WO2020235455A1 - Processing device and processing method - Google Patents

Processing device and processing method Download PDF

Info

Publication number
WO2020235455A1
WO2020235455A1 PCT/JP2020/019325 JP2020019325W WO2020235455A1 WO 2020235455 A1 WO2020235455 A1 WO 2020235455A1 JP 2020019325 W JP2020019325 W JP 2020019325W WO 2020235455 A1 WO2020235455 A1 WO 2020235455A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
chamber
vacuum
processing
load lock
Prior art date
Application number
PCT/JP2020/019325
Other languages
French (fr)
Japanese (ja)
Inventor
赤坂 泰志
高橋 毅
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2020235455A1 publication Critical patent/WO2020235455A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping

Definitions

  • This disclosure relates to a processing device and a processing method.
  • a semiconductor wafer which is a substrate
  • the vacuum processing apparatus that performs these various processes includes, for example, a vacuum transfer chamber configured in a vacuum atmosphere, a load lock chamber, a normal pressure transfer chamber configured in a normal pressure atmosphere, and a processing module.
  • the wafer processed by the processing module is conveyed in the order of the vacuum transfer chamber, the load lock chamber, and the normal pressure transfer chamber, and stored in the transfer container.
  • the present disclosure provides a processing apparatus and a processing method capable of reducing the oxidizing power of the atmosphere.
  • the processing apparatus includes a processing module, a load lock chamber, a vacuum transfer chamber, and a gas supply unit.
  • the processing module includes a vacuum processing chamber for processing the substrate in a vacuum atmosphere.
  • the load lock room switches the atmosphere between a vacuum atmosphere and a normal pressure atmosphere.
  • the vacuum transfer chamber is provided between the vacuum processing chamber and the load lock chamber via a sluice valve, and the substrate is conveyed between the vacuum processing chamber and the load lock chamber by the substrate transfer mechanism.
  • the gas supply unit supplies purge gas containing a reducing gas to at least one of a vacuum processing chamber, a load lock chamber, and a vacuum transfer chamber.
  • the oxidizing power of the atmosphere can be reduced.
  • FIG. 1 is a cross-sectional plan view showing an example of the configuration of the vacuum processing apparatus according to the embodiment of the present disclosure.
  • FIG. 2 is a vertical sectional side view showing an example of the configuration of the vacuum processing apparatus.
  • FIG. 3 is a diagram showing an example of reducing power in PH2 / PH2O.
  • FIG. 4 is a vertical sectional side view showing an example of a film forming module constituting the vacuum processing apparatus.
  • FIG. 5 is a diagram showing an example of the flow of purge gas in the film forming module.
  • FIG. 6 is a diagram showing another example of the flow of purge gas in the film forming module.
  • FIG. 1 is a cross-sectional plan view showing an example of the configuration of the vacuum processing apparatus according to the embodiment of the present disclosure.
  • the vacuum processing apparatus 1 forms a laminated film having a TiN film on the wafer W.
  • the vacuum processing apparatus 1 includes a first transport chamber (normal pressure transport chamber) 11, an alignment chamber 20, load lock chambers 31, 32, a second transport chamber (vacuum transport chamber) 41, and film forming modules 71 to 74. ..
  • the first transport chamber 11 is connected to the second transport chamber 41 via the load lock chambers 31 and 32.
  • the second transport chamber 41 is connected to the film forming modules 71 to 74.
  • the film forming modules 71 to 74 form a TiN film on the wafer W.
  • the first transfer chamber 11 constitutes a loader module for loading and unloading the wafer W to the vacuum processing device 1, and is configured to be rectangular in a plan view. Assuming that the length direction of the first transport chamber 11 is the left-right direction, a mounting table 12 is provided on the front side of the first transport chamber 11, and a carrier which is a transport container for storing a plurality of wafers W. C is placed. On the front wall of the first transport chamber 11, an opening / closing door 13 that opens and closes together with a lid (not shown) provided on the carrier C mounted on the mounting table 12 is provided. The inside of the first transport chamber 11 has a normal pressure atmosphere. A first wafer transfer mechanism 14, which is an articulated arm, is provided in the first transfer chamber 11.
  • FIG. 2 is a vertical sectional side view showing an example of the configuration of the vacuum processing apparatus.
  • a fan filter unit (FFU) 16 is provided above the first wafer transfer mechanism 14, and supplies purge gas containing a purified reducing gas downward.
  • the purge gas is, for example, a gas obtained by mixing N2 gas or a rare gas with H2 gas as a reducing gas.
  • a purifier may be used to reduce oxidized species such as H2O and O2.
  • An exhaust port 17 is open at the bottom of the first transport chamber 11.
  • One end of the exhaust pipe 18 is connected to the exhaust port 17.
  • the other end of the exhaust pipe 18 is connected to the FFU 16 via an exhaust mechanism 19 composed of an exhaust fan or the like.
  • the purge gas supplied from the FFU 16 into the first transport chamber 11 is exhausted from the exhaust port 17 by the exhaust mechanism 19 and then supplied to the FFU 16. Then, after being cleaned by FFU 16, it is supplied to the lower part in the first transport chamber 11 again. That is, the purge gas circulates in the exhaust pipe 18 and the first transport chamber 11.
  • the alignment chamber 20 is connected to the left wall of the first transport chamber 11 when the first transport chamber 11 is viewed from the mounting table 12.
  • the alignment chamber 20 adjusts the orientation and eccentricity of the wafer W.
  • the first wafer transfer mechanism 14 can transfer the wafer W between the alignment chamber 20, the carrier C, and the load lock chambers 31 and 32.
  • Road lock chambers 31 and 32 are arranged on the left and right behind the first transport chamber 11, respectively.
  • the load lock chambers 31 and 32 switch the internal atmosphere between the normal pressure atmosphere and the vacuum atmosphere while the wafer W is on standby.
  • the load lock chamber 32 is shown as a representative in FIG. 2, the load lock chamber 31 is similarly configured.
  • the load lock chambers 31 and 32 will be described in more detail later.
  • a second transport chamber 41 having a hexagonal plan view is provided.
  • the inside of the second transport chamber 41 has a vacuum atmosphere.
  • the second wafer transfer mechanism 42 is configured as an articulated arm.
  • the second wafer transfer mechanism 42 conveys the wafer W in the second transfer chamber 41, and also between the second transfer chamber 41 and the film forming modules 71 to 74, and the second transfer chamber 41.
  • the wafer W can be delivered between the and the load lock chambers 31 and 32, respectively.
  • a gas supply port 43 is opened in the ceiling portion in the second transport chamber 41.
  • One end of the gas supply pipe 44 is connected to the supply port 43 from the outside of the second transport chamber 41.
  • the other end of the gas supply pipe 44 is connected to the purge gas supply source 45, and the purge gas containing the reducing gas H2 gas is supplied from the purge gas supply source 45 to the supply port 43.
  • H2 gas which is an example of the reducing gas contained in the purge gas
  • H2 gas is a flammable gas, it is required to control the concentration.
  • the concentration of the H2 gas in the purge gas is set to a concentration obtained by multiplying the lower limit of the H2 explosion by a safety factor of 4% so that the gas does not have to be treated as a flammable gas.
  • the safety factor may be 1 or more, and a value such as 1.2 can be used.
  • the concentration of H2 gas may be lower than the lower limit of explosion, and may be set to, for example, 3%. That is, the concentration of H2 gas may be set to a value that sufficiently covers less than 4% of the lower limit of explosion in consideration of controllability.
  • the concentration of H2 gas and the reducing power in the transfer module (hereinafter referred to as TM) corresponding to the second transfer chamber 41 are obtained as follows. First, it is assumed that the dew point in TM is 0 ° C. Further, the partial pressure of H2O (hereinafter referred to as PH2O) is set to 0.006 atm (6.11 hPa). Note that 6.11 hPa is a value estimated very strictly, and can actually be reduced to about 10 Pa. When the total TM pressure is 100 Pa, 4% of the lower limit of H2 explosion is 4 Pa when expressed by the partial pressure of H2 (hereinafter referred to as PH2). In this case, PH2 / PH2O is 1/100 or less. If PH2O is 10 Pa, PH2 / PH2O is 0.4.
  • FIG. 3 is a diagram showing an example of reducing power in PH2 / PH2O.
  • Table 100 of FIG. 3 shows the correspondence between the values of PH2 / PH2O, the oxygen partial pressure at 400 ° C. (hereinafter referred to as PO2), and the guideline of the reducing power.
  • PO2 oxygen partial pressure at 400 ° C.
  • PH2 / PH2O 10
  • it corresponds to lowering PO2 to about 1E-29Pa and has a reducing power enough to reduce FeO at 400 ° C.
  • Equation (1) represents the free energy change ⁇ G 1 of the metal.
  • Me represents a metal.
  • Equation (2) represents the free energy change ⁇ G 2 of H2.
  • Equation (3) represents the free energy change ⁇ G 3 in which the metal is oxidized by H2O.
  • the free energy change ⁇ G of the equations (1) to (3) can be expressed by the equations (4) to (6), respectively.
  • the formula (6) represents PH2 / PH2O.
  • PH2 / PH2O has a desired reducing power, which is equivalent to reducing oxidized species such as H2O and O2 in TM.
  • the effect of can be obtained. That is, the oxidizing power of the atmosphere in the TM can be reduced.
  • An exhaust port 47 is opened at the bottom of the second transport chamber 41, and one end of an exhaust pipe 48 is connected to the exhaust port 47 from the outside of the second transport chamber 41.
  • the other end of the exhaust pipe 48 is connected to the dry pump 49, which is an exhaust mechanism.
  • the load lock chambers 31 and 32 are also configured so that an air flow of purge gas can be formed in the transfer region of the wafer W.
  • the load lock chamber 32 shown in FIG. 2 will be described here as a representative.
  • the wafer W is placed on the surface of the stage 33.
  • the elevating pin 34 is recessed on the surface of the stage 33 to transfer the wafer W between the first wafer transfer mechanism 14 and the second wafer transfer mechanism 42 and the stage 33.
  • the supply port 35 is a gas supply port opened in the ceiling portion in the load lock chamber 32.
  • the purge gas supply source 36 is connected to the supply port 35 via the gas supply pipe 37.
  • the exhaust port 64 opens at the bottom of the load lock chamber 32.
  • the exhaust pipe 65 is an exhaust pipe that connects the dry pump 66 and the exhaust port 64, and is provided with a valve V1.
  • FIG. 4 is a vertical sectional side view showing an example of a film forming module constituting the vacuum processing apparatus.
  • the film forming module 71 forms a TiN film on the wafer W by ALD (Atomic Layer Deposition).
  • the film forming modules 72 to 74 are also configured in the same manner as the film forming modules 71, and form a TiN film.
  • the processing container 701 constitutes a vacuum processing chamber and is opened and closed by a gate valve G described later.
  • the mounting table 702 is a mounting table for the wafer W, and includes a heater 712 that heats the mounted wafer W to a film formation temperature of, for example, 350 ° C. to 700 ° C.
  • the cover member 722 is a cover member that covers the outer peripheral side of the mounting region of the wafer W and the side peripheral surface of the mounting table 702 in the circumferential direction.
  • the support member 732 supports the lower part of the mounting table 702.
  • the elevating member 742 elevates and elevates the mounting table 702 via the support member 732 between the upper position indicated by the solid line and the lower position indicated by the chain line.
  • the lower position is a position where the wafer W is delivered to and from the second wafer transfer mechanism 42 which has entered the processing container 701 via the gate valve G.
  • the upper position is a processing position for forming a film on the wafer W.
  • the bellows 752 keeps the inside of the processing container 701 airtight and expands and contracts by raising and lowering the mounting table 702.
  • the elevating pin 762 is three elevating pins (only two are shown in the figure), and is elevated by the elevating mechanism 772.
  • the elevating pin 762 is recessed on the surface of the mounting table 702 through the hole 782 provided in the mounting table 702.
  • the wafer W is delivered by the elevating pin 762 between the mounting table 702 located at the lower position and the second wafer transfer mechanism 42 in the second transfer chamber 41.
  • the exhaust duct 703 forms a part of the side wall of the processing container 701.
  • the exhaust duct 703 is formed in an annular shape so as to surround the mounting table 702 in the upper position.
  • An exhaust unit 713 composed of a vacuum pump or the like is connected to the exhaust duct 703.
  • the exhaust unit 713 exhausts the gas flowing out from the mounting table 702 through the opening 723 formed along the circumferential direction on the inner peripheral surface of the exhaust duct 703.
  • the top plate member 704 constitutes the processing container 701.
  • the top plate member 704 has a concave portion formed on the lower surface thereof, and an inclined surface having a divergent shape is formed from the central side to the outer peripheral side of the concave portion.
  • the space surrounded by the inclined surface and the upper surface of the mounting table 702 at the upper position constitutes the processing space 724 of the wafer W.
  • a flat rim 714 is provided on the outside of the inclined surface so as to face the cover member 722 of the mounting table 702.
  • the top plate member 704 is provided with gas supply paths 734 and 744 partitioned from each other.
  • the downstream ends of the gas supply paths 734 and 744 open above the central portion of the wafer W in the processing space 724.
  • the dispersion plate 754 is provided on the central portion of the wafer W.
  • the dispersion plate 754 collides with the gas supplied from each gas supply path 734,744. A part of the gas that collides with the dispersion plate 754 wraps around below the dispersion plate 754 and reaches the central portion of the wafer W.
  • the remaining gas is guided by the dispersion plate 754 to change the flow direction, and is guided to the inclined surface of the ceiling portion of the processing space 724 from the central portion side to the outer peripheral portion side of the top plate member 704 along the radial direction. It spreads radially and is supplied to the wafer W.
  • the upstream end of the gas supply path 734 branches and is connected to the NH3 (ammonia) gas supply source 705 and the N2 gas supply source 715, respectively. Further, the upstream end of the gas supply path 744 is branched and connected to the N2 gas supply source 715 and the TiCl4 gas supply source 725, respectively.
