WO2020237997A1 - 一种融合疲劳检测的汽车线控智能转向系统及其控制方法 - Google Patents

一种融合疲劳检测的汽车线控智能转向系统及其控制方法 Download PDF

Info

Publication number
WO2020237997A1
WO2020237997A1 PCT/CN2019/113500 CN2019113500W WO2020237997A1 WO 2020237997 A1 WO2020237997 A1 WO 2020237997A1 CN 2019113500 W CN2019113500 W CN 2019113500W WO 2020237997 A1 WO2020237997 A1 WO 2020237997A1
Authority
WO
WIPO (PCT)
Prior art keywords
driver
signal
module
steering
state
Prior art date
Application number
PCT/CN2019/113500
Other languages
English (en)
French (fr)
Inventor
赵万忠
汪桉旭
周小川
栾众楷
王春燕
Original Assignee
南京航空航天大学
南京航空航天大学秦淮创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学, 南京航空航天大学秦淮创新研究院 filed Critical 南京航空航天大学
Publication of WO2020237997A1 publication Critical patent/WO2020237997A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18145Cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/001Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits the torque NOT being among the input parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0818Inactivity or incapacity of driver
    • B60W2040/0827Inactivity or incapacity of driver due to sleepiness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • B60W2710/202Steering torque

Definitions

  • the invention belongs to the technical field of automobile steering systems, and specifically refers to an automobile wire-controlled intelligent steering system that integrates fatigue driving detection and a control method thereof.
  • the Chinese invention patent application number is CN201811148648.8, and the name "A device for monitoring driver fatigue driving based on a brain-computer interface" proposes to collect the driver's brainwave data to analyze the driver's brain state, determine the driver's fatigue state, and conduct driving monitoring .
  • the Chinese invention patent application number is CN201810868649.3, and the name "A fatigue driving monitoring system based on EEG signals, ocular signals and EMG signals” proposes fatigue driving monitoring based on EEG signals, ocular signals and EMG signals The system, based on the fatigue driving state determined by the driving state judgment module, gives an alarm.
  • the Chinese invention patent application number is CN201611055740.0, and the title “EEG signal and physiological signal fatigue detection system” proposes to detect fatigue status based on EEG signals and various physiological signals.
  • the driver fatigue state monitoring in existing cars mainly monitors the driver’s driving state through physiological signals such as brain electrical signals. Once the driver is found to be driving fatigued, it will directly alarm or stop the car suddenly, which is easy to cause The accident occurred, and it did not take into account that the car parked on the highway would cause more harm.
  • Steer-by-wire is very important for the realization of intelligent driving cars, so based on the steer-by-wire system and the integration of fatigue driving monitoring technology is of great significance.
  • the purpose of the present invention is to provide a vehicle-by-wire intelligent steering system that integrates fatigue detection and a control method thereof, select the working mode according to the detection results of fatigue driving, and perform the precise control of the steering-by-wire actuator Control to overcome the problems in the prior art.
  • the car-by-wire intelligent steering system integrated with fatigue detection of the present invention includes: a signal acquisition module, a signal analysis module, a control module, a steering execution module, a steering path planning module, a vehicle state acquisition module, an alarm module, and a stimulation module; wherein ,
  • the signal acquisition module includes a driver physiological signal acquisition unit, a road condition information acquisition unit, a driver operation signal acquisition unit, and a signal preprocessing unit.
  • the driver physiological signal acquisition unit includes a driver brain wave signal acquisition unit and a driver body temperature signal acquisition unit.
  • Unit, driver pupil signal acquisition unit, driver arm muscle signal acquisition unit, the driver brain wave signal acquisition unit is used to collect the original brain wave signal of the driver when driving the car;
  • the driver body temperature signal acquisition unit is used Collect the body temperature signal of the driver while driving the car;
  • the driver pupil signal collection unit is used to collect the eye pupil state signal when the driver is driving the car;
  • the driver arm muscle signal collection unit is used to collect the driver’s arm muscles when driving the car Neural signal;
  • the road condition information collection unit is used to collect real-time road surface and road obstacle image information;
  • the driver operation signal collection unit is used to collect the driver steering wheel angle signal;
  • the signal preprocessing unit will collect Preprocessed brainwave signals, body temperature signals, pupil state signals, and arm muscle
  • the input end of the signal analysis module is connected to the preprocessing module in the signal acquisition module, and the output end is connected to the road condition information acquisition unit, the driver operation information acquisition unit, the alarm module and the stimulation module in the information acquisition module, and is used to Analyze the driver’s brain waves, body temperature signal, pupil state signal, and arm muscle signal data to determine the driver’s fatigue driving state;
  • the input end of the control module is connected to the driver operation signal acquisition unit and the steering path planning module in the signal acquisition module, and the output end is connected to the steering execution module; the steering execution module is calculated based on the signal data transmitted by the signal acquisition module and the steering path planning module The required command signal;
  • the vehicle state acquisition module is used to acquire the front wheel output angle of the vehicle in the real-time state, the feedback torque obtained by the driver, the vehicle speed, and the yaw rate of the vehicle, and transmit the parameters to the control module and the steering path planning module;
  • the steering path planning module performs real-time steering path planning according to the information transmitted by the vehicle state acquisition module and the signal acquisition module, and transmits the planned steering path information to the control module;
  • the steering execution module is used to execute the car steering action planned by the steering path planning module or execute the car steering action under the driver's operation instruction according to the input command signal of the control module;
  • the alarm module is used to perform a networked alarm based on the driver's fatigue driving state determined by the signal analysis module;
  • the stimulation module is used to issue a stimulation action to the driver according to the trigger instruction issued by the signal analysis module.
