WO2020237448A1 - 回波信号处理方法、装置、系统及存储介质 - Google Patents

回波信号处理方法、装置、系统及存储介质 Download PDF

Info

Publication number
WO2020237448A1
WO2020237448A1 PCT/CN2019/088436 CN2019088436W WO2020237448A1 WO 2020237448 A1 WO2020237448 A1 WO 2020237448A1 CN 2019088436 W CN2019088436 W CN 2019088436W WO 2020237448 A1 WO2020237448 A1 WO 2020237448A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
sampling point
echo signal
radar
angle value
Prior art date
Application number
PCT/CN2019/088436
Other languages
English (en)
French (fr)
Inventor
李洪磊
姜彤
李强
巫红英
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19930903.0A priority Critical patent/EP3964866A4/en
Priority to CN201980060389.XA priority patent/CN112703421B/zh
Priority to PCT/CN2019/088436 priority patent/WO2020237448A1/zh
Publication of WO2020237448A1 publication Critical patent/WO2020237448A1/zh
Priority to US17/456,223 priority patent/US20220082659A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/523Details of pulse systems
    • G01S7/526Receivers
    • G01S7/527Extracting wanted echo signals

Definitions

  • This application relates to the field of signal processing technology, and in particular to an echo signal processing method, device, system and storage medium.
  • LiDAR Light Detection and Ranging
  • LiDAR Light Detection and Ranging
  • LiDAR is an optical remote sensing technology that uses electromagnetic waves from ultraviolet to far-infrared bands to detect the scattered light characteristics of target objects to obtain relevant information about target objects.
  • it has high measurement accuracy, fine time and space resolution, and can complete functions such as ranging, target detection, tracking and imaging recognition. It has functions in intelligent transportation, autonomous driving, atmospheric environment monitoring, geographic mapping, drones and other fields. Broad application prospects.
  • Fig. 1 is a schematic diagram of a radar provided in the prior art.
  • the radar 10 includes: a signal processing unit 11, a laser drive circuit 12, a laser 13, a scanning device 14, a transmitting optical element 15, and a receiving optical Component 16, detector 17, and analog front end 18.
  • the analog front end 18 may include: a transimpedance amplifier (TIA) and an analog digital converter (Analog digital converter, ADC).
  • TIA transimpedance amplifier
  • ADC analog digital converter
  • the radar ranging principle is: signal processing The unit 11 transmits a pulse signal to the laser drive circuit 12, and the laser drive circuit 12 modulates the pulse signal to the laser 13.
  • the laser 13 emits a pulsed optical signal
  • the scanning device 14 and the transmitting optical element 15 perform the optical signal Scanning and shaping
  • the end optical element 16 performs focusing and shaping processing on the light reflected from the target.
  • the detector 17 receives the optical signal processed by the end optical element 16, and converts the light signal into a current signal.
  • the current signal is sent to the TIA in the analog front end 18, and the TIA can amplify the current signal into a voltage signal, which is an analog signal; the ADC in the analog front end 18 can convert the voltage signal into a digital signal, where the ADC
  • the digital signal within a sampling period can be called an echo signal.
  • the signal processing unit 11 measures the distance between the radar and the target object according to the digital signal.
  • This application provides an echo signal processing method, device, system and storage medium.
  • the ranging accuracy of the radar can be improved.
  • the present application provides an echo signal processing method, including: determining, on the current data frame, a first pixel in a radar receiving field of view and a set of N sampling points on the echo signal corresponding to the first pixel, N is an integer greater than or equal to 1, and the first pixel is any pixel in the receiving field of view. Estimate the estimated distance between the radar and the target object according to each first sampling point set in the N sampling point sets, and determine the M cumulative receiving fields of view corresponding to the M data frames according to each estimated distance.
  • Each of the M cumulative reception fields of view includes at least one neighbor pixel of the first pixel, and M data frames are M data frames received by the radar before the current data frame is received, and M is greater than or equal to An integer of 1, and the first sampling point set is any sampling point set in the N sampling point sets.
  • the second sampling point set is determined on the echo signals corresponding to the Q neighbor pixels in the M cumulative reception field of view according to each first sampling point set, and each first sampling point set and the corresponding second sampling point set are determined respectively.
  • the collection of sampling points are superimposed to obtain the echo signal after superposition processing corresponding to the first pixel, and Q is an integer greater than or equal to 1.
  • the actual distance between the radar and the target object is calculated according to the echo signal after the superposition processing corresponding to the first pixel.
  • This application considers the spatial correlation of objects, that is, the detectors in the radar will receive echo signals with approximately the same pulse position and approximately the same amplitude at the same angle, adjacent angles, and pixels in multiple adjacent data frames. Therefore, when the signal-to-noise ratio of the echo signal is low, the signal-to-noise ratio of the echo signal is improved by realizing inter-frame signal multiplexing, thereby improving the ranging accuracy.
  • respectively estimating the estimated distance between the radar and the target object according to each first sampling point set in the N sampling point sets includes: separately according to each first sampling point set in the N sampling point sets The position information of the inflection point determines the estimated distance between the radar and the target object.
  • the radar can determine the cumulative receiving field of view through the following optional methods:
  • Optional method 1 Determine the M cumulative receiving field of view corresponding to the M data frames according to each estimated distance, including: for each estimated distance, according to the maximum relative speed of the radar and the target object, one Data frame period, estimated distance, radar's maximum horizontal field of view, total horizontal field of view, maximum vertical field of view, total vertical field of view, determine the maximum horizontal movement angle value and maximum vertical movement angle value of the target object. According to the frame number difference i between the current data frame and any data frame, the horizontal angle value, the vertical angle value of the first pixel, the maximum horizontal movement angle value of the target object, and the maximum vertical movement angle value of the target object, determine whether the radar is in any one The cumulative receiving field of view on the data frame, 1 ⁇ i ⁇ M, where i is an integer.
  • the cumulative receiving field of view of the radar on any data frame can be determined by the following formula:
  • A represents the cumulative receiving field of view of the radar on any data frame
  • h-HA(d)*i represents the minimum horizontal angle value of A
  • h+HA(d)*i represents the maximum horizontal angle value of A
  • v- VA(d)*i represents the minimum vertical angle value of A
  • v+VA(d)*i represents the maximum vertical angle value of A
  • d represents the estimated distance
  • HA(d) and VA(d) respectively represent the target object’s
  • h represents the horizontal angle value of the first pixel
  • v represents the vertical angle value of the first pixel.
  • Option 2 According to the frame number difference i between the current data frame and any data frame, the horizontal angle value, vertical angle value of the first pixel, the maximum horizontal movement angle value of the target object, the maximum vertical movement angle of the target object Before the value determines the cumulative receiving field of view of the radar on any data frame, it also includes: obtaining the size of the target object. Correspondingly, it is determined according to the frame number difference i between the current data frame and any data frame, the horizontal angle value, the vertical angle value of the first pixel, the maximum horizontal movement angle value of the target object, and the maximum vertical movement angle value of the target object.
  • the cumulative receiving field of view of the radar on any data frame includes: according to the frame number difference i between the current data frame and any data frame, the horizontal angle value of the first pixel, the vertical angle value, and the maximum horizontal movement angle of the target object The value, the maximum vertical movement angle value of the target object and the size of the target object determine the cumulative receiving field of view of the radar on any data frame.
  • the cumulative receiving field of view of the radar on any data frame can be determined by the following formula, including:
  • A represents the cumulative receiving field of view of the radar on any data frame
  • h-HA(d)*i represents the minimum horizontal angle value of A
  • h+HA(d)*i represents the maximum horizontal angle value of A
  • v- VA(d)*i represents the minimum vertical angle value of A
  • v+VA(d)*i represents the maximum vertical angle value of A
  • d represents the estimated distance
  • HA(d) and VA(d) respectively represent the target object’s
  • h represents the horizontal angle value of the first pixel
  • v represents the vertical angle value of the first pixel
  • TH and TV represent the horizontal and vertical angles of the target object, respectively.
  • Option 3 Determine the M cumulative receiving fields of view corresponding to M data frames one-to-one according to each estimated distance, including: for each estimated distance, if the estimated distance belongs to the target distance interval, and the target distance If the interval corresponds to a cumulative receiving field of view, the cumulative receiving field of view corresponding to the target distance interval is taken as the radar’s cumulative receiving field of view on any data frame.
  • the cumulative receiving field of view of the radar on any data frame can be effectively determined. Based on this, the radar can determine the neighboring pixels of the first pixel, and then perform the collection of sampling points to improve the echo signal Signal-to-noise ratio, thereby improving ranging accuracy.
  • the estimated distance between the radar and the target object is estimated according to each first sampling point set in the N sampling point sets, and M data frames corresponding to the M data frames are determined according to each estimated distance.
  • the method further includes: determining the signal-to-noise ratio of the echo signal corresponding to the first pixel or the signal-to-noise ratio of at least one first sampling point.
  • the estimated distance between the radar and the target object is estimated according to each first sampling point set in the N sampling point sets, and the M accumulations corresponding to the M data frames are determined according to each estimated distance.
  • the receiving field of view includes: if the signal-to-noise ratio of the echo signal corresponding to the first pixel or the signal-to-noise ratio of at least one set of first sampling points is less than the preset signal-to-noise ratio, according to each of the N sampling point sets respectively
  • the first sampling point set estimates the estimated distance between the radar and the target object, and respectively determines M cumulative receiving fields of view corresponding to the M data frames according to each estimated distance.
  • the radar can determine the cumulative receiving field of view to achieve inter-frame signal multiplexing.
  • the radar does not need to determine the cumulative receiving field of view, nor does it need to implement inter-frame signal multiplexing, thereby improving the radar Flexibility in signal processing.
  • the radar can obtain the superimposed echo signal corresponding to the first pixel in the following ways:
  • Option 1 Determine the second set of sampling points on the echo signals corresponding to the Q neighbor pixels in the M cumulative reception field of view according to each first set of sampling points, and set each first sampling point separately Superimposing with the corresponding second sampling point set to obtain the superimposed echo signal corresponding to the first pixel includes: for each first sampling point set, according to the preset order of Q neighboring pixels, according to the first The information of the first inflection point on the set of sampling points and the position information of the inflection point on the echo signal corresponding to the first neighbor pixel are used to determine the second inflection point on the echo signal corresponding to the first neighbor pixel. The distance between the two inflection points is less than the sampling point threshold.
  • the first sampling point set and the sampling point set to which the second inflection point belongs are superimposed to obtain a superimposed sampling point set.
  • Option 2 Determine the second sampling point set on the echo signals corresponding to the Q neighbor pixels in the M cumulative received field of view according to each first sampling point set, and set each first sampling point separately Superimposing with the corresponding second sampling point set to obtain the superimposed echo signal corresponding to the first pixel includes: for each first sampling point set, according to the preset order of Q neighboring pixels, according to the first The information of the first inflection point on the set of sampling points and the position information of the inflection point on the echo signal corresponding to the first neighbor pixel are used to determine the second inflection point on the echo signal corresponding to the first neighbor pixel. The distance between the two inflection points is less than the sampling point threshold.
  • the sampling point sets to which the first sampling point set and the second inflection point belong are superimposed to obtain the superimposed sampling point set, including : If the correlation coefficient is greater than the preset threshold, the sampling point sets to which the first sampling point set and the second inflection point belong are superimposed to obtain the superimposed sampling point set. Or, if the correlation coefficient is greater than the preset threshold, the attribute value of the echo signal corresponding to the first pixel and the attribute value of the echo signal corresponding to the first neighboring pixel are obtained.
  • the attribute value includes any of the following: signal amplitude, peak Average ratio or signal-to-noise ratio.
  • the first sampling point set and the sampling point set to which the second inflection point belongs are superimposed to obtain the superposition After the collection of sampling points.
  • the preset condition is that the weighted average value of the attribute value of the echo signal corresponding to the first pixel and the attribute value of the echo signal corresponding to the first neighbor pixel is greater than the attribute value of the echo signal corresponding to the first pixel.
  • the preset condition is that the attribute value of the echo signal corresponding to the first neighboring pixel is greater than a preset multiple of the attribute value of the echo signal corresponding to the first pixel.
  • the collection of sampling points can be effectively accumulated, and the signal-to-noise ratio of the echo signal can be improved, thereby improving the ranging accuracy.
  • the radar further includes: an analog-to-digital converter ADC.
  • the method further includes: determining the maximum moving distance of the target object in a data frame period according to the maximum relative motion speed of the radar and the target object and a data frame period. .
  • the sampling rate of ADC determine the number of sampling points on the maximum moving distance. Determine the sampling point threshold according to the frame number difference between the current data frame and the data frame where the first neighbor pixel is located and the number of sampling points. Based on this, the sampling point threshold can be effectively determined.
  • determining the sampling point threshold according to the frame number difference between the current data frame and the data frame where the first neighbor pixel is located, and the number of sampling points including: calculating the difference between the current data frame and the data frame where the first neighbor pixel is located The product of the difference in the number of frames and the number of sampling points is the product result. Calculate the sum of the product result and the allowable error to obtain the sampling point threshold.
  • the method further includes: allocating storage space to the information of the first pixel , Storage space can be reused.
  • the information of the first pixel includes at least one of the following: N sampling point sets, position information of at least one inflection point in the N sampling point sets, and the signal-to-noise ratio of the echo signal corresponding to the first pixel. This saves data storage space.
  • this application provides an echo signal processing device, including:
  • the first determining module is used to determine, on the current data frame, the first pixel in the received field of view of the radar and the set of N sampling points on the echo signal corresponding to the first pixel, where N is an integer greater than or equal to 1, and A pixel is any pixel in the receiving field of view.
  • the estimation module is used to estimate the estimated distance between the radar and the target object according to each first sampling point set in the N sampling point sets.
  • the second determining module is configured to determine the M cumulative reception fields of view corresponding to M data frames one-to-one according to each estimated distance, and each cumulative reception field of view of the M cumulative reception fields includes the first pixel At least one neighbor pixel, M data frames are M data frames received by the radar before receiving the current data frame, M is an integer greater than or equal to 1, and the first sampling point set is any sample of the N sampling point sets Point collection.
  • the third determining module is configured to determine the second set of sampling points on the echo signals corresponding to the Q neighbor pixels in the M cumulative receiving field of view according to each first sampling point set.
  • the superposition module is used to superimpose each first sampling point set and the corresponding second sampling point set to obtain the echo signal after superposition processing corresponding to the first pixel, and Q is an integer greater than or equal to 1.
  • the calculation module is used to calculate the actual distance between the radar and the target object according to the superimposed echo signal corresponding to the first pixel.
  • the present application provides a radar including: a transceiver and a processor.
  • the transceiver is used to receive the echo signal generated by the reflection of the target object.
  • the processor is configured to execute the echo signal processing method of the first aspect or an optional manner of the first aspect according to the echo signal received by the transceiver by running program instructions.
  • the present application also provides a computer program product, the computer program product including computer instructions, and the computer instructions are used to implement the above-mentioned first aspect or the echo signal processing method in an optional manner of the first aspect.
  • the present application also provides a storage medium, including: a readable storage medium and computer instructions, where the computer instructions are stored in the readable storage medium.
  • the computer instructions are used to implement the foregoing first aspect or the echo signal processing method in an optional manner of the first aspect.
  • This application provides an echo signal processing method, device, system and storage medium.
  • the method includes: determining, on the current data frame, a first pixel in the radar receiving field of view and a set of N sampling points on the echo signal corresponding to the first pixel, where N is an integer greater than or equal to 1, and the first pixel is Receive any pixel in the field of view. Estimate the estimated distance between the radar and the target object according to each first sampling point set in the N sampling point sets, and determine the M cumulative receiving fields of view corresponding to the M data frames according to each estimated distance.
  • Each of the M cumulative reception fields of view includes at least one neighbor pixel of the first pixel, and M data frames are M data frames received by the radar before the current data frame is received, and M is greater than or equal to An integer of 1, and the first sampling point set is any sampling point set in the N sampling point sets.
  • the second sampling point set is determined on the echo signals corresponding to the Q neighbor pixels in the M cumulative reception field of view according to each first sampling point set, and each first sampling point set and the corresponding second sampling point set are determined respectively.
  • the collection of sampling points are superimposed to obtain the echo signal after superposition processing corresponding to the first pixel, and Q is an integer greater than or equal to 1.
  • the actual distance between the radar and the target object is calculated according to the echo signal after the superposition processing corresponding to the first pixel.
  • the detectors in the radar will receive echo signals with approximately the same pulse positions and approximately equal amplitudes at the same angle, adjacent angles, and pixels in multiple adjacent data frames. Therefore, when the signal-to-noise ratio of the echo signal is low, the signal-to-noise ratio of the echo signal is improved by realizing inter-frame signal multiplexing, thereby improving the ranging accuracy.
  • FIG. 1 is a schematic diagram of a radar provided in the prior art
  • FIG. 3 is a flowchart of a method for determining a cumulative receiving field of view provided by an embodiment of the application
  • FIG. 4 is a schematic diagram of the corresponding relationship between relative motion speed, distance, and maximum horizontal movement angle value provided by an embodiment of the application;
  • FIG. 5 is a flowchart of a method for obtaining echo signals corresponding to a first pixel after superposition processing provided by an embodiment of the application;
  • FIG. 6 is a flowchart of a method for obtaining echo signals corresponding to a first pixel after superposition processing according to another embodiment of the application;
  • FIG. 7 is a flowchart of a method for determining a sampling point threshold provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of an echo signal processing device provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of a radar provided by an embodiment of the application.
  • the signal-to-noise ratio of the echo signal directly affects the accuracy of radar ranging. Therefore, how to adjust and increase the signal-to-noise ratio of the echo signal to improve the ranging accuracy of the radar is a technical problem to be solved urgently in this application.
  • the present application provides an echo signal processing method, device, system and storage medium.
  • Data frame The receiving optical element in the radar is designed through the scanning device and the optical path, and one frame of data can be obtained in one scanning period.
  • a data frame includes the information of multiple pixels.
  • the receiving field of view of the radar includes four dimensional values, which are the minimum horizontal angle value, the maximum horizontal angle value, the minimum vertical angle value and the maximum vertical angle value.
  • each distance measurement unit in the receiving field of view is a pixel, and each pixel corresponds to an echo signal.
  • each distance measurement unit in the receiving field of view is a pixel, and each pixel corresponds to an echo signal.
  • the receiving optical element corresponds to 10 angles in the horizontal direction. There are 4 angles in the vertical direction. From a spatial perspective, the receiving field of view can be divided into 40 grids, and each grid corresponds to a distance measurement unit in space, that is, a pixel.
  • Pixel information For example, from a spatial perspective, the receiving field of view can be divided into 40 grids, and each grid corresponds to a pixel in the space.
  • 40 pixels of information can be measured, that is, a frame
  • the data includes information of 40 pixels, and the information of each pixel includes at least one of the following: N sampling point sets on the echo signal corresponding to the pixel, position information of at least one inflection point in the N sampling point sets,
  • the actual distance of the target object and other information it should be noted that the actual distance is the distance between the radar and the target object determined according to the position of the inflection point, but the inflection point may be noise, so the actual distance may be in error with the actual distance between the radar and the target object .
  • Intra-frame pixel signal multiplexing When multiplexing the echo signals of multiple pixels in a frame of data, this multiplexing processing method is called intra-frame pixel signal multiplexing.
  • the “multiplexing” in the multiplexing of the pixel signal within the frame refers to the accumulation of the entire waveform of the echo signals corresponding to at least two pixels in one frame of data or the division of the echo signals corresponding to the at least two pixels. Segment waveform accumulation.
