WO2020237988A1 - 一种光学镜架及光学镜架的调节系统 - Google Patents

一种光学镜架及光学镜架的调节系统 Download PDF

Info

Publication number
WO2020237988A1
WO2020237988A1 PCT/CN2019/112801 CN2019112801W WO2020237988A1 WO 2020237988 A1 WO2020237988 A1 WO 2020237988A1 CN 2019112801 W CN2019112801 W CN 2019112801W WO 2020237988 A1 WO2020237988 A1 WO 2020237988A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
frame
temperature
control
control member
Prior art date
Application number
PCT/CN2019/112801
Other languages
English (en)
French (fr)
Inventor
尹志军
张虞
吴冰
许志城
Original Assignee
南京南智先进光电集成技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京南智先进光电集成技术研究院有限公司 filed Critical 南京南智先进光电集成技术研究院有限公司
Publication of WO2020237988A1 publication Critical patent/WO2020237988A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation

Definitions

  • This application relates to the field of optical technology, and in particular to an optical frame and an adjustment system of the optical frame.
  • Optical path collimation is a very important parameter in the field of optics.
  • the light emitted from the same light source is divergent, that is, the two adjacent light rays will become farther and farther apart after spreading.
  • the collimation of the light path is commonly said to provide a certain means to keep the light between parallel.
  • optical frame is manually calibrated and the optical path is collimated manually, and the optical frames are packaged after calibration, so as to avoid external influences on the adjusted optical frames.
  • the optical frame is susceptible to deformation due to changes in ambient temperature, thereby reducing the degree of light collimation, which may easily lead to degradation of the performance of the entire optical system or even failure.
  • the present application provides an optical frame and an adjustment system of the optical frame to solve the technical problem that the optical frame in the prior art is easily affected by environmental temperature changes and deforms, thereby reducing the collimation of light.
  • the present application provides an optical frame, the optical frame includes a frame seat and a plurality of control parts, one end of the control part is fixedly connected to the lens frame seat, and the other end is fixedly connected to the optical lens;
  • the frame seat includes a light-transmitting area through which light enters the optical lens
  • a temperature regulating component is arranged inside the control component; the temperature regulating component includes a temperature regulating body, which is electrically connected to an external electronic component and changes its own temperature according to the adjustment of the external electronic component.
  • the temperature adjustment member is provided in the control member connected with the optical lens, the temperature of the control member can be adjusted by the temperature change of the temperature adjustment member.
  • the temperature change of the control element is related to the deformation of the control element, that is, the deformation of the control element can be adjusted, so that the position of the optical lens can be adjusted, and the light collimation can be improved, which greatly improves the performance of the entire optical system.
  • the lens holder includes a support wall perpendicular to the horizontal plane, the light-transmitting area is a through hole provided on the support wall, and the axis of the through hole is perpendicular to the support The plane of the wall;
  • the overall structure of the optical frame is simple, which is convenient for mold opening and is also conducive to mass production.
  • the axis of the optical lens and the axis of the through hole are on the same straight line.
  • the number of the control elements is greater than two, and the distance between any two adjacent control elements is the same.
  • the number of the control elements is three.
  • the stability of the overall structure of the optical frame can be ensured, and on the other hand, three-point adjustment can be used to improve the accuracy of the deformation of the adjustment control part and realize precise dynamic three-dimensional adjustment.
  • the frame seat is provided with a plurality of wire passing holes corresponding to the plurality of control members one-to-one, and one end of the control member is connected to the wire passing hole corresponding to the control member.
  • the position of the hole is fixedly connected with the frame seat;
  • One end of the temperature regulating body extends into the inside of the control member
  • the other end of the temperature adjustment body is flush with the end fixedly connected to the control part and the frame seat, or the other end of the temperature adjustment body protrudes from the control part and the frame seat The end of the fixed connection;
  • the temperature regulating member further includes a wire electrically connected to the other end of the temperature regulating body, and the wire passes through the wire hole and is electrically connected to the external electronic component.
  • one end of the control member and the frame base are fixedly connected by welding.
  • control member and the optical lens are fixedly connected by flexible glue.
  • control member is a copper rod with high purity and high density.
  • the present application provides an adjustment system for an optical frame, the adjustment system includes the above-mentioned optical frame, and the adjustment system further includes:
  • the detection device is arranged at the light exit of any optical frame, and is used to detect whether the light emitted from the optical frame is collimated;
  • the adjusting device is electrically connected to the detection device and electrically connected to each optical frame, and is used to adjust the temperature of the temperature adjusting member in the optical frame according to the detection result of the detection device, so as to transfer heat
  • the temperature of the control member in the optical frame is adjusted, thereby adjusting the deformation of the control member.
  • the adjustment device can determine whether the position of the optical lens in the optical frame needs to be adjusted according to whether the detection device detects whether the light emitted from the optical frame is collimated, and How to adjust, and then the adjustment device can adjust the temperature of the control element by changing the temperature of the temperature adjustment element in the optical frame.
  • the change in the temperature of the control element is related to the deformation of the control element, that is, it can be adjusted
  • the deformation of the control member can adjust the position of the optical lens, thereby improving the collimation of the light and greatly improving the performance of the entire optical system.
  • FIG. 1 is a schematic structural diagram of an optical frame provided by an embodiment of the application.
  • FIG. 2 is a schematic structural diagram of another optical frame provided by an embodiment of the application.
  • Figure 3a is a schematic structural diagram of a control element provided by an embodiment of the application.
  • Figure 3b is a schematic structural diagram of another control element provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of the overall structure of the optical frame provided by the embodiment of the application.
  • FIG. 5 is a schematic structural diagram of an adjustment system of an optical frame provided by an embodiment of the application.
  • Fig. 1 exemplarily shows a schematic structural diagram of an optical frame provided by an embodiment of the present application.
  • the optical frame 1 may include a frame seat 11 and a plurality of control parts, such as the control part 12 and the control part 13 shown in FIG. 1.