  • the signal preprocessing unit includes: an amplifier circuit, an A/D conversion circuit, an image processing card, and a vehicle-mounted communication unit; the amplifier circuit is used to monitor the driver’s brainwave signals and the driver’s pupil status collected by the signal collection module Signal, driver arm muscle electrical signal, driver operation signal for power amplification; A/D conversion circuit is used to perform analog-to-digital conversion on the amplified brain wave signal, pupil state signal, arm muscle electrical signal, and driver operation signal;
  • the image processing card is used to obtain the road condition information collected by the road condition information collection unit and store the road condition information while performing image recognition processing to detect the road surface and obstacles, and communicate with the steering path planning module through the on-board communication unit.
  • the signal analysis module compares the pre-processed brainwave signal, body temperature signal, pupil state signal, arm muscle electrical signal data output by the received signal acquisition module and the driving data in the awake state of the driver to obtain Threshold for driving fatigue and determine whether the driver is in a state of fatigue.
  • the vehicle state collection module includes: an angle sensor, a torque sensor, a vehicle speed sensor, and a yaw rate sensor; the angle sensor is installed at the connection between the steering wheel and the steering column, and is used to measure the driver's input to the steering wheel. Rotation angle; the torque sensor is installed on the steering column to obtain the feedback torque obtained by the driver; the vehicle speed sensor is installed on the output shaft of the automobile gearbox to measure the vehicle speed; the yaw rate sensor is installed under the automobile center console, Used to measure the yaw rate of the vehicle.
  • the steering execution module includes: a road-sensing motor, a road-sensing deceleration mechanism, a power-assisted motor, and a power-assisted deceleration mechanism; the power-assisted motor outputs torque through the power-assisted deceleration mechanism and acts on the steering rod to drive the steering wheels to perform steering;
  • the road sense motor is connected to the steering shaft through the road sense deceleration mechanism, receives commands from the control module, and outputs feedback torque to act on the steering shaft to complete the road sense control.
  • the stimulation module includes a stimulant sprayer, which emits stimulant medicine to the driver.
  • the control method of the car-by-wire intelligent steering system integrated with fatigue detection of the present invention is based on the above system and includes the following steps:
  • Step 1 Collect the driver’s brainwave signals, body temperature signals, pupil state signals, and arm muscle signals, and preprocess them, and transmit the preprocessed results to the signal analysis module; collect the driver’s input steering wheel angle and front wheel Output signals of turning angle, feedback torque obtained by the driver, vehicle speed, and vehicle yaw rate, and transmit them to the control module and steering path planning module;
  • Step 2 Compare the driver’s brainwave signal, body temperature signal, pupil state signal, arm muscle signal data with the driving data obtained when the driver drives the car in the awake state to obtain the fatigue driving threshold, and determine the driving according to the fatigue driving threshold Whether the driver is in a state of fatigue driving; if the driver is in a state of fatigue driving, a networked alarm is issued and the driver is stimulated to move, and then go to step 3; if the driver is in a normal driving state, go to step 4;
  • Step 3 Collect road condition information and perform preprocessing, and perform obstacle recognition based on the collected vehicle information and three-dimensional image information of the road surface, plan the turning path, and go to step 5;
  • Step 4 Collect and preprocess the steering angle signal of the driver's steering wheel. According to the preprocessed result and the state signal of the vehicle, generate the steering command and perform the steering. After completion, return to step 1;
  • Step 5 Turn according to the planned turning path instruction, and return to step 1 after completion.
  • the system of the present invention can more accurately judge the fatigue state of the driver during driving by fusing the fatigue driving detection technology, avoid the driver's accident due to fatigue driving, improve driving safety, and improve the intelligent level of the steering system.
  • the control method of the present invention can combine the wire-controlled steering actuator, the alarm mechanism and the stimulus mechanism to switch between two working modes, thereby improving the safety of vehicle steering.
  • Figure 1 is a schematic block diagram of the system of the present invention
  • Figure 2 is a control flow chart of the steer-by-wire system of the present invention.
  • the car-by-wire intelligent steering system integrated with fatigue detection of the present invention includes: a signal acquisition module, a signal analysis module, a control module, a steering execution module, a steering path planning module, a vehicle status acquisition module, and an alarm Modules and stimulation modules; among them,
  • the signal acquisition module includes a driver physiological signal acquisition unit, a road condition information acquisition unit, a driver operation signal acquisition unit, and a signal preprocessing unit.
  • the driver physiological signal acquisition unit includes a driver brain wave signal acquisition unit and a driver body temperature signal acquisition unit.
  • Unit, driver pupil signal acquisition unit, driver arm muscle signal acquisition unit, the driver brain wave signal acquisition unit is used to collect the original brain wave signal of the driver when driving the car;
  • the driver body temperature signal acquisition unit is used Collect the body temperature signal of the driver while driving the car;
  • the driver pupil signal collection unit is used to collect the eye pupil state signal when the driver is driving the car;
  • the driver arm muscle signal collection unit is used to collect the driver’s arm muscles when driving the car Neural signal;
  • the road condition information collection unit is used to collect real-time road surface and road obstacle image information;
  • the driver operation signal collection unit is used to collect the driver steering wheel angle signal;
  • the signal preprocessing unit will collect Preprocessed brainwave signals, body temperature signals, pupil state signals, and arm muscle
  • the input end of the signal analysis module is connected to the preprocessing module in the signal acquisition module, and the output end is connected to the road condition information acquisition unit, the driver operation information acquisition unit, the alarm module and the stimulation module in the information acquisition module, and is used to Analyze the driver’s brain waves, body temperature signal, pupil state signal, and arm muscle signal data to determine the driver’s fatigue driving state;