  • the accumulation can be direct accumulation, or can be accumulated by arithmetic average method, geometric average method, square average method, harmonic average method, weighted average method, etc.
  • Inter-frame pixel signal multiplexing When multiplexing the echo signals of multiple adjacent data frames, this multiplexing processing method is called inter-frame multi-pixel signal multiplexing.
  • the "multiplexing" in the inter-frame pixel signal multiplexing refers to the accumulation of the entire waveform of the echo signals corresponding to at least two pixels belonging to different data frames or the division of the echo signals corresponding to the at least two pixels. Segment waveform accumulation.
  • the accumulation can be direct accumulation, or can be accumulated by arithmetic average method, geometric average method, square average method, harmonic average method, weighted average method, etc.
  • the signal-to-noise ratio refers to the ratio of the signal peak amplitude to the noise root mean square.
  • the signal-to-noise ratio in this application may be peak signal-to-noise or other forms of signal-to-noise ratio. Based on this, the main idea of this application is: Taking into account the spatial correlation of objects, the detectors in the radar will receive pulses at the same angle, adjacent angles, and pixels in multiple adjacent data frames that are close to the same position and close to the same amplitude. Echo signal. Therefore, when the signal-to-noise ratio of the echo signal is low, by realizing signal multiplexing, the signal-to-noise ratio of the echo signal is improved, thereby improving the ranging accuracy. Among them, this application focuses on the inter-frame pixel signal multiplexing scheme.
  • FIG. 2 is a flowchart of an echo signal processing method provided by an embodiment of the application.
  • the execution subject of the method may be the radar as shown in FIG. 1 or the signal processing unit in the system.
  • the main body is radar as an example, the echo signal processing method is explained.
  • the radar involved in this application is not limited to the radar shown in FIG. 1.
  • a noise reduction filter module can also be provided between the ADC and the signal processing unit, and the filter noise reduction module can analyze the digital signal output by the ADC. Perform filtering and noise reduction.
  • the noise reduction filter module can be a filter with matched filtering, Gaussian filtering, smoothing filtering, Wiener filtering and other functions.
  • this application is also applicable to millimeter wave radars and ultrasonic radars based on pulse emission. Other radars.
  • the method includes the following steps:
  • Step S201 The radar determines, on the current data frame, the first pixel in the radar's receiving field of view and the set of N sampling points on the echo signal corresponding to the first pixel, where N is an integer greater than or equal to 1, and the first pixel is Receive any pixel in the field of view.
  • Step S202 The radar estimates the estimated distance between the radar and the target object according to each first sampling point set in the N sampling point sets, and respectively determines M corresponding to the M data frames according to each estimated distance.
  • the cumulative receiving field of view, each of the M cumulative receiving fields of view includes at least one neighbor pixel of the first pixel, and the M data frames are the M data frames received by the radar before the current data frame is received, M It is an integer greater than or equal to 1, and the first sampling point set is any sampling point set in the N sampling point sets.
  • Step S203 The radar determines the second set of sampling points on the echo signals corresponding to the Q neighbor pixels in the M cumulative received field of view according to each first set of sampling points, and respectively determines the second sampling point set and The corresponding second sampling point set is superimposed to obtain the echo signal after superposition processing corresponding to the first pixel, and Q is an integer greater than or equal to 1.
  • Step S204 the radar calculates the actual distance between the radar and the target object according to the superimposed echo signal corresponding to the first pixel.
  • the step S201 is described:
  • a data frame includes information of multiple pixels, and each pixel corresponds to an echo signal.
  • the sampling point sequence corresponding to the first pixel is r x, y, z (n), where n represents the number of the sampling point in the sampling point sequence
  • the signal processing unit can perform candidate inflection points on r x, y, z (n)
  • the first N inflection points can be selected in order of magnitude from large to small or selected in the order of magnitude from small to large. This application does not limit the rules for selecting inflection points.
  • Truncate sampling points (including the inflection point) on both sides of the inflection point, as a set of sampling points, record as w x, y, z, i (m), where i represents the first pixel ( x, y, z) corresponds to the sequence number of the inflection point on the echo signal, 0 ⁇ i ⁇ N, m represents the sequence number of the mth sampling point in the set of sampling points centered on the i-th inflection point, 0 ⁇ m ⁇ N Truncate .
  • the radar records the position information of the i-th inflection point as ip x, y, z (i).
  • the radar can estimate the signal-to-noise ratio of each set of sampling points and record it as SNR x y z (i).
  • the radar can store the information of each pixel in the form of data blocks, that is, the information of each pixel is a data block.
  • the information of each pixel includes at least one of the following: N sampling point sets on the echo signal corresponding to the pixel, position information of at least one inflection point in the N sampling point sets, and the echo corresponding to the pixel Wave signal, the signal-to-noise ratio of the echo signal corresponding to the pixel, the signal-to-noise ratio of the collection of sampling points on the echo signal, the horizontal and vertical angles corresponding to the pixel, the actual distance between the radar and the target object, and other information.
  • the storage space of each data block mentioned above can be multiplexed.
  • the number of accumulated frames is M+1
  • the information of any pixel included in the first M+1 data frames is stored in the form of data blocks, where multiplexing is possible
  • the number of storage space is M+1.
  • the pixel information in the 1 ⁇ M+1 data frame is stored in the corresponding 1 ⁇ M+1 data blocks.
  • the information of the pixels in the M+2 ⁇ 2M+2 data frames are multiplexed with the storage space occupied by the information of the pixels in the 1 ⁇ M+1 data frames, and so on, so as to save the data storage space.
  • the step S202 is described:
  • a sampling point set includes an inflection point
  • the radar can determine the inflection point time information according to the position information of the inflection point, where the inflection point time information refers to the time from the transmitted signal to the inflection point, and the sum of the time from the reflected light of the target object to the radar.
  • the ADC sampling rate is 1 Gigabit Samples Per Second (GSPS)
  • the sampling time is 1 nanosecond (nanosecond, ns)
  • the inflection point is at 100 sampling points
  • the radar can calculate the product of the inflection point time information and the speed of light to obtain a product result, and divide the product result by 2 to obtain the estimated distance between the radar and the target object.
  • the signal-to-noise ratio of the echo signal corresponding to the first pixel or the signal-to-noise ratio of at least one set of first sampling points in the echo signal is less than the preset signal-to-noise ratio, then the N sampling point sets are respectively used Each of the first sampling points set in the estimated distance between the radar and the target object is estimated, and the M cumulative reception fields of view corresponding to the M data frames are determined according to each estimated distance. Conversely, there is no need to perform inter-frame pixel accumulation, that is, there is no need to perform step S202 to step S204.
  • the first sampling point set is any sampling point set in the N sampling point sets.
  • the radar may also perform intra-frame Pixel accumulation, and then for each first sampling point set, respectively determine the M accumulated receiving field of view of the radar on the M data frames before the current data frame.
  • the radar can set two preset signal-to-noise ratios, namely the first preset signal-to-noise ratio and the second preset signal-to-noise ratio. It is assumed that the signal-to-noise ratio is greater than the second preset signal-to-noise ratio. Based on this, if the signal-to-noise ratio of the echo signal corresponding to the first pixel or the signal-to-noise ratio of at least one set of first sampling points in the echo signal is greater than the first preset If the signal-to-noise ratio is assumed, the intra-frame pixel accumulation and the inter-frame pixel accumulation are not performed.
  • the pixel accumulation in the frame is performed, if the signal-to-noise ratio of the echo signal corresponding to the first pixel or at least one sampling point in the echo signal If the signal-to-noise ratio of the set is greater than or equal to the second preset signal-to-noise ratio, inter-frame pixel accumulation is performed, that is, for the sampling point set first, the radar determines the radar's M accumulated receptions on the M data frames before the current data frame Field of view.
  • preset signal-to-noise ratio first preset signal-to-noise ratio
  • second preset signal-to-noise ratio may be determined according to radar test conditions, or may be empirical values, which are not limited by this application.
  • each cumulative receiving field of view corresponding to the first sampling point set refers to: for the first sampling point set, the radar receiving field of view on the current data frame and the receiving field of view on a data frame before the current data frame.
  • the cumulative receiving field of view of the field, where the cumulative receiving field of view is related to the collection of sampling points, and the following optional modes of step S202 can be seen for details.
  • the principle for the radar to determine the cumulative receiving field of view is: the cumulative receiving field of view should include the first pixel and the neighboring pixels of the first pixel, and when determining the cumulative receiving field of view, the relative speed of the radar and the target object needs to be considered. Or, the relative speed of the radar and the target object and the size of the target object need to be considered.
  • step S202 two alternative ways of step S202 will be introduced below:
  • FIG. 3 is a flowchart of a method for determining a cumulative receiving field of view according to an embodiment of the application. As shown in FIG. 3, the method includes the following steps:
  • Step S301 For each estimated distance, the radar is based on the maximum relative motion speed of the radar and the target object, a data frame period, the estimated distance, the maximum horizontal field of view of the radar, the total horizontal field of view, and the maximum vertical field of view , Total vertical field of view, determine the maximum horizontal movement angle value and maximum vertical movement angle value of the target object.
  • Step S302 For each estimated distance, the radar uses the frame number difference i between the current data frame and any data frame, the horizontal angle value of the first pixel, the vertical angle value, the maximum horizontal movement angle value of the target object, and the target object.
  • the maximum vertical movement angle value of the object determines the cumulative receiving field of view of the radar on any data frame, 1 ⁇ i ⁇ M, and i is an integer.
  • the step S301 is described:
  • FIG. 4 is a schematic diagram of the corresponding relationship between relative motion speed, distance, and maximum horizontal movement angle provided by an embodiment of this application.
  • Vmax 120km/h
  • Tf 0.0333 seconds
  • the maximum horizontal field of view of the radar is 60 degrees
  • the total The horizontal field of view angle is 120 degrees, that is, -60 degrees to 60 degrees.
  • the target object moves in a direction perpendicular to the emission angle of 0 degrees.
  • the target object Moving along a direction perpendicular to the emission angle of 0 degrees, the maximum horizontal movement angle value of the target object in one data frame period is 3. Therefore, under a certain maximum relative movement speed of the radar and the target object, the farther the estimated distance is, the smaller the influence of the maximum relative movement speed on determining the cumulative receiving field of view will be. Conversely, the greater the maximum relative motion speed, the greater the influence on determining the cumulative received field of view. Therefore, when determining the multi-frame cumulative receiving field of view, the signal processing unit needs to fully consider the maximum relative motion speed factor.
  • the maximum relative speed of the radar and the target object is Vmax
  • a data frame period is Tf
  • the estimated distance is d
  • the radar's maximum horizontal field of view HFOV the maximum vertical field of view VFOV
  • the total number of horizontal angles is NumHA
  • total The number of vertical angles is NumVA
  • the maximum horizontal movement angle of the target object is HA(d)
  • the maximum vertical movement angle of the target object is VA(d).
  • the maximum horizontal movement angle value of the target object refers to the maximum movement angle value of the target object in the horizontal direction
  • the maximum vertical movement angle value of the target object refers to the maximum movement angle value of the target object in the vertical direction.
  • the maximum horizontal movement angle value is:
  • the maximum vertical movement angle is:
  • the target's moving angle in the vertical direction is small, and the maximum vertical angle of movement can be set based on experience.
  • step S302 is described:
  • the radar can determine the cumulative receiving field of view through the following formula (1):
  • A represents the cumulative receiving field of view of the radar on any of the data frames
  • h-HA(d)*i represents the minimum horizontal angle value of A
  • h+HA(d)*i represents the maximum horizontal angle value of A
  • V-VA(d)*i represents the minimum vertical angle value of A
  • v+VA(d)*i represents the maximum vertical angle value of A
  • d represents the actual distance
  • HA(d) and VA(d) respectively represent the target
  • the maximum horizontal movement angle value of the object the maximum vertical movement angle value of the target object
  • h represents the horizontal angle value of the first pixel
  • v represents the vertical angle value of the first pixel.
  • the minimum horizontal angle of the accumulated received field of view is h-8*i
  • the maximum horizontal angle value is h+8*i
  • the minimum vertical angle of the cumulative receiving field of view is v-2*i
  • the maximum vertical angle is v+2*i. Based on this, the final cumulative receiving field of view is (h-8*i, h+8*i, v-2*, v+2*i).
  • the radar can also obtain the size of the target object, where the size of the target object can be measured by the horizontal and vertical angles of the target object.
  • the radar can be based on the frame number difference i between the current data frame and any data frame, the horizontal angle value, the vertical angle value of the first pixel, the maximum horizontal movement angle value of the target object, and the maximum vertical movement angle of the target object.
  • the value and the size of the target object determine the cumulative receiving field of view of the radar on any data frame.
  • the signal processing unit determines the cumulative receiving field of view through the following formula (2):
  • A represents the cumulative receiving field of view of the radar on any of the data frames
  • h-HA(d)*i represents the minimum horizontal angle value of A
  • h+HA(d)*i represents the maximum horizontal angle value of A
  • V-VA(d)*i represents the minimum vertical angle value of A
  • v+VA(d)*i represents the maximum vertical angle value of A
  • d represents the estimated distance
  • the maximum horizontal movement angle value of the target object, the maximum vertical movement angle value of the target object, h represents the horizontal angle value of the first pixel
  • v represents the vertical angle value of the first pixel
  • TH and TV represent the horizontal and vertical angle of the target object, respectively number.
  • int() is a rounding function
  • the rounding function can be a round-up function or a round-down function.
  • the minimum horizontal angle value of the accumulated receiving field of view determined by the signal processing unit is h-3-8*i
  • the minimum horizontal angle value is h+3+8*i
  • the minimum horizontal angle value is v-2-2* i
  • the maximum horizontal angle value is v+2+2*i
  • the final cumulative receiving field of view is (h-3-8*i,h+3+8*i,v-2-2*, v+2+2*i).
  • Option 2 For each estimated distance, if the estimated distance belongs to the target range interval, and the target range interval corresponds to a cumulative receiving field of view, the radar uses the cumulative receiving field of view corresponding to the target range interval as the radar’s The cumulative receiving field of view on any of the M data frames.
  • a sampling point set includes an inflection point.
  • the radar can determine the inflection point time information according to the position information of the inflection point, and calculate the product of the time information and the speed of light to obtain the product result, and divide the product result by 2 to obtain the radar and the target object. Estimated distance.
  • the radar can set different cumulative receiving field of view for different distance intervals, see Table 1 for details. For any distance interval, the radar selects the maximum horizontal movement angle value of the target object and the maximum vertical movement angle value of the target object in the case of the maximum distance in the distance interval. Among them, the value of the target object corresponding to the jth distance interval is The maximum horizontal movement angle value can be recorded as HAjmax, and the maximum vertical movement angle value of the target object can be recorded as VAjmax.
  • the radar sets the corresponding cumulative receiving field of view for the range 0-d1. In fact, it is not necessary to set the cumulative receiving field of view for 0-d1; or, the radar selects the range In the case of any distance (that is, the maximum distance is not limited), the maximum horizontal movement angle value of the target object, and the maximum vertical movement angle value of the target object, based on this, set the cumulative receiving field of view. Or, for the accumulated receiving field of view corresponding to the distance interval 0-d1, the radar may reuse the accumulated receiving field of view corresponding to other distance intervals. Of course, for the method for determining the cumulative receiving field of view corresponding to other distance intervals, the method for determining the cumulative receiving field of view corresponding to the distance interval 0-d1 can also be used, which is not described in detail in this application.
  • Table 2 shows the cumulative receiving field of view corresponding to the different actual distance intervals determined by the radar, taking the line-sending line-receiving scanning mode as an example:
  • the radar may not use Table 2 to determine the cumulative receiving field of view, that is, it is not necessary to use the inter-frame pixel signal multiplexing method.
  • the radar may select the cumulative receiving field of view corresponding to other distance intervals as the cumulative receiving field of view corresponding to 50 m. Or, select any distance between 0-50m, for example, the cumulative receiving field of view corresponding to 30m.
  • the above-mentioned target distance interval may be preset, for example, the target distance interval is a distance interval in Table 1.
  • the step S203 is described:
  • FIG. 5 is a flowchart of a method for obtaining echo signals after superimposition processing corresponding to a first pixel according to an embodiment of the application. As shown in FIG. 5, the method includes the following steps:
  • Step S501 For each first sampling point set, the radar follows the preset sequence of Q neighbor pixels, according to the information of the first inflection point on the first sampling point set and the inflection point on the echo signal corresponding to the first neighbor pixel Determine the second inflection point on the echo signal corresponding to the first neighboring pixel, and the distance between the first inflection point and the second inflection point is less than the sampling point threshold.
  • Step S502 The radar superimposes the sampling point set to which the first sampling point set and the second inflection point belong to obtain a superimposed sampling point set.
  • Step S503 The radar determines the set of sampling points to be superimposed on the echo signal corresponding to the second neighbor pixel, and performs the superimposed sampling point set and the set of sampling points to be superimposed on the echo signal corresponding to the second neighbor pixel Superimpose until the collection of sampling points to be superimposed on the echo signals corresponding to the Q neighbor pixels is superimposed, and the superposition is completed for each first sampling point set in the N sampling point sets to obtain the superposition processing corresponding to the first pixel After the echo signal.
  • the so-called neighbor pixels of the first pixel refer to pixels adjacent to the first pixel.
  • the neighbor pixels of the first pixel include at least one of the following: neighbors located above the first pixel in the cumulative receiving field of view Pixels, neighbor pixels below the first pixel, neighbor pixels to the left of the first pixel, neighbor pixels to the right of the first pixel, neighbor pixels to the upper left of the first pixel, neighbor pixels to the lower left of the first pixel , The neighbor pixel located at the upper right of the first pixel, and the neighbor pixel located at the lower right of the first pixel.
  • the preset order of the Q neighbor pixels is: neighbor pixels located above the first pixel, neighbor pixels located above the first pixel, neighbor pixels located above and to the right of the first pixel, and located to the right of the first pixel.
  • the preset order of the Q neighbor pixels is: the neighbor pixel located to the left of the first pixel, the neighbor pixel located to the bottom left of the first pixel, the neighbor pixel located below the first pixel, the neighbor pixel located to the right of the first pixel A neighbor pixel, a neighbor pixel located on the upper right of the first pixel, a neighbor pixel located above the first pixel, and a neighbor pixel located above the first pixel.
  • the preset order of the Q neighboring pixels is: according to the order of echo signals corresponding to the Q neighboring pixels, or the preset order of the Q neighboring pixels is: according to the Q neighboring pixels
  • the order of the corresponding echo signals from low to high, in short, the present application does not limit the preset order of Q neighbor pixels.
  • the radar performs the following operations: After the radar determines the preset order of Q neighbor pixels, first the radar obtains the first echo signal corresponding to the first neighbor pixel Position information of the inflection point, and determine the distance between the first inflection point and the above-mentioned first inflection point (the inflection point in the current sampling point set on the echo signal corresponding to the first pixel), if the distance between the two inflection points is less than the sampling point threshold , The first inflection point is the aforementioned second inflection point, and the first sampling point set and the sampling point set to which the second inflection point belongs are superimposed to obtain a superimposed sampling point set.
  • the radar has completed the superposition of the sampling point set for the first neighbor pixel, it continues to determine the sampling point set to be superimposed on the echo signal corresponding to the second neighbor pixel, and compare the superimposed sampling point set and the second
  • the collection of sampling points to be superimposed on the echo signals corresponding to each neighbor pixel is superimposed until the superposition of the collection of sampling points to be superimposed on the echo signal corresponding to the Qth neighbor pixel is completed. After each first sampling point set in the N sampling point sets is superimposed, the superimposed echo signal corresponding to the first pixel is obtained.
  • the current first sampling point in the set of N sampling points for the first pixel Set search the sampling point set one by one on the echo signal corresponding to the neighbor pixel (x, y+1, z-1), and assume that the position information of the inflection point of the current first sampling point set is ip x, y, z (i), the position information of the inflection point of the j-th sampling point set on the echo signal corresponding to the neighbor pixel (x, y+1, z-1) is ip x, y+1, z-1 (j), sampling If the point threshold is inter_thr, then it is judged whether the following formula (3) is true. If it is true, the radar will superimpose the current first sampling point set with the jth sampling point set; otherwise, the radar will not set the current first sampling point set Superimpose with the j-th sampling point set.