  • one end of each control element (control element 12 or control element 13) can be fixedly connected to the frame base 11, and the other end can be fixedly connected to the optical lens 2.
  • one end 121 of the control element 12 shown in FIG. 1 can be fixedly connected to the frame base 11, the other end 122 can be fixedly connected to the optical lens 2, and one end 131 of the control element 13 can be fixedly connected to the frame base 11.
  • One end 132 can be fixedly connected to the optical lens 2.
  • the frame base 11 may include a light-transmitting area 111 to facilitate light entering the optical lens 2 through the light-transmitting area 111.
  • a temperature adjusting element may be provided inside each control element.
  • the control element 12 may be provided with a temperature adjustment element 123
  • the control element 13 may be provided with a temperature adjustment element 133.
  • the temperature adjusting member may include a temperature adjusting body, for example, the temperature adjusting member 123 may include a temperature adjusting body 1231, and the temperature adjusting body 1231 may be electrically connected to an external electronic component (not shown in FIG.
  • the adjustment of electronic components can change its own temperature, so that the temperature of the control member 12 can be adjusted in a heat transfer manner, and the deformation of the control member 12 can be adjusted;
  • the temperature adjustment member 133 may include a temperature adjustment body 1331.
  • 1331 can be electrically connected to external electronic components, and can adjust its own temperature through the external electronic components, so that the temperature of the control member 13 can be adjusted by heat transfer, and the deformation of the control member 13 can be adjusted.
  • the control element connected to the optical lens is provided with a temperature adjustment element, the temperature of the control element can be adjusted by the temperature change of the temperature adjustment element.
  • the temperature change of the control element is a correlation between the temperature change of the control element and the deformation of the control element, that is, the deformation of the control element can be adjusted, so that the position of the optical lens can be adjusted, thereby improving the collimation of the light and greatly improving the performance of the entire optical system.
  • the shape of the frame holder 11 can be various, for example, the frame holder 11 can be an "L" shape, or it can also be a "concave” shape, or it can also have other shapes, which are not specifically limited. .
  • the lens holder 11 shown in FIG. 1 has a "concave" shape.
  • the shape of the frame base 11 also affects the shape of the light-transmitting area 111.
  • the corresponding light-transmitting area 111 is also L-shaped.
  • the shape of the frame holder 11 is a "concave” shape
  • the shape of the corresponding light-transmitting area 111 may be a "U" shape.
  • FIG. 2 provides another possible shape of the lens holder 11.
  • the frame base 11 may include a supporting wall 112, wherein the supporting wall 112 may be perpendicular to a horizontal plane.
  • the light-transmitting area 111 may be a through hole provided on the supporting wall 112, and the axis of the through hole (the L axis shown in FIG. 2) may be perpendicular to the plane where the supporting wall 112 is located.
  • the distance between each control member (control member 12 or control member 13 or control member 14) and the center of the through hole (point O shown in FIG. 2) is the same.
  • the overall structure of the optical frame is simple, which facilitates mold opening and is also conducive to mass production.
  • the supporting wall 112 may have various shapes, and may be a plate shape with an arc shown in FIG. 2, or may be rectangular, or may also be other shapes, and those skilled in the art may follow
  • the shape of the supporting wall 112 is designed in the actual situation, which is not specifically limited.
  • the through hole shown in FIG. 2 (that is, the light-transmitting area 111) may be a through hole of various shapes, for example, it may be circular, or rectangular, or may also be irregular. limited.
  • the bottom of the supporting wall 112 can directly serve as the base of the frame base 11, or the frame base 11 can also be additionally provided with a base, which is not specifically limited.
  • the axis of the optical lens 2 (the L'axis shown in FIG. 2) and the axis of the through hole (and the light transmission area 111) are on the same straight line. In this way, it can be ensured that the light emitted from the center of the light-transmitting area 111 can enter from the center of the optical lens 2, thereby improving the collimation of the light.
  • the optical frame shown in FIG. 2 may include three control elements, which are the control element 12, the control element 13, and the control element 14 shown in FIG. 2 respectively. Adopting the structure of three control parts, on the one hand, can ensure the stability of the overall structure of the optical frame 1, on the other hand, three-point adjustment can be used to improve the accuracy of the deformation of the control parts, and achieve precise dynamic three-dimensional adjustment .
  • the distance between any two adjacent control elements is the same.
  • the distance between the control element 12 and the control element 13 and the distance between the control element 13 and the control element 14 are Consistent, the distance between the control element 12 and the control element 13 and the distance between the control element 12 and the control element 14 are also the same. In this way, it can be ensured that the overall force of the optical frame 1 is uniform, and the structural stability is improved.
  • control member 12 or the control member 13 or the control member 14
  • the shape of the control member can be varied, for example, the control member 12 (or the control member 13 or the control member 14) can be cylindrical, or can also be quadrangular prism, or can also be triangular prism. , Or can also be irregular three-dimensional graphics, which are not specifically limited.
  • FIG. 3a exemplarily shows a schematic structural diagram of a control element provided by an embodiment of the present application.
  • a temperature adjusting member 123 may be provided inside the control member 12, wherein the temperature adjusting member 123 may include a temperature adjusting body 1231 and a wire 1232.
  • one end of the temperature regulating body 1231 (end A as shown in FIG. 3a) can extend into the inside of the control member 12, and the other end (end B as shown in FIG. 3a) can be connected to the end of the control member 12 (such as Figure 3a shows the C end) flush.
  • the end of the control element 12 may refer to the end of the control element 12 shown in FIG. 1 that is fixedly connected to the frame base 11 (ie, the end 121 of the control element 12 shown in FIG. 1 ). Further, the wire 1232 may be electrically connected to the other end of the temperature regulating body 1231 (end B as shown in FIG. 3a).
  • FIG. 3b it is a schematic structural diagram of another control element provided in an embodiment of this application.
  • a temperature adjustment member 123 may be provided inside the control member 12, wherein the temperature adjustment member 123 may include a temperature adjustment body 1231 and a wire 1232.
  • one end of the temperature regulating body 1231 (end A as shown in FIG. 3b) can extend into the inside of the control member 12, and the other end (end B as shown in FIG. 3b) can protrude from the end of the control member 12 (C terminal as shown in Figure 3b).
  • the end of the control element 12 may refer to the end of the control element 12 shown in FIG.
  • the wire 1232 may be electrically connected to the other end of the temperature regulating body 1231 (end B as shown in FIG. 3b).
