WO2020237626A1 - 一种安全低电压充电公路、行驶充电的车辆及充电方法 - Google Patents

一种安全低电压充电公路、行驶充电的车辆及充电方法 Download PDF

Info

Publication number
WO2020237626A1
WO2020237626A1 PCT/CN2019/089536 CN2019089536W WO2020237626A1 WO 2020237626 A1 WO2020237626 A1 WO 2020237626A1 CN 2019089536 W CN2019089536 W CN 2019089536W WO 2020237626 A1 WO2020237626 A1 WO 2020237626A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
energy storage
vehicle
storage group
road
Prior art date
Application number
PCT/CN2019/089536
Other languages
English (en)
French (fr)
Inventor
成志东
王天雷
钟东洲
Original Assignee
五邑大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 五邑大学 filed Critical 五邑大学
Publication of WO2020237626A1 publication Critical patent/WO2020237626A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C9/00Special pavings; Pavings for special parts of roads or airfields
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the invention relates to the technical field of new energy vehicle charging, in particular to a safe low-voltage charging highway, a vehicle for driving and charging, and a charging method.
  • the charging method of electric vehicles is realized by parking and connecting to the charging equipment.
  • the driver looks for nearby charging piles or charging plugs, and stops and waits for the vehicle to be fully charged before proceeding.
  • Restrictions such as insufficient charging stations in some areas and delays in charging time have caused many inconveniences.
  • some people have proposed some wireless charging schemes, but it is inevitable that under the existing equipment conditions, wireless charging schemes have high cost and low charging efficiency.
  • the purpose of the present invention is to solve at least one of the technical problems existing in the prior art, and to provide a safe low-voltage charging highway, a driving charging vehicle and a charging method, which can charge the vehicle while the vehicle is running, and ensure the electric vehicle The battery life on the road, and the overall equipment cost is low, the charging process is relatively safe.
  • a safe low-voltage charging road which includes a road surface, a DC power distribution system, and two electrode plates as positive and negative electrodes.
  • the electrode plates are laid on the road surface and along the The extension direction of the road surface is set, the electrode plate is provided with an insulating filling block for support, and the electrode plate leads out the wire under the road surface.
  • the wire is connected to the DC power distribution system.
  • the voltage of the DC power distribution system is different. Exceed the safety voltage of human body.
  • the above-mentioned safe low-voltage charging road has at least the following beneficial effects: laying two electrode plates of positive and negative electrodes side by side on the road, allowing electric vehicles to charge while driving on the road, changing the traditional way of looking for charging piles and charging piles. In the mode of waiting for the completion of charging, the endurance of the electric vehicle is guaranteed. In addition, since the DC voltage used does not exceed the safety voltage of the human body, the safety during work is high.
  • a safe low-voltage charging highway further includes a central concrete structure and a side driving structure for wheel driving, the central concrete structure is arranged between the two electrode plates, so The side driving structure is arranged on both sides of the two electrode plates, and the side driving structure is made of concrete and/or asphalt material.
  • the distance between the two electrode plates does not exceed the shortest distance between the left and right wheels of the vehicle. It is not easy for the vehicle to crush the electrode plates during driving.
  • the central concrete structure also ensures that there will be no occurrence between the two electrode plates. Short circuit.
  • a safe low-voltage charging road further includes a guide strip for indicating the direction of the road, the guide strip being arranged at the center of the surface of the central concrete structure and extending along the road surface .
  • the function of the guide bar is to remind the driver to keep driving along the extending direction of the road, and to help the vehicle to align the electrode plate to charge.
  • drainage grooves are respectively provided on both sides of the electrode plate, the drainage grooves are connected to the urban sewer system, and the groove walls of the drainage grooves are covered with insulating materials .
  • the drainage groove helps to drain the water near the electrode plates.
  • the function of the insulating material is to isolate the concrete surface from the water and reduce leakage.
  • a safe low-voltage charging highway further includes a detection module for detecting whether a vehicle passes by on a rainy day and an on-off switch connected in series to the DC power distribution system.
  • the module is arranged on the edge or surface of the road surface, the detection module is connected to the on-off switch, the detection module does not work in a non-rainy environment, and the on-off switch is normally in a non-rainy environment. Closed state.
  • the DC power distribution system will continue to supply power even when there is no vehicle passing, and there is a certain amount of leakage in the wet electrode plate, so a number of detection modules are added to segment the road so that there is no vehicle passing on this section of the road. Disconnect the power supply at time to further reduce the occurrence of leakage.
  • the electrode plate includes a flat plate, an eaves and a wrap, and the eaves are arranged on both sides of the flat plate and face toward the bottom of the drainage groove.
  • the wrapping edge is arranged at the bottom of the flat plate and extends downward against the side wall of the insulating filling block, and the wrapping edge is made of insulating material.
  • the eaves discharge the water flowing down the plate, and at the same time, it is supplemented by wrapping to keep the part of the electrode plate under the eaves in contact with the concrete surface dry and effectively cut off leakage.
  • a safe low-voltage charging road further includes a reinforcement structure for fixing the electrode plate, the reinforcement structure is connected to the electrode plate and buried in the insulating filling block. Taking into account the complexity and uncertainty of driving on the road, the electrode plate is stabilized by a reinforced structure to prevent the wheel from shifting the electrode plate when the vehicle passes.
  • the reinforcement structure includes a plurality of steel bars, and the reinforcement structure fixes the electrode plates by welding.
  • the steel bars are not connected with the steel bars commonly used in concrete, and the steel bars are not connected.
  • a safe low-voltage charging road further includes a ventilation pipe for heat dissipation, and the ventilation pipe is arranged between the electrode plate and the insulating filling block.
  • the vent pipe also has a certain supporting effect, so it is supported by a material with higher strength.
  • the vent pipe transfers the heat from the electrode plate to its own pipe, speeds up the heat dissipation, and can also cooperate with cooling equipment if necessary.
  • a safe low-voltage charging road further includes a drainage system for enhancing drainage, the drainage system including a reservoir and spaced apart along the extension direction of the safe low-voltage charging road Drainage holes, a plurality of the drainage holes are connected to the reservoir.
  • the main purpose is to strengthen the drainage effect when the high-level rainstorm warning is in effect, and this drainage system can also be supplemented by drainage equipment, such as pumps.
  • a vehicle for driving charging which includes two energy storage groups suitable for DC charging, two or more charging wheel brushes arranged at the bottom of the vehicle, and a device for controlling the lifting and lowering of the charging wheel brushes.
  • Lifting device, energy storage group rotation device, and vehicle-side control module the two energy storage groups are switched between the charging state and the discharging state by the energy storage group rotation device, and there is only one storage group at the same time in the two energy storage groups
  • the energy group can be in a charged state
  • the charging wheel brush is connected to the lifting device
  • a part of the charging wheel brush is connected to the positive electrode of the energy storage group
  • the other part of the charging wheel brush is connected to the negative electrode of the energy storage group
  • the lifting device and the energy storage group rotation device are respectively connected to the vehicle side control module.
  • the above-mentioned driving and charging vehicle has at least the following beneficial effects: the vehicle uses two or more energy storage groups to work in turn to maintain the vehicle's endurance, at least one of the energy storage groups is in the discharging state and the other is in the charging state, so the vehicle is in the driving process
  • the energy storage group is automatically switched through the energy storage group rotation device, so the driver does not need to worry about finding a charging pile for charging due to insufficient power.
  • the energy storage group includes a plurality of lithium battery units, a series contactor and a parallel contactor, and the lithium battery unit is connected in series by the series contactor.
  • the positive electrode and the negative electrode of each lithium battery unit are respectively connected to the charging wheel brush through the parallel contactor, and the series contactor and the parallel contactor are respectively connected to the vehicle-side control module.
  • the above embodiment is the first type of energy storage group.
  • the energy storage units are all lithium battery cells. Parallel charging is used in the charging mode, and series discharge is used in the discharging mode. The corresponding storage can be achieved through series contactors and parallel contactors. The working status of the energy group changes the connection mode.
  • the number of the energy storage groups is three groups, the first one of the energy storage groups discharges to drive the motor of the vehicle, and the second group of the energy storage groups The energy group is full and ready for use, and the energy storage group of the third group is in a charging state.
  • set up a redundant energy storage group For the problem of slow charging of lithium battery cells and fast power consumption during vehicle driving, set up a redundant energy storage group.
  • the redundant energy storage group has reached the lower limit of the current discharged energy storage group but the charging energy storage group has not been fully charged. Under the circumstances, instead of discharging the energy storage group, continue to work and leave enough charging time.
  • the energy storage group includes a plurality of lithium battery units, a series contactor and a parallel contactor, and the lithium battery units are connected in series through the series contactor , It also includes a super capacitor bank and a charging contactor, the super capacitor bank includes more than one super capacitor unit, each of the super capacitor units is connected in parallel, and the two poles of the super capacitor bank are respectively connected to the charging wheel through the charging contactor The super capacitor bank is connected in parallel to the lithium battery unit through the parallel contactor, and the series contactor, the parallel contactor and the charging contactor are respectively connected to the vehicle-side control module.
  • the above embodiment is the second type of energy storage group.
  • One part of the energy storage unit is a lithium battery cell, and the other part is a super capacitor bank.
  • the super capacitor bank is quickly charged, and the super capacitor bank is fully charged and then recharged to the lithium battery cell. , It solves the problem of slow charging speed when the lithium battery unit is directly charged, and the charging time of the super capacitor bank is short. To a certain extent, it solves the problem of long-time power on the safe low-voltage charging highway.
  • the vehicle for driving and charging according to the second aspect of the present invention further includes a conduction switch, one of the ultracapacitor units is connected in series with one conduction switch, and the conduction switch is connected to the vehicle-side control module.
  • the function of the conduction switch is that when multiple supercapacitor units take power at the same time, it may bring a large load to the external charging equipment that supplies the power. Therefore, use the conduction switch to select some of the supercapacitor units to take power as needed to reduce external charging The power supply pressure of the equipment.
  • the vehicle for driving and charging according to the second aspect of the present invention further includes a DC-DC conversion module, and the DC-DC conversion module is connected in series between the super capacitor bank and the lithium battery unit. Because the voltage of the super capacitor unit drops quickly, it may not be able to adapt to the charging voltage of the lithium battery unit after a period of discharge. Therefore, the DC-DC conversion module is used to use the power of the super capacitor unit to the limit as much as possible, and then the super capacitor unit Go to recharge.
  • the vehicle for driving and charging according to the second aspect of the present invention further includes a capacitance voltage inspection module for detecting the voltage value of the super capacitor unit, and the capacitance voltage inspection module is connected to the parallel contactor.
  • the capacitor voltage checking module can detect the voltage value of the super capacitor unit in real time, and the DC-DC conversion module can adjust the conversion ratio according to the current voltage.
  • the energy storage group includes a plurality of super capacitor units, series contactors and parallel contactors, and the super capacitor units are connected in series by the series contactors.
  • the two poles of the super capacitor unit are respectively connected to the charging wheel brush through the parallel contactor.
  • all energy storage units are super capacitor units, which is equivalent to replacing the lithium battery cells in the first type of energy storage group with super capacitor units, due to the voltage drop of the super capacitor unit Soon, each energy storage group can provide the vehicle for a short distance. In this mode, the vehicle needs to rely on an external charging device to travel, but the vehicle runs with high stability. After removing the lithium battery unit, the weight of the vehicle is reduced and free More space in the car is an application method for special scenarios.
  • the parallel contactor includes a plurality of shunt contactors for shunting charging current, and the shunt contactors are connected in parallel with each other. Since the supercapacitor unit has a large current drawn and a single line has a large load, multiple lines are used in parallel to reduce heat generation, and each line is equipped with a shunt contactor to switch on and off the charging line as required.
  • the charging wheel brush includes metal bristles, a roller set and a fixed frame, and the fixed frame is installed with the roller set and the rolling plane of the roller set is on the ground.
  • the metal bristles are fixed and connected to the energy storage group by the mounting frame.
  • the roller set is adapted to the driving situation of the vehicle, and can make the metal bristles close to the external charging device on the ground.
  • the metal bristles are equivalent to multiple lines simultaneously taking electricity, reducing the heat generation of a single line.
  • the lifting device for a vehicle that is charging for driving, includes a sleeve that moves up and down following the charging wheel brush, and a return spring provided in the sleeve, which is provided in the sleeve.
  • the locking mechanism on both sides and the traction motor used to pull the charging wheel brush, the charging wheel brush is arranged at the open end of the sleeve, and one end of the return spring is pressed against the charging wheel brush , The other end is pressed against the bottom of the vehicle, the traction motor is connected to the charging wheel brush with a steel wire through the sleeve, and the clamping mechanism lifts the sleeve to a designated position. locking.
  • the charging wheel brush is retracted by the traction motor.
  • the locking mechanism is released, and the charging wheel brush can be lowered under the action of the return spring and pressed against the external charging device.
  • the parallel contactor and the series contactor have the same structure, including a cam, a push-down link, a link spring, a spring limit block, and a first metal plate , A second metal plate and an elastic contact piece, the top end of the downward pressing link is provided with a pressing plate corresponding to the cam, the bottom end is connected to the first metal plate, and the connecting rod spring is sleeved on the downward pressing In the connecting rod, one end of the connecting rod spring is pressed against the pressing plate, and the other end is pressed against the spring limit block, and the cam is arranged above the pressing plate and is driven to rotate by a motor, When the cam rotates downwards, the pressing link is pushed down, so that the first metal plate is lowered.
  • the elastic contact piece is connected to the first metal plate and is located above the second metal plate.
  • the elastic contact piece moves up and down following the first metal plate to connect or disconnect itself with the second metal plate.
  • the existing contactors have many structures, but in the present invention, the problems of internal resistance, on-off speed and durability need to be considered.
  • the use of reciprocating cams and elastic reset structures can reduce the degree of mechanical strain, and the contacts can be based on Need to be designed to drive with less internal resistance.
  • the parallel contactor and the series contactor have the same structure, including a rotating plate, a contact brush, a fixed contact wheel, and a rotating shaft connected to a stepping motor.
  • the outer ring of the rotating plate is made of conductive material
  • the inner ring is made of non-conductive material
  • the rotating shaft passes through the inner ring of the rotating plate
  • the insulating surface of the fixed contact wheel is provided with an arc section made of conductive material.