  • FIG. 6 is a flowchart of a method for obtaining the echo signal after superposition processing corresponding to the first pixel according to another embodiment of the application. As shown in FIG. 6, the method includes the following steps:
  • Step S601 For each first sampling point set, the radar follows the preset sequence of Q neighbor pixels, according to the information of the first inflection point on the first sampling point set and the inflection point on the echo signal corresponding to the first neighbor pixel Determine the second inflection point on the echo signal corresponding to the first neighboring pixel, and the distance between the first inflection point and the second inflection point is less than the sampling point threshold.
  • Step S602 The radar determines the correlation coefficient between the first sampling point set and the sampling point set to which the second inflection point belongs.
  • Step S603 If it is determined according to the correlation coefficient that the sampling point set to which the first sampling point set and the second inflection point belong can be superimposed, the radar superimposes the sampling point set to which the first sampling point set and the second inflection point belong to obtain the superimposed sampling point set .
  • Step S604 The radar determines the set of sampling points to be superimposed on the echo signal corresponding to the second neighbor pixel, and performs the superimposed sampling point set and the set of sampling points to be superimposed on the echo signal corresponding to the second neighbor pixel. Superimpose until the collection of sampling points to be superimposed on the echo signals corresponding to the Q neighbor pixels is superimposed, and the superposition is completed for each first sampling point set in the N sampling point sets to obtain the superposition processing corresponding to the first pixel After the echo signal.
  • the radar does the following operations: after the radar determines the preset order of Q neighbor pixels, first the radar obtains the first echo signal corresponding to the first neighbor pixel Position information of the inflection point, and determine the distance between the first inflection point and the first inflection point (the inflection point in the current first sampling point set on the echo signal corresponding to the first pixel), if the distance between the two inflection points is less than the sampling Point threshold, the first inflection point is also the above-mentioned second inflection point.
  • the radar determines the set of sampling points w x,y,z,i (n) and the set of sampling points w x,y+1,z to which the second inflection point belongs -1, j (n) is the correlation coefficient r (w x, y, z , i (n), w x, y + 1, z-1, j (n)).
  • Cov(w x,y,z,i (n),w x,y+1,z-1,j (n)) is w x,y,z,i (n) and w x,y+
  • Var(w x,y,z,i (n)) is the variance of w x,y,z,i (n)
  • Var(w x,y+ 1,z-1,j (n)) is the variance of w x,y+1,z-1,j (n)
  • the preset threshold value may be a preset fixed value, or may be determined according to the first sampling point set or the signal-to-noise ratio of the echo signal, or may be determined according to the actual distance between the radar and the target object.
  • the radar determines the set of sampling points to be superimposed on the echo signal corresponding to the second neighbor pixel (the method used by the radar to determine the set of sampling points to be superimposed is the same as determining the set of sampling points to be superimposed for the first neighbor pixel The method is the same, that is, for the second neighbor pixel, first determine the second inflection point, and then determine the correlation coefficient of the first sampling point set and the second inflection point involved in the second neighbor pixel.
  • the correlation coefficient I is greater than the preset threshold, it is determined that the first sampling point set and the sampling point set to which the second inflection point belongs can be superimposed, and the sampling point set to which the first sampling point set and the second inflection point belong are superimposed to obtain the superimposed sampling point Set), and superimpose the superimposed sampling point set and the sampling point set to be superimposed on the echo signal corresponding to the second neighbor pixel until the superimposed sampling on the echo signal corresponding to the Qth neighbor pixel is superimposed Point set, after each first sampling point set in the N sampling point sets is superimposed, to obtain the echo signal after superposition processing corresponding to the first pixel.
  • the radar first obtains the position information of the first inflection point on the echo signal corresponding to the first neighbor pixel, and determines that the first inflection point is the same as the above-mentioned first inflection point.
  • the distance of the inflection point (the inflection point in the current first sampling point set on the echo signal corresponding to the first pixel).
  • the radar determines the correlation coefficient between the first sampling point set and the sampling point set to which the second inflection point belongs, and if the correlation coefficient is greater than a preset threshold, the attribute value of the echo signal corresponding to the first pixel and the corresponding value of the first neighbor pixel are obtained.
  • the attribute value of the echo signal includes any of the following: signal amplitude, peak-to-average ratio, or signal-to-noise ratio.
  • the sampling point set to which the first sampling point set and the second inflection point belong can be Superimpose, and superimpose the first sampling point set and the sampling point set to which the second inflection point belongs, to obtain a superimposed sampling point set.
  • the preset threshold value may be a preset fixed value, or may be determined according to the signal-to-noise ratio, or may be determined according to parameters such as distance and reflectivity.
  • the radar determines the set of sampling points to be superimposed on the echo signal corresponding to the second neighbor pixel, and performs the superimposed sampling point set and the set of sampling points to be superimposed on the echo signal corresponding to the second neighbor pixel.
  • Superimposition until the sampling point set to be superimposed on the echo signal corresponding to the Qth neighbor pixel is superimposed, and the superposition is completed for each first sampling point set in the N sampling point sets to obtain the superposition corresponding to the first pixel The processed echo signal.
  • the above preset conditions can be as follows:
  • the above preset condition is that the weighted average of the attribute value of the echo signal corresponding to the first pixel and the attribute value of the echo signal corresponding to the first neighbor pixel is greater than The attribute value of the echo signal corresponding to the first pixel.
  • the attribute value of a pixel may include at least one of the following: the amplitude, signal-to-noise ratio, and peak ratio of the echo signal corresponding to the pixel.
  • the aforementioned preset conditions are the attribute value of the echo signal corresponding to the first pixel, the attribute value of the callback signal corresponding to the first neighbor pixel, and the second neighbor pixel.
  • the weighted average value of the attribute value of the echo signal corresponding to the pixel is greater than the attribute value of the echo signal corresponding to the first pixel.
  • the preset condition can be expressed by the following formula (5):
  • the corresponding preset condition can be expressed by the following formula (6):
  • the above preset conditions can be as follows:
  • the preset condition is that the attribute value of the echo signal corresponding to the neighbor pixel is greater than a preset multiple of the attribute value of the echo signal corresponding to the first pixel.
  • the preset multiple can be Any real number between 1 and 1.
  • sampling point thresholds involved in the two optional methods included in step S203 may be as follows:
  • FIG. 7 is a flowchart of a method for determining a threshold of a sampling point according to an embodiment of the application, wherein the execution body of the method is the signal processing unit in the radar. As shown in FIG. 7, the radar includes ADC. Based on this, as shown in FIG. As shown, the method includes the following steps:
  • Step S701 The radar determines the maximum moving distance of the target object in a data frame period according to the maximum relative movement speed of the radar and the target object and a data frame period.
  • Step S702 The radar determines the number of sampling points on the maximum moving distance according to the sampling rate of the ADC.
  • Step S703 The radar determines the sampling point threshold according to the frame number difference between the current data frame and the data frame where the first neighbor pixel is located and the number of sampling points.
  • the maximum moving distance of the target object in one data frame period is determined to be Vmax*Tf.
  • the radar is determined according to the ADC sampling rate
  • the number of sampling points on the maximum moving distance is sa.
  • the radar determines that the frame number difference between the current data frame and the data frame where the first neighbor pixel is located is m, and the allowable error is deta, the finally determined sampling point threshold is deta+sa*m.
  • the target object has the largest cumulative receiving field of view
  • the number of times that it is superimposed can be determined. After the sampling point sets corresponding to Q neighbor pixels are superimposed, the superposition result can be Divide by the number of times.
  • the step S204 is described: the radar can adopt but not limited to single-echo and multi-echo distance calculation modes; including but not limited to the peak detection method, the leading edge identification method, the centroid method, the Gaussian decomposition and other distance detection methods.
  • the present application provides an echo signal processing method, in which, for each first sampling point set in the N sampling point sets, the radar can determine M cumulative receiving fields of view, and the radar is in the M cumulative receiving fields of view. Determine the set of sampling points to be superimposed on the first set of sampling points on the echo signals corresponding to the Q neighbor pixels, and superimpose the first set of sampling points and its corresponding set of sampling points to be superimposed, waiting for N Each first sampling point set in the sampling point set is superimposed to obtain the superposed echo signal corresponding to the first pixel, and the actual distance between the radar and the target object is calculated according to the superposed echo signal. distance.
  • This application considers the spatial correlation of objects, that is, the detectors in the radar will receive echo signals with approximately the same pulse position and approximately the same amplitude at the same angle, adjacent angles, and pixels in multiple adjacent data frames. Therefore, when the signal-to-noise ratio of the echo signal is low, the signal-to-noise ratio of the echo signal is improved by realizing inter-frame signal multiplexing, thereby improving the ranging accuracy.
  • this application also considers the influence brought by the movement of the target object itself, which is suitable for scenes such as stationary and moving of the target object, and is suitable for lasers such as “line sending and receiving”, “surface sending and receiving”, “point sending and receiving”, etc. On the radar.
  • FIG 8 is a schematic structural diagram of an echo signal processing device provided by an embodiment of the application.
  • the echo signal processing device may be part or all of a radar.
  • the device may be a signal processing unit in the radar, that is, The processor, as shown in Figure 8, the device includes:
  • the first determining module 801 is configured to determine, on the current data frame, the first pixel in the radar receiving field of view and the set of N sampling points on the echo signal corresponding to the first pixel, where N is an integer greater than or equal to 1, The first pixel is any pixel in the receiving field of view.
  • the estimation module 802 is configured to estimate the estimated distance between the radar and the target object according to each first sampling point set in the N sampling point sets.
  • the second determining module 803 is configured to respectively determine M cumulative reception fields of view corresponding to M data frames one-to-one according to each estimated distance, and each cumulative reception field of view of the M cumulative reception fields includes the first pixel At least one neighbor pixel of, M data frames are M data frames received by the radar before receiving the current data frame, M is an integer greater than or equal to 1, and the first sampling point set is any of the N sampling point sets Collection of sampling points.
  • the third determining module 804 is configured to determine the second set of sampling points on the echo signals corresponding to the Q neighbor pixels in the M cumulative received field of view according to each first set of sampling points.
  • the superimposition module 805 is configured to superimpose each first sampling point set and the corresponding second sampling point set to obtain the echo signal after the superposition processing corresponding to the first pixel, and Q is an integer greater than or equal to 1.
  • the calculation module 806 is configured to calculate the actual distance between the radar and the target object according to the superimposed echo signal corresponding to the first pixel.
  • the estimation module 802 is specifically configured to determine the estimated distance between the radar and the target object according to the position information of the inflection point in each first sampling point set in the N sampling point sets.
  • the second determining module 803 is specifically configured to: for each estimated distance, according to the maximum relative motion speed of the radar and the target object, one data frame period, the estimated distance, the maximum horizontal field of view of the radar, and the total level Field of view, maximum vertical field of view, total vertical field of view, determine the maximum horizontal movement angle value and maximum vertical movement angle value of the target object. According to the frame number difference i between the current data frame and any data frame, the horizontal angle value, the vertical angle value of the first pixel, the maximum horizontal movement angle value of the target object, and the maximum vertical movement angle value of the target object, determine whether the radar is in any one The cumulative receiving field of view on the data frame, 1 ⁇ i ⁇ M, where i is an integer.
  • the second determining module 803 is specifically configured to determine the cumulative received field of view of the radar on any data frame by using the following formula:
  • A represents the cumulative receiving field of view of the radar on any data frame
  • h-HA(d)*i represents the minimum horizontal angle value of A
  • h+HA(d)*i represents the maximum horizontal angle value of A
  • v- VA(d)*i represents the minimum vertical angle value of A
  • v+VA(d)*i represents the maximum vertical angle value of A
  • d represents the estimated distance
  • HA(d) and VA(d) respectively represent the target object’s
  • h represents the horizontal angle value of the first pixel
  • v represents the vertical angle value of the first pixel.
  • the device further includes: an acquiring module 807, configured to acquire the size of the target object.
  • the second determining module 803 is specifically configured to: according to the frame number difference i between the current data frame and any data frame, the horizontal angle value, the vertical angle value of the first pixel, the maximum horizontal movement angle value of the target object, The maximum vertical movement angle value of the target object and the size of the target object determine the cumulative receiving field of view of the radar on any data frame.
  • the second determining module 803 is specifically configured to determine the cumulative received field of view of the radar on any data frame by using the following formula, including:
  • A represents the cumulative receiving field of view of the radar on any data frame
  • h-HA(d)*i represents the minimum horizontal angle value of A
  • h+HA(d)*i represents the maximum horizontal angle value of A
  • v- VA(d)*i represents the minimum vertical angle value of A
  • v+VA(d)*i represents the maximum vertical angle value of A
  • d represents the estimated distance
  • HA(d) and VA(d) respectively represent the target object’s
  • h represents the horizontal angle value of the first pixel
  • v represents the vertical angle value of the first pixel
  • TH and TV represent the horizontal and vertical angles of the target object, respectively.
  • the second determining module 803 is specifically configured to: for each estimated distance, if the estimated distance belongs to the target distance interval, and the target distance interval corresponds to an accumulated receiving field of view, then the accumulated receiving field of view corresponding to the target distance interval is The field is regarded as the cumulative receiving field of view of the radar on any data frame.
  • the device further includes: a fourth determining module 808, configured to determine the signal-to-noise ratio of the echo signal corresponding to the first pixel or the signal-to-noise ratio of at least one first sampling point.
  • the second determining module 803 is specifically configured to: if the signal-to-noise ratio of the echo signal corresponding to the first pixel or the signal-to-noise ratio of at least one set of first sampling points is less than the preset signal-to-noise ratio, respectively, according to the N samples
  • Each first sampling point set in the point set estimates the estimated distance between the radar and the target object, and respectively determines M cumulative receiving fields of view corresponding to M data frames one-to-one according to each estimated distance.
  • the superimposition module 805 is specifically configured to: for each first sampling point set, according to a preset sequence of Q neighbor pixels, corresponding to the first neighbor pixel according to the information of the first inflection point on the first sampling point set
  • the position information of the inflection point on the echo signal is determined to determine the second inflection point on the echo signal corresponding to the first neighbor pixel, and the distance between the first inflection point and the second inflection point is less than the sampling point threshold.
  • the first sampling point set and the sampling point set to which the second inflection point belongs are superimposed to obtain a superimposed sampling point set.
  • the superimposition module 805 is specifically configured to: for each first sampling point set, according to a preset sequence of Q neighbor pixels, corresponding to the first neighbor pixel according to the information of the first inflection point on the first sampling point set The position information of the inflection point on the echo signal is determined to determine the second inflection point on the echo signal corresponding to the first neighbor pixel, and the distance between the first inflection point and the second inflection point is less than the sampling point threshold. Determine the correlation coefficient between the first sampling point set and the sampling point set to which the second inflection point belongs.
  • the sampling point sets to which the first sampling point set and the second inflection point belong are superimposed to obtain a superimposed sampling point set.
  • the superposition module 805 is specifically configured to: if the correlation coefficient is greater than a preset threshold, superimpose the sampling point set to which the first sampling point set and the second inflection point belong to obtain the superimposed sampling point set.
  • the superimposing module 805 is specifically configured to: if the correlation coefficient is greater than a preset threshold, obtain the attribute value of the echo signal corresponding to the first pixel and the attribute value of the echo signal corresponding to the first neighbor pixel, the attribute value includes Any of the following: signal amplitude, peak-to-average ratio, or signal-to-noise ratio. If the attribute value of the echo signal corresponding to the first pixel and the attribute value of the echo signal corresponding to the first neighboring pixel meet the preset conditions, the first sampling point set and the sampling point set to which the second inflection point belongs are superimposed to obtain the superposition After the collection of sampling points.
  • the preset condition is that the weighted average of the attribute value of the echo signal corresponding to the first pixel and the attribute value of the echo signal corresponding to the first neighbor pixel is greater than the attribute value of the echo signal corresponding to the first pixel.
  • the preset condition is that the attribute value of the echo signal corresponding to the first neighboring pixel is greater than a preset multiple of the attribute value of the echo signal corresponding to the first pixel.
  • the radar further includes: an analog-to-digital converter ADC.
  • the device further includes: a fifth determining module 809, configured to determine that the target object is in a data frame period according to the maximum relative motion speed of the radar and the target object. The maximum movement distance in the data frame period.
  • the sampling rate of ADC determine the number of sampling points on the maximum moving distance. Determine the sampling point threshold according to the frame number difference between the current data frame and the data frame where the first neighbor pixel is located and the number of sampling points.
  • the fifth determining module 809 is specifically configured to calculate the product of the difference in the number of frames between the current data frame and the data frame where the first neighbor pixel is located and the number of sampling points to obtain the product result. Calculate the sum of the product result and the allowable error to obtain the sampling point threshold.
  • the device further includes an allocation module 810, configured to allocate storage space to the information of the first pixel, and the storage space can be reused.
  • the information of the first pixel includes at least one of the following: N sampling point sets, position information of at least one inflection point in the N sampling point sets, and the signal-to-noise ratio of the echo signal corresponding to the first pixel.
  • the echo signal processing device provided in this embodiment can be used to execute the echo signal processing method described above, and its content and effects can be referred to the embodiment part, which will not be repeated here.
  • FIG 9 is a schematic structural diagram of a radar provided by an embodiment of the application.
  • the radar includes: a memory 901, a transceiver 902, and a processor 903.
  • the memory 901 stores program instructions, and the transceiver 902 uses To receive the echo signal generated by the reflection of the target object; the processor 903 is configured to execute the above-mentioned echo signal processing method according to the echo signal received by the transceiver by running program instructions.
  • the processor 903 here may also be referred to as a signal processing unit, and the transceiver 902 here is equivalent to the transmitting optical element 15 and the receiving optical element 16 in FIG. 1.
  • the radar provided by the present application may also include: laser driving circuit, laser, scanning device, detector, and analog front end.
  • the analog front end may include: TIA and ADC.
  • the radar provided in this embodiment can be used to execute the above-mentioned echo signal processing method, and its content and effects can be referred to the embodiment part, which will not be repeated here.
  • the present application also provides a storage medium, including: a readable storage medium and computer instructions, the computer instructions are stored in the readable storage medium; the computer instructions are used to implement the echo signal processing method described above.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product includes computer instructions, and the computer instructions are used to implement the foregoing echo signal processing method.
  • an embodiment of the present application further provides a processor, which is configured to implement the foregoing method embodiment.
  • the aforementioned processor may be a chip.
  • all the components involved in the embodiments of the present application can be packaged on a chip, and can be executed by the processing circuit operations on the chip.
  • the functions performed by the elements involved in the embodiments of the present application may be performed by a device that includes the chips or programs that can be executed in the embodiments of the present application.
  • the steps of the method or algorithm described in combination with the disclosure of the embodiments of the present application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read Only Memory, ROM), and erasable programmable read-only memory ( Erasable Programmable ROM (EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and can write information to the storage medium.
  • the storage medium may also be an integral part of the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种回波信号处理方法、装置、系统及存储介质。该方法包括:在当前数据帧上确定雷达的接收视场内的第一像素和第一像素对应的回波信号上的N个采样点集合(S201);分别根据N个采样点集合中的每个第一采样点集合估算雷达与目标物体的预估距离,分别根据每个预估距离确定与M个数据帧一一对应的M个累加接收视场(S202);分别根据每个第一采样点集合在M个累加接收视场中的Q个邻居像素对应的回波信号上确定第二采样点集合,分别对每个第一采样点集合和对应的第二采样点集合进行叠加,以得到第一像素对应的叠加处理后的回波信号(S203);根据叠加处理后的回波信号计算雷达与目标物体之间的实际距离(S204)。该方法通过实现帧间信号复用,提升回波信号信噪比,从而提高测距精度。