  • control member 12 there are many ways to electrically connect the temperature regulating body 1231 and external electronic components, which can be electrical connection through wires as shown in Figure 3a or Figure 3b, or alternatively
  • the electrical connection is realized by electromagnetic connection, which is not specifically limited.
  • control element shown in FIG. 3b will be taken as an example to describe the structure of the optical frame 1 including the control element 12 shown in FIG. 3b in detail.
  • FIG. 4 exemplarily shows a schematic diagram of the overall structure of the optical frame provided by the embodiment of the present application.
  • the optical frame 1 may include a frame seat 11, a control element 12, a control element 13 and a control element 14.
  • the frame seat 11 may be provided with a plurality of wire passing holes corresponding to one-to-one of the control elements.
  • the frame seat 11 is provided with a wire passing hole 113 corresponding to the control element 12.
  • the wire hole 114 corresponding to the control member 13 and the wire hole 115 corresponding to the control member 14.
  • control member 12 is fixedly connected to the frame seat 11 at the position of the cable hole 113, and the other end is fixedly connected to the optical lens 2; one end of the control member 13 is connected to the lens frame seat 11 at the position of the cable hole 114 The other end is fixedly connected to the optical lens 2; one end of the control member 14 is fixedly connected to the frame base 11 at the position of the wire hole 115, and the other end is fixedly connected to the optical lens 2.
  • a temperature adjusting member 123 is provided inside the control member 12, and the temperature adjusting member 123 may include a temperature adjusting body 1231 and a wire 1232 electrically connected to the temperature adjusting body 1231, and the wire 1232 passes through the wire hole 113 to be electrically connected to the external electronic component 3;
  • a temperature adjusting member 133 is provided inside the control member 13, and the temperature adjusting member 133 may include a temperature adjusting body 1331 and a wire 1332 electrically connected to the temperature adjusting body 1331, and the wire 1332 passes through the wire hole 114 to be electrically connected to the external electronic component 3;
  • a temperature adjusting member 143 is provided inside the control member 14.
  • the temperature adjusting member 143 may include a temperature adjusting body 1431 and a wire 1432 electrically connected to the temperature adjusting body 1431.
  • the wire 1432 passes through the wire hole 115 and is electrically connected to the external electronic component 3.
  • the part of the temperature regulating body 1231 protruding from the end of the control member 12 coincides with the threaded hole 113; accordingly, the temperature regulating body
  • the part of the temperature regulating body 1331 protruding from the end of the control member 13 matches the wire hole 114; the other end of the temperature regulating body 1431 protrudes from the control member At the end of 14, the part of the temperature regulating main body 1431 protruding from the end of the control member 14 coincides with the wire hole 115.
  • the temperature adjustment member 123 can adjust its own temperature through the external electronic component 3, so that the temperature of the control member 12 can be adjusted by heat transfer, and the deformation of the control member 12 can be adjusted; the temperature adjustment member 133 can be adjusted by the external electronic component 3 to adjust its own temperature, so that the temperature of the control member 13 can be adjusted by heat transfer, and then the deformation of the control member 13 can be adjusted; the temperature adjustment member 143 can adjust its own temperature through the external electronic component 3, so as to transmit The temperature of the control member 14 is adjusted in a thermal manner, and the deformation of the control member 14 can be adjusted.
  • each control element (such as the control element 12 or the control element 13 or the control element 14 mentioned above) can be fixedly connected to the frame base 11 in various ways, such as welding, bolting, and glue. There are no specific restrictions on connection, etc.
  • each control element (such as the control element 12 or the control element 13 or the control element 14 mentioned above) can be fixedly connected to the optical lens 2 in many ways, for example, it can be fixedly connected by flexible glue, or can be fixed by bolts. The connection is not limited.
  • control member (such as the control member 12 or the control member 13 or the control member 14 mentioned above) can be various types of materials.
  • the control member (such as the control member 12 or the control member 12 mentioned above)
  • the control element 13 or the control element 14) can be metal, such as high-purity and high-density copper rods. Since the metal will linearly expand after being heated, the control element made of metal can be achieved by precisely controlling the temperature of the temperature regulating element Precise length control.
  • the control element (such as the control element 12 or the control element 13 or the control element 14 mentioned above) may also be a polymer material, which is not specifically limited.
  • FIG. 5 exemplarily shows a structural schematic diagram of an adjustment system of an optical frame provided by an embodiment of the present application.
  • the adjustment system 4 may include at least one optical frame 1, a detection device 41 and an adjustment device 42.
  • the detection device 41 can be arranged at the light exit of any optical frame 1.
  • the detection device 41 can be arranged at the light exit of the optical frame 1 at the end along the light emission direction. It can be used to detect whether the light emitted from the optical frame is collimated.
  • the adjusting device 42 can be electrically connected to the detecting device and each optical frame, and can be used to adjust the temperature of the temperature adjusting member in the optical frame 1 according to the detection result of the detecting device 41, so that it can be adjusted by heat transfer.
  • the temperature of the control part in the optical frame can adjust the deformation of the control part.
  • the adjustment device can determine whether the position of the optical lens in the optical frame needs to be adjusted according to whether the detection device detects whether the light emitted from the optical frame is collimated, and How to adjust, and then the adjustment device can adjust the temperature of the control element by changing the temperature of the temperature adjustment element in the optical frame.
  • the change in the temperature of the control element is related to the deformation of the control element, that is, it can be adjusted
  • the deformation of the control member can adjust the position of the optical lens, thereby improving the collimation of the light and greatly improving the performance of the entire optical system.
  • the detection device 41 can detect multiple types of data. For example, the detection device 41 can directly detect the collimation of the light path, or the detection device 41 can also determine whether the light path is collimated by detecting power changes. limited.
  • Figure 5 is only an example of an optical frame adjustment system.
  • the adjustment system 4 may also include multiple detection devices 41, and each detection device 41 may Correspondingly arranged at the light exit of the optical frame;
  • the adjustment device 42 shown in FIG. 5 can be regarded as the external electronic component 3 mentioned above.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Lens Barrels (AREA)