  • the film forming module 71 has a purge gas supply path 792 connected to the purge gas supply source 791 at the bottom of the processing container 701.
  • the purge gas supply path 792 is connected to the inside of the processing container 701.
  • the purge gas supply source 791 supplies the purge gas into the processing container 701 via the purge gas supply path 792, similarly to the purge gas supply source 45 of the second transport chamber 41.
  • the purge gas flows from the purge gas supply source 791 into the processing container 701 via the purge gas supply path 792.
  • the purge gas that has flowed into the processing container 701 is supplied to the lower space 200 of the mounting table 702 in the processing container 701.
  • the lower space 200 of the mounting table 702 is a region (bottom area) that is not filled with the processing gas supplied from the gas supply paths 734 and 744.
  • the film forming module 71 supplies purge gas to the lower space 200 in the processing container 701 other than the processing space 724 to perform bottom purging.
  • the concentration of H2 gas in the purge gas may be such that the reaction with the processing gas (precursor and reaction gas) is acceptable.
  • the H2 gas of the purge gas may have a partial pressure higher than the concentration of the oxidized species in the processing container 701.
  • the reducing gas may be another reducing gas having an allowable reaction with the processing gas.
  • the film forming modules 71 to 74 are provided so as to surround the second transport chamber 41.
  • the processing container 701 and the second transfer chamber 41 constituting each film forming module 71 to 74 are connected to each other via a gate valve G which is a sluice valve.
  • Each gate valve G is configured in the same manner as each other, and the gate valve G interposed between the processing container 701 of the film forming module 71 and the second transfer chamber 41 shown in FIG. 2 will be described as a representative.
  • the gate valve G includes a valve body G1, and when the valve body G1 moves up and down, the processing container 701 and the second transport chamber 41 can be switched between a state in which they are airtightly partitioned from each other and a state in which they communicate with each other.
  • FIG. 2 shows a state in which they are airtightly partitioned from each other.
  • each of the second transport chamber 41 and the load lock chambers 31 and 32 is also connected via the gate valve G. Further, each of the load lock chambers 31 and 32 and the first transport chamber 11 are also connected via the gate valve G. Similar to the gate valve G interposed between the film forming module 71 and the second transfer chamber 41, these gate valves G also communicate with each other in a state in which adjacent chambers are airtightly partitioned from each other. Switch between states.
  • the vacuum processing apparatus 1 is provided with, for example, a control unit 10 which is a computer.
  • the control unit 10 includes a program, a memory, a CPU, and the like.
  • a control signal is sent from the control unit 10 to each unit of the vacuum processing apparatus 1, and an instruction (each step) is instructed to proceed with the transfer of the wafer W and the processing of the wafer W in the film forming modules 71 to 74, which will be described later. It has been incorporated.
  • the program is stored in a computer storage medium such as a flexible disk, a compact disk, a hard disk, an MO (magneto-optical disk), or a memory card, and is installed in the control unit 10.
  • FIG. 5 is a diagram showing an example of the flow of purge gas in the film forming module.
  • the inside of the processing container 701 is depressurized to a vacuum atmosphere in advance, and then the mounting table 702 is lowered to the delivery position as shown in FIG. Then, the gate valve G is opened, the transfer arm of the second wafer transfer mechanism 42 provided in the second transfer chamber 41 is allowed to enter, and the wafer W is transferred to and from the elevating pin 762. After that, the elevating pin 762 is lowered, and the wafer W is placed on the mounting table 702 heated to the film formation temperature described above by the heater 712.
  • 1500 sccm of purge gas (N2 + H2 gas) in the range of 100 to 10000 sccm (0 ° C., 1 atm standard) is supplied into the processing container 701 from the purge gas supply source 791.
  • the purge gas flows into the lower space 200 (bottom area) in the processing container 701, rises in the processing container 701, and is exhausted from the opening 723.
  • FIG. 6 is a diagram showing another example of the flow of purge gas in the film forming module.
  • the gate valve G is closed, the mounting table 702 is raised to the processing position to form a processing space 724, and the pressure in the processing container 701 is adjusted to, for example, 400 Pa.
  • the surface of the wafer W heated to a predetermined temperature is replaced with a reaction gas (TiCl4 gas, NH3 gas) in the order of TiCl4 gas ⁇ N2 gas ⁇ NH3 gas ⁇ N2 gas via a gas supply path 734,744.
  • the supply with gas (N2 gas) is repeated.
  • the reaction gases adsorbed on the wafer W react with each other to form a molecular layer of TiN (titanium nitride), and the molecular layers are laminated to form a TiN film.
  • the purge gas is continuously supplied from the purge gas supply source 791 to the lower space 200 in the processing container 701. Since a part of the exhaust duct 703 is arranged around the mounting table 702 raised to the processing position, the space inside the processing container 701 is the space on the upper side of the mounting table 702 (processing space 724 and exhaust gas). It is divided into a space inside the duct 703) and a lower space 200 (bottom area) on the lower side.
  • the purge gas that has flowed into the lower space 200 flows into the exhaust duct 703 through the gap between the mounting table 702 and the exhaust duct 703, and is discharged to the outside.
  • the purge gas By flowing the purge gas through the lower space 200 in this way, the residual water molecules (H2O) can be removed and the oxidizing power of the atmosphere in the lower space 200 can be reduced. Further, by flowing the purge gas through the lower space 200, it is possible to prevent the reaction gas from entering the lower side of the processing container 701 from the processing space 724.
  • the above-mentioned supply cycle of the reaction gas and the replacement gas is repeated several tens to several hundreds of times to form a titanium nitride film having a desired thickness, the supply of the reaction gas and the replacement gas is stopped, and the processing vessel 701 is used.
  • the vacuum exhaust inside is stopped, the mounting table 702 is lowered, the gate valve G is opened, and the wafer W is taken out. Since the lower space 200 is replaced with the reducing purge gas, the oxidizing power of the atmosphere due to the remaining water molecules can be reduced. In other words, it is possible to reduce the oxidizing power of the atmosphere when the processing in the film forming module 71 is completed and the mounting table 702 is moved or when the gate valve G is opened.
  • the wafer W stored in the carrier C mounted on the mounting table 12 has a first transport chamber 11 ⁇ an alignment chamber 20 ⁇ a load lock chamber 31 or 32 ⁇ a second transport chamber 41 ⁇ a film forming module 71 to 74. It is transported in any order, and a TiN film is formed on the surface thereof.
  • the wafer W on which the TiN film is formed is conveyed in the order of the second transfer chamber 41 ⁇ the load lock chamber 31 or 32 ⁇ the first transfer chamber 11 and returned to the carrier C.
  • the purge gas may be constantly supplied to the film forming modules 71 to 74, the load lock chambers 31 and 32, and the second transport chamber 41 during the operation of the vacuum processing apparatus 1, and the wafer W is present. It may be supplied in some cases. Further, in the above embodiment, when the H2 concentration in the FFU 16, the gas supply pipes 37, 44, the purge gas supply path 792, etc. is detected by the flow rate ratio of H2 and N2, etc., and introduced into each part of the vacuum processing apparatus 1. If the concentration exceeds the set concentration, one or a plurality of the stop of the operation of the vacuum processing apparatus 1 and the vacuum processing chamber (processing container 701) and the interruption of the introduction of the H2 gas may be executed.
  • sensors for detecting the concentration of H2 gas may be provided in the film forming modules 71 to 74, the load lock chambers 31 and 32, and the second transport chamber 41.
  • the vacuum processing device 1 may stop its operation when the sensor detects H2 gas having a concentration equal to or higher than the lower limit of combustion.
  • the vacuum processing apparatus 1 includes the film forming module 71, the load lock chambers 31 and 32, the vacuum transport chamber (second transport chamber 41), and the gas supply unit (FFU16, purge gas supply). It has sources 36, 45, 791, etc.).
  • the film forming module 71 includes a vacuum processing chamber (processing container 701) that processes the substrate in a vacuum atmosphere.
  • the load lock chambers 31 and 32 switch the atmosphere between the vacuum atmosphere and the normal pressure atmosphere.
  • the vacuum transfer chamber is provided between the vacuum processing chamber and the load lock chambers 31 and 32 via a sluice valve, and the vacuum processing chamber and the load lock chambers 31 and 32 are provided by the substrate transfer mechanism (second wafer transfer mechanism 42).
  • the substrate is transported between and.
  • the gas supply unit supplies purge gas containing a reducing gas to at least one of the vacuum processing chamber, the load lock chambers 31 and 32, and the vacuum transfer chamber. As a result, the oxidizing power of the atmosphere can be reduced.
  • the gas supply unit supplies purge gas when the substrate is present in one or more of the vacuum processing chambers, the load lock chambers 31, 32, and the vacuum transfer chamber. As a result, the amount of purge gas used can be reduced.
  • the purge gas is supplied to the region not filled with the processing gas used for the processing in the vacuum processing chamber.
  • the oxidizing power of the atmosphere can be reduced even in the vacuum processing chamber.
  • the purge gas is a gas obtained by mixing H2 gas with N2 gas or a rare gas. As a result, the oxidizing power of the atmosphere can be reduced.
  • the purge gas has a concentration of H2 gas that is less than the lower limit of combustion. As a result, the purge gas does not have to be treated as a flammable gas.
  • the vacuum processing apparatus 1 further has a sensor for detecting the concentration of H2 gas in the vacuum processing chamber, the load lock chamber, and the vacuum transfer chamber.
  • the sensor detects H2 gas having a concentration equal to or higher than the lower limit of combustion
  • the vacuum processing device 1 executes one or more of stopping the operation of the vacuum processing device 1 and shutting off the introduction of the H2 gas. As a result, safety can be improved.
  • the vacuum processing apparatus 1 further has a detecting means for detecting the flow rate ratio of the purge gas in the vacuum processing chamber.
  • a detecting means for detecting the flow rate ratio of the purge gas in the vacuum processing chamber.
  • the N2 gas or the rare gas is a gas in which the oxidized species is reduced by using a purifier. As a result, the oxidizing power of the atmosphere can be further reduced.
  • the oxidized species is one or more of O2 and H2O. As a result, the oxidizing power of the atmosphere can be further reduced.
  • the vacuum processing apparatus 1 further has a transport chamber (first transport chamber 11) for loading and unloading the substrate via the load lock chambers 31 and 32. Further, the transport chamber has a fan filter unit 16 above. The fan filter unit 16 supplies purge gas containing a reducing gas from above to below in the transport chamber. As a result, the oxidizing power of the atmosphere can be reduced even in the normal pressure transport chamber.
  • the number of exhaust ports 47 is one, but the present invention is not limited to this.
  • a plurality of exhaust ports 47 are dispersedly opened on the bottom surface of the second transport chamber 41, one end of an exhaust pipe 48 is connected to each exhaust port 47, and the other end of each exhaust pipe 48 merges to form a dry pump. It may be connected to 49. That is, the exhaust pipe 48 is configured as a manifold. Further, the load lock chambers 31 and 32 may also be configured to include a manifold.
  • the film forming module that performs ALD as the film forming modules 71 to 74 has been described as an example, but the present invention is not limited to this.
  • a film forming module for forming a TiN film may be connected by CVD (Chemical Vapor Deposition) or PECVD (Plasma Enhanced Chemical Vapor Deposition).
  • an etching module for performing dry etching may be connected to the second transfer chamber 41.
  • the second transport chamber 41 and the load lock chambers 31 and 32 When the wafer W whose surface is exposed to the TiN film by dry etching is transported to the carrier C via the second transport chamber 41 and the load lock chambers 31 and 32, the second transport chamber 41 and the load lock chamber 31, At 32, the oxidation of the TiN film can be suppressed over the entire surface of the wafer W.
  • a film forming module that forms a TiN film by PVD may be connected.
  • the formation of the TiN film has been described as an example, but the film is not limited to the TiN film, but is not limited to the TiN film, but also a metal film (for example, a W-containing film, a Ta-containing film, etc.) or an insulating film containing silicon (for example, a Si film). , SiN film, etc.), as long as the originally formed film is prevented from being oxidized.
  • a metal film for example, a W-containing film, a Ta-containing film, etc.
  • an insulating film containing silicon for example, a Si film.
  • the film forming modules 71 to 74 and the load lock chambers 31 and 32 are connected to the second transfer chamber 41, but the present invention is not limited to this.
  • the wafer W in which the post-treatment module for performing post-treatment after forming the TiN film is connected to the second transport chamber 41 and the TiN film is formed by the film forming module 71 is connected to the second transfer chamber 41. It may be transported from the transport chamber 41 to the post-processing module. In that case as well, oxidation can be suppressed on the entire surface of the wafer W from the time when the wafer W is conveyed to the second transfer chamber 41 until the wafer W is transferred to the post-processing module.
  • the pre-cleaning device for pre-cleaning may be connected to the second transport chamber 41. In this case, oxidation of exposed Si and metal such as contacts provided on the wafer W can be suppressed.
  • Vacuum processing equipment 11 First transport chamber (normal pressure transport chamber) 14 First wafer transfer mechanism 16 Fan filter unit (FFU) 17 Exhaust port 18 Exhaust pipe 19 Exhaust mechanism 20 Alignment chamber 31, 32 Load lock chamber 35, 43 Supply port 36, 45 Purge gas supply source 41 Second transport chamber (vacuum transport chamber) 42 Second wafer transfer mechanism 37,44 Gas supply pipe 71-74 Film formation module G gate valve W wafer

