WO2020235415A1 - Power source for tire monitoring system, tire monitoring system, and tire assembly - Google Patents

Power source for tire monitoring system, tire monitoring system, and tire assembly Download PDF

Info

Publication number
WO2020235415A1
WO2020235415A1 PCT/JP2020/019092 JP2020019092W WO2020235415A1 WO 2020235415 A1 WO2020235415 A1 WO 2020235415A1 JP 2020019092 W JP2020019092 W JP 2020019092W WO 2020235415 A1 WO2020235415 A1 WO 2020235415A1
Authority
WO
WIPO (PCT)
Prior art keywords
tire
sheet
power generation
monitoring system
power
Prior art date
Application number
PCT/JP2020/019092
Other languages
French (fr)
Japanese (ja)
Inventor
亘理聡一
Original Assignee
マクセルホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセルホールディングス株式会社 filed Critical マクセルホールディングス株式会社
Priority to JP2021520731A priority Critical patent/JPWO2020235415A1/ja
Publication of WO2020235415A1 publication Critical patent/WO2020235415A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre

Definitions

  • the present application relates to a power source for a tire monitoring system capable of detecting tire information such as tire pressure, temperature, and acceleration, a tire monitoring system equipped with the power source, and a tire assembly provided with the tire monitoring system.
  • the above-mentioned tire monitoring system Since the above-mentioned tire monitoring system is located inside the tire, it requires a power source for driving.
  • a primary battery such as a coin-type lithium primary battery is generally used.
  • the battery may be exhausted and the battery may need to be replaced when the operating time of the system is extended.
  • Patent Document 1 a tire that generates electricity by a piezoelectric element, stores the electric power obtained by the power generation in a secondary battery or the like, and uses it as a power source. Surveillance systems are known.
  • Patent Document 2 proposes to use a triboelectric power generator that generates electricity by contact-charging resins with each other as a power generation element of the tire monitoring system.
  • the power generation amount of the power generator is limited, so that the power consumption for detecting the tire information and transmitting the tire information is large. In that case, it is assumed that the driving power of the tire monitoring system is insufficient and the tire monitoring system does not work. Therefore, as a countermeasure, it is conceivable to increase the amount of power generation by increasing the size of the power generator.
  • This application solves the above-mentioned conventional problems, and when a sheet-shaped power generator that generates power by utilizing deformation during rotation of a tire is used as a power generation source of a tire monitoring system, the amount of power generation is large and stable.
  • a power source for a tire monitoring system capable of operating the system and a tire monitoring system using the power source are provided.
  • the power source for the tire monitoring system of the present application includes a power storage device and a power generation device capable of supplying the generated power to the power storage device.
  • the power generation device includes a sheet-shaped power generation element, and the sheet-shaped power generation element includes a sheet-shaped power generation element.
  • a generator sheet that utilizes deformation for power generation is provided, and the sheet-shaped power generation element is attached to a tire and can be deformed by rotation of the tire to generate power.
  • the generator sheet has a length in the rotation direction of the tire.
  • a (mm) satisfies A / B ⁇ 0.16 with respect to the outer diameter B (mm) of the tire.
  • the tire monitoring system of the present application includes a tire information detection device, an information transmission device, and a power source capable of supplying power to the tire information detection device and the information transmission device, and the information transmission device includes the tire information. It is characterized in that the tire information detected by the detection device is transmitted, and the power source for the tire monitoring system of the present application is provided as the power source.
  • the tire assembly of the present application is characterized by including the tire monitoring system of the present application and a tire.
  • the present application even if a sheet-shaped power generation element that uses deformation due to rotation of the tire for power generation is used as the power generation source, the amount of power that can be extracted is large, and therefore the power supply that can stably function the tire monitoring system. , Can provide a tire monitoring system with that power source.
  • FIG. 1 is a block diagram showing a schematic configuration of the tire monitoring system of the embodiment.
  • FIG. 2 is a schematic plan view showing an example of a sheet-shaped power generation element used in the embodiment.
  • FIG. 3 is a schematic cross-sectional view taken along the line II of FIG.
  • FIG. 4 is a schematic plan view showing another example of the sheet-shaped power generation element used in the embodiment.
  • FIG. 5 is a schematic cross-sectional view of the tire assembly of the embodiment.
  • FIG. 6 is a schematic perspective sectional view of a state in which the tire assembly of the embodiment is mounted on a wheel.
  • FIG. 7 is a schematic cross-sectional view showing the tire assembly (A) of the embodiment and the ground contact state (B) of the tire assembly.