  • the input end of the control module is connected to the driver operation signal acquisition unit and the steering path planning module in the signal acquisition module, and the output end is connected to the steering execution module; the steering execution module is calculated based on the signal data transmitted by the signal acquisition module and the steering path planning module The required command signal;
  • the vehicle state acquisition module is used to acquire the front wheel output angle of the vehicle in the real-time state, the feedback torque obtained by the driver, the vehicle speed, and the yaw rate of the vehicle, and transmit the parameters to the control module and the steering path planning module;
  • the steering path planning module performs real-time steering path planning according to the information transmitted by the vehicle state acquisition module and the signal acquisition module, and transmits the planned steering path information to the control module;
  • the steering execution module is used to execute the car steering action planned by the steering path planning module or execute the car steering action under the driver's operation instruction according to the input signal of the control module;
  • the alarm module is used to perform a networked alarm based on the driver's fatigue driving state determined by the signal analysis module;
  • the stimulation module is used to issue a stimulation action to the driver according to the trigger instruction issued by the signal analysis module.
  • the signal preprocessing unit includes: an amplifier circuit, an A/D conversion circuit, an image processing card, and a vehicle-mounted communication unit;
  • the amplifier circuit is used to detect the driver’s brain wave signal and the driver’s pupil state signal collected by the signal acquisition module ,
  • the driver’s arm muscle electrical signal and driver’s operation signal are power amplified;
  • the A/D conversion circuit is used to perform analog to digital amplification of the amplified brain wave signal, body temperature signal, pupil state signal, arm muscle electrical signal, and driver’s operation signal Conversion;
  • the image processing card is used to obtain the road condition information collected by the road condition information collection unit and store the road condition information while performing image recognition processing to detect the road surface and obstacles, and communicate with the steering path planning module through the on-board communication unit.
  • the signal analysis module receives the preprocessed brain wave signal, pupil state signal, and arm muscle electrical signal data output by the signal acquisition module, and compares the signal data with the driving data in the awake state of the driver to obtain driving fatigue Degree threshold and judge whether the driver is in a state of fatigue.
  • the vehicle state acquisition module includes: an angle sensor, a torque sensor, a vehicle speed sensor, and a yaw rate sensor;
  • the angle sensor is installed at the connection between the steering wheel and the steering column, and is used to measure the steering wheel angle input by the driver ;
  • the torque sensor is installed on the steering column to obtain the feedback torque obtained by the driver;
  • the vehicle speed sensor is installed on the output shaft of the automobile gearbox to measure the vehicle speed;
  • the yaw rate sensor is installed under the automobile center console for use To measure the yaw rate of the vehicle.
  • the steering execution module includes: a road-sensing motor, a road-sensing deceleration mechanism, a power-assisted motor, and a power-assisted deceleration mechanism; the power-assisted motor outputs torque, which acts on the steering rod through the power-assisted deceleration mechanism to drive the steering wheels to perform steering;
  • the sense motor is connected to the steering shaft through the road sense deceleration mechanism, receives commands from the control module, and outputs feedback torque to act on the steering shaft to complete the road sense control.
  • the stimulation module includes a stimulant sprayer, which emits stimulant drugs to the driver.
  • the control method of a car-by-wire intelligent steering system integrated with fatigue detection of the present invention is based on the above system and includes the following steps:
  • Step 1 The signal acquisition module collects the driver’s brainwave signals, body temperature signals, pupil state signals, and arm muscle signals, and performs preprocessing, and transmits the preprocessed results to the signal analysis module; the vehicle state acquisition module collects the driver Input steering wheel angle, front wheel output angle, feedback torque obtained by the driver, vehicle speed, vehicle yaw rate signals, and transmit them to the control module and steering path planning module;
  • Step 2 The signal analysis module compares the physiological signal data of the driver input by the signal preprocessing module with the driving data obtained when the driver is driving the car in an awake state to obtain the fatigue driving threshold, and determine whether the driver is based on the fatigue driving threshold In a fatigue driving state; if the result of the signal analysis module is that the driver is in a fatigue driving state, transmit the trigger command to the alarm unit and the stimulation unit in the actuator to perform networked alarms and inject stimulant drugs in the car respectively, and enter the step 3; If the analysis result of the signal analysis module is that the driver is in a normal driving state, go to step 4;
  • Step 3 The road condition information collection module in the signal collection module collects road condition information, such as traffic flow, vehicle queue length, road length, road obstacle location, etc., and preprocesses it, and the steering path planning module receives the vehicle state collection module and signals respectively Collect vehicle information and road 3D image information transmitted by the module, identify obstacles, plan the steering path, and go to step 5;
  • road condition information such as traffic flow, vehicle queue length, road length, road obstacle location, etc.
  • Step 4 The signal acquisition module collects and preprocesses the steering wheel angle signal of the driver, and transmits the preprocessed result to the control module.
  • the control module calculates the corresponding steering command according to the preprocessed result and the state signal of the vehicle. Control the power-assisted motor and road-sensing motor in the steering execution module.
  • the power-assisted motor outputs torque, which acts on the steering rod through the power-assisted deceleration mechanism to drive the steering wheels to perform steering;
  • the road-sensing motor is connected to the steering shaft through the road-sensing deceleration mechanism to receive control Module command, output feedback torque to act on steering shaft, complete road sense control, and finally complete steering, return to step 1 after completion;
  • Step 5 The signal of the steering path planning module is transmitted to the control module, and the control module transmits the instruction to the steering execution unit, and the steering execution unit performs steering according to the instruction, and returns to step 1 after completion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