  • the plate and the fixed contact wheel are arranged side by side in parallel, and the contact brushes are arranged between the rotating plate and the fixed contact wheel and are fixedly connected to the outer ring of the rotating plate.
  • the rotating shaft drives the rotating plate to rotate, so that the The contact brush draws an arc-shaped movement path on the fixed contact wheel, and when the contact brush rotates to the arc-shaped section, the rotating plate and the fixed contact wheel are conducted. Relying on the rotating shaft to switch the contact brush between the conductive channel and the non-conductive channel, rapid switching can be realized.
  • the vehicle for charging while driving according to the second aspect of the present invention further includes an under-vehicle camera for assisting in aligning with external charging facilities when traveling, the under-vehicle camera is arranged at the bottom of the vehicle, and the under-vehicle camera is connected to In-car imaging system.
  • the driver's manual control direction is easy to deviate from the charging position. Because the charging wheel is brushed on the bottom of the vehicle, the driver can adjust the direction in real time through the camera under the vehicle to maintain the charging process.
  • the vehicle for driving and charging according to the second aspect of the present invention further includes a charging start-stop button, the charging start-stop button is provided in the vehicle for the driver to operate, and the charging start-stop button is connected to the vehicle side control Module.
  • the driver can operate the charging in the car, charge or end the charging at any time as needed, without getting off the car, which is more convenient.
  • a driving and charging vehicle further includes a temperature sensing module for detecting the temperature of the energy storage group and a vehicle-side voltage and current detection module for detecting the state of charge, the temperature sensing module And the vehicle side voltage and current detection module are respectively connected to the vehicle side control module.
  • the sensor is used to detect the parameters in the charging process, so that the vehicle-side control module can respond in time when an abnormality occurs to avoid accidents.
  • a charging system including the safe low-voltage charging road as described in any one of the above and the driving and charging vehicle described in any one of the above, and also including a traffic control center.
  • the voltage charging highway further includes a highway-side communication module and a highway-side control module.
  • the vehicle also includes a vehicle-side communication module.
  • the highway-side communication module is connected to the highway-side control module, and the highway-side control module is connected to a traffic control center.
  • the vehicle-side communication module is connected to the road-side communication module.
  • the above-mentioned charging system has at least the following beneficial effects: automatic charging is realized through the cooperation of safe low-voltage charging roads and driving charging vehicles, which changes the traditional charging mode of getting off the car and plugging in. At the same time, the low-voltage charging mode can greatly improve the safety of charging. , The vehicle is charged at the same time during the driving process, which solves the problem of battery life of electric vehicles and reduces the investment in equipment such as protective measures. The cost is low and it is convenient for large-scale promotion.
  • the power supply voltage of the electrode plate is 36V
  • the voltage of the energy storage group in a fully charged state is 36V.
  • 36V is the maximum value within the safety voltage range of the human body and is also suitable for the working voltage of energy storage units such as lithium batteries.
  • the vehicle-side communication module and the road-side communication module are connected through a 5G network. Additional communication accessories on safe low-voltage charging roads will increase construction costs. Based on 5G Internet of Things technology, it can completely cover the entire safe low-voltage charging roads, which not only saves costs, but also has a very good user experience.
  • a road-side charging method applying any of the above safe low-voltage charging roads, including the following steps:
  • the traffic control center judges whether to allow the current vehicle to be charged according to the current power supply status of the highway, and if so, performs power resource allocation;
  • the traffic control center When receiving the settlement information sent after the vehicle has finished charging or the vehicle reaches the charging time limit, the traffic control center settles the electricity fee according to the settlement information or the charging duration.
  • the settlement information includes the number, serial number and current power of the energy storage group.
  • the above-mentioned highway-side charging method has at least the following beneficial effects: monitoring vehicles entering the road, when the vehicle sends a charging request, the traffic control center allocates electricity to meet the charging demand, and finally calculates the electricity fee based on the charging result, and the administrator can collect electricity or other operating.
  • judging the current vehicle type and energy storage group type includes the following steps:
  • the traffic control center will include the current vehicle in the heavy-duty vehicle control schedule, and the heavy-duty vehicle control schedule is adjacent
  • the entry threshold is 5 kilometers between two heavy vehicles.
  • the main consideration is that the charging current of heavy vehicles is too large, which affects the nearby power supply. Therefore, it is necessary to divert the heavy vehicles and limit the charging time.
  • the distance between the two vehicles cannot be less than 5 kilometers to ensure and reduce the power supply of surrounding vehicles. Heating of the electrode plate.
  • a vehicle-side charging method for a vehicle using any one of the driving charging described above including the following steps:
  • the charging request request charging from the traffic control center, and send the current energy storage group information, the energy storage group information including the number, number and remaining power of the energy storage group;
  • the settlement information is submitted to the traffic control center, and the settlement information includes the number, serial number, and current power of the energy storage group.
  • the above-mentioned vehicle-side charging method has at least the following beneficial effects: the vehicle is connected to the safe low-voltage charging highway according to the driver's operation request, the charging is distributed by the traffic control center, and the vehicle takes turns to connect the under-charged energy storage group to the charging wheel during driving. , Leaving only one energy storage unit to drive the vehicle, achieving the effect of driving while charging, and solving the problem of battery life of electric vehicles.
  • Charging mode 1 All energy storage units in the energy storage group are lithium battery units, and the charging method includes the following steps:
  • the energy storage group rotation device selects at least one underfilled energy storage group
  • the lithium battery cells in the selected energy storage group are converted from series connection to parallel connection;
  • the lithium battery cells in the selected energy storage group are connected to the charging wheel brush in parallel;
  • the energy storage group rotation device selects the energy storage group that is not fully charged at this time for charging
  • the lithium battery cells are converted from parallel connection to series connection;
  • the energy storage units in the energy storage group include lithium battery cells and super capacitor banks.
  • the super capacitor bank includes several super capacitor units connected in parallel.
  • the charging method includes the following steps:
  • the energy storage group rotation device selects a super capacitor group to connect to the charging wheel brush
  • the energy storage group rotation device switches the super capacitor group in parallel with the under-charged lithium battery unit, and the super capacitor group charges the lithium battery unit;
  • the energy storage bank rotation device selects the super capacitor bank to connect to the charging wheel brush;
  • the energy storage units in the energy storage group are all super capacitor banks.
  • the super capacitor bank includes several super capacitor units connected in parallel.
  • the charging method includes the following steps:
  • the energy storage group rotation device selects an undercharged super capacitor group
  • the super capacitor unit in the selected super capacitor bank is converted from series connection to parallel connection;
  • the super capacitor unit in the selected super capacitor bank is connected to the charging wheel brush in parallel;
  • the energy storage bank rotation device selects another uncharged super capacitor bank for charging
  • the super capacitor unit When the fully charged super capacitor bank discharges the driving motor, the super capacitor unit is converted from parallel connection to series connection.
  • the charging mode and the charging mode three are similar, which are simpler working methods of multiple energy storage groups.
  • the charging mode two actually uses the super capacitor group as the charging intermediary to reduce the power-taking time and make the charging wheel brush unnecessary. Contact the electrode plate for a long time to reduce equipment loss.
  • the energy storage group of the vehicle in the third charging mode, is of replaceable design, and the super capacitor unit will be used when the vehicle leaves the safe low-voltage charging road.
  • the formed energy storage group is replaced with an energy storage group composed of lithium battery cells.
  • the vehicle that adopts charging mode three needs to solve the endurance problem after leaving the safe low-voltage charging road.
  • the design of the replaceable head can be used to ensure that the vehicle leaves the safe low-voltage charging road. Get on the road quickly.
  • a charging method using any one of the above-mentioned charging systems including the following steps:
  • the road-side control module at the starting point and the end point of the safe low-voltage charging road monitors the entry and exit of the vehicle, and the road-side control module between the start point and the end point monitors the movement path of the road vehicle and the current charging situation ;
  • the vehicle starts charging after passing the start of the safe low-voltage charging road, and the vehicle-side communication module sends a charging request and its own energy storage group information to the road-side communication module, where the energy storage group information includes The number, number and remaining power of the energy storage group;
  • the traffic control center receives a charging request via the road-side communication module
  • the traffic control center judges the current type of the vehicle and the type of the energy storage group, and estimates power consumption and charging time;
  • the traffic control center judges whether to allow the current vehicle to be charged according to the current power supply status of the highway, and if so, performs power resource allocation;
  • the traffic control center returns access information, and the access information includes access permission
  • the vehicle receives the access information through the vehicle-side communication module, and if the access information indicates that access is permitted, lower the charging wheel brush to make it contact the electrode plate on the safe low-voltage charging road. Charging, if the access information is access denied, a notification is sent to the car;
  • the end of charging includes the full charge of the energy storage group and the departure of the vehicle from the safe low-voltage charging road.
  • the vehicle submits settlement information to the traffic control center, and the settlement information includes the number of energy storage groups
  • the traffic control center settles the electricity fee according to the settlement information, the charging time limit is reached, and the traffic control center directly settles the electricity fee according to the charging time.
  • the above charging method includes at least the following beneficial effects: the safe low-voltage charging road provides a low-voltage charging foundation, and when the vehicle is running on the road, two charging wheel brushes are connected to the electrode plate to obtain electricity, which realizes driving while charging, and solves the problem of electric The endurance of the car.
  • the DC power distribution system cuts off the power supply to the electrode plates, and according to the set delay time, restarts after the delay time. Supply power to the electrode plates and detect the current on the electrode plates. If the current still exceeds the threshold, the DC power distribution system will issue a fault alarm to the maintenance personnel; otherwise, normal power supply will be restored.
  • FIG. 1 is a schematic top view of a safe low-voltage charging highway according to an embodiment of the present invention
  • Fig. 2 is a schematic side view of a safe low-voltage charging highway according to an embodiment of the present invention
  • Fig. 3 is a schematic side view enlarged structure diagram of a safe low-voltage charging highway according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of the connection relationship between the drainage hole and the reservoir of the embodiment of the present invention.
  • Figure 5 is a schematic diagram of a vehicle charging working state according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the structure of the lifting device and the charging wheel brush according to the embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the connection relationship of the first energy storage group structure according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram a of the connection relationship of the second energy storage group structure according to the embodiment of the present invention.
  • FIG. 9 is a schematic diagram b of the connection relationship of the second energy storage group structure according to the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the connection relationship of a third energy storage group structure according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a parallel contactor under a third energy storage group structure according to an embodiment of the present invention.
  • Figure 12 is a connection diagram of the energy storage group rotation device according to an embodiment of the present invention.
  • Figure 13 is a schematic diagram a of a structure of a contactor according to an embodiment of the present invention.
  • Figure 14 is a schematic diagram b of a structure of the contactor of the embodiment of the present invention.
  • FIG. 15 is a schematic diagram a of another structure of the contactor according to the embodiment of the present invention.
  • Figure 16 is a schematic diagram b of another structure of the contactor of the embodiment of the present invention.
  • FIG. 17 is a schematic diagram of the circuit connection relationship of the embodiment of the present invention.
  • Figure 18 is a flowchart of a road-side charging method according to an embodiment of the present invention.
  • Figure 19 is a flowchart of a vehicle-side charging method according to an embodiment of the present invention.
  • FIG. 20 is a flowchart of a charging method of a charging system according to an embodiment of the present invention.
  • FIG. 21 is a charging flowchart of charging mode 1 according to an embodiment of the present invention.
  • FIG. 22 is a charging flowchart of charging mode 2 according to an embodiment of the present invention.
  • FIG. 23 is a charging flowchart of charging mode 3 according to an embodiment of the present invention.
  • an embodiment of the present invention relates to a safe low-voltage charging highway and a driving charging vehicle, the basic structure of the two is as follows:
  • the safe low-voltage charging road includes a road surface 200, a DC power distribution system 6 and two electrode plates 100 as positive and negative electrodes.
  • the electrode plates 100 are laid on the road surface 200 and arranged along the extension direction of the road surface 200.
  • the electrode plates 100 are provided with insulation underneath.
  • the filling block 210 is used as a support, and the electrode plate 100 leads to a wire under the road surface 200, and the wire is connected to the DC power distribution system 6.
  • the voltage of the DC power distribution system 6 does not exceed the safety voltage of the human body.
  • the DC voltage is 36V;
  • the vehicle includes two or more energy storage groups 300 suitable for DC charging, two or more charging wheel brushes 400 arranged at the bottom of the vehicle, a lifting device 500 for controlling the lifting and lowering of the charging wheel brush 400, an energy storage group rotation device 600 and the vehicle Side control module 5, the energy storage group 300 is switched between the charging state and the discharging state by the energy storage group switching device 600, and only one energy storage group 300 in the energy storage group 300 can be in the discharge state at the same time, and the charging wheel brush 400 is connected to the lifting device 500 A part of the charging wheel brush 400 is connected to the positive electrode of the energy storage group 300, and the other part of the charging wheel brush 400 is connected to the negative electrode of the energy storage group 300.
  • the lifting device 500 and the energy storage group alternation device 600 are respectively connected to the vehicle side control module 5.
  • the combination of the safe low-voltage charging road and driving-charging vehicles also relates to a charging system.
  • the charging system also includes a traffic control center 1.
  • the safe low-voltage charging road also includes Road side communication module 3 and road side control module 2.
  • the vehicle also includes a vehicle side communication module 4.
  • the road side communication module 3 is connected to the road side control module 2, the road side control module 2 is connected to the traffic control center 1, and the vehicle side communication module 4 is connected
  • the communication connection mode adopts a 5G network connection.