Abstract

This processing device is provided with a processing module, a load lock chamber, a vacuum transfer chamber, and a gas supplying part. The processing module includes a vacuum processing chamber for performing a process on a substrate in a vacuum atmosphere. The load lock chamber switches the atmosphere between the vacuum atmosphere and an ordinary-pressure atmosphere. The vacuum transfer chamber is provided between the vacuum processing chamber and the load lock chamber via gate valves therebetween, and allows the substrate to be transferred between the vacuum processing chamber and the load lock chamber by means of a substrate transfer mechanism. The gas supplying part supplies purge gas including reducing gas to at least one of the vacuum processing chamber, the load lock chamber, or the vacuum transfer chamber.

Description

処理装置および処理方法Processing equipment and processing method
 本開示は、処理装置および処理方法に関する。 This disclosure relates to a processing device and a processing method.
 半導体デバイスの製造プロセスでは、基板である半導体ウエハ(以下、ウエハという。)に、真空雰囲気で各種の処理が行われる。この各種の処理を行う真空処理装置は、例えば、真空雰囲気に構成される真空搬送室と、ロードロック室と、常圧雰囲気に構成される常圧搬送室と、処理モジュールと、を備える。処理モジュールで処理されたウエハは、真空搬送室、ロードロック室、常圧搬送室の順に搬送されて、搬送容器に格納される。 In the semiconductor device manufacturing process, various processes are performed on a semiconductor wafer (hereinafter referred to as a wafer), which is a substrate, in a vacuum atmosphere. The vacuum processing apparatus that performs these various processes includes, for example, a vacuum transfer chamber configured in a vacuum atmosphere, a load lock chamber, a normal pressure transfer chamber configured in a normal pressure atmosphere, and a processing module. The wafer processed by the processing module is conveyed in the order of the vacuum transfer chamber, the load lock chamber, and the normal pressure transfer chamber, and stored in the transfer container.
特開平5-259098号公報Japanese Unexamined Patent Publication No. 5-259098
 本開示は、雰囲気の酸化力を低減することができる処理装置および処理方法を提供する。 The present disclosure provides a processing apparatus and a processing method capable of reducing the oxidizing power of the atmosphere.
 本開示の一態様による処理装置は、処理モジュールと、ロードロック室と、真空搬送室と、ガス供給部とを有する。処理モジュールは、真空雰囲気下で基板に対して処理を行う真空処理室を含む。ロードロック室は、真空雰囲気と常圧雰囲気との間で雰囲気を切り替える。真空搬送室は、真空処理室とロードロック室との間に仕切り弁を介して設けられ、基板搬送機構により真空処理室とロードロック室との間で、基板を搬送する。ガス供給部は、真空処理室と、ロードロック室と、真空搬送室とのうち、少なくとも1つに還元性ガスを含むパージガスを供給する。 The processing apparatus according to one aspect of the present disclosure includes a processing module, a load lock chamber, a vacuum transfer chamber, and a gas supply unit. The processing module includes a vacuum processing chamber for processing the substrate in a vacuum atmosphere. The load lock room switches the atmosphere between a vacuum atmosphere and a normal pressure atmosphere. The vacuum transfer chamber is provided between the vacuum processing chamber and the load lock chamber via a sluice valve, and the substrate is conveyed between the vacuum processing chamber and the load lock chamber by the substrate transfer mechanism. The gas supply unit supplies purge gas containing a reducing gas to at least one of a vacuum processing chamber, a load lock chamber, and a vacuum transfer chamber.
 本開示によれば、雰囲気の酸化力を低減することができる。 According to the present disclosure, the oxidizing power of the atmosphere can be reduced.
図1は、本開示の一実施形態における真空処理装置の構成の一例を示す横断平面図である。FIG. 1 is a cross-sectional plan view showing an example of the configuration of the vacuum processing apparatus according to the embodiment of the present disclosure. 図2は、真空処理装置の構成の一例を示す縦断側面図である。FIG. 2 is a vertical sectional side view showing an example of the configuration of the vacuum processing apparatus. 図3は、PH2/PH2Oにおける還元力の一例を示す図である。FIG. 3 is a diagram showing an example of reducing power in PH2 / PH2O. 図4は、真空処理装置を構成する成膜モジュールの一例を示す縦断側面図である。FIG. 4 is a vertical sectional side view showing an example of a film forming module constituting the vacuum processing apparatus. 図5は、成膜モジュールにおけるパージガスの流れの一例を示す図である。FIG. 5 is a diagram showing an example of the flow of purge gas in the film forming module. 図6は、成膜モジュールにおけるパージガスの流れの他の一例を示す図である。FIG. 6 is a diagram showing another example of the flow of purge gas in the film forming module.
 以下に、開示する処理装置および処理方法の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態により開示技術が限定されるものではない。 Hereinafter, embodiments of the disclosed processing apparatus and processing method will be described in detail with reference to the drawings. The disclosed technology is not limited by the following embodiments.
 従来、搬送室等における被処理体の変質を防止するために、真空排気を行う際に不活性ガス、例えばN2ガスを供給することが提案されている。しかしながら、酸化物以外の化合物や純金属等を堆積する際には、通常、非酸化性雰囲気とみなされるN2ガスやAr,He等の希ガスであっても、微量の酸化種(H2O,O2,CO2等)の存在によりウエハ上の膜が酸化される。特にH2Oは、大気開放時の壁面への付着等により、雰囲気中に長時間にわたり放出される。つまり、H2Oは、真空排気を行っても、短時間に効果的に低減することが難しい。このため、成膜後のウエハが搬送中の雰囲気で酸化されると、比抵抗の上昇等のようにデバイス特性が悪化することがある。そこで、ウエハの搬送中における雰囲気の酸化力を低減することが期待されている。 Conventionally, in order to prevent deterioration of the object to be processed in a transport chamber or the like, it has been proposed to supply an inert gas, for example, N2 gas when performing vacuum exhaust. However, when depositing compounds other than oxides, pure metals, etc., even a small amount of oxidized species (H2O, O2), even a rare gas such as N2 gas or Ar, He, which is usually regarded as a non-oxidizing atmosphere. , CO2, etc.) will oxidize the film on the wafer. In particular, H2O is released into the atmosphere for a long time due to adhesion to the wall surface when it is open to the atmosphere. That is, it is difficult to effectively reduce H2O in a short time even if vacuum exhaust is performed. Therefore, if the wafer after film formation is oxidized in the atmosphere during transportation, the device characteristics may be deteriorated such as an increase in specific resistance. Therefore, it is expected to reduce the oxidizing power of the atmosphere during the transfer of the wafer.
[真空処理装置1の構成]
 図1は、本開示の一実施形態における真空処理装置の構成の一例を示す横断平面図である。真空処理装置1は、ウエハWにTiN膜を有する積層膜を形成する。真空処理装置1は、第1の搬送室(常圧搬送室)11、アライメント室20、ロードロック室31,32、第2の搬送室(真空搬送室)41および成膜モジュール71~74を備える。第1の搬送室11は、ロードロック室31,32を介して第2の搬送室41に接続されている。第2の搬送室41は、成膜モジュール71~74に接続されている。成膜モジュール71~74はウエハWにTiN膜を形成する。
[Structure of Vacuum Processing Device 1]
FIG. 1 is a cross-sectional plan view showing an example of the configuration of the vacuum processing apparatus according to the embodiment of the present disclosure. The vacuum processing apparatus 1 forms a laminated film having a TiN film on the wafer W. The vacuum processing apparatus 1 includes a first transport chamber (normal pressure transport chamber) 11, an alignment chamber 20, load lock chambers 31, 32, a second transport chamber (vacuum transport chamber) 41, and film forming modules 71 to 74. .. The first transport chamber 11 is connected to the second transport chamber 41 via the load lock chambers 31 and 32. The second transport chamber 41 is connected to the film forming modules 71 to 74. The film forming modules 71 to 74 form a TiN film on the wafer W.
 第1の搬送室11は、真空処理装置1に対してウエハWの搬入および搬出を行うローダモジュールを構成し、平面視長方形に構成されている。第1の搬送室11の長さ方向を左右方向とすると、当該第1の搬送室11の前方側には載置台12が設けられており、複数枚のウエハWを収納する搬送容器であるキャリアCが載置される。第1の搬送室11の正面壁には、載置台12に載置されたキャリアCに設けられる蓋(図示せず)と一緒に開閉される開閉ドア13が設けられている。第1の搬送室11内は、常圧雰囲気とされる。当該第1の搬送室11内には、多関節アームである第1のウエハ搬送機構14が設けられている。 The first transfer chamber 11 constitutes a loader module for loading and unloading the wafer W to the vacuum processing device 1, and is configured to be rectangular in a plan view. Assuming that the length direction of the first transport chamber 11 is the left-right direction, a mounting table 12 is provided on the front side of the first transport chamber 11, and a carrier which is a transport container for storing a plurality of wafers W. C is placed. On the front wall of the first transport chamber 11, an opening / closing door 13 that opens and closes together with a lid (not shown) provided on the carrier C mounted on the mounting table 12 is provided. The inside of the first transport chamber 11 has a normal pressure atmosphere. A first wafer transfer mechanism 14, which is an articulated arm, is provided in the first transfer chamber 11.
 図2は、真空処理装置の構成の一例を示す縦断側面図である。図2に示すように、第1のウエハ搬送機構14の上方には、ファンフィルタユニット(FFU)16が設けられ、下方に向けて清浄化された還元性ガスを含むパージガスを供給する。パージガスは、例えば、N2ガスまたは希ガスに還元性ガスとしてH2ガスを混合したガスである。なお、N2ガスまたは希ガスは、ピュリファイヤーを用いて、H2OやO2等の酸化種が低減されるようにしてもよい。第1の搬送室11内の底部には排気口17が開口している。排気管18は、排気口17にその一端が接続される。排気管18の他端は、排気ファンなどにより構成される排気機構19を介してFFU16に接続される。FFU16から第1の搬送室11内に供給されたパージガスは、排気機構19により排気口17から排気された後、FFU16に供給される。そして、FFU16にて清浄化された後、再度、第1の搬送室11内の下方へ供給される。つまり、パージガスは、排気管18および第1の搬送室11内を循環する。 FIG. 2 is a vertical sectional side view showing an example of the configuration of the vacuum processing apparatus. As shown in FIG. 2, a fan filter unit (FFU) 16 is provided above the first wafer transfer mechanism 14, and supplies purge gas containing a purified reducing gas downward. The purge gas is, for example, a gas obtained by mixing N2 gas or a rare gas with H2 gas as a reducing gas. As for the N2 gas or the rare gas, a purifier may be used to reduce oxidized species such as H2O and O2. An exhaust port 17 is open at the bottom of the first transport chamber 11. One end of the exhaust pipe 18 is connected to the exhaust port 17. The other end of the exhaust pipe 18 is connected to the FFU 16 via an exhaust mechanism 19 composed of an exhaust fan or the like. The purge gas supplied from the FFU 16 into the first transport chamber 11 is exhausted from the exhaust port 17 by the exhaust mechanism 19 and then supplied to the FFU 16. Then, after being cleaned by FFU 16, it is supplied to the lower part in the first transport chamber 11 again. That is, the purge gas circulates in the exhaust pipe 18 and the first transport chamber 11.
 図1に示すように、載置台12から第1の搬送室11を見て、第1の搬送室11の左側壁には、アライメント室20が接続されている。アライメント室20は、ウエハWの向きや偏心の調整を行う。上記の第1のウエハ搬送機構14は、当該アライメント室20と、キャリアCと、ロードロック室31,32との間でウエハWの受け渡しを行うことができる。 As shown in FIG. 1, the alignment chamber 20 is connected to the left wall of the first transport chamber 11 when the first transport chamber 11 is viewed from the mounting table 12. The alignment chamber 20 adjusts the orientation and eccentricity of the wafer W. The first wafer transfer mechanism 14 can transfer the wafer W between the alignment chamber 20, the carrier C, and the load lock chambers 31 and 32.
 第1の搬送室11の後方にはロードロック室31,32が、左右にそれぞれ配置される。ロードロック室31,32は、ウエハWを待機させた状態で、内部の雰囲気を常圧雰囲気と真空雰囲気との間で切り替える。図2では、代表してロードロック室32を示しているが、ロードロック室31も同様に構成される。ロードロック室31,32については、後にさらに詳しく説明する。 Road lock chambers 31 and 32 are arranged on the left and right behind the first transport chamber 11, respectively. The load lock chambers 31 and 32 switch the internal atmosphere between the normal pressure atmosphere and the vacuum atmosphere while the wafer W is on standby. Although the load lock chamber 32 is shown as a representative in FIG. 2, the load lock chamber 31 is similarly configured. The load lock chambers 31 and 32 will be described in more detail later.
 ロードロック室31,32の後方には、平面視六角形に構成された第2の搬送室41が設けられる。第2の搬送室41内は、真空雰囲気とされる。第2のウエハ搬送機構42は、多関節アームとして構成される。第2のウエハ搬送機構42は、第2の搬送室41内にてウエハWを搬送するとともに、第2の搬送室41と成膜モジュール71~74との間、および、第2の搬送室41とロードロック室31,32との間で各々ウエハWを受け渡すことができる。 Behind the load lock chambers 31 and 32, a second transport chamber 41 having a hexagonal plan view is provided. The inside of the second transport chamber 41 has a vacuum atmosphere. The second wafer transfer mechanism 42 is configured as an articulated arm. The second wafer transfer mechanism 42 conveys the wafer W in the second transfer chamber 41, and also between the second transfer chamber 41 and the film forming modules 71 to 74, and the second transfer chamber 41. The wafer W can be delivered between the and the load lock chambers 31 and 32, respectively.
 図2に示すように、第2の搬送室41内の天井部には、ガスの供給口43が開口している。この供給口43には、第2の搬送室41の外側からガス供給管44の一端が接続されている。ガス供給管44の他端は、パージガス供給源45に接続されており、パージガス供給源45から供給口43に還元性ガスであるH2ガスを含むパージガスが供給される。 As shown in FIG. 2, a gas supply port 43 is opened in the ceiling portion in the second transport chamber 41. One end of the gas supply pipe 44 is connected to the supply port 43 from the outside of the second transport chamber 41. The other end of the gas supply pipe 44 is connected to the purge gas supply source 45, and the purge gas containing the reducing gas H2 gas is supplied from the purge gas supply source 45 to the supply port 43.