一种融合疲劳检测的汽车线控智能转向系统及其控制方法,该系统包括:信号采集模块、信号分析模块、控制模块、转向执行模块、转向路径规划模块、车辆状态采集模块、报警模块及刺激模块;该系统通过融合疲劳驾驶检测技术,较为精确地判断驾驶员驾驶时的疲劳状态,避免驾驶员由于疲劳驾驶造成事故,提高驾驶的安全性,提高转向系统智能化水平。

Description

一种融合疲劳检测的汽车线控智能转向系统及其控制方法 技术领域
本发明属于汽车转向系统技术领域,具体指代一种融合疲劳驾驶检测的汽车线控智能转向系统及其控制方法。
背景技术
随着经济的不断发展,汽车的数量逐渐增多,随之而来的交通事故频频发生;造成交通事故的一大重要原因是疲劳驾驶,因此监测驾驶员的驾驶状态显得尤为重要,而在驾驶员进入疲劳状态的时候实现汽车安全地转向行驶就需要结合智能驾驶中的线控转向技术。中国发明专利申请号为CN201811148648.8,名称“一种基于脑机接口的司机疲劳驾驶监测装置”中提出收集驾驶员的脑电波数据对司机的大脑状态进行分析,判断司机疲劳状态,进行驾驶监测。中国发明专利申请号为CN201810868649.3,名称“一种基于脑电信号、眼电信号和肌电信号的疲劳驾驶监测系统”中提出基于脑电信号、眼电信号和肌电信号的疲劳驾驶监测系统,根据所述驾驶状态判断模块所确定的疲劳驾驶状态,进行报警提示。中国发明专利申请号为CN201611055740.0,名称“脑电信号与生理信号的疲劳检测系统”中提出根据脑电信号和多种生理信号进行疲劳状态检测。
综上所述,现有汽车中的驾驶员疲劳状态监测主要通过脑电信号等生理信号对驾驶员的驾驶状态进行监测,一旦发现驾驶员疲劳驾驶就会进行直接报警或者急停汽车,容易造成事故发生,并且没有考虑到汽车在高速公路停车造成更大危害。线控转向对于实现是智能驾驶汽车非常重要,因此基于线控转向系统并且融合疲劳驾驶监测技术具有重大意义。
发明内容
针对于上述现有技术的不足,本发明的目的在于提供一种融合疲劳检测的汽车线控智能转向系统及其控制方法,针对疲劳驾驶的检测结果选择工作模式,进行线控转向执行机构的精准控制,以克服现有技术中存在的问题。
为达到上述目的,本发明采用的技术方案如下:
本发明的一种融合疲劳检测的汽车线控智能转向系统,包括:信号采集模块、信号分析模块、控制模块、转向执行模块、转向路径规划模块、车辆状态采集模块、报警模块及刺激模块;其中,
所述信号采集模块包括驾驶员生理信号采集单元、路况信息采集单元、驾驶员操作信号采集单元和信号预处理单元,驾驶员生理信号采集单元包括驾驶员脑电波信号采集单元、驾驶员 体温信号采集单元、驾驶员瞳孔信号采集单元、驾驶员手臂肌肉信号采集单元,所述驾驶员脑电波信号采集单元用于采集驾驶员驾驶汽车时的原始脑电波信号;所述驾驶员体温信号采集单元用于采集驾驶员驾驶汽车时的体温信号;所述驾驶员瞳孔信号采集单元用于采集驾驶员驾驶汽车时眼球瞳孔状态信号;所述驾驶员手臂肌肉信号采集单元用于采集驾驶员驾驶汽车时手臂肌肉神经信号;所述路况信息采集单元用于采集实时路面及路面障碍物的图像信息;所述驾驶员操作信号采集单元用于采集驾驶员操纵方向盘的转角信号;所述信号预处理单元将采集到的脑电波信号、体温信号、瞳孔状态信号、手臂肌肉信号进行预处理,并将预处理的结果传输给信号分析模块,对实时路面及路面障碍物的图像信息进行预处理后传输给转向路径规划模块,对驾驶员操作方向盘的转角信号进行预处理后传输给控制模块;
所述信号分析模块输入端连接信号采集模块中的预处理模块,输出端连接信息采集模块中的路况信息采集单元、驾驶员操作信息采集单元、报警模块和刺激模块,用于对预处理后的驾驶员脑电波、体温信号、瞳孔状态信号、手臂肌肉信号数据进行分析,判断驾驶员的疲劳驾驶状态;
所述控制模块输入端连接信号采集模块中的驾驶员操作信号采集单元和转向路径规划模块,输出端连接转向执行模块;根据信号采集模块和转向路径规划模块传递的信号数据计算出转向执行模块所需要的指令信号;
所述车辆状态采集模块用于获取车辆实时状态下前轮输出转角、驾驶员得到的反馈转矩、车速、车辆的横摆角速度,并将参数传递给控制模块和转向路径规划模块;
所述转向路径规划模块根据车辆状态采集模块及信号采集模块传递的信息,进行实时的转向路径规划,并将规划后的转向路径信息传递给控制模块;
所述转向执行模块用于根据控制模块的输入指令信号执行转向路径规划模块规划的汽车转向动作或执行驾驶员操作指令下的汽车转向动作;
所述报警模块用于根据信号分析模块所判断得到的驾驶员疲劳驾驶状态,进行联网报警;
所述刺激模块用于根据信号分析模块发出的触发指令发出对驾驶员的刺激动作。
