WO2020237876A1 - 驱动控制方法、装置、家电设备和计算机可读存储介质 - Google Patents

驱动控制方法、装置、家电设备和计算机可读存储介质 Download PDF

Info

Publication number
WO2020237876A1
WO2020237876A1 PCT/CN2019/103216 CN2019103216W WO2020237876A1 WO 2020237876 A1 WO2020237876 A1 WO 2020237876A1 CN 2019103216 W CN2019103216 W CN 2019103216W WO 2020237876 A1 WO2020237876 A1 WO 2020237876A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
switching device
mode
power supply
drive control
Prior art date
Application number
PCT/CN2019/103216
Other languages
English (en)
French (fr)
Inventor
曾贤杰
堀部美彦
黄招彬
文先仕
朱良红
王明明
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Priority to JP2021571046A priority Critical patent/JP7331144B2/ja
Publication of WO2020237876A1 publication Critical patent/WO2020237876A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Definitions

  • This application relates to the field of drive control, and in particular, to a drive control method, a drive control device, a household appliance and a computer-readable storage medium.
  • PFC Power Factor Correction, power factor correction
  • drive control circuits and its main function is to improve the power efficiency of electrical equipment (load).
  • PWM Pulse-Width Modulation, pulse width modulation signal
  • Boost PFC modules Boost PFC modules and bridgeless totem pole PFC modules, two types of PFC The module has at least the following technical defects when driving the load:
  • the circuit structure of the Boost PFC module is simple, that is, the charging and discharging process of the inductor is controlled by the switch tube. However, the efficiency of the Boost PFC module is low and the switching loss is large.
  • the efficiency of the bridgeless totem pole PFC module is higher than that of the Boost PFC module.
  • the bridgeless totem pole PFC module usually works in high frequency or power frequency mode, which not only leads to the drive control circuit High hardware loss and high power consumption are also not conducive to further improving the energy efficiency of the load.
  • This application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • the first aspect of this application is to propose a drive control method.
  • the second aspect of this application is to provide a drive control device.
  • the third aspect of this application is to propose a household appliance.
  • the fourth aspect of the application is to provide a computer-readable storage medium.
  • the drive control circuit is provided with a bridge circuit, and the four bridge arms of the bridge circuit are provided with switching devices, which are respectively referred to as first switching devices ,
  • the second switching device, the third switching device and the fourth switching device the common terminal of the first switching device and the second switching device is connected to the live wire, the common terminal of the third switching device and the fourth switching device is connected to the neutral line,
  • the common end of a switching device and the third switching device is connected to the high-voltage bus, the common end of the second switching device and the fourth switching device is connected to the low-voltage bus, and the bridge circuit is configured to control the power supply signal to supply power to the load.
  • the driving control method includes: Detect the power supply signal, and control the bridge circuit to work in the first mode or the second mode according to the power supply signal; if the bridge circuit works in the second mode, it is determined that the AC signal in the detected power supply signal belongs to a positive half cycle waveform or a negative half cycle Waveform; according to the dependency between the AC signal and the positive half-cycle waveform, and the dependency between the AC signal and the negative half-cycle waveform, determine the conduction period of the switching device of the bridge circuit, wherein the first mode is configured to control the switch The device is turned off, and the second mode is configured as a mode in which the switching device operates according to a specified pulse drive signal, so that the given current in the second mode follows the AC voltage input to the load.
  • the circuit connected to the switch tube in the above manner is usually referred to as a totem pole bridge circuit.
  • the pulse drive signal is stopped to the switch device.
  • the mode in which the switch device is off can also be recorded as intermittent
  • the pulse drive signal is output to the switching device.
  • the mode where the switching device is in high-frequency conduction can also be recorded as the working mode.
  • the working mode the bus voltage is pulled up, and in the intermittent mode, the capacitive element discharges and the bus voltage drops.
  • the bridge circuit is in working state only for a part of the time, that is, the switching device consumes power only in the second mode, and the switching device does not consume power in the first mode, thereby reducing the switching loss of the bridge circuit and increasing
  • the working efficiency of the drive control circuit improves the energy efficiency of the load.
  • the pulse drive signal includes pulse width, duty cycle, switching frequency, etc., but is not limited thereto.
  • the conduction state of the switching devices of the bridge circuit is determined according to the power supply signal, that is, the actions of the four switching devices of the bridge circuit are controlled.
  • the bridge circuit is in the working mode, It is helpful to reduce the influence of electromagnetic interference.
  • the power supply signal includes the AC voltage input from the grid system and the bus voltage.
  • the switching device is an IGBT (Insulated Gate Bipolar Transistor), or a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor, metal oxide semiconductor power field effect transistor), or alternatively New material semiconductor transistors, for example, SiC-type power tubes or GaN-type power tubes.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor, metal oxide semiconductor power field effect transistor
  • New material semiconductor transistors for example, SiC-type power tubes or GaN-type power tubes.
  • the second aspect of the present application provides a drive control device.
  • the drive control device includes a processor.
  • the processor executes a computer program, it can implement the steps of the drive control method defined in any of the above technical solutions.
  • the drive control device has the beneficial technical effects of any one of the drive control methods described above, and will not be repeated here.
  • the third aspect of the present application provides a household electrical appliance, including: a load; a drive control device as defined in any of the above technical solutions; a drive control circuit, the drive control circuit is controlled by the drive control device, and the drive control circuit is provided with a PFC , PFC at least one switching device, the switching device is configured to control the power supply signal to supply power to the load.
  • the fourth aspect of the present application provides a computer-readable storage medium on which a computer program is stored.
  • the steps of the drive control method defined in any of the above technical solutions are realized.
  • Fig. 1 shows a schematic flowchart of a drive control method according to an embodiment of the present application
  • Fig. 2 shows a schematic block diagram of a drive control circuit of an embodiment of the present application
  • FIG. 3 shows a timing diagram of the drive control method of an embodiment of the present application
  • Fig. 4 shows a schematic diagram of a drive control scheme of an embodiment of the present application
  • FIG. 5 shows a timing diagram of the driving control method of an embodiment of the present application
  • FIG. 6 shows a timing diagram of a driving control method according to another embodiment of the present application.
  • FIG. 7 shows a timing diagram of a driving control method according to another embodiment of the present application.
  • Fig. 1 shows a schematic flowchart of a driving control method according to an embodiment of the present application.
  • the drive control circuit is provided with a bridge circuit, and the four bridge arms of the bridge circuit are respectively provided with switching devices, which are respectively referred to as the first switching device and the first switching device.
  • the second switching device, the third switching device and the fourth switching device, the common terminal of the first switching device and the second switching device is connected to the live wire, the common terminal of the third switching device and the fourth switching device is connected to the neutral wire, the first switch
  • the common end of the device and the third switching device is connected to the high-voltage bus, the common end of the second switching device and the fourth switching device is connected to the low-voltage bus
  • the bridge circuit is configured to control the power supply signal to supply power to the load.
  • the driving control method includes: step S102 , Detect the power supply signal, and control the bridge circuit to work in the first mode or the second mode according to the power supply signal; step S104, if the bridge circuit works in the second mode, it is determined that the AC signal in the detected power supply signal belongs to a positive half cycle Waveform or negative half-cycle waveform; step S106, according to the subordination relationship between the AC signal and the positive half-cycle waveform, and the subordination relationship between the AC signal and the negative half-cycle waveform, determine the conduction period of the switching device of the bridge circuit, where the first One mode is configured as a mode to control the switching device to turn off, and the second mode is configured as a mode in which the switching device operates according to a specified pulse driving signal, so that the given current in the second mode follows the AC voltage input to the load.
  • the circuit connected to the switch tube in the above manner is usually referred to as a totem pole bridge circuit.
  • the pulse drive signal is stopped to the switch device.
  • the mode in which the switch device is off can also be recorded as intermittent
  • the pulse drive signal is output to the switching device.
  • the mode where the switching device is in high-frequency conduction can also be recorded as the working mode.
  • the working mode the bus voltage is pulled up, and in the intermittent mode, the capacitive element discharges and the bus voltage drops.
  • the bridge circuit is in working state only for a part of the time, that is, the switching device consumes power only in the second mode, and the switching device does not consume power in the first mode, thereby reducing the switching loss of the bridge circuit and increasing
  • the working efficiency of the drive control circuit improves the energy efficiency of the load.