  • the safe low-voltage charging road also includes a central concrete structure 220, a side driving structure 230 for wheel driving, a drainage groove 250 and a ventilation pipe 150 for heat dissipation.
  • the central concrete structure 220 is set on two electrodes. Between the plates 100, the side driving structures 230 are arranged on both sides of the two electrode plates 100.
  • the side driving structures 230 are made of concrete and/or asphalt materials.
  • the drainage grooves 250 are respectively arranged on both sides of the electrode plates 100 to make the central concrete structure 220 forms an island structure, the drainage channel 250 is converged to the urban sewer system, the vent pipe 150 is arranged between the electrode plate 100 and the insulating filling block 210, the vent pipe 150 uses a higher-strength material to support the electrode plate 100, and the vent pipe 150 can According to the width of the electrode plate 100, the ventilation pipe 150 transfers the heat on the electrode plate 100 to its own pipe to speed up the heat dissipation. If necessary, it can also be equipped with cooling equipment.
  • the horizontal dimension of the road surface 200 is According to certain requirements, the width of the electrode plate 100 and the insulating filling block 210 is 25cm, the width of the central concrete structure 220 is 28cm, the width of the drainage grooves 250 on both sides of the central concrete structure 220 is 6cm, and the drainage grooves beside the side driving structure 230
  • the width of the 250 is 5cm
  • the width of the side driving structure 230 is at least 10cm, that is, the width between the outer walls of the two side driving structures 230 is 120cm, which matches the shortest lateral distance between the left and right wheels of a small passenger car of 120cm,
  • each section can be appropriately widened according to the width of the road surface 200.
  • the shortest lateral distance between the left and right wheels of large vehicles such as trucks is greater than 120cm, but it is not necessary to adjust the position of the electrode plate 100, but to charge
  • the installation position of the wheel brush 400 is adapted to the position of the electrode plate 100.
  • the road surface 200 is horizontally straight, that is, the level of the electrode plate 100 is consistent with the level of the central concrete structure 220 and the side driving structure 230. Accordingly, the height of the insulating filler block 210 is slightly lower. In fact, in other embodiments, the road surface 200 may not be straight and the electrode plate 100 may be convex or concave. However, under this structure, the road surface 200 is divided into multiple high and low areas, which causes inconvenience for driving. The structure is also easily damaged.
  • the electrode plate 100 includes a flat plate 110, an eaves 120, and a wrap 130.
  • the eaves 120 are arranged on both sides of the flat plate 110 and slope toward the bottom of the drain groove 250.
  • the wrap 130 It is arranged at the bottom of the flat plate 110 and extends downwards adjacent to the side wall of the insulating filling block 210.
  • the wrap 130 is made of insulating material.
  • the wall of the drainage groove 250 is covered with insulating material.
  • This embodiment has a waterproof structure for outdoor rainy weather.
  • the eaves 120 release the water flowing down the plate 110, and the insulating material of the wrap 130 and the wall of the drainage groove 250 can prevent water from splashing on the electrode plate 100 and the concrete, and keep the part of the electrode plate 100 in contact with the concrete surface dry, and Effectively cut off leakage.
  • the isolation leakage here is not completely without leakage current. In the actual working process, due to the large current on the electrode plate 100, a small amount of leakage can be allowed. For example, the leakage current is 10A at the electrode plate 100 current of 1000A. In this case, the system can still work normally.
  • the eaves 120 extend beyond the edge of the flat plate 110, and the width of the flat plate 110 is the same as the width of the insulating filling block 210, and the eaves 120 extend into the drain groove 250.
  • the safe low-voltage charging road further includes a guide bar 240 for indicating the direction of the road.
  • the guide bar 240 is arranged at the center of the surface of the central concrete structure 220 and extends along the road surface 200.
  • the width of the guide bar 240 in this embodiment is set to 15 cm, which conforms to the national road standard.
  • the detection module 7 for detecting whether a vehicle passes by on a rainy day and an on-off switch 8 connected in series to the DC power distribution system 6, and the detection module 7 is provided On the edge or surface of the road surface 200, the detection module 7 is connected to the on-off switch 8.
  • the detection module 7 does not work in a non-rainy environment, and the on-off switch 8 is in a non-rainy environment.
  • the bottom is normally closed.
  • a number of detection modules 7 are distributed along the road surface 200 to manage the road surface 200 in sections. Each section of the road surface 200 is equipped with an on-off switch 8. When the detection module 7 detects a vehicle passing by, it closes the road as needed.
  • the disconnect switch 8 allows the electrode plate 100 to supply power.
  • the power supply is disconnected; the main purpose is to prevent the continuous power supply of the DC power distribution system 6 in rainy days from causing leakage problems.
  • the on-off switch 8 is turned off, it can be further reduced Small leakage.
  • the detection module 7 should also be connected to the road-side control module 2.
  • the latter detection module 7 should be ready to start to ensure the continuity of power supply. I will not elaborate on it here.
  • the safe low-voltage charging road further includes a reinforcement structure 140 for fixing the electrode plate 100.
  • the reinforcement structure 140 includes several steel bars. The reinforcement structure 140 fixes the electrode plate 100 by welding. They are not connected.
  • the safe low-voltage charging road also includes a drainage system for enhancing drainage.
  • the drainage system includes a reservoir 270 and drainage holes 260 arranged at intervals along the extension direction of the safe low-voltage charging road.
  • Several drainage holes 260 are connected to Reservoir 270.
  • the drainage holes 260 are arranged at equal intervals, the interval is set to 30 meters, the radius of the drainage holes 260 is 10cm, and the drainage holes 260 are arranged on the central concrete structure 220 and converge to the reservoir 270 through pipes, etc.
  • the reservoir 270 is set on the side of the road and pumps water regularly. For some road sections, where there are low-lying areas, rain sheds can be installed to reduce the ingress of rainwater.
  • the charging wheel brush 400 includes metal bristles 410, a roller set 420 and a fixed frame 430.
  • the fixed frame 430 is installed with the roller set 420 and the rolling plane of the roller set 420 is parallel to the ground.
  • the metal bristles 410 are fixed and connected by the mounting frame.
  • the lifting device 500 includes a sleeve 510 that follows the lifting of the charging wheel brush 400, a return spring 520 arranged in the sleeve 510, a locking mechanism 530 arranged on both sides of the sleeve 510, and a traction motor for pulling the charging wheel brush 400 540.
  • the charging wheel brush 400 is arranged at the open end of the sleeve 510.
  • the traction motor 540 is connected to the sleeve 510 with a steel wire.
  • the clamping mechanism 530 locks the sleeve 510 after the sleeve 510 rises to a designated position.
  • the cross section of the fixed frame 430 is a trapezoidal structure, and the cylinder mouth of the sleeve 510 is pressed against the two oblique sides of the trapezoid.
  • the number of charging wheel brushes 400 is not limited, but at least two are provided to correspond to the two electrode plates 100. Of course, in order to ensure good contact, the number of charging wheel brushes 400 can be increased.
  • the clamping mechanism 530 such as a relay-type caliper, and a corresponding clamping position corresponding to the caliper is provided on the side wall of the sleeve 510.
  • a driving and charging vehicle has three different types of energy storage group 300 structures, corresponding to three different charging modes:
  • the first structure of the energy storage group 300 includes several lithium battery cells 310, a series contactor 320 and a parallel contactor 330.
  • the lithium battery cells 310 are connected in series to form the energy storage group 300 through the series contactor 320.
  • the positive electrode and the negative electrode of each lithium battery unit 310 are respectively connected to the charging wheel brush 400 through the parallel contactor 330, and the series contactor 320 and the parallel contactor 330 are respectively connected to the vehicle side control module 5.
  • the energy storage units in the energy storage group 300 of this structure are all lithium battery units 310.
  • select at least one under-charged energy storage group 300 to connect to the charging wheel brush 400, and to connect to the energy storage group of the charging wheel brush 400 The series contactor 320 in 300 is disconnected and the parallel contactor 330 is connected.
  • the charging wheel brush 400 takes electricity from the electrode plate 100 and simultaneously charges each lithium battery unit 310 connected in parallel, which is essential for the energy storage of driving the vehicle.
  • Group 300, the series contactor 320 is connected, and the parallel contactor 330 is disconnected; after the currently charged energy storage group 300 is fully charged, the energy storage group 300 is replaced by the next under-charged energy storage group 300 to connect to the charging wheel brush 400.
  • the energy storage group 300 includes several lithium battery cells 310, a series contactor 320 and a parallel contactor 330.
  • the lithium battery cells 310 are connected in series through the series contactor 320.
  • It also includes a super capacitor bank 700 and a charging contactor 720.
  • the super capacitor bank 700 includes more than one super capacitor unit 710. Each super capacitor unit 710 is connected in parallel.
  • the two poles of the super capacitor bank 700 are respectively connected to the charging wheel brush 400 through the charging contactor 720.
  • the capacitor bank 700 is connected in parallel to the lithium battery unit 310 through the parallel contactor 330, and the series contactor 320, the parallel contactor 330 and the charging contactor 720 are respectively connected to the vehicle-side control module 5.
  • the energy storage group 300 of this structure is composed of a lithium battery unit 310 and a super capacitor group 700.
  • the super capacitor group 700 is responsible for charging the lithium battery unit 310.
  • the super capacitor group 700 has the characteristics of fast charging speed and large charging current. Reduce the contact time between the charging wheel brush 400 and the electrode plate 100 during the driving process, and reduce the working loss.
  • the series contactor 320 is disconnected between the lithium battery cells 310, the parallel contactor 330 is connected, and the super capacitor bank 700 is charged. Due to the characteristics of the lithium battery cell 310, the super capacitor bank 700 is charged to the lithium battery cell 310. The time is longer than the charging time from the electrode plate 100 to the super capacitor bank 700.
  • the structure of the above configuration is to configure one super capacitor bank 700 for each lithium battery cell 310.
  • a super capacitor unit 710 is configured, but the charging time of this configuration method is not much shorter than that of the first energy storage group 300 structure.
  • the second energy storage group 300 structure in some of the embodiments, it further includes a conduction switch 730, a DC-DC conversion module 740, and a capacitance voltage checking module 750 for detecting the voltage value of the super capacitor unit 710,
  • a super capacitor unit 710 is connected in series with a conduction switch 730, the conduction switch 730 is connected to the vehicle side control module 5, the DC-DC conversion module 740 is connected in series between the super capacitor bank 700 and the lithium battery unit 310, and the capacitor voltage checking module 750 is connected in parallel Contactor 330.
  • This embodiment mainly considers that the discharge of the super capacitor unit 710 in the super capacitor bank 700 is a problem of a relatively fast voltage drop.
  • the voltage between the two plates of the super capacitor unit 710 drops rapidly during the discharge process, so that it does not pass through DC- In the case of the DC conversion module 740, it is difficult to charge the lithium battery unit 310 in a short time. Therefore, the DC-DC conversion module 740 is added and the vehicle-side control module 5 actively detects the current voltage of the super capacitor unit 710. The voltage conversion ratio of the DC-DC conversion module 740 is adjusted in real time, and the power in the supercapacitor unit 710 is utilized as much as possible in a single charge. As for the turn-on switch 730, since the super capacitor bank 700 has a relatively large current for taking power, it causes a great burden on the line. Therefore, in the case of non-emergency charging, it is allowed to turn on only part of the super capacitor unit 710 to take power to reduce the electrode plates. The current and heat on the 100 reduce the heat of the line on the vehicle side.
  • the energy storage group 300 includes a number of super capacitor units 710, series contactors 320 and parallel contactors 330, the super capacitor units 710 are connected in series to form the energy storage group 300 through the series contactors 320 , The two poles of the super capacitor unit 710 are respectively connected to the charging wheel brush 400 through a parallel contactor 330.
  • the energy storage units in the energy storage group 300 of this structure are all composed of super capacitor units 710, which is equivalent to replacing all the lithium batteries in the structure of the first energy storage group 300 with super capacitor units 710. Discharge characteristics.
  • a vehicle equipped with this energy storage group 300 needs to rely on the power supply of the electrode plate 100. The vehicle cannot leave the electrode plate 100 for too long. Its application value includes scenarios such as point-to-point shuttle vehicles.
  • the charging method is similar to the first structure of the energy storage group 300, but the charging time is short, and the discharging time is short.
  • the energy storage group's rotation device 600 needs to be switched multiple times. However, the current drawing of this structure is suitable for non-small passenger cars. In other words, the instantaneous current drawn to the electrode plate 100 actually becomes smaller, which is equivalent to reducing the burden of the electrode plate 100. The detailed calculation for vehicle application will be described later.
  • the parallel contactor 330 of the third energy storage group 300 structure includes a plurality of shunt contactors 331 for shunting charging current, and the shunt contactors 331 are connected in parallel with each other.
  • the shunt contactor 331 is connected to the vehicle-side control module 5 to realize on-demand opening and closing, and controls how many lines the charging current passes through, which can reduce line load.
  • the above-mentioned three energy storage group 300 structures all include various types of contactors.
  • the contactor is actually a type of switch.
  • the current contactors on the market are roughly divided into DC contactors and AC contactors.
  • One type of contactor is of course a DC contactor, but the DC contactor also includes a variety of different contact methods. In this embodiment, two of the contactor structures will be described:
  • the first contactor structure includes a cam 341, a downward pressing link 342, a link spring 343, a spring stop block 344, a first metal plate 345, a second metal plate 346, and elastic contact pieces 347
  • the top end of the pressing link 342 is provided with a pressing plate 348 corresponding to the cam 341, the bottom end is connected to the first metal plate 345, the link spring 343 is sleeved in the pressing link 342, and one end of the link spring 343 is pressed against the pressing On the pressing plate 348, the other end is pressed against the spring limit block 344.
  • the cam 341 is arranged above the pressing plate 348 and is driven to rotate by the motor.
  • the cam 341 rotates downward, the pressing link 342 is pushed down, thereby causing the first metal
  • the plate 345 descends, the elastic contact piece 347 is connected to the first metal plate 345 and is located above the second metal plate 346, and the elastic contact piece 347 rises and falls following the first metal plate 345 to connect or disconnect itself with the second metal plate 346 .
  • a pin hole is provided on the cam 341, and movable pins are provided at the upper and lower positions respectively. When the cam 341 moves to the corresponding position, the pin penetrates into the pin hole. Fix the cam 341.
  • the second type of contactor structure includes a rotating plate 351, a contact brush 352, a fixed contact wheel 353 and a rotating shaft 354 connected to a stepping motor.
  • the outer ring of the rotating plate 351 is made of conductive material, and the inner ring is Non-conductive material, the rotating shaft 354 passes through the inner ring of the rotating plate 351, the insulating surface of the fixed contact wheel 353 is provided with an arc section 355 made of conductive material, the rotating plate 351 and the fixed contact wheel 353 are arranged side by side in parallel, and the contact brush 352 is arranged
  • the outer ring of the rotating plate 351 is fixed between the rotating plate 351 and the fixed contact wheel 353.
  • the rotating shaft 354 drives the rotating plate 351 to rotate so that the contact brush 352 draws an arc-shaped movement path on the fixed contact wheel 353.
  • the brush 352 rotates to the arc section 355, the rotating plate 351 and the fixed contact wheel 353 are connected.
  • the first type of contactor structure uses a reciprocating cam 341 and an elastic reset structure to reduce mechanical strain.
  • the contact can be designed as required
  • the second contactor structure relies on the shaft 354 to switch the contact brush 352 between the conductive channel and the non-conductive channel, which can realize rapid switching.