  • FIG. 8 is a schematic cross-sectional view showing an example of a deformed state of the sheet-shaped power generation element.
  • FIG. 9 is a schematic cross-sectional view showing another example of the deformed state of the sheet-shaped power generation element.
  • An embodiment of the tire monitoring system disclosed in the present application includes a tire information detection device, an information transmission device, and a power source capable of supplying power to the tire information detection device and the information transmission device. It has a function of transmitting the tire information detected by the tire information detection device.
  • the tire monitoring system of the present embodiment includes, as the power source, a power source including a power storage device and a power generation device capable of supplying the generated power to the power storage device, and the power generation device includes a sheet-shaped power generation element.
  • the sheet-shaped power generation element includes a power generator sheet that utilizes deformation for power generation, and the sheet-shaped power generation element is attached to a tire and can be deformed by rotation of the tire to generate power.
  • the length A (mm) in the rotation direction of the tire is designed to satisfy A / B ⁇ 0.16 with respect to the outer diameter B (mm) of the tire. Therefore, the power generation efficiency is improved and the amount of electric power that can be taken out is increased, so that the tire monitoring system of the present embodiment can function stably.
  • FIG. 1 is a block diagram showing a schematic configuration of the tire monitoring system of the present embodiment.
  • the solid arrow indicates the power supply direction
  • the broken line arrow indicates the signal transfer direction.
  • the tire monitoring system 1 of the present embodiment includes a tire information detection device 10, an information transmission device 40, and a power source 50 capable of supplying electric power to the tire information detection device 10 and the information transmission device 40.
  • Reference numeral 50 denotes a power storage device 20 and a power generation device 30 capable of supplying the generated electric power to the power storage device 20, and is mounted on a tire (not shown).
  • the tire information detection device 10, the power storage device 20, and the information transmission device 40 are housed in the same container (not shown), and the container is above the power generation device 30 provided with a sheet-shaped power generation element. It is located in.
  • a part of the tire information detection device 10, the power storage device 20, and the information transmission device 40 may be housed in another container.
  • the tire monitoring system 1 of the present embodiment may substantially constitute a tire monitoring device as a whole.
  • the tire information detection device 10 detects tire information such as tire pressure, temperature, and acceleration, but the tire information is not limited to these.
  • the tire information detection device 10 includes a sensor unit 11 and a calculation unit 12.
  • the sensor unit 11 is composed of, for example, a pressure sensor capable of measuring air pressure, a temperature sensor capable of measuring temperature, an acceleration sensor capable of measuring acceleration, and the like.
  • the sensor unit 11 outputs measurement data of tire information in the tire as a detection signal at all times or at regular intervals.
  • the calculation unit 12 obtains the air pressure, temperature, acceleration, etc. in the tire based on the detection signal output from the sensor unit 11.
  • the information transmission device 40 includes a communication unit 41 and an antenna unit 42, and various measurement data obtained by the calculation unit 12 are wirelessly transmitted to a control device (not shown) of the vehicle via the communication unit 41 and the antenna unit 42. Will be sent.
  • the wireless communication method by the information transmitting device 40 is not particularly limited, and a communication method using radio waves, sound waves, light waves, or the like can be adopted.
  • the power source 50 includes a power storage device 20 and a power generation device 30 capable of supplying the generated power to the power storage device 20, and can supply power to the tire information detection device 10 and the information transmission device 40. More specifically, the power storage device 20 supplies electric power to the sensor unit 11 and the calculation unit 12 of the tire information detection device 10, and the communication unit 41 of the information transmission device 40.
  • the power storage device 20 is not particularly limited as long as it can store the power generated by the power generation device 30 described later, and for example, a secondary battery, a capacitor, or the like can be used.
  • the electric power generated by the power generation device 30 is supplied to the power storage device 20 through a rectifier circuit such as a bridge circuit.
  • a lithium ion secondary battery or the like can be used, but a lithium ion secondary battery having excellent heat resistance using a lithium alloy as the negative electrode active material is particularly preferable.
  • the capacitor for example, an electrolytic capacitor, a non-electrolytic capacitor, a super capacitor and the like can be used.
  • the power generation device 30 supplies the generated electric power to the power storage device 20, and the power generation device 30 includes a sheet-shaped power generation element including a power generation body sheet (not shown) that can be deformed to generate power. Power is generated by mounting it in a position that deforms due to the rotation of.
  • the details of the power generation device 30 will be described below by exemplifying a case where the power generation sheet of the sheet-shaped power generation element is a piezoelectric sheet made of a piezoelectric material.