 ここで、パージガスに含まれる還元性ガスの一例であるH2ガスについて説明する。H2ガスは可燃性ガスであるため、濃度を管理することが求められる。本実施形態では、パージガスにおけるH2ガスの濃度を、H2爆発下限の4%に安全係数を掛けた濃度とすることで、可燃性ガスとして扱わなくてもよいようにしている。安全係数は、1以上であればよく、例えば1.2といった値を用いることができる。また、H2ガスの濃度は、爆発下限より薄くてもよく、例えば、3%とするようにしてもよい。つまり、H2ガスの濃度は、制御性を考慮して爆発下限の4%未満を十分カバーする値としていればよい。 Here, H2 gas, which is an example of the reducing gas contained in the purge gas, will be described. Since H2 gas is a flammable gas, it is required to control the concentration. In the present embodiment, the concentration of the H2 gas in the purge gas is set to a concentration obtained by multiplying the lower limit of the H2 explosion by a safety factor of 4% so that the gas does not have to be treated as a flammable gas. The safety factor may be 1 or more, and a value such as 1.2 can be used. Further, the concentration of H2 gas may be lower than the lower limit of explosion, and may be set to, for example, 3%. That is, the concentration of H2 gas may be set to a value that sufficiently covers less than 4% of the lower limit of explosion in consideration of controllability.
 H2ガスの濃度については、例えば、第2の搬送室41に対応するトランスファモジュール(以下、TMという。)におけるH2ガスの濃度と還元力は、次のように求められる。まず、TM内の露点を0℃と仮定する。また、H2Oの分圧(以下、PH2Oという。)を、0.006atm(6.11hPa)とする。なお、6.11hPaは、かなり厳しめに見積もった値であり、実際には10Pa台程度まで低減可能である。TM全圧を100Paとした場合、H2爆発下限の4%は、H2の分圧(以下、PH2という。)で表すと、4Paとなる。この場合、PH2/PH2Oは、1/100以下となる。なお、PH2Oを10Paとすると、PH2/PH2Oは、0.4となる。 Regarding the concentration of H2 gas, for example, the concentration of H2 gas and the reducing power in the transfer module (hereinafter referred to as TM) corresponding to the second transfer chamber 41 are obtained as follows. First, it is assumed that the dew point in TM is 0 ° C. Further, the partial pressure of H2O (hereinafter referred to as PH2O) is set to 0.006 atm (6.11 hPa). Note that 6.11 hPa is a value estimated very strictly, and can actually be reduced to about 10 Pa. When the total TM pressure is 100 Pa, 4% of the lower limit of H2 explosion is 4 Pa when expressed by the partial pressure of H2 (hereinafter referred to as PH2). In this case, PH2 / PH2O is 1/100 or less. If PH2O is 10 Pa, PH2 / PH2O is 0.4.
 図3は、PH2/PH2Oにおける還元力の一例を示す図である。図3の表100は、PH2/PH2Oの値と、400℃における酸素分圧(以下、PO2という。)と、還元力の目安との対応を示す。例えば、PH2/PH2O=1/100である場合、PO2を1E-24Pa程度まで下げることに相当し、400℃でNiOを還元する程度の還元力を有する。また、例えば、PH2/PH2O=10である場合、PO2を1E-29Pa程度まで下げることに相当し、400℃でFeOを還元する程度の還元力を有する。 FIG. 3 is a diagram showing an example of reducing power in PH2 / PH2O. Table 100 of FIG. 3 shows the correspondence between the values of PH2 / PH2O, the oxygen partial pressure at 400 ° C. (hereinafter referred to as PO2), and the guideline of the reducing power. For example, when PH2 / PH2O = 1/100, it corresponds to lowering PO2 to about 1E-24Pa, and has a reducing power enough to reduce NiO at 400 ° C. Further, for example, when PH2 / PH2O = 10, it corresponds to lowering PO2 to about 1E-29Pa, and has a reducing power enough to reduce FeO at 400 ° C.
 PH2/PH2Oは、下記の式(1)~(6)で導出される。金属がH2Oで酸化される場合の自由エネルギー変化は、下記の式(1)~(3)で表される。ここで、自由エネルギー変化がマイナスである場合、自発的に反応が進む。式(1)は、金属の自由エネルギー変化ΔGを示す。なお、Meは、金属を示す。式(2)は、H2の自由エネルギー変化ΔGを示す。式(3)は、金属がH2Oで酸化される自由エネルギー変化ΔGを示す。また、式(1)~(3)の自由エネルギー変化ΔGは、それぞれ式(4)~(6)と表すことができる。このうち、式(6)が、PH2/PH2Oを表すことになる。 PH2 / PH2O is derived by the following equations (1) to (6). The change in free energy when the metal is oxidized by H2O is represented by the following formulas (1) to (3). Here, when the change in free energy is negative, the reaction proceeds spontaneously. Equation (1) represents the free energy change ΔG 1 of the metal. In addition, Me represents a metal. Equation (2) represents the free energy change ΔG 2 of H2. Equation (3) represents the free energy change ΔG 3 in which the metal is oxidized by H2O. Further, the free energy change ΔG of the equations (1) to (3) can be expressed by the equations (4) to (6), respectively. Of these, the formula (6) represents PH2 / PH2O.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 このように、H2ガスは、H2爆発下限の4%未満の濃度であっても、PH2/PH2Oが所望の還元力を有するので、TM内のH2OやO2等の酸化種を低減したのと同等の効果を得ることができる。すなわち、TM内の雰囲気の酸化力を低減することができる。 As described above, even if the concentration of H2 gas is less than 4% of the lower limit of H2 explosion, PH2 / PH2O has a desired reducing power, which is equivalent to reducing oxidized species such as H2O and O2 in TM. The effect of can be obtained. That is, the oxidizing power of the atmosphere in the TM can be reduced.
 図2に戻って説明を続ける。第2の搬送室41内の底部には、排気口47が開口しており、この排気口47には、第2の搬送室41の外側から排気管48の一端が接続されている。排気管48の他端は、排気機構であるドライポンプ49に接続されている。 Return to Fig. 2 and continue the explanation. An exhaust port 47 is opened at the bottom of the second transport chamber 41, and one end of an exhaust pipe 48 is connected to the exhaust port 47 from the outside of the second transport chamber 41. The other end of the exhaust pipe 48 is connected to the dry pump 49, which is an exhaust mechanism.
 続いて、ロードロック室31,32の説明に戻る。これらロードロック室31,32も、第2の搬送室41と同様に、ウエハWの搬送領域にパージガスの気流を形成できるように構成される。上記したように、ロードロック室31,32は互いに同様に構成されるので、ここでは代表して図2に示すロードロック室32について説明する。ステージ33は、その表面にウエハWが載置される。昇降ピン34は、ステージ33の表面において突没して、第1のウエハ搬送機構14および第2のウエハ搬送機構42と、ステージ33との間でウエハWを受け渡す。供給口35は、ロードロック室32内の天井部に開口したガスの供給口である。パージガス供給源36は、ガス供給管37を介して供給口35に接続される。排気口64は、ロードロック室32内の底部に開口している。排気管65は、ドライポンプ66と排気口64とを接続する排気管であり、バルブV1が介設されている。 Next, return to the explanation of the road lock chambers 31 and 32. Similar to the second transfer chamber 41, the load lock chambers 31 and 32 are also configured so that an air flow of purge gas can be formed in the transfer region of the wafer W. As described above, since the load lock chambers 31 and 32 are configured in the same manner as each other, the load lock chamber 32 shown in FIG. 2 will be described here as a representative. The wafer W is placed on the surface of the stage 33. The elevating pin 34 is recessed on the surface of the stage 33 to transfer the wafer W between the first wafer transfer mechanism 14 and the second wafer transfer mechanism 42 and the stage 33. The supply port 35 is a gas supply port opened in the ceiling portion in the load lock chamber 32. The purge gas supply source 36 is connected to the supply port 35 via the gas supply pipe 37. The exhaust port 64 opens at the bottom of the load lock chamber 32. The exhaust pipe 65 is an exhaust pipe that connects the dry pump 66 and the exhaust port 64, and is provided with a valve V1.
 続いて成膜モジュール71について、縦断側面図である図4を参照しながら説明する。図4は、真空処理装置を構成する成膜モジュールの一例を示す縦断側面図である。成膜モジュール71は、ALD(Atomic Layer Deposition)によりウエハWにTiN膜を成膜する。なお、成膜モジュール72~74についても、成膜モジュール71と同様に構成されており、TiN膜を形成する。処理容器701は、真空処理室を構成し、後述のゲートバルブGにより開閉される。載置台702は、ウエハWの載置台であり、載置されたウエハWを、例えば350℃~700℃の成膜温度に加熱するヒーター712を備える。カバー部材722は、ウエハWの載置領域の外周側、および、載置台702の側周面を、周方向に亘って覆うカバー部材である。支持部材732は、載置台702の下方を支持する。昇降部材742は、支持部材732を介して載置台702を、実線で示す上方位置と、鎖線で示す下方位置との間で昇降させる。下方位置は、ゲートバルブGを介して処理容器701に進入した第2のウエハ搬送機構42との間でウエハWを受け渡す位置である。上方位置は、ウエハWに成膜を行う処理位置である。 Subsequently, the film forming module 71 will be described with reference to FIG. 4, which is a vertical sectional side view. FIG. 4 is a vertical sectional side view showing an example of a film forming module constituting the vacuum processing apparatus. The film forming module 71 forms a TiN film on the wafer W by ALD (Atomic Layer Deposition). The film forming modules 72 to 74 are also configured in the same manner as the film forming modules 71, and form a TiN film. The processing container 701 constitutes a vacuum processing chamber and is opened and closed by a gate valve G described later. The mounting table 702 is a mounting table for the wafer W, and includes a heater 712 that heats the mounted wafer W to a film formation temperature of, for example, 350 ° C. to 700 ° C. The cover member 722 is a cover member that covers the outer peripheral side of the mounting region of the wafer W and the side peripheral surface of the mounting table 702 in the circumferential direction. The support member 732 supports the lower part of the mounting table 702. The elevating member 742 elevates and elevates the mounting table 702 via the support member 732 between the upper position indicated by the solid line and the lower position indicated by the chain line. The lower position is a position where the wafer W is delivered to and from the second wafer transfer mechanism 42 which has entered the processing container 701 via the gate valve G. The upper position is a processing position for forming a film on the wafer W.
 ベローズ752は、処理容器701内を気密に保ち、載置台702の昇降によって伸縮する。昇降ピン762は、3本(図では2本のみ表示)の昇降ピンであり、昇降機構772により昇降する。昇降ピン762は、載置台702に設けられる孔782を介して、載置台702の表面にて突没する。昇降ピン762により、下方位置に位置する載置台702と、第2の搬送室41における第2のウエハ搬送機構42との間でウエハWが受け渡される。排気ダクト703は、処理容器701の側壁の一部を構成する。排気ダクト703は、上方位置における載置台702の周囲を囲むように円環状に構成される。排気ダクト703には、真空ポンプなどにより構成される排気部713が接続される。排気部713は、排気ダクト703の内周面に周方向に沿って形成された開口部723を介して、載置台702上から流れ出たガスを排気する。 The bellows 752 keeps the inside of the processing container 701 airtight and expands and contracts by raising and lowering the mounting table 702. The elevating pin 762 is three elevating pins (only two are shown in the figure), and is elevated by the elevating mechanism 772. The elevating pin 762 is recessed on the surface of the mounting table 702 through the hole 782 provided in the mounting table 702. The wafer W is delivered by the elevating pin 762 between the mounting table 702 located at the lower position and the second wafer transfer mechanism 42 in the second transfer chamber 41. The exhaust duct 703 forms a part of the side wall of the processing container 701. The exhaust duct 703 is formed in an annular shape so as to surround the mounting table 702 in the upper position. An exhaust unit 713 composed of a vacuum pump or the like is connected to the exhaust duct 703. The exhaust unit 713 exhausts the gas flowing out from the mounting table 702 through the opening 723 formed along the circumferential direction on the inner peripheral surface of the exhaust duct 703.
 天板部材704は、処理容器701を構成する。天板部材704は、その下面に凹部が形成され、この凹部の中央側から外周側へ向けて末広がりの形状の傾斜面が形成されている。この傾斜面と、上方位置における載置台702の上面とによって囲まれた空間は、ウエハWの処理空間724を構成する。傾斜面の外側には、載置台702のカバー部材722に対向するように平坦なリム714が設けられる。 The top plate member 704 constitutes the processing container 701. The top plate member 704 has a concave portion formed on the lower surface thereof, and an inclined surface having a divergent shape is formed from the central side to the outer peripheral side of the concave portion. The space surrounded by the inclined surface and the upper surface of the mounting table 702 at the upper position constitutes the processing space 724 of the wafer W. A flat rim 714 is provided on the outside of the inclined surface so as to face the cover member 722 of the mounting table 702.
 天板部材704には、ガス供給路734,744が互いに区画されて設けられている。ガス供給路734,744の下流端は、処理空間724のウエハWの中央部上に開口する。分散板754は、ウエハWの中央部上に設けられる。分散板754は、各ガス供給路734,744から供給されたガスと衝突する。分散板754に衝突したガスの一部は、分散板754の下方に回り込んでウエハWの中央部に到達する。残るガスは、分散板754に案内されて流れ方向を変え、処理空間724の天井部の傾斜面に案内されながら、天板部材704の中央部側から外周部側へ向け、径方向に沿って放射状に広がってウエハWに供給される。上記のガス供給路734の上流端は分岐し、NH3(アンモニア)ガス供給源705、N2ガス供給源715に、それぞれ接続される。また、上記のガス供給路744の上流端は分岐し、N2ガス供給源715、TiCl4ガス供給源725に、それぞれ接続される。 The top plate member 704 is provided with gas supply paths 734 and 744 partitioned from each other. The downstream ends of the gas supply paths 734 and 744 open above the central portion of the wafer W in the processing space 724. The dispersion plate 754 is provided on the central portion of the wafer W. The dispersion plate 754 collides with the gas supplied from each gas supply path 734,744. A part of the gas that collides with the dispersion plate 754 wraps around below the dispersion plate 754 and reaches the central portion of the wafer W. The remaining gas is guided by the dispersion plate 754 to change the flow direction, and is guided to the inclined surface of the ceiling portion of the processing space 724 from the central portion side to the outer peripheral portion side of the top plate member 704 along the radial direction. It spreads radially and is supplied to the wafer W. The upstream end of the gas supply path 734 branches and is connected to the NH3 (ammonia) gas supply source 705 and the N2 gas supply source 715, respectively. Further, the upstream end of the gas supply path 744 is branched and connected to the N2 gas supply source 715 and the TiCl4 gas supply source 725, respectively.
