第一行的物面小孔标记310(物面小孔标记O1U1、物面小孔标记O3U1、物面小孔标记O5U1……)照射到光栅方向平行于Y方向的像面剪切光栅标记610(像面剪切光栅标记IV11、像面剪切光栅标记IV21……像面剪切光栅标记IVn1)上进行测量。第二步,照明光束通过光栅方向平行于X方向的第二行物面小孔标记310(物面小孔标记 O2U2、物面小孔标记O4U2……物面小孔标记OnU2)照射到光栅方向平行于Y方向的像面剪切光栅标记610(像面剪切光栅标记IV11、像面剪切光栅标记IV21……像面剪切光栅标记IVn1)上进行测量。第三步,照明光束通过光栅方向平行于Y方向的第三行物面小孔标记310(物面小孔标记O1V1、物面小孔标记O3V1、物面小孔标记O5V1……)照射到光栅方向平行于X方向的像面剪切光栅标记610(像面剪切光栅标记IU12、像面剪切光栅标记IU22……像面剪切光栅标记IUn2)上进行测量。第四步,照明光束通过光栅方向平行于Y方向的第四行物面小孔标记310(物面小孔标记O2V2、物面小孔标记O4V2……物面小孔标记OnV2)照射到光栅方向平行于X方向的像面剪切光栅标记610(像面剪切光栅标记IU12、像面剪切光栅标记IU22……像面剪切光栅标记IUn2)上进行测量。
示例性地,采用如图3所示的物面小孔板30和如图4所示的像面剪切光栅板60配合进行投影物镜的波像差检测的过程如下:
第一步,照明光束通过光栅方向平行于X方向的第一行的物面小孔标记310(物面小孔标记O1U1、物面小孔标记O3U1、物面小孔标记O5U1……)照射到光栅方向平行于Y方向的像面剪切光栅标记(像面剪切光栅标记IV11、像面剪切光栅标记IV21……像面剪切光栅标记IVn1)610上进行测量。第二步,照明光束通过光栅方向平行于Y方向第二行物面小孔标记(物面小孔标记O1V1、物面小孔标记O3V1、物面小孔标记O5V1……)照射到光栅方向平行于X方向的像面剪切光栅标记(像面剪切光栅标记IU12、像面剪切光栅标记IU22……像面剪切光栅标记IUn2)上进行测量。第三步,照明光束通过光栅方向平行于X方向的第三行物面小孔标记(物面小孔标记O2U2、物面小孔标记O4U2……物面小孔标记OnU2)照射到光栅方向平行于Y方向的像面剪切光栅标记(像面剪 切光栅标记IV11、像面剪切光栅标记IV21……像面剪切光栅标记IVn1)上进行测量。第四步,照明光束通过光栅方向平行于Y方向的第四行物面小孔标记(物面小孔标记O2V2、物面小孔标记O4V2……物面小孔标记OnV2)照射到光栅方向平行于X方向的像面剪切光栅标记(像面剪切光栅标记IU12、像面剪切光栅标记IU22……像面剪切光栅标记IUn2)上进行测量。
照明系统10产生的照明光束逐行扫描照射物面小孔板30的物面小孔标记310阵列形成测量光束,测量光束通过投影物镜40后照射到像面剪切光栅板60,以形成剪切干涉图案;(即步骤S110)包括如下子步骤:
S1121、照明系统10产生的照明光束照射至物面小孔板30的物面小孔标记阵列上的一阵列行物面小孔标记310形成测量光束,测量光束通过投影物镜40后照射到棋格状光栅阵列以形成剪切干涉图案。
S1122、移动以下至少之一的装置,以使照明光束扫描所有阵列行的物面小孔标记310:掩模台20和工件台50。
