WO2020238314A1 - 用于重传的方法和装置 - Google Patents

用于重传的方法和装置 Download PDF

Info

Publication number
WO2020238314A1
WO2020238314A1 PCT/CN2020/077876 CN2020077876W WO2020238314A1 WO 2020238314 A1 WO2020238314 A1 WO 2020238314A1 CN 2020077876 W CN2020077876 W CN 2020077876W WO 2020238314 A1 WO2020238314 A1 WO 2020238314A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
ppdu
harq
mpdu
frame
Prior art date
Application number
PCT/CN2020/077876
Other languages
English (en)
French (fr)
Inventor
李云波
于健
闫中江
杨懋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20815160.5A priority Critical patent/EP3968554A4/en
Publication of WO2020238314A1 publication Critical patent/WO2020238314A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1621Group acknowledgement, i.e. the acknowledgement message defining a range of identifiers, e.g. of sequence numbers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for retransmission in the field of communications.
  • the second device when the second device sends an aggregated MAC protocol data unit (A-MPDU) to the first device, the first device needs Feed back the reception of A-MPDU to the second device.
  • A-MPDU is composed of multiple access control protocol data units (protocol data unit, MPDU), and all the multiple MPDUs receive errors, the first device needs to feed back Multiple bits are used to indicate the reception of each MPDU, which leads to a large signaling overhead.
  • This application provides a method and device for retransmission, which helps to save signaling overhead.
  • a method for transmitting data including: a first device generates a block confirmation BA frame, the first value of the confirmation type field of the BA frame and the second value of the service identification field are used for Jointly indicating that all the media access control protocol data unit MPDUs included in the aggregated media access control protocol data unit A-MPDU received by the first device receive an error; the first device sends the BA frame to the second device.
  • the first value of the acknowledgement type field of the BA frame and the second value of the service identification field can be used to jointly indicate the reception errors of all MPDUs included in the A-MPDU, so as to facilitate receiving errors according to the BA
  • the frame is retransmitted to avoid the signaling overhead caused by the need to use multiple bits to indicate that all MPDUs included in the A-MPDU are received incorrectly.
  • the BA frame is a Multi-STA BA (Multi-STA BA) frame.
  • an A-MPDU includes 10 MPDUs, and the prior art requires at least 10 bits to indicate all errors in 10 MPDUs.
  • the confirmation type field can be one bit
  • the service identification field can be one bit.
  • One bit can indicate that all MPDUs included in the A-MPDU are received incorrectly.
  • the existing fixed-size block acknowledgment bit table field indicates that all MPDUs included in the A-MPDU receive errors
  • a fixed-size signal is required regardless of whether all MPDUs included in the A-MPDU receive errors or partial receive errors.
  • the embodiment of the present application by confirming the first value of the type field and the second value of the service identification field, it can indicate that all the MPDUs included in the A-MPDU are received incorrectly, and the use of the bit map is omitted. Each MPDU is indicated, therefore, signaling overhead can be saved.
  • the first device is a station and the second device is an access point.
  • the first device is an access point and the second device is a station.
  • the first device is a station and the second device is a station.
  • the first device is an access point
  • the second device is an access point
  • the method before the first device generates the BA frame, the method further includes: the first device receives a physical layer protocol data unit PPDU sent by the second device, the PPDU, The PPDU includes the physical layer preamble and the A-MPDU. That is, for the PPDU sent by the second device to the first device, the first device did not correctly receive any of the MPDUs in the A-MPDU, so that the first device can use the BA frame to respond to the PPDU sent by the second device.
  • the physical layer preamble of the PPDU includes a first hybrid automatic repeat request HARQ field, and the address field of the first HARQ field is used to indicate to the first device whether the PPDU is Sent to the first device, in this way, the first device determines whether the PPDU is sent to the first device according to the address tiles.
  • the address field is used to carry the address of the first device and/or the address of the second device.
  • the response mode field in the first HARQ field is used to indicate the manner in which the first device responds to the A-MPDU, so that the first device determines the first device according to the response mode field.
  • the manner in which the first device responds to the A-MPDU may be a first response manner or a second response manner, and the first response manner may be: a short interframe space (SIFS) after the first device receives the PPDU Respond immediately afterwards.
  • the second response manner may be: the first device does not respond after receiving the SIFS of the PPDU, but sends the BA frame to the second device after the first device receives the block acknowledgment request (BAR).
  • the PPDU is a SU PPDU
  • the first HARQ field is located between the NG-SIG-A and NG-STF of the physical layer preamble of the PPDU.
  • NG-SIG-A and NG-SIG-B are two separate CRC checks.
  • NG-SIG-B appears in the PPDU; when HARQ transmission is not required, NG-SIG-B does not appear in the PPDU, which can save signaling overhead.
  • the PPDU is a SU PPDU
  • the second device can use specific bits in NG-SIG-A to indicate whether NG-SIG-B will appear in the PPDU, or use other methods to indicate NG-SIG-B. Whether SIG-B will appear in the PPDU.
  • the PPDU is a SU PPDU
  • the first HARQ field is located in the NG-SIG-A of the physical layer preamble of the PPDU. In this way, the first HARQ field and the NG-SIG-A only need to perform a CRC check once, thereby reducing the complexity of the check.
  • the PPDU is a SU PPDU
  • the first HARQ field is located between the next-generation long training field NG-LTF of the physical layer preamble of the PPDU and the A-MPDU.
  • the PPDU is a SU PPDU
  • the address field includes the address of the first device and the address of the second device.
  • the PPDU is a MU PPDU
  • the first HARQ field is located between the next-generation long training field NG-LTF of the physical layer preamble of the PPDU and the A-MPDU.
  • NG-SIG-C appears in the PPDU; when HARQ transmission is not required, NG-SIG-C does not appear in the PPDU, which can save signaling overhead.
  • the NG-SIG-C is located between the NG-LTF and the A-MPDU, the channel resources can be used more effectively.
  • the PPDU is a MU PPDU
  • the second device can use a specific bit in NG-SIG-A or NG-SIG-B to indicate whether NG-SIG-C will appear in the PPDU.
  • Other methods can be used to indicate whether NG-SIG-C will appear in the PPDU.
  • the first device can determine whether the PPDU exists according to the specific bits in NG-SIG-A or NG-SIG-B or other indication methods. NG-SIG-C.
  • the PPDU is a MU PPDU
  • the first HARQ field is located in the user information field of the next generation signal field NG-SIG-B of the physical layer preamble of the PPDU. In this way, the first HARQ field and the NG-SIG-B only need to perform a CRC check once, thereby reducing the complexity of the check.
  • the STA-ID field of the user information field and the address field of the first HARQ field are used to indicate whether the PPDU of the first device is sent to the first device, In this way, the first device determines whether the PPDU is sent to the first device according to the STA-ID field and the address field of the first HARQ field.
  • the first device determines that the PPDU is sent to itself, even if all MPDUs in the A-MPDU in the PPDU are received incorrectly, the first device needs to send the BA frame to the second device.
  • the value of the STA-ID field is multiple bits of the association identifier AID of the first device
  • the value of the address field of the first HARQ field is the second device the address of.
  • the first device can determine according to the address of the second device that it is the second device associated with the first device that sends the PPDU, and the first device further matches multiple bits of its own AID according to the value of the STA-ID field, if If the match is successful, the first device can determine that the PPDU was sent to itself by the second device
  • the value of the STA-ID field is multiple bits of the association identifier AID of the second device, and the value of the address field of the first HARQ field is the second device the address of.
  • the first device receives the PPDU, it is determined according to the address of the second device in the address field that the PPDU was sent by a certain associated second device, and the value of the STA-ID field is more than the AID of the associated second device. If the matching is successful, the first device can determine that the PPDU is sent by the associated second device
  • the value of the STA-ID field is multiple bits of the association identifier AID of the second device
  • the value of the address field of the first HARQ field is the first device the address of.
  • the PPDU is based on a triggered TB PPDU, the PPDU includes a second HARQ field, and the second HARQ field is used to indicate whether the first device and the second device have sent the PPDU, in this way, the first device determines whether the second device has sent the TB PPDU according to the second HARQ field, that is, the first device can detect the second HARQ field or any element in the second HARQ field, That is, it can be considered that the second device has sent a PPDU, and the second HARQ field is located between the next-generation long training field NG-LTF of the physical layer preamble of the PPDU and the A-MPDU. In this way, channel resources can be used more effectively.
  • the address field of the second HARQ field does not exist.
  • the address field of the second HARQ field may only include the address of the second device.
  • the second HARQ field includes both the address of the first device and the address of the second device.
  • the value of the response mode field in the second HARQ field is used to indicate the manner in which the first device responds to the A-MPDU. In this way, the first device The value of the response mode field determines how the first device responds to the A-MPDU.
  • the PPDU is a TB PPDU
  • the NG-STF and/or NG-LTF of the PPDU is used to indicate that the first device and the second device sent the TB PPDU, such that, The first device determines according to the NG-STF and/or NG-LTF that the second device sent the TB PPDU. If the first device detects NG-STF and NG-LTF, or at least one of them through signal synchronization or energy detection, the first device can determine that the second device has sent a TB PPDU, so that even if the first device receives the A -All MPDUs included in the MPDU receive errors, and the first device also needs to send a BA frame to the second device.
  • the PPDU is a TB PPDU
  • at least one MPDU delimiter in the A-MPDU is used to indicate that the first device and the second device sent the TB PPDU, so that the first device
  • the device determines, according to at least one MPDU delimiter in the A-MPDU, that the second device sent the TB PPDU.
  • the A-MPDU received by the first device includes all MPDU reception errors, but the first device detects one or more MPDU delimiters, it can be regarded as the TB PPDU sent by the second device. In this way, the first device needs to send The second device replies to the BA frame.
  • the block acknowledgment start sequence control field of the BA frame is used to indicate the reason for the reception error of all MPDUs included in the A-MPDU, the redundancy version used in the next transmission, and the next transmission. At least one of the coding and modulation strategy order used at the time.
  • the second device when the second device receives the BA frame, it can determine the cause of all reception errors by the first device according to the block confirmation start sequence control field cause indication in the BA frame, and perform HARQ retransmission according to the reason, for example, if all received errors are The reason is a conflict, that is, the probability of a conflict reoccurring is very small, so the second device can use the last modulation method to perform HARQ retransmission.
  • the second device may determine the target redundancy version of the retransmission according to the redundancy version adopted in the next transmission.
  • the coding and modulation strategy order for retransmission can be determined according to the coding and modulation strategy order adopted in the next transmission.
  • a method for retransmission including: a second device receives a block confirmation BA frame sent by a first device, the first value of the confirmation type field of the BA frame and the first value of the service identification field The two values are used to jointly indicate that the aggregated media access control protocol data unit A-MPDU received by the first device includes all media access control protocol data unit MPDU receiving errors;
  • the second device performs a hybrid automatic repeat request HARQ retransmission according to the BA frame.
  • the method before the second device receives the BA frame sent by the first device, the method further includes: the second device sends a physical layer protocol data unit PPDU to the first device, so The PPDU includes the physical layer preamble and the A-MPDU.
  • the physical layer preamble of the PPDU includes a first HARQ field, and the address field of the first HARQ field is used to confirm whether the PPDU is sent to the first device by the first device. equipment.
  • the response manner field in the first HARQ field is used to instruct the first device to determine a manner of responding to the A-MPDU.
  • the PPDU is a single-user SU PPDU
  • the first HARQ field is located in the next-generation signal field NG-SIG-A and the next-generation short training field NG-STF of the physical layer preamble of the PPDU
  • the first HARQ field is located in the NG-SIG-A of the physical layer preamble of the PPDU
  • the first HARQ field is located in the next generation long training field NG-LTF of the physical layer preamble of the PPDU
  • the A-MPDU the next-MPDU.
  • the address field includes the address of the first device and the address of the second device.
  • the PPDU is a multi-user MU PPDU
  • the first HARQ field is located between the next-generation long training field NG-LTF of the physical layer preamble of the PPDU and the A-MPDU, or The first HARQ field is located in the user information field of the next generation signal field NG-SIG-B of the physical layer preamble of the PPDU.
  • the STA-ID field of the user information field and the address field of the first HARQ field are used to indicate whether the PPDU of the first device is sent to the first device.
  • the value of the STA-ID field is multiple bits of the association identifier AID of the first device, and the value of the address field of the first HARQ field is the second device
  • the value of the STA-ID field is multiple bits of the AID of the second device, and the value of the address field of the first HARQ field is the address of the second device; or, The value of the STA-ID field is multiple bits of the AID of the second device, and the value of the address field of the first HARQ field is the address of the first device.
  • the PPDU is based on a triggered TB PPDU
  • the PPDU includes a second HARQ field
  • the second HARQ field is used to indicate whether the first device and the second device sent the PPDU
  • the second HARQ field is located between the next-generation long training field NG-LTF of the physical layer preamble of the PPDU and the A-MPDU.
  • the response manner field in the second HARQ field is used to indicate the manner in which the first device responds to the A-MPDU.
  • the PPDU is a TB PPDU
  • the NG-STF and/or NG-LTF of the PPDU is used to instruct the first device and the second device to send the TB PPDU.
  • the PPDU is a TB PPDU
  • at least one MPDU delimiter in the A-MPDU is used to indicate that the first device and the second device sent the PPDU.
  • the block acknowledgment start sequence control field of the BA frame is used to indicate the reason for the reception error of all MPDUs included in the A-MPDU, the redundancy version used in the next transmission, and the next transmission At least one of the coding and modulation strategy order used at the time.
  • a method for retransmission including: a first device receives a PPDU sent by a second device, and the physical layer preamble of the PPDU includes a HARQ field.
  • the HARQ field is located between the next-generation signal field NG-SIG-A and the next-generation short training field NG-STF of the physical layer preamble of the PPDU.
  • the HARQ field is located in the NG-SIG-A of the physical layer preamble of the PPDU, or the HARQ field is located in the next generation long training field NG-LTF of the physical layer preamble of the PPDU and the PPDU includes Between the aggregated media access control protocol data unit A-MPDU.
  • the HARQ field is located between the NG-LTF of the physical layer preamble of the PPDU and the A-MPDU, or the HARQ field is located at all In the user information field of the next generation signal field NG-SIG-B of the physical layer preamble of the PPDU.
  • the HARQ field is located between the NG-LTF and the A-MPDU of the physical layer preamble of the PPDU.
  • the response manner field in the HARQ field is used to indicate the manner in which the first device responds to the A-MPDU.
  • the address field of the HARQ field includes the address of the first device and the address of the second device.
  • the value of the address field of the HARQ field is the address of the second device, or the value of the address field of the HARQ field is The address of the first device.
  • a method for retransmission including: a second device sends a PPDU to a first device, and the physical layer preamble of the PPDU includes a HARQ field.
  • the HARQ field is located between the next-generation signal field NG-SIG-A and the next-generation short training field NG-STF of the physical layer preamble of the PPDU.
  • the HARQ field is located in the NG-SIG-A of the physical layer preamble of the PPDU, or the HARQ field is located in the next generation long training field NG-LTF of the physical layer preamble of the PPDU and the PPDU includes Between the aggregated media access control protocol data unit A-MPDU.
  • the HARQ field is located between the NG-LTF of the physical layer preamble of the PPDU and the A-MPDU, or the HARQ field is located at all In the user information field of the next-generation signal field NG-SIG-B of the physical layer preamble of the first PPDU.
  • the HARQ field is located between the NG-LTF and the A-MPDU in the physical layer preamble of the PPDU.
  • the response manner field in the HARQ field is used to indicate the manner in which the first device responds to the A-MPDU.
  • the address field of the HARQ field includes the address of the first device and the address of the second device.
  • the value of the address field of the HARQ field is the address of the second device, or the value of the address field of the HARQ field is The address of the first device.
  • a method for retransmission including: a first device receives a PPDU sent by a second device, the physical layer preamble of the PPDU includes a HARQ field, and the response mode field in the HARQ field is used for Indicate how the first device responds to the A-MPDU.
  • the manner of responding to the A-MPDU may be the aforementioned first response manner or the second response manner.
  • a method for retransmission including: a second device sends a PPDU to a first device, the physical layer preamble of the PPDU includes a HARQ field, and the response mode field in the HARQ field is used to indicate The manner in which the first device responds to the A-MPDU.
  • the manner of responding to the A-MPDU may be the aforementioned first response manner or the second response manner.
  • a method for retransmission including: a first device generates a first BA frame, and the first value of the block segment number field of the first BA frame is used to indicate the first A- All MPDUs included in the MPDU receive errors; the first device sends the first BA frame to the second device.
  • the method before the first device generates the first BA frame, the method further includes:
  • the first device receives a first physical layer protocol data unit PPDU sent by the second device, where the first PPDU includes a physical layer preamble and the first A-MPDU.
  • the value of the block acknowledgment bit table field of the first BA frame is used to indicate the reason for receiving errors of all MPDUs in the first A-MPDU, and the redundancy used in the next transmission. At least one of the version and the order of the coding and modulation strategy used in the next transmission.
  • the method further includes: the first device generates a second BA frame, and the second value of the block segment number field of the second BA frame is used to indicate that the second PPDU includes All MPDUs included in the second A-MPDU are received correctly; the first device sends the second BA frame to the second device.
  • a method for retransmission including: a second device receives a first BA frame sent by a first device, and the first value of the block segment number field of the first BA frame is used for Indicates that all MPDUs included in the first A-MPDU received errors; the second device performs HARQ retransmission according to the first BA frame.
  • the method before the second device receives the first BA frame sent by the first device, the method further includes: the second device receives the first PPDU sent by the first device, and the second device A PPDU includes a physical layer preamble and the first A-MPDU.
  • the value of the block acknowledgment bit table field of the first BA frame is used to indicate the reason for the reception error of all MPDUs included in the first A-MPDU, and the redundancy used in the next transmission. At least one of the version and the order of the coding and modulation strategy used in the next transmission.
  • the method further includes: the second device receives a second BA frame sent by the first device, and the second value of the block segment number field of the second BA frame is used to indicate the second
  • the second A-MPDU included in the PPDU includes all the MPDUs received correctly; the second device determines according to the second BA frame that HARQ retransmission is not required.
  • a method for retransmission including: a first device generates a first BA frame, and the first value of the block confirmation frame type field of the first BA frame is used to indicate the first A- All media access control protocol data unit MPDUs included in the MPDU receive an error; the first device sends a first BA frame to the second device.
  • the method before the first device generates the first BA frame, the method further includes:
  • the first device receives a first physical layer protocol data unit PPDU sent by the second device, where the first PPDU includes a physical layer preamble and the first A-MPDU.
  • the value of the block confirmation information field is used to indicate the reason for the reception error of all MPDUs included in the first A-MPDU, the redundancy version used in the next transmission, and the next transmission time. At least one of the coding and modulation strategies used.
  • the method further includes: the first device generates a second BA frame, and the second value of the block confirmation frame type field of the second BA frame is used to indicate the second value included in the second PPDU. All MPDUs included in the A-MPDU are received correctly; the first device sends the second BA frame to the second device.
  • a method for retransmission including: a second device receives a first BA frame sent by a first device, and the first value of the block confirmation frame type field of the first BA frame is used for Indicate that all the media access control protocol data unit MPDUs included in the first A-MPDU receive errors; the second device performs HARQ retransmission according to the first BA frame.
  • the method before the first device generates the first BA frame, the method further includes: the second device sends a first PPDU to the first device, where the first PPDU includes the physical layer preamble and the The first A-MPDU.
  • the value of the block confirmation information field is used to indicate the reason for the reception error of all MPDUs included in the first A-MPDU, the redundancy version used in the next transmission, and the next transmission time. At least one of the coding and modulation strategies used.
  • the method further includes: the second device receives a second BA frame sent by the first device, and the second value of the block confirmation frame type field of the second BA frame is used to indicate the second All MPDUs included in the second A-MPDU included in the PPDU are received correctly.
  • the second device determines according to the second BA frame that HARQ retransmission is not required.
  • an embodiment of the present application provides a device for retransmission.
  • the device includes: a processing unit configured to generate a block confirmation BA frame, the first value of the confirmation type field of the BA frame and The second value of the service identification field is used to jointly indicate that all the media access control protocol data units MPDUs included in the aggregated media access control protocol data unit A-MPDU received by the device receive errors; the transceiver unit is used to report to the second The device sends the BA frame.
  • the apparatus for retransmission provided in the eleventh aspect is used to execute the foregoing first aspect or any possible implementation manner of the first aspect.
  • the apparatus for retransmission provided in the eleventh aspect is used to execute the foregoing first aspect or any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a device for retransmission.
  • the device includes: a transceiver unit, configured to receive a block confirmation BA frame sent by a first device, and the confirmation type field of the BA frame
  • the first value and the second value of the service identification field are used to jointly indicate that all the media access control protocol data unit MPDUs included in the aggregated media access control protocol data unit A-MPDU received by the first device receive errors, the processing unit, It is used to control the transceiver unit to perform hybrid automatic repeat request HARQ retransmission according to the BA frame.
  • the apparatus for retransmission provided by the twelfth aspect is used to execute the foregoing second aspect or any possible implementation manner of the second aspect.
  • the apparatus for retransmission provided by the twelfth aspect is used to execute the foregoing second aspect or any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a device for retransmission, the device includes: a transceiver unit, configured to receive a PPDU sent by a second device, and the physical layer preamble of the PPDU includes a HARQ field; if The PPDU is a single-user SU PPDU, and the HARQ field is located between the next-generation signal field NG-SIG-A and the next-generation short training field NG-STF of the physical layer preamble of the PPDU, or the HARQ field is located at all In the NG-SIG-A of the physical layer preamble of the PPDU, or the HARQ field is located in the next-generation long training field NG-LTF of the physical layer preamble of the PPDU and the aggregate media access control protocol data unit included in the PPDU Between A-MPDUs; if the PPDU is a multi-user MU PPDU, the HARQ field is located between the NG-LTF
  • the apparatus for retransmission provided by the thirteenth aspect is used to implement the foregoing third aspect or any possible implementation manner of the third aspect.
  • the foregoing third aspect or any possible implementation manner of the third aspect please refer to the foregoing third aspect or any possible implementation manner of the third aspect. Repeat it again.
  • an embodiment of the present application provides a device for retransmission, the device includes: a transceiver unit, configured to send a PPDU to a first device, and the physical layer preamble of the PPDU includes the HARQ field;
  • the PPDU is a single-user SU PPDU, and the HARQ field is located between the next-generation signal field NG-SIG-A and the next-generation short training field NG-STF of the physical layer preamble of the PPDU, or the HARQ field is located in the In the NG-SIG-A of the physical layer preamble of the PPDU, or the HARQ field is located in the next-generation long training field NG-LTF of the physical layer preamble of the PPDU and the aggregate media access control protocol data unit A included in the PPDU -MPDU; if the PPDU is a multi-user MU PPDU, the HARQ field is located between the NG-LTF of the physical layer pre
  • the device for retransmission provided by the fourteenth aspect is used to implement the foregoing fourth aspect or any possible implementation manner of the fourth aspect.
  • the foregoing fourth aspect or any possible implementation manner of the fourth aspect please refer to the foregoing fourth aspect or any possible implementation manner of the fourth aspect. Repeat it again.
  • an embodiment of the present application provides a device for retransmission.
  • the device includes: a transceiver unit for receiving a PPDU sent by a second device.
  • the physical layer preamble of the PPDU includes the HARQ field, so The response mode field in the HARQ field is used to indicate the mode for the device to respond to the A-MPDU.
  • an embodiment of the present application provides a device for retransmission, the device includes: a transceiver unit is configured to send a PPDU to a first device, the physical layer preamble of the PPDU includes a HARQ field, and the HARQ The response mode field in the field is used to indicate how the first device responds to the A-MPDU.
  • an embodiment of the present application provides a device for retransmission, the device includes: a processing unit, configured to generate a first BA frame, the first BA frame of the block segment number field A value is used to indicate that all MPDUs included in the first A-MPDU receive errors; the transceiver unit is used to send the first BA frame to the second device for reception.
  • the apparatus for retransmission provided by the seventeenth aspect is used to implement the seventh aspect or any possible implementation manner of the seventh aspect.
  • any possible implementation manner of the seventh aspect or the seventh aspect please refer to any possible implementation manner of the seventh aspect or the seventh aspect. Repeat it again.
  • an embodiment of the present application provides a device for retransmission.
  • the device includes: a transceiver unit configured to receive a first BA frame sent by a first device, and block segmentation of the first BA frame The first value of the number field is used to indicate that all MPDUs included in the first A-MPDU receive errors; the processing unit is used to control the transceiver unit to perform HARQ retransmission according to the first BA frame.
  • the apparatus for retransmission provided by the eighteenth aspect is used to implement the eighth aspect or any possible implementation manner of the eighth aspect.
  • the eighth aspect or any possible implementation manner of the eighth aspect please refer to the eighth aspect or any possible implementation manner of the eighth aspect. Repeat it again.
  • an embodiment of the present application provides a device for retransmission, the device includes: a processing unit is configured to generate a first BA frame, and the block confirmation frame type field of the first BA frame is the first The value is used to indicate that all media access control protocol data units MPDUs included in the first A-MPDU receive errors; the transceiver unit is used to send the first BA frame to the second device.
  • the device for retransmission provided by the nineteenth aspect is used to execute any possible implementation manner of the ninth aspect or the ninth aspect.
  • any possible implementation manner of the seventh aspect or the seventh aspect please refer to any possible implementation manner of the seventh aspect or the seventh aspect. Repeat it again.
  • an embodiment of the present application provides a device for retransmission.
  • the device includes: a transceiver unit for receiving a first BA frame sent by a first device, and a block confirmation frame of the first BA frame
  • the first value of the type field is used to indicate that all media access control protocol data unit MPDUs included in the first A-MPDU receive errors; the processing unit is used to control the transceiver unit to perform HARQ retransmission according to the first BA frame.
  • the device for retransmission provided by the twentieth aspect is used to execute any possible implementation manner of the tenth aspect or the tenth aspect.
  • any possible implementation manner of the tenth aspect or the tenth aspect please refer to the tenth aspect or any possible implementation manner of the tenth aspect. Repeat it again.
  • an embodiment of the present application provides a device for retransmission.
  • the device includes a processor and a transceiver for internal communication with the processor; the processor is used to generate a block confirmation BA frame, so The first value of the acknowledgement type field of the BA frame and the second value of the service identification field are used to jointly indicate all the media access control protocol data included in the aggregate media access control protocol data unit A-MPDU received by the device The unit MPDU received error; the transceiver is used to send the BA frame to the second device.
  • the apparatus for retransmission provided by the twenty-first aspect is used to implement the foregoing first aspect or any possible implementation manner of the first aspect.
  • the foregoing first aspect or any possible implementation manner of the first aspect here No longer.
  • an embodiment of the present application provides a device for retransmission, the device includes a processor and a transceiver that is internally connected and communicated with the processor; the transceiver is used to receive a block sent by a first device A confirmation BA frame, the first value of the confirmation type field of the BA frame and the second value of the service identification field are used to jointly indicate all the media included in the aggregate media access control protocol data unit A-MPDU received by the first device The access control protocol data unit MPDU received error; the processor is configured to control the transceiver to perform the retransmission of the hybrid automatic repeat request HARQ according to the BA frame.
  • the apparatus for retransmission provided by the twenty-second aspect is used to implement the foregoing second aspect or any possible implementation manner of the second aspect.
  • the foregoing second aspect or any possible implementation manner of the second aspect here No longer.
  • an embodiment of the present application provides a device for retransmission, the device includes a processor and a transceiver that is internally connected and communicated with the processor; the transceiver is used to: receive data sent by a second device PPDU, the physical layer preamble of the PPDU includes the HARQ field; if the PPDU is a single-user SU PPDU, the HARQ field is located in the next generation signal field NG-SIG-A of the physical layer preamble of the PPDU and the next generation short training Between fields NG-STF, or the HARQ field is located in the NG-SIG-A of the physical layer preamble of the PPDU, or the HARQ field is located in the next-generation long training field NG-LTF of the physical layer preamble of the PPDU And the aggregate media access control protocol data unit A-MPDU included in the PPDU; if the PPDU is a multi-user MU PPDU, the HARQ
  • the apparatus for retransmission provided by the twenty-third aspect is used to implement the foregoing third aspect or any possible implementation manner of the third aspect.
  • the foregoing third aspect or any possible implementation manner of the third aspect here No longer.
  • an embodiment of the present application provides an apparatus for retransmission.
  • the apparatus includes a processor and a transceiver that communicates with the processor internally; the transceiver is used to send PPDUs to a first device,
  • the physical layer preamble of the PPDU includes the HARQ field; if the PPDU is a single-user SU PPDU, the HARQ field is located in the next generation signal field NG-SIG-A and the next generation short training field NG of the physical layer preamble of the PPDU -STF, or the HARQ field is located in the NG-SIG-A of the physical layer preamble of the PPDU, or the HARQ field is located in the next generation long training field NG-LTF of the physical layer preamble of the PPDU and all Between the aggregate media access control protocol data unit A-MPDU included in the PPDU; if the PPDU is a multi-user MU PPDU, the HARQ field is located
  • the apparatus for retransmission provided by the twenty-fourth aspect is used to implement the foregoing fourth aspect or any possible implementation manner of the fourth aspect.
  • the foregoing fourth aspect or any possible implementation manner of the fourth aspect here No longer.
  • an embodiment of the present application provides a device for retransmission, the device includes a processor and a transceiver that is internally connected and communicated with the processor; the transceiver is used to receive a PPDU sent by a second device ,
  • the physical layer preamble of the PPDU includes a HARQ field, and the response mode field in the HARQ field is used to indicate the manner in which the device responds to the A-MPDU; the processor is used to determine the response mode according to the response mode field Describe the A-MPDU method.
  • an embodiment of the present application provides an apparatus for retransmission.
  • the apparatus includes a processor and a transceiver that is internally connected and communicated with the processor; the transceiver is used to send PPDUs to a first device,
  • the physical layer preamble of the PPDU includes a HARQ field, and the response mode field in the HARQ field is used to indicate the manner in which the first device responds to the A-MPDU; the processor is used to control the response mode field according to the response mode field.
  • the transceiver receives a response in a manner in which the first device responds to the A-MPDU.
  • an embodiment of the present application provides a device for retransmission.
  • the device includes a processor and a transceiver that is internally connected and communicated with the processor; the processor is used to generate a first BA frame, so The first value of the block segment number field of the first BA frame is used to indicate that all MPDUs included in the first A-MPDU receive errors; the transceiver is used to send the first BA frame to the second device for receiving .
  • the apparatus for retransmission provided by the twenty-seventh aspect is used to implement the seventh aspect or any possible implementation manner of the seventh aspect.
  • the seventh aspect or any possible implementation manner of the seventh aspect here No longer.
  • an embodiment of the present application provides a device for retransmission, the device includes a processor and a transceiver that is internally connected and communicated with the processor; the transceiver is used to receive the first device sent by the first device.