  • the embodiment of the present invention can also use a common DC contactor on the market, such as a relay-type contactor, and, in addition to the series contactor 320 and the parallel contactor 330, such as conduction
  • a common DC contactor on the market such as a relay-type contactor
  • the series contactor 320 and the parallel contactor 330 such as conduction
  • the switch 730, the shunt contactor 331, the on-off switch 8 and the like can also use the above-mentioned contactor structure, and those skilled in the art can select an appropriate mechanism according to actual test conditions.
  • the under-vehicle camera 800 for assisting in aligning with external charging facilities while driving.
  • the under-vehicle camera 800 is provided at the bottom of the vehicle, and the under-vehicle camera 800 is connected to the in-vehicle imaging system.
  • the function of the under-vehicle camera 800 is to facilitate the driver to align the electrode plate 100 under the vehicle.
  • the under-vehicle camera 800 is more often used as an accessory to automatically control the alignment guide 240; it can also be used for lifting
  • the device 500 undergoes certain changes to enable it to automatically fine-tune left and right and automatically track the position of the electrode plate 100.
  • the vehicle can be allowed to set two tracking modes.
  • One is the automatic tracking mode.
  • the under-vehicle camera 800 realizes image recognition on the guide bar 240, and is linked with the vehicle's automatic driving system to realize fine-tuning, automatic fine-tuning,
  • the guide bar 240 is automatically tracked.
  • the autopilot system can provide multi-speed constant speed cruise mode to match the automatic tracking function; the other is the manual driving mode.
  • the under-vehicle camera 800 realizes the image recognition of the guide bar 240, which is compatible with the guide bar 240.
  • the reference position is compared, the current head offset is reported in real time, and the driver is reminded to correct the direction.
  • a charging start-stop button 900 is further included.
  • the charging start-stop button 900 is provided in the vehicle for operation by the driver, and the charging start-stop button 900 is connected to the vehicle-side control module 5.
  • the driver in the car can directly control whether to charge or not.
  • the temperature sensing module 10 for detecting the temperature of the energy storage group 300 and a vehicle side voltage and current detection module 11 for detecting the charging state, the temperature sensing module 10 and the vehicle side voltage and current
  • the detection modules 11 are respectively connected to the vehicle-side control module 5.
  • the temperature sensing module 10 usually corresponds to the temperature of the lithium battery unit 310, and can also correspond to the temperature of the measurement circuit.
  • the vehicle-side voltage and current detection module 11 corresponds to the charging circuit and measures the voltage and current of the charging circuit; when the temperature-sensing module 10 and the vehicle side voltage and current The measurement value of the detection module 11 exceeds the threshold, and the vehicle-side control module 5 will further process the abnormal situation.
  • an embodiment of the present invention relates to a road-side charging method applying the above-mentioned safe low-voltage charging road, including the following steps:
  • S102 Determine the type of the current vehicle and the type of the energy storage group 300, and estimate power consumption and charging time;
  • the traffic control center 1 judges whether to allow the current vehicle to be charged according to the current power supply status of the highway, and if so, performs power resource allocation;
  • S104 Send access information to the vehicle requesting charging, where the access information includes an access permission
  • the traffic control center 1 When receiving settlement information sent after the vehicle has finished charging or the vehicle reaches the charging time limit, the traffic control center 1 settles the electricity fee according to the settlement information or charging duration.
  • the settlement information includes the number, serial number and current power of the energy storage group 300.
  • an embodiment of the present invention relates to a vehicle-side charging method for a vehicle applying the above-mentioned driving charging, including the following steps:
  • the energy storage group 300 information includes the number, number, and remaining energy storage group 300 Power
  • S202 Receive the access information returned by the traffic control center 1, and if the access information is that access is permitted, lower the charging wheel brush 400 to contact the electrode plate 100 on the safe low-voltage charging highway to start charging, and the energy storage group rotation device 600 Connect one of the energy storage groups 300 that need to be charged to the charging wheel brush 400, while keeping the other energy storage group 300 discharging, and if the access information is denied access, a notification will be sent to the car;
  • S203 When the energy storage group 300 is fully charged or leaves the safe low-voltage charging road, the settlement information is submitted to the traffic control center 1, and the settlement information includes the number, serial number, and current power of the energy storage group 300.
  • an embodiment of the present invention relates to a charging method using the above charging system, including the following steps:
  • the road side control module 2 at the start and end points of the safe low-voltage charging road monitors the entry and exit of vehicles, and the road side control module 2 between the start and end points monitors the movement path of the vehicle on the road surface 200 and the current charging situation;
  • the vehicle starts charging after passing the start of the safe low-voltage charging road
  • the vehicle-side communication module 4 sends a charging request and its own energy storage group 300 information to the road-side communication module 3, and the energy storage group 300 information includes the number of energy storage groups 300 , Number and remaining power;
  • the traffic control center 1 receives the charging request via the road side communication module 3;
  • the traffic control center 1 judges the current vehicle type and the type of energy storage group 300, and estimates power consumption and charging time;
  • S304 The traffic control center 1 judges whether to allow the current vehicle to be charged according to the current power supply status of the highway, and if so, performs power resource allocation;
  • S305 The traffic control center 1 returns access information, and the access information includes an access permission
  • S306 The vehicle receives the access information through the vehicle-side communication module 4. If the access information is permitted access, lower the charging wheel brush 400 to contact the electrode plate 100 on the safe low-voltage charging highway to start charging. If the access information is If access is denied, a notification will be sent to the car;
  • the conditions of the end of charging include the full charge of the energy storage group 300 and the vehicle leaving the safe low-voltage charging road.
  • the vehicle submits settlement information to the traffic control center 1.
  • the settlement information includes the number, serial number, and current power of the energy storage group 300.
  • the control center 1 settles the electricity bill based on the settlement information, and the end of charging also includes reaching the charging time limit, and the traffic control center 1 directly settles the electricity bill according to the charging time.
  • the DC power distribution system 6 cuts off the power supply to the electrode plate 100, and according to the set delay time, sends the electrode plate 100 again after the delay time. Power is supplied and the current on the electrode plate 100 is detected. If the current still exceeds the threshold, the DC power distribution system will issue a fault alarm to the maintenance personnel; otherwise, normal power supply will be restored.
  • the electricity demand is calculated using three groups of energy storage group 300:
  • each lithium battery unit 310 has a total capacity of 8kWh and a series output voltage of 360V.
  • the small passenger car has a power of 16kW under a constant speed cruise of 80 kilometers, that is, the power consumption is 16kW; assuming that the electrode plate 100 supplies a single lithium battery unit 310 with a current of 50A
  • the energy storage group 300 can be switched every 30 minutes under a constant speed cruise of 80 kilometers.
  • the third group of energy storage group 300 can be set to increase redundancy
  • at least 4 charging wheel brushes 400 should be connected to the electrode plate 100.
  • each lithium battery unit 310 has a capacity of 2.4kWh and a voltage of 36V after being fully charged.
  • the power of a medium-sized passenger car is 160kW under a constant speed cruise of 80 kilometers, that is, the power consumption is 160kW; assuming that the electrode plate is 100 pairs of a single lithium battery cell 310
  • the power supply current is 150A.
  • 91.8*2 183.6kW, which is greater than the above-mentioned power consumption of 160kW, indicating that for the 17 parallel lithium battery cells 310 of one energy storage group 300, 150A* is used on the electrode plate 100.
  • the full charge time of each energy storage group 300 is about 27 minutes. At this time, three groups of energy storage group 300 must be used. Switch the energy storage group 300 every 15 minutes.
  • each lithium battery unit 310 has a capacity of 3kWh after being fully charged, and a voltage of 36V.
  • Each energy storage group 300 includes 17 lithium battery units. 310, the total capacity is 51kWh, and the series output voltage is 600V. Assuming that the power of a heavy-duty vehicle is 200kW under constant speed cruise of 60 kilometers, that is, the power consumption is 200kW. Assume that the power supply current of the electrode plate 100 to a single lithium battery unit 310 is 170A.
  • the charging power of a single lithium battery cell 310 is 36V*170A ⁇ 6kWh, and the charging power of a single energy storage group 300 is 102kW.
  • each energy storage group 300 takes about 25 minutes to fully charge. At this time, three groups of energy storage groups 300 must be used, and the energy storage group 300 must be switched every 15 minutes under a 60km constant speed cruise.
  • the charging method on the vehicle side includes the following steps:
  • the energy storage group rotation device 600 selects at least one underfilled energy storage group 300;
  • the lithium battery unit 310 in the selected energy storage group 300 is connected in parallel to the charging wheel brush 400;
  • the electricity demand is calculated by using three groups of energy storage groups 300 and two super capacitor groups 700. From the above charging mode 1, it can be seen that heavy-duty vehicles have the highest requirements for the energy storage group 300. In order to avoid repeating simple calculation schemes, the following calculations are only for heavy-duty vehicles with more complex conditions.
  • each lithium battery cell 310 has a full capacity of 3kWh and a voltage of 36V.
  • Each energy storage group 300 includes 17 lithium battery cells 310 with a total capacity of 51kWh and a series output voltage of 600V.
  • the 36V super capacitor unit 710 with 1700 farads is used, and the charging time is less than 30 seconds under 1000A charging current.
  • the super capacitor bank 700 connects several super capacitor units 710 in parallel. Since each super capacitor unit 710 is connected in series with a conduction switch 730, The vehicle-side control module 5 controls the conduction switch 730 in the super capacitor bank 700 to turn on and off in turn, so that only one super capacitor unit 710 is connected to the electrode plate 100 for charging at the same time, thereby maintaining the power supply current of the electrode plate 100 to 1000A
  • all the super capacitor units 710 in the super capacitor bank 700 are fully charged, close the charging contactor 720 and all on switches 730, all the super capacitor units 710 are charged in parallel to a single lithium battery unit 310, and the charging current is controlled to 170A, and The above charging mode is similar.
  • the specific charging time of the super capacitor bank 700 is determined by the number of super capacitor units 710 connected in parallel. It is not calculated here. It is estimated based on the charging time less than 30 seconds above. If 17 super capacitor units 710 are connected in parallel, the super capacitor bank 700 The charging time is less than 9 minutes, and the charging time of the super capacitor bank 700 to the lithium battery unit 310 is maintained in the calculation of the above charging mode 1. Therefore, according to the actual situation, different numbers of super capacitor banks 700 can be set, such as 17 super capacitor banks.
  • the capacitor group 700 corresponds to each group of 17 lithium battery cells 310.
  • the following charging method can also be derived.
  • Some of the 17 lithium battery cells 310 in the energy storage group 300 are connected to the electrode plate 100 for charging, and the other part is connected to the super capacitor group 700 for charging, so that the super capacitor unit 710 can be reduced.
  • the charging pressure is not detailed here.
  • the charging method on the vehicle side includes the following steps:
  • the energy storage group rotation device 600 selects the super capacitor group 700 to connect to the charging wheel brush 400;
  • the power is 16kWh at 80km constant speed cruise, which is converted into a unit of Joule equivalent to 60MJ, the fully charged voltage of the supercapacitor unit 710 is 36V, the discharge suspension voltage is 26V, and the discharge rate is 10V/36V ⁇ 28% , Assuming that the energy that each super capacitor unit 710 can release in a single discharge is 0.5 MJ, according to the energy storage formula of the capacitor, the super capacitor unit 710 is 1700 farads, and a group of super capacitor bank 700 contains 10 super capacitor units 710, The series output voltage is 360V, that is, a group of super capacitor bank 700 can release a total of 5MJ of energy, so a group of super capacitor bank 700 can be used for a small passenger car to travel for 5 minutes.
  • the calculation method of medium-sized passenger cars is similar to that of small passenger cars, and will not be detailed here. Refer to charging mode 1 for constant-speed cruise power.
  • the power is 160kWh at 60km constant speed cruise, which is converted into a unit of Joule equivalent to 600MJ, the fully charged voltage of the supercapacitor unit 710 is 36V, the discharge suspension voltage is 26V, and the discharge rate is 10V/36V ⁇ 28% ,
  • the super capacitor unit 710 is 1700 farads, and a group of super capacitor bank 700 contains 17 super capacitor units 710,
  • the series output voltage is 612V, that is, a group of super capacitor bank 700 can release a total of 8.5 MJ of energy, so a group of super capacitor bank 700 can be used for heavy vehicles for 51 seconds.
  • the super capacitor bank 700 is connected in series with 0.007 ⁇
  • the current limiting resistor is 36V-26V/0.007 ⁇ 1500A.
  • Unit 710 At this time, it takes 202.3 seconds to fill a super capacitor bank 700, which is obviously much longer than the discharge time of 50 seconds. Therefore, the charging strategy needs to be changed for heavy vehicles.
  • the 17 super capacitor units 710 are divided into 3 groups. Two groups contain 6 supercapacitor units 710, and the third group contains 5 supercapacitor units 710.
  • the supercapacitor units 710 in the group are connected to the electrode plate 100 at the same time.
  • the electrode plate 100 is connected to the group as a unit.
  • a single super capacitor bank 700 needs 3*11.9 seconds ⁇ 36 seconds to be fully charged.
  • only two super capacitor banks 700 are used for one charge and one discharge.
  • the energy storage bank 300 can be switched every 51 seconds under a 60km constant speed cruise. , Setting the third group of super capacitor bank 700 can increase redundancy.
  • the heating power calculated, assuming the cable length is 50 m, cross-sectional area of each copper 1500A current is 185 mm2, and the resistivity of the copper binding apparent resistance of about 7.8 * 10 Resistance formula - 10 ohm, heating power is about 2 watts, heating power is low, heat dissipation requirements are not high.
  • the charging method on the vehicle side includes the following steps:
  • the energy storage group rotation device 600 selects an undercharged super capacitor group 700;
  • the super capacitor unit 710 in the selected super capacitor group 700 is converted from series connection to parallel connection;
  • the super capacitor unit 710 in the selected super capacitor bank 700 is connected in parallel to the charging wheel brush 400;
  • charging mode 3 relies heavily on the electrode plate 100 and cannot be far away from the electrode plate 100 for a long time, its application value has several points.
  • the first is for urban electric buses.
  • the electrode plate 100 is continuously laid between stations to make the electric buses always take Electric driving, so it has good adaptability to charging mode three, electric buses may develop into pipeline buses in the future, and only buses are allowed to run in the tube, which shields external interference, so it is also suitable for charging mode three;
  • the second is highway Point-to-point electric logistics trucks need to replace the 300 type of energy storage group inside and outside high-speed stations.
  • the high-speed section between high-speed stations uses the energy storage group 300 structure of charging mode three. After arriving at the high-speed station, replace the front of the vehicle and replace it with a lithium battery
  • the energy storage group 300 in the unit 310 mode allows the goods to continue to travel on ordinary roads.
  • the embodiment of the present invention is based on a safe low-voltage charging road powered by a low-voltage electrode plate 100 and a vehicle suitable for driving and charging on a safe low-voltage charging road.
  • a variety of charging methods are used to solve the current battery life concerns of electric vehicles and provide continuous charging. The basis of the scheme provided by the driving mode.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本发明公开了一种安全低电压充电公路、行驶充电的车辆及充电方法,其中安全低电压充电公路包括两块由直流配电系统供电的低电压的电极板,其中,低电压的电极板带有下雨天防漏电的设计,行驶充电的车辆包括对应所述电极板的充电轮刷和两个以上储能组,基于低电压的电极板,储能组里面的储能单元借助直流接触器实现并联充电与串联放电,一个储能组为车辆供电的同时余下的储能组接入充电轮刷,充电轮刷通过接触电极板取电,车辆能够自动跟踪道路上的引导条,达到了一边行驶一边充电的效果,本发明基于上述充电公路和车辆,应用多种充电方式解决了现有电动汽车的续航担忧,为持续充电的行车模式提供的方案基础。