Description

回波信号处理方法、装置、系统及存储介质 技术领域
本申请涉及信号处理技术领域,尤其涉及一种回波信号处理方法、装置、系统及存储介质。
背景技术
激光雷达(Light detection and ranging,LiDAR)是采用从紫外波段到远红外波段电磁波,通过探测目标物体的散射光特性,以获取目标物体的相关信息的光学遥感技术。其中,具有高测量精度、精细的时间和空间分辨率,能完成测距、目标探测、跟踪和成像识别等功能,在智能交通、自动驾驶、大气环境监测、地理测绘、无人机等领域具有广阔的应用前景。
测距是雷达的基本功能。图1为现有技术提供的一种雷达的示意图,如图1所示,该雷达10包括:信号处理单元11、激光驱动电路12、激光器13、扫描器件14、发端光学元件15、收端光学元件16、探测器17和模拟前端18,该模拟前端18可以包括:跨阻放大器(Transimpedance amplifier,TIA)以及模拟数字转换器(Analog digital converter,ADC),其中雷达的测距原理是:信号处理单元11发射一脉冲信号给激光驱动电路12,激光驱动电路12将该脉冲信号调制到激光器13上,激光器13发射出带有脉冲的光信号,扫描器件14和发端光学元件15对该光信号进行扫描和整型;收端光学元件16对从目标物反射的光进行聚焦整型处理,探测器17接收经过收端光学元件16处理后的光信号,并将该光信号转化成电流信号,将该电流信号发送给模拟前端18中的TIA,TIA可将该电流信号放大变成电压信号,该电压信号为模拟信号;模拟前端18中的ADC可将该电压信号转换为数字信号,其中,ADC在一个采样周期内的数字信号可以被称为回波信号。最后信号处理单元11根据该数字信号测量雷达与目标物体之间的距离。
在远距离或反射率较低情况下,光信号能量严重衰减,信号会淹没在背景光噪声、散粒噪声、热噪声等噪声中,信噪比低,降低了雷达测距的准确性。因此,如何提升回波信号的信噪比以提高雷达的测距精度是本申请亟待解决的技术问题。
发明内容
本申请提供一种回波信号处理方法、装置、系统及存储介质。以提升回波信号信噪比,从而提高雷达的测距精度。
第一方面,本申请提供一种回波信号处理方法,包括:在当前数据帧上确定雷达的接收视场内的第一像素和第一像素对应的回波信号上的N个采样点集合,N为大于或等于1的整数,第一像素为接收视场内的任一像素。分别根据N个采样点集合中的每个第一采样 点集合估算雷达与目标物体的预估距离,并分别根据每个预估距离确定与M个数据帧一一对应的M个累加接收视场,M个累加接收视场中的每个累加接收视场包括第一像素的至少一个邻居像素,M个数据帧为雷达在接收当前数据帧之前接收到的M个数据帧,M为大于或等于1的整数,第一采样点集合为N个采样点集合中的任一采样点集合。分别根据每个第一采样点集合在M个累加接收视场中的Q个邻居像素对应的回波信号上确定第二采样点集合,并分别对每个第一采样点集合和对应的第二采样点集合进行叠加,以得到第一像素对应的叠加处理后的回波信号,Q为大于或等于1的整数。根据第一像素对应的叠加处理后的回波信号计算雷达与目标物体之间的实际距离。
本申请考虑到物体空间相关性,即雷达中的探测器会在同一角度、相邻角度以及相邻多个数据帧的像素接收到脉冲位置接近相同、幅度接近相等的回波信号。因此,在回波信号的信噪比较低的情况下,通过实现帧间信号复用,提升回波信号信噪比,从而提高测距精度。
可选地,分别根据N个采样点集合中的每个第一采样点集合估算雷达与目标物体的预估距离,包括:分别根据N个采样点集合中的每个第一采样点集合中的拐点的位置信息确定雷达与目标物体的预估距离。
可选地,雷达可以通过如下几种可选方式确定累加接收视场:
可选方式一:分别根据每个预估距离确定与M个数据帧一一对应的M个累加接收视场,包括:针对每个预估距离,根据雷达与目标物体的最大相对运动速度、一个数据帧周期、预估距离、雷达的最大水平视场角、总水平视场角、最大垂直视场角、总垂直视场角,确定目标物体的最大水平移动角度值和最大垂直移动角度值。根据当前数据帧与任一数据帧之间的帧数差i、第一像素的水平角度值、垂直角度值、目标物体的最大水平移动角度值、目标物体的最大垂直移动角度值确定雷达在任一数据帧上的累加接收视场,1≦i≦M,i为整数。
其中,可以通过如下公式确定雷达在任一数据帧上的累加接收视场:
A=(h-HA(d)*i,h+HA(d)*i,v-VA(d)*,v+VA(d)*i)
其中,A表示雷达在任一数据帧上的累加接收视场,h-HA(d)*i表示A的最小水平角度值,h+HA(d)*i表示A的最大水平角度值,v-VA(d)*i表示A的最小垂直角度值,v+VA(d)*i表示A的最大垂直角度值,d表示预估距离,HA(d)和VA(d)分别表示目标物体的最大水平移动角度值、目标物体的最大垂直移动角度值,h表示第一像素的水平角度值,v表示第一像素的垂直角度值。
可选方式二:根据当前数据帧与任一数据帧之间的帧数差i、第一像素的水平角度值、垂直角度值、目标物体的最大水平移动角度值、目标物体的最大垂直移动角度值确定雷达在任一数据帧上的累加接收视场之前,还包括:获取目标物体的大小。相应的,根据当前数据帧与任一数据帧之间的帧数差i、第一像素的水平角度值、垂直角度值、目标物体的最大水平移动角度值、目标物体的最大垂直移动角度值确定雷达在任一数据帧上的累加接收视场,包括:根据当前数据帧与任一数据帧之间的帧数差i、第一像素的水平角度值、垂直角度值、目标物体的最大水平移动角度值、目标物体的最大垂直移动角度值和目标物体的大小确定雷达在任一数据帧上的累加接收视场。
其中,可以通过如下公式确定雷达在任一数据帧上的累加接收视场,包括:
Figure PCTCN2019088436-appb-000001
其中,A表示雷达在任一数据帧上的累加接收视场,h-HA(d)*i表示A的最小水平角度值,h+HA(d)*i表示A的最大水平角度值,v-VA(d)*i表示A的最小垂直角度值,v+VA(d)*i表示A的最大垂直角度值,d表示预估距离,HA(d)和VA(d)分别表示目标物体的最大水平移动角度值、目标物体的最大垂直移动角度值,h表示第一像素的水平角度值,v表示第一像素的垂直角度值,TH和TV分别表示目标物体的水平和垂直角度数。
可选方式三:分别根据每个预估距离确定与M个数据帧一一对应的M个累加接收视场,包括:针对每个预估距离,若预估距离属于目标距离区间,且目标距离区间对应有累加接收视场,则将目标距离区间对应的累加接收视场作为雷达在任一数据帧上的累加接收视场。
通过上述任一可选方式,可以有效的确定雷达在任一数据帧上的累加接收视场,基于此,雷达才可以确定第一像素的相邻像素,进而进行采样点集合累加,提升回波信号信噪比,从而提高测距精度。
可选地,分别根据N个采样点集合中的每个第一采样点集合估算雷达与目标物体的预估距离,并分别根据每个预估距离确定与M个数据帧一一对应的M个累加接收视场之前,还包括:确定第一像素对应的回波信号的信噪比或者至少一个第一采样点的信噪比。相应的,分别根据N个采样点集合中的每个第一采样点集合估算雷达与目标物体的预估距离,并分别根据每个预估距离确定与M个数据帧一一对应的M个累加接收视场,包括:若第一像素对应的回波信号的信噪比或者至少一个第一采样点集合的信噪比小于预设信噪比,则分别根据N个采样点集合中的每个第一采样点集合估算雷达与目标物体的预估距离,并分别根据每个预估距离确定与M个数据帧一一对应的M个累加接收视场。
即只有满足上述条件,雷达才确定累加接收视场,实现帧间信号复用,相反,当不满足上述条件,雷达无需确定累加接收视场,也不用实现帧间信号复用,从而提高雷达在信号处理时的灵活性。
雷达可以通过如下几种方式得到第一像素对应的叠加处理后的回波信号:
可选方式一:分别根据每个第一采样点集合在M个累加接收视场中的Q个邻居像素对应的回波信号上确定第二采样点集合,并分别对每个第一采样点集合和对应的第二采样点集合进行叠加,以得到第一像素对应的叠加处理后的回波信号,包括:针对每个第一采样点集合,按照Q个邻居像素的预设顺序,根据第一采样点集合上的第一拐点的信息和第一个邻居像素对应的回波信号上的拐点的位置信息,确定第一个邻居像素对应的回波信号上的第二拐点,第一拐点与第二拐点的距离小于采样点门限。叠加第一采样点集合与第二拐点所属的采样点集合,得到叠加后的采样点集合。确定第二个邻居像素对应的回波信号上待叠加的采样点集合,并对叠加后的采样点集合和第二个邻居像素对应的回波信号上待叠加的采样点集合进行叠加,直到叠加完Q个邻居像素对应的回波信号上待叠加的采样点集合,待N个采样点集合中的每个第一采样点集合都完成叠加,以得到第一像素对应的叠加处理后的回波信号。
可选方式二,分别根据每个第一采样点集合在M个累加接收视场中的Q个邻居像素 对应的回波信号上确定第二采样点集合,并分别对每个第一采样点集合和对应的第二采样点集合进行叠加,以得到第一像素对应的叠加处理后的回波信号,包括:针对每个第一采样点集合,按照Q个邻居像素的预设顺序,根据第一采样点集合上的第一拐点的信息和第一个邻居像素对应的回波信号上的拐点的位置信息,确定第一个邻居像素对应的回波信号上的第二拐点,第一拐点与第二拐点的距离小于采样点门限。确定第一采样点集合与第二拐点所属的采样点集合的相关系数。若根据相关系数确定第一采样点集合与第二拐点所属的采样点集合可叠加,则叠加第一采样点集合与第二拐点所属的采样点集合,得到叠加后的采样点集合。确定第二个邻居像素对应的回波信号上待叠加的采样点集合,并对叠加后的采样点集合和第二个邻居像素对应的回波信号上待叠加的采样点集合进行叠加,直到叠加完Q个邻居像素对应的回波信号上待叠加的采样点集合,待N个采样点集合中的每个第一采样点集合都完成叠加,以得到第一像素对应的叠加处理后的回波信号。
其中,若根据相关系数确定第一采样点集合与第二拐点所属的采样点集合可叠加,则叠加第一采样点集合与第二拐点所属的采样点集合,得到叠加后的采样点集合,包括:若相关系数大于预设阈值,则叠加第一采样点集合与第二拐点所属的采样点集合,得到叠加后的采样点集合。或者,若相关系数大于预设阈值,则获取第一像素对应的回波信号的属性值以及第一个邻居像素对应的回波信号的属性值,属性值包括以下任一项:信号幅度、峰均比或信噪比。若第一像素对应的回波信号的属性值以及第一个邻居像素对应的回波信号的属性值满足预设条件,则叠加第一采样点集合与第二拐点所属的采样点集合,得到叠加后的采样点集合。该预设条件为第一像素对应的回波信号的属性值以及第一个邻居像素对应的回波信号的属性值的加权平均值大于第一像素对应的回波信号的属性值。或者,预设条件为第一个邻居像素对应的回波信号的属性值大于第一像素对应的回波信号的属性值的预设倍数。
通过上述任一可选方式,可以有效的进行采样点集合累加,提升回波信号信噪比,从而提高测距精度。
可选地,雷达还包括:模数转换器ADC,相应的,方法还包括:根据雷达与目标物体的最大相对运动速度、一个数据帧周期,确定目标物体在一个数据帧周期内的最大移动距离。根据ADC的采样率,确定在最大移动距离上的采样点个数。根据当前数据帧与第一个邻居像素所在的数据帧的帧数差以及采样点个数,确定采样点门限。基于此,可以有效的确定采样点门限。
可选地,根据当前数据帧与第一个邻居像素所在的数据帧的帧数差以及采样点个数,确定采样点门限,包括:计算当前数据帧与第一个邻居像素所在的数据帧的帧数差以及采样点个数的乘积,得到乘积结果。计算乘积结果与允许误差之和,得到采样点门限。
可选地,在当前数据帧上确定雷达的接收视场内的第一像素和第一像素对应的回波信号上的N个采样点集合之后,还包括:向第一像素的信息分配存储空间,存储空间可复用。其中,第一像素的信息包括以下至少一项:N个采样点集合,N个采样点集合中至少一个拐点的位置信息、第一像素对应的回波信号的信噪比。从而可节约数据存储空间。
第二方面,本申请提供一种回波信号处理装置,包括:
第一确定模块,用于在当前数据帧上确定雷达的接收视场内的第一像素和第一像素对应的回波信号上的N个采样点集合,N为大于或等于1的整数,第一像素为接收视场内的 任一像素。
估算模块,用于分别根据N个采样点集合中的每个第一采样点集合估算雷达与目标物体的预估距离。
第二确定模块,用于分别根据每个预估距离确定与M个数据帧一一对应的M个累加接收视场,M个累加接收视场中的每个累加接收视场包括第一像素的至少一个邻居像素,M个数据帧为雷达在接收当前数据帧之前接收到的M个数据帧,M为大于或等于1的整数,第一采样点集合为N个采样点集合中的任一采样点集合。
第三确定模块,用于分别根据每个第一采样点集合在M个累加接收视场中的Q个邻居像素对应的回波信号上确定第二采样点集合。
叠加模块,用于分别对每个第一采样点集合和对应的第二采样点集合进行叠加,以得到第一像素对应的叠加处理后的回波信号,Q为大于或等于1的整数。
计算模块,用于根据第一像素对应的叠加处理后的回波信号计算雷达与目标物体之间的实际距离。
第三方面,本申请提供一种雷达,包括:收发器和处理器。
收发器用于接收由于目标物体反射所产生的回波信号。
处理器用于通过运行程序指令,根据收发器接收的回波信号,执行第一方面或第一方面的可选方式的回波信号处理方法。
第四方面,本申请还提供一种计算机程序产品,该计算机程序产品包括计算机指令,计算机指令用于实现上述第一方面或第一方面的可选方式的回波信号处理方法。
第五方面,本申请还提供一种存储介质,包括:可读存储介质和计算机指令,计算机指令存储在可读存储介质中。计算机指令用于实现上述第一方面或第一方面的可选方式的回波信号处理方法。
本申请提供一种回波信号处理方法、装置、系统及存储介质。该方法包括:在当前数据帧上确定雷达的接收视场内的第一像素和第一像素对应的回波信号上的N个采样点集合,N为大于或等于1的整数,第一像素为接收视场内的任一像素。分别根据N个采样点集合中的每个第一采样点集合估算雷达与目标物体的预估距离,并分别根据每个预估距离确定与M个数据帧一一对应的M个累加接收视场,M个累加接收视场中的每个累加接收视场包括第一像素的至少一个邻居像素,M个数据帧为雷达在接收当前数据帧之前接收到的M个数据帧,M为大于或等于1的整数,第一采样点集合为N个采样点集合中的任一采样点集合。分别根据每个第一采样点集合在M个累加接收视场中的Q个邻居像素对应的回波信号上确定第二采样点集合,并分别对每个第一采样点集合和对应的第二采样点集合进行叠加,以得到第一像素对应的叠加处理后的回波信号,Q为大于或等于1的整数。根据第一像素对应的叠加处理后的回波信号计算雷达与目标物体之间的实际距离。由于本申请考虑到物体空间相关性,即雷达中的探测器会在同一角度、相邻角度以及相邻多个数据帧的像素接收到脉冲位置接近相同、幅度接近相等的回波信号。因此,在回波信号的信噪比较低的情况下,通过实现帧间信号复用,提升回波信号信噪比,从而提高测距精度。
附图说明
图1为现有技术提供的一种雷达的示意图;
图2为本申请一实施例提供的回波信号处理方法的流程图;
图3为本申请一实施例提供的确定累加接收视场的方法流程图;
图4为本申请一实施例提供的相对运动速度、距离以及最大水平移动角度值对应关系示意图;
图5为本申请一实施例提供的获取第一像素对应的叠加处理后的回波信号的方法流程图;
图6为本申请另一实施例提供的获取第一像素对应的叠加处理后的回波信号的方法流程图;
图7为本申请一实施例提供的确定采样点门限的方法流程图;
图8为本申请一实施例提供的一种回波信号处理装置的结构示意图;
图9为本申请一实施例提供的雷达的结构示意图。
具体实施方式
如上所述,回波信号的信噪比直接影响着雷达测距的准确性。因此,如何调提升回波信号的信噪比以提高雷达的测距精度是本申请亟待解决的技术问题。基于此,本申请提供一种回波信号处理方法、装置、系统及存储介质。在介绍本申请技术方案之前,下面介绍本申请涉及到的术语:
数据帧:雷达中的收端光学元件通过扫描器件和光路设计,可在一个扫描周期内,得到一帧数据,一个数据帧包括多个像素的信息。
雷达的接收视场:其包括四个维度值,分别是最小水平角度值,最大水平角度值,最小垂直角度值和最大垂直角度值。
像素:一帧数据中接收视场内的每个距离测量单元为一个像素,每个像素对应一个回波信号,例如,对于雷达,假设收端光学元件在水平方向上对应有10个角度,在垂直方向上对应有4个角度,从空间上看,接收视场可以被分成40个网格,每个网格对应空间上的一个距离测量单元,即为一个像素。
像素的信息:例如,从空间看,接收视场可以被分成40个网格,每个网格对应空间上的一个像素,在一个扫描周期内,可测量得到40个像素的信息,即一帧数据包括:40个像素的信息,每个像素的信息包括以下至少一项:该像素对应的回波信号上的N个采样点集合,所述N个采样点集合中至少一个拐点的位置信息、该像素对应的回波信号、该像素对应的回波信号的信噪比、该回波信号上的采样点集合的信噪比,该像素对应的水平和垂直角度、下面将要提到的雷达与目标物体的实际距离等信息,需要说明的是,该实际距离是根据拐点位置所确定的雷达与目标物体的距离,但拐点可能是噪点,因此实际距离可能与雷达与目标物体的真实距离存在误差。
帧内像素信号复用:当对一帧数据内多个像素的回波信号进行复用处理时,这种复用处理方式被称为帧内像素信号复用。其中,该帧内像素信号复用中的“复用”指的是一帧数据中的至少两个像素对应的回波信号的整个波形累加或者所述至少两个像素对应的回波信号的分段波形累加,所述累加可以是直接累加,也可以采用算术平均法,几何平均法,平方平均法,调和平均法,加权平均法等方式进行累加。
帧间像素信号复用:当对相邻多个数据帧的回波信号进行复用处理时,这种复用处理 方式被称为帧间多像素信号复用。其中,该帧间像素信号复用中的“复用”指的是属于不同数据帧的至少两个像素对应的回波信号的整个波形累加或者所述至少两个像素对应的回波信号的分段波形累加,所述累加可以是直接累加,也可以采用算术平均法,几何平均法,平方平均法,调和平均法,加权平均法等方式进行累加。
进一步地,信噪比指的是信号峰值幅度与噪声均方根的比值。本申请中的信噪比可以是峰值信噪或者其他形式的信噪比。基于此,本申请的主旨思想是:考虑到物体空间相关性,雷达中的探测器会在同一角度、相邻角度以及相邻多个数据帧的像素接收到脉冲位置接近相同、幅度接近相等的回波信号。因此,在回波信号的信噪比较低的情况下,通过实现信号复用,提升回波信号信噪比,从而提高测距精度。其中,本申请着重介绍的是帧间像素信号复用方案。
具体地,图2为本申请一实施例提供的回波信号处理方法的流程图,该方法的执行主体可以是如图1所示的雷达或者是该系统中的信号处理单元等,下面以执行主体是雷达为例,对回波信号处理方法进行说明。需要说明的是,本申请所涉及的雷达不限于图1所示的雷达,例如,在ADC和信号处理单元之间还可以设置降噪滤波模块,该滤波降噪模块可以对ADC输出的数字信号进行滤波降噪,该降噪滤波模块可以是具有匹配滤波、高斯滤波、平滑滤波、维纳滤波等功能的滤波器,再比如,本申请还适用于基于脉冲发射的毫米波雷达、超声波雷达等其他雷达。如图2所示,该方法包括如下步骤:
步骤S201:雷达在当前数据帧上确定雷达的接收视场内的第一像素和第一像素对应的回波信号上的N个采样点集合,N为大于或等于1的整数,第一像素为接收视场内的任一像素。
步骤S202:雷达分别根据N个采样点集合中的每个第一采样点集合估算雷达与目标物体的预估距离,并分别根据每个预估距离确定与M个数据帧一一对应的M个累加接收视场,M个累加接收视场中的每个累加接收视场包括第一像素的至少一个邻居像素,M个数据帧为雷达在接收当前数据帧之前接收到的M个数据帧,M为大于或等于1的整数,第一采样点集合为N个采样点集合中的任一采样点集合。
步骤S203:雷达分别根据每个第一采样点集合在M个累加接收视场中的Q个邻居像素对应的回波信号上确定第二采样点集合,并分别对每个第一采样点集合和对应的第二采样点集合进行叠加,以得到第一像素对应的叠加处理后的回波信号,Q为大于或等于1的整数。
步骤S204:雷达根据第一像素对应的叠加处理后的回波信号计算雷达与目标物体之间的实际距离。
针对步骤S201进行说明:
其中,一个数据帧包括多个像素的信息,每个像素对应一个回波信号。假设第一像素用(x,y,z)表示,其中,x为第一像素的列坐标,y为第一像素的行坐标,z为所述当前数据帧的帧数,例如该当前数据帧为第二个数据帧,则z=2。假设第一像素对应的采样点序列为r x,y,z(n),其中n表示采样点序列中采样点的序号,信号处理处理单元可以对r x,y,z(n)进行候选拐点查找,例如可以优先按照幅度由大到小排序或者按照幅度由小到大的顺序选取前N个拐点,本申请对选择拐点的规则不做限制。以选取的拐点为中心,获取拐点两侧共N Truncate个采样点(包括拐点),作为一个采样点集合,记录为w x,y,z,i(m),其中,i表示第 一像素(x,y,z)对应的回波信号上的拐点的序号,0<i≤N,m表示以第i个拐点为中心的采样点集合中第m个采样点的序号,0<m≤N Truncate。假设雷达将第i个拐点的位置信息记录为ip x,y,z(i)。
可选地,雷达可以估计每个采样点集合的信噪比,并记录为SNR x y z(i)。雷达可以以数据块的形式存储每个像素的信息,即每个像素的信息都是一个数据块。如上所述,每个像素的信息包括以下至少一项:该像素对应的回波信号上的N个采样点集合,所述N个采样点集合中至少一个拐点的位置信息、该像素对应的回波信号、该像素对应的回波信号的信噪比、该回波信号上的采样点集合的信噪比,该像素对应的水平和垂直角度、雷达与目标物体的实际距离等信息。
其中,上述每个数据块的存储空间可复用,例如:设累加帧数为M+1,前M+1个数据帧包括的任一个像素的信息以数据块形式存储,其中,可复用存储空间的个数为M+1,对于当前数据帧之后的数据帧来讲,根据余数法,1~M+1数据帧中的像素的信息分别存储在相应1~M+1个数据块中,M+2~2M+2个数据帧中的像素的信息分别复用1~M+1数据帧中的像素的信息所占用的存储空间,依次类推,从而可节约数据存储空间。
针对步骤S202进行说明:
一个采样点集合包括一个拐点,雷达可以根据该拐点的位置信息确定拐点时间信息,其中拐点时间信息指的是:从发射信号到拐点的时间,再从目标物体的反射光到雷达的时间和。假设ADC采样率为1每秒千兆次采样(Gigabit Samples Per Second,GSPS),则采样时间为1纳秒(nanosecond,ns),拐点位置在100个采样点,所以,拐点时间信息为1ns*100=100ns。进一步地,雷达可以计算该拐点时间信息与光速的乘积得到乘积结果,令该乘积结果除以2以获得雷达与目标物体的预估距离。
可选地,若第一像素对应的回波信号的信噪比或者该回波信号中的至少一个第一采样点集合的信噪比小于预设信噪比,则分别根据N个采样点集合中的每个第一采样点集合估算雷达与目标物体的预估距离,并分别根据每个预估距离确定与M个数据帧一一对应的M个累加接收视场。相反地,则无需进行帧间像素累加,即无需执行步骤S202至步骤S204。
在本申请中,第一采样点集合为所述N个采样点集合中的任一采样点集合。
可选地,若第一像素对应的回波信号的信噪比或者该回波信号中的至少一个第一采样点集合的信噪比小于预设信噪比,则雷达也可以先进行帧内像素累加,再针对每个第一采样点集合,分别确定雷达在当前数据帧之前的M个数据帧上的M个累加接收视场。
上述过程中没有涉及仅进行帧内像素累加的情况,实际上,雷达可以设置两个预设信噪比,分别是第一预设信噪比和第二预设信噪比,其中第一预设信噪比大于第二预设信噪比,基于此,若第一像素对应的回波信号的信噪比或者该回波信号中至少一个第一采样点集合的信噪比大于第一预设信噪比,则不进行帧内像素累加和帧间像素累加,若第一像素对应的回波信号的信噪比或者该回波信号中至少一个第一采样点集合的信噪比小于或等于第一预设信噪比,且大于第二预设信噪比,则进行帧内像素累加,若第一像素对应的回波信号的信噪比或者该回波信号中的至少一个采样点集合的信噪比大于或等于第二预设信噪比,则进行帧间像素累加,即先针对该采样点集合,雷达确定雷达在当前数据帧之前的M个数据帧上的M个累加接收视场。
需要说明的是,上述预设信噪比、第一预设信噪比、第二预设信噪比可以根据雷达测 试情况来确定,或者可以是经验值,本申请对其不做限制。
进一步地,针对当前数据帧中的每个第一采样点集合,雷达都要确定该第一采样点集合对应的M个累加接收视场。所谓第一采样点集合对应的每个累加接收视场指的是:针对该第一采样点集合,雷达在当前数据帧上的接收视场和当前数据帧之前的某一个数据帧上的接收视场的累加接收视场,其中,该累加接收视场和采样点集合有关,具体可见步骤S202的如下几种可选方式。
此外,雷达确定累加接收视场的原则是:累加接收视场要包括第一像素以及第一像素的邻居像素,并且在确定该累加接收视场时,需要考虑雷达与目标物体的相对运动速度,或者,需要考虑雷达与目标物体的相对运动速度和目标物体本身大小。
基于此,下面将介绍步骤S202的两种可选方式:
可选方式一:图3为本申请一实施例提供的确定累加接收视场的方法流程图,如图3所示,该方法包括如下步骤:
步骤S301:针对每个预估距离,雷达根据雷达与目标物体的最大相对运动速度、一个数据帧周期、预估距离、雷达的最大水平视场角、总水平视场角、最大垂直视场角、总垂直视场角,确定目标物体的最大水平移动角度值和最大垂直移动角度值。
步骤S302:针对每个预估距离,雷达根据当前数据帧与任一数据帧之间的帧数差i、第一像素的水平角度值、垂直角度值、目标物体的最大水平移动角度值、目标物体的最大垂直移动角度值确定雷达在任一数据帧上的累加接收视场,1≦i≦M,i为整数。
针对步骤S301进行说明:
以“线发线收”为例,下面对确定累加接收视场的方法进行说明:图4为本申请一实施例提供的相对运动速度、距离以及最大水平移动角度值对应关系示意图。如图4所示,当雷达与目标物体的最大相对运动速度Vmax=120km/h,预估距离为50m时,一个数据帧周期Tf=0.0333秒,雷达的最大水平视场角为60度,总水平视场角为120度,即-60度~60度,目标物体沿着垂直于发射角0度的方向运动,目标物体在一个数据帧周期内的最大水平移动角度值为8;当雷达与目标物体的最大相对运动速度为120km/h,预估距离为150m时,一个数据帧周期Tf=0.0333秒,雷达的最大水平视场角为60度,总水平视场角为120度,目标物体沿着垂直于发射角0度的方向运动,目标物体在一个数据帧周期内的最大水平移动角度值为3。因此,在雷达与目标物体的一定最大相对运动速度下,预估距离越远,该最大相对运动速度对确定累加接收视场的影响就会越小。相反,最大相对运动速度越大,对确定累加接收视场的影响则越大。因此,确定多帧累加接收视场时,信号处理单元需要充分考虑最大相对运动速度因素。
假设雷达与目标物体的最大相对运动速度为Vmax、一个数据帧周期为Tf、预估距离为d、雷达的最大水平视场角HFOV、最大垂直视场角VFOV、总水平角度数为NumHA、总垂直角度数为NumVA,目标物体的最大水平移动角度值为HA(d)、目标物体的最大垂直移动角度值为VA(d)。其中,所谓目标物体的最大水平移动角度值指的是目标物体在水平方向上的最大移动角度值,所谓目标物体的最大垂直移动角度值指的是目标物体在垂直方向上的最大移动角度值。
其中,最大水平移动角度值为:
Figure PCTCN2019088436-appb-000002
最大垂直移动角度值为:
Figure PCTCN2019088436-appb-000003
考虑到在垂直方向,目标在垂直方向上移动角度较小,可根据经验设定最大移动垂直角度值。
针对步骤S302进行说明:
一种可实现方式:雷达可以通过如下公式(1)确定累加接收视场:
A=(h-HA(d)*i,h+HA(d)*i,v-VA(d)*,v+VA(d)*i)  (1)
其中,A表示雷达在所述任一数据帧上的累加接收视场,h-HA(d)*i表示A的最小水平角度值,h+HA(d)*i表示A的最大水平角度值,v-VA(d)*i表示A的最小垂直角度值,v+VA(d)*i表示A的最大垂直角度值,d表示实际距离,HA(d)和VA(d)分别表示目标物体的最大水平移动角度值、目标物体的最大垂直移动角度值,h表示所述第一像素的水平角度值,v表示所述第一像素的垂直角度值。
以“线发线收”为例,下面对确定累加接收视场的方法进行说明:假设雷达与目标物体的最大相对运动速度Vmax=120km/h,一个数据帧周期Tf=0.0333秒,当前数据帧与之前的数据帧之间的帧数差为i,假设预估距离d属于距离区间50-70m,假设目标物体的最大水平移动角度值为8,因此累加接收视场的最小水平角度值为h-8*i,最大水平角度值为h+8*i;在垂直方向上,由于一个数据帧周期较短,雷达与目标物体的相对运动对确定累加接收视场影响较小,因此可以假设所有不同预估距离情况下,累加接收视场的最小垂直角度值为v-2*i,最大垂直角度值为v+2*i。基于此,最终确定的累加接收视场为(h-8*i,h+8*i,v-2*,v+2*i)。
另一种可实现方式:在步骤S302之前,雷达还可以获取目标物体的大小,其中目标物体的大小可以用目标物体的水平和垂直角度数来衡量。
相应的,雷达可以根据当前数据帧与任一数据帧之间的帧数差i、第一像素的水平角度值、垂直角度值、目标物体的最大水平移动角度值、目标物体的最大垂直移动角度值和目标物体的大小确定雷达在任一数据帧上的累加接收视场。例如:信号处理单元通过如下公式(2)确定累加接收视场:
Figure PCTCN2019088436-appb-000004
其中,A表示雷达在所述任一数据帧上的累加接收视场,h-HA(d)*i表示A的最小水平角度值,h+HA(d)*i表示A的最大水平角度值,v-VA(d)*i表示A的最小垂直角度值,v+VA(d)*i表示A的最大垂直角度值,d表示预估距离,HA(d)和VA(d)分别表示目标物体的最大水平移动角度值、目标物体的最大垂直移动角度值,h表示第一像素的水平角度值,v表示第一像素的垂直角度值,TH和TV分别表示目标物体的水平和垂直角度数。其中int()为取整函数,该取整函数可以是向上取整函数或者是向下取整函数。
以“线发线收”为例,下面对确定累加接收视场的方法进行说明:假设雷达与目标物体的最大相对运动速度Vmax=120km/h,一个数据帧周期Tf=0.0333秒,当前数据帧与之前的数据帧之间的帧数差为i,假设预估距离d属于距离区间50-70m,假设目标物体的最大 水平移动角度值为8;在垂直方向上,由于一个数据帧周期较短,雷达与目标物体的相对运动对确定累加接收视场影响较小,因此假设目标物体的最大垂直移动角度值为2。考虑到目标物体自身大小对确定累加接收视场的影响,假设目标物体的水平角度值TH=7,垂直角度值TV=5。基于此,信号处理单元确定的累加接收视场的最小水平角度值为h-3-8*i,最小水平角度值为h+3+8*i,最小水平角度值为v-2-2*i,最大水平角度值为v+2+2*i,基于此,最终确定的累加接收视场为(h-3-8*i,h+3+8*i,v-2-2*,v+2+2*i)。
可选方式二:针对每个所述预估距离,若该预估距离属于目标距离区间,且目标距离区间对应有累加接收视场,则雷达将目标距离区间对应的累加接收视场作为雷达在M个数据帧中的任一数据帧上的累加接收视场。
其中,一个采样点集合包括一个拐点,雷达可以根据该拐点的位置信息确定拐点时间信息,并计算该时间信息与光速的乘积得到乘积结果,令该乘积结果除以2以获得雷达与目标物体的预估距离。
雷达可以针对不同的距离区间,设定不同的累加接收视场,具体可参见表1。针对任一个距离区间,雷达选择在该距离区间中最大的距离的情况下,目标物体的最大水平移动角度值、目标物体的最大垂直移动角度值,其中,第j个距离区间对应的目标物体的最大水平移动角度值可以记为HAjmax,目标物体的最大垂直移动角度值可以记为VAjmax。
表1
Figure PCTCN2019088436-appb-000005
需要说明的是,在表1中,雷达为距离区间0-d1设置了对应的累加接收视场,实际上,也可以不为0-d1设置累加接收视场;或者,雷达选择在该距离区间中任一距离(即不限制是最大距离)的情况下,目标物体的最大水平移动角度值、目标物体的最大垂直移动角度值,基于此,来设置累加接收视场。又或者,对于距离区间0-d1对应的累加接收视场,雷达可以复用其他距离区间对应的累加接收视场。当然,对于其他距离区间对应的累加接收视场的确定方法,也可以采用距离区间0-d1对应的累加接收视场的确定方法,本申请对此不再赘述。
表2给出了以线发线收扫描方式为例,雷达确定的各个不同的实际距离区间对应的累加接收视场:
表2
Figure PCTCN2019088436-appb-000006
其中,当上述预估距离小于50m时,通常回波信号信噪比较高,因此雷达也可以不使用表2来确定累加接收视场,即无需采用帧间像素信号复用方法。或者,雷达可以选择其他距离区间对应的累加接收视场作为50m对应的累加接收视场。或者,选择0-50m中间的任一距离处,例如30m对应的累加接收视场。
进一步地,上述目标距离区间可以是预先设置的,例如该目标距离区间是表1中的一个距离区间。
针对步骤S203进行说明:
可选方式一:图5为本申请一实施例提供的获取第一像素对应的叠加处理后的回波信号的方法流程图,如图5所示,该方法包括如下步骤:
步骤S501:针对每个第一采样点集合,雷达按照Q个邻居像素的预设顺序,根据第一采样点集合上的第一拐点的信息和第一个邻居像素对应的回波信号上的拐点的位置信息,确定第一个邻居像素对应的回波信号上的第二拐点,第一拐点与第二拐点的距离小于采样点门限。
步骤S502:雷达叠加第一采样点集合与第二拐点所属的采样点集合,得到叠加后的采样点集合。
步骤S503:雷达确定第二个邻居像素对应的回波信号上待叠加的采样点集合,并对叠加后的采样点集合和第二个邻居像素对应的回波信号上待叠加的采样点集合进行叠加,直到叠加完Q个邻居像素对应的回波信号上待叠加的采样点集合,待N个采样点集合中的每个第一采样点集合都完成叠加,以得到第一像素对应的叠加处理后的回波信号。
具体地,所谓第一像素的邻居像素指的是与所述第一像素相邻的像素,例如第一像素的邻居像素包括以下至少一项:在累加接收视场中位于第一像素上方的邻居像素、位于第一像素下方的邻居像素、位于第一像素左侧的邻居像素、位于第一像素右侧的邻居像素、位于第一像素左上方的邻居像素、位于第一像素左下方的邻居像素、位于第一像素右上方的邻居像素、位于第一像素右下方的邻居像素。
可选地,所述Q个邻居像素的预设顺序是:位于第一像素上方的邻居像素、位于第一像素上方的邻居像素、位于第一像素右上方的邻居像素、位于第一像素右侧的邻居像素、位于第一像素下方的邻居像素、位于第一像素左下方的邻居像素、位于第一像素左侧的邻居像素。或者,所述Q个邻居像素的预设顺序是:位于第一像素左侧的邻居像素、位于第 一像素左下方的邻居像素、位于第一像素下方的邻居像素、位于第一像素右侧的邻居像素、位于第一像素右上方的邻居像素、位于第一像素上方的邻居像素、位于第一像素上方的邻居像素。或者,所述Q个邻居像素的预设顺序是:按照Q个邻居像素对应的回波信号由高至低的顺序,或者,所述Q个邻居像素的预设顺序是:按照Q个邻居像素对应的回波信号由低至高的顺序,总之,本申请对Q个邻居像素的预设顺序不做限制。
进一步地,针对每个第一采样点集合,雷达都进行如下操作:在雷达确定了Q个邻居像素的预设顺序之后,首先雷达获取第一个邻居像素对应的回波信号上的第一个拐点的位置信息,并确定该第一个拐点与上述第一拐点(第一像素对应的回波信号上的当前采样点集合中的拐点)的距离,如果这两个拐点的距离小于采样点门限,该第一个拐点也就是上述的第二拐点,并叠加该第一采样点集合与第二拐点所属的采样点集合,得到叠加后的采样点集合。针对第一像素对应的回波信号上的当前采样点集合,通常一个邻居像素的回波信号上存在一个待叠加采样点集合。因此,当雷达针对第一个邻居像素完成了采样点集合的叠加之后,继续确定第二个邻居像素对应的回波信号上待叠加的采样点集合,并对叠加后的采样点集合和第二个邻居像素对应的回波信号上待叠加的采样点集合进行叠加,直到叠加完第Q个邻居像素对应的回波信号上待叠加的采样点集合。待N个采样点集合中的每个第一采样点集合都完成叠加,以得到第一像素对应的叠加处理后的回波信号。
假设第一像素为(x,y,z),该第一像素的邻居像素为(x,y+1,z-1),针对第一像素的N个采样点集合中的当前第一采样点集合,在邻居像素(x,y+1,z-1)对应的回波信号上逐一查找采样点集合,并且假设所述当前第一采样点集合的拐点的位置信息为ip x,y,z(i),邻居像素(x,y+1,z-1)对应的回波信号上第j个采样点集合的拐点的位置信息为ip x,y+1,z-1(j),采样点门限为inter_thr,则判断下面公式(3)是否成立,如果成立,则雷达对当前第一采样点集合与所述第j个采样点集合进行叠加,否则,则雷达不对当前第一采样点集合与所述第j个采样点集合进行叠加。
|ip x,y+1,z-1(j)-ip x,y,z(i)|≤inter_thr  (3)
可选方式二:图6为本申请另一实施例提供的获取第一像素对应的叠加处理后的回波信号的方法流程图,如图6所示,该方法包括如下步骤:
步骤S601:针对每个第一采样点集合,雷达按照Q个邻居像素的预设顺序,根据第一采样点集合上的第一拐点的信息和第一个邻居像素对应的回波信号上的拐点的位置信息,确定第一个邻居像素对应的回波信号上的第二拐点,第一拐点与第二拐点的距离小于采样点门限。