  • a BA frame The first value of the number of block segments field of the first BA frame is used to indicate that all MPDUs included in the first A-MPDU receive errors.
  • the processor is configured to control the transceiver to perform HARQ retransmission according to the first BA frame.
  • the apparatus for retransmission provided by the twenty-eighth aspect is used to implement the eighth aspect or any possible implementation manner of the eighth aspect.
  • the eighth aspect or any possible implementation manner of the eighth aspect here No longer.
  • an embodiment of the present application provides a device for retransmission, the device includes a processor and a transceiver that is internally connected and communicated with the processor; the processor is used to generate a first BA frame, so The first value of the block confirmation frame type field of the first BA frame is used to indicate that all media access control protocol data unit MPDUs included in the first A-MPDU receive errors; the transceiver is used to send to the second device The first BA frame.
  • the apparatus for retransmission provided by the twenty-ninth aspect is used to execute any possible implementation manner of the ninth aspect or the ninth aspect.
  • any possible implementation manner of the ninth aspect or the ninth aspect please refer to the ninth aspect or any possible implementation manner of the ninth aspect, here No longer.
  • an embodiment of the present application provides an apparatus for retransmission.
  • the apparatus includes a processor and a transceiver that is internally connected and communicated with the processor; the transceiver is used to receive a first device sent by a first device.
  • BA frame the first value of the block confirmation frame type field of the first BA frame is used to indicate that all media access control protocol data unit MPDUs included in the first A-MPDU receive errors;
  • the BA frame controls the transceiver to perform HARQ retransmission.
  • the apparatus for retransmission provided by the thirtieth aspect is used to implement the tenth aspect or any possible implementation manner of the tenth aspect.
  • the tenth aspect or any possible implementation manner of the tenth aspect please refer to the tenth aspect or any possible implementation manner of the tenth aspect. Repeat it again.
  • an embodiment of the present application provides a device for retransmission.
  • the device includes a processing circuit and a communication interface for internal connection and communication with the processing circuit, and the processing circuit is used to generate a block confirmation BA frame
  • the first value of the acknowledgement type field of the BA frame and the second value of the service identification field are used to jointly indicate all the media access control included in the aggregated media access control protocol data unit A-MPDU received by the device
  • the protocol data unit MPDU received error the communication interface sends the BA frame to the second device.
  • the thirty-first aspect provides a retransmission for performing any possible implementation of the first aspect or the first aspect.
  • any possible implementation of the first aspect or the first aspect please refer to the first aspect or any possible implementation of the first aspect. Repeat it again.
  • an embodiment of the present application provides a device for retransmission, the device includes a processing circuit and a communication interface for internal connection and communication with the processing circuit, and the communication interface is used to receive data sent by a first device.
  • a block confirmation BA frame, the first value of the confirmation type field and the second value of the service identification field of the BA frame are used to jointly indicate that the aggregate media access control protocol data unit A-MPDU received by the first device includes All media access control protocol data units MPDU received errors; the processing circuit is used to control the communication interface to perform hybrid automatic repeat request HARQ retransmission according to the BA frame.
  • the thirty-second aspect provides the retransmission for performing any possible implementation of the second aspect or the second aspect.
  • an embodiment of the present application provides a device for retransmission.
  • the device includes a processing circuit and a communication interface for internal connection and communication with the processing circuit.
  • the communication interface is used to receive a PPDU sent by a second device.
  • the physical layer preamble of the PPDU includes the HARQ field; if the PPDU is a single-user SU PPDU, the HARQ field is located in the next generation signal field NG-SIG-A and the next generation short training field of the physical layer preamble of the PPDU Between NG-STF, or the HARQ field is located in the NG-SIG-A of the physical layer preamble of the PPDU, or the HARQ field is located in the next-generation long training field NG-LTF of the physical layer preamble of the PPDU and The aggregation media access control protocol data unit A-MPDU included in the PPDU; if the PPDU is a multi-user MU PPDU, the HARQ field is located between the NG-LTF and the A- MPDU in the physical layer of the PPDU.
  • the HARQ field is located in the user information field of the next-generation signal field NG-SIG-B of the physical layer preamble of the PPDU; if the PPDU is a PPDU based on a triggered TB, the HARQ field is located in the Between the NG-LTF preamble of the PPDU physical layer and the A-MPDU, the processing circuit is used to determine the position of the HARQ field in the PPDU.
  • the thirty-third aspect provides retransmissions for performing any possible implementation of the third aspect or the third aspect.
  • an embodiment of the present application provides a device for retransmission.
  • the device includes a processing circuit and a communication interface for internal connection and communication with the processing circuit.
  • the communication interface is used to send PPDUs to a first device,
  • the physical layer preamble of the PPDU includes the HARQ field; if the PPDU is a single-user SU PPDU, the HARQ field is located in the next generation signal field NG-SIG-A and the next generation short training field NG of the physical layer preamble of the PPDU -STF, or the HARQ field is located in the NG-SIG-A of the physical layer preamble of the PPDU, or the HARQ field is located in the next generation long training field NG-LTF of the physical layer preamble of the PPDU and all Between the aggregate media access control protocol data unit A-MPDU included in the PPDU; if the PPDU is a multi-user MU PPDU, the HARQ field is located
  • the thirty-fourth aspect provides a retransmission for performing any possible implementation manners of the fourth aspect or the fourth aspect.
  • any possible implementation manners of the fourth aspect or the fourth aspect please refer to any possible implementation manners of the fourth aspect or the fourth aspect. Repeat it again.
  • an embodiment of the present application provides a device for retransmission.
  • the device includes a processing circuit and a communication interface for internal connection and communication with the processing circuit, and the communication interface is used to receive data sent by a second device.
  • the physical layer preamble of the PPDU includes a HARQ field, and the response mode field in the HARQ field is used to indicate the manner in which the device responds to the A-MPDU; the processing circuit is used to respond according to the response mode field Determine how to respond to the A-MPDU.
  • the thirty-fifth aspect provides any possible implementation manner for retransmission for executing the fifth aspect or the fifth aspect.
  • an embodiment of the present application provides a device for retransmission.
  • the device includes a processing circuit and a communication interface for internal connection and communication with the processing circuit, and the communication interface is used to send data to a first device.
  • PPDU the physical layer preamble of the PPDU includes a HARQ field, and the response mode field in the HARQ field is used to indicate the manner in which the first device responds to the A-MPDU; the processing circuit is used to respond according to the response manner
  • the field controls the communication interface to receive the response of the manner in which the first device responds to the A-MPDU.
  • the thirty-sixth aspect provides the retransmission for performing any possible implementation of the sixth aspect or the sixth aspect.
  • an embodiment of the present application provides a device for retransmission.
  • the device includes a processing circuit and a communication interface for internal connection and communication with the processing circuit, and the processing circuit is used to generate a first BA frame.
  • the first value of the block segment number field of the first BA frame is used to indicate that all MPDUs included in the first A-MPDU receive errors; the communication interface is used to send the first BA frame to a second device Used to receive.
  • the thirty-seventh aspect provides the retransmission for performing any possible implementation manner of the seventh aspect or the seventh aspect.
  • any possible implementation manner of the seventh aspect or the seventh aspect please refer to any possible implementation manner of the seventh aspect or the seventh aspect. Repeat it again.
  • an embodiment of the present application provides a device for retransmission.
  • the device includes a processing circuit and a communication interface for internal connection and communication with the processing circuit, and the communication interface is used to receive data sent by a first device.
  • the first value of the number of block segments field of the first BA frame is used to indicate that all MPDUs included in the first A-MPDU receive errors.
  • the processing circuit is configured to control the communication interface to perform HARQ retransmission according to the first BA frame.
  • the thirty-eighth aspect provides a retransmission for performing any possible implementation manner of the eighth aspect or the eighth aspect.
  • any possible implementation manner of the eighth aspect or the eighth aspect please refer to any possible implementation manner of the eighth aspect or the eighth aspect. Repeat it again.
  • an embodiment of the present application provides a device for retransmission.
  • the device includes a processing circuit and a communication interface for internal connection and communication with the processing circuit, and the processing circuit is used to generate a first BA frame ,
  • the first value of the block confirmation frame type field of the first BA frame is used to indicate that all the media access control protocol data unit MPDUs included in the first A-MPDU receive errors;
  • the communication interface is used to inform the first A-MPDU
  • the second device sends the first BA frame.
  • the thirty-ninth aspect provides any possible implementation manner for retransmission for executing the ninth aspect or the ninth aspect.
  • an embodiment of the present application provides a device for retransmission.
  • the device includes a processing circuit and a communication interface for internally connecting and communicating with the processing circuit, and the communication interface is used to receive data sent by a first device.
  • the first value of the block confirmation frame type field of the first BA frame is used to indicate that all the media access control protocol data unit MPDUs included in the first A-MPDU receive errors;
  • the processing circuit is configured to Control the communication interface to perform HARQ retransmission according to the first BA frame.
  • the fortieth aspect provides a retransmission for performing any possible implementation manner of the tenth aspect or the tenth aspect.
  • any possible implementation manner of the tenth aspect or the tenth aspect which will not be omitted here. Repeat.
  • an embodiment of the present application provides a computer-readable storage medium for storing a computer program, the computer program including instructions for executing the foregoing first aspect or any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium for storing a computer program.
  • the computer program includes instructions for executing the foregoing second aspect or any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium for storing a computer program, and the computer program includes instructions for executing the foregoing third aspect or any possible implementation manner of the third aspect.
  • an embodiment of the present application provides a computer-readable storage medium for storing a computer program, the computer program including instructions for executing the foregoing fourth aspect or any possible implementation manner of the fourth aspect.
  • an embodiment of the present application provides a computer-readable storage medium for storing a computer program, the computer program including instructions for executing the fifth aspect or any possible implementation manner of the fifth aspect.
  • an embodiment of the present application provides a computer-readable storage medium for storing a computer program, the computer program including instructions for executing the sixth aspect or any possible implementation manner of the sixth aspect.
  • an embodiment of the present application provides a computer-readable storage medium for storing a computer program.
  • the computer program includes instructions for executing the seventh aspect or any possible implementation manner of the seventh aspect.
  • an embodiment of the present application provides a computer-readable storage medium for storing a computer program, the computer program including instructions for executing the eighth aspect or any possible implementation manner of the eighth aspect.
  • an embodiment of the present application provides a computer-readable storage medium for storing a computer program, and the computer program includes instructions for executing the foregoing ninth aspect or any possible implementation manner of the ninth aspect.
  • an embodiment of the present application provides a computer-readable storage medium for storing a computer program.
  • the computer program includes instructions for executing the tenth aspect or any possible implementation manner of the tenth aspect.
  • an embodiment of the present application provides a computer program, the computer program including instructions for executing the foregoing first aspect or any possible implementation manner of the first aspect.
  • an embodiment of the present application provides a computer program, the computer program including instructions for executing the foregoing second aspect or any possible implementation manner of the second aspect.
  • an embodiment of the present application provides a computer program, and the computer program includes instructions for executing the foregoing third aspect or any possible implementation manner of the third aspect.
  • an embodiment of the present application provides a computer program, where the computer program includes instructions for executing the foregoing fourth aspect or any possible implementation manner of the fourth aspect.
  • an embodiment of the present application provides a computer program, the computer program including instructions for executing the foregoing fifth aspect or any possible implementation manner of the fifth aspect.
  • embodiments of the present application provide a computer program, the computer program including instructions for executing the sixth aspect or any possible implementation manner of the sixth aspect.
  • an embodiment of the present application provides a computer program, the computer program including instructions for executing the seventh aspect or any possible implementation manner of the seventh aspect.
  • an embodiment of the present application provides a computer program, the computer program including instructions for executing the eighth aspect or any possible implementation manner of the eighth aspect.
  • an embodiment of the present application provides a computer program, the computer program including instructions for executing the foregoing ninth aspect or any possible implementation manner of the ninth aspect.
  • an embodiment of the present application provides a computer program, the computer program including instructions for executing the tenth aspect or any possible implementation manner of the tenth aspect.
  • this application provides a system for retransmission, which includes the device provided in the eleventh aspect and the device provided in the twelfth aspect; or
  • the system includes the device provided by the thirteenth aspect and the device provided by the fourteenth aspect; or
  • the system includes the device provided by the fifteenth aspect and the device provided by the sixteenth aspect; or
  • the system includes the device provided by the seventeenth aspect and the device provided by the eighteenth aspect; or
  • the system includes the device provided by the nineteenth aspect and the device provided by the twentieth aspect; or
  • the system includes the device provided in the above-mentioned twenty-first aspect and the device provided in the twenty-second aspect; or
  • the system includes the device provided by the aforementioned twenty-third aspect and the device provided by the twenty-fourth aspect; or
  • the system includes the device provided by the aforementioned 25th aspect and the device provided by the 26th aspect; or
  • the system includes the device provided by the above-mentioned 27th aspect and the device provided by the 28th aspect; or
  • the system includes the device provided by the 29th aspect and the device provided by the 30th aspect; or
  • the system includes the device provided by the 31st aspect and the device provided by the 32nd aspect; or
  • the system includes the device provided by the 33rd aspect and the device provided by the 34th aspect; or
  • the system includes the device provided by the thirty-fifth aspect and the device provided by the thirty-sixth aspect; or
  • the system includes the device provided by the aforementioned thirty-seventh aspect and the device provided by the thirty-eighth aspect; or
  • the system includes the device provided by the 39th aspect and the device provided by the 40th aspect.
  • Fig. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the format of the A-MPDU provided by an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a SU PPDU frame structure provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of the frame structure of the MU PPDU provided by an embodiment of the present application.
  • Fig. 5 is a schematic diagram of a frame structure of a TB PPDU provided by an embodiment of the present application.
  • Fig. 6 is a schematic diagram of the format of a BA frame provided by an embodiment of the present application.
  • Fig. 7 is a schematic diagram of the format of a multi-STA BA frame provided by an embodiment of the present application.
  • Fig. 8 is a schematic diagram of another BA frame format provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a method for retransmission provided in an embodiment of the present application.
  • Fig. 10 is a schematic diagram of another SU PPDU frame structure provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another SU PPDU frame structure provided by an embodiment of the present application.
  • Fig. 12 is a schematic diagram of another SU PPDU frame structure provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another MU PPDU frame structure provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another MU PPDU frame structure provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of a frame structure of another TB PPDU provided by an embodiment of the present application.
  • FIG. 16 is a schematic diagram of another BA frame format provided by an embodiment of the present application.
  • FIG. 17 is a schematic diagram of another method for retransmission provided by an embodiment of the present application.
  • Figure 18 is a schematic diagram of another BA frame format provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of another method for retransmission provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of another BA frame format provided by an embodiment of the present application.
  • FIG. 21 is a schematic block diagram of an apparatus for retransmission according to an embodiment of the present application.
  • FIG. 22 is a schematic block diagram of another apparatus for retransmission according to an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as a wireless local area network (WLAN) system.
  • WLAN wireless local area network
  • the embodiments of the present application can also be applied to other systems, for example, long-term Evolution (long term evolution, LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), universal mobile telecommunication system (UMTS), global Connected microwave access (worldwide interoperability for microwave access, WiMAX) communication system, the future 5th generation (5G) system or new radio (NR), etc.
  • LTE long-term Evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX global Connected microwave access
  • 5G future 5th generation
  • NR new radio
  • the technical solutions of the embodiments of this application can also be applied to WLAN, and the embodiments of this application can be applied to any one of the IEEE 802.11 series of protocols currently adopted by the WLAN or the Institute of Electrical and Electronics Engineers (IEEE). Any protocol in the future IEEE 802.11 series.
  • IEEE 802.11 series any protocol in the future IEEE 802.11 series.
  • Fig. 1 shows a schematic diagram of an application scenario of an embodiment of the present application.
  • the scenario system shown in Fig. 1 may be a WLAN system.
  • the WLAN system of Fig. 1 may include one or more APs and one or more STAs. Take two APs (AP 1 and AP 2) and two user stations (station, STA) (STA 1 and STA 2) as examples. Among them, various standards can be passed between AP and AP, AP and STA, and STA and STA Perform wireless communication.
  • User station can also be called system, subscriber unit, access terminal, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, user device, or user equipment (user equipment, UE).
  • the station can be a wireless communication chip, a wireless sensor, or a wireless communication terminal.
  • the site is a mobile phone that supports wireless fidelity (WiFi) communication, a tablet that supports WiFi communication, a set-top box that supports WiFi communication, a smart TV that supports WiFi communication, and a smart wearable that supports WiFi communication.
  • WiFi wireless fidelity
  • the site is a mobile phone that supports wireless fidelity (WiFi) communication, a tablet that supports WiFi communication, a set-top box that supports WiFi communication, a smart TV that supports WiFi communication, and a smart wearable that supports WiFi communication.
  • the site may support 802.11 standard equipment under the current network system or the future network system.
  • the AP and the STA communicate through the wireless local network, and transmit the data of the STA to the network side, or transmit the data from the network side to the STA.
  • APs are also called wireless access points or hotspots.
  • AP is the access point for mobile users to enter the wired network. It is mainly deployed in homes, buildings and campuses. The typical coverage radius is from tens of meters to hundreds of meters. Of course, it can also be deployed outdoors.
  • AP is equivalent to a bridge connecting wired and wireless networks, and its main function is to connect various wireless network clients together, and then connect the wireless network to the Ethernet.
  • the AP may be a terminal device or a network device with a WiFi chip.
  • the AP may be a device that supports the 802.11 standard under the current network system or the future network system.
  • single-user multiple-input multiple-output single-user multiple-input multiple-output (single-user multiple-input multiple-output, SU-MIMO) technology or multi-user multiple-input multiple-output (single-user multiple-input multiple-output) can be used between AP and STA.
  • SU-MIMO single-user multiple-input multiple-output
  • MU-MIMO multi-user multiple-input multiple-output
  • each STA is equipped with one or more antennas.
  • Each AP supports multi-site coordination and/or joint transmission.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program that can be accessed from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • A-MPDU in order to improve the transmission efficiency of medium access control (MAC) frames, MAC frames have been introduced starting from the 802.11n standard. MAC frames are also called MPDU aggregate frames. A-MPDU aggregates multiple MPDUs together and sends them uniformly through a physical layer preamble, effectively reducing the overhead caused by competing channels and physical layer preamble.
  • the format of the A-MPDU is shown in Figure 2. Multiple MPDUs are separated by a delimiter and connected together.
  • an A-MPDU containing only one separator and an MPDU is called a single media access control protocol data unit (Single MPDU, S-MPDU).
  • S-MPDU single media access control protocol data unit
  • the 802.11 standard uses a simple confirmation frame to reply. It indicates whether the MPDU or S-MPDU is successfully received by sending an confirmation frame.
  • block acknowledgement (block acknowledgement, BA) frame to reply.
  • the BA frame includes a block confirmation bit table field.
  • the bit value filled in the block confirmation bit table field can be used to indicate which MPDUs in the A-MPDU are received correctly (for example, the indication is 1) and which MPDUs are not received correctly (for example, the indication is 0 ).
  • the STA may not feed back any information.
  • FIG. 3 is a schematic diagram of the frame structure of a single user PPDU (single user PPDU, SU PPDU).
  • Figure 4 is a schematic diagram of the frame structure of a multi-user PPDU (multiuser PPDU, MU PPDU), where the user information field (user filed) in Figure 4 includes a station identity field (STA-ID), and the station identity field is used for The address that identifies the site, generally takes the lower 11 bits of the association identifier (AID).
  • AID association identifier
  • L-STF represents the traditional short training field (legacy-short training field)
  • L-LTF represents the traditional long training field (legacy-long training field)
  • L-SIG represents the traditional signaling field ( legacy-signal)
  • NG-SIG-A means next generation-signal-A
  • NG-SIG-B means next generation-signal-B
  • NG-STF means next generation Short training field (next generation-short training field)
  • NG-LTF stands for next generation-long training field
  • PE stands for packet extension.
  • the BA frame is used to respond to the physical protocol data unit (PPDU), that is, the BA frame is an acknowledgement of the PPDU sent by the second device, and the format of the BA frame is different in different transmission modes.
  • the BA frame includes a frame control field (frame control), a time field (duration), a receiving address (receiving address, RA) field, a transmitting address (transmitting address, TA) field, and a block confirmation control (BA control) Field, block confirmation information (BA information) field and frame check sequence (FCS) field.
  • the different bit values of the block confirmation frame type (BA type) field in the block confirmation control field in FIG. 6 indicate that different BA frames are shown in Table 1.
  • the block confirmation information field of the multi-STA BA frame is composed of each association identification service identification information field (per AID TID Info).
  • the number of identification information fields for each associated identification service can be one or more, and one STA corresponds to one identification information field for each associated identification service.
  • Each association identification service identification information field consists of an association identification information (AID TID Info) field, a block confirmation starting sequence control (BA starting sequence control) field and a block confirmation bit map (BA bitmap) field.
  • the association identification information field is composed of an association identifier (AID) field, an acknowledgement type (ack type), and a service identifier (traffic identifier, TID) field.
  • AID association identifier
  • ack type acknowledgement type
  • TID service identifier
  • the ack type subfield and the TID subfield are combined to indicate the meaning of each associated identification service identification information field.
  • BA block acknowledgement
  • the bit value filled in the block confirmation start sequence control field is used to indicate the starting physical layer service data unit (medium access control service data unit, MSDU) or aggregated MSDU (aggregated MSDU, A-MSDU)
  • Each bit value in the block acknowledgment bit table field indicates the reception status of a series of MSDU or A-MSDU starting from the start MSDU or A-MSDU; when replying to the acknowledgment, the block acknowledgment start sequence control field and The block acknowledgment bit table field does not appear, which means that a single quality of service (QoS) data frame is correctly received; when all acknowledgment responses are correct (all acknowledgment), the block acknowledgment start sequence control field and the block acknowledgment bit table field do not appear.
  • QoS quality of service
  • the block acknowledgment start sequence control field and the block acknowledgment bit table field do not appear, indicating that a management frame carried in A-MPDU or S-MPDU has been received correctly, or a bearer has been received correctly PS-Poll frame in S-MPDU.
  • the basic BA frame, compressed BA frame, extended compressed block BA frame, multi-service identification BA frame and retransmission multicast BA frame all include the block confirmation start sequence control field, and the block confirmation start sequence control field includes the fragment number field and start Sequence number field, the number of fragments is usually set to 0.
  • the first value of the acknowledgement type field of the BA frame and the second value of the service identification field can be used to jointly indicate that all MPDUs included in the A-MPDU are received incorrectly, so as to facilitate according to the BA
  • the frame is retransmitted to avoid the signaling overhead caused by receiving errors in all the MPDUs included in the A-MPDU by using the block confirmation bit table field.
  • the first device may be an AP and the second device may be an STA; or the first device may be an STA and the second device may be an AP; or the first device may be an STA and the second device may be an STA; or the first device may be AP, the second device may be an AP.
  • the embodiment of the present application does not limit what the first device and the second device are.
  • FIG. 9 shows a method 100 for retransmission provided in an embodiment of the present application.
  • the first device generates a block confirmation BA frame, and the first value of the confirmation type field of the BA frame and the second value of the service identification field are used to jointly indicate all MPDU reception errors included in the A-MPDU.
  • the confirmation type field and the service identification field may be the confirmation type field and the service identification field in the associated identification information field in the block confirmation information field in FIG. 7.
  • the first value may be 1, and the second value may be 13.
  • the first value is 0, and the second value is 14.
  • the first value and the second value may also be other values, which are not limited in the embodiment of the present application.
  • the BA frame in the method 100 may be a multi-STA BA frame.
  • all MPDU reception errors included in the A-MPDU can be understood as: any one of the MPDUs included in the A-MPDU is not correctly received. It is possible that all the MPDUs sent by the second device are lost and cause all MPDU reception errors, or the MPDU sent by the second device is partially lost and the remaining part of the decoding error causes all MPDU reception errors, or the MPDU sent by the second device is partially decoded and the MPDU causes all MPDUs. Receive error.
  • the method further includes: the second device sends a PPDU to the first device, the first device receives the PPDU sent by the second device, the physical layer preamble included in the PPDU and the A- MPDU.
  • the BA frame is used to respond to all MPDU reception errors included in the A-MPDU.
  • S120 The first device sends a BA frame to the second device, and the second device receives the BA frame sent by the first device.
  • S130 The second device performs HARQ retransmission according to the BA frame.
  • the first device needs to confirm that the PPDU is sent to itself by the second device, so that the first device sends the BA frame to the second device.
  • the PPDU may include a first HARQ field, and the first HARQ field is used to indicate whether the PPDU is sent by the second device to the first device. In this way, the first device uses the first HARQ field to determine whether the PPDU is sent by the second device to itself. Further, the first device uses the address field in the first HARQ field to determine whether the PPDU is sent to itself by the second device.
  • the following is divided into SU PPDU and MU PPDU description.
  • NG-SIG-B where the first HARQ field is located is located between the NG-SIG-A and the NG-STF in the physical layer preamble of the PPDU. As shown in Figure 10. In this way, NG-SIG-A and NG-SIG-B are two separate cyclic redundancy code (cyclic redundancy code, CRC) checks.
  • CRC cyclic redundancy code
  • the second device may use a specific bit in NG-SIG-A to indicate whether NG-SIG-B will appear in the PPDU, or use other methods to indicate whether NG-SIG-B will appear in the PPDU.
  • the first device can determine whether there is NG-SIG-B in the PPDU according to a specific bit in the NG-SIG-A or other indication methods.
  • the first device can learn the first HARQ field earlier, and prepare in advance to receive the HARQ retransmission of the second device.
  • the first HARQ field is located in the NG-SIG-A of the physical layer preamble of the PPDU, as shown in FIG. 11. In this way, the first HARQ field and the NG-SIG-A only need to perform a CRC check once, thereby reducing the complexity of the check.
  • Manner 3 The first HARQ field is located between the NG-LTF and A-MPDU of the physical layer preamble of the PPDU, as shown in FIG. 12. In this way, channel resources can be used more effectively.
  • the first HARQ field includes: address field, service identifier field (traffic identifier, TID), hybrid automatic repeat request process identifier (HARQ process identity), sequence One or more of sequence number (sequence number), response mode field, hybrid automatic repeat request type (HARQ type), redundancy version (RV) and CRC.
  • address field, TID, hybrid automatic repeat request process identifier, sequence number, response mode field, hybrid automatic repeat request type, RV and CRC in the first HARQ field is not limited.
  • the response mode field can be in the TID and Wait between serial numbers.
  • the address field of the first HARQ field includes the address of the first device (ie receiving address) and the address of the second device (ie sending address), so that the first device can The address of the first device and the address of the second device in can determine that the PPDU is sent by the second device to the first device. In this way, even if all MPDUs in the A-MPDUs in the PPDU are received incorrectly, the first device is required to send the BA frame to the second device.
  • the TID of the first HARQ field is used to identify the PPDU service transmitted at this time.
  • the response mode field of the first HARQ field is used to indicate the mode of the first device to respond to the A-MPDU, and the first device can determine the mode of responding to the BA frame according to the response mode field.
  • the method of responding to the BA frame may be a first response method or a second response method.
  • the first response method may be: the first device responds immediately after receiving the short interframe space (SIFS) of the PPDU.
  • the second response method may be: the first device does not respond after receiving the SIFS after the PPDU, but sends the BA frame to the second device after the first device receives the block acknowledgment request (BAR).
  • the bit size of the response mode field may be 1 bit or 2 bits, etc.
  • the value of the response mode field is "1", which means that the first device sends BA frames to the second device as the first response mode, and the value "0" means the first device sends BA frames to the second device.
  • This is the second response method.
  • the value of the response mode field is "00”, indicating that the first device sends BA frames to the second device as the first response mode, and the value of the response mode is "11" indicating that the first device sends the BA frame to the second device
  • the BA frame mode is the second response mode.
  • the response mode can be based on the response policy (ack policy), as shown in Table 4, when the value of the response mode field is "00", it means that the first device sends the BA frame to the second device in the first response Mode, the value of the response mode is "11", which means that the first device sends the BA frame to the second device as the second response mode.
  • ack policy response policy
  • the sequence number of the first HARQ field is used to identify the MSDU included in the MPDU in the A-MPDU or the sequence number of the A-MSDU, so that even if all MPDUs in the A-MPDU are received incorrectly
  • the first device can also determine the sequence number of the MSDU or A-MSDU included in the erroneous MPDU according to the sequence number. In this way, when the first device receives HARQ retransmission data from the second device, it can be based on the MSDU or A-MSDU.
  • the serial number and retransmission data are combined and decoded, which can improve the accuracy of decoding.
  • next generation extended range PPDU next generation extended range PPDU
  • NGER SU PPDU next generation extended range PPDU
  • the position of the first HARQ field in the PPDU has at least two options as follows:
  • NG-SIG-C where the first HARQ field is located is located between the NG-LTF in the physical layer preamble of the PPDU and the A-MPDU, as shown in FIG. 13. In this way, NG-SIG-A, NG-SIG-B, and NG-SIG-C have separate CRC checks.
  • NG-SIG-C appears in the PPDU; when HARQ transmission is not required, NG-SIG-C does not appear in the PPDU, which can save signaling overhead.
  • the second device may use a specific bit in NG-SIG-A or NG-SIG-B to indicate whether NG-SIG-C will appear in the PPDU, and may also use other methods to indicate whether NG-SIG-C Will appear in the PPDU, so that the first device can determine whether there is NG-SIG-C in the PPDU according to a specific bit in NG-SIG-A or NG-SIG-B or other indication methods. And when the NG-SIG-C is located between the NG-LTF and the A-MPDU, the channel resources can be used more effectively.
  • the first HARQ field is located in the user information field of the next-generation signal field NG-SIG-B of the physical layer preamble of the PPDU, as shown in FIG. 14. In this way, the first HARQ field and NG-SIG-B only need to perform a CRC check once, thereby reducing the complexity of the check.
  • the address field of the first HARQ field in Figs. 13 and 14 of the MU PPDU has a different meaning from the address field of Figs. 9-11 of the first HARQ field in the SU PPDU, and the meanings of other elements are similar.
  • the following focuses on the address field of the first HARQ field in Figure 13 and Figure 14 of the MU PPDU.