Description

一种安全低电压充电公路、行驶充电的车辆及充电方法 技术领域
本发明涉及新能源汽车充电技术领域,特别涉及一种安全低电压充电公路、行驶充电的车辆及充电方法。
背景技术
目前,电动汽车的充电方式是通过停车并接入充电设备实现的,驾驶员在需要充电的时候寻找附近的充电桩或充电插头,停下来等待车辆充电完成才能继续前进,这种充电方式有很多限制,比如部分地区的充电站点不足、充电时间耽误行程,带来了诸多不便。当然现时也有人提出一些无线充电方案,但不可避免的是,在现有设备条件下,无线充电方案的成本高并且充电效率低。
发明内容
本发明的目的在于至少解决现有技术中存在的技术问题之一,提供一种安全低电压充电公路、行驶充电的车辆及充电方法,能够在车辆行驶过程中对车辆进行充电,保证了电动汽车在路上的续航,并且整体设备的成本较低,充电过程比较安全。
根据本发明的第一方面,提供了一种安全低电压充电公路,包括路面、直流配电系统和作为正负极的两块电极板,所述电极板铺设在所述路面上并沿所述路面的延伸方向设置,所述电极板下方设置有绝缘填充块作支撑,所述电极板往所述路面下引出导线,导线与所述直流配电系统连接,所述直流配电系统的电压不超过人体安全电压。
上述安全低电压充电公路至少具有以下有益效果:在路面上并排铺设正极和负极两块电极板,允许电动车辆在路面上一边行驶一边充电,改变了传统的那种寻找充电桩、在充电桩处等待充电的完成的模式,电动车辆的续航得到保障,另外由于采用的直流电电压不超过人体安全电压,因此在工作过程中安全性高。
根据本发明第一方面所述的一种安全低电压充电公路,还包括中央混凝土结构和用于车轮行驶的侧边行车结构,所述中央混凝土结构设置在两块所述电极板之间,所述侧边行车结构设置在两块所述电极板的两侧,所述侧边行车结构是混凝土和/或沥青材料。两块电极板之间的间距不超过车辆左右两个车轮之间的最短距离,车辆在行驶过程中不容易碾压到电极板,同时中央混凝土结构也保证了两块电极板之间不会发生短路。
根据本发明第一方面所述的一种安全低电压充电公路,还包括用于表示道路方向的引导条,所述引导条设置在所述中央混凝土结构表面的中央位置并沿所述路面方向延伸。引导条的作用是提醒驾驶员保持沿路面延伸方向行驶,帮助车辆对准电极板来充电。
根据本发明第一方面所述的一种安全低电压充电公路,所述电极板两侧分别设置有排水槽,所述排水槽连接到城市下水道系统,所述排水槽的槽壁覆盖有绝缘材料。对应雨水天气,为防止路面的电极板积水浸没,排水槽帮助排出电极板附近的水,绝缘材料的作用在于将混凝土表面与水隔离,减小漏电。
根据本发明第一方面所述的一种安全低电压充电公路,还包括用于检测下雨天是否有车辆通过的探测模块和串接到所述直流配电系统的的通断开关,所述探测模块设置在所述路面的边缘或者表面,所述探测模块连接所述通断开关,所述探测模块在非下雨天的环境下不工作,所述通断开关在非下雨天的环境下处于常闭状态。考虑到在下雨天的情况下,即使没有车辆通行时直流配电系统也会持续供电,潮湿的电极板存在一定的漏电,因此加入若干探测模块将道路分段,可以在该段路面没有车辆通行的时候断开供电,进一步减少漏电的发生。
根据本发明第一方面所述的一种安全低电压充电公路,所述电极板包括平板、板檐和裹边,所述板檐设置在所述平板的两侧并向所述排水槽的底部倾斜,所述裹边设置在所述平板的底部并贴着所述绝缘填充块的侧壁向下延伸,所述裹边为绝缘材料。板檐将平板流下的水卸开,同时辅以裹边从而保持板檐下电极板和混凝土表面接触的部分干燥,有效隔断漏电。
根据本发明第一方面所述的一种安全低电压充电公路,还包括用于固定所述电极板的加固结构,所述加固结构连接所述电极板并埋入所述绝缘填充块中。考虑到路面上行车的复杂性和不确定性,通过加固结构稳定电极板,防止在车辆通过时车轮将电极板移位。
根据本发明第一方面所述的一种安全低电压充电公路,所述加固结构包括若干条钢筋,所述加固结构通过焊接的方式固定所述电极板。此处钢筋与混凝土中普遍使用的钢筋不相连,所述钢筋之间也不相连。
根据本发明第一方面所述的一种安全低电压充电公路,还包括用于散热的通风管,所述通风管设置在所述电极板与所述绝缘填充块之间。通风管由于也具有一定的支撑作用,因此采用强度较高的材料进行支撑,通风管将电极板上的热传递到自身管内,加快散热速度,必要时还可以配合冷却设备等。
根据本发明第一方面所述的一种安全低电压充电公路,还包括用于加强排水的排水系统,所述排水系统包括蓄水池和沿所述安全低电压充电公路的延伸方向间隔设置的排水孔,若干个所述排水孔连通到所述蓄水池。主要是为了在高等级暴雨警报生效时,加强排 水效果,并且这样的排水系统还可以辅以排水设备,如抽水机等。
根据本发明的第二方面,提供一种行驶充电的车辆,包括两个适用于直流充电的储能组、两个以上设置于车辆底部的充电轮刷、用于控制所述充电轮刷升降的升降装置、储能组轮换装置和车辆侧控制模块,两个所述储能组由所述储能组轮换装置切换充电状态和放电状态,且两个所述储能组中同一时间只有一个储能组能处于充电状态,所述充电轮刷连接所述升降装置,一部分的所述充电轮刷连接所述储能组的正极,另一部分的所述充电轮刷连接所述储能组的负极,所述升降装置和储能组轮换装置分别连接所述车辆侧控制模块。
上述行驶充电的车辆至少具有以下有益效果:车辆内部采用两个以上储能组轮流工作的方式来保持车辆续航,其中至少一个储能组处于放电状态,另一个处于充电状态,因此车辆在行驶过程中通过储能组轮换装置自动切换储能组,驾驶员无需担心因电量不足而寻找充电桩充电。
根据本发明第二方面所述的一种行驶充电的车辆,所述储能组包括若干个锂电池单元、串联接触器和并联接触器,所述锂电池单元通过所述串联接触器串联组成所述储能组,每个所述锂电池单元的正极和负极都分别通过所述并联接触器连接到所述充电轮刷,所述串联接触器和并联接触器分别连接所述车辆侧控制模块。上述实施例为第一种储能组类型,储能的单元均为锂电池单元,在充电方式上采用并联充电,在放电方式上采用串联放电,通过串联接触器和并联接触器即可对应储能组的工作状态变换连接方式。
根据本发明第二方面所述的一种行驶充电的车辆,所述储能组的数量为三组,工作状态下第一个所述储能组放电驱动车辆的电机,第二组所述储能组充满待用,第三组所述储能组处于充电状态。对于锂电池单元充电慢、车辆行驶过程中用电快的问题,设置一个冗余的储能组,冗余的储能组在当前放电储能组的电量达到下限但充电储能组还没充满的情况下,代替放电储能组继续工作并留下足够的充电时间。
根据本发明第二方面所述的一种行驶充电的车辆,所述储能组包括若干个锂电池单元、串联接触器和并联接触器,所述锂电池单元通过所述串联接触器串联在一起,还包括超级电容器组和充电接触器,所述超级电容器组包括一个以上超级电容单元,各个所述超级电容单元并联,所述超级电容器组的两极分别通过所述充电接触器连接所述充电轮刷,所述超级电容器组通过所述并联接触器并联到所述锂电池单元,所述串联接触器、并联接触器和充电接触器分别连接所述车辆侧控制模块。上述实施例为第二种储能组类型,储能的单元一部分是锂电池单元,另一部分为超级电容器组,通过超级电容器组进行快速充电,超级电容器组充满后再二次充电给锂电池单元,解决了锂电池单元直接充电情况下,充电速度慢的问题,超级电容器组的充电时间短,在一定程度上解决了安全低电压充电公路上长时间通电所带来的问题。
根据本发明第二方面所述的一种行驶充电的车辆,还包括导通开关,一个所述超级电容单元串联一个所述导通开关,所述导通开关连接所述车辆侧控制模块。导通开关的作用在于,多个超级电容单元同时取电时,可能给供电的外部充电设备带来很大的负载,因此利用导通开关按需选择其中一部分超级电容单元取电,减轻外部充电设备的供电压力。
根据本发明第二方面所述的一种行驶充电的车辆,还包括DC-DC转换模块,所述DC-DC转换模块串联到所述超级电容器组和所述锂电池单元之间。由于超级电容单元的电压下降较快,在放电一段时间后可能无法适应锂电池单元的充电电压,因此采用DC-DC转换模块将超级电容单元的电量尽可能用到极限值,再让超级电容单元去充电。
根据本发明第二方面所述的一种行驶充电的车辆,还包括用于检测所述超级电容单元的电压值的电容电压检查模块,所述电容电压检查模块连接所述并联接触器。电容电压检查模块能够实时检测所述超级电容单元的电压值,可以让DC-DC转换模块根据当前电压调整转换比率。
根据本发明第二方面所述的一种行驶充电的车辆,所述储能组包括若干个超级电容单元、串联接触器和并联接触器,所述超级电容单元通过所述串联接触器串联组成所述储能组,所述超级电容单元的两极分别通过所述并联接触器连接到所述充电轮刷。上述实施例为第三种储能组类型,储能的单元全部为超级电容单元,相当于将第一种储能组类型中的锂电池单元替换成超级电容单元,由于超级电容单元的压降很快,因此每组储能组能够供给车辆行驶的距离不长,这种模式下车辆需要全程依靠外部充电设备来行驶,但是车辆运行稳定性高,去掉锂电池单元后减轻车身重量,腾出更多车内乘坐空间,是一种特殊场景的应用方式。
根据本发明第二方面所述的一种行驶充电的车辆,所述并联接触器包括若干个用于分流充电电流的分流接触器,所述分流接触器互相并联。由于所述超级电容单元的取电电流很大,单条线路的负载较大,因此采用多条线路并联来减轻发热情况,每条线路配置一个分流接触器,能够按照需要通断充电的线路。
根据本发明第二方面所述的一种行驶充电的车辆,所述充电轮刷包括金属刷毛、滚轮组和固定框架,所述固定框架安装所述滚轮组并且所述滚轮组的滚动平面与地面平行,所述金属刷毛通过所述安装框架固定并连接到所述储能组。所述滚轮组适应于车辆行驶的情况,能使所述金属刷毛贴近地面的外部充电设备,所述金属刷毛相当于多条线路同时取电,减轻单条线路的发热情况。
根据本发明第二方面所述的一种行驶充电的车辆,所述升降装置包括跟随所述充电轮刷升降的套筒、设置在所述套筒内的回位弹簧,设置在所述套筒两侧的卡位机构和用于拉动所述充电轮刷的牵引电机,所述充电轮刷设置在所述套筒的敞口端,所述回位弹簧一端抵压在所述充电轮刷上,另一端抵压在车辆底部,所述牵引电机用钢丝穿过所述套筒连接到所述充电轮刷上,所述卡位机构在所述套筒上升到指定位置后将所述套筒锁定。非充电时间内通过牵引电机收起所述充电轮刷,需要充电时,松开卡位机构,所述充电轮刷即可在回位弹簧的作用下下降并抵压在外部充电设备上。
根据本发明第二方面所述的一种行驶充电的车辆,所述并联接触器和串联接触器的结构相同,包括凸轮、下压连杆、连杆弹簧、弹簧限位块、第一金属板、第二金属板和弹性触片,所述下压连杆的顶端设置有对应所述凸轮的抵压板,底端连接所述第一金属板,所述连杆弹簧套接在所述下压连杆中,所述连杆弹簧的一端抵压在所述抵压板上,另一端抵压在所述弹簧限位块上,所述凸轮设置在所述抵压板的上方并由电机带动旋转,所述凸轮往下转动时推动所述下压连杆下降,从而使所述第一金属板下降,所述弹性触片连接所述第一金属板并位于所述第二金属板的上方,所述弹性触片跟随所述第一金属板升降从而接通或断开自身与所述第二金属板的连接。现有接触器的结构较多,但是在本发明中需要考虑通电内阻、通断速度和耐久性的问题,采用往复式的凸轮和弹性复位结构可以减小机械劳损程度,同时触点可以根据需要设计成内阻较小的行驶。
根据本发明第二方面所述的一种行驶充电的车辆,所述并联接触器和串联接触器的结构相同,包括旋转板、接触电刷、固定接触轮和连接步进电机的转轴,所述旋转板的外圈为导电材料,内圈为非导电材料,所述转轴穿过所述旋转板的内圈,所述固定接触轮的绝缘表面设置有用导电材料构成的弧形段,所述旋转板和固定接触轮平行并排设置,所述接触电刷设置在所述旋转板和固定接触轮之间并固定连接所述旋转板的外圈,所述转轴驱动所述旋转板转动,从而使所述接触电刷在所述固定接触轮上画出弧形的运动路径,当所述接触电刷转动到所述弧形段时,所述旋转板和固定接触轮导通。依靠转轴使所述接触电刷在导电通道和非导电通道之间切换,可以实现快速开关。
根据本发明第二方面所述的一种行驶充电的车辆,还包括用于行驶时辅助对准外部充电设施的车底摄像头,所述车底摄像头设置在车辆底部,所述车底摄像头连接到车内影像系统。在行驶过程中,驾驶员手动控制方向容易偏离充电位置,由于充电轮刷在车辆底部,驾驶员通过车底摄像头可以实时调整方向,维持充电过程。
根据本发明第二方面所述的一种行驶充电的车辆,还包括充电启停按钮,所述充电启停按钮设置在车辆内供驾驶员操作,所述充电启停按钮连接所述车辆侧控制模块。驾驶员在车内即可操作充电,根据需要随时充电或结束充电,无需下车,比较方便。
根据本发明第二方面所述的一种行驶充电的车辆,还包括用于检测所述储能组温度的温感模块和用于检测充电状态的车辆侧电压电流检测模块,所述温感模块和车辆侧电压电流检测模块分别连接到所述车辆侧控制模块。利用传感器检测充电过程中的参数,使得发生异常的时候车辆侧控制模块能够及时响应,避免发生事故。
根据本发明的第三方面,提供了一种充电系统,包括如上述任一所述的安全低电压充电公路和上述任一所述的行驶充电的车辆,还包括交通调控中心,所述安全低电压充电公路还包括公路侧通信模块和公路侧控制模块,所述车辆还包括车辆侧通信模块,所述公路侧通信模块连接所述公路侧控制模块,所述公路侧控制模块连接交通调控中心,所述车辆侧通信模块连接所述公路侧通信模块。
上述充电系统至少具有以下有益效果:通过安全低电压充电公路和行驶充电的车辆配合实现自动充电,改变了传统那种下车插电的充电模式,同时采用低压充电模式可以大大提高充电的安全性,车辆在行驶过程中同时进行充电,解决了电动车辆的续航问题,并在设备上减小了防护措施等配件的投入,成本较低,便于大范围推广。
根据本发明第三方面所述的一种充电系统,所述电极板的供电电压为36V,所述储能组在充满状态下的电压为36V。36V是人体安全电压范围内的最大值,也适配于锂电池等储能单元的工作电压。
根据本发明第三方面所述的一种充电系统,所述车辆侧通信模块和所述公路侧通信模块之间通过5G网络连接。额外在安全低电压充电公路上设置其他通信配件会加大建设成本,基于5G物联网技术,可以完全覆盖安全低电压充电公路全程,不但节省成本,用户体验也非常良好。
根据本发明的第四方面,提供了一种应用上面任一所述的安全低电压充电公路的公路侧充电方法,包括以下步骤:
接收进入充电区域的车辆的充电请求;
判断当前的车辆的类型及储能组的类型,预估电力消耗及充电时间;
所述交通调控中心根据当前公路的供电状况判断是否准许当前车辆接入充电,若是则进行电力资源调配;
向请求充电的车辆发送接入信息,所述接入信息包括准入许可;
当接收到车辆结束充电后发送的结算信息或者车辆达到充电时限时,所述交通调控中心根据结算信息或者充电时长结算电费,所述结算信息包括储能组的数量、编号和当前电量。
上述公路侧充电方法至少具有以下有益效果:监控进入路面的车辆,当车辆发出充电请求时所述交通调控中心分配电力来满足充电需求,最后根据充电结果计算电费,管理人员可以进行电费收取或其他操作。
根据本发明第四方面所述的一种公路侧充电方法,判断当前的车辆的类型及储能组的类型包括以下步骤:
若当前的车辆类型为重型电动货车,所述储能组中储能的单元全部为超级电容单元,所述交通调控中心将当前的车辆纳入重型汽车管控时间表,重型汽车管控时间表以相邻两辆重型汽车之间相距5公里为准入阈值。
主要考虑到重型汽车的充电电流过大,影响附近的电力供应,因此需要对重型汽车进行引流和限制充电时间,两车之间的距离不能低于5公里,保证周边车辆的电力供应和减小电极板的发热。
根据本发明的第五方面,提供了一种应用上面任一所述的行驶充电的车辆的车辆侧充电方法,包括以下步骤:
处于安全低电压充电公路的情况下,根据充电请求,向交通调控中心请求充电,并发送当前的储能组信息,所述储能组信息包括储能组的数量、编号和剩余电量;
接收交通调控中心返回的接入信息,若所述接入信息为准许接入,则放下充电轮刷使其接触安全低电压充电公路上的电极板开始充电,储能组轮换装置将需要充电的至少一个储能组连接充电轮刷,同时保持剩余的一个储能组放电工作,若所述接入信息为拒绝接入,则向车内发出通知;
当储能组充满或者驶离安全低电压充电公路,向所述交通调控中心提交结算信息,所述结算信息包括储能组的数量、编号和当前电量。
上述车辆侧充电方法至少具有以下有益效果:车辆按驾驶员的操作请求接入安全低电压充电公路,由交通调控中心分配充电,车辆在行驶过程中轮流将未充满的储能组对接充电轮刷,保留一个储能组驱动车辆行驶即可,达到了一边充电一边行驶的效果,解决了电动汽车的续航问题。
根据本发明第五方面所述的一种车辆侧充电方法,根据所述储能组的类型具有三种不同充电模式:
充电模式一:储能组内储能的单元全部为锂电池单元,则充电方法包括以下步骤:
所述储能组轮换装置选择至少一个未充满的储能组;
被选中的储能组中的锂电池单元由串联连接变换成并联连接;
被选中的储能组中的锂电池单元并联接入到所述充电轮刷;
当前储能组充满后,所述储能组轮换装置选择此时未充满的储能组进行充电;
已充满的储能组对驱动电机放电时,锂电池单元由并联连接变换成串联连接;
充电模式二,储能组内储能的单元包括锂电池单元和超级电容器组,超级电容器组内包括若干个并联的超级电容单元,则充电方法包括以下步骤:
所述储能组轮换装置选择超级电容器组使其接入到所述充电轮刷;
超级电容器组充满后,所述储能组轮换装置将超级电容器组切换到与未充满的锂电池单元并联,超级电容器组对锂电池单元充电;
超级电容器组电压下降到下限值时,所述储能组轮换装置选择超级电容器组使其接入到所述充电轮刷;
充电模式三,储能组内储能的单元全部为超级电容器组,超级电容器组中包括若干个并联的超级电容单元,则充电方法包括以下步骤:
所述储能组轮换装置选择一个未充满的超级电容器组;
被选中的超级电容器组中的超级电容单元由串联连接变换成并联连接;
被选中的超级电容器组中的超级电容单元并联接入到所述充电轮刷;
当前超级电容器组充满后,所述储能组轮换装置选择另一个未充满的超级电容器组进行充电;
已充满的超级电容器组对驱动电机放电时,超级电容单元由并联连接变换成串联连接。
其中充电模式一个充电模式三类似,均是较简单的多个储能组轮换的工作方式,充电模式二实际上以超级电容组作为充电中介,减小取电时间,可以让充电轮刷不需要长时间接触电极板,减小设备损耗。