 また、成膜モジュール71は、処理容器701の底部に、パージガス供給源791に接続されたパージガス供給路792を有する。パージガス供給路792は、処理容器701内に接続される。パージガス供給源791は、第2の搬送室41のパージガス供給源45と同様に、パージガス供給路792を介して、パージガスを処理容器701内に供給する。 Further, the film forming module 71 has a purge gas supply path 792 connected to the purge gas supply source 791 at the bottom of the processing container 701. The purge gas supply path 792 is connected to the inside of the processing container 701. The purge gas supply source 791 supplies the purge gas into the processing container 701 via the purge gas supply path 792, similarly to the purge gas supply source 45 of the second transport chamber 41.
 パージガスは、パージガス供給源791からパージガス供給路792を介して、処理容器701内に流入する。処理容器701内に流入したパージガスは、処理容器701内の載置台702の下部空間200に供給される。なお、載置台702の下部空間200とは、ガス供給路734,744から供給される処理ガスで満たされない領域(ボトムエリア)である。 The purge gas flows from the purge gas supply source 791 into the processing container 701 via the purge gas supply path 792. The purge gas that has flowed into the processing container 701 is supplied to the lower space 200 of the mounting table 702 in the processing container 701. The lower space 200 of the mounting table 702 is a region (bottom area) that is not filled with the processing gas supplied from the gas supply paths 734 and 744.
 すなわち、成膜モジュール71は、処理空間724以外の処理容器701内の下部空間200にパージガスを供給し、ボトムパージを行う。この場合、パージガスのH2ガスの濃度は、処理ガス(プリカーサおよび反応ガス)との反応が許容できる程度であればよい。また、パージガスのH2ガスは、処理容器701内の酸化種の濃度より高い分圧であればよい。また、還元性ガスとしては、処理ガスとの反応が許容できる程度の他の還元性ガスであってもよい。これにより、下部空間200に残存する水分子による、雰囲気の酸化力を低減することができる。言い換えると、成膜モジュール71での処理が終了し、載置台702を動かした場合や、ゲートバルブGを開放した場合における雰囲気の酸化力を低減することができる。 That is, the film forming module 71 supplies purge gas to the lower space 200 in the processing container 701 other than the processing space 724 to perform bottom purging. In this case, the concentration of H2 gas in the purge gas may be such that the reaction with the processing gas (precursor and reaction gas) is acceptable. Further, the H2 gas of the purge gas may have a partial pressure higher than the concentration of the oxidized species in the processing container 701. Further, the reducing gas may be another reducing gas having an allowable reaction with the processing gas. As a result, the oxidizing power of the atmosphere due to the water molecules remaining in the lower space 200 can be reduced. In other words, it is possible to reduce the oxidizing power of the atmosphere when the processing in the film forming module 71 is completed and the mounting table 702 is moved or when the gate valve G is opened.
 成膜モジュール71~74は、図1に示すように、上記の第2の搬送室41を囲むように設けられる。各成膜モジュール71~74を構成する処理容器701と第2の搬送室41とは、仕切り弁であるゲートバルブGを介して各々接続される。各ゲートバルブGは、互いに同様に構成され、代表して図2に示す成膜モジュール71の処理容器701と第2の搬送室41との間に介在するゲートバルブGについて説明する。ゲートバルブGは、バルブ本体G1を備え、バルブ本体G1が昇降することで、処理容器701と第2の搬送室41とが互いに気密に区画された状態と、互いに連通した状態とが切り替えられる。図2では、互いに気密に区画された状態を示している。 As shown in FIG. 1, the film forming modules 71 to 74 are provided so as to surround the second transport chamber 41. The processing container 701 and the second transfer chamber 41 constituting each film forming module 71 to 74 are connected to each other via a gate valve G which is a sluice valve. Each gate valve G is configured in the same manner as each other, and the gate valve G interposed between the processing container 701 of the film forming module 71 and the second transfer chamber 41 shown in FIG. 2 will be described as a representative. The gate valve G includes a valve body G1, and when the valve body G1 moves up and down, the processing container 701 and the second transport chamber 41 can be switched between a state in which they are airtightly partitioned from each other and a state in which they communicate with each other. FIG. 2 shows a state in which they are airtightly partitioned from each other.
 また、第2の搬送室41とロードロック室31,32の各々とについても、ゲートバルブGを介して接続される。さらに、ロードロック室31,32の各々と、第1の搬送室11とについても、ゲートバルブGを介して接続される。これらのゲートバルブGも、上記の成膜モジュール71と第2の搬送室41との間に介在するゲートバルブGと同様に、隣接する室間が互いに気密に区画された状態と、互いに連通した状態とを切り替える。 Further, each of the second transport chamber 41 and the load lock chambers 31 and 32 is also connected via the gate valve G. Further, each of the load lock chambers 31 and 32 and the first transport chamber 11 are also connected via the gate valve G. Similar to the gate valve G interposed between the film forming module 71 and the second transfer chamber 41, these gate valves G also communicate with each other in a state in which adjacent chambers are airtightly partitioned from each other. Switch between states.
 ところで、真空処理装置1には、図1に示すように、例えばコンピュータである制御部10が設けられている。制御部10は、プログラム、メモリ、CPUなどを備えている。このプログラムには、制御部10から真空処理装置1の各部に制御信号を送り、後述するウエハWの搬送および成膜モジュール71~74におけるウエハWの処理を進行させるように命令(各ステップ)が組み込まれている。プログラムは、コンピュータ記憶媒体、例えばフレキシブルディスク、コンパクトディスク、ハードディスク、MO(光磁気ディスク)、メモリーカードなどの記憶媒体に格納されて制御部10にインストールされる。 By the way, as shown in FIG. 1, the vacuum processing apparatus 1 is provided with, for example, a control unit 10 which is a computer. The control unit 10 includes a program, a memory, a CPU, and the like. In this program, a control signal is sent from the control unit 10 to each unit of the vacuum processing apparatus 1, and an instruction (each step) is instructed to proceed with the transfer of the wafer W and the processing of the wafer W in the film forming modules 71 to 74, which will be described later. It has been incorporated. The program is stored in a computer storage medium such as a flexible disk, a compact disk, a hard disk, an MO (magneto-optical disk), or a memory card, and is installed in the control unit 10.
[成膜モジュール71における処理]
 上記の成膜モジュール71における処理の流れを説明する。また、図5および図6を用いてパージガスの流れについて説明する。図5は、成膜モジュールにおけるパージガスの流れの一例を示す図である。まず、予め処理容器701内を真空雰囲気に減圧した後、図5に示すように載置台702を受け渡し位置まで降下させる。そして、ゲートバルブGを開放し、第2の搬送室41に設けられた第2のウエハ搬送機構42の搬送アームを進入させ、昇降ピン762との間でウエハWの受け渡しを行う。しかる後、昇降ピン762を降下させ、ヒーター712によって既述の成膜温度に加熱された載置台702上にウエハWを載置する。
[Processing in the film forming module 71]
The flow of processing in the film forming module 71 will be described. Further, the flow of the purge gas will be described with reference to FIGS. 5 and 6. FIG. 5 is a diagram showing an example of the flow of purge gas in the film forming module. First, the inside of the processing container 701 is depressurized to a vacuum atmosphere in advance, and then the mounting table 702 is lowered to the delivery position as shown in FIG. Then, the gate valve G is opened, the transfer arm of the second wafer transfer mechanism 42 provided in the second transfer chamber 41 is allowed to enter, and the wafer W is transferred to and from the elevating pin 762. After that, the elevating pin 762 is lowered, and the wafer W is placed on the mounting table 702 heated to the film formation temperature described above by the heater 712.
 このとき、図5に示すように、パージガス供給源791からは処理容器701内へと例えば100~10000sccm(0℃、1気圧基準)の範囲の1500sccmのパージガス(N2+H2ガス)が供給されている。パージガスは、処理容器701内の下部空間200(ボトムエリア)内に流れ込み、処理容器701内を上昇して開口部723より排気される。 At this time, as shown in FIG. 5, 1500 sccm of purge gas (N2 + H2 gas) in the range of 100 to 10000 sccm (0 ° C., 1 atm standard) is supplied into the processing container 701 from the purge gas supply source 791. The purge gas flows into the lower space 200 (bottom area) in the processing container 701, rises in the processing container 701, and is exhausted from the opening 723.
 図6は、成膜モジュールにおけるパージガスの流れの他の一例を示す図である。載置台702上にウエハWが載置されたら、ゲートバルブGを閉じ、載置台702を処理位置まで上昇させて処理空間724を形成するとともに、処理容器701内の圧力を例えば400Paに調整する。次いで、所定の温度まで加熱されたウエハWの表面に、ガス供給路734,744を介してTiCl4ガス→N2ガス→NH3ガス→N2ガスの順に反応ガス(TiCl4ガス、NH3ガス)と置換用のガス(N2ガス)との供給を繰り返す。この結果、ウエハWに吸着した反応ガスが互いに反応してTiN(窒化チタン)の分子層が形成され、この分子層が積層されてTiN膜が成膜される。 FIG. 6 is a diagram showing another example of the flow of purge gas in the film forming module. When the wafer W is placed on the mounting table 702, the gate valve G is closed, the mounting table 702 is raised to the processing position to form a processing space 724, and the pressure in the processing container 701 is adjusted to, for example, 400 Pa. Next, the surface of the wafer W heated to a predetermined temperature is replaced with a reaction gas (TiCl4 gas, NH3 gas) in the order of TiCl4 gas → N2 gas → NH3 gas → N2 gas via a gas supply path 734,744. The supply with gas (N2 gas) is repeated. As a result, the reaction gases adsorbed on the wafer W react with each other to form a molecular layer of TiN (titanium nitride), and the molecular layers are laminated to form a TiN film.
 ウエハWの成膜中も、処理容器701内の下部空間200には、引き続きパージガス供給源791からパージガスが供給されている。そして、処理位置まで上昇させた載置台702の周囲には、排気ダクト703の一部が配置されていることから、処理容器701内は、載置台702の上部側の空間(処理空間724や排気ダクト703内の空間)と下部側の下部空間200(ボトムエリア)とに区画された状態となっている。 Even during the film formation of the wafer W, the purge gas is continuously supplied from the purge gas supply source 791 to the lower space 200 in the processing container 701. Since a part of the exhaust duct 703 is arranged around the mounting table 702 raised to the processing position, the space inside the processing container 701 is the space on the upper side of the mounting table 702 (processing space 724 and exhaust gas). It is divided into a space inside the duct 703) and a lower space 200 (bottom area) on the lower side.
 下部空間200に流れ込んだパージガスは、載置台702と排気ダクト703との隙間を介して排気ダクト703内に流れ込み、外部へと排出される。このように、下部空間200にパージガスを流すことにより、残留した水分子(H2O)を除去し、下部空間200における雰囲気の酸化力を低減することができる。また、下部空間200にパージガスを流すことにより、処理空間724から反応ガスが処理容器701の下方側へと侵入することを抑えることができる。 The purge gas that has flowed into the lower space 200 flows into the exhaust duct 703 through the gap between the mounting table 702 and the exhaust duct 703, and is discharged to the outside. By flowing the purge gas through the lower space 200 in this way, the residual water molecules (H2O) can be removed and the oxidizing power of the atmosphere in the lower space 200 can be reduced. Further, by flowing the purge gas through the lower space 200, it is possible to prevent the reaction gas from entering the lower side of the processing container 701 from the processing space 724.
 こうして上述の反応ガスや置換ガスの供給サイクルを数十回~数百回程度繰り返し、所望の膜厚の窒化チタンの膜を成膜したら、反応ガスおよび置換ガスの供給を停止し、処理容器701内の真空排気を停止して載置台702を降下させ、ゲートバルブGを開いてウエハWを取り出す。下部空間200は、還元性のパージガスで置換されているため、残存する水分子による、雰囲気の酸化力を低減することができる。言い換えると、成膜モジュール71での処理が終了し、載置台702を動かした場合や、ゲートバルブGを開放した場合における雰囲気の酸化力を低減することができる。 In this way, the above-mentioned supply cycle of the reaction gas and the replacement gas is repeated several tens to several hundreds of times to form a titanium nitride film having a desired thickness, the supply of the reaction gas and the replacement gas is stopped, and the processing vessel 701 is used. The vacuum exhaust inside is stopped, the mounting table 702 is lowered, the gate valve G is opened, and the wafer W is taken out. Since the lower space 200 is replaced with the reducing purge gas, the oxidizing power of the atmosphere due to the remaining water molecules can be reduced. In other words, it is possible to reduce the oxidizing power of the atmosphere when the processing in the film forming module 71 is completed and the mounting table 702 is moved or when the gate valve G is opened.
[処理方法]
 続いて、真空処理装置1全体のウエハWの処理について説明する。載置台12に載置されたキャリアCに格納されたウエハWは、第1の搬送室11→アライメント室20→ロードロック室31または32→第2の搬送室41→成膜モジュール71~74のいずれかの順で搬送され、その表面にTiN膜が形成される。TiN膜が形成されたウエハWは、第2の搬送室41→ロードロック室31または32→第1の搬送室11の順で搬送されて、キャリアCに戻される。このとき、ウエハWは、パージガスによるH2を含む雰囲気内を搬送されるので、ウエハW表面の酸化が抑制される。なお、パージガスは、真空処理装置1の動作中に、成膜モジュール71~74、ロードロック室31,32および第2の搬送室41に対して常時供給してもよいし、ウエハWが存在する場合に供給するようにしてもよい。また、上記の実施形態において、FFU16、ガス供給管37,44、および、パージガス供給路792等におけるH2濃度をH2とN2の流量比などで検知し、真空処理装置1の各部に導入する時点で設定濃度を上回る場合には、真空処理装置1や真空処理室(処理容器701)の動作の停止、および、H2ガスの導入の遮断のうち、1つまたは複数を実行するようにしてもよい。
[Processing method]
Subsequently, the processing of the wafer W of the entire vacuum processing apparatus 1 will be described. The wafer W stored in the carrier C mounted on the mounting table 12 has a first transport chamber 11 → an alignment chamber 20 → a load lock chamber 31 or 32 → a second transport chamber 41 → a film forming module 71 to 74. It is transported in any order, and a TiN film is formed on the surface thereof. The wafer W on which the TiN film is formed is conveyed in the order of the second transfer chamber 41 → the load lock chamber 31 or 32 → the first transfer chamber 11 and returned to the carrier C. At this time, since the wafer W is conveyed in the atmosphere containing H2 by the purge gas, the oxidation of the surface of the wafer W is suppressed. The purge gas may be constantly supplied to the film forming modules 71 to 74, the load lock chambers 31 and 32, and the second transport chamber 41 during the operation of the vacuum processing apparatus 1, and the wafer W is present. It may be supplied in some cases. Further, in the above embodiment, when the H2 concentration in the FFU 16, the gas supply pipes 37, 44, the purge gas supply path 792, etc. is detected by the flow rate ratio of H2 and N2, etc., and introduced into each part of the vacuum processing apparatus 1. If the concentration exceeds the set concentration, one or a plurality of the stop of the operation of the vacuum processing apparatus 1 and the vacuum processing chamber (processing container 701) and the interruption of the introduction of the H2 gas may be executed.