  • the address field in FIG. 13 and FIG. 14 of the MU PPDU includes the address of the first device (receiving address) and the address of the second device (sending address).
  • the address field in Figure 13 and Figure 14 of MU PPDU may only include one address, because the user information in NG-SIG-B in Figure 13 and Figure 14 of MU PPDU
  • the field includes the STA-ID, therefore, only one address is required in the first HARQ field.
  • the address field in Figure 13 and Figure 14 only includes one address.
  • the address field in Figure 13 and Figure 14 includes one address and the STA- in the user information field in NG-SIG-B. ID is used to indicate whether the PPDU of the first device is sent to the first device.
  • the first device determines whether the PPDU is the second device according to an address in the address field and the STA-ID in the user information field
  • the first device determines that the PPDU is sent to the first device by the second device, even if all MPDUs in the A-MPDU in the PPDU are received incorrectly, the first device needs to send the message to the second device. Sending a BA frame is described in detail below.
  • Case 1 The value of the address field in FIG. 13 and FIG. 14 is the address of the second device (for example, MAC address), and the value of the STA-ID field is the multiple of the associated identifier AID of the first device. Bits.
  • the second device is an AP and the first device is a STA.
  • the value of the STA-ID field can be the lower 11 bits of the AID of the first device.
  • the first device can determine according to the address of the second device that the PPDU is sent by the second device associated with the first device.
  • the first device further matches the lower 11 bits of its own AID according to the value of the STA-ID field. If the match is successful ,
  • the first device can determine that the PPDU is sent to itself by the second device.
  • Case 2 The value of the address field in FIGS. 13 and 14 is the address of the second device (for example, MAC address), and the value of the STA-ID field is multiple bits of the AID of the second device .
  • the second device is an STA and the first device is an AP.
  • the first device receives a PPDU, it is determined according to the address of the second device in the address field that the PPDU was sent by an associated second device, and the STA-ID The value of the field matches the lower 11 bits of the associated second device, so that the first device can determine that the PPDU is sent by the associated second device.
  • Case 3 The value of the address field in FIGS. 13 and 14 is the address of the first device (for example, MAC address), and the value of the STA-ID field is multiple bits of the AID of the second device .
  • the second device is an STA and the first device is an AP.
  • the first device receives a PPDU, it can be determined according to the address of the first device in the address field that the PPDU is sent to itself.
  • the value of the ID field matches the lower 11 bits of the associated second device to determine that the second device sent it to itself.
  • the value of the STA-ID field is several bits of the AID of the first device or the second device, for example, it can be 11 bits. Or 12 bits, etc.
  • the embodiments of the present application do not set any limitation on how many bits of the AID are specifically.
  • the first device needs to confirm whether the second device has sent the PPDU.
  • the first device can be an AP
  • the second device can be an STA
  • the sending trigger frame of the first device schedules the second device to send the PPDU, that is, the first device knows which second device sends on which resources PPDU, but when the second device finds that all MPDUs are received incorrectly, the first device is not sure whether it is because the second device did not send the PPDU and caused all the MPDU reception errors or because the second device sent the PPDU but the channel quality of the first device was not good. Causes all MPDU reception errors.
  • the first device When the second device does not send PPDUs, the first device does not need to reply BA frames; when the second device sends PPDUs, but the first device receives all the MPDUs received incorrectly, the first device needs Reply the BA frame to the second device. Therefore, in the TB PPDU, the first device needs to determine whether the second device has sent the PPDU in at least one of the following three ways.
  • the PPDU includes a second HARQ field, and the second HARQ field is used to indicate whether the first device and the second device sent the PPDU, so that the first device can determine the second HARQ field according to the second HARQ field. Whether the device has sent the PPDU, that is, the first device can detect the second HARQ field or any element in the second HARQ field, that is, it can be considered that the second device has sent the PPDU.
  • the second HARQ field is located between the NG-LTF of the physical layer preamble of the PPDU and the A-MPDU. As shown in Figure 15. In this way, channel resources can be used more effectively.
  • the address field in the second HARQ field is different from the address field of the first HARQ field in the SU PPDU or MU PPDU, and other elements in the second HARQ field are similar to other elements in the first HARQ field in the SU PPDU or MU PPDU. In order to avoid repetition, it is not described in detail here. The following only briefly describes the address field in the second HARQ field.
  • the address field of the second HARQ field can be described in the following three cases: a), b) and c).
  • the address field may only include the address of the second device.
  • the address field does not exist, that is, there is no address of the first device nor the address of the second device in the second HARQ field.
  • the address field includes both the address of the first device and the address of the second device.
  • Manner 2 The NG-STF and/or NG-LTF of the PPDU instructs the first device and the second device to send the TB PPDU, so that the first device can determine the TB PPDU according to the NG-STF and/or NG-LTF
  • the second device sends the TB PPDU.
  • the first device detects NG-STF and NG-LTF, or at least one of them through signal synchronization or energy detection, and the first device can determine the first
  • the second device sends the PPDU, so even if all the MPDUs included in the A-MPDU received by the first device are received incorrectly, the first device needs to send a BA frame to the second device.
  • Figure 15 may not include NG-SIG-C.
  • At least one MPDU delimiter in the A-MPDU is used to indicate that the first device and the second device sent the TB PPDU, so that the first device can determine the first device according to the at least one MPDU delimiter
  • the second device sends the PPDU.
  • multiple MPDUs in the A-MPDU are separated by a separator.
  • the first device receives all the MPDUs included in the A-MPDU received error, but the first device detects one When there are multiple MPDU delimiters, it can be considered as a PPDU sent by the second device. In this way, the first device needs to reply to the second device with a BA frame.
  • the above describes the format and location of the HARQ field in different PPDU formats.
  • the first device may determine that the second device sent the PPDU according to the HARQ field or the information that is not the HARQ field. In this way, when all PPDUs received by the first device receive errors, the first device sends a BA frame to the second device.
  • the first value of the acknowledgment type field and the second value of the service identification field in the BA frame are used to jointly indicate that all MPDUs included in the A-MPDU receive errors.
  • the block acknowledgment start sequence control field of the BA frame can also indicate the reason why all MPDUs included in the A-MPDU receive errors, that is, the reason feedback (reason feedback) used in the next transmission and the next transmission.
  • the cause of all MPDU reception errors included in the A-MPDU can be collision, interference, poor channel, or unknown.
  • the second When the device receives the BA frame, it can determine the cause of all reception errors by the first device according to the cause indication in the BA frame, and perform HARQ retransmission according to the reason. For example, if the cause of all reception errors is a conflict, the probability of a conflict reoccurring is very high.
  • the block confirmation start sequence control field of the BA frame indicates the reason for the reception error of all MPDUs included in the A-MPDU, the RV used in the next transmission and the MCS order used in the next transmission, and the confirmation type field of the BA frame
  • the first value and the second value of the service identification field are used to jointly indicate the reception errors of all MPDUs included in the A-MPDU, which may be referred to as an indication with feedback.
  • the block confirmation start sequence control field of the BA frame does not exist. Only the first value of the confirmation type field of the BA frame and the second value of the service identification field are used to jointly indicate that all MPDUs included in the A-MPDU receive errors. Instructions without feedback.
  • the two indication modes can also be exchanged.
  • both indication methods are also used. Can be exchanged.
  • the first value of the confirmation type field of the BA frame and the second value of the service identification field can be the same or different.
  • the first value and the second value of the The value of two is not limited in any way.
  • the first value is 1 and the second value is 13; in case 2, the first value can be 1, and the second value is 12; in case three, the first value can be Is 0, the second value can be 14, etc.
  • the first device when the first device determines that all MPDUs included in the A-MPDU receive errors in combination with the first HARQ field or the second HARQ field, the first device can determine that the PPDU is sent to the second device by the second device according to the first HARQ field or the second HARQ field.
  • the HARQ field can exist alone, that is, it does not depend on the first device to determine that the PPDU is sent by the second device to the first device according to the HARQ field.
  • the HARQ field is described below.
  • the following HARQ field may be the aforementioned first HARQ field or the aforementioned second HARQ field.
  • the first device obtains the PPDU, and the physical layer preamble included in the PPDU includes the HARQ field.
  • the position of the HARQ field in different PPDU formats can be different.
  • the HARQ field is located between NG-SIG-A and NG-STF in the physical layer preamble of the PPDU (as shown in Figure 10, the HARQ field is in NG-SIG-B Middle), or the HARQ field is located in the NG-SIG-A of the physical layer preamble of the PPDU (as shown in Figure 11), or the HARQ field is located in the NG-LTF and PPDU of the physical layer preamble of the PPDU Between the included A-MPDUs (as shown in Figure 12, the HARQ field is in NG-SIG-B).
  • the address field of the HARQ field includes the address of the first device (receiving address) and the address of the second device (sending address).
  • the HARQ field is located between the NG-LTF in the physical layer preamble of the PPDU and the A-MPDU (as shown in FIG. 13, the HARQ field is in NG -SIG-C), or the HARQ field is located in the user information field of the next-generation signal field NG-SIG-B of the physical layer preamble of the first PPDU (as shown in FIG. 14).
  • the value of the address field of the HARQ field may include two addresses, namely the address of the first device (receiving address) and the address of the second device (sending address) ).
  • the value of the HARQ field may also include only one address, for example, the address of the second device (transmitting address), or the value of the address field of the HARQ field is the address of the first device (receiving address).
  • the HARQ field is located between the NG-LTF in the physical layer preamble of the PPDU and the A-MPDU (as shown in FIG. 15, the HARQ field is in NG- SIG-C).
  • the HARQ field may or may not include an address field.
  • the value of the address field may be the address of the first device (Receiving address) and the address of the second device (sending address); or the value of the address field may be the address of the second device (sending address).
  • the response mode field in the HARQ field is used to indicate the manner in which the first device responds to the A-MPDU, and the first device may determine to respond to the A-MPDU according to the remote location field. MPDU mode.
  • response mode field in the HARQ field may depend on any embodiment of the present application, or may not depend on any one of the embodiments of the present application.
  • the method 100 in FIG. 9 describes that the first value filled by the first device according to the acknowledgement type field of the BA frame and the second value of the service identification field are used to jointly indicate that all MPDUs included in the A-MPDU receive errors.
  • the following describes with reference to FIGS. 17 and 18 that the first device indicates that all MPDUs included in the first A-MPDU receive errors according to the first value of the number of segments field in the first BA frame.
  • the following describes in conjunction with FIG. 19 and FIG. 20 that the first device indicates that all MPDUs included in the first A-MPDU receive errors according to the first value of the block acknowledgment type field in the first BA frame.
  • FIG. 17 shows a method 200 for retransmission provided by an embodiment of the present application, including:
  • the first device generates a first BA frame, and the first value of the block segment number field of the first BA frame is used to indicate that all MPDUs included in the first A-MPDU are received incorrectly.
  • the segment number field is the segment data field in the block confirmation start sequence control field in FIG. 8.
  • the method 200 further includes: the first device receives a first PPDU sent by the second device, where the first PPDU includes a physical layer preamble and the first A-MPDU.
  • the value of the block acknowledgment bit table field of the first BA frame is used to indicate the reason for the reception error of all MPDUs included in the first A-MPDU, and the redundancy version to be used in the next transmission. And at least one of the coding and modulation strategy orders used in the next transmission, for example, as shown in FIG. 18.
  • the block confirmation bit table field is the block confirmation bit table field in the block confirmation information field in FIG. 8.
  • the reason for receiving errors of all MPDUs included in the A-MPDU can be collision, interference, poor channel, or unknown.
  • the second device can receive the first BA frame according to the first
  • the cause indication in a BA frame determines the cause of all reception errors by the first device, and performs HARQ retransmission according to the reason. For example, if the cause of all reception errors is conflict, the probability of conflict again is small, so the second device can Use the last modulation method for HARQ retransmission.
  • the value of the block confirmation bit table field of the first BA frame indicates the reason for the reception error of all MPDUs included in the A-MPDU, the RV used in the next transmission and the MCS order used in the next transmission, and the first BA frame
  • the first value of the number of segments field is used to indicate that all MPDUs included in the A-MPDU receive errors, which may be called an indication with feedback.
  • the block confirmation bit table field of the first BA frame does not exist. Only the segment number field of the first BA frame exists. The first value is used to jointly indicate that all MPDUs included in the A-MPDU receive errors, which may be referred to as an indication without feedback
  • S220 The first device sends the first BA frame to the second device, and the second device receives the first BA frame sent by the first device.
  • S230 The second device performs HARQ retransmission according to the BA frame.
  • the method 200 further includes: the first device generates a second BA frame, and the block segment number field of the second BA frame The second value is used to indicate that all MPDUs included in the second A-MPDU included in the second PPDU are received correctly; the first device sends the second BA frame to the second device.
  • the second value of 1 indicates that all MPDUs of the second A-MPDU are received correctly (all ack), and the block confirmation bit table field does not appear at this time.
  • the first value of 2 indicates that all MPDUs of the first A-MPDU are received in error (all nack), and the block confirmation bit table field subfield does not appear at this time.
  • the second value of 1 indicates that all MPDUs of the second A-MPDU are received correctly (all ack), and the block confirmation bit table field does not appear at this time.
  • the first value of 2 indicates that all MPDUs of the first A-MPDU are received incorrectly (all nack).
  • the bits in the block confirmation bit table field are reused, and the value of the block confirmation bit table field is used to indicate the first A-MPDU.
  • At least one of the reasons for receiving errors of all MPDUs included in an A-MPDU, the redundancy version used in the next transmission, and the coding and modulation strategy order used in the next transmission, that is, the first value is 2 for Indication with feedback indication, as shown in Figure 18.
  • the second value of 1 indicates that all MPDUs of the second A-MPDU are received correctly (all ack), and the block confirmation bit table field subfield does not appear at this time.
  • the first value of 2 indicates that all MPDUs of the first A-MPDU are received in error (all nack).
  • the first value of 3 indicates that all MPDUs of the first A-MPDU are received incorrectly (all nack) and indicate the cause of all received errors, the redundancy version used in the next transmission, and the coding and modulation strategy level used in the next transmission. At least one of the number.
  • the bits in the block confirmation bit table field are reused to indicate all reception errors and the reasons for all reception errors, the redundancy version used in the next transmission, and the next transmission At least one of coding and modulation strategy order.
  • FIG. 19 shows a method 300 for retransmission provided by an embodiment of the present application, including:
  • the first device generates a first BA frame, and the first value of the block confirmation frame type field of the first BA frame is used to indicate that all MPDUs included in the first A-MPDU receive errors.
  • the method 200 further includes: the first device receives a first physical layer protocol data unit PPDU sent by the second device, the first PPDU includes a physical layer preamble and the first A-MPDU.
  • S320 The first device sends the first BA frame to the second device, and the second device receives the first BA frame sent by the first device.
  • S330 The second device performs HARQ retransmission according to the BA frame.
  • the value of the block confirmation information field of the first BA frame is used to indicate the reason for the reception error of all MPDUs included in the first A-MPDU, the redundancy version used in the next transmission, and At least one of the coding and modulation strategy orders used in the next transmission is, for example, as shown in FIG. 20.
  • the block confirmation information field is the block confirmation information field in FIG. 6.
  • the reason for receiving errors of all MPDUs included in the A-MPDU can be collision, interference, poor channel, or unknown.
  • the second device can receive the first BA frame according to the first
  • the cause indication in a BA frame determines the cause of all reception errors by the first device, and performs HARQ retransmission according to the reason.
  • the value of the block confirmation information field of the first BA frame indicates the reason for the reception error of all MPDUs included in the A-MPDU, the RV used in the next transmission and the MCS order used in the next transmission, and the value of the first BA frame
  • the first value of the block acknowledgment frame type field is used to indicate that all MPDUs included in the A-MPDU receive errors, which may be referred to as an indication with feedback.
  • the block confirmation frame type field of the first BA frame does not exist. Only the first value of the block confirmation frame type field of the first BA frame is used to jointly indicate that all MPDUs included in the A-MPDU receive errors can be called an indication without feedback. .
  • the method 300 further includes: the first device generates a second BA frame, and the block confirmation frame type field of the second BA frame The second value is used to indicate that all MPDUs included in the second A-MPDU included in the second PPDU are received correctly; the first device sends the second BA frame to the second device.
  • the second value of 4 indicates that all MPDUs of the second A-MPDU are received correctly (all ack), and the block confirmation information field does not appear at this time.
  • the first value of 5 indicates that all MPDUs of the first A-MPDU are received in error (all nack), and the block confirmation information field does not appear at this time.
  • the second value of 4 indicates that all MPDUs of the second A-MPDU are received correctly (all ack), and the block confirmation information field does not appear at this time.
  • the first value of 5 indicates that all MPDUs of the first A-MPDU are received in error (all nack).
  • the bits in the block confirmation information field are reused to indicate feedback information, and the block confirmation information field is used to indicate the first A-MPDU.
  • At least one of the reasons for receiving errors of all MPDUs included in an A-MPDU, the redundancy version used in the next transmission, and the coding and modulation strategy order used in the next transmission, that is, the first value is 5 for Indication with feedback indication, as shown in Figure 20.
  • the second value of 7 indicates that all MPDUs of the second A-MPDU are received correctly (all ack), and the block confirmation information field does not appear at this time.
  • the first value of 8 indicates that all MPDUs of the first A-MPDU are received without feedback (all nack), and the block confirmation information field does not appear at this time.
  • the first value of 9 indicates that the MPDU of the first A-MPDU is all received error (all nack) and indicates the cause of all received errors, the redundancy version used in the next transmission, and the coding and modulation strategy level used in the next transmission. At least one of the number.
  • the block confirmation information field is reused to indicate all reception errors and the reasons for all reception errors, the redundancy version used in the next transmission, and the coding and modulation strategy used in the next transmission At least one of the order.
  • the BA frame in FIG. 9 is different from the first BA frame and the second BA frame in FIGS. 17 and 19, and correspondingly, the first value in FIG. 9 is the same as the first value in FIGS. 17 and 19 One has a different value, and the second value in FIG. 9 is different from the second value in FIGS. 17 and 19. Similarly, the first BA frame in Figure 17 and Figure 19 are different, and the second BA frame is also different. Correspondingly, the first value in Figure 17 is different from the first value in Figure 19, and the first value in Figure 17 is different. The second value is different from the second value in FIG. 19.
  • the address in the aforementioned address field may be, but is not limited to, a MAC address, AID, a HARQ dedicated address allocated for the first device, and a combination of BSS color and AID.
  • the method for retransmission in the embodiment of this application is described above, and the device for retransmission in the embodiment of this application is described below.
  • the device for retransmission in the embodiment of this application includes the method for retransmission applied to the first device. It should be understood that the device for retransmission applied to the first device is the first device in the above method, and it has the first device in the above method. Any function of a device, the device for retransmission applied to the second device is the second device in the above method, and it has any function of the second device in the above method.
  • FIG. 21 shows a schematic block diagram of an apparatus 400 for retransmission according to an embodiment of the present application.
  • the apparatus 400 may correspond to the first device described in the foregoing method, or may correspond to the chip or component of the first device, and, Each module or unit in the apparatus 400 may be used to execute each action or processing procedure performed by the first device in the above method.
  • the apparatus 400 for retransmission may include a processing unit 410 and a transceiver unit. 420.
  • the processing unit 410 is configured to generate a block confirmation BA frame.
  • the first value of the confirmation type field and the second value of the service identification field of the BA frame are used to jointly indicate that the aggregate media access control protocol data unit A-MPDU includes All of the media access control protocol data units MPDU received errors;
  • the transceiver unit 420 is configured to send the BA frame to the second device.
  • the transceiver unit 420 is further configured to: before generating the BA frame, receive a physical layer protocol data unit PPDU sent by the second device, where the PPDU includes a physical layer preamble and the A -MPDU.
  • the physical layer preamble of the PPDU includes a first hybrid automatic repeat request HARQ field, and the address field of the first HARQ field is used to indicate whether the PPDU is sent to the device. of.
  • the response manner field in the first HARQ field is used to indicate the manner in which the device responds to the A-MPDU.
  • the PPDU is a single-user SU PPDU
  • the first HARQ field is located between the next-generation signal field NG-SIG-A and the next-generation short training field NG-STF of the physical layer preamble of the PPDU.
  • the first HARQ field is located in the NG-SIG-A of the physical layer preamble of the PPDU, or the first HARQ field is located in the next generation long training field NG-LTF of the physical layer preamble of the PPDU and Between the A-MPDU.
  • the address field includes the address of the apparatus and the address of the second device.
  • the PPDU is a multi-user MU PPDU
  • the first HARQ field is located between the next-generation long training field NG-LTF of the physical layer preamble of the PPDU and the A-MPDU, or The first HARQ field is located in the user information field of the next generation signal field NG-SIG-B of the physical layer preamble of the PPDU.
  • the STA-ID field of the user information field and the address field of the first HARQ field are used to indicate whether the PPDU of the device is sent to the device.
  • the value of the STA-ID field is multiple bits of the association identifier AID of the device, and the value of the address field of the first HARQ field is the address of the second device, Alternatively, the value of the STA-ID field is multiple bits of the association identification AID of the second device, and the value of the address field of the first HARQ field is the address of the second device; or The value of the STA-ID field is multiple bits of the association identification AID of the second device, and the value of the address field of the first HARQ field is the address of the device.
  • the PPDU is a triggered TB PPDU
  • the PPDU includes a second HARQ field
  • the second HARQ field is used to indicate whether the first device and the second device sent the PPDU
  • the second HARQ field is located between the next-generation long training field NG-LTF of the physical layer preamble of the PPDU and the A-MPDU.
  • the value of the response mode field in the second HARQ field is used to indicate the mode for the device to respond to the A-MPDU.
  • the PPDU is a TB PPDU
  • the NG-STF and/or NG-LTF of the PPDU is used to instruct the first device and the second device to send the TB PPDU.
  • the PPDU is a TB PPDU
  • at least one MPDU delimiter in the A-MPDU is used to indicate that the first device and the second device sent the TB PPDU.
  • the block confirmation start sequence control field of the BA frame is used to indicate the reason for the reception error of all MPDUs included in the A-MPDU, the redundancy version used in the next transmission, and the next transmission time. At least one of the coding and modulation strategies used.
  • the apparatus 400 for retransmission provided in the embodiment of the present application is the first device in the above method, and it has any function of the first device in the above method. For details, please refer to the above method, which will not be repeated here. .
  • FIG. 22 shows a schematic block diagram of an apparatus 500 for retransmission according to an embodiment of the present application.
  • the apparatus 500 may correspond to the second device described in the foregoing method, or may correspond to a chip or component of the second device, and, Each module or unit in the device 500 can be used to execute each action or processing performed by the second device in the above method.
  • the device 500 for retransmission can include a transceiving unit 510 and a re-bill. Yuan 520.
  • the transceiver unit 510 is configured to receive a block confirmation BA frame sent by the first device, where the first value of the confirmation type field and the second value of the service identification field of the BA frame are used to jointly indicate aggregated media access control protocol data All media access control protocol data units MPDUs included in the unit A-MPDU received errors;
  • the retransmission unit 520 is configured to perform hybrid automatic repeat request HARQ retransmission according to the BA frame.
  • the transceiving unit 510 is further configured to: before the receiving the BA frame sent by the first device, send a physical layer protocol data unit PPDU to the first device, where the PPDU includes a physical layer preamble And the A-MPDU.
  • the physical layer preamble of the PPDU includes a first HARQ field, and the address field of the first HARQ field is used to indicate to the first device whether the PPDU is sent to the first device .
  • the response mode field in the first HARQ field is used to indicate the mode for the first device to respond to the A-MPDU.
  • the PPDU is a single-user SU PPDU
  • the first HARQ field is located between the next-generation signal field NG-SIG-A and the next-generation short training field NG-STF of the physical layer preamble of the PPDU.
  • the first HARQ field is located in the NG-SIG-A of the physical layer preamble of the PPDU, or the first HARQ field is located in the next generation long training field NG-LTF of the physical layer preamble of the PPDU and Between the A-MPDU.
  • the address field includes the address of the first device and the address of the device.
  • the PPDU is a multi-user MU PPDU
  • the first HARQ field is located between the next-generation long training field NG-LTF of the physical layer preamble of the PPDU and the A-MPDU, or The first HARQ field is located in the user information field of the next generation signal field NG-SIG-B of the physical layer preamble of the PPDU.
  • the STA-ID field of the user information field and the address field of the first HARQ field are used to indicate whether the PPDU of the first device is sent to the first device.
  • the value of the STA-ID field is multiple bits of the association identifier AID of the first device, and the value of the address field of the first HARQ field is the address of the device, Or, the value of the STA-ID field is multiple bits of the AID of the device, and the value of the address field of the first HARQ field is the address of the device; or, the value of the STA-ID field is The value is multiple bits of the AID of the device, and the value of the address field of the first HARQ field is the address of the first device.
  • the PPDU is a PPDU based on a triggered TB
  • the PPDU includes a second HARQ field
  • the second HARQ field is used to indicate whether the first device and the device sent the PPDU, so
  • the second HARQ field is located between the next-generation long training field NG-LTF of the physical layer preamble of the PPDU and the A-MPDU.
  • the value of the response mode field in the second HARQ field is used to indicate the mode for the first device to respond to the A-MPDU.
  • the PPDU is a TB PPDU
  • the NG-STF and/or NG-LTF of the PPDU is used to instruct the first device and the device to send the TB PPDU.
  • the PPDU is a TB PPDU
  • at least one MPDU delimiter in the A-MPDU is used to indicate that the first device and the apparatus sent the TB PPDU.
  • the block confirmation start sequence control field of the BA frame is used to indicate the reason for the reception error of all MPDUs included in the A-MPDU, the redundancy version used in the next transmission, and the next transmission time. At least one of the coding and modulation strategies used
  • the apparatus 500 for retransmission provided in the embodiment of the present application is the second device in the above method, and it has any function of the second device in the above method.
  • the above describes the apparatus for retransmission applied to the first device and the apparatus for retransmission applied to the second device of the embodiments of the present application.
  • the following describes the apparatus for retransmission applied to the first device.
  • the possible product forms of the device for retransmission applied to the second device It should be understood that any product that has the characteristics of the device for retransmission applied to the first device described in FIG. 21, and any product that has the characteristics of the device for retransmission applied to the second device described in FIG. 22 Any form of product with the characteristics of the device falls within the protection scope of this application.
  • the following introduction is only an example, and does not limit the product form of the device for retransmission applied to the first device and the product form of the device for retransmission applied to the second device in the embodiments of the present application. this.
  • the apparatus for retransmission applied to the first device and the apparatus for retransmission applied to the second device described in the embodiments of this application can be based on a general bus architecture. achieve.
  • the apparatus for retransmission applied to the first device includes a processor and a transceiver for internal communication with the processor; the processor is used to generate a block confirmation BA frame, and the confirmation type field of the BA frame
  • the first value of and the second value of the service identification field are used to jointly indicate that the aggregated media access control protocol data unit A-MPDU received by the first device includes all media access control protocol data unit MPDU receiving errors;
  • the transceiver is used to send the BA frame to the second device.
  • the apparatus for retransmission applied to the first device may further include a memory, and the memory is configured to store instructions executed by the processor.
  • the apparatus for retransmission applied to the second device includes a processor and a transceiver that is internally connected and communicated with the processor; the transceiver is used to receive a block confirmation BA frame sent by the first device, the BA frame
  • the first value of the confirmation type field and the second value of the service identification field are used to jointly indicate the reception of all the media access control protocol data units MPDU included in the aggregated media access control protocol data unit A-MPDU received by the first device Error;
  • the processor is configured to control the transceiver to perform a hybrid automatic repeat request HARQ retransmission according to the BA frame.
  • the apparatus for retransmission applied to the second device may further include a memory, and the memory is configured to store instructions executed by the processor.
  • the apparatus for retransmission applied to the first device and the apparatus for retransmission applied to the second device described in the embodiments of the present application may be implemented by a general-purpose processor.
  • the general-purpose processor that implements the device for retransmission applied to the first device includes a processing circuit and a communication interface for internal communication with the processing circuit; the processing circuit is used to generate a block confirmation BA frame, the BA The first value of the confirmation type field of the frame and the second value of the service identification field are used to jointly indicate all the media access control protocol data units MPDUs included in the aggregated media access control protocol data unit A-MPDU received by the device Receive error; the communication interface sends the BA frame to the second device.
  • the general-purpose processor may further include a storage medium, and the storage medium is used to store instructions executed by the processing circuit.
  • the general-purpose processor that implements the apparatus for retransmission applied to the first device includes a processing circuit and a communication interface for internal connection and communication with the processing circuit, and the communication interface is used to receive a block confirmation BA sent by the first device Frame, the first value of the acknowledgement type field of the BA frame and the second value of the service identification field are used to jointly indicate all media access included in the aggregated media access control protocol data unit A-MPDU received by the first device The control protocol data unit MPDU received error; the processing circuit is used to control the communication interface to perform the retransmission of the hybrid automatic repeat request HARQ according to the BA frame.
  • the apparatus for retransmission applied to the first device and the apparatus for retransmission applied to the second device described in the embodiments of this application can also be implemented as follows: Or multiple FPGAs (field programmable gate arrays), PLDs (programmable logic devices), controllers, state machines, gate logic, discrete hardware components, any other suitable circuits, or capable of executing each of the descriptions described throughout this application Any combination of circuits with various functions.
  • FPGAs field programmable gate arrays
  • PLDs programmable logic devices
  • controllers state machines, gate logic, discrete hardware components, any other suitable circuits, or capable of executing each of the descriptions described throughout this application Any combination of circuits with various functions.
  • the apparatus for retransmission applied to the first device and the apparatus for retransmission applied to the second device in the various product forms described above respectively have the characteristics of the first device and the second device in the foregoing method embodiments. Any function, I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may also be electrical, mechanical or other forms of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments of the present application.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application is essentially or the part that contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium It includes several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