  • FIG. 2 is a schematic plan view showing an example of a sheet-shaped power generation element used in the power generation device constituting the tire monitoring system of the present embodiment
  • FIG. 3 is a schematic cross-sectional view taken along the line II of FIG.
  • the sheet-shaped power generation element 30a includes a terminal 32a, a piezoelectric sheet 33a made of a piezoelectric material, and a resin layer 35a.
  • the sheet-shaped power generation element 30a is provided with metal layers 34a for collecting electricity on both sides of the piezoelectric sheet 33a, and a protective resin layer is provided on the outer periphery of the piezoelectric sheet 33a and the outer surface of the metal layer 34a, respectively. It is equipped with 35a.
  • the piezoelectric material constituting the piezoelectric sheet 33a is not particularly limited, and for example, quartz, barium titanate, cadmium sulfide, lead zirconate titanate, polyvinylidene fluoride (PVDF), polyvinyl chloride (PVC). Etc. can be used.
  • PVDF and PVC that easily impart flexibility to the piezoelectric sheet 33a are preferable, and more specifically, it is preferable to cut a PVDF sheet, a PVC sheet, or the like into a rectangular shape and use it.
  • the metal material constituting the metal layer 34a is not particularly limited, and for example, Al, Ni, Cu, or the like can be used.
  • the metal layer 34a can be formed by a metal vapor deposition method, a crimping method of a metal sheet, or the like.
  • the resin material constituting the resin layer 35a is not particularly limited as long as it has heat resistance.
  • polyethylene terephthalate, polyamide, fluororesin, polyphenylene ether, polysulphon, polyarylate, polyethersulphon, polyphenylene sulfide, Heat-resistant resins such as polyetheretherketone can be used.
  • the resin layer 35a can be formed by a coating method using a resin solution, a laminating method using a resin sheet, or the like. In order to protect the piezoelectric sheet 33a, it is desirable that the size of the resin layer 35a is larger than that of the piezoelectric sheet 33a and the periphery of the piezoelectric sheet 33a is covered with the resin layer 35a.
  • FIG. 4 is a schematic plan view showing another example of the sheet-shaped power generation element used in the power generation device constituting the tire monitoring system of the present embodiment.
  • the sheet-shaped power generation element 30b includes a terminal 32b, a piezoelectric sheet 33b made of a piezoelectric material, and a resin layer 35b.
  • the sheet-shaped power generation element 30b shown in FIG. 4 has the same configuration as the sheet-shaped power generation element 30a shown in FIGS. 2 and 3 except that the outer shape of the main body is circular.
  • the sheet-shaped power generation elements 30a and 30b and the piezoelectric sheets 33a and 33b are formed in a rectangular shape and a circular shape, but are not limited to these, and can be formed in, for example, a polygonal shape and an elliptical shape. Further, the shapes of the sheet-shaped power generation element and the piezoelectric sheet may be different. Then, the sheet-shaped power generation elements 30a and 30b are attached to tires (not shown). The sheet-shaped power generation elements 30a and 30b are attached, for example, by aligning their longitudinal directions with the rotation direction of the tire. The sheet-shaped power generation elements 30a and 30b generate power when the piezoelectric sheets 33a and 33b are deformed by the rotation of the tire.
  • the lengths of the piezoelectric sheets 33a and 33b in the sheet-shaped power generation elements 30a and 30b mounted on the tire in the tire rotation direction are L, and the length in the tire rotation axis direction is W. Then, by setting the length L of the piezoelectric sheet so that the value of the ratio of L to the outer diameter of the tire is 0.16 or less, the amount of power generated by the power generation element can be increased.
  • the portion that touches the road surface (particularly, the portion that starts and ends the ground contact) is deformed, which is transmitted to the piezoelectric sheet of the power generation element to generate power. Therefore, in the piezoelectric sheet of one power generation element, what actually contributes to power generation is a region located near the ground contact portion of the tire, particularly near the portion where the ground contact starts and the portion where the ground contact ends, and the road surface. It is considered that power generation is not performed in the area where the tire is not in contact with the ground.
  • the piezoelectric sheet in the tire rotation direction becomes longer than the length of the tire in contact with the ground, even if the tire rotates and the power generation element is located on the road surface side, the piezoelectric sheet Among them, the proportion of areas that do not contribute to power generation increases.
  • the generated power cannot be taken out as it is, and a part of the piezoelectric sheet that does not contribute to power generation is consumed, and only the attenuated power can be taken out.