  • the pulse drive signal includes pulse width, duty cycle, switching frequency, etc., but is not limited thereto.
  • the conduction state of the switching devices of the bridge circuit is determined according to the power supply signal, that is, the actions of the four switching devices of the bridge circuit are controlled.
  • the bridge circuit is in the working mode, It is helpful to reduce the influence of electromagnetic interference.
  • the power supply signal includes the AC voltage input from the grid system and the bus voltage.
  • the switching device is an IGBT (Insulated Gate Bipolar Transistor), or a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor, metal oxide semiconductor power field effect transistor), or alternatively New material semiconductor transistors, for example, SiC-type power tubes or GaN-type power tubes.
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor, metal oxide semiconductor power field effect transistor
  • New material semiconductor transistors for example, SiC-type power tubes or GaN-type power tubes.
  • the drive control method according to the above embodiment of the present application may also have the following additional technical features:
  • the conduction period of the switching device of the bridge circuit is determined, which specifically includes : If the AC signal belongs to a positive half cycle waveform, control the first switching device to turn on or off according to the first duty cycle, and at the same time, control the second switching device to turn on or off according to the second duty cycle; if the AC signal belongs to a negative half cycle Waveform, the first switching device is controlled to turn on or off according to the third duty cycle, and at the same time, the second switching device is controlled to turn on or off according to the fourth duty cycle, where the first duty cycle and the second duty cycle Complementary, the third duty cycle is complementary to the fourth duty cycle, the value of the first duty cycle is configured as a preset value or a variable value, and the value of the second duty cycle is configured as a preset value or a variable value. Variable value, the value of the third duty cycle
  • it further includes: if the AC signal belongs to a positive half-cycle waveform, calculating the difference between the bus signal in the power supply signal and the given bus signal, and determining the first duty cycle according to the difference Ratio; If the AC signal belongs to the negative half-cycle waveform, calculate the difference between the bus signal in the power supply signal and the given bus signal, and determine the third duty cycle according to the difference, where, in the corresponding period of the positive half-cycle waveform, The first duty cycle changes from small to large with time, and then from large to small, and in the corresponding period of the negative half-cycle waveform, the third duty cycle changes from large to small with time, and then from small to large.
  • the conduction period of the switching device of the bridge circuit is determined according to the dependency between the power supply signal and the positive half-cycle waveform, and the dependency between the power supply signal and the negative half-cycle waveform, Specifically, it also includes: if the AC signal belongs to a positive half-cycle waveform, control the third switching device to turn off, and at the same time, control the fourth switching device to turn on within the duration of the positive half-cycle waveform; if the AC signal belongs to a negative half-cycle waveform, control the fourth The switching device is turned off, and at the same time, the third switching device is controlled to be turned on within the duration of the negative half-cycle waveform.
  • the driving control method further includes: controlling both the third switching device and the fourth switching device to be turned off during the switching period corresponding to the zero-crossing point of the power supply signal.
  • the switching between the first mode and the second mode is performed at the zero-crossing point of the AC voltage to effectively reduce the harmonic signal, thereby reducing the current fluctuation phenomenon in the circuit, which is beneficial to improve the circuit sampling and closed loop Reliability and accuracy of control.
  • the third switching device and the fourth switching device are controlled to be turned off, that is, when the conduction time of the third switching tube and the fourth switching tube are Setting a dead time between the on-times can further improve the reliability of the drive control circuit.
  • detecting the power supply signal, and determining the minimum value of the given current in the second mode according to the rate of change of the power supply signal specifically includes: calculating the difference between the bus signal and the given bus signal Difference, the rate of change of the bus signal is configured to determine the minimum value of the given current; the difference between the bus signal and the given bus signal is input to the first PI controller, and the first PI controller is configured to be able to Output the given current in the second mode; input the limited given current, AC voltage and AC current to the second PI controller, and the second PI controller is configured to be able to output the first duty cycle or the first Three duty cycles, where a given current is configured to control the rise of the bus signal.
  • the rate of change of the bus signal is configured to be able to determine the minimum value of the given current, which can effectively ensure the rise rate of the bus voltage and reduce the bus
  • the voltage drop causes the load to stop rotating. While improving the energy efficiency of the load, it is helpful to further improve the reliability of the load operation.
  • the first PI controller determines the rate of change according to the difference between the power supply signal and the power supply signal threshold, thereby determining the gain value of a given current.
  • the product of the gain value and the AC voltage is the given current, and the given current is After the current limiting process, it is output to the second PI controller.
  • the second PI controller calculates and determines the first duty cycle, the second duty cycle, the third duty cycle, and the fourth duty cycle according to the given current.
  • the conduction time of the first switch is the same as A dead time is set between the conduction time between the second switching tubes.
  • the first PI controller and the second PI controller are both proportional integral controllers.
  • the drive control method further includes: if the bridge circuit operates in the first mode, determining whether the detected power signal is less than or equal to the first bus signal threshold; if it is determined that the detected power signal If it is less than or equal to the first bus signal threshold, the bridge circuit is controlled to switch to the second mode at the specified time of the power supply signal.
  • the bridge circuit works in the first mode, and the first bus signal threshold is less than or equal to the minimum value of the bus signal. Therefore, if it is determined that the detected power supply signal is less than or equal to the first bus signal threshold, in order to avoid the bus voltage Drop, and then control the bridge circuit to switch to the second mode of operation at a specified time, so that the bus voltage rises.
  • the driving control method further includes: if the bridge circuit operates in the first mode, determining whether the detected bus signal is less than or equal to the first bus signal threshold in the power supply signal threshold; if Determine whether the detected bus signal is greater than the first bus signal threshold, then predict the bus signal in the next cycle; determine whether the bus signal in the next cycle is less than or equal to the first bus signal threshold; if it is determined that the bus signal in the next cycle is less than Or equal to the first bus signal threshold, the bridge circuit is controlled to switch to the second mode at a specified time.
  • the bridge circuit works in the first mode, and the first bus signal threshold is greater than or equal to the minimum threshold of the bus signal. Therefore, the bus signal in the next cycle is predicted. If it is determined that the bus signal in the next cycle is less than or It is equal to the first bus signal threshold. In order to avoid the bus voltage drop, switch to the second mode of operation at a specified time. Optionally, switch to the second mode of operation at the zero crossing point of the AC voltage in the next cycle to reduce the effect of harmonic signals on the circuit Interference.
  • the drive control method further includes: if the bridge circuit operates in the second mode, determining whether the power supply signal is greater than or equal to the second bus signal threshold; if it is determined that the power supply signal is greater than or equal to the first bus signal threshold; The second bus signal threshold value controls the bridge circuit to switch to the first mode at the specified time of the power supply signal.
  • the threshold of the second power supply signal is less than or equal to the maximum threshold of the bus signal. While the bridge circuit works in the second mode, the bus voltage continues to rise. In order to avoid breakdown of the capacitive element or switching device, the bridge is controlled. The circuit switches to the first mode at the specified time of the power supply signal, which not only helps to further improve the energy efficiency of the load, but also further improves the reliability of the circuit.
  • the designated time is the zero-crossing point of the AC voltage in the current cycle, for example, a half-wave zero-crossing point or a full-wave zero-crossing point, so as to effectively reduce noise such as harmonic signals and electromagnetic interference generated during the switching mode of the switching device.
  • it further includes: if the bridge circuit operates in the second mode, determining whether the detected bus signal is greater than or equal to the second bus signal threshold in the power supply signal threshold; If the bus signal is less than the second bus signal threshold, predict the bus signal in the next cycle; determine the magnitude relationship between the bus signal in the next cycle and the third bus signal threshold; according to the bus signal and the third bus signal in the next cycle The size relationship between the bus signal thresholds, and the bridge circuit is controlled to switch to the first mode at a specified time.
  • the bus signal and the third bus signal in the next cycle can be judged in a predictive manner.