其中,像面剪切光栅板60包括棋格状光栅阵列,棋格状光栅阵列包括多个透光单元格602和多个非透光单元格601。沿棋格状光栅阵列的行方向以及列方向,透光单元格602和非透光单元格601均间隔排列。
示例性地,采用如图2所示的物面小孔板30和如图7所示的像面剪切光栅板60配合进行投影物镜的波像差检测的过程如下:
第一步,照明光束通过光栅方向平行于X方向的第一行的物面小孔标记(物面小孔标记O1U1、物面小孔标记O3U1、物面小孔标记O5U1……)照射到棋格状光栅阵列上进行测量。第二步,照明光束通过光栅方向平行于X方向的第二行物面小孔标记(物面小孔标记O2U2、物面小孔标记O4U2……物面小孔标记OnU2)照射到棋格状光栅阵列上进行测量。第三步,照明光束通过光栅方向 平行于Y方向的第三行物面小孔标记(物面小孔标记O1V1、物面小孔标记O3V1、物面小孔标记O5V1……)照射到棋格状光栅阵列上进行测量。第四步,照明光束通过光栅方向平行于Y方向第四行的物面小孔标记(物面小孔标记O2V2、物面小孔标记O4V2……物面小孔标记OnV2)照射到棋格状光栅阵列上进行测量。
在其他实施方式中,波像差测量方法还可以由上述实施例之外的波像差测量装置执行。图9为本申请实施例提供的另一种物面小孔板的示意图,每一个视场点设置有一个物面小孔标记310。沿阵列行方向(即X方向)上,照明系统产生的照明光束相邻两次照射读取的两个物面小孔标记310之间间隔至少一个物面小孔标记310。本申请实施例中,沿阵列行方向上,相邻两个物面小孔标记之间间隔至少一个视场点。沿阵列行方向上的每次扫描,照明系统产生的照明光束间隔照射读取该阵列行上部分物面小孔标记。该阵列行上所有的物面小孔标记需要多次扫描读取。
示例性地,参考图9,采用如图9所示的物面小孔板30和如图7所示的像面剪切光栅板60配合进行投影物镜的波像差检测的过程如下:
第一步,照明光束通过光栅方向平行于X方向的第一行的一部分物面小孔标记(物面小孔标记O1U1、物面小孔标记O3U1、物面小孔标记O5U1……)照射到棋格状光栅阵列上进行测量。第二步,照明光束通过光栅方向平行于X方向的第一行的另一部分物面小孔标记(物面小孔标记O2U1、物面小孔标记O4U1……物面小孔标记OnU1)照射到棋格状光栅阵列上进行测量。第三步,照明光束通过光栅方向平行于Y方向的第二行的一部分物面小孔标记(物面小孔标记O1V1、物面小孔标记O3V1、物面小孔标记O5V1……)照射到棋格状光栅阵列上进行测量。第四步,照明光束通过光栅方向平行于Y方向的第二行 的另一部分物面小孔标记(物面小孔标记O2V1、物面小孔标记O4V1、物面小孔标记OnV1……)照射到棋格状光栅阵列上进行测量。
本申请实施例提供一种波像差测量装置,波像差测量装置的物面小孔板上设置有阵列排布的物面小孔标记,照明系统发出的照明光束扫描照射一行的物面小孔标记,从而提高了检测效率。如果在每个视场点设置一个物面小孔标记,则对于大数值孔径的投影物镜进行波像差检测时,相邻视场点的照明光束在二维阵列光敏元件上形成的光斑容易产生重叠,造成信号串扰。本申请实施例中,同一阵列行中相邻两个物面小孔标记之间间隔m-1个视场点,避免了对于大数值孔径的投影物镜进行波像差检测时的信号串扰。