  • the size of one power generation element is such that the entire piezoelectric sheet fits on the ground contact surface of the tire as much as possible when the tire rotates (tire). It is necessary to make the length in the direction of rotation of.
  • the length of the contact patch of the tire in the rotation direction of the tire is proportional to the outer diameter of the tire
  • the length A (mm) of the piezoelectric sheet in the rotation direction of the tire is the outer diameter B of the tire. If the size satisfies A / B ⁇ 0.16 with respect to (mm), when the tire rotates and the region where the power generation element is mounted touches the ground, most of the region of the piezoelectric sheet is almost simultaneously. It will generate electromotive force, and it is considered that a large amount of power generation can be efficiently extracted.
  • the value of A / B is set to 0. It is preferably 04 or more, more preferably 0.07 or more, and most preferably 0.1 or more.
  • the area of the piezoelectric sheet is preferably 1500 mm 2 or more, more preferably 1800 mm 2 or more, and most preferably 2500 mm 2 or more.
  • the amount of power generation increases as the deformation of the piezoelectric sheet increases. Therefore, if the shape is the same, the entire power generation element is attached to the tire and fixed. Rather, it is desirable to mount the power generation element so that at least a part of the power generation element where the piezoelectric sheet is present is not fixed to the tire and can be deformed away from the tire. ..
  • the area of the part that is not fixed to the tire is 10% of the total area of the piezoelectric sheet in order to increase the deformation of the piezoelectric sheet and increase the amount of power generation. It is preferably more than that, more preferably 30% or more, particularly preferably 50% or more, and most preferably not fixing the entire portion where the piezoelectric sheet is present to the tire.
  • the area fixed to the tire by adhesion or the like is preferably 10% or more, and 20% or more of the total area of the power generation element. Is more preferable, and 30% or more is most preferable.
  • the embodiment of the power generation device 30 has been described above using the piezoelectric sheet made of a piezoelectric material as the generator sheet that uses the deformation for power generation, other generators that can be deformed to generate power have been described.
  • a sheet made of a material may be used.
  • a triboelectric generator sheet having a pair of charging sheets, which can generate electricity by contacting each other and charging, can also be used.
  • the charging sheet is made of materials such as nylon, polyurethane, polyester, polyimide, fluororesin, polymethylmethacrylate, polyacrylonitrile, polydiphenol carbonate, natural rubber, polychloroprene, polyvinyl butyral, perfluoropolyether, and diamond-like carbon, respectively. It is configured so that one charged sheet is positively charged and the other charged sheet is negatively charged, combined and arranged to face each other.
  • the shape and dimensions of the generator sheet may be the same as in the case of the piezoelectric sheet described above.
  • An embodiment of a tire assembly disclosed in the present application includes the tire monitoring system of the above-described embodiment and a tire. Since the tire assembly of the present embodiment includes the tire monitoring system of the above-described embodiment, electric power can be efficiently extracted from the sheet-shaped power generation element, and tire information can be stably monitored.
  • the sheet-shaped power generation element included in the tire monitoring system is usually mounted on the inner peripheral surface of the tire.
  • the attachment to the inner peripheral surface can be easily performed by adhering the tire and the sheet-shaped power generation element with a tire direct adhesive. Further, the sheet-shaped power generation element may be embedded in the tire and arranged.
  • FIG. 5 is a schematic cross-sectional view of the tire assembly of the present embodiment.
  • the tire assembly 100 of the present embodiment includes the tire 101 and the tire monitoring system 1 of the above-described embodiment.
  • the tire monitoring system 1 includes a container 60 containing a tire information detection device, a power storage device, and an information transmission device (not shown), and a sheet-shaped power generation element 30a.
  • the sheet-shaped power generation element 30a includes each device in the container 60 and a container 60. It is electrically connected by wiring (not shown).
  • FIG. 6 is a schematic perspective sectional view of the tire assembly of the present embodiment mounted on the wheel.
  • the tire assembly 100 of this embodiment is mounted on the wheel 102.
  • the tire 101 and the sheet-shaped power generation element 30a are adhered to each other by a tire direct adhesive.
  • a tire direct adhesive for example, "CB 2250" (trade name) manufactured by Cyberbond Co., Ltd. can be used.
  • FIG. 7 is a schematic cross-sectional view showing the tire assembly of the present embodiment and the ground contact state of the tire assembly. However, the hatching showing the cross section in FIG. 7 is omitted.
  • FIG. 7A shows the tire assembly 100 before touchdown
  • FIG. 7B shows the contact state of the tire assembly 100
  • the arrows in the figure indicate the direction of rotation of the tire.