根据本发明第五方面所述的一种车辆侧充电方法,所述充电模式三中,所述车辆的储能组为可更换式设计,所述车辆离开安全低电压充电公路时将由超级电容单元构成的储能组更换成由锂电池单元构成的储能组。基于超级电容单元压降较快的特性,采用充电模式三的车辆在离开安全低电压充电公路后需要解决续航问题,采用可更换车头的设计,可以所述车辆在保证离开安全低电压充电公路后快速上路。
根据本发明的第六方面,提供了一种应用上述任一所述的充电系统的充电方法,包括以下步骤:
所述安全低电压充电公路的起点和终点两处的所述公路侧控制模块监控所述车辆的进出,起点和终点之间的所述公路侧控制模块监控路面车辆的运动路径和当前的充电情况;
所述车辆经过所述安全低电压充电公路的起点后启动充电,所述车辆侧通信模块向所述公路侧通信模块发送充电请求和自身的所述储能组信息,所述储能组信息包括储能组的数量、编号和剩余电量;
所述交通调控中心经所述公路侧通信模块接收充电请求;
所述交通调控中心判断当前所述车辆的类型和所述储能组的类型,预估电力消耗及充电时间;
所述交通调控中心根据当前公路的供电状况判断是否准许当前车辆接入充电,若是则进行电力资源调配;
所述交通调控中心返回接入信息,所述接入信息包括准入许可;
所述车辆通过所述车辆侧通信模块接收所述接入信息,若所述接入信息为准许接入,则放下所述充电轮刷使其接触所述安全低电压充电公路上的电极板开始充电,若所述接入信息为拒绝接入,则向车内发出通知;
结束充电的情况包括所述储能组充满和所述车辆驶离所述安全低电压充电公路,此时所述车辆向所述交通调控中心提交结算信息,所述结算信息包括储能组的数量、编号和当前电量,所述交通调控中心根据结算信息结算电费,结束充电的情况还包括达到充电时限,所述交通调控中心根据充电时长直接结算电费。
上述充电方法至少包括如下有益效果:所述安全低电压充电公路提供低压充电基础,所述车辆在路面上行驶时通过两个充电轮刷对接电极板取电,实现了一边充电一边行驶,解决了电动汽车的续航问题。
根据本发明第六方面所述的一种充电方法,若电极板上的电流超过阈值,直流配电系统断开对电极板的供电,并根据设定的延迟时间,经过所述延迟时间后重新向电极板供电并检测电极板上的电流大小,若电流仍然超过阈值,则直流配电系统向维护人员发出故障警报,否则,恢复正常供电。
附图说明
下面结合附图和实施例对本发明进一步地说明;
图1为本发明实施例的安全低电压充电公路的俯视结构示意图;
图2为本发明实施例的安全低电压充电公路的侧视结构示意图;
图3为本发明实施例的安全低电压充电公路的侧视放大结构示意图;
图4为本发明实施例的排水孔和蓄水池连接关系示意图;
图5为本发明实施例的车辆充电工作状态示意图;
图6为本发明实施例的升降装置和充电轮刷的结构示意图;
图7为本发明实施例的第一种储能组结构的连接关系示意图;
图8为本发明实施例的第二种储能组结构的连接关系示意图a;
图9为本发明实施例的第二种储能组结构的连接关系示意图b;
图10为本发明实施例的第三种储能组结构的连接关系示意图;
图11为本发明实施例的第三种储能组结构下并联接触器的结构示意图;
图12为本发明实施例的储能组轮换装置的连接关系图;
图13为本发明实施例的接触器的一种结构示意图a;
图14为本发明实施例的接触器的一种结构示意图b;
图15为本发明实施例的接触器的另一种结构示意图a;
图16为本发明实施例的接触器的另一种结构示意图b;
图17本发明实施例的电路连接关系示意图;
图18为本发明实施例的公路侧充电方法的流程图;
图19为本发明实施例的车辆侧充电方法的流程图;
图20为本发明实施例的充电系统充电方法的流程图;
图21为本发明实施例的充电模式一的充电流程图;
图22为本发明实施例的充电模式二的充电流程图;
图23为本发明实施例的充电模式三的充电流程图。
具体实施方式
本部分将详细描述本发明的具体实施例,本发明之较佳实施例在附图中示出,附图的作用在于用图形补充说明书文字部分的描述,使人能够直观地、形象地理解本发明的每个技术特征和整体技术方案,但其不能理解为对本发明保护范围的限制。
本发明的描述中,除非另有明确的限定,设置、安装、连接等词语应做广义理解,所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本发明中的具体含义。
参照图1-17,本发明的一个实施例涉及一种安全低电压充电公路以及一种行驶充电的车辆,两者的基本结构如下:
安全低电压充电公路包括路面200、直流配电系统6和作为正负极的两块电极板100,电极板100铺设在路面200上并沿路面200的延伸方向设置,电极板100下方设置有绝缘填充块210作支撑,电极板100往路面200下引出导线,导线与直流配电系统6连接,直流配电系统6的电压不超过人体安全电压,本实施例中采用直流电压为36V;行驶充电的车辆包括两个以上适用于直流充电的储能组300、两个以上设置于车辆底部的充电轮刷400、用于控制充电轮刷400升降的升降装置500、储能组轮换装置600和车辆侧控制模块5,储能组300由储能组轮换装置600切换充电状态和放电状态,且储能组300中同一时间只有一个储能组300能处于放电状态,充电轮刷400连接升降装置500,一部分的充电轮刷400连接储能组300的正极,另一部分的充电轮刷400连接储能组300的负极,升降装置500和储能组轮换装置600分别连接车辆侧控制模块5。
上述安全低电压充电公路以及行驶充电的车辆相结合,还涉及一种充电系统,充电系统除了包括安全低电压充电公路以及行驶充电的车辆,还包括交通调控中心1,安全低电压充电公路还包括公路侧通信模块3和公路侧控制模块2,车辆还包括车辆侧通信模块4,公路侧通信模块3连接公路侧控制模块2,公路侧控制模块2连接交通调控中心1,车辆侧通信模块4连接公路侧通信模块3,在本实施例中,通信连接方式采用5G网络连接。
首先,参照图2,安全低电压充电公路还包括中央混凝土结构220、用于车轮行驶的侧边行车结构230、排水槽250和用于散热的通风管150,中央混凝土结构220设置在两块电极板100之间,侧边行车结构230设置在两块电极板100的两侧,侧边行车结构230是混凝土和/或沥青材料,排水槽250分别设置在电极板100两侧,使中央混凝土结构220形成孤岛结构,排水槽250汇聚到城市下水道系统,通风管150设置在电极板100与绝缘填充块210之间,通风管150采用强度较高的材料对电极板100进行支撑,通风管150可根据电极板100的宽度设置多条,通风管150将电极板100上的热传递到自身管内,加快散热速度,必要时还可以配合冷却设备等;在本实施例中,路面200的横向尺寸有一定的要求,电极板100和绝缘填充块210的宽度为25cm,中央混凝土结构220的宽度为28cm,中央混凝土结构220两侧的排水槽250的宽度为6cm,侧边行车结构230旁的排水槽250的宽度为5cm,侧边行车结构230的宽度至少为10cm,即两个侧边行车结构230外壁之间的宽度为120cm,与小型客车的左右车轮之间的横向最短距离为120cm相匹配,当然,具体到实际情况,根据路面200宽度可以适当拓宽各个板块,另外,货车等大型车的左右车轮之间的横向最短距离大于120cm,但可以不需要调整电极板100的位置,而是让充电轮刷400的安装位置适应电极板100的位置。
值得注意的是,本实施例中路面200横向平直,即电极板100的水平高度与中央混凝土结构220、侧边行车结构230的水平高度一致,相应的,绝缘填充块210的高度稍低。实际上在其他实施方式下,路面200可以不是平直的而让电极板100凸起或者凹下,但是这种结构下路面200被划分多个高低区域,对于行车来说造成不便,并且路面200结构也容易损坏。
参照图2-3,在其中一些实施例中,电极板100包括平板110、板檐120和裹边130,板檐120设置在平板110的两侧并向排水槽250的底部倾斜,裹边130设置在平板110的底部并贴着绝缘填充块210的侧壁向下延伸,裹边130为绝缘材料,排水槽250的槽壁覆盖有绝缘材料,本实施例针对户外雨水天气布局防水结构,板檐120将平板110流下的水卸开,同时裹边130和排水槽250槽壁的绝缘材料可以防止水溅射到电极板100和混凝土上,保持电极板100与混凝土表面接触的部分干燥,而有效隔断漏电。值得注意的是,此处隔断漏电并非完全无漏电电流,在实际工作过程中,由于电极板100上的电流较大,可以允许少量的漏电,如1000A的电极板100电流下,漏电电流为10A,这样的情况下系统仍然能够正常工作。值得注意的是,板檐120超出平板110的边缘,平板110的宽度与绝缘填充块210的宽度相同,板檐120伸入到排水槽250内。
参照图1,在其中一些实施例中,安全低电压充电公路还包括用于表示道路方向的引导条240,引导条240设置在中央混凝土结构220表面的中央位置并沿路面200方向延伸。本实施例中引导条240的宽度设置为15cm,符合国家道路标准。
参照图17,在其中一些实施例中,还包括用于检测下雨天是否有车辆通过的探测模块7和串接到所述直流配电系统6的的通断开关8,所述探测模块7设置在所述路面200的边缘或者表面,所述探测模块7连接所述通断开关8,所述探测模块7在非下雨天的环境下不工作,所述通断开关8在非下雨天的环境下处于常闭状态。在本实施例中,沿路面200分布若干个探测模块7,从而将路面200分段管理,每段路面200配备一个通断开关8,当探测模块7检测到有车辆通过时,根据需要闭合通断开关8让电极板100供电,车辆离开该段路面200时,断开供电;主要是为了防止下雨天时直流配电系统6持续供电而造成漏电的问题,断开通断开关8之后可以进一步减小漏电。当然,为保证探测模块7协调工作,探测模块7还应连接到公路侧控制模块2,前一探测模块7检测到车辆时,后 一探测模块7就应准备启动,从而保证供电的连贯性,在此不展开详述。
参照图3,在其中一些实施例中,安全低电压充电公路还包括用于固定电极板100的加固结构140,加固结构140包括若干条钢筋,加固结构140通过焊接的方式固定电极板100,钢筋之间不相连。
参照图4,安全低电压充电公路还包括用于加强排水的排水系统,排水系统包括蓄水池270和沿安全低电压充电公路的延伸方向间隔设置的排水孔260,若干个排水孔260连通到蓄水池270。本实施例中排水孔260按照相等的间距设置,间距设置为30米,排水孔260的半径为10cm,排水孔260设置在中央混凝土结构220上,通过管道等方式汇聚到蓄水池270,而蓄水池270设置在路边,定期抽水。对于某些路段来说,存在低洼地段,可以设置防雨棚等减小雨水进入。
其次,参照图6,充电轮刷400包括金属刷毛410、滚轮组420和固定框架430,固定框架430安装滚轮组420并且滚轮组420的滚动平面与地面平行,金属刷毛410通过安装框架固定并连接到储能组300。升降装置500包括跟随充电轮刷400升降的套筒510、设置在套筒510内的回位弹簧520,设置在套筒510两侧的卡位机构530和用于拉动充电轮刷400的牵引电机540,充电轮刷400设置在套筒510的敞口端,回位弹簧520一端抵压在充电轮刷400上,另一端抵压在车辆底部,牵引电机540用钢丝穿过套筒510连接到充电轮刷400上,卡位机构530在套筒510上升到指定位置后将套筒510锁定。在本实施例中,固定框架430的剖面为梯形结构,套筒510的筒口抵压在梯形的两条斜边上,当牵引电机540将固定框架430向上拉的时候,固定框架430顶起套筒510并且固定框架430压缩回位弹簧520,当牵引电机540放送钢丝的时候,固定框架430引重力自动落下,同时卡位机构530解锁,套筒510也引重力落下并支撑在固定框架430的两条斜边上。充电轮刷400的数量不做限定,但至少设置两个来对应两块电极板100,当然,为了保证接触良好,可以增加充电轮刷400的数量。卡位机构530的选择较多,例如继电器式的卡钳,相应在套筒510的侧壁设置与卡钳相对应卡位即可。
参照图7-11,行驶充电的车辆具有三种不同类型的储能组300结构,对应三种不同的充电模式:
第一种储能组300结构:参照图7,储能组300包括若干个锂电池单元310、串联接触器320和并联接触器330,锂电池单元310通过串联接触器320串联组成储能组300,每个锂电池单元310的正极和负极都分别通过并联接触器330连接到充电轮刷400,串联接触器320和并联接触器330分别连接车辆侧控制模块5。
这种结构的储能组300中的储能单元全部为锂电池单元310,在充电方式上,选择至少一个未充满的储能组300对接充电轮刷400,对接充电轮刷400的储能组300中的串联接触器320断开并且接通并联接触器330,充电轮刷400从电极板100中取电,对并联连接的各个锂电池单元310进行同时充电,而对于驱动车辆行驶的储能组300,串联接触器320连通,并联接触器330断开;当前充电的储能组300充电完成后,通过储能组300轮换机构换下一个未充满储能组300接入充电轮刷400。
第二种储能组300结构:参照图8-9,储能组300包括若干个锂电池单元310、串联接触器320和并联接触器330,锂电池单元310通过串联接触器320串联在一起,还包括超级电容器组700和充电接触器720,超级电容器组700包括一个以上超级电容单元710,各个超级电容单元710并联,超级电容器组700的两极分别通过充电接触器720连接充电轮刷400,超级电容器组700通过并联接触器330并联到锂电池单元310,串联接触器320、并联接触器330和充电接触器720分别连接车辆侧控制模块5。
这种结构的储能组300由锂电池单元310和超级电容器组700构成,超级电容器组700负责对锂电池单元310充电,利用了超级电容器组700的充电速度快、充电电流大的特性,可以减小车辆在行驶过程中充电轮刷400与电极板100的接触时间,减小工作损耗,超级电容器组700从电极板100取电后,并联到其中一个未充满的储能组300上,同时锂电池单元310之间断开串联接触器320,接通并联接触器330,开始接受超级电容器组700的充电,由于锂电池单元310的特性,超级电容器组700到锂电池单元310这一过程的充电时间要大于电极板100到超级电容器组700的充电时间。
值得注意的是,上述配置的结构是针对每个锂电池单元310均配置一个超级电容器组700,但是,也可以针对整个储能组300配置一个超级电容器组700,或者针对每个锂电池单元310配置一个超级电容单元710,但这种配置方法的充电时间相对第一种储能组300结构的充电时间也没有太大缩短。
第二种储能组300结构的情况下,在其中一些实施例中,还包括导通开关730、DC-DC转换模块740和用于检测超级电容单元710的电压值的电容电压检查模块750,一个超级电容单元710串联一个导通开关730,导通开关730连接车辆侧控制模块5,DC-DC转换模块740串联到超级电容器组700和锂电池单元310之间,电容电压检查模块750连接并联接触器330。本实施例主要考虑到超级电容器组700中超级电容单元710放电是压降较快的问题,超级电容单元710在放电过程中两个极板之间的电压快速下降,以致于在不经过DC-DC转换模块740的情况下,短时间内到达了难以对锂电池单元310充入电的地步,因此附加DC-DC转换模块740并由车辆侧控制模块5主动检测当前超级电容单元710的电压,实时调整DC-DC转换模块740的电压转换比例,尽可能在单次充电中利用上超级电容单元710内的电量。至于导通开关730,由于超级电容器组700的取电电流较大,对线路造成很大的负担,因此在非紧急充电的 情况下,允许只开启部分超级电容单元710取电,减小电极板100上的电流和发热,减小车辆侧的线路发热。
第三种储能组300结构,参照图10,储能组300包括若干个超级电容单元710、串联接触器320和并联接触器330,超级电容单元710通过串联接触器320串联组成储能组300,超级电容单元710的两极分别通过并联接触器330连接到充电轮刷400。
这种结构的储能组300中储能的单元全部由超级电容单元710构成,相当于将第一种储能组300结构中的锂电池全部换成超级电容单元710,由于超级电容单元710的放电特性,配备这种储能组300的车辆需要依赖于电极板100的供电,车辆不能离开电极板100行驶过长时间,其应用价值包括点到点往返车辆等场景。其充电方式与第一种结构储能组300也类似,但是充电时间短,放电时间也短,需要储能组轮换装置600多次切换,但是采用这种结构的取电电流,对于非小型客车来说,对电极板100的瞬间取电电流实际上的变小的,相当于减轻了电极板100的负担,详细的车辆应用计算将在后面说明。
参照图11,在其中一些实施例中,第三种储能组300结构的并联接触器330包括若干个用于分流充电电流的分流接触器331,分流接触器331互相并联。分流接触器331连接车辆侧控制模块5实现按需开闭,控制充电电流经过多少条线路,可以减轻线路负载。
上述三种储能组300结构均包括各种类型的接触器,接触器实际上是开关的一种,现时市面上接触器大体分为直流接触器和交流接触器,本实施例中采用的各种类型的接触器当然是直流接触器,但是直流接触器中也包括多种不同的接触方式,本实施例中将说明其中两种接触器结构,:
参照图13和图14,第一种接触器结构包括凸轮341、下压连杆342、连杆弹簧343、弹簧限位块344、第一金属板345、第二金属板346和弹性触片347,下压连杆342的顶端设置有对应凸轮341的抵压板348,底端连接第一金属板345,连杆弹簧343套接在下压连杆342中,连杆弹簧343的一端抵压在抵压板348上,另一端抵压在弹簧限位块344上,凸轮341设置在抵压板348的上方并由电机带动旋转,凸轮341往下转动时推动下压连杆342下降,从而使第一金属板345下降,弹性触片347连接第一金属板345并位于第二金属板346的上方,弹性触片347跟随第一金属板345升降从而接通或断开自身与第二金属板346的连接。优选地,为了凸轮341能够可靠地固定在上下两个位置,在凸轮341上设置销钉孔,上下两个位置分别设置可活动的销钉,凸轮341运动到相应的位置时,销钉穿入销钉孔从而固定凸轮341。