步骤S602:雷达确定第一采样点集合与第二拐点所属的采样点集合的相关系数。
步骤S603:若根据相关系数确定第一采样点集合与第二拐点所属的采样点集合可叠加,则雷达叠加第一采样点集合与第二拐点所属的采样点集合,得到叠加后的采样点集合。
步骤S604:雷达确定第二个邻居像素对应的回波信号上待叠加的采样点集合,并对叠加后的采样点集合和第二个邻居像素对应的回波信号上待叠加的采样点集合进行叠加,直到叠加完Q个邻居像素对应的回波信号上待叠加的采样点集合,待N个采样点集合中的每个第一采样点集合都完成叠加,以得到第一像素对应的叠加处理后的回波信号。
其中,关于第一像素的邻居像素的定义,以及Q个邻居像素的预设顺序的定义可以参照上述可选方式一的内容,对此不再赘述。
进一步地,针对每个第一采样点集合,雷达都做如下操作:在雷达确定了Q个邻居像素的预设顺序之后,首先雷达获取第一个邻居像素对应的回波信号上的第一个拐点的位置信息,并确定该第一个拐点与上述第一拐点(第一像素对应的回波信号上的当前第一采样点集合中的拐点)的距离,如果这两个拐点的距离小于采样点门限,该第一个拐点也就是上述的第二拐点,雷达确定该采样点集合w x,y,z,i(n)与第二拐点所属的采样点集合w x,y+1,z-1,j(n)的相关系数r(w x,y,z,i(n),w x,y+1,z-1,j(n))。
Figure PCTCN2019088436-appb-000007
其中,Cov(w x,y,z,i(n),w x,y+1,z-1,j(n))为w x,y,z,i(n)与w x,y+1,z-1,j(n)的协方差,Var(w x,y,z,i(n))是w x,y,z,i(n)的方差,Var(w x,y+1,z-1,j(n))是w x,y+1,z-1,j(n)的方差,N Truncate为采样点集合所包括的采样点的数量,即在示例中,N Truncate=2*M+1,
Figure PCTCN2019088436-appb-000008
表示w x,y,z,i(n)的平均值,
Figure PCTCN2019088436-appb-000009
表示w x,y+1,z-1,j(n)的平均值。
若相关系数大于预设阈值,则确定该第一采样点集合与第二拐点所属的采样点集合可叠加,并叠加该第一采样点集合与第二拐点所属的采样点集合,得到叠加后的采样点集合。该预设阈值可以是预设固定值,也可以根据该第一采样点集合或者回波信号的信噪比大小确定,也可以是根据雷达与目标物体的实际距离确定。进一步地,雷达确定第二个邻居像素对应的回波信号上待叠加的采样点集合(雷达确定该待叠加的采样点集合的方法与确定针对第一个邻居像素,确定待叠加的采样点集合的方法相同,即针对第二个邻居像素,先确定第二拐点,然后确定该第一采样点集合与第二个邻居像素所涉及的第二拐点所属的采样点集合的相关系数,若相关系数大于预设阈值,则确定该第一采样点集合与该第二拐点所属的采样点集合可叠加,并叠加该第一采样点集合与第二拐点所属的采样点集合,得到叠加后的采样点集合),并对叠加后的采样点集合和第二个邻居像素对应的回波信号上待叠加的采样点集合进行叠加,直到叠加完第Q个邻居像素对应的回波信号上待叠加的采样点集合,待N个采样点集合中的每个第一采样点集合都完成叠加,以得到第一像素对应的叠加处理后的回波信号。
或者,在雷达确定了Q个邻居像素的预设顺序之后,首先雷达获取第一个邻居像素对应的回波信号上的第一个拐点的位置信息,并确定该第一个拐点与上述第一拐点(第一像素对应的回波信号上的当前第一采样点集合中的拐点)的距离,如果这两个拐点的距离小于采样点门限,该第一个拐点也就是上述的第二拐点,雷达确定该第一采样点集合与第二拐点所属的采样点集合的相关系数,若相关系数大于预设阈值,则获取第一像素对应的回 波信号的属性值以及第一个邻居像素对应的回波信号的属性值,属性值包括以下任一项:信号幅度、峰均比或信噪比。若根据第一像素对应的回波信号的属性值以及第一个邻居像素对应的回波信号的属性值满足预设条件,则确定该第一采样点集合与第二拐点所属的采样点集合可叠加,并叠加该第一采样点集合与第二拐点所属的采样点集合,得到叠加后的采样点集合。该预设阈值可以是预设固定值,也可以根据信噪比大小确定,也可以是根据距离、反射率等参数确定。进一步地,雷达确定第二个邻居像素对应的回波信号上待叠加的采样点集合,并对叠加后的采样点集合和第二个邻居像素对应的回波信号上待叠加的采样点集合进行叠加,直到叠加完第Q个邻居像素对应的回波信号上待叠加的采样点集合,待N个采样点集合中的每个第一采样点集合都完成叠加,以得到第一像素对应的叠加处理后的回波信号。
其中,上述预设条件可以如下:
针对第一个邻居像素对应的回波信号的属性值,上述预设条件为第一像素对应的回波信号的属性值以及第一个邻居像素对应的回波信号的属性值的加权平均值大于第一像素对应的回波信号的属性值。其中,一个像素的属性值可以包括以下至少一项:该像素对应的回波信号的幅度、信噪比、峰值比。以一个像素的属性值为该相对应的回波信号的幅度为例,假设第一像素对应的回波信号的幅度为A0,第一个邻居像素对应的回波信号的幅度为A1,则上述预设条件可以用如下公式(4)表示:
Figure PCTCN2019088436-appb-000010
针对第二个邻居像素对应的回波信号的属性值,上述预设条件为第一像素对应的回波信号的属性值、第一个邻居像素对应的回拨信号的属性值、第二个邻居像素对应的回波信号的属性值的加权平均值大于第一像素对应的回波信号的属性值。以一个像素的属性值为该相对应的回波信号的幅度为例,假设第一像素对应的回波信号的幅度为A0,第一个邻居像素对应的回波信号的幅度为A1,第二个邻居像素对应的回波信号的幅度为A1,则该预设条件可以用如下公式(5)表示:
Figure PCTCN2019088436-appb-000011
以此类推,针对第i个邻居像素对应的回波信号的属性值,其对应的预设条件可以用如下公式(6)表示:
Figure PCTCN2019088436-appb-000012
又或者,上述预设条件可以如下:
针对任一个邻居像素对应的回波信号的属性值,预设条件为该邻居像素对应的回波信号的属性值大于第一像素对应的回波信号的属性值的预设倍数。该预设倍数可以是
Figure PCTCN2019088436-appb-000013
至1之间的任意实数。
需要说明的是,上述步骤S203包括的两种可选方式所涉及的采样点门限可以通过如下方法:
图7为本申请一实施例提供的确定采样点门限的方法流程图,其中该方法的执行主体是雷达中的信号处理单元,如图7所示,该雷达包括ADC,基于此,如图7所示,该方法包括如下步骤:
步骤S701:雷达根据雷达与目标物体的最大相对运动速度、一个数据帧周期,确定目 标物体在一个数据帧周期内的最大移动距离。
步骤S702:雷达根据ADC的采样率,确定在最大移动距离上的采样点个数。
步骤S703:雷达根据当前数据帧与第一个邻居像素所在的数据帧的帧数差以及采样点个数,确定采样点门限。
具体地,假设雷达与目标物体的最大相对运动速度为Vmax,一个数据帧周期为Tf,确定目标物体在一个数据帧周期内的最大移动距离为Vmax*Tf,假设雷达根据ADC的采样率,确定在最大移动距离上的的采样点个数为sa。进一步地,假设雷达确定当前数据帧与第一个邻居像素所在的数据帧的帧数差为m,允许误差为deta,则最终确定的采样点门限为deta+sa*m。
例如,假设雷达与目标物体的最大相对运动速度为Vmax=120km/h,一个数据帧周期Tf=0.0333s,ADC采样率为1Gsps,则一个数据帧周期内,目标物体在累积接收视场内最大移动距离为1.111m,如果按照雷达0度发射角方向相向或背向运动,则在最大移动距离上的的采样点个数sa=8个,假设雷达确定当前数据帧与第一个邻居像素所在的数据帧的帧数差为m,设允许误差deta=4个采样点,所以最终确定的采样点门限为4+8*m个采样点。
需要说明的是,针对第一像素对应的回波信号中的每个第一采样点集合,可以确定对其叠加的次数,对Q个邻居像素对应的采样点集合叠加完之后,可以对叠加结果除以该次数。
针对步骤S204进行说明:雷达可以采用但不限于单回波、多回波距离计算模式;包含但不限于峰值检测方法、前沿鉴别法、质心法、高斯分解等距离检测方法。
综上,本申请提供一种回波信号处理方法,其中,雷达针对N个采样点集合中的每个第一采样点集合,可以确定M个累加接收视场,雷达在M个累加接收视场中的Q个邻居像素对应的回波信号上确定该第一采样点集合待叠加的采样点集合,并对该第一采样点集合和其对应的待叠加的采样点集合进行叠加,待N个采样点集合中的每个第一采样点集合都完成叠加,以得到第一像素对应的叠加处理后的回波信号,根据叠加处理后的回波信号计算雷达与所述目标物体之间的实际距离。本申请考虑到物体空间相关性,即雷达中的探测器会在同一角度、相邻角度以及相邻多个数据帧的像素接收到脉冲位置接近相同、幅度接近相等的回波信号。因此,在回波信号的信噪比较低的情况下,通过实现帧间信号复用,提升回波信号信噪比,从而提高测距精度。
进一步地,本申请还考虑了目标物体本身运动带来的影响,适用于目标物体静止与运动等场景,适用于“线发线收”“面发面收”、“点发点收”等激光雷达中。
图8为本申请一实施例提供的一种回波信号处理装置的结构示意图,其中该回波信号处理装置可以是雷达的部分或者全部,例如:该装置可以是雷达中的信号处理单元,即处理器,如图8所示,该装置包括:
第一确定模块801,用于在当前数据帧上确定雷达的接收视场内的第一像素和第一像素对应的回波信号上的N个采样点集合,N为大于或等于1的整数,第一像素为接收视场内的任一像素。
估算模块802,用于分别根据N个采样点集合中的每个第一采样点集合估算雷达与目标物体的预估距离。
第二确定模块803,用于分别根据每个预估距离确定与M个数据帧一一对应的M个 累加接收视场,M个累加接收视场中的每个累加接收视场包括第一像素的至少一个邻居像素,M个数据帧为雷达在接收当前数据帧之前接收到的M个数据帧,M为大于或等于1的整数,第一采样点集合为N个采样点集合中的任一采样点集合。
第三确定模块804,用于分别根据每个第一采样点集合在M个累加接收视场中的Q个邻居像素对应的回波信号上确定第二采样点集合。
叠加模块805,用于分别对每个第一采样点集合和对应的第二采样点集合进行叠加,以得到第一像素对应的叠加处理后的回波信号,Q为大于或等于1的整数。
计算模块806,用于根据第一像素对应的叠加处理后的回波信号计算雷达与目标物体之间的实际距离。
可选地,估算模块802具体用于:分别根据N个采样点集合中的每个第一采样点集合中的拐点的位置信息确定雷达与目标物体的预估距离。
可选地,第二确定模块803具体用于:针对每个预估距离,根据雷达与目标物体的最大相对运动速度、一个数据帧周期、预估距离、雷达的最大水平视场角、总水平视场角、最大垂直视场角、总垂直视场角,确定目标物体的最大水平移动角度值和最大垂直移动角度值。根据当前数据帧与任一数据帧之间的帧数差i、第一像素的水平角度值、垂直角度值、目标物体的最大水平移动角度值、目标物体的最大垂直移动角度值确定雷达在任一数据帧上的累加接收视场,1≦i≦M,i为整数。
可选地,第二确定模块803具体用于:通过如下公式确定雷达在任一数据帧上的累加接收视场:
A=(h-HA(d)*i,h+HA(d)*i,v-VA(d)*,v+VA(d)*i)
其中,A表示雷达在任一数据帧上的累加接收视场,h-HA(d)*i表示A的最小水平角度值,h+HA(d)*i表示A的最大水平角度值,v-VA(d)*i表示A的最小垂直角度值,v+VA(d)*i表示A的最大垂直角度值,d表示预估距离,HA(d)和VA(d)分别表示目标物体的最大水平移动角度值、目标物体的最大垂直移动角度值,h表示第一像素的水平角度值,v表示第一像素的垂直角度值。
可选地,装置还包括:获取模块807,用于获取目标物体的大小。
相应的,第二确定模块803具体用于:根据当前数据帧与任一数据帧之间的帧数差i、第一像素的水平角度值、垂直角度值、目标物体的最大水平移动角度值、目标物体的最大垂直移动角度值和目标物体的大小确定雷达在任一数据帧上的累加接收视场。
可选地,第二确定模块803具体用于:通过如下公式确定雷达在任一数据帧上的累加接收视场,包括:
Figure PCTCN2019088436-appb-000014
其中,A表示雷达在任一数据帧上的累加接收视场,h-HA(d)*i表示A的最小水平角度值,h+HA(d)*i表示A的最大水平角度值,v-VA(d)*i表示A的最小垂直角度值,v+VA(d)*i表示A的最大垂直角度值,d表示预估距离,HA(d)和VA(d)分别表示目标物体的最大水平移动角度值、目标物体的最大垂直移动角度值,h表示第一像素的水平角度值,v表示第一像素的垂直角度值,TH和TV分别表示目标物体的水平和垂直角度数。
可选地,第二确定模块803具体用于:针对每个预估距离,若预估距离属于目标距离区间,且目标距离区间对应有累加接收视场,则将目标距离区间对应的累加接收视场作为雷达在任一数据帧上的累加接收视场。
可选地,装置还包括:第四确定模块808,用于确定第一像素对应的回波信号的信噪比或者至少一个第一采样点的信噪比。相应的,第二确定模块803具体用于:若第一像素对应的回波信号的信噪比或者至少一个第一采样点集合的信噪比小于预设信噪比,则分别根据N个采样点集合中的每个第一采样点集合估算雷达与目标物体的预估距离,并分别根据每个预估距离确定与M个数据帧一一对应的M个累加接收视场。
可选地,叠加模块805具体用于:针对每个第一采样点集合,按照Q个邻居像素的预设顺序,根据第一采样点集合上的第一拐点的信息和第一个邻居像素对应的回波信号上的拐点的位置信息,确定第一个邻居像素对应的回波信号上的第二拐点,第一拐点与第二拐点的距离小于采样点门限。叠加第一采样点集合与第二拐点所属的采样点集合,得到叠加后的采样点集合。确定第二个邻居像素对应的回波信号上待叠加的采样点集合,并对叠加后的采样点集合和第二个邻居像素对应的回波信号上待叠加的采样点集合进行叠加,直到叠加完Q个邻居像素对应的回波信号上待叠加的采样点集合,待N个采样点集合中的每个第一采样点集合都完成叠加,以得到第一像素对应的叠加处理后的回波信号。
可选地,叠加模块805具体用于:针对每个第一采样点集合,按照Q个邻居像素的预设顺序,根据第一采样点集合上的第一拐点的信息和第一个邻居像素对应的回波信号上的拐点的位置信息,确定第一个邻居像素对应的回波信号上的第二拐点,第一拐点与第二拐点的距离小于采样点门限。确定第一采样点集合与第二拐点所属的采样点集合的相关系数。若根据相关系数确定第一采样点集合与第二拐点所属的采样点集合可叠加,则叠加第一采样点集合与第二拐点所属的采样点集合,得到叠加后的采样点集合。确定第二个邻居像素对应的回波信号上待叠加的采样点集合,并对叠加后的采样点集合和第二个邻居像素对应的回波信号上待叠加的采样点集合进行叠加,直到叠加完Q个邻居像素对应的回波信号上待叠加的采样点集合,待N个采样点集合中的每个第一采样点集合都完成叠加,以得到第一像素对应的叠加处理后的回波信号。
可选地,叠加模块805具体用于:若相关系数大于预设阈值,则叠加第一采样点集合与第二拐点所属的采样点集合,得到叠加后的采样点集合。
可选地,叠加模块805具体用于:若相关系数大于预设阈值,则获取第一像素对应的回波信号的属性值以及第一个邻居像素对应的回波信号的属性值,属性值包括以下任一项:信号幅度、峰均比或信噪比。若第一像素对应的回波信号的属性值以及第一个邻居像素对应的回波信号的属性值满足预设条件,则叠加第一采样点集合与第二拐点所属的采样点集合,得到叠加后的采样点集合。
可选地,预设条件为第一像素对应的回波信号的属性值以及第一个邻居像素对应的回波信号的属性值的加权平均值大于第一像素对应的回波信号的属性值。或者,预设条件为第一个邻居像素对应的回波信号的属性值大于第一像素对应的回波信号的属性值的预设倍数。
可选地,雷达还包括:模数转换器ADC,相应的,装置还包括:第五确定模块809,用于根据雷达与目标物体的最大相对运动速度、一个数据帧周期,确定目标物体在一个数 据帧周期内的最大移动距离。根据ADC的采样率,确定在最大移动距离上的采样点个数。根据当前数据帧与第一个邻居像素所在的数据帧的帧数差以及采样点个数,确定采样点门限。
可选地,第五确定模块809具体用于计算当前数据帧与第一个邻居像素所在的数据帧的帧数差以及采样点个数的乘积,得到乘积结果。计算乘积结果与允许误差之和,得到采样点门限。
可选地,装置还包括分配模块810,用于向第一像素的信息分配存储空间,存储空间可复用。其中,第一像素的信息包括以下至少一项:N个采样点集合,N个采样点集合中至少一个拐点的位置信息、第一像素对应的回波信号的信噪比。
本实施例提供的回波信号处理装置可以用于执行上述的回波信号处理方法,其内容和效果可参考实施例部分,对此不再赘述。
图9为本申请一实施例提供的雷达的结构示意图,如图9所示,该雷达包括:存储器901、收发器902和处理器903,存储器901中存储有程序指令,所述收发器902用于接收由于目标物体反射所产生的回波信号;处理器903用于通过运行程序指令,根据所述收发器接收的所述回波信号,执行上述的回波信号处理方法。
需要说明的是,这里的处理器903还可以被称为信号处理单元,这里的收发器902相当于图1中发端光学元件15和收端光学元件16。
另外,本申请提供的雷达还可以包括:激光驱动电路、激光器、扫描器件、探测器和模拟前端,该模拟前端可以包括:TIA以及ADC,这些器件的功能可参考图1对应内容,对此不再赘述。
本实施例提供的雷达可以用于执行上述的回波信号处理方法,其内容和效果可参考实施例部分,对此不再赘述。
本申请还提供一种存储介质,包括:可读存储介质和计算机指令,计算机指令存储在可读存储介质中;计算机指令用于实现上述回波信号处理方法。
基于相同的技术构思,本申请实施例还提供一种计算机程序产品,该计算机程序产品包括计算机指令,计算机指令用于实现上述回波信号处理方法。
基于相同的技术构思,本申请实施例还提供一种处理器,该处理器用以实现上述方法实施例。上述处理器可以为芯片。可选地,本申请实施例中所涉及到的元件均可封装在芯片上,并可由芯片上的处理电路操作执行。可选地,本申请实施例中涉及到的元件所执行的功能,可由包含可执行本申请实施例中的芯片或程序的装置执行。
结合本申请实施例公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施 方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (30)