Abstract

一种光学镜架(1)及光学镜架(1)的调节系统(4)。光学镜架(1)包括镜架座(11)和多个控制件(12, 13, 14),其中,控制件(12, 13, 14)的一端与镜架座(11)固定连接,另一端与光学镜片(2)固定连接。其中,镜架座(11)包括透光区(111),光线通过透光区(111)射入光学镜片(2)。控制件(12, 13, 14)的内部设置有调温件(123, 133, 143),调温件(123, 133, 143)包括调温主体(1231, 1331, 1431),调温主体(1231, 1331, 1431)与外部电子元件(3)电连接,并通过外部电子元件(3)调节自身的温度,从而以传热的方式调节控制件(12, 13, 14)的温度,进而调节控制件(12, 13, 14)的形变。如此,由于与光学镜片(2)连接的控制件(12, 13, 14)中设置有调温件(123, 133, 143),因此可以通过调温件(123, 133, 143)的温度变化来调节控制件(12, 13, 14)的温度,从而调节控制件(12, 13, 14)的形变,调整光学镜片(2)的位置,进而可以提高光线的准直度,大大提高了整个光学系统的性能。

Description

一种光学镜架及光学镜架的调节系统
本申请要求在2019年5月31日提交中国专利局、申请号为201910474170.6、发明名称为“一种光学镜架及光学镜架的调节系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光学技术领域,尤其涉及一种光学镜架及光学镜架的调节系统。
背景技术
光路准直是光学领域中的一个很重要的参数。通常来说,从同一个光源所发出的光线是发散的,即开始相邻的两条光线传播后会相离越来越远,而光路准直通俗说就是通给一定的手段保持光线之间平行。在进行光学实验或光学应用时,一般需要通过光学镜架来对光线进行调整,以实现光路准直。
现有的光学镜架大多都是由人工手动校准光路准直,并且在校准后将光学镜架封装,以避免调整后的光学镜架收到外界影响。但是随着时间的延长,光学镜架容易受到环境温度变化的影响而发生形变,从而降低光线的准直度,进而容易导致整个光学系统性能降低甚至失效。
基于此,目前亟需一种光学镜架,用于解决现有技术中光学镜架容易受到环境温度变化的影响,发生形变,从而降低光线的准直度的问题。
发明内容
本申请提供了一种光学镜架及光学镜架的调节系统,以解决现有技术中光学镜架容易受到环境温度变化的影响,发生形变,从而降低光线的准直度的技术问题。
本申请提供了一种光学镜架,所述光学镜架包括镜架座和多个控制件,所述控制件的一端与所述镜架座固定连接,另一端与光学镜片固定连接;
所述镜架座包括透光区,光线通过所述透光区射入所述光学镜片;
所述控制件的内部设置有调温件;所述调温件包括调温主体,所述调温主体与外部电子元件电连接,并根据所述外部电子元件的调节改变自身的温度。
采用本申请实施例提供的光学镜架,由于与光学镜片连接的控制件中设置有调温件,因此可以通过调温件的温度变化来调节控制件的温度,根据热胀冷缩的原理,控制件温度的变化与控制件的形变存在相关关系,即可以调节控制件的形变,从而可以调整光学镜片的位置,进而可以提高光线的准直度,大大提高了整个光学系统的性能。
在一种可能的实现方式中,所述镜架座包括垂直于水平面的支撑壁,所述透光区为设置在所述支撑壁上的通孔,所述通孔的轴线垂直于所述支撑壁所处的平面;
每个控制件与所述通孔的圆心之间的距离一致。
采用这种结构,光学镜架的整体结构简单,便于模具开料,也有利于大规模生产。
在一种可能的实现方式中,所述光学镜片的轴线与所述通孔的轴线在同一条直线上。
如此,可以保证从透光区的中心射出的光线可以从光学镜片的中心射入,从而提高光线的准直度。
在一种可能的实现方式中,所述控制件的数量大于两个,且任意两个相邻的控制件之间的距离一致。
在一种可能的实现方式中,所述控制件的数量为三个。
采用三个控制件的结构,一方面,能够保证光学镜架的整体结构的稳定性,另一方面,可以利用三点调整来提高调节控制件的形变的准确度,实现精准的动态三维调节。
在一种可能的实现方式中,所述镜架座上设置有与所述多个控制件一一对应的多个过线孔,所述控制件的一端在与所述控制件对应的过线孔所处的位置与所述镜架座固定连接;
所述调温主体的一端伸入所述控制件的内部;
所述调温主体的另一端与所述控制件和所述镜架座固定连接的端部齐平,或,所述调温主体的另一端凸出于所述控制件和所述镜架座固定连接的端部;
所述调温件还包括与所述调温主体的另一端电连接的电线,所述电线穿过所述过线孔与所述外部电子元件电连接。
在一种可能的实现方式中,所述控制件的一端与所述镜架座以焊接的方式实现固定连接。
在一种可能的实现方式中,所述控制件的另一端与光学镜片通过柔性胶固定连接。
在一种可能的实现方式中,所述控制件为高纯度高密度的铜棒。
本申请提供了一种光学镜架的调节系统,所述调节系统包括上文所述的光学镜架,所述调节系统还包括:
检测装置,设置于任一光学镜架的光线出口处,用于检测从所述光学镜架中射出的光线是否准直;
调节装置,与所述检测装置电连接,且与每个光学镜架电连接,用于根据所述检测装置的检测结果调节所述光学镜架中调温件的温度,从而以传热的方式调节所述光学镜架中控制件的温度,进而调节所述控制件的形变。
采用本申请实施例提供的光学镜架的调节系统,调节装置可以根据检测装置检测从光学镜架中射出的光线是否准直,来确定是否需要对光学镜架中光学镜片的位置进行调整,以及如何调整,进而调节装置可以通过改变光学镜架中调温件的温度来调节控制件的温度,根据热胀冷缩的原理,控制件温度的变化与控制件的形变存在相关关系,即可以调节控制件的形变,从而可以调整光学镜片的位置,进而可以提高光线的准直度,大大提高了整个光学系统的性能。