参照图15和图16,第二种接触器结构包括旋转板351、接触电刷352、固定接触轮353和连接有步进电机的转轴354,旋转板351的外圈为导电材料,内圈为非导电材料,转轴354穿过旋转板351的内圈,固定接触轮353的绝缘表面设置有用导电材料构成的弧形段355,旋转板351和固定接触轮353平行并排设置,接触电刷352设置在旋转板351和固定接触轮353之间并固定连接旋转板351的外圈,转轴354驱动旋转板351转动使接触电刷352在固定接触轮353上画出弧形的运动路径,当接触电刷352转动到弧形段355时,旋转板351和固定接触轮353导通。
选择接触器的时候需要考虑通电内阻、通断速度和耐久性的问题,第一种接触器结构采用往复式的凸轮341和弹性复位结构可以减小机械劳损程度,同时触点可以根据需要设计成内阻较小的行驶,第二种接触器结构依靠转轴354使接触电刷352在导电通道和非导电通道之间切换,可以实现快速开关。
应理解,除了上述结构的接触器,本发明的实施例还可以采用市面上常见的直流接触器,如继电器式的接触器,并且,除了串联接触器320和并联接触器330外,如导通开关730、分流接触器331、通断开关8等也可以选用上述接触器结构,本领域技术人员可根据实际测试情况选用合适的机构。
参照图5,在其中一些实施例中,还包括用于行驶时辅助对准外部充电设施的车底摄像头800,车底摄像头800设置在车辆底部,车底摄像头800连接到车内影像系统。车底摄像头800的作用是方便驾驶员对准车底的电极板100,当然对于自动驾驶车辆,车底摄像头800更多情况下是作为自动控制对准引导条240的配件;配套也可以对升降装置500进行一定的改动,使其能够自动左右微调,自动跟踪电极板100的位置。具体来说,借助车底摄像头800可以允许车辆设置两种跟踪模式,一种是自动跟踪模式,车底摄像头800对引导条240实现图像识别,与车辆自动驾驶系统联动,实现微调车头自动微调、自动跟踪引导条240,同时自动驾驶系统可以提供多档位等速巡航模式来匹配自动跟踪功能;另一种是人工驾驶模式,车底摄像头800对引导条240实现图像识别,与引导条240的基准位置进行对比,实时报告当前车头的偏移量,提醒驾驶员进行方向修正。
参照图17,在其中一些实施例中,还包括充电启停按钮900,充电启停按钮900设置在车辆内供驾驶员操作,充电启停按钮900连接车辆侧控制模块5。车内驾驶员可以直接控制充电与否。
参照图17,在其中一些实施例中,还包括用于检测储能组300温度的温感模块10和用于检测充电状态的车辆侧电压电流检测模块11,温感模块10和车辆侧电压电流检测模块11分别连接到车辆侧控制模块5。温感模块10通常对应锂电池单元310的温度,也可以对应测量线路的温度,车辆侧电压电流检测模块11对应充电线路,测量充电线路的电压和电流;当温感模块10和车辆侧电压电流检测模块11的测量值超过阈值,车辆侧控制模块5将对异常情况作进一步处理。
参照图18,本发明的一个实施例涉及一种应用上述安全低电压充电公路的公路侧充电方法,包括以下步骤:
S101,接收进入充电区域的车辆的充电请求;
S102,判断当前的车辆的类型及储能组300的类型,预估电力消耗及充电时间;
S103,交通调控中心1根据当前公路的供电状况判断是否准许当前车辆接入充电,若是则进行电力资源调配;
S104,向请求充电的车辆发送接入信息,接入信息包括准入许可;
S105,当接收到车辆结束充电后发送的结算信息或者车辆达到充电时限时,交通调控中心1根据结算信息或者充电时长结算电费,结算信息包括储能组300的数量、编号和当前电量。
参照图19,本发明的一个实施例涉及一种应用上述行驶充电的车辆的车辆侧充电方法,包括以下步骤:
S201,处于安全低电压充电公路的情况下,根据充电请求,向交通调控中心1请求充电,并发送当前的储能组300信息,储能组300信息包括储能组300的数量、编号和剩余电量;
S202,接收交通调控中心1返回的接入信息,若接入信息为准许接入,则放下充电轮刷400使其接触安全低电压充电公路上的电极板100开始充电,储能组轮换装置600将需要充电的其中一个储能组300连接充电轮刷400,同时保持另一个储能组300放电工作,若接入信息为拒绝接入,则向车内发出通知;
S203,当储能组300充满或者驶离安全低电压充电公路,向交通调控中心1提交结算信息,结算信息包括储能组300的数量、编号和当前电量。
参照图20,本发明的一个实施例涉及一种应用上述充电系统的充电方法,包括以下步骤:
S301,安全低电压充电公路的起点和终点两处的公路侧控制模块2监控车辆的进出,起点和终点之间的公路侧控制模块2监控路面200车辆的运动路径和当前的充电情况;
S302,车辆经过安全低电压充电公路的起点后启动充电,车辆侧通信模块4向公路侧通信模块3发送充电请求和自身的储能组300信息,储能组300信息包括储能组300的数量、编号和剩余电量;
S303,交通调控中心1经公路侧通信模块3接收充电请求;
交通调控中心1判断当前车辆的类型和储能组300的类型,预估电力消耗及充电时间;
S304,交通调控中心1根据当前公路的供电状况判断是否准许当前车辆接入充电,若是则进行电力资源调配;
S305,交通调控中心1返回接入信息,接入信息包括准入许可;
S306,车辆通过车辆侧通信模块4接收接入信息,若接入信息为准许接入,则放下充电轮刷400使其接触安全低电压充电公路上的电极板100开始充电,若接入信息为拒绝接入,则向车内发出通知;
S307,结束充电的情况包括储能组300充满和车辆驶离安全低电压充电公路,此时车辆向交通调控中心1提交结算信息,结算信息包括储能组300的数量、编号和当前电量,交通调控中心1根据结算信息结算电费,结束充电的情况还包括达到充电时限,交通调控中心1根据充电时长直接结算电费。
在其中一些实施例中,若电极板100上的电流超过阈值,直流配电系统6断开对电极板100的供电,并根据设定的延迟时间,经过所述延迟时间后重新向电极板100供电并检测电极板100上的电流大小,若电流仍然超过阈值,则直流配电系统向维护人员发出故障警报,否则,恢复正常供电。
下面从行驶充电的车辆中储能组300的类型出发,详细讲述在实际应用中如何配置储能组300以及充电方案。
第一种储能组300结构下,均以采用三组储能组300的情况计算用电需求:
首先针对小型客车,即电动乘用车等级别的汽车,乘坐人数小于等于9人,每个锂电池单元310充满后的容量为0.8kWh,电压为36V,每个储能组300包括10个锂电池单元310,总容量为8kWh,串联输出电压为360V,假设小型客车80公里等速巡航下功率为16kW,即耗电功率为16kW;假设电极板100对单个锂电池单元310的供电电流为50A,在储能组300中锂电池单元310并联充电时,单个锂电池单元310的充电功率为36V*50A=1.8kWh,则单个储能组300的充电功率为18kW,大于上述的耗电功率16kW,表明对于10个锂电池单元310并联的储能组300,电极板100上采用50A*10=500A的充电电流可满足一辆小型客车的充电需求,每个储能组300充满电的时间约26分钟,此时只使用到一充一放两个储能组300即可,80公里等速巡航下约30分钟切换一次储能组300,设定第三组储能组300能增加冗余度;另外,在应用中对于500A的充电电流,应分成至少4个充电轮刷400接入电极板100。
其次针对中型客车,即乘坐人数大于9人且小于20人级别的汽车,每个锂电池单元310充满后的容量为2.4kWh,电压为36V,每个储能组300包括17个锂电池单元310,总容量为40.8kWh,串联输出电压为600V36V*17=612V≈600V,假设中型客车80公里等速巡航下功率为160kW,即耗电功率为160kW;假设电极板100对单个锂电池单元310的供电电流为150A,在储能组300中锂电池单元310 并联充电时,单个锂电池单元310的充电功率为36V*150A=5.4kWh,则单个储能组300的充电功率为91.8kW,当使用2组储能组300同时充电时,91.8*2=183.6kW,就大于上述的耗电功率160kW,表明对于一个储能组300的17个并联的锂电池单元310,电极板100上采用150A*17*2=5100A的充电电流可满足一辆中型客车的充电需求,每个储能组300充满电的时间约27分钟,此时必须使用三组储能组300,80公里等速巡航下约15分钟切换一次储能组300。
最后针对重型汽车,即乘坐人数大于等于20人的巴士或装载货物的卡车等,每个锂电池单元310充满后的容量为3kWh,电压为36V,每个储能组300包括17个锂电池单元310,总容量为51kWh,串联输出电压为600V,假设重型汽车60公里等速巡航下功率为200kW,即耗电功率为200kW,假设电极板100对单个锂电池单元310的供电电流为170A,在储能组300中锂电池单元310并联充电时,单个锂电池单元310的充电功率为36V*170A≈6kWh,则单个储能组300的充电功率为102kW,当使用2组储能组300同时充电时,102*2=204kW,就大于上述的耗电功率200kW,表明对于一个储能组300的17个并联的锂电池单元310,电极板100上采用170A*17*2=5780A的充电电流可满足一辆重型汽车的充电需求,每个储能组300充满电的时间约25分钟,此时必须使用三组储能组300,60公里等速巡航下约15分钟切换一次储能组300。
参照图21,对应上述第一种储能组300结构,具有充电模式一,其车辆侧的充电方法包括以下步骤:
S401,储能组轮换装置600选择至少一个未充满的储能组300;
S402,被选中的储能组300中的锂电池单元310由串联连接变换成并联连接;
S403,被选中的储能组300中的锂电池单元310并联接入到充电轮刷400;
S404,当前储能组300充满后,储能组轮换装置600选择另一个未充满的储能组300进行充电;
S405,已充满的储能组300对驱动电机放电时,锂电池单元310由并联连接变换成串联连接。
第二种储能组300结构下,以采用三组储能组300和两个超级电容器组700的情况计算用电需求,由上述充电模式一可知,重型汽车对储能组300的要求最高,为了避免重复简单的计算方案,下面仅针对情况较复杂的重型汽车进行计算。
按照上述充电结构,每个锂电池单元310充满后的容量为3kWh,电压为36V,每个储能组300包括17个锂电池单元310,总容量为51kWh,串联输出电压为600V,超级电容单元710采用3400法拉36V规格,每个超级电容器组700中由17个超级电容单元710并联,假设电极板100对单个超级电容单元710的供电电流为1000A,3400法拉的超级电容单元710约1分钟充满,因此17个超级电容单元710同时接入电极板100充电时,单个超级电容单元710的充电功率为36V*1000A=36kWh,实际上却存在一个问题,供电板对单个超级电容器组700的供电电流过大,达到17000A,因此不能17个超级电容单元710同时接入电极板100。改为采用如下方式:
采用1700法拉的36V超级电容单元710,在1000A充电电流下充满时间不足30秒,超级电容器组700将若干个超级电容单元710并联起来,由于每个超级电容单元710都串联一个导通开关730,车辆侧控制模块5控制超级电容器组700中的导通开关730轮流导通和关闭,使同一时间接入电极板100充电的只有一个超级电容单元710,由此保持电极板100的供电电流为1000A,当超级电容器组700中的全部超级电容单元710都充满后,闭合充电接触器720和全部导通开关730,全部超级电容单元710并联对单个锂电池单元310充电,充电电流控制为170A,与上述充电模式一类似。这种取电方式下,避免了大电流对电极板100造成的负担,同时也采用了1700法拉的小容量超级电容单元710,减小单个超级电容单元710的充电时间,减小热积聚从而保证安全性。
超级电容器组700的具体充电时间根据并联的超级电容单元710的个数决定,此处不做计算,根据上述不足30秒的充电时间估算,如17个超级电容单元710并联,则超级电容器组700的充电时间不到9分钟,而超级电容器组700对锂电池单元310的充电时间则维持上述充电模式一的计算,因此根据实际情况,可设定不同数量的超级电容器组700,如17个超级电容器组700对应每组17个锂电池单元310。
另一方面,还可以衍生出如下充电方式,储能组300中17个锂电池单元310中一部分接入电极板100充电,另一部分对接超级电容器组700充电,这样就可以减轻超级电容单元710的充电压力,在此不详细展开。
参照图22,对应上述第二种储能组300结构,具有充电模式二,其车辆侧的充电方法包括以下步骤:
S501,储能组轮换装置600选择超级电容器组700使其接入到充电轮刷400;
S502,超级电容器组700充满后,储能组轮换装置600将超级电容器组700切换到与未充满的锂电池单元310并联,超级电容器组700对锂电池单元310充电;
S503,超级电容器组700电压下降到下限值时,储能组轮换装置600选择超级电容器组700使其接入到充电轮刷400。
第三种储能组300结构下,以采用三组超级电容器组700的情况计算用电需求:
首先针对小型客车,80公里等速巡航下功率为16kWh,转换成单位焦耳相当于60MJ,超级电容单元710充满电的电压为36V,放电的中止电压为26V,放电率为10V/36V≈28%,假设每个超级电容单元710单次放电能够释放的能量为0.5MJ,根据电容的储能公式 可知,超级电容单元710为1700法拉,一组超级电容器组700中包含10个超级电容单元710,串联输出电压为360V,即一组超级电容器组700共可释放能量5MJ,由此可以一组超级电容器组700可供小型客车行驶5分钟,根据上述条件,在超级电容器组700中串联0.01Ω的限流电阻,取电电流为36V-26V/0.01Ω=1000A,此时超级电容单元710的充电时间常数为T=RC=0.01*1700法拉=17秒,并且一次取电只充一个超级电容单元710,此时充满一个超级电容器组700共需170秒,小于5分钟的放电时间,此时只使用到一充一放两个储能组300即可,80公里等速巡航下约5分钟切换一次储能组300,设定第三组储能组300能增加冗余度。
中型客车的计算方法与小型客车类似,在此不再详述,等速巡航功率参考充电模式一。
最后针对重型汽车,60公里等速巡航下功率为160kWh,转换成单位焦耳相当于600MJ,超级电容单元710充满电的电压为36V,放电的中止电压为26V,放电率为10V/36V≈28%,假设每个超级电容单元710单次放电能够释放的能量为0.5MJ,根据电容的储能公式可知,超级电容单元710为1700法拉,一组超级电容器组700中包含17个超级电容单元710,串联输出电压为612V,即一组超级电容器组700共可释放能量8.5MJ,由此可以一组超级电容器组700可供重型汽车行驶51秒,根据上述条件,在超级电容器组700中串联0.007Ω的限流电阻,取电电流为36V-26V/0.007Ω≈1500A,此时超级电容单元710的充电时间常数为T=RC=0.007*1700法拉=11.9秒,并且一次取电只充一个超级电容单元710,此时充满一个超级电容器组700共需202.3秒,显然还是远远大于50秒的放电时间,因此对于重型汽车需要改变充电策略,将17个超级电容单元710分为3个小组,前两小组包含6个超级电容单元710,第三个小组包含5个超级电容单元710,小组内的超级电容单元710在同时接入电极板100,此时以小组为单位接入电极板100,电极板100最大供电电流为6*1500A=9000A,相当于直流配电系统6的瞬间最大供电功率为9000A*36V=324kWh,因此针对这种超级电容器组700结构的重型汽车,交通调控中心1需要对重型汽车进行严格的车流密度管理,保持前后两辆重型汽车的间距,如5公里,从而避免直流配电系统6过载。此时,单个超级电容器组700需要3*11.9秒≈36秒充满,此时只使用到一充一放两个超级电容器组700即可,60公里等速巡航下51秒切换一次储能组300,设定第三组超级电容器组700能增加冗余度。
实际上述计算结果还有余量,小组的配置方式可以改为3个超级电容单元710为一小组,分为6个小组,则取电电流为4500A,一个超级电容器组700的充电时间为6*12=72秒,需要用到第三组超级电容器组700一起轮转供电。当然根据车辆侧主控模块自动调整小组内超级电容单元710的个数也是可以的,根据交通调控中心1的路面200状况信息自动调整即可,在此不一一详述。
针对上述9000A的充电电流,计算其发热功率,假设电缆长度为50米,每1500A电流的铜缆横截面积为185平方毫米,结合铜的电阻率并根据电阻公式可知电阻约为7.8*10 -10欧姆,发热功率约为2瓦,发热功率低,散热要求不高。
参照图23,对应上述第三种储能组300结构,具有充电模式三,其车辆侧的充电方法包括以下步骤:
S601,储能组轮换装置600选择一个未充满的超级电容器组700;
S602,被选中的超级电容器组700中的超级电容单元710由串联连接变换成并联连接;
S603,被选中的超级电容器组700中的超级电容单元710并联接入到充电轮刷400;
S604,当前超级电容器组700充满后,储能组轮换装置600选择另一个未充满的超级电容器组700进行充电;
S605,已充满的超级电容器组700对驱动电机放电时,超级电容单元710由并联连接变换成串联连接。
充电模式三虽然严重依赖电极板100,不能长时间远离电极板100,但其应用价值有几点,一是城市的电动公交车,站点到站点之间连续铺设电极板100使电动公交车一直取电行驶,因此对充电模式三有很好的适应性,电动公交车未来可能发展成管道巴士,管中仅允许巴士运行,屏蔽了外部干扰,因此也同样适用于充电模式三;二是高速公路上点到点的电动物流卡车,高速站点内外需要更换储能组300类型,高速站点之间的高速路段,采用充电模式三的储能组300结构,到高速站点后更换车头,换成锂电池单元310模式的储能组300,让货物继续走普通公路。
本发明的实施例基于低压电极板100供电的安全低电压充电公路和适于在安全低电压充电公路上行驶充电的车辆,应用多种充电方式解决了现有电动汽车的续航担忧,为持续充电的行车模式提供的方案基础。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。