  • the size relationship between the thresholds is used to determine the specified time for switching to the first mode in the next cycle, thereby further improving the stability and reliability of the driving load operation, and further reducing voltage fluctuations and harmonic signals.
  • the designated time is the zero-crossing point of the AC voltage in the next cycle, for example, the half-wave zero-crossing point or the full-wave zero-crossing point, so as to effectively reduce noise such as harmonic signals and electromagnetic interference generated during the switching mode of the switching device.
  • the drive control circuit further includes a capacitive element, which is connected between the switching device and the load, and the capacitive element includes a plurality of series and/or parallel electrolytic capacitors, or The capacitive element includes a plurality of film capacitors connected in series and/or in parallel, and the driving control method further includes: determining the second bus signal threshold according to the withstand voltage threshold of the capacitive element and the withstand voltage threshold of the switching device.
  • the second bus signal threshold is determined according to the withstand voltage threshold of the capacitive element and the withstand voltage threshold of the switching tube. On the one hand, it reduces the possibility of breakdown of the capacitive element and the switching tube. On the one hand, the upper limit voltage threshold determines the moment when the switch tube switches between the first mode and the second mode, which further improves the reliability of the power factor correction module and the energy efficiency of load operation.
  • Fig. 2 shows a schematic block diagram of a drive control circuit of an embodiment of the present application.
  • the drive control circuit is connected between the power grid system AC and the input end of the load, and specifically includes: bridgeless totem pole PFC module, capacitive Component C (with filtering characteristics) and inverter.
  • the bridgeless totem pole PFC module includes an inductive component L, a switch tube and a unidirectional conduction device D. Due to the charging and discharging effects of the capacitive component C, the capacitive component The voltage on C presents a sawtooth ripple.
  • the unidirectional conducting device D Combined with the conduction characteristics of the unidirectional conducting device D, only when the instantaneous value of the AC line voltage is higher than the voltage on the capacitive element, the unidirectional conducting device D will be biased in the forward direction. Set to conduction, that is, in each cycle of the AC line input signal, only the unidirectional conduction device D will be turned on near the peak value.
  • the input AC voltage presents a sine wave waveform, but the input AC current has a large number of spikes Pulse, that is, the harmonic component that causes the circuit's power factor to drop.
  • the bridgeless totem pole PFC module can not only solve the problem of the phase difference between the AC voltage and the AC current, but also solve the electromagnetic interference and electromagnetic compatibility problems caused by the harmonic signal.
  • the switch tube includes The first switching tube Q 1 , the second switching tube Q 2 , the third switching tube Q 3 and the fourth switching tube Q 4 , wherein the first switching tube Q 1 and the second switching tube Q 2 are high-frequency switching tubes, The third switching tube Q 3 and the fourth switching tube Q 4 are low-frequency switching tubes.
  • the operating mode of the switch tube is adjusted in combination with the operating parameters of the load, especially when the drive is detected When the power required for load operation is low, the switch tube is controlled according to the power supply signal, where the power supply signal includes the AC voltage and bus voltage of the AC input of the grid system.
  • the switch operates in a second mode, it is further coupled with the bus voltage V dc bus signal, and a minimum threshold V dc_min of the bus voltage V dc bus signal The relationship between the magnitude and magnitude of the control to control the output of the pulse drive signal to the switch tube or stop the output of the pulse drive signal to the switch tube.
  • the bus voltage V dc exceeds the upper limit voltage threshold, stop outputting the pulse drive signal to the switch tube, that is, switch to the first mode of operation, that is, the switch tube is in an intermittent state, if the bus voltage is lower than the minimum threshold of the bus signal V dc_min , Then output a pulse drive signal to the switch tube, that is, switch to the second mode of work, that is, the switch tube is in the working state, so that the given current IS is close to the sine wave waveform.
  • timing of switching between the first mode and the second mode signal U S AC zero crossings of the time to further reduce spikes drive control circuit.
  • the steps executed by the PI controller include:
  • the first PI controller determines the rate of change according to the difference between the bus signal V dc and the bus signal threshold V dcref , thereby determining the gain value I ref_dc of a given current, and the gain value and the AC voltage V ac (in Figure 4 The product of the shown absolute value of the AC voltage) is the given current, which is output to the second PI controller after current limiting processing is performed on the given current.
  • the second PI controller calculates and determines the pulse drive signal according to the given current and the alternating current I ac , where the pulse drive signal includes the first duty cycle, the second duty cycle, the third duty cycle and the fourth duty cycle. For the empty ratio, for the same reason, a dead time is set between the conduction time of the first switching tube and the conduction time between the second switching tube.
  • the pulse driving signal also includes the switching frequency of the switching tube.
  • the first PI controller and the second PI controller are both proportional integral controllers.
  • Fig. 5 shows a timing diagram of a driving control method according to another embodiment of the present application.
  • the controller sends the first switch tube Q 1 And the second switching tube Q 2 output a pulse drive signal
  • the duty ratio of the first switching tube Q 1 is a variable value (increasing from small or decreasing from large) or a preset fixed value
  • the first switching tube Q 1 on-time of the second switch Q 2 is complementary to the conduction time
  • the third switch Q 3 is turned on
  • the fourth switching transistor Q 4 is turned off.
  • the controller outputs pulse drive signals to the first switching tube Q 1 and the second switching tube Q 2 , the duty of the first switching tube Q 1
  • the ratio is a variable value (increasing from small or increasing from large to small) or a preset fixed value.
  • the conduction time of the first switching transistor Q 1 is complementary to the conduction time of the second switching transistor Q 2 , and the third switch The tube Q 3 is turned off, and the fourth switching tube Q 4 is turned on.
  • FIG. 6 shows the voltage variation of the first switch Q 1 and the second voltage change switch Q 2 '.
  • the bus signal Perform prediction and sampling.
  • the bus signal After entering the second mode, predict the first bus voltage predicted value V dc_pre1 corresponding to the first half-wave zero-crossing point, and compare the first bus voltage predicted value V dc_pre1 with the maximum bus signal threshold V dc_max .
  • first bus voltage prediction value V dc_pre1 is less than the maximum bus signal threshold V dc_max . If it is determined that the first bus voltage prediction value V dc_pre1 is less than the maximum bus signal threshold V dc_max , then continue to maintain the second mode of operation, and predict the first bus signal based on the next full-wave zero crossing point V dc_cur Bus voltage prediction value V dc_pre2 , compare the magnitude relationship between the second bus voltage prediction value V dc_pre2 and the bus signal maximum threshold V dc_max .
  • a household appliance includes: a load; a drive control device as described above; a drive control circuit, the drive control circuit is controlled by the drive control device, the drive control circuit is provided with PFC, and PFC at least one switching device , The switching device is configured to control the power supply signal to supply power to the load.
  • the household electrical appliance includes the drive control device as in any of the foregoing embodiments. Therefore, the household electrical appliance includes all the beneficial effects of the drive control device as in any of the foregoing embodiments, which will not be repeated again.
  • the household electrical appliance includes at least one of an air conditioner, a refrigerator, a fan, a range hood, a vacuum cleaner, and a host computer.
  • the switch tube is set to control the power supply signal to supply power to the load.
  • the bus voltage is within the normal variation range, the normal operation of the load can be guaranteed.
  • the voltage change sets the corresponding burst (intermittent oscillation) mode control strategy, that is, the intermittent output control strategy, to control the high-frequency action signal in an intermittent output state through the intermittent output control strategy, that is, the high-frequency action signal is not required to be continuously output State, that is, the switch tube does not need to be continuously in the high-frequency switching state, which can reduce the power consumption of the power factor correction module in the drive control circuit to improve the electrical equipment (such as air conditioners) using the drive control circuit Energy efficiency.
  • the controller can be MCU (Micro-programmed Control Unit), CPU (Central Processing Unit, central processing unit), DSP (Digital Signal Processor, digital signal processor) and embedded equipment.
  • MCU Micro-programmed Control Unit
  • CPU Central Processing Unit, central processing unit
  • DSP Digital Signal Processor, digital signal processor
  • embedded equipment One, but not limited to this.
  • a computer program is stored thereon, and when the computer program is executed, the steps of the drive control method as defined in any of the above technical solutions are realized.
  • the circuit connected to the switching tube in the above-mentioned manner is usually referred to as a totem pole bridge circuit.
  • the pulse driving signal to the switching device is stopped, and the mode in which the switching device is off can also be recorded as the intermittent mode.
  • the pulse drive signal is output to the switching device.
  • the mode in which the switching device is in high-frequency conduction can also be recorded as the working mode.
  • the working mode the bus voltage is pulled up, and in the intermittent mode, the capacitive element discharges and the bus voltage drops.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