Claims (12)

  1. 一种波像差测量装置,包括:
    照明系统,被设置为产生照明光束;
    物面小孔板,位于所述照明系统的出光侧,且固定在掩模台上,所述物面小孔板上设置有多个物面小孔,每一所述物面小孔包括g个不同光栅方向的物面小孔标记,g为大于或者等于2的正整数,所述物面小孔板上的多个所述物面小孔标记阵列排布;
    同一阵列行中的所述物面小孔标记具有相同的光栅方向;沿阵列行方向上,同一阵列行中相邻两个所述物面小孔标记之间的距离为h1;沿所述阵列行方向上,光栅方向相同的两阵列行中距离最近的两个所述物面小孔标记之间的最小距离为h2,h1=m×h2,m为大于或者等于2的正整数;光栅方向相同的任意两行所述物面小孔标记阵列式排布;
    投影物镜,位于所述物面小孔板远离所述照明系统一侧;
    像面剪切光栅板,位于所述投影物镜远离所述物面小孔板一侧,且固定在工件台上;
    二维阵列光敏元件和数据处理单元,所述二维阵列光敏元件位于所述投影物镜的光瞳的共轭面上,所述二维阵列光敏元件用于接收形成在所述二维阵列光敏元件上的剪切干涉图案,所述数据处理单元用于根据所述剪切干涉图案计算所述投影物镜的波像差。
  2. 根据权利要求1所述的波像差测量装置,其中,所述物面小孔包括第一光栅方向的物面小孔标记和第二光栅方向的物面小孔标记,所述第一光栅方向与所述第二光栅方向垂直;
    同一所述物面小孔中,所述第一光栅方向的物面小孔标记和所述第二光栅方向的物面小孔标记间隔m-1个阵列行;或者,
    同一所述物面小孔中,所述第一光栅方向的物面小孔标记和所述第二光栅方向的物面小孔标记沿阵列列方向依次设置。
  3. 根据权利要求2所述的波像差测量装置,其中,所述第一光栅方向平行于所述阵列行方向;或者,所述第一光栅方向与所述阵列行方向的夹角为45°。
  4. 根据权利要求1所述的波像差测量装置,其中,所述像面剪切光栅板上设置有多个像面剪切光栅,每一所述像面剪切光栅包括g个不同光栅方向的像面剪切光栅标记,所述像面剪切光栅板上的多个所述像面剪切光栅标记阵列排布;同一阵列行中的所述像面剪切光栅标记具有相同的光栅方向;同一个物面小孔中g个不同光栅方向的物面小孔标记与同一个像面剪切光栅中g个不同光栅方向的像面剪切光栅标记一一对应,一一对应的物面小孔标记的光栅方向与像面剪切光栅标记的光栅方向垂直。
  5. 根据权利要求4所述的波像差测量装置,其中,一阵列行中所述像面剪切光栅标记的数量,大于或者等于一阵列行中所述物面小孔标记的数量。
  6. 根据权利要求1所述的波像差测量装置,其中,所述像面剪切光栅板包括棋格状光栅阵列,所述棋格状光栅阵列包括多个透光单元格和多个非透光单元格;沿所述棋格状光栅阵列的行方向以及列方向,所述透光单元格和所述非透光单元格均间隔排列。
  7. 根据权利要求6所述的波像差测量装置,其中,所述棋格状光栅阵列的行方向与所述物面小孔标记的阵列行方向之间的夹角为45°。
  8. 根据权利要求1至7任一项所述的波像差测量装置,其中,所述投影物镜的数值孔径大于或等于0.85。
  9. 一种光刻机,包括权利要求1-8任一项所述的波像差测量装置。
  10. 一种波像差测量方法,包括:
    照明系统产生的照明光束逐行扫描照射物面小孔板的物面小孔标记阵列形成测量光束,所述测量光束通过投影物镜后照射到像面剪切光栅板,以形成剪切干涉图案;
    二维阵列光敏元件逐行接收所述剪切干涉图案,并发送至数据处理单元;所述数据处理单元根据所述剪切干涉图案计算所述投影物镜的波像差;
    其中,沿阵列行方向上,所述照明系统产生的照明光束相邻两次照射读取的两个物面小孔标记之间间隔至少一个视场点。
  11. 根据权利要求10所述的方法,其中,所述照明系统产生的照明光束逐行扫描照射物面小孔板的物面小孔标记阵列形成测量光束,所述测量光束通过投影物镜后照射到像面剪切光栅板,以形成剪切干涉图案,包括:
    所述照明系统产生的照明光束照射至物面小孔板的物面小孔标记阵列上的一阵列行物面小孔标记形成测量光束,所述测量光束通过投影物镜后照射到与该阵列行所述物面小孔标记一一对应且与该阵列行所述物面小孔标记光栅方向垂直的像面剪切光栅标记以形成剪切干涉图案;
    移动以下至少之一的装置,以使所述照明光束扫描所有阵列行的所述物面小孔标记:掩模台和工件台;
    其中,所述像面剪切光栅板上设置有多个像面剪切光栅,每一所述像面剪切光栅包括g个不同光栅方向的像面剪切光栅标记,所述像面剪切光栅板上的多个所述像面剪切光栅标记阵列排布;同一阵列行中的所述像面剪切光栅标记具有相同的光栅方向;同一个物面小孔中g个不同光栅方向的物面小孔标记与同一个像面剪切光栅中g个不同光栅方向的像面剪切光栅标记一一对应,一一对应的物面小孔标记的光栅方向与像面剪切光栅标记的光栅方向垂直。
  12. 根据权利要求10所述的方法,其中,所述照明系统产生的照明光束逐 行扫描照射物面小孔板的物面小孔标记阵列形成测量光束,所述测量光束通过投影物镜后照射到像面剪切光栅板,以形成剪切干涉图案,包括:
    所述照明系统产生的照明光束照射至物面小孔板的物面小孔标记阵列上的一阵列行物面小孔标记形成测量光束,所述测量光束通过投影物镜后照射到棋格状光栅阵列以形成剪切干涉图案;
    移动以下至少之一的装置,以使所述照明光束扫描所有阵列行的所述物面小孔标记:掩模台和工件台;
    其中,所述棋格状光栅阵列包括多个透光单元格和多个非透光单元格;沿所述棋格状光栅阵列的行方向以及列方向,所述透光单元格和所述非透光单元格均间隔排列。
PCT/CN2020/078349 2019-05-31 2020-03-09 波像差测量装置、测量方法及光刻机 WO2020238316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910471627.8A CN112014070B (zh) 2019-05-31 2019-05-31 一种波像差测量装置、测量方法及光刻机
CN201910471627.8 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020238316A1 true WO2020238316A1 (zh) 2020-12-03

Family

ID=73506800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/078349 WO2020238316A1 (zh) 2019-05-31 2020-03-09 波像差测量装置、测量方法及光刻机