附图说明
为了更清楚地说明本申请的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种光学镜架的结构示意图;
图2为本申请实施例提供的另一种光学镜架的结构示意图;
图3a为本申请实施例提供的一种控制件的结构示意图;
图3b为本申请实施例提供的另一种控制件的结构示意图;
图4为本申请实施例提供的光学镜架的整体性的结构示意图;
图5为本申请实施例提供的一种光学镜架的调节系统的结构示意图。
具体实施方式
图1示例性示出了本申请实施例提供的一种光学镜架的结构示意图。如图1所示,光学镜架1可以包括镜架座11和多个控制件,例如图1中示出的控制件12和控制件13。其中,每个控制件(控制件12或控制件13)的一端可以与镜架座11固定连接,另一端可以与光学镜片2固定连接。例如,图1中示出的控制件12的一端121可以与镜架座11固定连接,另一端122可以与光学镜片2固定连接,控制件13的一端131可以与镜架座11固定连接,另一端132可以与光学镜片2固定连接。
进一步地,镜架座11可以包括透光区111,便于光线通过透光区111射入光学镜片2。
如图1所示,每个控制件的内部可以设置有调温件。例如,控制件12的内部可以设置有调温件123,控制件13的内部可以设置有调温件133。
更进一步地,调温件可以包括调温主体,例如,调温件123可以包括调温主体1231,调温主体1231可以与外部电子元件(图1中未示出)电连接,并且可以根据外部电子元件的调节来改变自身的温度,从而可以以传热的方式调节控制件12的温度,进而可以调节控制件12的形变;类似地,调温件133可以包括调温主体1331,调温主体1331可以与外部电子元件电连接,并且可以通过外部电子元件来调节自身的温度,从而可以以传热的方式调节控制件13的温度,进而可以调节控制件13的形变。
采用本申请实施例提供的光学镜架,由于与光学镜片连接的控制件中设置有调温件,因此可以通过调温件的温度变化来调节控制件的温度,根据热胀冷缩的原理,控制件温度的变化与控制件的形变存在相关关系,即可以调节控制件的形变,从而可以调整光学镜片的位置,进而可以提高光线的准直度,大大提高了整个光学系统的性能。
本申请实施例中,镜架座11的形状可以有多种,比如,镜架座11可以是“L”形,或者也可以是“凹”形,或者也可以是其它形状,具体不做限定。图1中示出的镜架座11就是“凹”形的。
进一步地,镜架座11的形状也会影响到透光区111的形状。举个例子,以“L”形镜架座11为例,对应的透光区111的形状也为L形。再举个例子,若镜架座11的形状为“凹”形,则对应的透光区111的形状可以为“U”形。
作为一种示例,图2提供了另外一种镜架座11可能的形状。如图2所示,为本申请实施例提供的另一种光学镜架的结构示意图。镜架座11可以包括支撑壁112,其中,支撑壁112可以垂直于水平面。那么,透光区111可以为设置在支撑壁112上的通孔,且,该通孔的轴线(图2中示出的L轴)可以垂直于支撑壁112所处的平面。进一步地,如图2所示,每个控制件(控制件12或控制件13或控制件14)与通孔的圆心(图2中示出的O点)之间的距离一致。采用图2示出的结构,光学镜架的整体结构简单,便于模具开料,也有利于大规模生产。
本申请实施例中,支撑壁112的形状可以有多种,可以为图2中示出的带圆弧的板形,或者也可以为矩形,或者还可以为其它形状,本领域技术人员可以根据实际情况设计支撑壁112的形状,具体不做限定。相应地,图2中示出的通孔(即透光区111)可以为多种形状的通孔,比如,可以为圆形,或者可以为矩形,或者还可以为不规则形,具体不做限 定。
需要说明的是,支撑壁112的底部可以直接作为镜架座11的底座,或者,镜架座11也可以额外设置有底座,具体不做限定。
进一步地,如图2所示,光学镜片2的轴线(图2中示出的L’轴)与通孔(及透光区111)的轴线在同一条直线上。如此,可以保证从透光区111的中心射出的光线可以从光学镜片2的中心射入,从而提高光线的准直度。
进一步地,图2示出的光学镜架可以包括三个控制件,分别是图2中示出的控制件12、控制件13和控制件14。采用三个控制件的结构,一方面,能够保证光学镜架1的整体结构的稳定性,另一方面,可以利用三点调整来提高调节控制件的形变的准确度,实现精准的动态三维调节。
更进一步地,如图2所示,任意两个相邻的控制件之间的距离一致,例如,控制件12与控制件13之间的距离和控制件13与控制件14之间的距离是一致的,控制件12与控制件13之间的距离和控制件12与控制件14之间的距离也是一致的。如此,能确保光学镜架1的整体受力是均匀的,提高结构稳定性。
本申请实施例中,控制件的形状可以由多种,比如,控制件12(或控制件13或控制件14)可以为圆柱形,或者也可以为四棱柱形,或者还可以为三棱柱形,或者还可以为不规则的立体图形,具体不做限定。
下面具体介绍控制件的结构,以控制件12为例,图3a示例性示出了本申请实施例提供的一种控制件的结构示意图。如图3a示,控制件12内部可以设置有调温件123,其中,调温件123可以包括调温主体1231和电线1232。具体地,调温主体1231的一端(如图3a示出的A端)可以伸入控制件12的内部,另一端(如图3a示出的B端)可以与控制件12的端部(如图3a示出的C端)齐平。其中,控制件12的端部可以是指图1中示出的控制件12与镜架座11固定连接的端部(即图1中示出的控制件12的一端121)。进一步地,电线1232可以与调温主体1231的另一端(如图3a示出的B端)电连接。