本申请提出了一种驱动控制方法、装置、家电设备和计算机可读存储介质,其中,驱动控制方法包括:检测供电信号,根据供电信号控制桥式电路以第一模式工作或以第二模式工作;若桥式电路以第二模式工作,则确定供电信号中的交流信号属于正半周波形或负半周波形;根据交流信号与正半周波形之间的从属关系,以及交流信号与负半周波形之间的从属关系,确定桥式电路的开关器件的导通时段,其中,第一模式被配置为控制开关器件截止的模式,第二模式被配置为开关器件按照指定脉冲驱动信号工作的模式,以使第二模式下的给定电流跟随输入至负载的交流电压。通过本申请的技术方案,提升了驱动负载运行的工作效率,降低了电路功耗和硬件损耗。

Description

驱动控制方法、装置、家电设备和计算机可读存储介质
本申请要求于2019年05月31日提交中国专利局、申请号为201910472244.2、发明名称为“驱动控制方法、装置、家电设备和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及驱动控制领域,具体而言,涉及一种驱动控制方法、一种驱动控制装置、一种家电设备和一种计算机可读存储介质。
背景技术
PFC(Power Factor Correction,功率因数校正)技术广泛应用于驱动控制电路中,其主要作用在于提高用电设备(负载)的用电效率。
相关技术中,通常采用PWM(Pulse-Width Modulation,脉宽调制信号)驱动开关管导通或截止,常用的PFC模组包括Boost型PFC模组和无桥图腾柱型PFC模组,两种PFC模组在驱动负载运行时至少存在以下技术缺陷:
(1)Boost型PFC模组的电路结构简单,即通过开关管控制电感的充放电过程,但是,Boost型PFC模组的效率低下,且开关损耗大。
(2)无桥图腾柱型PFC模组的效率高于Boost型PFC模组的效率,但是,无桥图腾柱型PFC模组通常以高频或工频方式工作,这不仅导致驱动控制电路的硬件损耗高和功耗高,也不利于进一步地提高负载的能效。
另外,整个说明书对背景技术的任何讨论,并不代表该背景技术一定是所属领域技术人员所知晓的现有技术,整个说明书中的对现有技术的任何讨论并不代表认为该现有技术一定是广泛公知的或一定构成本领域的公知常识。
申请内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请第一方面在于提出了一种驱动控制方法。
本申请的第二方面在于提出了一种驱动控制装置。
本申请的第三方面在于提出了一种家电设备。
本申请的第四方面在于提出了一种计算机可读存储介质。
在本申请的第一方面的技术方案中,提出了一种驱动控制方法,驱动控制电路设有桥式电路,桥式电路的四个桥臂分别设有开关器件,分别记作第一开关器件、第二开关器件、第三开关器件和第四开关器件,第一开关器件与第二开关器件的公共端连接至火线,第三开关器件与第四开关器件的公共端连接至零线,第一开关器件与第三开关器件的公共端连接至高压母线,第二开关器件与第四开关器件的公共端连接至低压母线,桥式电路被配置控制供电信号对负载供电,驱动控制方法包括:检测供电信号,根据供电信号控制桥式电路以第一模式工作或以第二模式工作;若桥式电路以第二模式工作,则确定检测的供电信号中的交流信号属于正半周波形或负半周波形;根据交流信号与正半周波形之间的从属关系,以及交流信号与负半周波形之间的从属关系,确定桥式电路的开关器件的导通时段,其中,第一模式被配置为控制开关器件截止的模式,第二模式被配置为开关器件按照指定脉冲驱动信号工作的模式,以使第二模式下的给定电流跟随输入至负载的交流电压。
本申请提供的驱动控制方法,按照上述方式连接开关管的电路通常简称为图腾柱型桥式电路,第一模式下停止向开关器件输出脉冲驱动信号,开关器件处于截止的模式也可以记作间歇模式,第二模式下向开关器件输出脉冲驱动信号,开关器件处于高频导通的模式也可以记作工作模式,工作模式下母线电压拉高,在间歇模式下容性元件放电以致母线电压下降,使得桥式电路只在一部分时间内处于工作状态,即开关器件只在第二模式下耗电,而在第一模式下开关器件无功耗,进而降低了桥式电路的开关损耗,提高了驱动控制电路的工作效率,从而提升了负载能效。
其中,脉冲驱动信号包括脉冲宽度、占空比和开关频率等,但不限于 此。
进一步地,当桥式电路处于工作模式时,根据供电信号确定桥式电路的开关器件的导通状态,即控制桥式电路的四个开关器件的动作,另外,桥式电路处于工作模式时,有利于降低电磁干扰的影响。
本领域的技术人员能够理解的是,供电信号包括电网系统输入的交流电压和母线电压。
可选地,开关器件为IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管),也可以选用MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属氧化物半导体功率场效应晶体管),还可以选用新材料半导体晶体管,例如,SiC型功率管或GaN型功率管。
本申请的第二方面提供了一种驱动控制装置,驱动控制装置包括处理器,处理器执行计算机程序时,能够实现如上述任一项技术方案限定的驱动控制方法的步骤。
因此,驱动控制装置具有上述任一项驱动控制方法的有益技术效果,在此不再赘述。
本申请的第三方面提供了一种家电设备,包括:负载;如上述任一项技术方案限定的驱动控制装置;驱动控制电路,驱动控制电路受控于驱动控制装置,驱动控制电路设有PFC,PFC至少一个开关器件,开关器件被配置控制供电信号对负载供电。
本申请的第四方面提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被执行时,实现如上述任一项技术方案限定的驱动控制方法的步骤。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请的一个实施例的驱动控制方法的流程示意图;
图2示出了本申请的一个实施例的驱动控制电路的示意框图;
图3示出了本申请的一个实施例的驱动控制方法的时序图;
图4示出了本申请的一个实施例的驱动控制方案的示意图;
图5示出了本申请的一个实施例的驱动控制方法的时序图;
图6示出了本申请的另一个实施例的驱动控制方法的时序图;
图7示出了本申请的另一个实施例的驱动控制方法的时序图。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不限于下面公开的具体实施例的限制。
下面结合图1至图6所示的时序图,对无桥图腾柱型PFC模组的开关管以第一模式或第二模式工作的实施例进行具体说明。
图1示出了本申请的一个实施例的驱动控制方法的流程示意图。
如图1所示,根据本申请的一个实施例的驱动控制方法,驱动控制电路设有桥式电路,桥式电路的四个桥臂分别设有开关器件,分别记作第一开关器件、第二开关器件、第三开关器件和第四开关器件,第一开关器件与第二开关器件的公共端连接至火线,第三开关器件与第四开关器件的公共端连接至零线,第一开关器件与第三开关器件的公共端连接至高压母线,第二开关器件与第四开关器件的公共端连接至低压母线,桥式电路被配置控制供电信号对负载供电,驱动控制方法包括:步骤S102,检测供电信号,根据供电信号控制桥式电路以第一模式工作或以第二模式工作;步骤S104,若桥式电路以第二模式工作,则确定检测的供电信号中的交流信号属于正半周波形或负半周波形;步骤S106,根据交流信号与正半周波形之间的从属关系,以及交流信号与负半周波形之间的从属关系,确定桥式电路的开关器件的导通时段,其中,第一模式被配置为控制开关器件截止的模式, 第二模式被配置为开关器件按照指定脉冲驱动信号工作的模式,以使第二模式下的给定电流跟随输入至负载的交流电压。
本申请提供的驱动控制方法,按照上述方式连接开关管的电路通常简称为图腾柱型桥式电路,第一模式下停止向开关器件输出脉冲驱动信号,开关器件处于截止的模式也可以记作间歇模式,第二模式下向开关器件输出脉冲驱动信号,开关器件处于高频导通的模式也可以记作工作模式,工作模式下母线电压拉高,在间歇模式下容性元件放电以致母线电压下降,使得桥式电路只在一部分时间内处于工作状态,即开关器件只在第二模式下耗电,而在第一模式下开关器件无功耗,进而降低了桥式电路的开关损耗,提高了驱动控制电路的工作效率,从而提升了负载能效。