进一步的,所述信号预处理单元包括:放大电路、A/D转换电路、图像处理卡、和车载通讯单元;放大电路用于对信号采集模块采集到的驾驶员脑电波信号、驾驶员瞳孔状态信号、驾驶员手臂肌肉电信号、驾驶员操作信号进行功率放大;A/D转换电路用于对放大后的脑电波信号、瞳孔状态信号、手臂肌肉电信号、驾驶员操作信号进行模数转换;图像处理卡用于获取路况信息采集单元采集的路况信息并存储路况信息同时进行图像识别处理,来检测路面及障碍物情况,并通过车载通讯单元与转向路径规划模块进行通讯。
进一步地,所述信号分析模块将接收到的信号采集模块输出的经过预处理的脑电波信号、体温信号、瞳孔状态信号、手臂肌肉电信号数据与驾驶员清醒状态下的驾驶数据进行对比,得到驾驶疲劳度阈值,并判断驾驶员是否处于疲劳状态。
进一步地,所述车辆状态采集模块包括:角度传感器、转矩传感器、车速传感器、横摆角速度传感器;所述角度传感器安装在方向盘下方与转向管柱的连接处,用于测量驾驶员输入方向盘的转角;转矩传感器安装在转向管柱上,获取驾驶员得到的反馈转矩;车速传感器安装在汽车变速箱的输出轴上,用于测量车速;横摆角速度传感器安装在汽车中控台下方,用于测量车辆的横摆角速度。
进一步地,所述的转向执行模块包括:路感电机、路感减速机构、助力电机及助力减速机构;助力电机输出扭矩,通过助力减速机构,作用在转向直拉杆上,带动转向车轮执行转向;路感电机通过路感减速机构连接转向轴,接收控制模块指令,输出反馈转矩作用给转向轴,完成路感控制。
进一步地,所述刺激模块包括刺激性药剂喷雾器,其对驾驶员发出刺激性药剂。
本发明的一种融合疲劳检测的汽车线控智能转向系统的控制方法,基于上述系统,包括步骤如下:
步骤1:分别采集驾驶员的脑电波信号、体温信号、瞳孔状态信号、手臂肌肉信号,并进行预处理,将预处理后的结果传输给信号分析模块;采集驾驶员输入方向盘的转角、前轮输出转角、驾驶员得到的反馈转矩、车速、车辆的横摆角速度信号,并传输给控制模块和转向路径规划模块;
步骤2:将驾驶员的脑电波信号、体温信号、瞳孔状态信号、手臂肌肉信号数据与清醒状态下驾驶员驾驶汽车时得到的驾驶数据进行比对,得到疲劳驾驶阈值,根据疲劳驾驶阈值判定驾驶员是否处于疲劳驾驶状态;若驾驶员处于疲劳驾驶状态,则进行联网报警及在发出刺激驾驶员动作,进入步骤3;若驾驶员处于正常驾驶状态则进入步骤4;
步骤3:采集路况信息并进行预处理,并根据采集到的车辆信息和路面三维图像信息,进行障碍物识别,规划转向路径,进入步骤5;
步骤4:采集驾驶员操纵方向盘的转角信号并进行预处理,并根据预处理的结果及车辆的状态信号,产生转向指令并进行转向,完成后返回步骤1;
步骤5:根据规划转向路径指令进行转向,完成后返回步骤1。
本发明的有益效果:
本发明的系统通过融合疲劳驾驶检测技术,较为精确地判断驾驶员驾驶时的疲劳状态,避免 驾驶员由于疲劳驾驶造成事故,提高驾驶的安全性,提高转向系统智能化水平。
本发明的控制方法,能够结合线控转向执行机构、报警机构和刺激机构,进行两种工作模式的切换,提高车辆转向的安全性。
附图说明
图1为本发明系统的原理框图;
图2为本发明线控转向系统控制流程图。
具体实施方式
为了便于本领域技术人员的理解,下面结合实施例与附图对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。
参照图1所示,本发明的一种融合疲劳检测的汽车线控智能转向系统,包括:信号采集模块、信号分析模块、控制模块、转向执行模块、转向路径规划模块、车辆状态采集模块、报警模块及刺激模块;其中,
所述信号采集模块包括驾驶员生理信号采集单元、路况信息采集单元、驾驶员操作信号采集单元和信号预处理单元,驾驶员生理信号采集单元包括驾驶员脑电波信号采集单元、驾驶员体温信号采集单元、驾驶员瞳孔信号采集单元、驾驶员手臂肌肉信号采集单元,所述驾驶员脑电波信号采集单元用于采集驾驶员驾驶汽车时的原始脑电波信号;所述驾驶员体温信号采集单元用于采集驾驶员驾驶汽车时的体温信号;所述驾驶员瞳孔信号采集单元用于采集驾驶员驾驶汽车时眼球瞳孔状态信号;所述驾驶员手臂肌肉信号采集单元用于采集驾驶员驾驶汽车时手臂肌肉神经信号;所述路况信息采集单元用于采集实时路面及路面障碍物的图像信息;所述驾驶员操作信号采集单元用于采集驾驶员操纵方向盘的转角信号;所述信号预处理单元将采集到的脑电波信号、体温信号、瞳孔状态信号、手臂肌肉信号进行预处理,并将预处理的结果传输给信号分析模块,对实时路面及路面障碍物的图像信息进行预处理传输给转向路径规划模块,对驾驶员操作方向盘的转角信号进行预处理传输给控制模块;