Country Status (3)

Country Link
CN (1) CN112014070B (zh)
TW (1) TWI745933B (zh)
WO (1) WO2020238316A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135745A (ja) * 2007-11-22 2008-06-12 Nikon Corp 波面収差測定機及び投影露光装置
US20100112733A1 (en) * 2008-10-30 2010-05-06 Canon Kabushiki Kaisha Measuring device, exposure apparatus, and device manufacturing method
JP2011142279A (ja) * 2010-01-08 2011-07-21 Nikon Corp 波面収差計測方法及び装置、並びに露光方法及び装置
CN102608870A (zh) * 2011-01-21 2012-07-25 上海微电子装备有限公司 波像差测量装置及其测量方法
CN105259738A (zh) * 2015-11-09 2016-01-20 中国科学院上海光学精密机械研究所 光刻机投影物镜多视场点波像差并行检测装置与检测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101236362B (zh) * 2008-01-29 2010-06-23 北京理工大学 光刻机投影物镜波像差在线检测方法
CN102768471B (zh) * 2011-05-05 2014-11-12 上海微电子装备有限公司 测量投影物镜波像差的装置及方法
CN102269937B (zh) * 2011-07-16 2013-11-06 北京理工大学 光刻机投影物镜波像差在线检测装置及方法
CN102368139B (zh) * 2011-11-07 2013-07-03 中国科学院长春光学精密机械与物理研究所 一种高精度系统波像差检测方法
CN102681365B (zh) * 2012-05-18 2015-01-14 中国科学院光电技术研究所 一种投影物镜波像差检测装置及方法
CN108700823B (zh) * 2016-02-22 2020-11-27 Asml荷兰有限公司 对量测数据的贡献的分离

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008135745A (ja) * 2007-11-22 2008-06-12 Nikon Corp 波面収差測定機及び投影露光装置
US20100112733A1 (en) * 2008-10-30 2010-05-06 Canon Kabushiki Kaisha Measuring device, exposure apparatus, and device manufacturing method
JP2011142279A (ja) * 2010-01-08 2011-07-21 Nikon Corp 波面収差計測方法及び装置、並びに露光方法及び装置
CN102608870A (zh) * 2011-01-21 2012-07-25 上海微电子装备有限公司 波像差测量装置及其测量方法
CN105259738A (zh) * 2015-11-09 2016-01-20 中国科学院上海光学精密机械研究所 光刻机投影物镜多视场点波像差并行检测装置与检测方法

Also Published As

Publication number Publication date
CN112014070A (zh) 2020-12-01
TWI745933B (zh) 2021-11-11
CN112014070B (zh) 2021-10-26
TW202046020A (zh) 2020-12-16

Similar Documents

Publication Publication Date Title
TWI717019B (zh) 經組態以產生包含複數個照明光束之量測照明之度量衡裝置及微影設備
KR101380532B1 (ko) 다층 오버레이 계측 타겟 및 상보적 오버레이 계측 측정 시스템
US8654352B1 (en) Chromatic confocal scanning apparatus
US20220034652A1 (en) Grey-mode scanning scatterometry overlay metrology
CN103154819B (zh) 微光刻投射曝光设备和微光刻成像方法
KR19980018477A (ko) 노광 조건 측정 방법
JP2009539109A (ja) 次数選択されたオーバレイ測定
TWI775331B (zh) 用於光學三維構形量測之方法及系統
US9760020B2 (en) In-situ metrology
CN105259738A (zh) 光刻机投影物镜多视场点波像差并行检测装置与检测方法
KR20140056341A (ko) 간섭 노광 장치 및 방법
CN106933071A (zh) 调焦调平装置及方法
US9683947B2 (en) Defect inspection device
WO2020238316A1 (zh) 波像差测量装置、测量方法及光刻机
JP2022502689A (ja) マークの位置を測定するための装置及び方法
WO2016201788A1 (zh) 光刻机原位多通道成像质量检测装置及方法
JP2008058248A (ja) 回折光検出装置および検査システム
KR102427648B1 (ko) 결함 검사 방법 및 결함 검사 장치
TW200947161A (en) Wavefront aberration measuring apparatus, wavefront aberration measuring method, exposure apparatus, and device manufacturing method
KR20100126017A (ko) 입체 형상 측정장치
CN111649693B (zh) 一种样品形貌测量装置及方法
JP2018021954A (ja) 顕微鏡及び観察方法
KR102668017B1 (ko) 광학적 3차원 토포그래피 측정을 위한 방법 및 시스템
CN111855662B (zh) 一种晶圆缺陷检测装置及方法
WO2023191980A1 (en) Scanning scatterometry overlay metrology

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20812898

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20812898

Country of ref document: EP

Kind code of ref document: A1