  • the tire assembly 100 is deformed by rotating in a grounded state, and the piezoelectric sheet (not shown) of the sheet-shaped power generation element 30a is also deformed accordingly to generate power.
  • the power generation mechanism will be briefly described below.
  • FIG. 8 is a schematic cross-sectional view showing an example of the deformed state of the sheet-shaped power generation element
  • FIG. 9 is a schematic cross-sectional view showing another example of the deformed state of the sheet-shaped power generation element.
  • the hatching showing the cross section in FIGS. 8 and 9 is omitted.
  • the piezoelectric sheet (not shown) of the sheet-shaped power generation element 30a is deformed when the tire 101 touches the ground, stress is generated in the direction of the arrow in FIG. 8, and the shaded portion of FIG. 8 is pressed by the stress. Power is generated in the vicinity. As the tire 101 rotates, the shaded portion continuously moves in the piezoelectric sheet (not shown) of the sheet-shaped power generation element 30a, so that the sheet-shaped power generation element 30a can continuously generate power.
  • the piezoelectric sheet (not shown) of the sheet-shaped power generation element 30a is deformed, and stress is generated in the direction of the arrow in FIG. 9, and the stress is generated.
  • the power is generated intermittently in or near the shaded area of FIG. 9 pulled by.
  • the sheet-shaped power generation element is configured by using a power generation body of another type such as a triboelectric power generation body sheet, the tires are similar to the case of the piezoelectric sheet, although the mode of power generation is different. Power can be generated by the deformation when rotating.
  • the power supply for the tire monitoring system disclosed in the present application will be described based on the examples.
  • the power source for the tire monitoring system disclosed in the present application is not limited to the following examples.
  • a sheet-shaped power generation element having the form shown in FIG. 4 was manufactured as follows. First, as a piezoelectric sheet, a circular PVDF sheet having a diameter of 50 mm and a thickness of 220 ⁇ m (KF piezo sensor “KFP-40AS” (model number) manufactured by Kureha Corporation) was prepared. Next, Al was vapor-deposited on both sides of the PVDF sheet. Subsequently, terminals made of Ni were attached to both sides of the Al-deposited layer, and then the outer surface of the Al-deposited layer was coated with PET to form a resin layer. Further, a sheet-shaped power generation element having a diameter of 60 mm was produced by forming a resin layer having a width of 5 mm around the PVDF sheet in a plan view.
  • the entire surface of the sheet-shaped power generation element was fixed to the tire with an adhesive. Further, the tire used has an outer diameter of 634 mm mounted on the 17-inch wheel, and the ratio of the length A (50 mm) of the piezoelectric sheet of the sheet-shaped power generation element in the rotation direction of the tire to the outer diameter B of the tire.
  • the A / B was 0.079.
  • Example 2 A power source for a tire monitoring system in the same manner as in Example 1 except that only a portion of the sheet-shaped power generation element having a width of 5 mm on the outer periphery where the piezoelectric sheet does not exist in a plan view is fixed to the tire with an adhesive. was produced.
  • the entire part where the piezoelectric sheet exists in a plan view is not fixed to the tire, and the ratio of the area of the part fixed to the tire with the adhesive is 31% of the total area of the power generation element. there were.
  • a PVDF sheet having a length L in the long side direction of 400 mm and a length W in the short side direction of 50 mm was provided, and a resin layer having a width of 5 mm was formed around the PVDF sheet.
  • a sheet-shaped power generation element having the form shown in FIG. 3 was produced. Further, the entire surface of the sheet-shaped power generation element is fixed to the tire with an adhesive so that the long side direction coincides with the rotation direction of the tire, and the power supply for the tire monitoring system is manufactured in the same manner as in the first embodiment. did.
  • the ratio A / B of the length A (400 mm) of the piezoelectric sheet of the sheet-shaped power generation element in the direction of rotation of the tire to the outer diameter B of the tire was 0.63.
  • Information including an AD converter that digitally converts the voltage value of a power storage capacitor and a circuit that transmits the information at regular intervals to the power supply for the tire monitoring system of Example 1, Example 2, and Comparative Example 1.
  • each tire was mounted on a wheel and a running test was conducted.
  • the traveling speed was set to 30 km / h, the voltage value of the storage capacitor transmitted from the information transmission device was monitored, and the power generation capacity of the sheet-shaped power generation element of each power source was evaluated.
  • Table 1 shows the voltage values of each storage capacitor 3 minutes after the start of running.