本申请提供了一种用于重传的方法和装置,有利于节省信令开销。该方法包括:第一设备生成BA帧,BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示A-MPDU包括的全部MPDU接收错误;第一设备向第二设备发送BA帧。示例性地,该方法可以应用于WLAN系统中。

Description

用于重传的方法和装置
本申请要求于2019年05月27日提交中国专利局、申请号为201910447325.7、申请名称为“用于重传的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及通信领域中用于重传的方法和装置。
背景技术
在通信系统中,由于无线信道的时变特性和多径衰落,会导致信号传输失败。例如,在无线局字段网(wireless local area network,WLAN)中,第二设备向第一设备发送聚合媒体接入控制协议数据单元(aggregated MAC protocol data unit,A-MPDU)时,第一设备需要向第二设备反馈A-MPDU的接收情况,当A-MPDU由多个接入控制协议数据单元(protocol data unit,MPDU)聚合组成,并且多个MPDU全部接收错误时,第一设备反馈时需要多个比特来指示每个MPDU的接收情况,这样导致信令开销较大。
发明内容
本申请提供一种用于重传的方法和装置,有助于节省信令开销。
第一方面,提供了一种用于传输数据的方法,包括:第一设备生成块确认BA帧,所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示所述第一设备接收的聚合媒体接入控制协议数据单元A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;所述第一设备向第二设备发送所述BA帧。
因此,本申请实施例中,可以通过所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示A-MPDU包括的全部MPDU接收错误,以便于根据BA帧进行重传,避免需要采用多个比特来指示A-MPDU包括的MPDU全部接收错误而带来的信令开销。
在一些可能的实现方式中,BA帧为多站点BA(Multi-STA BA)帧。
例如,一个A-MPDU包括10个MPDU,现有技术则至少需要10比特才能指示10个MPDU全部错误,而本申请中确认类型字段可以是一个比特,业务标识字段可以是一个比特,总共通过两个比特就可以指示A-MPDU包括的MPDU全部接收错误。又例如,假设现有的采用固定大小的块确认比特表字段指示A-MPDU包括的MPDU全部接收错误,则不管是A-MPDU包括的MPDU全部接收错误还是部分接收错误,都需要固定大小的信令进行指示,相反地,本申请实施例中,通过确认类型字段的第一取值和业务标识字段的第二取值即可以指示A-MPDU包括的MPDU全部接收错误,省略了使用比特地图分别对每个MPDU进行指示,因此,可以节省信令开销。
在一些可能的实现方式中,第一设备为站点,第二设备为接入点。
在一些可能的实现方式中,第一设备为接入点,第二设备为站点。
在一些可能的实现方式中,第一设备为站点,第二设备为站点。
在一些可能的实现方式中,第一设备为接入点,第二设备为接入点。
在一些可能的实现方式中,在所述第一设备生成BA帧之前,所述方法还包括:所述第一设备接收所述第二设备发送的物理层协议数据单元PPDU,所述PPDU,所述PPDU包括物理层前导和所述A-MPDU。即第二设备向第一设备发送的PPDU,第一设备没有正确接收A-MPDU中的任何一个MPDU,这样,第一设备即就可以利用BA帧来响应第二设备发送的PPDU。
在一些可能的实现方式中,所述PPDU的物理层前导包括第一混合自动重传请求HARQ字段,所述第一HARQ字段的地址字段用于用于指示所述第一设备所述PPDU是否是发送给所述第一设备的,这样,所述第一设备根据地址地砖确定所述PPDU是否是发送给所述第一设备的。地址字段用于承载第一设备的地址和/或第二设备的地址。
在一些可能的实现方式中,所述第一HARQ字段中的响应方式字段用于指示所述第一设备响应所述A-MPDU的方式,这样,第一设备根据响应方式字段确定所述第一设备响应所述A-MPDU的方式。所述第一设备响应所述A-MPDU的方式可以是第一响应方式或第二响应方式,第一响应方式可以是:第一设备接收完PPDU的短帧间隔(short inter frame space,SIFS)之后立即响应。第二响应方式可以是:第一设备在接收完PPDU的SIFS之后不响应,而是在第一设备接收到块确认请求(block acknowledgment request,BAR)之后再向第二设备发送BA帧。
在一些可能的实现方式中,所述PPDU为SU PPDU,所述第一HARQ字段位于所述PPDU的物理层前导的NG-SIG-A与NG-STF之间。NG-SIG-A与NG-SIG-B是两个分别单独的CRC校验。当需要利用第一HARQ字段进行HARQ传输时,NG-SIG-B才在PPDU中出现;当不需要进行HARQ传输时,NG-SIG-B不出现在PPDU中,这样可以节省信令的开销。
在一些可能的实现方式中,PPDU为SU PPDU,第二设备可以采用NG-SIG-A中的特定的比特指示NG-SIG-B是否会出现在PPDU中,也可以采用其他的方式指示NG-SIG-B是否会出现在PPDU中。
在一些可能的实现方式中,PPDU为SU PPDU,所述第一HARQ字段位于所述PPDU的物理层前导的NG-SIG-A中。这样,第一HARQ字段与NG-SIG-A只需要进行一次CRC校验即可,从而可以降低校验的复杂度。
在一些可能的实现方式中,PPDU为SU PPDU,所述第一HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述A-MPDU之间。
在一些可能的实现方式中,PPDU为SU PPDU,所述地址字段包括所述第一设备的地址和所述第二设备的地址。
在一些可能的实现方式中,所述PPDU为MU PPDU,所述第一HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述A-MPDU之间。当需要利用第一HARQ字段进行HARQ传输时,NG-SIG-C才在PPDU中出现;当不需要进行HARQ传输时,NG-SIG-C不出现在PPDU中,这样可以节省信令的开销。并且NG-SIG-C位于NG-LTF与所述A-MPDU之间时,可以更有效的利用信道资源。
在一些可能的实现方式中,所述PPDU为MU PPDU,第二设备可以采用NG-SIG-A或NG-SIG-B中的特定的比特指示NG-SIG-C是否会出现在PPDU中,也可以采用其他的方式指示NG-SIG-C是否会出现在PPDU中,这样,第一设备可以根据NG-SIG-A或NG-SIG-B中特定的比特或者其他的指示方式确定PPDU中是否存在NG-SIG-C。
在一些可能的实现方式中,PPDU为MU PPDU,所述第一HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-B的用户信息字段中。这样,第一HARQ字段与NG-SIG-B只需要进行一次CRC校验即可,从而可以降低校验的复杂度。
在一些可能的实现方式中,所述用户信息字段的STA-ID字段与所述第一HARQ字段的地址字段用于指示所述第一设备所述PPDU是否是发送给所述第一设备的,这样,所述第一设备根据STA-ID字段与所述第一HARQ字段的地址字段确定所述PPDU是否是发送给所述第一设备的。当第一设备确定PPDU是发送给自身的时,这样即使PPDU中的A-MPDU中的所有MPDU都接收错误时,第一设备也需要向第二设备发送BA帧。
在一些可能的实现方式中,所述STA-ID字段的取值为所述第一设备的关联标识AID的多个比特,所述第一HARQ字段的地址字段的取值为所述第二设备的地址。这样,第一设备可以根据第二设备的地址确定发送PPDU的是第一设备关联的第二设备,第一设备进一步根据STA-ID字段的取值与自身的AID的多个比特进行匹配,如果匹配成功,第一设备可以确定PPDU是第二设备发送给自身的
在一些可能的实现方式中,所述STA-ID字段的取值为所述第二设备的关联标识AID的多个比特,所述第一HARQ字段的地址字段的取值为所述第二设备的地址。当第一设备接收到PPDU时,根据地址字段的第二设备的地址确定该PPDU为某个关联的第二设备发送的,并且STA-ID字段的值与该关联的第二设备的AID的多个比特进行匹配,如果匹配成功,这样,第一设备就可以确定该PPDU是该关联的第二设备发送的
在一些可能的实现方式中,所述STA-ID字段的取值为所述第二设备的关联标识AID的多个比特,所述第一HARQ字段的地址字段的取值为所述第一设备的地址。当第一设备接收到PPDU时,根据地址字段中的第一设备的地址可以确定该PPDU是发送给自身的,第一设备进一步根据STA-ID字段的值与该关联的第二设备的多个比特进行匹配,如果匹配成功,第一设备可以确定PPDU是第二设备的发送给自身的。
在一些可能的实现方式中,所述PPDU为基于触发TB PPDU,所述PPDU包括第二HARQ字段,所述第二HARQ字段用于指示所述第一设备所述第二设备是否发送了所述PPDU,这样,第一设备根据所述第二HARQ字段确定所述第二设备是否发送了所述TB PPDU,即第一设备可以检测到第二HARQ字段或者第二HARQ字段中的任何一个元素,即可以认为第二设备发送了PPDU,所述第二HARQ字段位于所述PPDU物理层前导的下一代长训练字段NG-LTF与所述A-MPDU之间。这样,可以更有效的利用信道资源。
在一些可能的实现方式中,第二HARQ字段的地址字段不存在。或者,第二HARQ字段的地址字段可以只包括第二设备的地址。或者,第二HARQ字段的既包括第一设备的地址也包括第二设备的地址。
在一些可能的实现方式中,所述第二HARQ字段中的响应方式字段的取值用于指示所述第一设备响应所述A-MPDU的方式,这样,第一设备根据第二HARQ字段中的响应方式字段的取值确定所述第一设备响应所述A-MPDU的方式。
在一些可能的实现方式中,所述PPDU为TB PPDU,所述PPDU的NG-STF和/或NG-LTF用于指示所述第一设备所述第二设备发送了所述TB PPDU,这样,第一设备根据NG-STF和/或NG-LTF确定所述第二设备发送了所述TB PPDU。第一设备通过信号同步或者能量检测的方式探测到了NG-STF和NG-LTF,或者其中的至少一个,则第一设备可以确定第二设备发送了TB PPDU,这样即使第一设备接收到的A-MPDU包括的全部MPDU接收错误,第一设备也需要向第二设备发送BA帧。
在一些可能的实现方式中,所述PPDU为TB PPDU,所述A-MPDU中的至少一个MPDU分隔符用于指示所述第一设备所述第二设备发送了所述TB PPDU,这样第一设备根据A-MPDU中的至少一个MPDU分隔符确定所述第二设备发送了所述TB PPDU。当第一设备接收到的A-MPDU包括的全部MPDU接收错误,但是第一设备检测到一个或多个MPDU分隔符时,即可以认为第二设备发送的TB PPDU,这样,第一设备需要向第二设备回复BA帧。
在一些可能的实现方式中,所述BA帧的块确认起始序列控制字段用于指示所述A-MPDU包括的全部MPDU接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种。
这样,第二设备接收到BA帧时可以根据BA帧中的块确认起始序列控制字段原因指示确定第一设备全部接收错误的原因,并根据原因进行HARQ重传,例如,若全部接收错误的原因是冲突,即再次发生冲突的概率很小,所以第二设备可以采用上次的调制方式进行HARQ重传。第二设备接收到BA帧的块确认起始序列控制字段时可以根据下次传输时采用的冗余版本确定重传的目标冗余版本。第二设备接收到BA帧的块确认起始序列控制字段时中的可以根据下次传输时采用的编码与调制策略阶数确定重传的编码与调制策略阶数。
第二方面,提供了一种用于重传的方法,包括:第二设备接收第一设备发送的块确认BA帧,所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示第一设备接收的聚合媒体接入控制协议数据单元A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;
所述第二设备根据所述BA帧进行混合自动重传请求HARQ的重传。
在一些可能的实现方式中,在所述第二设备接收第一设备发送的BA帧之前,所述方法还包括:所述第二设备向所述第一设备发送物理层协议数据单元PPDU,所述PPDU包括物理层前导和所述A-MPDU。
在一些可能的实现方式中,所述PPDU的物理层前导包括第一HARQ字段,所述第一HARQ字段的地址字段用于确指示所述第一设备所述PPDU是否是发送给所述第一设备的。
在一些可能的实现方式中,所述第一HARQ字段中的响应方式字段用于指示所述第一设备确定响应所述A-MPDU的方式。
在一些可能的实现方式中,所述PPDU为单用户SU PPDU,所述第一HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-A与下一代短训练字段NG-STF之间,或者所述第一HARQ字段位于所述PPDU的物理层前导的NG-SIG-A中,或者所述第一HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述 A-MPDU之间。
在一些可能的实现方式中,所述地址字段包括所述第一设备的地址和所述第二设备的地址。
在一些可能的实现方式中,所述PPDU为多用户MU PPDU,所述第一HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述A-MPDU之间,或者所述第一HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-B的用户信息字段中。
在一些可能的实现方式中,所述用户信息字段的STA-ID字段与所述第一HARQ字段的地址字段用于指示所述第一设备所述PPDU是否是发送给所述第一设备的。
在一些可能的实现方式中,所述STA-ID字段的取值为所述第一设备的关联标识AID的多个比特,所述第一HARQ字段的地址字段的取值为所述第二设备的地址,或者,所述STA-ID字段的取值为所述第二设备的AID的多个比特,所述第一HARQ字段的地址字段的取值为所述第二设备的地址;或者,所述STA-ID字段的取值为所述第二设备的AID的多个比特,所述第一HARQ字段的地址字段的取值为所述第一设备的地址。
在一些可能的实现方式中,所述PPDU为基于触发TB PPDU,所述PPDU包括第二HARQ字段,所述第二HARQ字段用于指示所述第一设备所述第二设备是否发送了所述PPDU,所述第二HARQ字段位于所述PPDU物理层前导的下一代长训练字段NG-LTF与所述A-MPDU之间。
在一些可能的实现方式中,所述第二HARQ字段中的响应方式字段用于指示所述第一设备响应所述A-MPDU的方式。
在一些可能的实现方式中,所述PPDU为TB PPDU,所述PPDU的NG-STF和/或NG-LTF用于指示所述第一设备所述第二设备发送了所述TB PPDU。
在一些可能的实现方式中,所述PPDU为TB PPDU,所述A-MPDU中的至少一个MPDU分隔符用于指示所述第一设备所述第二设备发送了所述PPDU。
在一些可能的实现方式中,所述BA帧的块确认起始序列控制字段用于指示所述A-MPDU包括的全部MPDU接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种。
第三方面,提供了一种用于重传的方法,包括:第一设备接收第二设备发送的PPDU,所述PPDU的物理层前导包括HARQ字段。
在一些可能的实现方式中,若所述PPDU为单用户SU PPDU,所述HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-A与下一代短训练字段NG-STF之间,或者所述HARQ字段位于所述PPDU的物理层前导的NG-SIG-A中,或者所述HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述PPDU包括的聚合媒体接入控制协议数据单元A-MPDU之间。
在一些可能的实现方式中,若所述PPDU为多用户MU PPDU,所述HARQ字段位于所述PPDU的物理层前导的NG-LTF与所述A-MPDU之间,或者所述HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-B的用户信息字段中。
在一些可能的实现方式中,若所述PPDU为基于触发TB PPDU,所述HARQ字段位于所述PPDU物理层前导的NG-LTF与所述A-MPDU之间。
在一些可能的实现方式中,所述HARQ字段中的响应方式字段用于指示所述第一设备响应所述A-MPDU的方式。
在一些可能的实现方式中,若所述PPDU为单用户SU PPDU,所述HARQ字段的地址字段包括所述第一设备的地址和所述第二设备的地址。
在一些可能的实现方式中,若所述PPDU为多用户MU PPDU,所述HARQ字段的地址字段的取值为所述第二设备的地址,或者,所述HARQ字段的地址字段的取值为所述第一设备的地址。
第四方面,提供了一种用于重传的方法,包括:第二设备向第一设备发送PPDU,所述PPDU的物理层前导包括HARQ字段。
在一些可能的实现方式中,若所述PPDU为单用户SU PPDU,所述HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-A与下一代短训练字段NG-STF之间,或者所述HARQ字段位于所述PPDU的物理层前导的NG-SIG-A中,或者所述HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述PPDU包括的聚合媒体接入控制协议数据单元A-MPDU之间。
在一些可能的实现方式中,若所述PPDU为多用户MU PPDU,所述HARQ字段位于所述PPDU的物理层前导的NG-LTF与所述A-MPDU之间,或者所述HARQ字段位于所述第一PPDU的物理层前导的下一代信号字段NG-SIG-B的用户信息字段中。
在一些可能的实现方式中,若所述PPDU为基于触发TB PPDU,所述HARQ字段位于所述PPDU物理层前导的NG-LTF与所述A-MPDU之间。
在一些可能的实现方式中,所述HARQ字段中的响应方式字段用于指示所述第一设备响应所述A-MPDU的方式。
在一些可能的实现方式中,若所述PPDU为单用户SU PPDU,所述HARQ字段的地址字段包括所述第一设备的地址和所述第二设备的地址。
在一些可能的实现方式中,若所述PPDU为多用户MU PPDU,所述HARQ字段的地址字段的取值为所述第二设备的地址,或者,所述HARQ字段的地址字段的取值为所述第一设备的地址。
第五方面,提供了一种用于重传的方法,包括:第一设备接收第二设备发送的PPDU,所述PPDU的物理层前导包括HARQ字段,所述HARQ字段中的响应方式字段用于指示所述第一设备响应所述A-MPDU的方式。响应所述A-MPDU的方式可以是前述的第一响应方式或第二响应方式。
第六方面,提供了一种用于重传的方法,包括:第二设备向第一设备发送PPDU,所述PPDU的物理层前导包括HARQ字段,所述HARQ字段中的响应方式字段用于指示所述第一设备响应所述A-MPDU的方式。响应所述A-MPDU的方式可以是前述的第一响应方式或第二响应方式。
第七方面,提供了一种用于重传的方法,包括:第一设备生成第一BA帧,所述第一BA帧的块分段数目字段的第一取值用于指示第一A-MPDU包括的全部MPDU接收错误;所述第一设备向第二设备发送所述第一BA帧。
在一些可能的实现方式中,在所述第一设备生成第一BA帧之前,所述方法还包括:
第一设备接收所述第二设备发送的第一物理层协议数据单元PPDU,所述第一PPDU 包括物理层前导和所述第一A-MPDU。
在一些可能的实现方式中,所述第一BA帧的块确认比特表字段的取值用于指示所述第一A-MPDU中的全部MPDU接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种。
在一些可能的实现方式中,所述方法还包括:所述第一设备生成第二BA帧,所述第二BA帧的块分段数目字段的第二取值用于指示第二PPDU包括的第二A-MPDU包括的全部MPDU接收正确;所述第一设备向所述第二设备发送所述第二BA帧。
第八方面,提供了一种用于重传的方法,包括:第二设备接收第一设备发送的第一BA帧,所述第一BA帧的块分段数目字段的第一取值用于指示第一A-MPDU包括的全部MPDU接收错误;第二设备根据第一BA帧进行HARQ重传。
在一些可能的实现方式中,在所述第二设备接收第一设备发送的第一BA帧之前,所述方法还包括:第二设备接收所述第一设备发送的第一PPDU,所述第一PPDU包括物理层前导和所述第一A-MPDU。
在一些可能的实现方式中,所述第一BA帧的块确认比特表字段的取值用于指示所述第一A-MPDU包括的全部MPDU接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种。
在一些可能的实现方式中,所述方法还包括:第二设备接收第一设备发送的第二BA帧,所述第二BA帧的块分段数目字段的第二取值用于指示第二PPDU包括的第二A-MPDU的包括全部MPDU接收正确;第二设备根据第二BA帧确定不需要进行HARQ重传。
第九方面,提供了一种用于重传的方法,包括:第一设备生成第一BA帧,所述第一BA帧的块确认帧类型字段的第一取值用于指示第一A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;所述第一设备向所述第二设备发送第一BA帧。
在一些可能的实现方式中,在所述第一设备生成第一BA帧之前,所述方法还包括:
第一设备接收所述第二设备发送的第一物理层协议数据单元PPDU,所述第一PPDU包括的物理层前导和所述第一A-MPDU。
在一些可能的实现方式中,所述块确认信息字段的取值用于指示所述第一A-MPDU包括的全部MPDU接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种。
在一些可能的实现方式中,所述方法还包括:第一设备生成第二BA帧,所述第二BA帧的块确认帧类型字段的第二取值用于指示第二PPDU包括的第二A-MPDU包括的全部MPDU接收正确;第一设备向第二设备发送所述第二BA帧。
第十方面,提供了一种用于重传的方法,包括:第二设备接收第一设备发送的第一BA帧,所述第一BA帧的块确认帧类型字段的第一取值用于指示第一A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;第二设备根据第一BA帧进行HARQ重传。
在一些可能的实现方式中,在所述第一设备生成第一BA帧之前,所述方法还包括:第二设备向第一设备发送第一PPDU,所述第一PPDU包括物理层前导和所述第一A-MPDU。
在一些可能的实现方式中,所述块确认信息字段的取值用于指示所述第一A-MPDU包括的全部MPDU接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种。
在一些可能的实现方式中,所述方法还包括:第二设备接收第一设备发送的第二BA帧,所述第二BA帧的块确认帧类型字段的第二取值用于指示第二PPDU包括的第二A-MPDU包括的全部MPDU接收正确。第二设备根据第二BA帧确定不需要进行HARQ重传。
第十一方面,本申请实施例提供了一种用于重传的装置,所述装置包括:处理单元,用于生成块确认BA帧,所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示所述装置接收的聚合媒体接入控制协议数据单元A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;收发单元,用于向第二设备发送所述BA帧。
第十一方面提供的用于重传的装置用于执行上述第一方面或第一方面任意可能的实现方式,具体细节可参见上述第一方面或第一方面任意可能的实现方式,此处不再赘述。
第十二方面,本申请实施例提供了一种用于重传的装置,所述装置包括:收发单元,用于接收第一设备发送的块确认BA帧,所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示第一设备接收的聚合媒体接入控制协议数据单元A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误,处理单元,用于根据根据所述BA帧控制所述收发单元进行混合自动重传请求HARQ的重传。
第十二方面提供的用于重传的装置用于执行上述第二方面或第二方面任意可能的实现方式,具体细节可参见上述第二方面或第二方面任意可能的实现方式,此处不再赘述。
第十三方面,本申请实施例提供了一种用于重传的装置,所述装置包括:收发单元,用于接收第二设备发送的PPDU,所述PPDU的物理层前导包括HARQ字段;若所述PPDU为单用户SU PPDU,所述HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-A与下一代短训练字段NG-STF之间,或者所述HARQ字段位于所述PPDU的物理层前导的NG-SIG-A中,或者所述HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述PPDU包括的聚合媒体接入控制协议数据单元A-MPDU之间;若所述PPDU为多用户MU PPDU,所述HARQ字段位于所述PPDU的物理层前导的NG-LTF与所述A-MPDU之间,或者所述HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-B的用户信息字段中;若所述PPDU为基于触发TB PPDU,所述HARQ字段位于所述PPDU物理层前导的NG-LTF与所述A-MPDU之间。
第十三方面提供的用于重传的装置用于执行上述第三方面或第三方面任意可能的实现方式,具体细节可参见上述第三方面或第三方面任意可能的实现方式,此处不再赘述。
第十四方面,本申请实施例提供了一种用于重传的装置,所述装置包括:收发单元,用于向第一设备发送PPDU,所述PPDU的物理层前导包括HARQ字段;若所述PPDU为单用户SU PPDU,所述HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-A与下一代短训练字段NG-STF之间,或者所述HARQ字段位于所述PPDU的物理层前导的NG-SIG-A中,或者所述HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述PPDU包括的聚合媒体接入控制协议数据单元A-MPDU之间;若所述PPDU为多用户MU PPDU,所述HARQ字段位于所述PPDU的物理层前导的 NG-LTF与所述A-MPDU之间,或者所述HARQ字段位于所述第一PPDU的物理层前导的下一代信号字段NG-SIG-B的用户信息字段中;若所述PPDU为基于触发TB PPDU,所述HARQ字段位于所述PPDU物理层前导的NG-LTF与所述A-MPDU之间。
第十四方面提供的用于重传的装置用于执行上述第四方面或第四方面任意可能的实现方式,具体细节可参见上述第四方面或第四方面任意可能的实现方式,此处不再赘述。
第十五方面,本申请实施例提供了一种用于重传的装置,所述装置包括:收发单元,用于接收第二设备发送的PPDU,所述PPDU的物理层前导包括HARQ字段,所述HARQ字段中的响应方式字段用于指示所述装置响应所述A-MPDU的方式。
第十六方面,本申请实施例提供了一种用于重传的装置,所述装置包括:收发单元用于向第一设备发送PPDU,所述PPDU的物理层前导包括HARQ字段,所述HARQ字段中的响应方式字段用于指示所述第一设备响应所述A-MPDU的方式。
第十七方面,本申请实施例提供了一种用于重传的装置,所述装置包括:处理单元,用于生成第一BA帧,所述第一BA帧的块分段数目字段的第一取值用于指示第一A-MPDU包括的全部MPDU接收错误;收发单元用于向第二设备发送所述第一BA帧用于接收。
第十七方面提供的用于重传的装置用于执行上述第七方面或第七方面任意可能的实现方式,具体细节可参见上述第七方面或第七方面任意可能的实现方式,此处不再赘述。
第十八方面,本申请实施例提供了一种用于重传的装置,所述装置包括:收发单元用于接收第一设备发送的第一BA帧,所述第一BA帧的块分段数目字段的第一取值用于指示第一A-MPDU包括的全部MPDU接收错误;处理单元用于根据第一BA帧控制所述收发单元进行HARQ重传。
第十八方面提供的用于重传的装置用于执行上述第八方面或第八方面任意可能的实现方式,具体细节可参见上述第八方面或第八方面任意可能的实现方式,此处不再赘述。
第十九方面,本申请实施例提供了一种用于重传的装置,所述装置包括:处理单元用于生成第一BA帧,所述第一BA帧的块确认帧类型字段的第一取值用于指示第一A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;收发单元用于向所述第二设备发送第一BA帧。
第十九方面提供的用于重传的装置用于执行上述第九方面或第九方面任意可能的实现方式,具体细节可参见上述第七方面或第七方面任意可能的实现方式,此处不再赘述。
第二十方面,本申请实施例提供了一种用于重传的装置,所述装置包括:收发单元用于接收第一设备发送的第一BA帧,所述第一BA帧的块确认帧类型字段的第一取值用于指示第一A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;处理单元用于根据第一BA帧控制所述收发单元进行HARQ重传。
第二十方面提供的用于重传的装置用于执行上述第十方面或第十方面任意可能的实现方式,具体细节可参见上述第十方面或第十方面任意可能的实现方式,此处不再赘述。
第二十一方面,本申请实施例提供一种用于重传装置,所述装置包括处理器和与所述处理器内部连接通信的收发器;所述处理器用于生成块确认BA帧,所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示所述装置接收的聚合媒体接入控制协议数据单元A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误; 所述收发器用于向第二设备发送所述BA帧。
第二十一方面提供的用于重传的装置用于执行上述第一方面或第一方面任意可能的实现方式,具体细节可参见上述第一方面或第一方面任意可能的实现方式,此处不再赘述。
第二十二方面,本申请实施例提供一种用于重传装置,所述装置包括处理器和与所述处理器内部连接通信的收发器;所述收发器用于接收第一设备发送的块确认BA帧,所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示第一设备接收的聚合媒体接入控制协议数据单元A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;所述处理器用于根据所述BA帧控制所述收发器进行混合自动重传请求HARQ的重传。
第二十二方面提供的用于重传的装置用于执行上述第二方面或第二方面任意可能的实现方式,具体细节可参见上述第二方面或第二方面任意可能的实现方式,此处不再赘述。
第二十三方面,本申请实施例提供一种用于重传装置,所述装置包括处理器和与所述处理器内部连接通信的收发器;所述收发器用于:接收第二设备发送的PPDU,所述PPDU的物理层前导包括HARQ字段;若所述PPDU为单用户SU PPDU,所述HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-A与下一代短训练字段NG-STF之间,或者所述HARQ字段位于所述PPDU的物理层前导的NG-SIG-A中,或者所述HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述PPDU包括的聚合媒体接入控制协议数据单元A-MPDU之间;若所述PPDU为多用户MU PPDU,所述HARQ字段位于所述PPDU的物理层前导的NG-LTF与所述A-MPDU之间,或者所述HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-B的用户信息字段中;若所述PPDU为基于触发TB PPDU,所述HARQ字段位于所述PPDU物理层前导的NG-LTF与所述A-MPDU之间,所述处理器用于确定所述PPDU中所述HARQ字段的位置。
第二十三方面提供的用于重传的装置用于执行上述第三方面或第三方面任意可能的实现方式,具体细节可参见上述第三方面或第三方面任意可能的实现方式,此处不再赘述。
第二十四方面,本申请实施例提供一种用于重传装置,所述装置包括处理器和与所述处理器内部连接通信的收发器;所述收发器用于向第一设备发送PPDU,所述PPDU的物理层前导包括HARQ字段;若所述PPDU为单用户SU PPDU,所述HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-A与下一代短训练字段NG-STF之间,或者所述HARQ字段位于所述PPDU的物理层前导的NG-SIG-A中,或者所述HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述PPDU包括的聚合媒体接入控制协议数据单元A-MPDU之间;若所述PPDU为多用户MU PPDU,所述HARQ字段位于所述PPDU的物理层前导的NG-LTF与所述A-MPDU之间,或者所述HARQ字段位于所述第一PPDU的物理层前导的下一代信号字段NG-SIG-B的用户信息字段中;若所述PPDU为基于触发TB PPDU,所述HARQ字段位于所述PPDU物理层前导的NG-LTF与所述A-MPDU之间,所述处理器用于根据所述HARQ字段控制所述收发器进行HARQ重传。
第二十四方面提供的用于重传的装置用于执行上述第四方面或第四方面任意可能的实现方式,具体细节可参见上述第四方面或第四方面任意可能的实现方式,此处不再赘述。
第二十五方面,本申请实施例提供一种用于重传装置,所述装置包括处理器和与所述 处理器内部连接通信的收发器;所述收发器用于接收第二设备发送的PPDU,所述PPDU的物理层前导包括HARQ字段,所述HARQ字段中的响应方式字段用于指示所述装置响应所述A-MPDU的方式;所述处理器用于根据所述响应方式字段确定响应所述A-MPDU的方式。