Claims (10)

  1. 一种安全低电压充电公路,其特征在于:包括路面、直流配电系统和作为正负极的两块电极板,所述电极板铺设在所述路面上并沿所述路面的延伸方向设置,所述电极板下方设置有绝缘填充块作支撑,所述电极板往所述路面下引出导线,导线与所述直流配电系统连接,所述直流配电系统的电压不超过人体安全电压。
  2. 根据权利要求1所述的一种安全低电压充电公路,其特征在于:所述电极板两侧分别设置有排水槽,所述排水槽连接到城市下水道系统,所述排水槽的槽壁覆盖有绝缘材料,所述电极板包括平板、板檐和裹边,所述板檐设置在所述平板的两侧并向所述排水槽的底部倾斜,所述裹边设置在所述平板的底部并贴着所述绝缘填充块的侧壁向下延伸,所述裹边为绝缘材料。
  3. 一种行驶充电的车辆,其特征在于:包括两个以上适用于直流充电的储能组、两个以上设置于车辆底部的充电轮刷、用于控制所述充电轮刷升降的升降装置、储能组轮换装置和车辆侧控制模块,所述储能组由所述储能组轮换装置切换充电状态和放电状态,且所述储能组中同一时间只有一个储能组能处于充电状态,所述充电轮刷连接所述升降装置,一部分的所述充电轮刷连接所述储能组的正极,另一部分的所述充电轮刷连接所述储能组的负极,所述升降装置和储能组轮换装置分别连接所述车辆侧控制模块。
  4. 根据权利要求3所述的一种行驶充电的车辆,其特征在于:所述储能组包括若干个锂电池单元、串联接触器和并联接触器,所述锂电池单元通过所述串联接触器串联组成所述储能组,每个所述锂电池单元的正极和负极都分别通过所述并联接触器连接到所述充电轮刷,所述串联接触器和并联接触器分别连接所述车辆侧控制模块。
  5. 根据权利要求3所述的一种行驶充电的车辆,其特征在于:所述储能组包括若干个锂电池单元、串联接触器和并联接触器,所述锂电池单元通过所述串联接触器串联在一起,还包括超级电容器组和充电接触器,所述超级电容器组包括一个以上超级电容单元,各个所述超级电容单元并联,所述超级电容器组的两极分别通过所述充电接触器连接所述充电轮刷,所述超级电容器组通过所述并联接触器并联到所述锂电池单元,所述串联接触器、并联接触器和充电接触器分别连接所述车辆侧控制模块。
  6. 根据权利要求3所述的一种行驶充电的车辆,其特征在于:所述储能组包括若干个超级电容单元、串联接触器和并联接触器,所述超级电容单元通过所述串联接触器串联组成所述储能组,所述超级电容单元的两极分别通过所述并联接触器连接到所述充电轮刷。
  7. 一种充电系统,其特征在于:包括如权利要求1或2所述的安全低电压充电公路和如权利要求3-6任一所述的行驶充电的车辆,还包括交通调控中心,所述安全低电压充电公路还包括公路侧通信模块和公路侧控制模块,所述车辆还包括车辆侧通信模块,所述公路侧通信模块连接所述公路侧控制模块,所述公路侧控制模块连接交通调控中心,所述车辆侧通信模块连接所述公路侧通信模块。
  8. 一种应用权利要求1或2所述的一种安全低电压充电公路的公路侧充电方法,其特征在于包括以下步骤:
    接收进入充电区域的车辆的充电请求;
    判断当前的车辆的类型及储能组的类型,预估电力消耗及充电时间;
    所述交通调控中心根据当前公路的供电状况判断是否准许当前车辆接入充电,若是则进行电力资源调配;
    向请求充电的车辆发送接入信息,所述接入信息包括准入许可;
    当接收到车辆结束充电后发送的结算信息或者车辆达到充电时限时,所述交通调控中心根据结算信息或者充电时长结算电费,所述结算信息包括储能组的数量、编号和当前电量。
  9. 一种应用权利要求3-6任一所述的一种行驶充电的车辆的车辆侧充电方法,其特征在于包括以下步骤:
    处于安全低电压充电公路的情况下,根据充电请求,向交通调控中心请求充电,并发送当前的储能组信息,所述储能组信息包括储能组的数量、编号和剩余电量;
    接收交通调控中心返回的接入信息,若所述接入信息为准许接入,则放下充电轮刷使其接触安全低电压充电公路上的电极板开始充电,储能组轮换装置将需要充电的至少一个储能组连接充电轮刷,同时保持剩余的一个储能组放电工作,若所述接入信息为拒绝接入,则向车内发出通知;
    当储能组充满或者驶离安全低电压充电公路,向所述交通调控中心提交结算信息,所述结算信息包括储能组的数量、编号和当前电量。
  10. 一种应用权利要求7所述的一种充电系统的充电方法,其特征在于包括以下步骤:
    所述安全低电压充电公路的起点和终点两处的所述公路侧控制模块监控所述车辆的进出,起点和终点之间的所述公路侧控制模块监控路面车辆的运动路径和当前的充电情况;
    所述车辆经过所述安全低电压充电公路的起点后启动充电,所述车辆侧通信模块向所述公路侧通信模块发送充电请求和自身的所述储能组信息,所述储能组信息包括储能组的数量、编号和剩余电量;
    所述交通调控中心经所述公路侧通信模块接收充电请求;
    所述交通调控中心判断当前所述车辆的类型和所述储能组的类型,预估电力消耗及充电时间;
    所述交通调控中心根据当前公路的供电状况判断是否准许当前车辆接入充电,若是则进行电力资源调配;
    所述交通调控中心返回接入信息,所述接入信息包括准入许可;
    所述车辆通过所述车辆侧通信模块接收所述接入信息,若所述接入信息为准许接入,则放下所述充电轮刷使其接触所述安全低电压充电公路上的电极板开始充电,若所述接入信息为拒绝接入,则向车内发出通知;
    结束充电的情况包括所述储能组充满和所述车辆驶离所述安全低电压充电公路,此时所述车辆向所述交通调控中心提交结算信息,所述结算信息包括储能组的数量、编号和当前电量,所述交通调控中心根据结算信息结算电费,结束充电的情况还包括达到充电时限,所述交通调控中心根据充电时长直接结算电费。
PCT/CN2019/089536 2019-05-27 2019-05-31 一种安全低电压充电公路、行驶充电的车辆及充电方法 WO2020237626A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910444765.7A CN110217126A (zh) 2019-05-27 2019-05-27 一种安全低电压充电公路、行驶充电的车辆及充电方法
CN201910444765.7 2019-05-27

Publications (1)

Publication Number Publication Date
WO2020237626A1 true WO2020237626A1 (zh) 2020-12-03

Family

ID=67818017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089536 WO2020237626A1 (zh) 2019-05-27 2019-05-31 一种安全低电压充电公路、行驶充电的车辆及充电方法

Country Status (2)

Country Link
CN (1) CN110217126A (zh)
WO (1) WO2020237626A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111497631B (zh) * 2020-04-26 2021-08-17 五邑大学 充电公路、地下供电小车、电动车辆、充电系统及方法
CN111497632A (zh) * 2020-04-26 2020-08-07 五邑大学 一种地下充电装置、充电公路及其充电系统
CN113386602B (zh) * 2021-06-15 2023-03-24 五邑大学 防水充电装置及充电公路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237722A (zh) * 2010-05-04 2011-11-09 金健 一种公路动态快速充电系统
CN202488167U (zh) * 2012-01-04 2012-10-10 尚青 一种电动汽车充电装置以及为充电装置供电的道路
US20190047429A1 (en) * 2017-08-11 2019-02-14 Valvoline Licensing And Intellectual Property Llc System and Method for Rapid Charge Battery Cooling Station
CN109562694A (zh) * 2016-08-02 2019-04-02 赫力环球有限公司 车辆充电车道

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101827790B1 (ko) * 2016-05-27 2018-02-09 에스트래픽(주) 주행차량 충전 및 과금 시스템
CN106114237B (zh) * 2016-08-31 2018-10-09 西安灵境科技有限公司 一种轨道车的取电装置
CN107089146B (zh) * 2017-04-27 2019-05-28 朱幕松 刀槽式新能源汽车
CN107379998A (zh) * 2017-08-10 2017-11-24 尚圣杰 一种电动汽车移动充电单轨自巡航刷电系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102237722A (zh) * 2010-05-04 2011-11-09 金健 一种公路动态快速充电系统
CN202488167U (zh) * 2012-01-04 2012-10-10 尚青 一种电动汽车充电装置以及为充电装置供电的道路
CN109562694A (zh) * 2016-08-02 2019-04-02 赫力环球有限公司 车辆充电车道
US20190047429A1 (en) * 2017-08-11 2019-02-14 Valvoline Licensing And Intellectual Property Llc System and Method for Rapid Charge Battery Cooling Station

Also Published As

Publication number Publication date
CN110217126A (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
US20220258625A1 (en) Charging systems for electric vehicles
WO2020237626A1 (zh) 一种安全低电压充电公路、行驶充电的车辆及充电方法
RU2660182C2 (ru) Электрическое транспортное средство и соответствующая транспортная система
EP2069162B1 (en) Quick-recharging energy feeding system for means of transport with electric traction
WO2011150677A1 (zh) 电动汽车与充电道路的组合系统
CN104691367A (zh) 一种储能式轨道交通车辆的充电控制系统
CN103991388B (zh) 储能式电力牵引交通供电方法
CN204956130U (zh) 公路上电动汽车即时供电的装置
CN110549898B (zh) 车辆的站区式充电系统、方法
CN108891264A (zh) 公交车充电管理系统及方法
CN108790875A (zh) 公交车充电管理装置及方法
JP2012105507A (ja) 蓄電池の充電方法
CN104882920A (zh) 一种双源无轨电车车载能源充电控制方法
CN100356186C (zh) 站区充电无轨电车的中线跟踪式车位检测装置
CN109466353B (zh) 自动引导车充电系统和方法
CN218141052U (zh) 一种电动小汽车专用轨道供电系统
CN216773352U (zh) 一种用于严寒地区的电池保温装置及电动铺轨车
CN117841789A (zh) 一种铁路机车供电装置
CN100356187C (zh) 站区充电无轨电车的站界控制式车位检测装置
CN114506227A (zh) 一种无人扫路机自动充电装置及控制方法
CN117565717A (zh) 一种基于v2g技术的街用预埋式防水型充电桩
CN115534721A (zh) 一种换电充电的立体车库
CN117656906A (zh) 新能源车充电桩和新能源车共享充电系统
JP2013103546A (ja) 電力授受システム、電力貯蔵装置、及び、鉄道車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931027

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931027

Country of ref document: EP

Kind code of ref document: A1