其中,脉冲驱动信号包括脉冲宽度、占空比和开关频率等,但不限于此。
进一步地,当桥式电路处于工作模式时,根据供电信号确定桥式电路的开关器件的导通状态,即控制桥式电路的四个开关器件的动作,另外,桥式电路处于工作模式时,有利于降低电磁干扰的影响。
本领域的技术人员能够理解的是,供电信号包括电网系统输入的交流电压和母线电压。
可选地,开关器件为IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管),也可以选用MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,金属氧化物半导体功率场效应晶体管),还可以选用新材料半导体晶体管,例如,SiC型功率管或GaN型功率管。
另外,根据本申请上述实施例的驱动控制方法,还可以具有如下附加的技术特征:
在上述技术方案中,可选地,根据供电信号与正半周波形之间的从属关系,以及供电信号与负半周波形之间的从属关系,确定桥式电路的开关器件的导通时段,具体包括:若交流信号属于正半周波形,则控制第一开关器件按照第一占空比导通或截止,同时,控制第二开关器件按照第二占空比导通或截止;若交流信号属于负半周波形,则控制第一开关器件按照第三占空比导通或截止,同时,控制第二开关器件按照第四占空比导通或 截止,其中,第一占空比与第二占空比互补,第三占空比与第四占空比互补,第一占空比的数值被配置为预设定值或可变数值,第二占空比的数值被配置为预设定值或可变数值,第三占空比的数值被配置为预设定值或可变数值,第四占空比的数值被配置为预设定值或可变数值。
在上述任一技术方案中,可选地,还包括:若交流信号属于正半周波形,则计算供电信号中的母线信号与给定母线信号之间的差值,根据差值确定第一占空比;若交流信号属于负半周波形,则计算供电信号中的母线信号与给定母线信号之间的差值,根据差值确定第三占空比,其中,在正半周波形的对应时段内,第一占空比随时间由小变大,再由大变小,以及,在负半周波形的对应时段内,第三占空比随时间由大变小,再由小变大。
在上述任一技术方案中,可选地,根据供电信号与正半周波形之间的从属关系,以及供电信号与负半周波形之间的从属关系,确定桥式电路的开关器件的导通时段,具体还包括:若交流信号属于正半周波形,则控制第三开关器件截止,同时,控制第四开关器件在正半周波形的持续时长内导通;若交流信号属于负半周波形,则控制第四开关器件截止,同时,控制第三开关器件在负半周波形的持续时长内导通。
在上述任一技术方案中,可选地,驱动控制方法还包括:在供电信号的过零点对应的切换时段内,控制第三开关器件和第四开关器件均截止。
在该技术方案中,在交流电压的过零点进行第一模式与第二模式之间的切换,以有效地减小谐波信号,进而减少电路中的电流波动现象,有利于提升电路采样和闭环控制的可靠性和准确性,另外,在供电信号的过零点对应的切换时段内,控制第三开关器件和第四开关器件均截止,即在第三开关管的导通时间与第四开关管之间的导通时间之间设置死区时间,能够进一步地提升驱动控制电路的可靠性。
在上述任一技术方案中,可选地,检测供电信号,并根据供电信号的变化率确定第二模式下的给定电流的最小值,具体包括:计算母线信号与给定母线信号之间的差值,母线信号的变化率被配置为能够确定给定电流的最小值;将母线信号与给定母线信号之间的差值输入至第一PI控制器,第一PI控制器被配置为能够输出第二模式下的给定电流;将限幅处理后的 给定电流、交流电压和交流电流输入至第二PI控制器,第二PI控制器被配置为能够输出第一占空比或第三占空比,其中,给定电流被配置为控制母线信号上升。
在该技术方案中,通过计算母线信号与给定母线信号之间的差值,母线信号的变化率被配置为能够确定给定电流的最小值,能够有效地保证母线电压上升速率,以及降低母线电压跌落导致负载停转的情况发生,在提升负载能效的同时,有利于进一步地提升负载运行的可靠性。
具体地,第一PI控制器根据供电信号与供电信号阈值之间的差值确定变化速率,从而确定给定电流的增益值,增益值与交流电压的乘积为给定电流,对给定电流进行限流处理后,输出至第二PI控制器。
进一步地,第二PI控制器根据给定电流计算确定第一占空比、第二占空比、第三占空比和第四占空比,同理,第一开关管的导通时间与第二开关管之间的导通时间之间设置死区时间。
其中,第一PI控制器和第二PI控制器均为比例积分控制器。
在上述任一技术方案中,可选地,驱动控制方法还包括:若桥式电路以第一模式工作,则判断检测的供电信号是否小于或等于第一母线信号阈值;若判定检测的供电信号小于或等于第一母线信号阈值,则控制桥式电路在供电信号的指定时刻切换至第二模式工作。
在该技术方案中,桥式电路以第一模式工作,第一母线信号阈值小于或等于母线信号的最小值,因此,若判定检测的供电信号小于或等于第一母线信号阈值,为了避免母线电压跌落,进而控制桥式电路在指定时刻切换至第二模式工作,以使母线电压上升。
在上述任一技术方案中,可选地,驱动控制方法还包括:若桥式电路以第一模式工作,则判断检测的母线信号是否小于或等于供电信号阈值中的第一母线信号阈值;若判定检测的母线信号大于第一母线信号阈值,则预测下一周期内的母线信号;判断下一周期内的母线信号是否小于或等于第一母线信号阈值;若判定下一周期内的母线信号小于或等于第一母线信号阈值,则控制桥式电路在指定时刻切换至第二模式工作。
在该技术方案中,桥式电路以第一模式工作,第一母线信号阈值大于 或等于母线信号的最小阈值,因此,预测下一周期内的母线信号,若判定下一周期的母线信号小于或等于第一母线信号阈值,为了避免母线电压跌落,则在指定时刻切换至第二模式工作,可选地,在下一周期的交流电压过零点切换至第二模式工作,以降低谐波信号对电路的干扰。
在上述任一技术方案中,可选地,驱动控制方法还包括:若桥式电路以第二模式工作,则判断供电信号是否大于或等于第二母线信号阈值;若判定供电信号大于或等于第二母线信号阈值,则控制桥式电路在供电信号的指定时刻切换至第一模式工作。
在该技术方案中,第二供电信号阈值小于或等于母线信号的最大阈值,在桥式电路以第二模式工作间,母线电压持续上升,为了避免击穿容性元件或开关器件,控制桥式电路在供电信号的指定时刻切换至第一模式,不仅有利于进一步地提升负载能效,也能够进一步地提升电路的可靠性。
可选地,指定时刻为当前周期内交流电压的过零点时刻,譬如,半波过零点或整波过零点,以有效地降低开关器件切换模式过程中产生谐波信号和电磁干扰等噪声。
在上述任一技术方案中,可选地,还包括:若桥式电路以第二模式工作,则判断检测的母线信号是否大于或等于供电信号阈值中的第二母线信号阈值;若判定检测的母线信号小于第二母线信号阈值,则预测下一周期内的母线信号;判断下一周期内的母线信号与第三母线信号阈值之间的大小关系;根据下一周期内的母线信号与第三母线信号阈值之间大小关系,控制桥式电路在指定时刻切换至第一模式工作。
在该技术方案中,若检测到母线信号小于第二母线信号阈值,则不需要立即由第一模式切换至第二模式,可以采用预测的方式判断下一周期内的母线信号与第三母线信号阈值之间的大小关系,并以此来确定下一周期内切换至第一模式的指定时刻,进而进一步地提升驱动负载运行的稳定性和可靠性,以及进一步地降低电压波动和谐波信号。
可选地,指定时刻为下一周期内交流电压的过零点时刻,譬如,半波过零点或整波过零点,以有效地降低开关器件切换模式过程中产生谐波信号和电磁干扰等噪声。
在上述任一技术方案中,可选地,驱动控制电路还包括一个容性元件,容性元件接入于开关器件与负载之间,容性元件包括多个串联和/或并联电解电容,或容性元件包括多个串联和/或并联的薄膜电容,驱动控制方法还包括:根据容性元件的耐压阈值和开关器件的耐压阈值,确定第二母线信号阈值。
在该技术方案中,通过根据容性元件的耐压阈值与开关管的耐压阈值,确定第二母线信号阈值,一方面,降低了容性元件和开关管被击穿的可能性,另一方面,上限电压阈值确定了开关管在第一模式与第二模式之间切换的时刻,进一步地提升了功率因数校正模组的可靠性和负载运行能效。