  • Examples 1 and the embodiment in which the ratio A / B of the length A of the piezoelectric sheet in the sheet-shaped power generation element to the outer diameter B of the tire in the rotation direction of the tire is in the range of 0.16 or less.
  • the power source for the tire monitoring system of Example 2 can significantly improve the power generation capacity as compared with the power source of Comparative Example 1 in which the value of the above ratio is larger than 0.16, and makes the tire monitoring system function stably. It turned out that it is a power source that can be used.
  • the power source of Example 2 in which the portion of the sheet-shaped power generation element in which the piezoelectric sheet is present is not fixed to the tire is superior to the power source of Example 1 in which the entire sheet-shaped power generation element is fixed to the tire. It had a power generation capacity.
  • the present application can be implemented in a form other than the above as long as the purpose is not deviated.
  • the embodiments disclosed in the present application are examples, and the present invention is not limited thereto.
  • the scope of the present application shall be construed in preference to the description of the appended claims over the description of the specification described above, and all changes within the scope of the claims shall be included in the scope of the claims. It is something that can be done.
  • the power supply for the tire monitoring system disclosed in the present application is reliable because the amount of power that can be generated and extracted is large even if a sheet-shaped power generation element that can be deformed to generate power is used, and the system can function stably. It is possible to provide a highly reliable tire monitoring system.
  • Tire monitoring system 10
  • Tire information detection device 11
  • Sensor unit 12
  • Calculation unit 20
  • Power storage device 30
  • Power generation device 30a, 30b Sheet-type power generation element 32a, 32b Terminal 33a, 33b Piezoelectric sheet 34a Metal layer 35a, 35b Resin layer
  • Information transmission device 41
  • Communication unit 42
  • Antenna unit 50
  • Power generation 60 Container 100
  • Tire assembly 101

Abstract

A power source for a tire monitoring system disclosed in the present application comprises a power storage device and a power generation device that can supply generated electric power to the power storage device, wherein: the power generation device includes a sheet-shaped power generation element; the sheet-shaped power generation element includes a power generating body sheet that utilizes deformation for power generation; the sheet-shaped power generation element is attached to a tire and can generate electric power by being deformed by the rotation of the tire; and the power generating body sheet satisfies A/B ≤0.16 where A (mm) is the length of the tire in a rotation direction and B (mm) is the outer diameter of the tire.

Description

タイヤ監視システム用の電源、タイヤ監視システム及びタイヤ組立体Power supply for tire monitoring system, tire monitoring system and tire assembly
 本願は、タイヤの空気圧、温度、加速度などのタイヤ情報を検出することができるタイヤ監視システム用の電源とその電源を備えたタイヤ監視システム及びそのタイヤ監視システムを備えたタイヤ組立体に関する。 The present application relates to a power source for a tire monitoring system capable of detecting tire information such as tire pressure, temperature, and acceleration, a tire monitoring system equipped with the power source, and a tire assembly provided with the tire monitoring system.
 近年、車両の交通量の増大とともに、車両の走行中にタイヤの不具合が原因となる重大事故が散見されるようになっている。そのため、走行中のタイヤの状態を適正に保つことによって、重大事故の発生を未然に防ぐことの重要性が指摘されている。 In recent years, as the traffic volume of vehicles has increased, serious accidents caused by tire defects have been scattered while the vehicle is running. Therefore, it has been pointed out that it is important to prevent the occurrence of serious accidents by maintaining the proper condition of the tires while driving.
 このような状況の中で、米国では、車両走行中の安全性を確保するために、タイヤの安全性に関する法的規制が存在する。このような国では、新車に対して、タイヤの空気圧などを監視するタイヤ監視システムの装着が義務付けられている。また、米国だけでなく、欧州や韓国などの一部の国でも、既にタイヤの安全性に関する法的規制が設けられており、中国やインドなどでも法的規制が開始される見込みである。 Under such circumstances, in the United States, there are legal regulations regarding tire safety in order to ensure safety while the vehicle is running. In such countries, new vehicles are required to be equipped with a tire monitoring system that monitors tire pressure and the like. In addition to the United States, some countries such as Europe and South Korea have already established legal regulations on tire safety, and it is expected that legal regulations will be started in China and India.
 上述のタイヤ監視システムは、タイヤ内に配置されるため、駆動のための電源を必要とする。この電源として、一般には、コイン型リチウム一次電池などの一次電池が用いられている。しかし、タイヤ監視システムの電源として一次電池を用いると、システムの稼動時間が長くなった場合に、電池が消耗して、電池交換が必要となる場合ある。 Since the above-mentioned tire monitoring system is located inside the tire, it requires a power source for driving. As this power source, a primary battery such as a coin-type lithium primary battery is generally used. However, if a primary battery is used as the power source for the tire monitoring system, the battery may be exhausted and the battery may need to be replaced when the operating time of the system is extended.