  1. 一种回波信号处理方法,其特征在于,包括:
    在当前数据帧上确定雷达的接收视场内的第一像素和所述第一像素对应的回波信号上的N个采样点集合,N为大于或等于1的整数,所述第一像素为所述接收视场内的任一像素;
    分别根据所述N个采样点集合中的每个第一采样点集合估算所述雷达与目标物体的预估距离,并分别根据每个所述预估距离确定与M个数据帧一一对应的M个累加接收视场,所述M个累加接收视场中的每个累加接收视场包括所述第一像素的至少一个邻居像素,所述M个数据帧为所述雷达在接收所述当前数据帧之前接收到的M个数据帧,M为大于或等于1的整数,所述第一采样点集合为所述N个采样点集合中的任一采样点集合;
    分别根据所述每个第一采样点集合在所述M个累加接收视场中的Q个邻居像素对应的回波信号上确定第二采样点集合,并分别对所述每个第一采样点集合和对应的所述第二采样点集合进行叠加,以得到所述第一像素对应的叠加处理后的回波信号,Q为大于或等于1的整数;
    根据所述第一像素对应的叠加处理后的回波信号计算所述雷达与所述目标物体之间的实际距离。
  2. 根据权利要求1所述的方法,其特征在于,所述分别根据N个采样点集合中的每个第一采样点集合估算所述雷达与目标物体的预估距离,包括:
    分别根据所述N个采样点集合中的每个第一采样点集合中的拐点的位置信息确定所述雷达与目标物体的预估距离。
  3. 根据权利要求1或2所述的方法,其特征在于,所述分别根据每个所述预估距离确定与M个数据帧一一对应的M个累加接收视场,包括:
    针对每个所述预估距离,根据所述雷达与所述目标物体的最大相对运动速度、一个数据帧周期、所述预估距离、所述雷达的最大水平视场角、总水平视场角、最大垂直视场角、总垂直视场角,确定所述目标物体的最大水平移动角度值和最大垂直移动角度值;根据所述当前数据帧与所述任一数据帧之间的帧数差i、所述第一像素的水平角度值、垂直角度值、所述目标物体的最大水平移动角度值、所述目标物体的最大垂直移动角度值确定所述雷达在所述任一数据帧上的累加接收视场,1≦i≦M,i为整数。
  4. 根据权利要求3所述的方法,其特征在于,通过如下公式确定所述雷达在所述任一数据帧上的累加接收视场:
    A=(h-HA(d)*i,h+HA(d)*i,v-VA(d)*,v+VA(d)*i)
    其中,A表示雷达在所述任一数据帧上的累加接收视场,h-HA(d)*i表示A的最小水平角度值,h+HA(d)*i表示A的最大水平角度值,v-VA(d)*i表示A的最小垂直角度值,v+VA(d)*i表示A的最大垂直角度值,d表示所述预估距离,HA(d)和VA(d)分别表示所述目标物体的最大水平移动角度值、所述目标物体的最大垂直移动角度值,h表示所述第一像素的水平角度值,v表示所述第一像素的垂直角度值。
  5. 根据权利要求3所述的方法,其特征在于,所述根据所述当前数据帧与所述任一数据帧之间的帧数差i、所述第一像素的水平角度值、垂直角度值、所述目标物体的最大 水平移动角度值、所述目标物体的最大垂直移动角度值确定所述雷达在所述任一数据帧上的累加接收视场之前,还包括:
    获取所述目标物体的大小;
    相应的,所述根据所述当前数据帧与所述任一数据帧之间的帧数差i、所述第一像素的水平角度值、垂直角度值、所述目标物体的最大水平移动角度值、所述目标物体的最大垂直移动角度值确定所述雷达在所述任一数据帧上的累加接收视场,包括:
    根据所述当前数据帧与所述任一数据帧之间的帧数差i、所述第一像素的水平角度值、垂直角度值、所述目标物体的最大水平移动角度值、所述目标物体的最大垂直移动角度值和所述目标物体的大小确定所述雷达在所述任一数据帧上的累加接收视场。
  6. 根据权利要求5所述的方法,其特征在于,通过如下公式确定所述雷达在所述任一数据帧上的累加接收视场,包括:
    Figure PCTCN2019088436-appb-100001
    其中,A表示雷达在所述任一数据帧上的累加接收视场,h-HA(d)*i表示A的最小水平角度值,h+HA(d)*i表示A的最大水平角度值,v-VA(d)*i表示A的最小垂直角度值,v+VA(d)*i表示A的最大垂直角度值,d表示所述预估距离,HA(d)和VA(d)分别表示所述目标物体的最大水平移动角度值、所述目标物体的最大垂直移动角度值,h表示所述第一像素的水平角度值,v表示所述第一像素的垂直角度值,TH和TV分别表示所述目标物体的水平和垂直角度数。
  7. 根据权利要求1所述的方法,其特征在于,所述分别根据每个所述预估距离确定与M个数据帧一一对应的M个累加接收视场,包括:
    针对每个所述预估距离,若所述预估距离属于目标距离区间,且所述目标距离区间对应有累加接收视场,则将所述目标距离区间对应的累加接收视场作为所述雷达在所述任一数据帧上的累加接收视场。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述分别根据所述N个采样点集合中的每个第一采样点集合估算所述雷达与目标物体的预估距离,并分别根据每个所述预估距离确定与M个数据帧一一对应的M个累加接收视场之前,还包括:
    确定所述第一像素对应的回波信号的信噪比或者至少一个所述第一采样点的信噪比;
    相应的,所述分别根据所述N个采样点集合中的每个第一采样点集合估算所述雷达与目标物体的预估距离,并分别根据每个所述预估距离确定与M个数据帧一一对应的M个累加接收视场,包括:
    若所述第一像素对应的回波信号的信噪比或者至少一个所述第一采样点集合的信噪比小于预设信噪比,则分别根据所述N个采样点集合中的每个第一采样点集合估算所述雷达与目标物体的预估距离,并分别根据每个所述预估距离确定与M个数据帧一一对应的M个累加接收视场。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述分别根据所述每个第一采样点集合在所述M个累加接收视场中的Q个邻居像素对应的回波信号上确定第二采样点集合,并分别对所述每个第一采样点集合和对应的所述第二采样点集合进行叠加,以得到所述第一像素对应的叠加处理后的回波信号,包括:
    针对所述每个第一采样点集合,按照所述Q个邻居像素的预设顺序,根据第一采样点集合上的第一拐点的信息和第一个邻居像素对应的回波信号上的拐点的位置信息,确定第一个邻居像素对应的回波信号上的第二拐点,所述第一拐点与所述第二拐点的距离小于采样点门限;
    叠加第一采样点集合与所述第二拐点所属的采样点集合,得到叠加后的采样点集合;
    确定第二个邻居像素对应的回波信号上待叠加的采样点集合,并对所述叠加后的采样点集合和第二个邻居像素对应的回波信号上待叠加的采样点集合进行叠加,直到叠加完所述Q个邻居像素对应的回波信号上待叠加的采样点集合,待所述N个采样点集合中的每个第一采样点集合都完成叠加,以得到所述第一像素对应的叠加处理后的回波信号。
  10. 根据权利要求1-8任一项所述的方法,其特征在于,所述分别根据所述每个第一采样点集合在所述M个累加接收视场中的Q个邻居像素对应的回波信号上确定第二采样点集合,并分别对所述每个第一采样点集合和对应的所述第二采样点集合进行叠加,以得到所述第一像素对应的叠加处理后的回波信号,包括:
    针对所述每个第一采样点集合,按照所述Q个邻居像素的预设顺序,根据第一采样点集合上的第一拐点的信息和第一个邻居像素对应的回波信号上的拐点的位置信息,确定第一个邻居像素对应的回波信号上的第二拐点,所述第一拐点与所述第二拐点的距离小于采样点门限;
    确定第一采样点集合与所述第二拐点所属的采样点集合的相关系数;
    若根据所述相关系数确定第一采样点集合与所述第二拐点所属的采样点集合可叠加,则叠加第一采样点集合与所述第二拐点所属的采样点集合,得到叠加后的采样点集合;
    确定第二个邻居像素对应的回波信号上待叠加的采样点集合,并对所述叠加后的采样点集合和第二个邻居像素对应的回波信号上待叠加的采样点集合进行叠加,直到叠加完所述Q个邻居像素对应的回波信号上待叠加的采样点集合,待所述N个采样点集合中的每个第一采样点集合都完成叠加,以得到所述第一像素对应的叠加处理后的回波信号。
  11. 根据权利要求10所述的方法,其特征在于,所述若根据所述相关系数确定第一采样点集合与所述第二拐点所属的采样点集合可叠加,则叠加第一采样点集合与所述第二拐点所属的采样点集合,得到叠加后的采样点集合,包括:
    若所述相关系数大于预设阈值,则叠加第一采样点集合与所述第二拐点所属的采样点集合,得到叠加后的采样点集合。
  12. 根据权利要求10所述的方法,其特征在于,所述若根据所述相关系数确定第一采样点集合与所述第二拐点所属的采样点集合可叠加,则叠加第一采样点集合与所述第二拐点所属的采样点集合,得到叠加后的采样点集合,包括:
    若所述相关系数大于预设阈值,则获取所述第一像素对应的回波信号的属性值以及所述第一个邻居像素对应的回波信号的属性值,所述属性值包括以下任一项:信号幅度、峰均比或信噪比;
    若所述第一像素对应的回波信号的属性值以及所述第一个邻居像素对应的回波信号的属性值满足预设条件,则叠加第一采样点集合与所述第二拐点所属的采样点集合,得到叠加后的采样点集合。
  13. 根据权利要求12所述的方法,其特征在于,所述预设条件为所述第一像素对应 的回波信号的属性值以及所述第一个邻居像素对应的回波信号的属性值的加权平均值大于所述第一像素对应的回波信号的属性值;
    或者,
    所述预设条件为所述第一个邻居像素对应的回波信号的属性值大于所述第一像素对应的回波信号的属性值的预设倍数。
  14. 根据权利要求9或10所述的方法,其特征在于,所述雷达还包括:模数转换器ADC,相应的,所述方法还包括:
    根据所述雷达与目标物体的最大相对运动速度、一个数据帧周期,确定所述目标物体在一个数据帧周期内的最大移动距离;
    根据所述ADC的采样率,确定在所述最大移动距离上的采样点个数;
    根据所述当前数据帧与所述第一个邻居像素所在的数据帧的帧数差以及所述采样点个数,确定所述采样点门限。
  15. 根据权利要求14所述的方法,其特征在于,所述根据所述当前数据帧与所述第一个邻居像素所在的数据帧的帧数差以及所述采样点个数,确定所述采样点门限,包括:
    计算所述当前数据帧与所述第一个邻居像素所在的数据帧的帧数差以及所述采样点个数的乘积,得到乘积结果;
    计算所述乘积结果与允许误差之和,得到所述采样点门限。
  16. 根据权利要求1-15任一项所述的方法,其特征在于,所述在当前数据帧上确定雷达的接收视场内的第一像素和所述第一像素对应的回波信号上的N个采样点集合之后,还包括:
    向所述第一像素的信息分配存储空间,所述存储空间可复用;
    其中,所述第一像素的信息包括以下至少一项:所述N个采样点集合,所述N个采样点集合中至少一个拐点的位置信息、所述第一像素对应的回波信号的信噪比。
  17. 一种回波信号处理装置,其特征在于,包括:
    第一确定模块,用于在当前数据帧上确定雷达的接收视场内的第一像素和所述第一像素对应的回波信号上的N个采样点集合,N为大于或等于1的整数,所述第一像素为所述接收视场内的任一像素;
    估算模块,用于分别根据所述N个采样点集合中的每个第一采样点集合估算所述雷达与目标物体的预估距离;
    第二确定模块,用于分别根据每个所述预估距离确定与M个数据帧一一对应的M个累加接收视场,所述M个累加接收视场中的每个累加接收视场包括所述第一像素的至少一个邻居像素,所述M个数据帧为所述雷达在接收所述当前数据帧之前接收到的M个数据帧,M为大于或等于1的整数,所述第一采样点集合为所述N个采样点集合中的任一采样点集合;
    第三确定模块,用于分别根据所述每个第一采样点集合在所述M个累加接收视场中的Q个邻居像素对应的回波信号上确定第二采样点集合;
    叠加模块,用于分别对所述每个第一采样点集合和对应的所述第二采样点集合进行叠加,以得到所述第一像素对应的叠加处理后的回波信号,Q为大于或等于1的整数;
    计算模块,用于根据所述第一像素对应的叠加处理后的回波信号计算所述雷达与所述 目标物体之间的实际距离。
  18. 根据权利要求17所述的装置,其特征在于,所述估算模块具体用于:
    分别根据所述N个采样点集合中的每个第一采样点集合中的拐点的位置信息确定所述雷达与目标物体的预估距离。
  19. 根据权利要求17或18所述的装置,其特征在于,所述第二确定模块具体用于:
    针对每个所述预估距离,根据所述雷达与所述目标物体的最大相对运动速度、一个数据帧周期、所述预估距离、所述雷达的最大水平视场角、总水平视场角、最大垂直视场角、总垂直视场角,确定所述目标物体的最大水平移动角度值和最大垂直移动角度值;根据所述当前数据帧与所述任一数据帧之间的帧数差i、所述第一像素的水平角度值、垂直角度值、所述目标物体的最大水平移动角度值、所述目标物体的最大垂直移动角度值确定所述雷达在所述任一数据帧上的累加接收视场,1≦i≦M,i为整数。
  20. 根据权利要求19所述的装置,其特征在于,所述第二确定模块具体用于:通过如下公式确定所述雷达在所述任一数据帧上的累加接收视场:
    A=(h-HA(d)*i,h+HA(d)*i,v-VA(d)*,v+VA(d)*i)
    其中,A表示雷达在所述任一数据帧上的累加接收视场,h-HA(d)*i表示A的最小水平角度值,h+HA(d)*i表示A的最大水平角度值,v-VA(d)*i表示A的最小垂直角度值,v+VA(d)*i表示A的最大垂直角度值,d表示所述预估距离,HA(d)和VA(d)分别表示所述目标物体的最大水平移动角度值、所述目标物体的最大垂直移动角度值,h表示所述第一像素的水平角度值,v表示所述第一像素的垂直角度值。
  21. 根据权利要求19所述的装置,其特征在于,还包括:
    获取模块,用于获取所述目标物体的大小;
    相应的,所述第二确定模块具体用于:
    根据所述当前数据帧与所述任一数据帧之间的帧数差i、所述第一像素的水平角度值、垂直角度值、所述目标物体的最大水平移动角度值、所述目标物体的最大垂直移动角度值和所述目标物体的大小确定所述雷达在所述任一数据帧上的累加接收视场。
  22. 根据权利要求21所述的装置,其特征在于,所述第二确定模块具体用于:通过如下公式确定所述雷达在所述任一数据帧上的累加接收视场,包括:
    Figure PCTCN2019088436-appb-100002
    其中,A表示雷达在所述任一数据帧上的累加接收视场,h-HA(d)*i表示A的最小水平角度值,h+HA(d)*i表示A的最大水平角度值,v-VA(d)*i表示A的最小垂直角度值,v+VA(d)*i表示A的最大垂直角度值,d表示所述预估距离,HA(d)和VA(d)分别表示所述目标物体的最大水平移动角度值、所述目标物体的最大垂直移动角度值,h表示所述第一像素的水平角度值,v表示所述第一像素的垂直角度值,TH和TV分别表示所述目标物体的水平和垂直角度数。
  23. 根据权利要求17所述的装置,其特征在于,所述第二确定模块具体用于:
    针对每个所述预估距离,若所述预估距离属于目标距离区间,且所述目标距离区间对应有累加接收视场,则将所述目标距离区间对应的累加接收视场作为所述雷达在所述任一 数据帧上的累加接收视场。
  24. 根据权利要求17-23任一项所述的装置,其特征在于,还包括:
    第四确定模块,用于确定所述第一像素对应的回波信号的信噪比或者至少一个所述第一采样点的信噪比;
    相应的,所述第二确定模块具体用于:
    若所述第一像素对应的回波信号的信噪比或者至少一个所述第一采样点集合的信噪比小于预设信噪比,则分别根据所述N个采样点集合中的每个第一采样点集合估算所述雷达与目标物体的预估距离,并分别根据每个所述预估距离确定与M个数据帧一一对应的M个累加接收视场。
  25. 根据权利要求17-24任一项所述的装置,其特征在于,所述叠加模块具体用于:
    针对所述每个第一采样点集合,按照所述Q个邻居像素的预设顺序,根据第一采样点集合上的第一拐点的信息和第一个邻居像素对应的回波信号上的拐点的位置信息,确定第一个邻居像素对应的回波信号上的第二拐点,所述第一拐点与所述第二拐点的距离小于采样点门限;
    叠加第一采样点集合与所述第二拐点所属的采样点集合,得到叠加后的采样点集合;
    确定第二个邻居像素对应的回波信号上待叠加的采样点集合,并对所述叠加后的采样点集合和第二个邻居像素对应的回波信号上待叠加的采样点集合进行叠加,直到叠加完所述Q个邻居像素对应的回波信号上待叠加的采样点集合,待所述N个采样点集合中的每个第一采样点集合都完成叠加,以得到所述第一像素对应的叠加处理后的回波信号。
  26. 根据权利要求17-24任一项所述的装置,其特征在于,所述叠加模块具体用于:
    针对所述每个第一采样点集合,按照所述Q个邻居像素的预设顺序,根据第一采样点集合上的第一拐点的信息和第一个邻居像素对应的回波信号上的拐点的位置信息,确定第一个邻居像素对应的回波信号上的第二拐点,所述第一拐点与所述第二拐点的距离小于采样点门限;
    确定第一采样点集合与所述第二拐点所属的采样点集合的相关系数;
    若根据所述相关系数确定第一采样点集合与所述第二拐点所属的采样点集合可叠加,则叠加第一采样点集合与所述第二拐点所属的采样点集合,得到叠加后的采样点集合;
    确定第二个邻居像素对应的回波信号上待叠加的采样点集合,并对所述叠加后的采样点集合和第二个邻居像素对应的回波信号上待叠加的采样点集合进行叠加,直到叠加完所述Q个邻居像素对应的回波信号上待叠加的采样点集合,待所述N个采样点集合中的每个第一采样点集合都完成叠加,以得到所述第一像素对应的叠加处理后的回波信号。
  27. 根据权利要求26所述的装置,其特征在于,所述叠加模块具体用于:
    若所述相关系数大于预设阈值,则叠加第一采样点集合与所述第二拐点所属的采样点集合,得到叠加后的采样点集合。
  28. 根据权利要求26所述的装置,其特征在于,所述叠加模块具体用于:
    若所述相关系数大于预设阈值,则获取所述第一像素对应的回波信号的属性值以及所述第一个邻居像素对应的回波信号的属性值,所述属性值包括以下任一项:信号幅度、峰均比或信噪比;
    若所述第一像素对应的回波信号的属性值以及所述第一个邻居像素对应的回波信号 的属性值满足预设条件,则叠加第一采样点集合与所述第二拐点所属的采样点集合,得到叠加后的采样点集合。
  29. 一种雷达,其特征在于,包括:收发器和处理器;
    所述收发器用于接收由于目标物体反射所产生的回波信号;
    所述处理器用于通过运行程序指令,根据所述收发器接收的所述回波信号,执行如权利要求1至16中任一项所述的回波信号处理方法。
  30. 一种可读存储介质,其特征在于,包括程序指令,当所述程序指令在计算机上运行时,使得所述计算机执行如权利要求1至17中任一项所述的回波信号处理方法。
PCT/CN2019/088436 2019-05-24 2019-05-24 回波信号处理方法、装置、系统及存储介质 WO2020237448A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19930903.0A EP3964866A4 (en) 2019-05-24 2019-05-24 ECHO SIGNAL PROCESSING METHOD, DEVICE AND SYSTEM, AND STORAGE MEDIUM
CN201980060389.XA CN112703421B (zh) 2019-05-24 2019-05-24 回波信号处理方法、装置、系统及存储介质
PCT/CN2019/088436 WO2020237448A1 (zh) 2019-05-24 2019-05-24 回波信号处理方法、装置、系统及存储介质
US17/456,223 US20220082659A1 (en) 2019-05-24 2021-11-23 Echo Signal Processing Method and Apparatus, System, and Storage Medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/088436 WO2020237448A1 (zh) 2019-05-24 2019-05-24 回波信号处理方法、装置、系统及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/456,223 Continuation US20220082659A1 (en) 2019-05-24 2021-11-23 Echo Signal Processing Method and Apparatus, System, and Storage Medium