图2示出了本申请的一个实施例的驱动控制电路的示意框图。
如图2所示,根据本申请的另一个实施例的驱动控制电路,驱动控制电路接入于电网系统AC与负载的输入端之间,具体包括:无桥图腾柱型PFC模组、容性元件C(具备滤波特性)和逆变器,其中,无桥图腾柱型PFC模组包括感性元件L、开关管和单向导通器件D,由于容性元件C的充电和放电作用,容性元件C上的电压呈现锯齿波的纹波,结合单向导通器件D的导通特性,只有在AC线路电压瞬时值高于容性元件上的电压时,单向导通器件D才会因正向偏置而导通,也即在AC线路输入信号的每个周期内,只有在峰值附近单向导通器件D才会导通,输入的交流电压呈现正弦波波形,但是,输入的交流电流存在大量尖峰脉冲,也即引起电路功率因数低下的谐波成分。
因此,无桥图腾柱型PFC模组不仅能够解决交流电压与交流电流之间存在相位差的问题,也能解决谐波信号引起的电磁干扰和电磁兼容问题,在本实施例中,开关管包括第一开关管Q 1、第二开关管Q 2、第三开关管Q 3和第四开关管Q 4,其中,第一开关管Q 1和第二开关管Q 2为高频开关管,第三开关管Q 3和第四开关管Q 4为低频开关管。
如图3所示,处于进一步地提升负载运行能效的目的,对于上述有源的无桥图腾柱型PFC模组而言,结合负载的运行参数调整开关管的工作模式,尤其是在检测到驱动负载运行所需电量较低时,根据供电信号来控制开关管是否工作,其中,供电信号包括电网系统AC输入的交流电压和母 线电压。
更进一步地,若确定开关管以第二模式工作,则进一步地结合母线电压V dc与母线信号的最大阈值V dc_max之间的大小关系,以及母线电压V dc与母线信号的最小阈值V dc_min之间的大小关系,以控制向开关管输出脉冲驱动信号或停止向开关管输出脉冲驱动信号。
具体地,若母线电压V dc超过上限电压阈值,则停止向开关管输出脉冲驱动信号,即切换至第一模式工作,即开关管处于间歇状态,若母线电压低于母线信号的最小阈值V dc_min,则向开关管输出脉冲驱动信号,即切换至第二模式工作,即开关管处于工作状态,使给定电流I S接近于正弦波波形。
再进一步地,第一模式与第二模式之间的切换时刻为交流信号U S的过零点时刻,以进一步地降低驱动控制电路中的尖峰信号。
如图4所示,在本实施例的驱动控制方案中,PI控制器执行的步骤包括:
(1)第一PI控制器根据母线信号V dc与母线信号阈值V dcref之间的差值确定变化速率,从而确定给定电流的增益值I ref_dc,增益值与交流电压V ac(图4中所示的交流电压绝对值)的乘积为给定电流,对给定电流进行限流处理后,输出至第二PI控制器。
(2)第二PI控制器根据给定电流和交流电流I ac计算确定脉冲驱动信号,其中,脉冲驱动信号包括第一占空比、第二占空比、第三占空比和第四占空比,同理,第一开关管的导通时间与第二开关管之间的导通时间之间设置死区时间,另外,脉冲驱动信号还包括开关管的开关频率。
其中,第一PI控制器和第二PI控制器均为比例积分控制器。
图5示出了根据本申请的另一个实施例的驱动控制方法的时序图。
如图5所示,在电网系统AC向负载输入交流电压U S的过程中,在T 0~T 3时段内,记作交流电压U S的正半周波形,控制器向第一开关管Q 1和第二开关管Q 2输出脉冲驱动信号,第一开关管Q 1的占空比是可变的数值(由小增大或由大变小)或预设的定值,第一开关管Q 1的导通时间与第二开关管Q 2的导通时间互补,第三开关管Q 3导通,且第四开关管Q 4截止。
在T 3~T 6时段内,记作交流电压U S的负半周波形,控制器向第一开关管Q 1和第二开关管Q 2输出脉冲驱动信号,第一开关管Q 1的占空比是可变的数值(由小增大或由大变小)或预设的定值,第一开关管Q 1的导通时间与第二开关管Q 2的导通时间互补,第三开关管Q 3截止,且第四开关管Q 4导通。
具体地,如图6所示,给出了第一开关管Q 1的电压变化和第二开关管Q 2的电压变化。
如图7所示,根据母线电压的采样值确定在一个全波过零点对应的T 12时刻时,由第一模式切换至第二模式,根据母线信号V dc随时间变化的规律,对母线信号进行预测和采样,可选地,在进入第二模式后预测第一个半波过零点对应的第一母线电压预测值V dc_pre1,比较第一母线电压预测值V dc_pre1与母线信号的最大阈值V dc_max的大小关系,若确定第一母线电压预测值V dc_pre1小于母线信号的最大阈值V dc_max,则继续保持第二模式工作,并根据下一次全波过零点的母线信号采样值V dc_cur预测第一母线电压预测值V dc_pre2,比较第二母线电压预测值V dc_pre2与母线信号的最大阈值V dc_max的大小关系,若确定第二母线电压预测值V dc_pre2接近母线信号的最大阈值V dc_max,即母线信号的最大阈值V dc_max与第二母线电压预测值V dc_pre2之间的差值小于差值阈值,则确定在另一全波过零点对应的时刻T 21切换至第一模式。
根据本申请的实施例的家电设备,包括:负载;如上述任一项的驱动控制装置;驱动控制电路,驱动控制电路受控于驱动控制装置,驱动控制电路设有PFC,PFC至少一个开关器件,开关器件被配置控制供电信号对负载供电。
在该技术方案中,家电设备包括如上述任一实施例中的驱动控制装置,因此,该家电设备包括如上述任一实施例中的驱动控制装置的全部有益效果,再次不再赘述。
在本申请的一个实施例中,可选地,家电设备包括空调器、电冰箱、风扇、抽油烟机、吸尘器和电脑主机中的至少一种。
在该实施例中,通过设置开关管控制供电信号对负载供电,只要母线 电压处于该正常变化范围之内,即可保证负载的正常运行,在能够保证负载能够正常运行的前提下,可以针对母线电压的变化设置对应的burst(间歇振荡)模式的控制策略,即间歇输出控制策略,以通过间歇输出控制策略控制高频动作信号处于间歇性的输出状态,即不需要高频动作信号持续处于输出状态,也即开关管不需要持续处于高频动作开关状态,从而能够减小驱动控制电路中功率因数校正模组的导通功耗,以提升采用该驱动控制电路的电器设备(比如空调器)的能效。
可选地,控制器可以为MCU(Micro-programmed Control Unit,微程序控制器)、CPU(Central Processing Unit,中央处理机)、DSP(Digital Signal Processor,数字信号处理器)和嵌入式设备中的一种,但不限于此。
根据本申请的实施例的计算机可读存储介质,其上存储有计算机程序,计算机程序被执行时,实现如上述任一项技术方案限定的驱动控制方法的步骤。
通过本申请的技术方案,按照上述方式连接开关管的电路通常简称为图腾柱型桥式电路,第一模式下停止向开关器件输出脉冲驱动信号,开关器件处于截止的模式也可以记作间歇模式,第二模式下向开关器件输出脉冲驱动信号,开关器件处于高频导通的模式也可以记作工作模式,工作模式下母线电压拉高,在间歇模式下容性元件放电以致母线电压下降,使得桥式电路只在一部分时间内处于工作状态,即开关器件只在第二模式下耗电,而在第一模式下开关器件无功耗,进而降低了桥式电路的开关损耗,提高了驱动控制电路的工作效率,从而提升了负载能效。
在本说明书的描述中,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性,除非另有明确的规定和限定;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点 包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的可选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种驱动控制方法,适用于驱动控制电路,所述驱动控制电路设有桥式电路,所述桥式电路的四个桥臂分别设有开关器件,分别记作第一开关器件、第二开关器件、第三开关器件和第四开关器件,所述第一开关器件与所述第二开关器件的公共端连接至火线,所述第三开关器件与所述第四开关器件的公共端连接至零线,所述第一开关器件与所述第三开关器件的公共端连接至高压母线,所述第二开关器件与所述第四开关器件的公共端连接至低压母线,所述桥式电路被配置控制供电信号对负载供电,其中,所述驱动控制方法包括:
    检测供电信号,根据所述供电信号控制所述桥式电路以第一模式工作或以第二模式工作;
    若所述桥式电路以所述第二模式工作,则确定所述供电信号中的交流信号属于正半周波形或负半周波形;
    根据所述交流信号与所述正半周波形之间的从属关系,以及所述交流信号与所述负半周波形之间的从属关系,确定所述桥式电路的开关器件的导通时段,
    其中,所述第一模式被配置为控制所述开关器件截止的模式,所述第二模式被配置为所述开关器件按照指定脉冲驱动信号工作的模式,以使所述第二模式下的给定电流跟随输入至所述负载的交流电压。
  2. 根据权利要求1所述的驱动控制方法,其中,根据所述供电信号与所述正半周波形之间的从属关系,以及所述供电信号与所述负半周波形之间的从属关系,确定所述桥式电路的开关器件的导通时段,具体包括:
    若所述交流信号属于所述正半周波形,则控制所述第一开关器件按照第一占空比导通或截止,同时,控制所述第二开关器件按照第二占空比导通或截止;
    若所述交流信号属于所述负半周波形,则控制所述第一开关器件按照第三占空比导通或截止,同时,控制所述第二开关器件按照第四占空比导通或截止,
    其中,所述第一占空比与所述第二占空比互补,所述第三占空比与所述第四占空比互补,所述第一占空比的数值被配置为预设定值或可变数值,所述第二占空比的数值被配置为预设定值或可变数值,所述第三占空比的数值被配置为预设定值或可变数值,所述第四占空比的数值被配置为预设定值或可变数值。
  3. 根据权利要求2所述的驱动控制方法,其中,还包括:
    若所述交流信号属于所述正半周波形,则计算所述供电信号中的母线信号与所述给定母线信号之间的差值,根据所述差值确定所述第一占空比;
    若所述交流信号属于所述负半周波形,则计算所述供电信号中的母线信号与所述给定母线信号之间的差值,根据所述差值确定所述第三占空比,
    其中,在所述正半周波形的对应时段内,所述第一占空比随时间由小变大,再由大变小,
    以及,在所述负半周波形的对应时段内,所述第三占空比随时间由大变小,再由小变大。
  4. 根据权利要求1至3中任一项所述的驱动控制方法,其中,根据所述供电信号与所述正半周波形之间的从属关系,以及所述供电信号与所述负半周波形之间的从属关系,确定所述桥式电路的开关器件的导通时段,具体还包括:
    若所述交流信号属于所述正半周波形,则控制所述第三开关器件截止,同时,控制所述第四开关器件在所述正半周波形的持续时长内导通;
    若所述交流信号属于所述负半周波形,则控制所述第四开关器件截止,同时,控制所述第三开关器件在所述负半周波形的持续时长内导通。
  5. 根据权利要求1至4中任一项所述的驱动控制方法,其中,还包括:
    在所述供电信号的过零点对应的切换时段内,控制所述第三开关器件和所述第四开关器件均截止。
  6. 根据权利要求2或3所述的驱动控制方法,其中,检测供电信号,并根据所述供电信号的变化率确定第二模式下的给定电流的最小值,具体包括:
    计算所述母线信号与所述给定母线信号之间的差值,所述母线信号的 变化率被配置为能够确定所述给定电流的最小值;
    将所述母线信号与所述给定母线信号之间的差值输入至第一PI控制器所述第一PI控制器被配置为能够输出所述第二模式下的给定电流;
    将限幅处理后的给定电流、所述交流电压和所述交流电流输入至所述第二PI控制器,所述第二PI控制器被配置为能够输出所述第一占空比或所述第三占空比,
    其中,所述给定电流被配置为控制所述母线信号上升。
  7. 根据权利要求1至4中任一项所述的驱动控制方法,其中,还包括:
    若所述桥式电路以所述第一模式工作,则判断所述检测的供电信号是否小于或等于第一母线信号阈值;
    若判定所述检测的供电信号小于或等于所述第一母线信号阈值,则控制所述桥式电路在所述供电信号的指定时刻切换至所述第二模式工作。
  8. 根据权利要求1至4中任一项所述的驱动控制方法,其中,还包括:
    若所述桥式电路以所述第一模式工作,则判断所述检测的母线信号是否小于或等于所述供电信号阈值中的第一母线信号阈值;
    若判定所述检测的母线信号大于所述第一母线信号阈值,则预测下一周期内的母线信号;
    判断所述下一周期内的母线信号是否小于或等于所述第一母线信号阈值;
    若判定所述下一周期内的母线信号小于或等于所述第一母线信号阈值,则控制所述桥式电路在指定时刻切换至所述第二模式工作。
  9. 根据权利要求1至4中任一项所述的驱动控制方法,其中,还包括:
    若所述桥式电路以所述第二模式工作,则判断所述供电信号是否大于或等于第二母线信号阈值;
    若判定所述供电信号大于或等于所述第二母线信号阈值,则控制所述桥式电路在所述供电信号的指定时刻切换至所述第一模式工作。
  10. 根据权利要求1至4中任一项所述的驱动控制方法,其中,还包括:
    若所述桥式电路以所述第二模式工作,则判断所述检测的母线信号是 否大于或等于所述供电信号阈值中的第二母线信号阈值;
    若判定所述检测的母线信号小于所述第二母线信号阈值,则预测下一周期内的母线信号;
    判断所述下一周期内的母线信号与第三母线信号阈值之间的大小关系;
    根据所述下一周期内的母线信号与所述第三母线信号阈值之间大小关系,控制所述桥式电路在指定时刻切换至所述第一模式工作。
  11. 根据权利要求1至4中任一项所述的驱动控制方法,其中,
    所述驱动控制电路还包括一个容性元件,所述容性元件接入于所述开关器件与所述负载之间,所述容性元件包括多个串联和/或并联电解电容,或所述容性元件包括多个串联和/或并联的薄膜电容,
    所述驱动控制方法还包括:
    根据所述容性元件的耐压阈值和所述开关器件的耐压阈值,确定第二母线信号阈值。
  12. 一种驱动控制装置,所述驱动控制装置包括处理器,其中,所述处理器执行计算机程序时实现:
    如权利要求1至11中任一项所述的驱动控制方法的步骤。
  13. 一种家电设备,其中,包括:
    负载;
    如权利要求12所述的驱动控制装置;
    驱动控制电路,所述驱动控制电路受控于所述驱动控制装置,所述驱动控制电路设有PFC,所述PFC至少一个开关器件,所述开关器件被配置控制供电信号对负载供电。
  14. 根据权利要求13所述的家电设备,其中,
    所述家电设备包括空调器、电冰箱、风扇、抽油烟机、吸尘器和电脑主机中的至少一种。
  15. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被执行时,实现如权利要求1至11中任一项所述的驱动控制方法的步骤。
PCT/CN2019/103216 2019-05-31 2019-08-29 驱动控制方法、装置、家电设备和计算机可读存储介质 WO2020237876A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021571046A JP7331144B2 (ja) 2019-05-31 2019-08-29 駆動制御方法、駆動制御装置、家電機器及びコンピュータ読み取り可能な記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910472244.2 2019-05-31
CN201910472244.2A CN112019019B (zh) 2019-05-31 2019-05-31 驱动控制方法、装置、家电设备和计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2020237876A1 true WO2020237876A1 (zh) 2020-12-03