在另一种可能的示例中,如图3b所示,为本申请实施例提供的另一种控制件的结构示意图。仍然以控制件12为例,控制件12内部可以设置有调温件123,其中,调温件123可以包括调温主体1231和电线1232。具体地,调温主体1231的一端(如图3b示出的A端)可以伸入控制件12的内部,另一端(如图3b示出的B端)可以凸出于控制件12的端部(如图3b示出的C端)。其中,控制件12的端部可以是指图1中示出的控制件12与镜架座11固定连接的端部(即图1中示出的控制件12的一端121)。进一步地,电线1232可以与调温主体1231的另一端(如图3b示出的B端)电连接。
需要说明的是,以控制件12为例,调温主体1231与外部电子元件的电连接的方式有多种,可以是如图3a或图3b中示出的通过电线实现电连接,或者也可以采用电磁连接的方式实现电连接,具体不做限定。
为了更加完整地介绍本申请实施例提供的光学镜架1,下面将以图3b中示出的控制件为例,具体描述包括图3b示出的控制件12的光学镜架1的结构。
图4示例性示出了本申请实施例提供的光学镜架的整体性的结构示意图。如图4所示,光学镜架1可以包括镜架座11、控制件12、控制件13和控制件14。其中,镜架座11上可以设置有多个控制件一一对应的多个过线孔,例如图4中示出的,镜架座11上设置有 与控制件12对应的过线孔113,与控制件13对应的过线孔114以及与控制件14对应的过线孔115。控制件12的一端在过线孔113所处的位置与镜架座11固定连接,另一端与光学镜片2固定连接;控制件13的一端在过线孔114所处的位置与镜架座11固定连接,另一端与光学镜片2固定连接;控制件14的一端在过线孔115所处的位置与镜架座11固定连接,另一端与光学镜片2固定连接。
控制件12的内部设置有调温件123,调温件123可以包括调温主体1231和与调温主体1231电连接的电线1232,电线1232穿过过线孔113与外部电子元件3电连接;控制件13的内部设置有调温件133,调温件133可以包括调温主体1331和与调温主体1331电连接的电线1332,电线1332穿过过线孔114与外部电子元件3电连接;控制件14的内部设置有调温件143,调温件143可以包括调温主体1431和与调温主体1431电连接的电线1432,电线1432穿过过线孔115与外部电子元件3电连接。
进一步地,调温主体1231的另一端凸出于控制件12的端部时,调温主体1231凸出于控制件12的端部的部分与过线孔113相吻合;相应地,调温主体1331的另一端凸出于控制件13的端部时,调温主体1331凸出于控制件13的端部的部分与过线孔114相吻合;调温主体1431的另一端凸出于控制件14的端部时,调温主体1431凸出于控制件14的端部的部分与过线孔115相吻合。
如此,调温件123可以通过外部电子元件3来调节自身的温度,从而可以以传热的方式调节控制件12的温度,进而可以调节控制件12的形变;调温件133可以通过外部电子元件3来调节自身的温度,从而可以以传热的方式调节控制件13的温度,进而可以调节控制件13的形变;调温件143可以通过外部电子元件3来调节自身的温度,从而可以以传热的方式调节控制件14的温度,进而可以调节控制件14的形变。
本申请实施例中,每个控制件(如上文提及的控制件12或控制件13或控制件14)与镜架座11固定连接的方式有多种,比如可以是焊接、螺栓连接、胶接等,具体不做限定。
类似地,每个控制件(如上文提及的控制件12或控制件13或控制件14)与光学镜片2固定连接的方式有多种,比如可以通过柔性胶固定连接,或者可以通过螺栓固定连接,具体不做限定。
本申请实施例中,控制件(如上文提及的控制件12或控制件13或控制件14)可以为多种类型的材料,举个例子,控制件(如上文提及的控制件12或控制件13或控制件14)可以为金属,比如为高纯度高密度的铜棒,由于金属受热之后会线性膨胀,因此,采用金属制成的控制件能够通过精准控制调温件的温度来实现精准的长度控制。在其它可能的实例中,控制件(如上文提及的控制件12或控制件13或控制件14)也可以为高分子材料,具体不做限定。
基于同样的构思,图5示例性示出了本申请实施例提供的一种光学镜架的调节系统的结构示意图。如图5所述,调节系统4可以包括至少一个光学镜架1、检测装置41和调节装置42。其中,检测装置41可以设置于任一光学镜架1的光线出口处,比如图5示出的结构中检测装置41可以设置于沿着光线发射方向最末端的光学镜架1的光线出口处,可以用于检测从该光学镜架中射出的光线是否准直。调节装置42可以与检测装置电连接,且与每个光学镜架电连接,可以用于根据检测装置41的检测结果调节光学镜架1中调温件的温度,从而可以以传热的方式调节光学镜架中控制件的温度,进而可以调节控制件的 形变。
采用本申请实施例提供的光学镜架的调节系统,调节装置可以根据检测装置检测从光学镜架中射出的光线是否准直,来确定是否需要对光学镜架中光学镜片的位置进行调整,以及如何调整,进而调节装置可以通过改变光学镜架中调温件的温度来调节控制件的温度,根据热胀冷缩的原理,控制件温度的变化与控制件的形变存在相关关系,即可以调节控制件的形变,从而可以调整光学镜片的位置,进而可以提高光线的准直度,大大提高了整个光学系统的性能。
本申请实施例中,检测装置41可以检测多种类型的数据,比如,检测装置41可以直接检测光路准直度,或者检测装置41也可以通过检测功率变化来确定光路是否准直,具体不做限定。
需要说明的是:(1)图5仅为一种光学镜架的调节系统的示例,在其它可能的实例中,调节系统4也可以包括多个检测装置41,且,每个检测装置41可以对应设置于光学镜架的光线出口处;(2)图5中示出的调节装置42可以看做是上文提及的外部电子元件3。
本申请提供的实施例之间的相似部分相互参见即可,以上提供的具体实施方式只是本申请总的构思下的几个示例,并不构成本申请保护范围的限定。对于本领域的技术人员而言,在不付出创造性劳动的前提下依据本申请方案所扩展出的任何其他实施方式都属于本申请的保护范围。