 また、上記の実施形態において、成膜モジュール71~74、ロードロック室31,32および第2の搬送室41に、H2ガスの濃度を検出するセンサを設けてもよい。この場合、真空処理装置1は、当該センサが燃焼下限以上の濃度のH2ガスを検出した場合に、自身の動作を停止するようにしてもよい。 Further, in the above embodiment, sensors for detecting the concentration of H2 gas may be provided in the film forming modules 71 to 74, the load lock chambers 31 and 32, and the second transport chamber 41. In this case, the vacuum processing device 1 may stop its operation when the sensor detects H2 gas having a concentration equal to or higher than the lower limit of combustion.
 以上、本実施形態によれば、真空処理装置1は、成膜モジュール71と、ロードロック室31,32と、真空搬送室(第2の搬送室41)と、ガス供給部(FFU16、パージガス供給源36,45,791等)とを有する。成膜モジュール71は、真空雰囲気下で基板に対して処理を行う真空処理室(処理容器701)を含む。ロードロック室31,32は、真空雰囲気と常圧雰囲気との間で雰囲気を切り替える。真空搬送室は、真空処理室とロードロック室31,32との間に仕切り弁を介して設けられ、基板搬送機構(第2のウエハ搬送機構42)により真空処理室とロードロック室31,32との間で、基板を搬送する。ガス供給部は、真空処理室と、ロードロック室31,32と、真空搬送室とのうち、少なくとも1つに還元性ガスを含むパージガスを供給する。その結果、雰囲気の酸化力を低減することができる。 As described above, according to the present embodiment, the vacuum processing apparatus 1 includes the film forming module 71, the load lock chambers 31 and 32, the vacuum transport chamber (second transport chamber 41), and the gas supply unit (FFU16, purge gas supply). It has sources 36, 45, 791, etc.). The film forming module 71 includes a vacuum processing chamber (processing container 701) that processes the substrate in a vacuum atmosphere. The load lock chambers 31 and 32 switch the atmosphere between the vacuum atmosphere and the normal pressure atmosphere. The vacuum transfer chamber is provided between the vacuum processing chamber and the load lock chambers 31 and 32 via a sluice valve, and the vacuum processing chamber and the load lock chambers 31 and 32 are provided by the substrate transfer mechanism (second wafer transfer mechanism 42). The substrate is transported between and. The gas supply unit supplies purge gas containing a reducing gas to at least one of the vacuum processing chamber, the load lock chambers 31 and 32, and the vacuum transfer chamber. As a result, the oxidizing power of the atmosphere can be reduced.
 また、本実施形態によれば、ガス供給部は、真空処理室、ロードロック室31,32および真空搬送室のうち、1つまたは複数の室に基板が存在する場合に、パージガスを供給する。その結果、パージガスの使用量を低減することができる。 Further, according to the present embodiment, the gas supply unit supplies purge gas when the substrate is present in one or more of the vacuum processing chambers, the load lock chambers 31, 32, and the vacuum transfer chamber. As a result, the amount of purge gas used can be reduced.
 また、本実施形態によれば、パージガスは、真空処理室において、処理に用いる処理ガスで満たされない領域に供給される。その結果、真空処理室においても雰囲気の酸化力を低減することができる。また、処理後に搬送する際の酸化を低減することができる。 Further, according to the present embodiment, the purge gas is supplied to the region not filled with the processing gas used for the processing in the vacuum processing chamber. As a result, the oxidizing power of the atmosphere can be reduced even in the vacuum processing chamber. In addition, it is possible to reduce oxidation during transportation after treatment.
 また、本実施形態によれば、パージガスは、N2ガスまたは希ガスにH2ガスを混合したガスである。その結果、雰囲気の酸化力を低減することができる。 Further, according to the present embodiment, the purge gas is a gas obtained by mixing H2 gas with N2 gas or a rare gas. As a result, the oxidizing power of the atmosphere can be reduced.
 また、本実施形態によれば、パージガスは、H2ガスの濃度が燃焼下限未満の濃度である。その結果、パージガスを可燃性ガスとして扱わなくてもよくなる。 Further, according to the present embodiment, the purge gas has a concentration of H2 gas that is less than the lower limit of combustion. As a result, the purge gas does not have to be treated as a flammable gas.
 また、本実施形態によれば、真空処理装置1は、さらに、真空処理室、ロードロック室および真空搬送室に、H2ガスの濃度を検出するセンサを有する。真空処理装置1は、センサが燃焼下限以上の濃度のH2ガスを検出した場合に、真空処理装置1の動作の停止、および、H2ガスの導入の遮断のうち、1つまたは複数を実行する。その結果、安全性を向上することができる。 Further, according to the present embodiment, the vacuum processing apparatus 1 further has a sensor for detecting the concentration of H2 gas in the vacuum processing chamber, the load lock chamber, and the vacuum transfer chamber. When the sensor detects H2 gas having a concentration equal to or higher than the lower limit of combustion, the vacuum processing device 1 executes one or more of stopping the operation of the vacuum processing device 1 and shutting off the introduction of the H2 gas. As a result, safety can be improved.
 また、本実施形態によれば、真空処理装置1は、さらに、真空処理室に、パージガスの流量比を検出する検出手段を有する。真空処理装置1は、検出手段が検出した流量比に基づいて、H2ガスの設定濃度以上の濃度を検出した場合に、真空処理室の動作の停止、および、H2ガスの導入の遮断のうち、1つまたは複数を実行する。その結果、安全性を向上することができる。 Further, according to the present embodiment, the vacuum processing apparatus 1 further has a detecting means for detecting the flow rate ratio of the purge gas in the vacuum processing chamber. When the vacuum processing apparatus 1 detects a concentration equal to or higher than the set concentration of H2 gas based on the flow rate ratio detected by the detecting means, the operation of the vacuum processing chamber is stopped and the introduction of H2 gas is cut off. Do one or more. As a result, safety can be improved.
 また、本実施形態によれば、N2ガスまたは希ガスは、ピュリファイヤーを用いて酸化種が低減されたガスである。その結果、雰囲気の酸化力をより低減することができる。 Further, according to the present embodiment, the N2 gas or the rare gas is a gas in which the oxidized species is reduced by using a purifier. As a result, the oxidizing power of the atmosphere can be further reduced.
 また、本実施形態によれば、酸化種は、O2およびH2Oのうち、1つまたは複数である。その結果、雰囲気の酸化力をより低減することができる。 Further, according to the present embodiment, the oxidized species is one or more of O2 and H2O. As a result, the oxidizing power of the atmosphere can be further reduced.
 また、本実施形態によれば、真空処理装置1は、さらに、ロードロック室31,32を介して基板を搬入および搬出する搬送室(第1の搬送室11)を有する。また、搬送室は、上方にファンフィルタユニット16を有する。ファンフィルタユニット16は、還元性ガスを含むパージガスを搬送室の上方から下方に向けて供給する。その結果、常圧搬送室においても、雰囲気の酸化力を低減することができる。 Further, according to the present embodiment, the vacuum processing apparatus 1 further has a transport chamber (first transport chamber 11) for loading and unloading the substrate via the load lock chambers 31 and 32. Further, the transport chamber has a fan filter unit 16 above. The fan filter unit 16 supplies purge gas containing a reducing gas from above to below in the transport chamber. As a result, the oxidizing power of the atmosphere can be reduced even in the normal pressure transport chamber.
 今回開示された実施形態は、すべての点で例示であって、制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲およびその主旨を逸脱することなく、様々な形体で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The above embodiments may be omitted, replaced or modified in various forms without departing from the scope of the appended claims and their gist.
 また、上記した実施形態の真空処理装置1では、排気口47を1つとしたが、これに限定されない。第2の搬送室41の底面に、複数の排気口47を分散して開口し、各排気口47に排気管48の一端が接続され、各排気管48の他端は合流して、ドライポンプ49に接続されるようにしてもよい。つまり、排気管48は、マニホールドとして構成されている。また、ロードロック室31,32についても、マニホールドを備えるように構成してもよい。なお、このように排気口47を複数設けた場合、ドライポンプ49も複数設け、各排気口47を各ドライポンプ49に個別に接続し、各ドライポンプ49により互いに同じ排気量で排気してもよい。 Further, in the vacuum processing device 1 of the above-described embodiment, the number of exhaust ports 47 is one, but the present invention is not limited to this. A plurality of exhaust ports 47 are dispersedly opened on the bottom surface of the second transport chamber 41, one end of an exhaust pipe 48 is connected to each exhaust port 47, and the other end of each exhaust pipe 48 merges to form a dry pump. It may be connected to 49. That is, the exhaust pipe 48 is configured as a manifold. Further, the load lock chambers 31 and 32 may also be configured to include a manifold. When a plurality of exhaust ports 47 are provided in this way, even if a plurality of dry pumps 49 are provided, each exhaust port 47 is individually connected to each dry pump 49, and each dry pump 49 exhausts the same exhaust amount. Good.
 また、上記した実施形態の真空処理装置1では、成膜モジュール71~74としてALDを行う成膜モジュールを一例として説明したが、これに限定されない。例えば、CVD(Chemical Vapor Deposition)やPECVD(Plasma Enhanced Chemical Vapor Deposition)によって、TiN膜形成する成膜モジュールを接続してもよい。また、例えば、ドライエッチングを行うエッチングモジュールを第2の搬送室41に接続してもよい。ドライエッチングにより表面にTiN膜が露出したウエハWを、第2の搬送室41、ロードロック室31,32を介してキャリアCに搬送する場合に、第2の搬送室41およびロードロック室31,32においてウエハW表面全体でTiN膜の酸化を抑えることができる。さらに、成膜モジュール71~74の代わりにPVD(Physical Vapor Deposition)によってTiN膜を形成する成膜モジュールを接続してもよい。また、上記した実施形態では、TiN膜の形成を例に記載したが、TiN膜に限らず、金属膜(例えば、W含有膜、Ta含有膜など)やシリコンを含む絶縁膜(例えば、Si膜やSiN膜など)であってもよく、本来、形成される膜の酸化が防止されていればよい。 Further, in the vacuum processing apparatus 1 of the above-described embodiment, the film forming module that performs ALD as the film forming modules 71 to 74 has been described as an example, but the present invention is not limited to this. For example, a film forming module for forming a TiN film may be connected by CVD (Chemical Vapor Deposition) or PECVD (Plasma Enhanced Chemical Vapor Deposition). Further, for example, an etching module for performing dry etching may be connected to the second transfer chamber 41. When the wafer W whose surface is exposed to the TiN film by dry etching is transported to the carrier C via the second transport chamber 41 and the load lock chambers 31 and 32, the second transport chamber 41 and the load lock chamber 31, At 32, the oxidation of the TiN film can be suppressed over the entire surface of the wafer W. Further, instead of the film forming modules 71 to 74, a film forming module that forms a TiN film by PVD (Physical Vapor Deposition) may be connected. Further, in the above-described embodiment, the formation of the TiN film has been described as an example, but the film is not limited to the TiN film, but is not limited to the TiN film, but also a metal film (for example, a W-containing film, a Ta-containing film, etc.) or an insulating film containing silicon (for example, a Si film). , SiN film, etc.), as long as the originally formed film is prevented from being oxidized.
 また、上記した実施形態の真空処理装置1では、第2の搬送室41には、成膜モジュール71~74と、ロードロック室31,32とが接続されたが、これに限定されない。例えば、上記の真空処理装置1において、TiN膜形成後の後処理を行う後処理モジュールを第2の搬送室41に接続し、成膜モジュール71でTiN膜を形成したウエハWを、第2の搬送室41から当該後処理モジュールへ搬送するようにしてもよい。その場合もウエハWが第2の搬送室41に搬送されてから、後処理モジュールへ搬送されるまでの間、ウエハWの表面全体で酸化を抑制することができる。また、プリクリーンを行う前洗浄装置を第2の搬送室41に接続するようにしてもよい。この場合、ウエハWに設けられたコンタクト等の露出したSiや金属の酸化を抑制することができる。 Further, in the vacuum processing apparatus 1 of the above-described embodiment, the film forming modules 71 to 74 and the load lock chambers 31 and 32 are connected to the second transfer chamber 41, but the present invention is not limited to this. For example, in the above vacuum processing apparatus 1, the wafer W in which the post-treatment module for performing post-treatment after forming the TiN film is connected to the second transport chamber 41 and the TiN film is formed by the film forming module 71 is connected to the second transfer chamber 41. It may be transported from the transport chamber 41 to the post-processing module. In that case as well, oxidation can be suppressed on the entire surface of the wafer W from the time when the wafer W is conveyed to the second transfer chamber 41 until the wafer W is transferred to the post-processing module. Further, the pre-cleaning device for pre-cleaning may be connected to the second transport chamber 41. In this case, oxidation of exposed Si and metal such as contacts provided on the wafer W can be suppressed.
 1 真空処理装置
 11 第1の搬送室(常圧搬送室)
 14 第1のウエハ搬送機構
 16 ファンフィルタユニット(FFU)
 17 排気口
 18 排気管
 19 排気機構
 20 アライメント室
 31,32 ロードロック室
 35,43 供給口
 36,45 パージガス供給源
 41 第2の搬送室(真空搬送室)
 42 第2のウエハ搬送機構
 37,44 ガス供給管
 71~74 成膜モジュール
 G ゲートバルブ
 W ウエハ
1 Vacuum processing equipment 11 First transport chamber (normal pressure transport chamber)
14 First wafer transfer mechanism 16 Fan filter unit (FFU)
17 Exhaust port 18 Exhaust pipe 19 Exhaust mechanism 20 Alignment chamber 31, 32 Load lock chamber 35, 43 Supply port 36, 45 Purge gas supply source 41 Second transport chamber (vacuum transport chamber)
42 Second wafer transfer mechanism 37,44 Gas supply pipe 71-74 Film formation module G gate valve W wafer