Family

ID=73506301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103216 WO2020237876A1 (zh) 2019-05-31 2019-08-29 驱动控制方法、装置、家电设备和计算机可读存储介质

Country Status (3)

Country Link
JP (1) JP7331144B2 (zh)
CN (1) CN112019019B (zh)
WO (1) WO2020237876A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113708616A (zh) * 2021-09-30 2021-11-26 浙江昵格特电子科技有限公司 一种前级pfc与后级dcdc联合控制方法
CN114696611A (zh) * 2020-12-28 2022-07-01 圣邦微电子(北京)股份有限公司 功率变换器及其控制方法
CN115394257A (zh) * 2021-05-25 2022-11-25 广州视源电子科技股份有限公司 输出纹波的控制方法、系统、计算机设备和存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113765409B (zh) * 2021-09-29 2023-12-19 厦门市必易微电子技术有限公司 直接交流-交流变换电路的控制方法及功率调节方法
CN114285261B (zh) * 2021-12-29 2023-10-31 阳光电源股份有限公司 车载充电器、pfc电路的电流畸变抑制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107623966A (zh) * 2017-09-27 2018-01-23 上海晶丰明源半导体股份有限公司 驱动控制电路、驱动控制芯片、驱动控制系统及方法
CN108233706A (zh) * 2016-12-22 2018-06-29 上海莱狮半导体科技有限公司 连续导通电流模式恒流驱动控制系统和方法
CN109194130A (zh) * 2018-09-06 2019-01-11 南京南瑞继保电气有限公司 一种单向直流电压变换装置和系统及其控制方法
WO2019053943A1 (ja) * 2017-09-14 2019-03-21 シンフォニアテクノロジー株式会社 同期電動機の制御装置及び制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001320882A (ja) 2000-05-09 2001-11-16 Matsushita Electric Ind Co Ltd 電源装置と、インバータ装置および空気調和機
CN101931333A (zh) * 2009-06-17 2010-12-29 伟创力国际美国公司 采用可变切换频率以及具有非均匀间隙的磁性器件的功率转换器
CN101814825B (zh) * 2010-04-16 2014-03-19 中兴通讯股份有限公司 带线性调节的pfc控制电路及控制方法
CA2751936A1 (en) * 2010-09-10 2012-03-10 Queen's University At Kingston Compensation circuit and method for a synchronous rectifier driver
US8379420B2 (en) * 2010-10-13 2013-02-19 Power Integrations, Inc. Controller with punctuated switching control circuit
JP6345135B2 (ja) 2015-02-25 2018-06-20 東芝キヤリア株式会社 モータ駆動装置
WO2018073874A1 (ja) 2016-10-17 2018-04-26 三菱電機株式会社 直流電源装置、モータ駆動装置、送風機、圧縮機および空気調和機
CN108528263A (zh) * 2018-06-08 2018-09-14 重庆聚陆新能源有限公司 一种高效率的电动汽车直流快充系统
CN108649787A (zh) * 2018-06-14 2018-10-12 广东美的制冷设备有限公司 驱动电路、功率因数校正控制器及驱动方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108233706A (zh) * 2016-12-22 2018-06-29 上海莱狮半导体科技有限公司 连续导通电流模式恒流驱动控制系统和方法
WO2019053943A1 (ja) * 2017-09-14 2019-03-21 シンフォニアテクノロジー株式会社 同期電動機の制御装置及び制御方法
CN107623966A (zh) * 2017-09-27 2018-01-23 上海晶丰明源半导体股份有限公司 驱动控制电路、驱动控制芯片、驱动控制系统及方法
CN109194130A (zh) * 2018-09-06 2019-01-11 南京南瑞继保电气有限公司 一种单向直流电压变换装置和系统及其控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114696611A (zh) * 2020-12-28 2022-07-01 圣邦微电子(北京)股份有限公司 功率变换器及其控制方法
CN115394257A (zh) * 2021-05-25 2022-11-25 广州视源电子科技股份有限公司 输出纹波的控制方法、系统、计算机设备和存储介质
CN113708616A (zh) * 2021-09-30 2021-11-26 浙江昵格特电子科技有限公司 一种前级pfc与后级dcdc联合控制方法

Also Published As

Publication number Publication date
CN112019019A (zh) 2020-12-01
JP7331144B2 (ja) 2023-08-22
CN112019019B (zh) 2024-08-30
JP2022534767A (ja) 2022-08-03

Similar Documents

Publication Publication Date Title
WO2020237876A1 (zh) 驱动控制方法、装置、家电设备和计算机可读存储介质
WO2020237863A1 (zh) 运行控制方法、装置、电路、家电设备和计算机存储介质
JP7554301B2 (ja) 運転制御方法、回路、家電機器及びコンピュータ読み取り可能な記憶媒体
JP2008141901A (ja) 直流電源装置
CN112019029B (zh) 运行控制方法、电路、家电设备及计算机可读存储介质
CN107148104B (zh) 一种带有下拉有源钳位支路的微波炉磁控管电源装置及控制方法
CN112019015B (zh) 驱动控制方法、装置、家电设备和计算机可读存储介质
CN112019033B (zh) 驱动控制方法、装置、家电设备和计算机可读存储介质
CN112019027B (zh) 驱动控制方法、装置、家电设备和计算机可读存储介质
CN112015093B (zh) 驱动控制方法、装置、家电设备和计算机可读存储介质
CN112019031B (zh) 运行控制方法、电路、家电设备及计算机可读存储介质
JP7371126B2 (ja) 駆動制御方法、駆動制御装置、家電機器及びコンピュータ読み取り可能な記憶媒体
CN112019034B (zh) 驱动控制方法、装置、家电设备和计算机可读存储介质
WO2020237809A1 (zh) 驱动控制方法、装置、家电设备和计算机可读存储介质
WO2020237810A1 (zh) 驱动控制方法、装置、家电设备和计算机可读存储介质
JP2011024394A (ja) 電力変換装置
CN112019028B (zh) 驱动控制方法、装置、家电设备和计算机可读存储介质
CN112019024B (zh) 驱动控制方法、装置、家电设备和计算机可读存储介质
CN112019021B (zh) 驱动控制方法、装置、家电设备和计算机可读存储介质
CN112019023B (zh) 驱动控制方法、装置、家电设备和计算机可读存储介质
CN112019065B (zh) 驱动控制方法、装置、家电设备和计算机可读存储介质
CN112019017B (zh) 驱动控制方法、装置、家电设备和计算机可读存储介质
CN112019032B (zh) 运行控制方法、装置、电路、家电设备和计算机存储介质
CN112019123B (zh) 运行控制方法、装置、电路、家电设备和计算机存储介质
CN117997102A (zh) 功率因素校正电路及其控制方法、控制装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021571046

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19930916

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19930916

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19930916

Country of ref document: EP

Kind code of ref document: A1