所述信号分析模块输入端连接信号采集模块中的预处理模块,输出端连接信息采集模块中的路况信息采集单元、驾驶员操作信息采集单元、报警模块和刺激模块,用于对预处理后的驾驶员脑电波、体温信号、瞳孔状态信号、手臂肌肉信号数据进行分析,判断驾驶员的疲劳驾驶状态;
所述控制模块输入端连接信号采集模块中的驾驶员操作信号采集单元和转向路径规划模块,输出端连接转向执行模块;根据信号采集模块和转向路径规划模块传递的信号数据计算出转向执行模块所需要的指令信号;
所述车辆状态采集模块用于获取车辆实时状态下前轮输出转角、驾驶员得到的反馈转矩、车速、车辆的横摆角速度,并将参数传递给控制模块和转向路径规划模块;
所述转向路径规划模块根据车辆状态采集模块及信号采集模块传递的信息,进行实时的转向路径规划,并将规划后的转向路径信息传递给控制模块;
所述转向执行模块用于根据控制模块的输入信号执行转向路径规划模块规划的汽车转向动作或执行驾驶员操作指令下的汽车转向动作;
所述报警模块用于根据所述信号分析模块所判断得到的驾驶员疲劳驾驶状态,进行联网报警;
所述刺激模块用于根据所述信号分析模块发出的触发指令发出对驾驶员的刺激动作。
其中,所述信号预处理单元包括:放大电路、A/D转换电路、图像处理卡、和车载通讯单元;放大电路用于对信号采集模块采集到的驾驶员脑电波信号、驾驶员瞳孔状态信号、驾驶员手臂肌肉电信号、驾驶员操作信号进行功率放大;A/D转换电路用于对放大后的脑电波信号、体温信号、瞳孔状态信号、手臂肌肉电信号、驾驶员操作信号进行模数转换;图像处理卡用于获取路况信息采集单元采集的路况信息并存储路况信息同时进行图像识别处理,来检测路面及障碍物情况,并通过车载通讯单元与转向路径规划模块进行通讯。
其中,所述信号分析模块接收信号采集模块输出的经过预处理的脑电波信号、瞳孔状态信号、手臂肌肉电信号数据,将上述信号数据与驾驶员清醒状态下的驾驶数据进行对比,得到驾驶疲劳度阈值,并判断驾驶员是否处于疲劳状态。
其中,所述车辆状态采集模块包括:角度传感器、转矩传感器、车速传感器、横摆角速度传感器;所述角度传感器安装在方向盘下方与转向管柱的连接处,用于测量驾驶员输入方向盘的转角;转矩传感器安装在转向管柱上,获取驾驶员得到的反馈转矩;车速传感器安装在汽车变速箱的输出轴上,用于测量车速;横摆角速度传感器安装在汽车中控台下方,用于测量车辆的横摆角速度。
其中,所述的转向执行模块包括:路感电机、路感减速机构、助力电机及助力减速机构;助力电机输出扭矩,通过助力减速机构,作用在转向直拉杆上,带动转向车轮执行转向;路感电机通过路感减速机构连接转向轴,接收控制模块指令,输出反馈转矩作用给转向轴,完成路感控制。
其中,所述刺激模块包括刺激性药剂喷雾器,其对驾驶员发出刺激性药剂。
参照图2所示,本发明的一种融合疲劳检测的汽车线控智能转向系统的控制方法,基于上述系统,包括步骤如下:
步骤1:信号采集模块分别采集驾驶员的脑电波信号、体温信号、瞳孔状态信号、手臂肌肉信号,并进行预处理,将预处理后的结果传输给信号分析模块;车辆状态采集模块采集驾驶员输入方向盘的转角、前轮输出转角、驾驶员得到的反馈转矩、车速、车辆的横摆角速度信号,并传输给控制模块和转向路径规划模块;
步骤2:信号分析模块根据信号预处理模块输入的驾驶员各项生理信号数据与清醒状态下驾驶员驾驶汽车时得到的驾驶数据进行比对,得到疲劳驾驶阈值,根据疲劳驾驶阈值判定驾驶员是否处于疲劳驾驶状态;若信号分析模块分析出的结果是驾驶员处于疲劳驾驶状态,传输触发指令给执行机构中的报警单元和刺激单元,分别进行联网报警及在车内喷射刺激性药剂,进入步骤3;若信号分析模块分析出的结果是驾驶员处于正常驾驶状态则进入步骤4;
步骤3:信号采集模块中的路况信息采集模块采集路况信息,如车流量、车辆排队长度、路段行驶长度、路面障碍物位置等,进行预处理,转向路径规划模块分别接收车辆状态采集模块和信号采集模块传输的车辆信息和路面三维图像信息,并进行障碍物识别,规划转向路径,进入步骤5;
步骤4:信号采集模块采集驾驶员操纵方向盘的转角信号并进行预处理,将预处理的结果传输到控制模块,控制模块根据预处理的结果及车辆的状态信号,计算得出相应的转向指令并控制转向执行模块中的助力电机和路感电机,助力电机输出扭矩,通过助力减速机构,作用在转向直拉杆上,带动转向车轮执行转向;路感电机通过路感减速机构连接转向轴,接收控制模块指令,输出反馈转矩作用给转向轴,完成路感控制,最终完成转向,完成后返回步骤1;
步骤5:转向路径规划模块的信号传输给控制模块,控制模块向转向执行单元传递指令,转向执行单元根据指令进行转向,完成后返回步骤1。
本发明具体应用途径很多,以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进,这些改进也应视为本发明的保护范围。