Claims (10)

  1. 一种光学镜架,其特征在于,所述光学镜架包括镜架座和多个控制件,所述控制件的一端与所述镜架座固定连接,另一端与光学镜片固定连接;
    所述镜架座包括透光区,光线通过所述透光区射入所述光学镜片;
    所述控制件的内部设置有调温件;所述调温件包括调温主体,所述调温主体与外部电子元件电连接,并根据所述外部电子元件的调节改变自身的温度。
  2. 根据权利要求1所述的光学镜架,其特征在于,所述镜架座包括垂直于水平面的支撑壁,所述透光区为设置在所述支撑壁上的通孔,所述通孔的轴线垂直于所述支撑壁所处的平面;
    每个控制件与所述通孔的圆心之间的距离一致。
  3. 根据权利要求2所述的光学镜架,其特征在于,所述光学镜片的轴线与所述通孔的轴线在同一条直线上。
  4. 根据权利要求2所述的光学镜架,其特征在于,所述控制件的数量大于两个,且任意两个相邻的控制件之间的距离一致。
  5. 根据权利要求4所述的光学镜架,其特征在于,所述控制件的数量为三个。
  6. 根据权利要求1所述的光学镜架,其特征在于,所述镜架座上设置有与所述多个控制件一一对应的多个过线孔,所述控制件的一端在与所述控制件对应的过线孔所处的位置与所述镜架座固定连接;
    所述调温主体的一端伸入所述控制件的内部;
    所述调温主体的另一端与所述控制件和所述镜架座固定连接的端部齐平,或,所述调温主体的另一端凸出于所述控制件和所述镜架座固定连接的端部;
    所述调温件还包括与所述调温主体的另一端电连接的电线,所述电线穿过所述过线孔与所述外部电子元件电连接。
  7. 根据权利要求1至6中任一项所述的光学镜架,其特征在于,所述控制件的一端与所述镜架座以焊接的方式实现固定连接。
  8. 根据权利要求1至6中任一项所述的光学镜架,其特征在于,所述控制件的另一端与光学镜片通过柔性胶固定连接。
  9. 根据权利要求1至6中任一项所述的光学镜架,其特征在于,所述控制件为高纯度高密度的铜棒。
  10. 一种光学镜架的调节系统,其特征在于,所述调节系统包括至少一个上述权 利要求1至9中任一项所述的光学镜架,所述调节系统还包括:
    检测装置,设置于任一光学镜架的光线出口处,用于检测从所述光学镜架中射出的光线是否准直;
    调节装置,与所述检测装置电连接,且与每个光学镜架电连接,用于根据所述检测装置的检测结果调节所述光学镜架中调温件的温度,从而以传热的方式调节所述光学镜架中控制件的温度,进而调节所述控制件的形变。
PCT/CN2019/112801 2019-05-31 2019-10-23 一种光学镜架及光学镜架的调节系统 WO2020237988A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910474170.6A CN110082881A (zh) 2019-05-31 2019-05-31 一种光学镜架及光学镜架的调节系统
CN201910474170.6 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020237988A1 true WO2020237988A1 (zh) 2020-12-03