第二十六方面,本申请实施例提供一种用于重传装置,所述装置包括处理器和与所述处理器内部连接通信的收发器;所述收发器用于向第一设备发送PPDU,所述PPDU的物理层前导包括HARQ字段,所述HARQ字段中的响应方式字段用于指示所述第一设备响应所述A-MPDU的方式;所述处理器用于根据所述响应方式字段控制所述收发器接收所述第一设备响应所述A-MPDU的方式的响应。
第二十七方面,本申请实施例提供一种用于重传装置,所述装置包括处理器和与所述处理器内部连接通信的收发器;所述处理器用于生成第一BA帧,所述第一BA帧的块分段数目字段的第一取值用于指示第一A-MPDU包括的全部MPDU接收错误;所述收发器用于向第二设备发送所述第一BA帧用于接收。
第二十七方面提供的用于重传的装置用于执行上述第七方面或第七方面任意可能的实现方式,具体细节可参见上述第七方面或第七方面任意可能的实现方式,此处不再赘述。
第二十八方面,本申请实施例提供一种用于重传装置,所述装置包括处理器和与所述处理器内部连接通信的收发器;所述收发器用于接收第一设备发送的第一BA帧,所述第一BA帧的块分段数目字段的第一取值用于指示第一A-MPDU包括的全部MPDU接收错误。所述处理器用于根据所述第一BA帧控制所述收发器进行HARQ重传。
第二十八方面提供的用于重传的装置用于执行上述第八方面或第八方面任意可能的实现方式,具体细节可参见上述第八方面或第八方面任意可能的实现方式,此处不再赘述。
第二十九方面,本申请实施例提供一种用于重传装置,所述装置包括处理器和与所述处理器内部连接通信的收发器;所述处理器用于生成第一BA帧,所述第一BA帧的块确认帧类型字段的第一取值用于指示第一A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;所述收发器用于向所述第二设备发送第一BA帧。
第二十九方面提供的用于重传的装置用于执行上述第九方面或第九方面任意可能的实现方式,具体细节可参见上述第九方面或第九方面任意可能的实现方式,此处不再赘述。
第三十方面,本申请实施例提供一种用于重传装置,所述装置包括处理器和与所述处理器内部连接通信的收发器;所述收发器用于接收第一设备发送的第一BA帧,所述第一BA帧的块确认帧类型字段的第一取值用于指示第一A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;所述处理器用于根据第一BA帧控制所述收发器进行HARQ重传。
第三十方面提供的用于重传的装置用于执行上述第十方面或第十方面任意可能的实现方式,具体细节可参见上述第十方面或第十方面任意可能的实现方式,此处不再赘述。
第三十一方面,本申请实施例提供一种用于重传的装置,所述装置包括处理电路和与所述处理电路内部连接通信的通信接口,所述处理电路用于生成块确认BA帧,所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示所述装置接收的聚合媒体接入控制协议数据单元A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;所述通信接口向第二设备发送所述BA帧。
第三十一方面提供的用于重传的用于执行上述第一方面或第一方面任意可能的实现方式,具体细节可参见上述第一方面或第一方面任意可能的实现方式,此处不再赘述。
第三十二方面,本申请实施例提供一种用于重传的装置,所述装置包括处理电路和与所述处理电路内部连接通信的通信接口,所述通信接口用于接收第一设备发送的块确认BA帧,所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示第一设备接收的聚合媒体接入控制协议数据单元A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;所述处理电路用于根据所述BA帧控制所述通信接口进行混合自动重传请求HARQ的重传。
第三十二方面提供的用于重传的用于执行上述第二方面或第二方面任意可能的实现方式,具体细节可参见上述第二方面或第二方面任意可能的实现方式,此处不再赘述。
第三十三方面,本申请实施例提供一种用于重传的装置,所述装置包括处理电路和与所述处理电路内部连接通信的通信接口,通信接口用于接收第二设备发送的PPDU,所述PPDU的物理层前导包括HARQ字段;若所述PPDU为单用户SU PPDU,所述HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-A与下一代短训练字段NG-STF之间,或者所述HARQ字段位于所述PPDU的物理层前导的NG-SIG-A中,或者所述HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述PPDU包括的聚合媒体接入控制协议数据单元A-MPDU之间;若所述PPDU为多用户MU PPDU,所述HARQ字段位于所述PPDU的物理层前导的NG-LTF与所述A-MPDU之间,或者所述HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-B的用户信息字段中;若所述PPDU为基于触发TB PPDU,所述HARQ字段位于所述PPDU物理层前导的NG-LTF与所述A-MPDU之间,所述处理电路用于确定所述PPDU中所述HARQ字段的位置。
第三十三方面提供的用于重传的用于执行上述第三方面或第三方面任意可能的实现方式,具体细节可参见上述第三方面或第三方面任意可能的实现方式,此处不再赘述。
第三十四方面,本申请实施例提供一种用于重传的装置,所述装置包括处理电路和与所述处理电路内部连接通信的通信接口,通信接口用于向第一设备发送PPDU,所述PPDU的物理层前导包括HARQ字段;若所述PPDU为单用户SU PPDU,所述HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-A与下一代短训练字段NG-STF之间,或者所述HARQ字段位于所述PPDU的物理层前导的NG-SIG-A中,或者所述HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述PPDU包括的聚合媒体接入控制协议数据单元A-MPDU之间;若所述PPDU为多用户MU PPDU,所述HARQ字段位于所述PPDU的物理层前导的NG-LTF与所述A-MPDU之间,或者所述HARQ字段位于所述第一PPDU的物理层前导的下一代信号字段NG-SIG-B的用户信息字段中;若所述PPDU为基于触发TB PPDU,所述HARQ字段位于所述PPDU物理层前导的NG-LTF与所述A-MPDU之间,所述处理电路用于根据所述HARQ字段控制所述通信接口进行HARQ重传。
第三十四方面提供的用于重传的用于执行上述第四方面或第四方面任意可能的实现方式,具体细节可参见上述第四方面或第四方面任意可能的实现方式,此处不再赘述。
第三十五方面,本申请实施例提供一种用于重传的装置,所述装置包括处理电路和与 所述处理电路内部连接通信的通信接口,所述通信接口用于接收第二设备发送的PPDU,所述PPDU的物理层前导包括HARQ字段,所述HARQ字段中的响应方式字段用于指示所述装置响应所述A-MPDU的方式;所述处理电路用于根据所述响应方式字段确定响应所述A-MPDU的方式。
第三十五方面提供的用于重传的用于执行上述第五方面或第五方面任意可能的实现方式,具体细节可参见上述第五方面或第五方面任意可能的实现方式,此处不再赘述。
第三十六方面,本申请实施例提供一种用于重传的装置,所述装置包括处理电路和与所述处理电路内部连接通信的通信接口,所述通信接口用于向第一设备发送PPDU,所述PPDU的物理层前导包括HARQ字段,所述HARQ字段中的响应方式字段用于指示所述第一设备响应所述A-MPDU的方式;所述处理电路用于根据所述响应方式字段控制所述通信接口接收所述第一设备响应所述A-MPDU的方式的响应。
第三十六方面提供的用于重传的用于执行上述第六方面或第六方面任意可能的实现方式,具体细节可参见上述第二方面或第二方面任意可能的实现方式,此处不再赘述。
第三十七方面,本申请实施例提供一种用于重传的装置,所述装置包括处理电路和与所述处理电路内部连接通信的通信接口,所述处理电路用于生成第一BA帧,所述第一BA帧的块分段数目字段的第一取值用于指示第一A-MPDU包括的全部MPDU接收错误;所述通信接口用于向第二设备发送所述第一BA帧用于接收。
第三十七方面提供的用于重传的用于执行上述第七方面或第七方面任意可能的实现方式,具体细节可参见上述第七方面或第七方面任意可能的实现方式,此处不再赘述。
第三十八方面,本申请实施例提供一种用于重传的装置,所述装置包括处理电路和与所述处理电路内部连接通信的通信接口,所述通信接口用于接收第一设备发送的第一BA帧,所述第一BA帧的块分段数目字段的第一取值用于指示第一A-MPDU包括的全部MPDU接收错误。所述处理电路用于根据所述第一BA帧控制所述通信接口进行HARQ重传。
第三十八方面提供的用于重传的用于执行上述第八方面或第八方面任意可能的实现方式,具体细节可参见上述第八方面或第八方面任意可能的实现方式,此处不再赘述。
第三十九方面,本申请实施例提供一种用于重传的装置,所述装置包括处理电路和与所述处理电路内部连接通信的通信接口,所述处理电路用于生成第一BA帧,所述第一BA帧的块确认帧类型字段的第一取值用于指示第一A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;所述通信接口用于向所述第二设备发送第一BA帧。
第三十九方面提供的用于重传的用于执行上述第九方面或第九方面任意可能的实现方式,具体细节可参见上述第九方面或第九方面任意可能的实现方式,此处不再赘述。
第四十方面,本申请实施例提供一种用于重传的装置,所述装置包括处理电路和与所述处理电路内部连接通信的通信接口,所述通信接口用于接收第一设备发送的第一BA帧,所述第一BA帧的块确认帧类型字段的第一取值用于指示第一A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;所述处理电路用于根据第一BA帧控制所述通信接口进行HARQ重传。
第四十方面提供的用于重传的用于执行上述第十方面或第十方面任意可能的实现方式,具体细节可参见上述第十方面或第十方面任意可能的实现方式,此处不再赘述。
第四十一方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于执行上述第一方面或第一方面任意可能的实现方式的指令。
第四十二方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于执行上述第二方面或第二方面任意可能的实现方式的指令。
第四十三方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于执行上述第三方面或第三方面任意可能的实现方式的指令。
第四十四方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于执行上述第四方面或第四方面任意可能的实现方式的指令。
第四十五方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于执行上述第五方面或第五方面任意可能的实现方式的指令。
第四十六方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于执行上述第六方面或第六方面任意可能的实现方式的指令。
第四十七方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于执行上述第七方面或第七方面任意可能的实现方式的指令。
第四十八方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于执行上述第八方面或第八方面任意可能的实现方式的指令。
第四十九方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于执行上述第九方面或第九方面任意可能的实现方式的指令。
第五十方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序,所述计算机程序包括用于执行上述第十方面或第十方面任意可能的实现方式的指令。
第五十一方面,本申请实施例提供一种计算机程序,所述计算机程序包括用于执行上述第一方面或第一方面任意可能的实现方式的指令。
第五十二方面,本申请实施例提供一种计算机程序,所述计算机程序包括用于执行上述第二方面或第二方面任意可能的实现方式的指令。
第五十三方面,本申请实施例提供一种计算机程序,所述计算机程序包括用于执行上述第三方面或第三方面任意可能的实现方式的指令。
第五十四方面,本申请实施例提供一种计算机程序,所述计算机程序包括用于执行上述第四方面或第四方面任意可能的实现方式的指令。
第五十五方面,本申请实施例提供一种计算机程序,所述计算机程序包括用于执行上述第五方面或第五方面任意可能的实现方式的指令。
第五十六方面,本申请实施例提供一种计算机程序,所述计算机程序包括用于执行上述第六方面或第六方面任意可能的实现方式的指令。
第五十七方面,本申请实施例提供一种计算机程序,所述计算机程序包括用于执行上述第七方面或第七方面任意可能的实现方式的指令。
第五十八方面,本申请实施例提供一种计算机程序,所述计算机程序包括用于执行上述第八方面或第八方面任意可能的实现方式的指令。
第五十九方面,本申请实施例提供一种计算机程序,所述计算机程序包括用于执行上述第九方面或第九方面任意可能的实现方式的指令。
第六十方面,本申请实施例提供一种计算机程序,所述计算机程序包括用于执行上述 第十方面或第十方面任意可能的实现方式的指令。
第六十一方面,本申请提供了一种用于重传的系统,该系统包括上述第十一方面提供的装置以及第十二方面提供的装置;或者
该系统包括上述第十三方面提供的装置以及第十四方面提供的装置;或者
该系统包括上述第十五方面提供的装置以及第十六方面提供的装置;或者
该系统包括上述第十七方面提供的装置以及第十八方面提供的装置;或者
该系统包括上述第十九方面提供的装置以及第二十方面提供的装置;或者
该系统包括上述第二十一方面提供的装置以及第二十二方面提供的装置;或者
该系统包括上述第二十三方面提供的装置以及第二十四方面提供的装置;或者
该系统包括上述第二十五方面提供的装置以及第二十六方面提供的装置;或者
该系统包括上述第二十七方面提供的装置以及第二十八方面提供的装置;或者
该系统包括上述第二十九方面提供的装置以及第三十方面提供的装置;或者
该系统包括上述第三十一方面提供的装置以及第三十二方面提供的装置;或者
该系统包括上述第三十三方面提供的装置以及第三十四方面提供的装置;或者
该系统包括上述第三十五方面提供的装置以及第三十六方面提供的装置;或者
该系统包括上述第三十七方面提供的装置以及第三十八方面提供的装置;或者
该系统包括上述第三十九方面提供的装置以及第四十方面提供的装置。
附图说明
图1是本申请实施例提供的应用场景示意图。
图2是本申请实施例提供的A-MPDU的格式的示意图。
图3是本申请实施例提供的SU PPDU的帧结构的示意图。
图4是本申请实施例提供的MU PPDU的帧结构的示意图。
图5是本申请实施例提供的TB PPDU的帧结构的示意图。
图6是本申请实施例提供的BA帧的格式的示意图。
图7是本申请实施例提供的multi-STA BA帧的格式的示意图。
图8是本申请实施例提供的其他的BA帧的格式的示意图。
图9是本申请实施例提供的用于重传的方法的示意图。
图10是本申请实施例提供的另一SU PPDU的帧结构的示意图。
图11是本申请实施例提供的又一SU PPDU的帧结构的示意图。
图12是本申请实施例提供的又一SU PPDU的帧结构的示意图。
图13是本申请实施例提供的另一MU PPDU的帧结构的示意图。
图14是本申请实施例提供的又一MU PPDU的帧结构的示意图。
图15是本申请实施例提供的另一TB PPDU的帧结构的示意图。
图16是本申请实施例提供的另一BA帧的格式的示意图。
图17是本申请实施例提供的另一用于重传的方法的示意图。
图18是本申请实施例提供的又一BA帧的格式的示意图。
图19是本申请实施例提供的又一用于重传的方法的示意图。
图20是本申请实施例提供的又一BA帧的格式的示意图。
图21是本申请实施例提供的用于重传的装置的示意性框图。
图22是本申请实施例提供的另一用于重传的装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:无线局字段网(wireless local area network,WLAN)系统,可选地,本申请实施例还可以应用于其他系统中,例如,长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例的技术方案还可以应用于WLAN,并且本申请实施例可以适用于WLAN当前采用的国际电工电子工程学会(institute of electrical and electronics engineers,IEEE)802.11系列协议中的任意一种协议或者未来IEEE 802.11系列中任意一种协议。
图1示出了本申请实施例的应用场景示意图,如图1所示的场景系统可以是WLAN系统,图1的WLAN系统可以包括一个或多个AP,以及一个或多个STA,图1以两个AP(AP 1和AP 2)和两个用户站点(station,STA)(STA 1和STA 2)为例,其中,AP与AP、AP与STA、STA与STA之间可以通过各种标准进行无线通信。
用户站点(STA)也可以称为系统、用户单元、接入终端、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理、用户装置或用户设备(user equipment,UE)。站点可以为无线通信芯片、无线传感器或无线通信终端。例如站点为支持无线保真(wireless fidelity,WiFi)通信功能的移动电话、支持WiFi通信功能的平板电脑、支持WiFi通信功能的机顶盒、支持WiFi通信功能的智能电视、支持WiFi通信功能的智能可穿戴设备、支持WiFi通信功能的车载通信设备和支持WiFi通信功能的计算机。可选地,站点可以支持当前网络系统或者未来网络系统下802.11制式的设备。
本申请实施例中AP与STA通过无线局字段网进行通信,并将STA的数据传输至网络侧,或将来自网络侧的数据传输至STA。AP也称之为无线访问接入点或热点等。AP是移动用户进入有线网络的接入点,主要部署于家庭、大楼内部以及园区内部,典型覆盖半径为几十米至上百米,当然,也可以部署于户外。AP相当于一个连接有线网和无线网的桥梁,其主要作用是将各个无线网络客户端连接到一起,然后将无线网络接入以太网。具体地,AP可以是带有WiFi芯片的终端设备或者网络设备。可选地,AP可以为支持当前网络系统或者未来网络系统下802.11制式的设备。
具体地,AP和STA之间可以采用单用户多入多出(single-user multiple-input multiple-output,SU-MIMO)技术或多用户多入多出(multi-users multiple-input multiple-output,MU-MIMO)技术进行无线通信。在本申请实施例中,每个STA配备一个或多个天线。每个AP支持多站点协同和/或联合传输。
应理解,本文所涉及的通信可以是直接通信,也可以是间接通信,本申请实施例对此不作限定。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
下面对本申请实施例用到的术语进行解释。
A-MPDU,为了提高媒体接入控制(medium access control,MAC)帧的传输效率,从802.11n标准开始引入了MAC帧,MAC帧又称作MPDU的聚合帧。A-MPDU将多个MPDU聚合到一起,统一通过一个物理层前导进行发送,有效的降低了竞争信道以及物理层前导带来的开销。A-MPDU的格式如图2所示,多个MPDU通过分隔符(Delimiter)进行分隔,连接到一起。
特别地,对于只包含一个分隔符和MPDU的A-MPDU,被称作单独媒体接入控制协议数据单元(Single MPDU,S-MPDU)。802.11标准针对MPDU和S-MPDU,采用简单的确认帧进行回复的机制,通过是否发送确认帧,指示该MPDU或S-MPDU是否成功接收;而对于A-MPDU,则采用块确认(block acknowledge,BA)帧进行回复。BA帧中包括块确认比特表字段,块确认比特表字段填充的比特值可以用于指示A-MPDU中哪些MPDU正确接收(例如,指示为1),哪些MPDU没有正确接收(例如,指示为0)。对于A-MPDU中的任何一个MPDU都没有正确接收的情况,STA也可以不反馈任何信息。
物理层协议数据单元(physical protocol data unit,PPDU),A-MPDU的数据分组称为PPDU,PPDU为包括A-MPDU的物理帧结构。不同类型的PPDU的格式不同,图3为单用户PPDU(single user PPDU,SU PPDU)的帧结构示意图。图4为多用户PPDU(multi user PPDU,MU PPDU)的帧结构示意图,其中,图4中的用户信息字段(user filed)包括站点标识字段(station identity,STA-ID),站点标识字段用于标识站点的地址,一般取关联标识(association identifier,AID)的低11位比特。图5为基于触发PPDU(trigger basic,TB PPDU)的帧结构示意图。其中,图3-图5中,L-STF表示传统短训练字段(legacy-short training field),L-LTF表示传统长训练字段(legacy-long training field),L-SIG表示传统信令字段(legacy-signal),NG-SIG-A表示下一代信号字段(next generation-signal-A),NG-SIG-B表示下一代信号字段B(next generation-signal-B),NG-STF表示下一代短训练字段(next generation-short training field),NG-LTF表示下一代长训练字段(next generation-long training field),PE表示数据分组扩展(packet extension)。
块确认帧,BA帧是用于响应物理层协议数据单元(physical protocol data unit,PPDU),即BA帧是对第二设备发送的PPDU的确认,不同的传输模式下BA帧的格式不同。如图6所示,BA帧包括帧控制字段(frame control)、时间字段(duration)、接收地址(receiving address,RA)字段、发送地址(transmitting address,TA)字段、块确认控制(BA control)字段、块确认信息(BA information)字段和帧校验序列(frame check sequence,FCS)字段。图6中的块确认控制字段中的块确认帧类型(BA type)字段比特值不同表示不同的 BA帧如表1所示。
表1
Figure PCTCN2020077876-appb-000001
multi-STA BA帧:
表1中,(BA type)字段比特值为10时表示为multi-STA BA帧,具体地,multi-STA BA帧的格式如图7所示。multi-STA BA帧的块确认信息字段由每个关联标识业务标识信息字段(per AID TID Info)组成。每个关联标识业务标识信息字段的数量可以是一个或者多个,一个STA对应一个每个关联标识业务标识信息字段。每个关联标识业务标识信息字段由关联标识信息(AID TID Info)字段、块确认开始序列控制(BA starting sequence control)字段和块确认比特表(BA bitmap)字段组成。关联标识信息字段由关联标识(association identifier,AID)字段、确认类型(ack type)和业务标识(traffic identifier,TID)字段组成。其中,ack type子字段和TID子字段联合用于指示每个关联标识业务标识信息字段字段的含义。如表2所示,ack type=0,TID=0-7代表该关联标识信息字段中携带的是块确认(BA)的内容;ack type=1,TID=0-7代表该关联标识信息字段中携带的是确认(acknowledgment)的内容;ack type=1,TID=14代表该关联标识信息字段子字段中携带的是全部正确(all acknowledgment)的内容;ack type=1,TID=15代表该关联标识信息字段子字段中携带的是管理帧(management frame)或功率节省-测验(power saving-poll,PS-Poll)acknowledgment的内容。其中回复块确认(BA)时使用块确认开始序列控制字段填充的比特值来指示起始的物理层服务数据单元(medium access control service data unit,MSDU)或聚合MSDU(aggregated MSDU,A-MSDU)的序列号,块确认比特表字段中每个比特值指示从起始MSDU或A-MSDU开始的一系列MSDU或 A-MSDU的接收情况;回复确认(acknowledgment)时,块确认开始序列控制字段和块确认比特表字段不出现,表示正确接收了单个服务质量(quality of service,QoS)数据帧;回复全部正确(all acknowledgment)的时候,块确认开始序列控制字段和块确认比特表字段不出现,表示对触发该确认的A-MPDU或multi-TID A-MPDU中的所有MPDU都正确收到了。回复Management frame/PS-Poll acknowledgment时,块确认开始序列控制字段和块确认比特表字段不出现,表示正确接收了承载在A-MPDU或S-MPDU中的一个管理帧,或者正确接收了一个承载在S-MPDU中的PS-Poll帧。
表2
Figure PCTCN2020077876-appb-000002
如表1所示,BA type字段比特值为0时表示基础(basic)BA帧,BA type字段比特值为2时表示压缩(compressed)BA帧,BA type字段比特值为1时表示扩展压缩(extended compressed)BA帧,BA type字段比特值为3时表示多业务标识(TID)BA帧,BA type字段比特值为6时表示重传组播BA帧。如图8基础BA帧、压缩BA帧、扩展压缩块BA帧、多业务标识BA帧和重传组播BA帧都包括块确认开始序列控制字段,块确认开始序列控制字段包括片段数量字段和开始序列数量字段,片段数量通常设置为0。
在没有HARQ重传的情况下,由于接收地址和发送地址是承载在A-MPDU的每个MPDU内的,当A-MPDU中所有的MPDU都接收错误的时候,接收端不能确定PPDU是否是发给自身的,所以无法回复BA帧。即使接收端能够确定PPDU是发送给自己的,接 收端也需要通过块确认比特表(BA bitmap)字段中的多个比特来分别指示A-MPDU中每个MPDU都接收错误,这样会导致信令开销比较大。
因此,本申请实施例中,可以通过所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示A-MPDU包括的MPDU全部接收错误,以便于根据BA帧进行重传,避免采用块确认比特表字段指示A-MPDU包括的MPDU全部接收错误而带来的信令开销。
下面以发送端为第二设备,接收端为第一设备为例进行描述。第一设备可以是AP,第二设备可以是STA;或者第一设备可以是STA,第二设备可以是AP;或者第一设备可以是STA,第二设备可以是STA;或者第一设备可以是AP,第二设备可以是AP。本申请实施例对第一设备和第二设备具体是什么设备并不限定。
下面结合附图描述本申请实施例提供的用于重传的方法。
图9示出了本申请实施例提供的用于重传的方法100。包括:
S110,第一设备生成块确认BA帧,BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示A-MPDU包括的全部MPDU接收错误。
可选地,确认类型字段和业务标识字段可以是图7中的块确认信息字段中的关联标识信息字段中的确认类型字段和业务标识字段。例如,表3中,第一取值可以为1,第二取值可以为13。又例如,第一取值为0,第二取值为14,第一取值和第二取值也可以为其他的取值,本申请实施例对此并不作任何限制。
方法100中的BA帧可以为multi-STA BA帧。
表3
Figure PCTCN2020077876-appb-000003
需要说明的是A-MPDU包括的全部MPDU接收错误可以理解为:没有正确接收A-MPDU包括的MPDU中任何一个MPDU。有可能是第二设备发送的MPDU全部丢失导致全部MPDU接收错误,或者第二设备发送的MPDU部分丢失剩余部分解码错误导致全部MPDU接收错误,或者第二设备发送的MPDU部分解码错误MPDU导致全部MPDU接收错误。
在S110之前,所述方法还包括:所述第二设备向所述第一设备发送PPDU,所述第一设备接收所述第二设备发送的PPDU,PPDU包括的物理层前导和所述A-MPDU。
BA帧用于响应A-MPDU包括的全部MPDU接收错误。
S120,第一设备向第二设备发送BA帧,第二设备接收第一设备发送的BA帧。
S130,第二设备根据BA帧进行HARQ的重传。
在SU PPDU和MU PPDU中,在方法100之前,第一设备需要确认PPDU是第二设备发送给自身的,这样,第一设备才向第二设备发送BA帧。PPDU可以包括第一HARQ字段,第一HARQ字段用于指示PPDU是否是第二设备发送给第一设备的,这样,第一设备采用第一HARQ字段确定PPDU是否是第二设备发送给自身的。进一步地,第一设备采用第一HARQ字段中的地址字段确定PPDU是否是第二设备发送给自身的。下面分SU PPDU和MU PPDU描述。
在SU PPDU中,第一HARQ字段在PPDU中的位置有以下至少三种的可选方式:
方式一,第一HARQ字段所在的NG-SIG-B位于PPDU的物理层前导的NG-SIG-A与NG-STF之间。如图10所示。这样NG-SIG-A与NG-SIG-B是两个分别单独的循环冗余码(cyclic redundancy code,CRC)校验。当需要利用第一HARQ字段进行HARQ传输时,NG-SIG-B才在PPDU中出现;当不需要进行HARQ传输时,NG-SIG-B不出现在PPDU中,这样可以节省信令的开销。具体地,第二设备可以采用NG-SIG-A中的特定的比特指示NG-SIG-B是否会出现在PPDU中,也可以采用其他的方式指示NG-SIG-B是否会出现在PPDU中,这样,第一设备可以根据NG-SIG-A中特定的比特或者其他的指示方式确定PPDU中是否存在NG-SIG-B。并且NG-SIG-B位于NG-SIG-A与NG-STF之间时,可以让第一设备更早的获知第一HARQ字段,并提前做好接收第二设备的HARQ重传的准备。
方式二,所述第一HARQ字段位于所述PPDU的物理层前导的NG-SIG-A中,如图11所示。这样,第一HARQ字段与NG-SIG-A只需要进行一次CRC校验即可,从而可以降低校验的复杂度。
方式三,所述第一HARQ字段位于所述PPDU的物理层前导的NG-LTF与A-MPDU之间,如图12所示。这样,可以更有效的利用信道资源。
在一些可能的实现方式中,如图10-图12所示,第一HARQ字段包括:地址字段、业务标识字段(traffic identifier,TID)、混合自动重传请求过程标识(HARQ process identity)、序列号(sequence number)、响应方式字段、混合自动重传请求类型(HARQ type)、冗余版本(redundant version,RV)和CRC等中的一个或多个。地址字段、TID、混合自动重传请求过程标识、序列号、响应方式字段、混合自动重传请求类型、RV和CRC在第一HARQ字段中的位置不限定,例如,响应方式字段可以在TID与序列号之间等。
其中,如图10-图12所示,第一HARQ字段的地址字段包括第一设备的地址(即接收地址)和第二设备的地址(即发送地址),这样,第一设备可以根据地址字段中的第一设备的地址和第二设备的地址可以确定PPDU是第二设备发送给第一设备。这样即使PPDU中的A-MPDU中的所有MPDU都接收错误时,也需要第一设备向第二设备发送BA帧。
如图10-图12所示,第一HARQ字段的TID用于标识此时传输的PPDU的业务。
如图10-图12所示,第一HARQ字段的响应方式字段用于指示第一设备响应A-MPDU的方式,第一设备可以根据响应方式字段确定响应BA帧的方式。响应BA帧的方式可以是第一响应方式或第二响应方式,第一响应方式可以是:第一设备接收完PPDU的短帧间隔(short inter frame space,SIFS)之后立即响应。第二响应方式可以是:第一设备在接收完PPDU之后的SIFS之后不响应,而是在第一设备接收到块确认请求(block  acknowledgment request,BAR)之后再向第二设备发送BA帧。具体地,响应方式字段的比特大小可以是1比特或2比特等。例如,响应方式字段的取值为“1”表示第一设备向第二设备发送BA帧的方式为第一响应方式,取值为“0”表示第一设备向第二设备发送BA帧的方式为第二响应方式。又例如,响应方式字段的取值为“00”表示第一设备向第二设备发送BA帧的方式为第一响应方式,响应方式的取值为“11”表示第一设备向第二设备发送BA帧的方式为第二响应方式。再例如,响应方式可以根据响应策略(ack policy)进行响应,如表4所示,当响应方式字段的取值为“00”表示第一设备向第二设备发送BA帧的方式为第一响应方式,响应方式的取值为“11”表示第一设备向第二设备发送BA帧的方式为第二响应方式。
表4
Figure PCTCN2020077876-appb-000004
如图10-图12所示,第一HARQ字段的序列号用于标识A-MPDU中MPDU包括的MSDU或者A-MSDU的序列号是多少,这样即使A-MPDU中所有MPDU都接收错误的情况下,第一设备也可以根据序列号确定错误的MPDU包括的MSDU或者A-MSDU的序列号,这样,第一设备在接收到第二设备的HARQ重传数据时,可以根据MSDU或者A-MSDU的序列号与重传数据进行合并解码,从而可以提高解码的准确性。
需要说明的是,第一HARQ字段在下一代扩展距离单SU PPDU(next generation extended range PPDU,NG ER SU PPDU)中的位置与第一HARQ字段在NG SU PPDU位置类似,为了避免赘述,本申请实施例不在详细说明。
在MU PPDU中,第一HARQ字段在PPDU中的位置有以下至少两种的可选方式:
方式一,所述第一HARQ字段所在的NG-SIG-C位于所述PPDU的物理层前导的NG-LTF与所述A-MPDU之间,如图13所示。这样NG-SIG-A与NG-SIG-B、NG-SIG-C都分别单独的CRC校验。当需要利用第一HARQ字段进行HARQ传输时,NG-SIG-C才在PPDU中出现;当不需要进行HARQ传输时,NG-SIG-C不出现在PPDU中,这样可以节省信令的开销。具体地,第二设备可以采用NG-SIG-A或NG-SIG-B中的特定的比特指示NG-SIG-C是否会出现在PPDU中,也可以采用其他的方式指示NG-SIG-C是否会出现在PPDU中,这样,第一设备可以根据NG-SIG-A或NG-SIG-B中特定的比特或者其他的指示方式确定PPDU中是否存在NG-SIG-C。并且NG-SIG-C位于NG-LTF与所述A-MPDU之间时,可以更有效的利用信道资源。
方式二,所述第一HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-B的用户信息字段中,如图14所示。这样,第一HARQ字段与NG-SIG-B只需 要进行一次CRC校验即可,从而可以降低校验的复杂度。
第一HARQ字段在MU PPDU的图13和图14中的地址字段与第一HARQ字段在SU PPDU中的图9-图11的地址字段的含义不同,其他元素的含义类似。下面重点描述第一HARQ字段在MU PPDU的图13和图14中的地址字段。在一种可能的实现方式中,在MU PPDU的图13和图14中的地址字段包括第一设备的地址(接收地址)和第二设备的地址(发送地址)。在另外一种可能的实现方式中,在MU PPDU的图13和图14中的地址字段可以只包括一个地址,由于在MU PPDU的图13和图14中的NG-SIG-B中的用户信息字段中包括STA-ID,因此,在第一HARQ字段中只需要一个地址即可。下面分三种情况讨论图13和图14中的地址字段只包括一个地址的情况,图13和图14中的地址字段包括的一个地址以及NG-SIG-B中的用户信息字段中的STA-ID用于指示所述第一设备所述PPDU是否是发送给所述第一设备的,这样,第一设备根据地址字段的一个地址以及用户信息字段中的STA-ID确定PPDU是否是第二设备发送给第一设备的,当第一设备确定PPDU是第二设备发送给第一设备时,这样即使PPDU中的A-MPDU中的所有MPDU都接收错误时,第一设备也需要向第二设备发送BA帧,下面具体描述。
情况一,图13和图14中的地址字段的取值为所述第二设备的地址(例如MAC地址),所述STA-ID字段的取值为所述第一设备的关联标识AID的多个比特。例如,第二设备为AP,第一设备为STA,在多个基本服务集合(basic service set,BSS)场景下,STA-ID字段的取值可以是第一设备的AID的低11位比特,第一设备可以根据第二设备的地址确定发送PPDU的是第一设备关联的第二设备,第一设备进一步根据STA-ID字段的取值与自身的AID的低11位进行匹配,如果匹配成功,第一设备可以确定PPDU是第二设备发送给自身的。
情况二,图13和图14中的地址字段的取值为所述第二设备的地址(例如MAC地址),所述STA-ID字段的取值为所述第二设备的AID的多个比特。例如,第二设备为STA,第一设备为AP,当第一设备接收到PPDU时,根据地址字段的第二设备的地址确定该PPDU为某个关联的第二设备发送的,并且STA-ID字段的取值与该关联的第二设备的低11位匹配,这样,第一设备就可以确定该PPDU是该关联的第二设备发送的。
情况三,图13和图14中的地址字段的取值为所述第一设备的地址(例如MAC地址),所述STA-ID字段的取值为所述第二设备的AID的多个比特。例如,第二设备为STA,第一设备为AP,当第一设备接收到PPDU时,根据地址字段中的第一设备的地址可以确定该PPDU是发送给自身的,第一设备进一步根据STA-ID字段的取值与该关联的第二设备的低11位匹配从而确定是第二设备发送给自身的。
需要说明的是,上述的三种情况中,只是举例描述,具体地,在实际应用中STA-ID字段的取值为第一设备或第二设备的AID的若干比特,例如,可以是11比特或12比特等,本申请实施例对具体是AID的多少个比特并不作任何限定。
在TB PPDU中,在方法100之前,第一设备需要确认第二设备是否发送了PPDU。在TB PPDU中,例如,第一设备可以是AP,第二设备可以是STA,第一设备的发送触发帧调度第二设备发送PPDU,即第一设备是知道哪个第二设备在哪些资源上发送PPDU,但是当第二设备发现MPDU全部接收错误的时,第一设备不确定是因为第二设备没有发送PPDU导致MPDU全部接收错误还是因为第二设备发送了PPDU但第一设备 信道质量不好而导致MPDU全部接收错误,当第二设备没有发送PPDU时,第一设备不需要回复BA帧;当第二设备发送了PPDU,但是第一设备接收到的MPDU全部接收错误时,则第一设备需要向第二设备回复BA帧。因此,在TB PPDU中,第一设备需要通过以下三种方式中的至少一种方式确定第二设备是否发送了PPDU。
方式一,PPDU包括第二HARQ字段,第二HARQ字段用于指示所述第一设备所述第二设备是否发送了所述PPDU,这样,第一设备可以根据第二HARQ字段确定所述第二设备是否发送了所述PPDU,既第一设备可以检测到第二HARQ字段或者第二HARQ字段中的任何一个元素,即可以认为第二设备发送了PPDU。所述第二HARQ字段位于所述PPDU物理层前导的NG-LTF与所述A-MPDU之间。如图15所示。这样,可以更有效的利用信道资源。第二HARQ字段中的地址字段与SU PPDU或者MU PPDU中的第一HARQ字段的地址字段不同,第二HARQ字段中的其他元素与SU PPDU或者MU PPDU中的第一HARQ字段的其他元素类似,为了避免赘述,在此不详细描述。下面只简单描述第二HARQ字段中的地址字段。第二HARQ字段的地址字段可以分以下a)、b)和c)三种情况描述。
a),地址字段可以只包括第二设备的地址。
b),地址字段不存在,即第二HARQ字段中没有第一设备的地址也没有第二设备的地址。
c),地址字段既包括第一设备的地址也包括第二设备的地址。
方式二,PPDU的NG-STF和/或NG-LTF指示所述第一设备所述第二设备发送了所述TB PPDU,这样第一设备可以根据NG-STF和/或NG-LTF确定所述第二设备发送了所述TB PPDU,如图15所示,第一设备通过信号同步或者能量检测的方式探测到了NG-STF和NG-LTF,或者其中的至少一个,则第一设备可以确定第二设备发送了PPDU,这样即使第一设备接收到的A-MPDU包括的全部MPDU接收错误,第一设备也需要向第二设备发送BA帧。在方式二中,图15可以不包括NG-SIG-C。
方式三,所述A-MPDU中的至少一个MPDU分隔符用于指示所述第一设备所述第二设备发送了所述TB PPDU,这样第一设备可以根据至少一个MPDU分隔符确定所述第二设备发送了所述PPDU,如图2所示A-MPDU中的多个MPDU利用分隔符间隔,当第一设备接收到的A-MPDU包括的全部MPDU接收错误,但是第一设备检测到一个或多个MPDU分隔符时,即可以认为第二设备发送的PPDU,这样,第一设备需要向第二设备回复BA帧。
上述描述了不同的PPDU格式下,HARQ字段的格式和位置。第一设备可以根据HARQ字段或者不是HARQ字段的信息确定第二设备发送了PPDU,这样,第一设备接收的PPDU全部接收错误时,第一设备向第二设备BA帧。前述描述第一设备向第二设备发送BA帧时,BA帧中的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示A-MPDU包括的MPDU全部接收错误。如图16所示,BA帧的块确认起始序列控制字段还可以指示A-MPDU包括的全部MPDU接收错误的原因,即原因反馈(reason feedback)下次传输时采用的RV和下次传输时采用的MCS阶数中的至少一种,A-MPDU包括的全部MPDU接收错误的原因可以是冲突(collision)、干扰(interference)、信道差(poor channel)或者未知(unknown),这样,第二设备接收到BA帧时可以根据BA帧中的原因指示确 定第一设备全部接收错误的原因,并根据原因进行HARQ重传,例如,若全部接收错误的原因是冲突,即再次发生冲突的概率很小,所以第二设备可以采用上次的调制方式进行HARQ重传。BA帧的块确认起始序列控制字段指示A-MPDU包括的全部MPDU接收错误的原因,下次传输时采用的RV和下次传输时采用的MCS阶数,以及,BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示A-MPDU包括的MPDU全部接收错误可以称为带反馈的指示。BA帧的块确认起始序列控制字段不存在仅存在BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示A-MPDU包括的MPDU全部接收错误可以称为不带反馈的指示。例如,表5中,ack type=1且TID=12来表示不带反馈的All NACK,使用ack type=1且TID=13来表示带反馈的All NACK,当然两者指示方式也可以调换。又例如,表6中所示,使用ack type=0且TID=14来表示不带反馈的All NACK,使用ack type=0且TID=15来表示带反馈的All NACK,当然两者指示方式也可以调换。
表5
Figure PCTCN2020077876-appb-000005
表6
Figure PCTCN2020077876-appb-000006
下面分三种情况描述:
情况一,仅存在带反馈的指示,即仅存在表5或表6的第3行。
情况二,仅存在不带反馈的指示,即仅存在表5或表6的第2行。
情况三,既存在带反馈的指示,又存在不带反馈的指示,即仅存在表5或表6的第3行和第2行。
在上述三种不同的情况下,BA帧的确认类型字段的第一取值和业务标识字段的第二取值可以相同或不同,换句话说,不同的情况下,对第一取值与第二取值并不作任何限定。例如,在情况一中,第一取值为1,第二取值为13;在情况二中,第一取值可以为1,第 二取值为12;情况三中,第一取值可以为0,第二取值可以为14等。
上面描述第一设备结合第一HARQ字段或第二HARQ字段确定A-MPDU包括的全部MPDU接收错误时,第一设备可以根据第一HARQ字段或者第二HARQ字段确定PPDU是第二设备发送给第一设备,当然,在实际应用中,HARQ字段可以单独存在,即不依赖于第一设备需要根据HARQ字段确定PPDU是第二设备发送给第一设备。下面描述HARQ字段,下面的HARQ字段可以是前述的第一HARQ字段也可以是前述的第二HARQ字段。
第一设备获取PPDU,PPDU包括的物理层前导包括HARQ字段。不同的PPDU格式HARQ字段的位置可以不同。
作为一个可选实施例,若所述PPDU为SU PPDU,HARQ字段位于PPDU的物理层前导的NG-SIG-A与NG-STF之间(如图10所示,HARQ字段在NG-SIG-B中),或者所述HARQ字段位于所述PPDU的物理层前导的NG-SIG-A中(如图11所示),或者所述HARQ字段位于所述PPDU的物理层前导的NG-LTF与PPDU包括的A-MPDU之间(如图12所示,HARQ字段在NG-SIG-B中)。
作为一个可选实施例,若所述PPDU为SU PPDU,所述HARQ字段的地址字段包括所述第一设备的地址(接收地址)和所述第二设备的地址(发送地址)。
作为一个可选实施例,若所述PPDU为MU PPDU,所述HARQ字段位于所述PPDU的物理层前导的NG-LTF与所述A-MPDU之间(如图13所示,HARQ字段在NG-SIG-C中),或者所述HARQ字段位于所述第一PPDU的物理层前导的下一代信号字段NG-SIG-B的用户信息字段中(如图14所示)。
作为一个可选实施例,若所述PPDU为MU PPDU,所述HARQ字段的地址字段的取值可以包括两个地址,即第一设备的地址(接收地址)和第二设备的地址(发送地址)。HARQ字段的取值也可以只包括一个地址,例如为第二设备的地址(发送地址),或者,HARQ字段的地址字段的取值为第一设备的地址(接收地址)。
作为一个可选实施例,若所述PPDU为TB PPDU,所述HARQ字段位于所述PPDU物理层前导的NG-LTF与所述A-MPDU之间(如图15所示,HARQ字段在NG-SIG-C中)。
作为一个可选实施例,若所述PPDU为TB PPDU,所述HARQ字段可以包括地址字段也可以不包括地址字段,当HARQ字段包括地址字段时,地址字段的取值可以是第一设备的地址(接收地址)和第二设备的地址(发送地址);或者地址字段的取值可以是第二设备的地址(发送地址)。
作为一个可选实施例,所述HARQ字段中的响应方式字段用于指示所述第一设备响应所述A-MPDU的方式,所述第一设备可以根据向远方是字段确定响应所述A-MPDU的方式。
需要说明的是,HARQ字段中的响应方式字段可以是依赖于本申请任何一个实施例,也可以是不依赖于本申请的任何一个是实施例独立存在。
图9中的方法100描述了第一设备根据BA帧的确认类型字段填充的第一取值和业务标识字段的第二取值用于联合指示A-MPDU包括的MPDU全部接收错误。下面结合图17和18描述第一设备根据第一BA帧中的分段数目字段的第一取值指示第一A-MPDU包括的MPDU全部接收错误。下面结合图19和图20描述第一设备根据第一BA帧中的块确认类型字段的第一取值指示第一A-MPDU包括的MPDU全部接收错误。
图17示出了本申请实施例提供的用于重传的方法200,包括:
S210,第一设备生成第一BA帧,第一BA帧的块分段数目字段的第一取值用于指示第一A-MPDU包括的MPDU全部接收错误。例如,分段数目字段为图8中的块确认开始序列控制字段中的分段数据字段。
在S210之前,方法200还包括:第一设备接收所述第二设备发送的第一PPDU,所述第一PPDU包括物理层前导和所述第一A-MPDU。
作为一个可选实施例,所述第一BA帧的块确认比特表字段的取值用于指示所述第一A-MPDU包括的全部MPDU接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种,例如,如图18所示。例如,块确认比特表字段为图8中的块确认信息字段中的块确认比特表字段。A-MPDU包括的全部MPDU接收错误的原因可以是冲突(collision)、干扰(interference)、信道差(poor channel)或者未知(unknown),这样,第二设备接收到第一BA帧时可以根据第一BA帧中的原因指示确定第一设备全部接收错误的原因,并根据原因进行HARQ重传,例如,若全部接收错误的原因是冲突,即再次发生冲突的概率很小,所以第二设备可以采用上次的调制方式进行HARQ重传。第一BA帧的块确认比特表字段的取值指示A-MPDU包括的全部MPDU接收错误的原因,下次传输时采用的RV和下次传输时采用的MCS阶数,以及,第一BA帧的分段数目字段的第一取值用于指示A-MPDU包括的MPDU全部接收错误可以称为带反馈的指示。第一BA帧的块确认比特表字段不存在仅存在第一BA帧的分段数目字段第一取值用于联合指示A-MPDU包括的MPDU全部接收错误可以称为不带反馈的指示。
S220,第一设备向第二设备发送所述第一BA帧,第二设备接收第一设备发送的第一BA帧。
S230,第二设备根据BA帧进行HARQ重传。
块分段数目字段不同取值可以指示不同的含义,作为一个可选实施例,所述方法200还包括:第一设备生成第二BA帧,所述第二BA帧的块分段数目字段的第二取值用于指示第二PPDU包括的第二A-MPDU包括的全部MPDU接收正确;所述第一设备向所述第二设备发送所述第二BA帧。
例如,如表7所示,第二取值为1指示第二A-MPDU的MPDU全部接收正确(all ack),此时块确认比特表字段不出现。第一取值为2指示第一A-MPDU的MPDU全部接收错误(all nack),此时块确认比特表字段子字段不出现。
表7
Figure PCTCN2020077876-appb-000007
又例如,如表8所示,第二取值为1指示第二A-MPDU的MPDU全部接收正确(all  ack),此时块确认比特表字段不出现。第一取值为2指示第一A-MPDU的MPDU全部接收错误(all nack),此时,块确认比特表字段中的比特被重用,块确认比特表字段的取值用于指示所述第一A-MPDU包括的全部MPDU接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种,即第一取值为2用于指示带反馈的指示,如图18所示。
表8
Figure PCTCN2020077876-appb-000008
再例如,如表9所示第二取值为1指示第二A-MPDU的MPDU全部接收正确(all ack),此时块确认比特表字段子字段不出现。第一取值为2指示第一A-MPDU的MPDU全部接收错误(all nack)。第一取值为3指示第一A-MPDU的MPDU全部接收错误(all nack)并指示全部接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种,此时块确认比特表字段中的比特被重用,用于指示全部接收错误并指示全部接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种。
表9
Figure PCTCN2020077876-appb-000009
图19示出了本申请实施例提供的用于重传的方法300,包括:
S310,第一设备生成第一BA帧,第一BA帧的块确认帧类型字段的第一取值用于指示第一A-MPDU包括的全部MPDU接收错误。
在S310之前,方法200还包括:第一设备接收所述第二设备发送的第一物理层协议数据单元PPDU,所述第一PPDU包括的物理层前导和所述第一A-MPDU。
S320,第一设备向第二设备发送所述第一BA帧,第二设备接收第一设备发送的第一BA帧。
S330,第二设备根据BA帧进行HARQ重传。
作为一个可选实施例,所述第一BA帧的块确认信息字段的取值用于指示所述第一A-MPDU包括的全部MPDU接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种,例如,如图20所示。例如,块确认信息字段为图6中的块确认信息字段。A-MPDU包括的全部MPDU接收错误的原因可以是冲突(collision)、干扰(interference)、信道差(poor channel)或者未知(unknown),这样,第二设备接收到第一BA帧时可以根据第一BA帧中的原因指示确定第一设备全部接收错误的原因,并根据原因进行HARQ重传,例如,若全部接收错误的原因是冲突,即再次发生冲突的概率很小,所以第二设备可以采用上次的调制方式进行HARQ重传。第一BA帧的块确认信息字段的取值指示A-MPDU包括的全部MPDU接收错误的原因,下次传输时采用的RV和下次传输时采用的MCS阶数,以及,第一BA帧的块确认帧类型字段的第一取值用于指示A-MPDU包括的MPDU全部接收错误可以称为带反馈的指示。第一BA帧的块确认帧类型字段不存在仅存在第一BA帧的块确认帧类型字段的第一取值用于联合指示A-MPDU包括的MPDU全部接收错误可以称为不带反馈的指示。
块确认帧类型字段不同取值可以指示不同的含义,作为一个可选实施例,所述方法300还包括:第一设备生成第二BA帧,所述第二BA帧的块确认帧类型字段的第二取值用于指示第二PPDU包括的第二A-MPDU包括的全部MPDU接收正确;第一设备向第二设备发送所述第二BA帧。
例如,如表10所示,第二取值为4指示第二A-MPDU的MPDU全部接收正确(all ack),此时块确认信息字段不出现。第一取值为5指示第一A-MPDU的MPDU全部接收错误(all nack),此时块确认信息字段不出现。
表10
Figure PCTCN2020077876-appb-000010
又例如,如表11所示,第二取值为4指示第二A-MPDU的MPDU全部接收正确(all ack),此时块确认信息字段不出现。第一取值为5指示第一A-MPDU的MPDU全部接收错误(all nack),此时块确认信息字段中的比特被重用,用于指示反馈信息,块确认信息字段用于指示所述第一A-MPDU包括的全部MPDU接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种,即第一取值为5用于指示带反馈的指示,如图20所示。
表11
Figure PCTCN2020077876-appb-000011
再例如,如表12,所示,第二取值为7指示第二A-MPDU的MPDU全部接收正确(all ack),此时块确认信息字段不出现。第一取值为8指示第一A-MPDU的MPDU全部接收错误(all nack)不带反馈,此时块确认信息字段字段不出现。第一取值为9指示第一A-MPDU的MPDU全部接收错误(all nack)并指示全部接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种,此时块确认信息字段被重用,用于指示全部接收错误并指示全部接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种。
表12
Figure PCTCN2020077876-appb-000012
需要说明的是,图9中的BA帧不同于图17和图19中的第一BA帧和第二BA帧,相应的,图9中的第一取值与图17和图19中的第一取值不同,图9中的第二取值与图17和图19中的第二取值不同。同样地,图17和图19中的第一BA帧不同,第二BA帧也不同,相应的,图17中的第一取值与图19中的第一取值不同,图17中的第二取值与图19中的第二取值不同。
也需要说明的是,前述的地址字段中的地址可以是但不限于MAC地址、AID、为第一设备分配的HARQ专用地址以及BSS color和AID的组合等。
以上介绍了本申请实施例的用于重传的方法,以下介绍本申请实施例的用于重传的装置,本申请实施例的用于重传的装置包括应用于第一设备的用于重传的装置和应用于第二设备的用于重传的装置,应理解,所述应用于第一设备的用于重传的装置即为上述方法中的第一设备,其具有上述方法中第一设备的任意功能,所述应用于第二设备的用于重传的装置即为上述方法中的第二设备,其具有上述方法中第二设备的任意功能。
图21示出了本申请实施例提供的用于重传的装置400的示意性框图,该装置400可 以对应上述方法中描述的第一设备,也可以对应第一设备的芯片或者组件,并且,该装置400中各个模块或者单元分别可以用于执行上述方法中第一设备所执行的各动作或处理过程,如图21所示,该用于重传的装置400可以包括处理单元410和收发单元420。
处理单元410,用于生成块确认BA帧,所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示聚合媒体接入控制协议数据单元A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;
收发单元420,用于向第二设备发送所述BA帧。
作为一个可选实施例,所述收发单元420还用于:在所述生成BA帧之前,接收所述第二设备发送的物理层协议数据单元PPDU,所述PPDU包括物理层前导和所述A-MPDU。
作为一个可选实施例,所述PPDU的物理层前导包括第一混合自动重传请求HARQ字段,所述第一HARQ字段的地址字段用于指示所述装置所述PPDU是否是发送给所述装置的。
作为一个可选实施例,所述第一HARQ字段中的响应方式字段用于指示所述装置响应所述A-MPDU的方式。
作为一个可选实施例,所述PPDU为单用户SU PPDU,所述第一HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-A与下一代短训练字段NG-STF之间,或者所述第一HARQ字段位于所述PPDU的物理层前导的NG-SIG-A中,或者所述第一HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述A-MPDU之间。
作为一个可选实施例,所述地址字段包括所述装置的地址和所述第二设备的地址。
作为一个可选实施例,所述PPDU为多用户MU PPDU,所述第一HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述A-MPDU之间,或者所述第一HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-B的用户信息字段中。
作为一个可选实施例,所述用户信息字段的STA-ID字段与所述第一HARQ字段的地址字段用于指示所述装置所述PPDU是否是发送给所述装置的。
作为一个可选实施例,所述STA-ID字段的取值为所述装置的关联标识AID的多个比特,所述第一HARQ字段的地址字段的取值为所述第二设备的地址,或者,所述STA-ID字段的取值为所述第二设备的关联标识AID的多个比特,所述第一HARQ字段的地址字段的取值为所述第二设备的地址;或者,所述STA-ID字段的取值为所述第二设备的关联标识AID的多个比特,所述第一HARQ字段的地址字段的取值为所述装置的地址。
作为一个可选实施例,,所述PPDU为基于触发TB PPDU,所述PPDU包括第二HARQ字段,所述第二HARQ字段用于指示所述第一设备所述第二设备是否发送了所述PPDU,所述第二HARQ字段位于所述PPDU物理层前导的下一代长训练字段NG-LTF与所述A-MPDU之间。
作为一个可选实施例,所述第二HARQ字段中的响应方式字段的取值用于指示所述装置响应所述A-MPDU的方式。
作为一个可选实施例,所述PPDU为TB PPDU,所述PPDU的NG-STF和/或NG-LTF用于指示所述第一设备所述第二设备发送了所述TB PPDU。
作为一个可选实施例,所述PPDU为TB PPDU,所述A-MPDU中的至少一个MPDU分隔符用于指示所述第一设备所述第二设备发送了所述TB PPDU。
作为一个可选实施例,所述BA帧的块确认起始序列控制字段用于指示所述A-MPDU包括的全部MPDU接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种。
应理解,本申请实施例提供的用于重传的装置400即为上述方法中的第一设备,其具有上述方法中第一设备的任意功能,具体细节可参见上述方法,此处不再赘述。
图22示出了本申请实施例提供的用于重传的装置500的示意性框图,该装置500可以对应上述方法中描述的第二设备,也可以对应第二设备的芯片或者组件,并且,该装置500中各个模块或者单元分别可以用于执行上述方法中第二设备所执行的各动作或处理过程,如图22所示,该用于重传的装置500可以包括收发单元510和重传单元520。
收发单元510,用于接收第一设备发送的块确认BA帧,所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示聚合媒体接入控制协议数据单元A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;
重传单元520,用于根据所述BA帧进行混合自动重传请求HARQ的重传。
作为一个可选实施例,所述收发单元510还用于:在所述接收第一设备发送的BA帧之前,向所述第一设备发送物理层协议数据单元PPDU,所述PPDU包括物理层前导和所述A-MPDU。
作为一个可选实施例,所述PPDU的物理层前导包括第一HARQ字段,所述第一HARQ字段的地址字段用于指示所述第一设备所述PPDU是否是发送给所述第一设备的。
作为一个可选实施例,所述第一HARQ字段中的响应方式字段用于指示所述第一设备响应所述A-MPDU的方式。
作为一个可选实施例,所述PPDU为单用户SU PPDU,所述第一HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-A与下一代短训练字段NG-STF之间,或者所述第一HARQ字段位于所述PPDU的物理层前导的NG-SIG-A中,或者所述第一HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述A-MPDU之间。
作为一个可选实施例,所述地址字段包括所述第一设备的地址和所述装置的地址。
作为一个可选实施例,所述PPDU为多用户MU PPDU,所述第一HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述A-MPDU之间,或者所述第一HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-B的用户信息字段中。
作为一个可选实施例,所述用户信息字段的STA-ID字段与所述第一HARQ字段的地址字段用于指示所述第一设备所述PPDU是否是发送给所述第一设备的。
作为一个可选实施例,所述STA-ID字段的取值为所述第一设备的关联标识AID的多个比特,所述第一HARQ字段的地址字段的取值为所述装置的地址,或者,所述STA-ID字段的取值为所述装置的AID的多个比特,所述第一HARQ字段的地址字段的取值为所述装置的地址;或者,所述STA-ID字段的取值为所述装置的AID的多个比特,所述第一HARQ字段的地址字段的取值为所述第一设备的地址。
作为一个可选实施例,所述PPDU为基于触发TB PPDU,所述PPDU包括第二HARQ字段,所述第二HARQ字段用于指示所述第一设备所述装置是否发送了所述PPDU,所述第二HARQ字段位于所述PPDU物理层前导的下一代长训练字段NG-LTF与所述A-MPDU之间。
作为一个可选实施例,所述第二HARQ字段中的响应方式字段的取值用于指示所述第一设备响应所述A-MPDU的方式。
作为一个可选实施例,所述PPDU为TB PPDU,所述PPDU的NG-STF和/或NG-LTF用于指示所述第一设备所述装置发送了所述TB PPDU。
作为一个可选实施例,所述PPDU为TB PPDU,所述A-MPDU中的至少一个MPDU分隔符用于指示所述第一设备所述装置发送了所述TB PPDU。
作为一个可选实施例,所述BA帧的块确认起始序列控制字段用于指示所述A-MPDU包括的全部MPDU接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种
应理解,本申请实施例提供的用于重传的装置500即为上述方法中的第二设备,其具有上述方法中第二设备的任意功能,具体细节可参见上述方法,此处不再赘述。
以上介绍了本申请实施例的应用于第一设备的用于重传的装置和应用于第二设备的用于重传的装置,以下介绍所述应用于第一设备的用于重传的装置和所述应用于第二设备的用于重传的装置可能的产品形态。应理解,但凡具备上述图21所述的应用于第一设备的用于重传的装置的特征的任何形态的产品,和但凡具备上述图22所述应用于第二设备的用于重传的装置的特征的任何形态的产品,都落入本申请的保护范围。还应理解,以下介绍仅为举例,不限制本申请实施例的应用于第一设备的用于重传的装置的产品形态和应用于第二设备的用于重传的装置的产品形态仅限于此。
作为一种可能的产品形态,本申请实施例所述的应用于第一设备的用于重传的装置和应用于第二设备的用于重传的装置,可以由一般性的总线体系结构来实现。
所述应用于第一设备的用于重传的装置,包括处理器和与所述处理器内部连接通信的收发器;所述处理器用于生成块确认BA帧,所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示所述第一设备接收的聚合媒体接入控制协议数据单元A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;所述收发器用于向第二设备发送所述BA帧。可选地,所述应用于第一设备的用于重传的装置还可以包括存储器,所述存储器用于存储处理器执行的指令。
所述应用于第二设备的用于重传的装置包括处理器和与所述处理器内部连接通信的收发器;所述收发器用于接收第一设备发送的块确认BA帧,所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示第一设备接收的聚合媒体接入控制协议数据单元A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;所述处理器用于根据所述BA帧控制所述收发器进行混合自动重传请求HARQ的重传。可选地,所述应用于第二设备的用于重传的装置还可以包括存储器,所述存储器用于存储处理器执行的指令。
作为一种可能的产品形态,本申请实施例所述的应用于第一设备的用于重传的装置和应用于第二设备的用于重传的装置,可以由通用处理器来实现。
实现所述应用于第一设备的用于重传的装置的通用处理器包括处理电路和与所述处理电路内部连接通信的通信接口;所述处理电路用于生成块确认BA帧,所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示所述装置接收的聚合媒体接入控制协议数据单元A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;所述通信接口向第二设备发送所述BA帧。可选地,该通用处理器还可以包括存储介质,所述存储介质用于存储处理电路执行的指令。
实现所述应用于第一设备的用于重传的装置的通用处理器包括处理电路和与所述处理电路内部连接通信的通信接口,所述通信接口用于接收第一设备发送的块确认BA帧,所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示第一设备接收的聚合媒体接入控制协议数据单元A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;所述处理电路用于根据所述BA帧控制所述通信接口进行混合自动重传请求HARQ的重传。
作为一种可能的产品形态,本申请实施例所述的应用于第一设备的用于重传的装置和应用于第二设备的用于重传的装置,还可以使用下述来实现:一个或多个FPGA(现场可编程门阵列)、PLD(可编程逻辑器件)、控制器、状态机、门逻辑、分立硬件部件、任何其它适合的电路、或者能够执行本申请通篇所描述的各种功能的电路的任意组合。
应理解,上述各种产品形态的应用于第一设备的用于重传的装置和应用于第二设备的用于重传的装置,分别具有上述方法实施例中第一设备和第二设备的任意功能,此处不再赘述。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参见前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目 的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (34)