Claims (7)

  1. 一种融合疲劳检测的汽车线控智能转向系统,其特征在于,包括:信号采集模块、信号分析模块、控制模块、转向执行模块、转向路径规划模块、车辆状态采集模块、报警模块及刺激模块;其中,
    所述信号采集模块包括驾驶员生理信号采集单元、路况信息采集单元、驾驶员操作信号采集单元和信号预处理单元,驾驶员生理信号采集单元包括驾驶员脑电波信号采集单元、驾驶员体温信号采集单元、驾驶员瞳孔信号采集单元、驾驶员手臂肌肉信号采集单元,所述驾驶员脑电波信号采集单元用于采集驾驶员驾驶汽车时的原始脑电波信号;所述驾驶员体温信号采集单元用于采集驾驶员驾驶汽车时的体温信号;所述驾驶员瞳孔信号采集单元用于采集驾驶员驾驶汽车时眼球瞳孔状态信号;所述驾驶员手臂肌肉信号采集单元用于采集驾驶员驾驶汽车时手臂肌肉神经信号;所述路况信息采集单元用于采集实时路面及路面障碍物的图像信息;所述驾驶员操作信号采集单元用于采集驾驶员操纵方向盘的转角信号;所述信号预处理单元将采集到的脑电波信号、体温信号、瞳孔状态信号、手臂肌肉信号进行预处理,并将预处理的结果传输给信号分析模块,对实时路面及路面障碍物的图像信息进行预处理后传输给转向路径规划模块,对驾驶员操作方向盘的转角信号进行预处理后传输给控制模块;
    所述信号分析模块输入端连接信号采集模块中的预处理模块,输出端连接信息采集模块中的路况信息采集单元、驾驶员操作信息采集单元、报警模块和刺激模块,用于对预处理后的驾驶员脑电波、体温信号、瞳孔状态信号、手臂肌肉信号数据进行分析,判断驾驶员的疲劳驾驶状态;
    所述控制模块输入端连接信号采集模块中的驾驶员操作信号采集单元和转向路径规划模块,输出端连接转向执行模块;根据信号采集模块和转向路径规划模块传递的信号数据计算出转向执行模块所需要的指令信号;
    所述车辆状态采集模块用于获取车辆实时状态下前轮输出转角、驾驶员得到的反馈转矩、车速、车辆的横摆角速度,并将参数传递给控制模块和转向路径规划模块;
    所述转向路径规划模块根据车辆状态采集模块及信号采集模块传递的信息,进行实时的转向路径规划,并将规划后的转向路径信息传递给控制模块;
    所述转向执行模块用于根据控制模块的输入指令信号执行转向路径规划模块规划的汽车转向动作或执行驾驶员操作指令下的汽车转向动作;
    所述报警模块用于根据信号分析模块所判断得到的驾驶员疲劳驾驶状态,进行联网报警;
    所述刺激模块用于根据信号分析模块发出的触发指令发出对驾驶员的刺激动作。
  2. 根据权利要求1所述的融合疲劳检测的汽车线控智能转向系统,其特征在于,所述信号预处理单元包括:放大电路、A/D转换电路、图像处理卡、和车载通讯单元;放大电路用于对信号采集模块采集到的驾驶员脑电波信号、驾驶员瞳孔状态信号、驾驶员手臂肌肉电信号、驾驶员操作信号进行功率放大;A/D转换电路用于对放大后的脑电波信号、瞳孔状态信号、手臂肌肉电信号、驾驶员操作信号进行模数转换;图像处理卡用于获取路况信息采集单元采集的路况信息并存储路况信息同时进行图像识别处理,来检测路面及障碍物情况,并通过车载通讯单元与转向路径规划模块进行通讯。
  3. 根据权利要求1所述的融合疲劳检测的汽车线控智能转向系统,其特征在于,所述信号分析模块将接收到的信号采集模块输出的经过预处理的脑电波信号、体温信号、瞳孔状态信号、手臂肌肉电信号数据与驾驶员清醒状态下的数据进行对比,得到驾驶疲劳度阈值,并判断驾驶员是否处于疲劳状态。
  4. 根据权利要求1所述的融合疲劳检测的汽车线控智能转向系统,其特征在于,所述车辆状态采集模块包括:角度传感器、转矩传感器、车速传感器、横摆角速度传感器;所述角度传感器安装在方向盘下方与转向管柱的连接处,用于测量驾驶员输入方向盘的转角;转矩传感器安装在转向管柱上,获取驾驶员得到的反馈转矩;车速传感器安装在汽车变速箱的输出轴上,用于测量车速;横摆角速度传感器安装在汽车中控台下方,用于测量车辆的横摆角速度。
  5. 根据权利要求1所述的融合疲劳检测的汽车线控智能转向系统,其特征在于,所述的转向执行模块包括:路感电机、路感减速机构、助力电机及助力减速机构;助力电机输出扭矩,通过助力减速机构,作用在转向直拉杆上,带动转向车轮执行转向;路感电机通过路感减速机构连接转向轴,接收控制模块指令,输出反馈转矩作用给转向轴,完成路感控制。
  6. 根据权利要求1所述的融合疲劳检测的汽车线控智能转向系统,其特征在于,所述刺激模块包括刺激性药剂喷雾器,其对驾驶员发出刺激性药剂。
  7. 一种融合疲劳检测的汽车线控智能转向系统的控制方法,基于上述权利要求1至6中任意一项的系统,其特征在于,包括步骤如下:
    步骤1:分别采集驾驶员的脑电波信号、体温信号、瞳孔状态信号、手臂肌肉信号,并进行数据预处理,将预处理后的结果传输给信号分析模块;采集驾驶员输入方向盘的转角、前轮输出转角、驾驶员得到的反馈转矩、车速、车辆的横摆角速度信号,并传输给控制模块和转向路径规划模块;
    步骤2:将驾驶员的脑电波信号、体温信号、瞳孔状态信号、手臂肌肉信号数据与清醒状态 下驾驶员驾驶汽车时得到的驾驶数据进行比对,得到疲劳驾驶阈值,根据疲劳驾驶阈值判定驾驶员是否处于疲劳驾驶状态;若驾驶员处于疲劳驾驶状态,则进行联网报警及在发出刺激驾驶员动作,进入步骤3;若驾驶员处于正常驾驶状态则进入步骤4;
    步骤3:采集路况信息并进行预处理,并根据采集到的车辆信息和路面三维图像信息,进行障碍物识别,规划转向路径,进入步骤5;
    步骤4:采集驾驶员操纵方向盘的转角信号并进行预处理,并根据预处理的结果及车辆的状态信号,产生转向指令并进行转向,完成后返回步骤1;
    步骤5:根据规划转向路径指令进行转向,完成后返回步骤1。
PCT/CN2019/113500 2019-05-30 2019-10-26 一种融合疲劳检测的汽车线控智能转向系统及其控制方法 WO2020237997A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910461766.2A CN110281938B (zh) 2019-05-30 2019-05-30 一种融合疲劳检测的汽车线控智能转向系统及其控制方法
CN201910461766.2 2019-05-30

Publications (1)

Publication Number Publication Date
WO2020237997A1 true WO2020237997A1 (zh) 2020-12-03

Family

ID=68002938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/113500 WO2020237997A1 (zh) 2019-05-30 2019-10-26 一种融合疲劳检测的汽车线控智能转向系统及其控制方法

Country Status (2)