Claims (11)

  1.  真空雰囲気下で基板に対して処理を行う真空処理室を含む処理モジュールと、
     真空雰囲気と常圧雰囲気との間で雰囲気を切り替えるロードロック室と、
     前記真空処理室とロードロック室との間に仕切り弁を介して設けられ、基板搬送機構により前記真空処理室と前記ロードロック室との間で、前記基板を搬送する真空搬送室と、
     前記真空処理室と、前記ロードロック室と、前記真空搬送室とのうち、少なくとも1つに還元性ガスを含むパージガスを供給するガス供給部と、
     を有する処理装置。
    A processing module including a vacuum processing chamber that processes the substrate in a vacuum atmosphere,
    A road lock room that switches the atmosphere between a vacuum atmosphere and a normal pressure atmosphere,
    A vacuum transfer chamber is provided between the vacuum processing chamber and the load lock chamber via a sluice valve, and the substrate is conveyed between the vacuum processing chamber and the load lock chamber by a substrate transport mechanism.
    A gas supply unit that supplies a purge gas containing a reducing gas to at least one of the vacuum processing chamber, the load lock chamber, and the vacuum transfer chamber.
    Processing equipment with.
  2.  前記ガス供給部は、前記真空処理室、前記ロードロック室および前記真空搬送室のうち、1つまたは複数の室に前記基板が存在する場合に、前記パージガスを供給する、
     請求項1に記載の処理装置。
    The gas supply unit supplies the purge gas when the substrate is present in one or more of the vacuum processing chamber, the load lock chamber, and the vacuum transfer chamber.
    The processing apparatus according to claim 1.
  3.  前記パージガスは、前記真空処理室において、前記処理に用いる処理ガスで満たされない領域に供給される、
     請求項1または2に記載の処理装置。
    The purge gas is supplied to a region not filled with the processing gas used for the processing in the vacuum processing chamber.
    The processing apparatus according to claim 1 or 2.
  4.  前記パージガスは、N2ガスまたは希ガスにH2ガスを混合したガスである、
     請求項1~3のいずれか1つに記載の処理装置。
    The purge gas is a gas obtained by mixing H2 gas with N2 gas or a rare gas.
    The processing apparatus according to any one of claims 1 to 3.
  5.  前記パージガスは、前記H2ガスの濃度が燃焼下限未満の濃度である、
     請求項4に記載の処理装置。
    The purge gas has a concentration of the H2 gas less than the lower limit of combustion.
    The processing apparatus according to claim 4.
  6.  さらに、前記真空処理室、前記ロードロック室および前記真空搬送室に、前記H2ガスの濃度を検出するセンサを有し、
     前記センサが燃焼下限以上の濃度の前記H2ガスを検出した場合に、処理装置の動作の停止、および、H2ガスの導入の遮断のうち、1つまたは複数を実行する、
     請求項4または5に記載の処理装置。
    Further, the vacuum processing chamber, the load lock chamber, and the vacuum transfer chamber are provided with sensors for detecting the concentration of the H2 gas.
    When the sensor detects the H2 gas having a concentration equal to or higher than the lower limit of combustion, one or more of stopping the operation of the processing device and shutting off the introduction of the H2 gas are executed.
    The processing apparatus according to claim 4 or 5.
  7.  さらに、前記真空処理室は、前記パージガスの流量比を検出する検出手段を有し、
     前記検出手段が検出した前記流量比に基づいて、前記H2ガスの設定濃度以上の濃度を検出した場合に、前記真空処理室の動作の停止、および、H2ガスの導入の遮断のうち、1つまたは複数を実行する、
     請求項4または5に記載の処理装置。
    Further, the vacuum processing chamber has a detecting means for detecting the flow rate ratio of the purge gas.
    When a concentration equal to or higher than the set concentration of the H2 gas is detected based on the flow rate ratio detected by the detection means, one of the stoppage of the operation of the vacuum processing chamber and the interruption of the introduction of the H2 gas. Or do more than one,
    The processing apparatus according to claim 4 or 5.
  8.  前記N2ガスまたは前記希ガスは、ピュリファイヤーを用いて酸化種が低減されたガスである、
     請求項4~7のいずれか1つに記載の処理装置。
    The N2 gas or the rare gas is a gas whose oxidized species has been reduced by using a purifier.
    The processing apparatus according to any one of claims 4 to 7.
  9.  前記酸化種は、O2およびH2Oのうち、1つまたは複数である、
     請求項8に記載の処理装置。
    The oxidized species is one or more of O2 and H2O.
    The processing apparatus according to claim 8.
  10.  さらに、前記ロードロック室を介して前記基板を搬入および搬出する搬送室を有し、
     前記搬送室は、上方にファンフィルタユニットを有し、
     前記ファンフィルタユニットは、前記還元性ガスを含む前記パージガスを前記搬送室の上方から下方に向けて供給する、
     請求項1~9のいずれか1つに記載の処理装置。
    Further, it has a transport chamber for loading and unloading the substrate through the load lock chamber.
    The transport chamber has a fan filter unit above and has a fan filter unit.
    The fan filter unit supplies the purge gas containing the reducing gas from above to below in the transport chamber.
    The processing apparatus according to any one of claims 1 to 9.
  11.  基板搬送機構により基板を搬送する真空搬送室に、還元性ガスを含むパージガスを供給することと、
     真空雰囲気と常圧雰囲気との間で雰囲気を切り替えるロードロック室に、前記パージガスを供給することと、
     真空雰囲気下で基板に対して処理を行う真空処理室において、前記処理に用いるプロセスガスで満たされない領域に前記パージガスを供給することと、
     を有する処理方法。
    Supplying purge gas containing reducing gas to the vacuum transfer chamber that transfers the substrate by the substrate transfer mechanism, and
    Supplying the purge gas to the load lock chamber that switches the atmosphere between the vacuum atmosphere and the normal pressure atmosphere, and
    In a vacuum processing chamber in which the substrate is processed in a vacuum atmosphere, the purge gas is supplied to a region not filled with the process gas used for the processing.
    Processing method having.
PCT/JP2020/019325 2019-05-20 2020-05-14 Processing device and processing method WO2020235455A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019094468A JP2020191326A (en) 2019-05-20 2019-05-20 Processor and processing method
JP2019-094468 2019-05-20