  1. 一种用于重传的方法,其特征在于,包括:
    第一设备生成块确认BA帧,所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示所述第一设备接收的聚合媒体接入控制协议数据单元A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;
    所述第一设备向第二设备发送所述BA帧。
  2. 根据权利要求1所述的方法,其特征在于,在所述第一设备生成BA帧之前,所述方法还包括:
    所述第一设备接收所述第二设备发送的物理层协议数据单元PPDU,所述PPDU包括物理层前导和所述A-MPDU。
  3. 根据权利要求2所述的方法,其特征在于,所述PPDU的物理层前导包括第一混合自动重传请求HARQ字段,所述第一HARQ字段的地址字段用于指示所述第一设备所述PPDU是否是发送给所述第一设备的。
  4. 根据权利要求3所述的方法,其特征在于,所述第一HARQ字段中的响应方式字段用于指示所述第一设备响应所述A-MPDU的方式。
  5. 根据权利要求3或4所述的方法,其特征在于,所述PPDU为单用户SU PPDU,所述第一HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-A与下一代短训练字段NG-STF之间,或者所述第一HARQ字段位于所述PPDU的物理层前导的NG-SIG-A中,或者所述第一HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述A-MPDU之间。
  6. 根据权利要求5所述的方法,其特征在于,所述地址字段包括所述第一设备的地址和所述第二设备的地址。
  7. 根据权利要求3或4所述的方法,其特征在于,所述PPDU为多用户MU PPDU,所述第一HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述A-MPDU之间,或者所述第一HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-B的用户信息字段中。
  8. 根据权利要求7所述的方法,其特征在于,所述用户信息字段的站点标识STA-ID字段与所述第一HARQ字段的地址字段用于指示所述第一设备所述PPDU是否是发送给所述第一设备的。
  9. 根据权利要求8所述的方法,其特征在于,所述STA-ID字段的取值为所述第一设备的关联标识AID的多个比特,所述第一HARQ字段的地址字段的取值为所述第二设备的地址;或者,所述STA-ID字段的取值为所述第二设备的关联标识AID的多个比特,所述第一HARQ字段的地址字段的取值为所述第二设备的地址;或者,所述STA-ID字段的取值为所述第二设备的关联标识AID的多个比特,所述第一HARQ字段的地址字段的取值为所述第一设备的地址。
  10. 根据权利要求2所述的方法,其特征在于,所述PPDU为基于触发TB PPDU,所述PPDU包括第二HARQ字段,所述第二HARQ字段用于指示所述第一设备所述第二设备是否发送了所述PPDU,所述第二HARQ字段位于所述TB PPDU的物理层前导的下 一代长训练字段NG-LTF与所述A-MPDU之间。
  11. 根据权利要求10所述的方法,其特征在于,所述第二HARQ字段中的响应方式字段用于指示所述第一设备响应所述A-MPDU的方式。
  12. 根据权利要求2所述的方法,其特征在于,所述PPDU为基于触发TB PPDU,所述PPDU的NG-STF和/或NG-LTF用于指示所述第一设备所述第二设备发送了所述TB PPDU。
  13. 根据权利要求2所述的方法,其特征在于,所述PPDU为基于触发TB PPDU,所述A-MPDU中的至少一个MPDU分隔符用于指示所述第一设备所述第二设备发送了所述TB PPDU。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述BA帧的块确认起始序列控制字段用于指示所述A-MPDU包括的全部MPDU接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种。
  15. 一种用于重传的方法,其特征在于,包括:
    第二设备接收第一设备发送的块确认BA帧,所述BA帧的确认类型字段的第一取值和业务标识字段的第二取值用于联合指示第一设备接收的聚合媒体接入控制协议数据单元A-MPDU包括的全部媒体接入控制协议数据单元MPDU接收错误;
    所述第二设备根据所述BA帧进行混合自动重传请求HARQ的重传。
  16. 根据权利要求15所述的方法,其特征在于,在所述第二设备接收第一设备发送的BA帧之前,所述方法还包括:
    所述第二设备向所述第一设备发送物理层协议数据单元PPDU,所述PPDU包括物理层前导和所述A-MPDU。
  17. 根据权利要求16所述的方法,其特征在于,所述PPDU的物理层前导包括第一HARQ字段,所述第一HARQ字段的地址字段用于指示所述第一设备所述PPDU是否是发送给所述第一设备的。
  18. 根据权利要求17所述的方法,其特征在于,所述第一HARQ字段中的响应方式字段用于指示所述第一设备响应所述A-MPDU的方式。
  19. 根据权利要求17或18所述的方法,其特征在于,所述PPDU为单用户SU PPDU,所述第一HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-A与下一代短训练字段NG-STF之间,或者所述第一HARQ字段位于所述PPDU的物理层前导的NG-SIG-A中,或者所述第一HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述A-MPDU之间。
  20. 根据权利要求19所述的方法,其特征在于,所述地址字段包括所述第一设备的地址和所述第二设备的地址。
  21. 根据权利要求17或18所述的方法,其特征在于,所述PPDU为多用户MU PPDU,所述第一HARQ字段位于所述PPDU的物理层前导的下一代长训练字段NG-LTF与所述A-MPDU之间,或者所述第一HARQ字段位于所述PPDU的物理层前导的下一代信号字段NG-SIG-B的用户信息字段中。
  22. 根据权利要求21所述的方法,其特征在于,所述用户信息字段的站点标识STA-ID字段与所述第一HARQ字段的地址字段用于指示所述第一设备所述PPDU是否是发送给 所述第一设备的。
  23. 根据权利要求22所述的方法,其特征在于,所述STA-ID字段的取值为所述第一设备的关联标识AID的多个比特,所述第一HARQ字段的地址字段的取值为所述第二设备的地址;或者,所述STA-ID字段的取值为所述第二设备的AID的多个比特,所述第一HARQ字段的地址字段的取值为所述第二设备的地址;或者,所述STA-ID字段的取值为所述第二设备的AID的多个比特,所述第一HARQ字段的地址字段的取值为所述第一设备的地址。
  24. 根据权利要求16所述的方法,其特征在于,所述PPDU为基于触发TB PPDU,所述PPDU包括第二HARQ字段,所述第二HARQ字段用于指示所述第一设备所述第二设备是否发送了所述PPDU,所述第二HARQ字段位于所述PPDU物理层前导的下一代长训练字段NG-LTF与所述A-MPDU之间。
  25. 根据权利要求24所述的方法,其特征在于,所述第二HARQ字段中的响应方式字段的取值用于指示所述第一设备响应所述A-MPDU的方式。
  26. 根据权利要求16所述的方法,其特征在于,所述PPDU为基于触发TB PPDU,所述PPDU的NG-STF和/或NG-LTF用于指示所述第一设备所述第二设备发送了所述TB PPDU。
  27. 根据权利要求16所述的方法,其特征在于,所述PPDU为TB PPDU,所述A-MPDU中的至少一个MPDU分隔符用于指示所述第一设备所述第二设备发送了所述TB PPDU。
  28. 根据权利要求15至27中任一项所述的方法,其特征在于,所述BA帧的块确认起始序列控制字段用于指示所述A-MPDU包括的全部MPDU接收错误的原因、下次传输时采用的冗余版本和下次传输时采用的编码与调制策略阶数中的至少一种。
  29. 一种用于重传的装置,其特征在于,包括用于执行权1-14中任一项方法的单元。
  30. 一种用于重传的装置,其特征在于,包括用于执行权15-28中任一项方法的单元。
  31. 一种装置,其特征在于,包括处理器和存储器,所述处理器与所述存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求1至14中任一项所述的方法被执行。
  32. 一种装置,其特征在于,包括处理器和存储器,所述处理器与所述存储器耦合,所述存储器用于存储计算机程序或指令,所述处理器用于执行存储器中的所述计算机程序或指令,使得权利要求15至28中任一项所述的方法被执行。
  33. 一种计算机可读存储介质,其特征在于,存储有用于实现权利要求1至14中任一项所述的方法的程序或者指令。
  34. 一种计算机可读存储介质,其特征在于,存储有用于实现权利要求15至28中任一项所述的方法的程序或者指令。
PCT/CN2020/077876 2019-05-27 2020-03-05 用于重传的方法和装置 WO2020238314A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20815160.5A EP3968554A4 (en) 2019-05-27 2020-03-05 METHOD AND DEVICE FOR RETRANSMISSION