 これに対し、電池交換を不要にするために、例えば、特許文献1に示すように、圧電素子によって発電を行ない、その発電によって得られた電力を二次電池などに蓄積して電源として用いるタイヤ監視システムが知られている。 On the other hand, in order to eliminate the need for battery replacement, for example, as shown in Patent Document 1, a tire that generates electricity by a piezoelectric element, stores the electric power obtained by the power generation in a secondary battery or the like, and uses it as a power source. Surveillance systems are known.
 また、特許文献2では、前記タイヤ監視システムの発電素子として、樹脂同士を接触帯電させて発電を行う摩擦帯電方式の発電体を用いることが提案されている。 Further, Patent Document 2 proposes to use a triboelectric power generator that generates electricity by contact-charging resins with each other as a power generation element of the tire monitoring system.
特表2005-525265号公報Special Table 2005-525265 特開2016-88473号公報Japanese Unexamined Patent Publication No. 2016-88473
 ここで、タイヤ監視システムの電力発生源として圧電素子などの発電体を用いる場合、発電体の発電量が限られているため、タイヤ情報の検出やそのタイヤ情報の送信のための電力消費が大きくなると、タイヤ監視システムの駆動電力が不足し、タイヤ監視システムが働かなくなる場合が想定される。このため、その対策としては、発電体を大型化するなどして、その発電量を多くすることが考えられる。 Here, when a power generator such as a piezoelectric element is used as the power generation source of the tire monitoring system, the power generation amount of the power generator is limited, so that the power consumption for detecting the tire information and transmitting the tire information is large. In that case, it is assumed that the driving power of the tire monitoring system is insufficient and the tire monitoring system does not work. Therefore, as a countermeasure, it is conceivable to increase the amount of power generation by increasing the size of the power generator.
 しかし、圧電素子のように、タイヤの回転時の変形を利用して発電する発電体をタイヤに装着する場合には、素子を大型化しても、必ずしも発電量が増大するわけではなく、タイヤへの取り付け方などによっては、却って発電量が低下してしまうことが判明した。 However, when a power generator that generates electricity by utilizing the deformation of the tire during rotation, such as a piezoelectric element, is attached to the tire, the amount of power generation does not necessarily increase even if the element is made larger, and the tire is It was found that the amount of power generation would rather decrease depending on how the tires were installed.
 本願は、上記従来の問題を解決したもので、タイヤ監視システムの電力発生源として、タイヤの回転時の変形を利用して発電するシート状発電体を用いる場合に、発電量が大きく、安定してシステムを機能させることのできるタイヤ監視システム用の電源と、前記電源を用いたタイヤ監視システムを提供するものである。 This application solves the above-mentioned conventional problems, and when a sheet-shaped power generator that generates power by utilizing deformation during rotation of a tire is used as a power generation source of a tire monitoring system, the amount of power generation is large and stable. A power source for a tire monitoring system capable of operating the system and a tire monitoring system using the power source are provided.
 本願のタイヤ監視システム用の電源は、蓄電装置と、発電した電力を前記蓄電装置に供給可能な発電装置とを含み、前記発電装置は、シート状発電素子を備え、前記シート状発電素子は、変形を発電に利用する発電体シートを備え、前記シート状発電素子は、タイヤに取り付けられ、タイヤの回転により変形して発電することができ、前記発電体シートは、タイヤの回転方向における長さA(mm)が、タイヤの外径B(mm)に対し、A/B≦0.16を満たすことを特徴とする。 The power source for the tire monitoring system of the present application includes a power storage device and a power generation device capable of supplying the generated power to the power storage device. The power generation device includes a sheet-shaped power generation element, and the sheet-shaped power generation element includes a sheet-shaped power generation element. A generator sheet that utilizes deformation for power generation is provided, and the sheet-shaped power generation element is attached to a tire and can be deformed by rotation of the tire to generate power. The generator sheet has a length in the rotation direction of the tire. A (mm) satisfies A / B ≦ 0.16 with respect to the outer diameter B (mm) of the tire.