Publications (1)

Publication Number Publication Date
WO2020235455A1 true WO2020235455A1 (en) 2020-11-26

Family

ID=73453891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019325 WO2020235455A1 (en) 2019-05-20 2020-05-14 Processing device and processing method

Country Status (2)

Country Link
JP (1) JP2020191326A (en)
WO (1) WO2020235455A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161345A (en) * 1982-03-18 1983-09-24 Fujitsu Ltd Manufacture of semiconductor device
US5434090A (en) * 1993-12-27 1995-07-18 Chiou; Herng-Der Processing chamber for processing semiconductor substrates
JPH1187341A (en) * 1997-09-12 1999-03-30 Toshiba Corp Film formation and film-forming apparatus
JP2003179075A (en) * 2002-12-16 2003-06-27 Seiko Epson Corp Reduced pressure chemical vapor phase depositing apparatus
JP2011009762A (en) * 2000-03-29 2011-01-13 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor and substrate processing apparatus
JP2017139274A (en) * 2016-02-02 2017-08-10 東京エレクトロン株式会社 Connection mechanism for substrate housing container, and connection method
JP2018199601A (en) * 2017-05-29 2018-12-20 株式会社サイオクス Nitride crystal substrate, semiconductor laminate, method of manufacturing semiconductor laminate, and method of manufacturing semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161345A (en) * 1982-03-18 1983-09-24 Fujitsu Ltd Manufacture of semiconductor device
US5434090A (en) * 1993-12-27 1995-07-18 Chiou; Herng-Der Processing chamber for processing semiconductor substrates
JPH1187341A (en) * 1997-09-12 1999-03-30 Toshiba Corp Film formation and film-forming apparatus
JP2011009762A (en) * 2000-03-29 2011-01-13 Hitachi Kokusai Electric Inc Method of manufacturing semiconductor and substrate processing apparatus
JP2003179075A (en) * 2002-12-16 2003-06-27 Seiko Epson Corp Reduced pressure chemical vapor phase depositing apparatus
JP2017139274A (en) * 2016-02-02 2017-08-10 東京エレクトロン株式会社 Connection mechanism for substrate housing container, and connection method
JP2018199601A (en) * 2017-05-29 2018-12-20 株式会社サイオクス Nitride crystal substrate, semiconductor laminate, method of manufacturing semiconductor laminate, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2020191326A (en) 2020-11-26

Similar Documents

Publication Publication Date Title
JP4911980B2 (en) Decompression processing equipment
TWI778553B (en) Substrate processing apparatus and methods with factory interface chamber filter purge
TWI544168B (en) A gate valve device, a substrate processing device, and a substrate processing method
JP5721952B2 (en) Semiconductor device, semiconductor device manufacturing method, and substrate processing apparatus
JP5719138B2 (en) Semiconductor device manufacturing method and substrate processing method
JP6647260B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
SG177103A1 (en) Support structure and processing apparatus
JP7413584B2 (en) Substrate processing equipment, semiconductor device manufacturing method and program
US11621169B2 (en) Method of manufacturing semiconductor device, recording medium, and substrate processing apparatus
KR20110097663A (en) Vacuum-exhaust ball valve and vacuum exhaust apparatus
JP2011029441A (en) Device and method for treating substrate
JP6294365B2 (en) Substrate processing apparatus, semiconductor device manufacturing method, program, and recording medium
JP2000174007A (en) Heat processing device
US8051870B2 (en) Pressure reduction process device, pressure reduction process method, and pressure regulation valve
JP5224567B2 (en) Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
WO2020235455A1 (en) Processing device and processing method
WO2005001925A1 (en) Vacuum processing device operating method
JP2001250818A (en) Oxidization system and its cleaning method
JP2006032610A (en) Apparatus for depositing film
CN115132560A (en) Reaction tube, processing apparatus, and method for manufacturing semiconductor device
JP5944549B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and semiconductor device
WO2015186319A1 (en) Film-forming device, film-forming method, and memory medium
JP2009088308A (en) Substrate processing equipment
JP2007227804A (en) Manufacturing method of semiconductor device
US20220259736A1 (en) Processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20810159

Country of ref document: EP

Kind code of ref document: A1