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910447325.7A CN112003682B (zh) 2019-05-27 2019-05-27 用于重传的方法和装置
CN201910447325.7 2019-05-27

Publications (1)

Publication Number Publication Date
WO2020238314A1 true WO2020238314A1 (zh) 2020-12-03

Family

ID=73461266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077876 WO2020238314A1 (zh) 2019-05-27 2020-03-05 用于重传的方法和装置

Country Status (3)

Country Link
EP (1) EP3968554A4 (zh)
CN (1) CN112003682B (zh)
WO (1) WO2020238314A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401666A (zh) * 2013-06-29 2013-11-20 华为技术有限公司 数据重传方法和装置
CN103701574A (zh) * 2013-11-27 2014-04-02 广西大学 一种数据发送以及重传方法
WO2016180280A1 (zh) * 2015-05-12 2016-11-17 华为技术有限公司 一种块确认帧的传输方法及设备
CN106487476A (zh) * 2015-09-01 2017-03-08 华为技术有限公司 A-mpdu的接收状态指示方法及接收端设备
US20190075491A1 (en) * 2016-05-11 2019-03-07 Wilus Institute Of Standards And Technology Inc. Wireless communication method for transmitting ack and wireless communication terminal using same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10135957B2 (en) * 2015-06-15 2018-11-20 Qualcomm Incorporated Methods and apparatus for communicating high efficiency control information
WO2017030295A1 (ko) * 2015-08-19 2017-02-23 엘지전자(주) 무선 통신 시스템에서 채널 상태의 피드백 방법 및 이를 위한 장치
CN106656429B (zh) * 2015-11-03 2020-06-02 华为技术有限公司 无线通信方法和设备
CN115361099A (zh) * 2016-04-04 2022-11-18 韦勒斯标准与技术协会公司 使用分段的无线通信方法和使用其的无线通信终端
US11082887B2 (en) * 2017-02-27 2021-08-03 Lg Electronics Inc. Method for retransmitting frame in wireless LAN system, and wireless terminal using same
US20180254861A1 (en) * 2017-03-03 2018-09-06 Qualcomm Incorporated Ambiguous confirmation message resolution

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103401666A (zh) * 2013-06-29 2013-11-20 华为技术有限公司 数据重传方法和装置
CN103701574A (zh) * 2013-11-27 2014-04-02 广西大学 一种数据发送以及重传方法
WO2016180280A1 (zh) * 2015-05-12 2016-11-17 华为技术有限公司 一种块确认帧的传输方法及设备
CN106487476A (zh) * 2015-09-01 2017-03-08 华为技术有限公司 A-mpdu的接收状态指示方法及接收端设备
US20190075491A1 (en) * 2016-05-11 2019-03-07 Wilus Institute Of Standards And Technology Inc. Wireless communication method for transmitting ack and wireless communication terminal using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3968554A4

Also Published As

Publication number Publication date
EP3968554A1 (en) 2022-03-16
CN112003682B (zh) 2023-05-12
CN112003682A (zh) 2020-11-27
EP3968554A4 (en) 2022-07-13

Similar Documents

Publication Publication Date Title
CN107078858B (zh) 在无线lan系统中发送和接收多用户块确认帧的方法及其设备
US11664926B2 (en) Aggregated-MPDU, method for transmitting response frame thereto, and wireless communication terminal using same
EP3713122B1 (en) Method for replying with acknowledgement frame, apparatus, and data transmission system
KR101668768B1 (ko) 패킷 릴레이를 위한 시스템 및 방법
CN108886712B (zh) 支持多用户级联传输的无线通信方法和使用该方法的无线通信终端
JP7383161B2 (ja) データフレームの受信状況を決定するための方法および通信装置
US11082923B2 (en) Method for direct communication between stations in wireless local area network and related device
AU2018286249B2 (en) Communication method, apparatus, and computer-readable storage medium
US11108503B2 (en) Multiple traffic class data aggregation in a wireless local area network
US11765713B2 (en) Method and apparatus for wireless communications
US11817958B2 (en) MAC-based hybrid automatic repeat request (HARQ)
CN106612159B (zh) 基于业务类型指示的确认方法及装置
WO2017076069A1 (zh) 无线通信方法和设备
WO2020238314A1 (zh) 用于重传的方法和装置
WO2016180280A1 (zh) 一种块确认帧的传输方法及设备
CN111416689B (zh) 数据传输方法及通信设备
EP3432661A1 (en) Transmission method and apparatus for control information
US10396963B1 (en) Frame formats for multi-user acknowledgment information
WO2024008025A1 (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20815160

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020815160

Country of ref document: EP

Effective date: 20211206