Family

ID=67423115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112801 WO2020237988A1 (zh) 2019-05-31 2019-10-23 一种光学镜架及光学镜架的调节系统

Country Status (2)

Country Link
CN (1) CN110082881A (zh)
WO (1) WO2020237988A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082881A (zh) * 2019-05-31 2019-08-02 南京南智先进光电集成技术研究院有限公司 一种光学镜架及光学镜架的调节系统
DE102019216283A1 (de) * 2019-10-23 2021-04-29 Robert Bosch Gmbh Verfahren zur Herstellung eines Kameramoduls, Kameramodul

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030206A2 (en) * 1999-02-17 2000-08-23 Sumitomo Electric Industries, Ltd. Deformable mirror for laser beam
US20080253001A1 (en) * 2005-02-14 2008-10-16 Sagem Defense Securite Actuating Device Comprising Bimetal Disks
CN106199899A (zh) * 2015-05-25 2016-12-07 超金光学有限公司 一种光变焦方法及其模块与应用
CN109683278A (zh) * 2019-01-30 2019-04-26 杭州电子科技大学 基于梯度式多孔结构的大口径红外望远镜可调支撑装置
CN110082881A (zh) * 2019-05-31 2019-08-02 南京南智先进光电集成技术研究院有限公司 一种光学镜架及光学镜架的调节系统
CN209746236U (zh) * 2019-05-31 2019-12-06 南京南智先进光电集成技术研究院有限公司 一种光学镜架及光学镜架的调节系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353490B (zh) * 2015-12-11 2018-02-02 中国工程物理研究院激光聚变研究中心 一种控制光学镜片安装形变的装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1030206A2 (en) * 1999-02-17 2000-08-23 Sumitomo Electric Industries, Ltd. Deformable mirror for laser beam
US20080253001A1 (en) * 2005-02-14 2008-10-16 Sagem Defense Securite Actuating Device Comprising Bimetal Disks
CN106199899A (zh) * 2015-05-25 2016-12-07 超金光学有限公司 一种光变焦方法及其模块与应用
CN109683278A (zh) * 2019-01-30 2019-04-26 杭州电子科技大学 基于梯度式多孔结构的大口径红外望远镜可调支撑装置
CN110082881A (zh) * 2019-05-31 2019-08-02 南京南智先进光电集成技术研究院有限公司 一种光学镜架及光学镜架的调节系统
CN209746236U (zh) * 2019-05-31 2019-12-06 南京南智先进光电集成技术研究院有限公司 一种光学镜架及光学镜架的调节系统

Also Published As

Publication number Publication date
CN110082881A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
WO2020237988A1 (zh) 一种光学镜架及光学镜架的调节系统
JP5494061B2 (ja) 光トンネル組立物およびプロジェクター
KR101623651B1 (ko) 레이저 광원 모듈 및 레이저 광원 장치
JP2007142425A (ja) 集積化ハイブリッドマイクロレンズアレイを有するフォトニックデバイス
US7992835B2 (en) Kinematic mirror mount adjustable from two directions
CN108957929B (zh) 一种激光光源及激光投影仪
CN209746236U (zh) 一种光学镜架及光学镜架的调节系统
US20100046348A1 (en) Optical module, optical communication device using the same and reflective optical path setting method
WO2020038372A1 (zh) 红外发射装置及充电桩
CN208721731U (zh) 分体式闭环霍尔传感器
CN210237777U (zh) 一种多束激光中心送粉熔覆头及激光熔覆加工系统
CN104104013A (zh) 一种分体式半导体激光二极管能量合束装置
CN213577034U (zh) 太阳光模拟装置
CN115236812A (zh) 光器件及其光功率调节方法、光模块
CN209014143U (zh) 一种校正关系获取装置及校正光探测元件的装置
JP2008140717A (ja) 反射型発光ダイオード照明装置
CN111264007A (zh) 激光光源装置及其制造方法
CN203368893U (zh) 一种二维可调温控束源装置
CN220190121U (zh) 一种激光器出射光路调节装置
CN1983011B (zh) 一种产生光辉度可调节的条状平行光的方法以及装置
CN112161728B (zh) 一种瞬态热流计双功能型校准装置及方法
CN209861277U (zh) 电路板组件、图像接收装置和激光雷达
CN218997347U (zh) 一种易散热的蓝光转白光激光模组
CN111580284B (zh) 一种光路调节装置及方法
CN109269639B (zh) 一种校正关系获取装置、方法及校正光探测元件的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930754

Country of ref document: EP

Kind code of ref document: A1