Country Link
CN (1) CN110281938B (zh)
WO (1) WO2020237997A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110281938B (zh) * 2019-05-30 2020-10-20 南京航空航天大学 一种融合疲劳检测的汽车线控智能转向系统及其控制方法
CN110969722A (zh) * 2019-10-14 2020-04-07 胡旭洲 一种避免怒路情绪的安全行车系统
CN113085851A (zh) * 2021-03-09 2021-07-09 傅玥 一种动态自适应ssvep脑机接口的实时驾驶避障系统及方法
CN114084225B (zh) * 2021-11-19 2023-12-12 吉林大学 一种适用于齿轮齿条转向机构的车轮转角测量系统
CN114132331B (zh) * 2021-12-31 2024-05-14 阿维塔科技(重庆)有限公司 驾驶员状态信息确认方法、装置及计算机可读存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06156262A (ja) * 1992-11-18 1994-06-03 Nissan Motor Co Ltd 車両の予防安全装置
DE102013209949A1 (de) * 2013-05-28 2014-12-04 Robert Bosch Gmbh Verfahren zur Müdigkeitserkennung des Fahrers eines Fahrzeugs
CN107826117A (zh) * 2017-11-22 2018-03-23 天津智能网联汽车产业研究院 一种自动驾驶系统及控制方法
CN108464839A (zh) * 2018-03-22 2018-08-31 东华大学 一种基于机器学习的车载疲劳驾驶监测预警系统
CN109017975A (zh) * 2018-07-02 2018-12-18 南京航空航天大学 一种智能转向系统的控制方法及其控制系统
CN109308789A (zh) * 2018-10-25 2019-02-05 惠州市德赛西威汽车电子股份有限公司 一种针对疲劳驾驶的智能驾驶辅助方法
CN109677404A (zh) * 2019-01-11 2019-04-26 南京航空航天大学 一种基于驾驶行为的车路协同的汽车主动安全辅助装置及方法
CN110281938A (zh) * 2019-05-30 2019-09-27 南京航空航天大学 一种融合疲劳检测的汽车线控智能转向系统及其控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10156509B4 (de) * 2001-11-16 2007-12-06 Audi Ag Fahrerassistenzsystem
CN201405922Y (zh) * 2009-03-13 2010-02-17 北京工业大学 一种汽车线控转向系统
CN206416993U (zh) * 2016-12-15 2017-08-18 上海眼控科技股份有限公司 一种行车智能安全辅助系统
CN207535720U (zh) * 2017-12-07 2018-06-26 驰创科技(天津)有限公司 一种实现智能辅助驾驶的电动汽车整车控制器
CN108937923A (zh) * 2018-08-02 2018-12-07 扬州市紫麓信息技术有限公司 一种基于脑电信号、眼电信号和肌电信号的疲劳驾驶监测系统
CN109147278A (zh) * 2018-09-29 2019-01-04 浙江大学 一种基于脑机接口的司机疲劳驾驶监测装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06156262A (ja) * 1992-11-18 1994-06-03 Nissan Motor Co Ltd 車両の予防安全装置
DE102013209949A1 (de) * 2013-05-28 2014-12-04 Robert Bosch Gmbh Verfahren zur Müdigkeitserkennung des Fahrers eines Fahrzeugs
CN107826117A (zh) * 2017-11-22 2018-03-23 天津智能网联汽车产业研究院 一种自动驾驶系统及控制方法
CN108464839A (zh) * 2018-03-22 2018-08-31 东华大学 一种基于机器学习的车载疲劳驾驶监测预警系统
CN109017975A (zh) * 2018-07-02 2018-12-18 南京航空航天大学 一种智能转向系统的控制方法及其控制系统
CN109308789A (zh) * 2018-10-25 2019-02-05 惠州市德赛西威汽车电子股份有限公司 一种针对疲劳驾驶的智能驾驶辅助方法
CN109677404A (zh) * 2019-01-11 2019-04-26 南京航空航天大学 一种基于驾驶行为的车路协同的汽车主动安全辅助装置及方法
CN110281938A (zh) * 2019-05-30 2019-09-27 南京航空航天大学 一种融合疲劳检测的汽车线控智能转向系统及其控制方法

Also Published As

Publication number Publication date
CN110281938B (zh) 2020-10-20
CN110281938A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
WO2020237997A1 (zh) 一种融合疲劳检测的汽车线控智能转向系统及其控制方法
DE102014212746B4 (de) Autonomes fahrzeug mit fahrer-anwesenheits- und physiologischer überwachung
US8954238B2 (en) Vehicle emergency evacuation device
CN110077414A (zh) 一种基于驾驶员状态监测的车辆行驶安全保障方法及系统
CN105835820A (zh) 车载传感器信息筛选方法及应用该方法的车辆避撞系统
CN108297864A (zh) 驾驶员与车辆主动安全技术联动的控制方法及控制系统
US11858525B2 (en) Chassis-by-wire cyber physical system in intelligent traffic environment, and control method
CN110203202A (zh) 一种基于驾驶员意图识别的换道辅助预警方法及装置
US20200070848A1 (en) Method and System for Initiating Autonomous Drive of a Vehicle
CN206954218U (zh) 一种基于单目视觉的智能车辆线控自动巡航控制系统
CN105564502B (zh) 一种基于机器视觉的转向助力预警系统及其工作方法
CN109927720A (zh) 一种动态制动辅助控制方法、装置及系统
CN114030475A (zh) 一种车辆辅助驾驶方法、装置、车辆及存储介质
CN113581278A (zh) 一种多模式线控底盘系统及其控制方法
CN107244320A (zh) 一种避免车辆碰撞的方法及装置
CN106394673A (zh) 一种适用于不平路面的驾驶员注意力监测与警示系统
CN109733471A (zh) 一种智能转向系统
CN111169474A (zh) 一种自主式紧急转向避让辅助装置及方法
CN109910901A (zh) 一种具有驾驶员行为分析监测功能的智能辅助驾驶系统
CN209581609U (zh) 一种智能转向系统
CN203996230U (zh) 一种自适应巡航系统
CN108394405B (zh) 一种机动车全自动智能稳定制动系统
CN205524449U (zh) 一种基于机器视觉的转向助力预警系统
CN110667686B (zh) 基于心电与握力信号的疲劳驾驶监测/预警的方向盘
CN107745637A (zh) 一种防疲劳汽车预警及自动驾驶系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930787

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19930787

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/06/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19930787

Country of ref document: EP

Kind code of ref document: A1