Publications (1)

Publication Number Publication Date
WO2020237448A1 true WO2020237448A1 (zh) 2020-12-03

Family

ID=73552193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088436 WO2020237448A1 (zh) 2019-05-24 2019-05-24 回波信号处理方法、装置、系统及存储介质

Country Status (4)

Country Link
US (1) US20220082659A1 (zh)
EP (1) EP3964866A4 (zh)
CN (1) CN112703421B (zh)
WO (1) WO2020237448A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112835006A (zh) * 2021-01-05 2021-05-25 成都汇蓉国科微系统技术有限公司 一种基于帧间积累的跟踪雷达海上小目标检测方法及系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112424639B (zh) * 2018-06-22 2024-05-28 ams有限公司 使用飞行时间和伪随机比特序列测量到物体的距离
CN116953656A (zh) * 2022-04-13 2023-10-27 上海禾赛科技有限公司 探测结果处理方法及装置、计算机可读存储介质
CN115267791B (zh) * 2022-07-07 2023-12-22 珠海极海半导体有限公司 一种超声波信号处理电路、芯片及车辆雷达装置
CN116577762B (zh) * 2023-07-12 2023-10-31 西安深信科创信息技术有限公司 仿真雷达数据生成方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137420A (zh) * 2015-09-09 2015-12-09 电子科技大学 一种多帧积累的非相干mimo雷达检测和定位方法
CN106338721A (zh) * 2016-08-23 2017-01-18 西安电子科技大学 基于多帧回波相参积累的空中匀速弱小目标检测方法
CN108519594A (zh) * 2018-03-26 2018-09-11 电子科技大学 一种重频间帧间联合积累的多重频雷达检测前跟踪方法
CN108802722A (zh) * 2018-08-28 2018-11-13 哈尔滨工业大学 一种基于虚拟谱的弱目标检测前跟踪方法
CN109782248A (zh) * 2019-02-18 2019-05-21 中国电子科技集团公司第二十研究所 一种雷达杂波处理方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE46930E1 (en) * 2007-12-21 2018-07-03 Leddartech Inc. Distance detection method and system
EP3338617B1 (en) * 2012-01-23 2020-08-19 Washington University Goggle imaging systems and devices
CN102645648B (zh) * 2012-04-19 2013-10-16 宁波成电泰克电子信息技术发展有限公司 一种用于改善船用雷达目标检测性能的脉冲积累方法
CN104833979B (zh) * 2015-04-27 2017-03-15 北京航天控制仪器研究所 一种激光测距及激光测距数据的信号处理的方法
JP6753107B2 (ja) * 2016-03-29 2020-09-09 富士通株式会社 距離測定装置、距離測定方法及びプログラム
CN106526567B (zh) * 2016-12-08 2020-01-03 湖南太康电子信息技术有限公司 提高目标信噪比的超宽带雷达等效采样方法
EP4220230A1 (en) * 2017-09-26 2023-08-02 Innoviz Technologies Ltd. Lidar systems and methods
CN109254271B (zh) * 2018-08-30 2021-05-04 安徽四创电子股份有限公司 一种用于地面监视雷达系统的静止目标抑制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105137420A (zh) * 2015-09-09 2015-12-09 电子科技大学 一种多帧积累的非相干mimo雷达检测和定位方法
CN106338721A (zh) * 2016-08-23 2017-01-18 西安电子科技大学 基于多帧回波相参积累的空中匀速弱小目标检测方法
CN108519594A (zh) * 2018-03-26 2018-09-11 电子科技大学 一种重频间帧间联合积累的多重频雷达检测前跟踪方法
CN108802722A (zh) * 2018-08-28 2018-11-13 哈尔滨工业大学 一种基于虚拟谱的弱目标检测前跟踪方法
CN109782248A (zh) * 2019-02-18 2019-05-21 中国电子科技集团公司第二十研究所 一种雷达杂波处理方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANG, LIANG: "Study on Realization of Dim Moving Target Detection and Tracking for Radar", MASTER THESIS, 15 February 2015 (2015-02-15), CN, pages 1 - 66, XP009532166 *
See also references of EP3964866A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112835006A (zh) * 2021-01-05 2021-05-25 成都汇蓉国科微系统技术有限公司 一种基于帧间积累的跟踪雷达海上小目标检测方法及系统
CN112835006B (zh) * 2021-01-05 2023-05-16 成都汇蓉国科微系统技术有限公司 一种基于帧间积累的跟踪雷达海上小目标检测方法及系统

Also Published As

Publication number Publication date
CN112703421A (zh) 2021-04-23
CN112703421B (zh) 2021-12-03
US20220082659A1 (en) 2022-03-17
EP3964866A1 (en) 2022-03-09
EP3964866A4 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
WO2020237448A1 (zh) 回波信号处理方法、装置、系统及存储介质
CN111665517B (zh) 一种基于密度统计的单光子激光测高数据去噪方法及装置
KR101586452B1 (ko) 거리 적응적 탐지 문턱값 적용에 의한 적외선 해상 표적 탐지장치 구현 방법
CN107942342A (zh) 测风激光雷达的数据处理方法、装置、系统及存储介质
CN107942329A (zh) 机动平台单通道sar对海面舰船目标检测方法
CN111443344B (zh) 一种侧扫声呐海底线自动提取方法及装置
WO2021046768A1 (zh) 一种目标物的反射率计算方法、装置及相关设备
CN115453497A (zh) 一种低信噪比稀疏雷达信号的滤波方法及系统
CN113253240B (zh) 一种基于光子探测的空间目标识别分法、存储介质和系统
CN115220021A (zh) 一种基于声呐图像的微弱运动目标轨迹检测方法和系统
CN113126064A (zh) 一种信号处理方法及相关装置
CN105652256B (zh) 一种基于极化信息的高频地波雷达tbd方法
CN113126086A (zh) 一种基于状态预测积累的生命探测雷达弱目标检测方法
Radius et al. Phase Variant Analysis Algorithm for Azimuth Ambiguity Detection
CN111766600A (zh) 一种光子计数激光雷达自适应噪声判断、滤波方法及装置
CN113919398B (zh) 一种基于深度学习的非视域目标信号辨识方法
US12032065B2 (en) System and method for histogram binning for depth detection
CN115575965A (zh) 一种激光雷达多回波判别方法和装置
JP2010145224A (ja) スキャニングソナー装置
CN108983192B (zh) 基于gps辐射源的雷达运动目标参数估计方法
US9864051B2 (en) Method of estimating a local plot density in a radar system; a plot density estimator and a radar system with a plot density estimator
WO2024040912A1 (zh) 激光雷达回波信号处理方法及装置、激光雷达探测系统
CN116930125B (zh) 一种后向散射全选通成像水体衰减系数测量方法
CN111025251B (zh) 一种基于动态规划的多目标复合检测方法
CN111723797A (zh) 一种确定三维目标的包围框的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930903

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019930903

Country of ref document: EP

Effective date: 20211201