 また、本願のタイヤ監視システムは、タイヤ情報検出装置と、情報送信装置と、前記タイヤ情報検出装置及び前記情報送信装置に電力を供給可能な電源とを含み、前記情報送信装置は、前記タイヤ情報検出装置が検出したタイヤ情報を送信し、前記電源として、前記本願のタイヤ監視システム用の電源を備えたことを特徴とする。 Further, the tire monitoring system of the present application includes a tire information detection device, an information transmission device, and a power source capable of supplying power to the tire information detection device and the information transmission device, and the information transmission device includes the tire information. It is characterized in that the tire information detected by the detection device is transmitted, and the power source for the tire monitoring system of the present application is provided as the power source.
 また、本願のタイヤ組立体は、前記本願のタイヤ監視システムと、タイヤとを含むことを特徴とする。 Further, the tire assembly of the present application is characterized by including the tire monitoring system of the present application and a tire.
 本願によれば、電力発生源として、タイヤの回転による変形を発電に利用するシート状発電素子を用いても、取り出せる電力量が大きく、従ってタイヤ監視システムを安定して機能させることのできる電源と、その電源を備えたタイヤ監視システムを提供できる。 According to the present application, even if a sheet-shaped power generation element that uses deformation due to rotation of the tire for power generation is used as the power generation source, the amount of power that can be extracted is large, and therefore the power supply that can stably function the tire monitoring system. , Can provide a tire monitoring system with that power source.
図1は、実施形態のタイヤ監視システムの概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of the tire monitoring system of the embodiment. 図2は、実施形態で用いるシート状発電素子の一例を示す模式平面図である。FIG. 2 is a schematic plan view showing an example of a sheet-shaped power generation element used in the embodiment. 図3は、図2のI-I線の模式断面図である。FIG. 3 is a schematic cross-sectional view taken along the line II of FIG. 図4は、実施形態で用いるシート状発電素子の他の例を示す模式平面図である。FIG. 4 is a schematic plan view showing another example of the sheet-shaped power generation element used in the embodiment. 図5は、実施形態のタイヤ組立体の模式断面図である。FIG. 5 is a schematic cross-sectional view of the tire assembly of the embodiment. 図6は、実施形態のタイヤ組立体をホイールに装着した状態の模式斜視断面図である。FIG. 6 is a schematic perspective sectional view of a state in which the tire assembly of the embodiment is mounted on a wheel. 図7は、実施形態のタイヤ組立体(A)と、そのタイヤ組立体の接地状態(B)を示す模式断面図である。FIG. 7 is a schematic cross-sectional view showing the tire assembly (A) of the embodiment and the ground contact state (B) of the tire assembly. 図8は、シート状発電素子の変形状態の一例を示す模式断面図である。FIG. 8 is a schematic cross-sectional view showing an example of a deformed state of the sheet-shaped power generation element. 図9は、シート状発電素子の変形状態の他の例を示す模式断面図である。FIG. 9 is a schematic cross-sectional view showing another example of the deformed state of the sheet-shaped power generation element.
 (タイヤ監視システム及びその電源の実施形態)
 本願で開示するタイヤ監視システムの実施形態は、タイヤ情報検出装置と、情報送信装置と、上記タイヤ情報検出装置及び上記情報送信装置に電力を供給可能な電源とを備え、上記情報送信装置は、上記タイヤ情報検出装置が検出したタイヤ情報を送信する機能を有する。
(Implementation of tire monitoring system and its power supply)
An embodiment of the tire monitoring system disclosed in the present application includes a tire information detection device, an information transmission device, and a power source capable of supplying power to the tire information detection device and the information transmission device. It has a function of transmitting the tire information detected by the tire information detection device.
 また、本実施形態のタイヤ監視システムは、上記電源として、蓄電装置と、発電した電力を上記蓄電装置に供給可能な発電装置とを含む電源を備え、上記発電装置は、シート状発電素子を備え、上記シート状発電素子は、変形を発電に利用する発電体シートを備え、上記シート状発電素子は、タイヤに取り付けられ、タイヤの回転により変形して発電することができ、上記発電体シートは、タイヤの回転方向における長さA(mm)が、タイヤの外径B(mm)に対し、A/B ≦0.16を満たすよう設計されている。このため、発電効率が向上して取り出すことのできる電力量が大きくなり、本実施形態のタイヤ監視システムを安定して機能させることができる。 Further, the tire monitoring system of the present embodiment includes, as the power source, a power source including a power storage device and a power generation device capable of supplying the generated power to the power storage device, and the power generation device includes a sheet-shaped power generation element. The sheet-shaped power generation element includes a power generator sheet that utilizes deformation for power generation, and the sheet-shaped power generation element is attached to a tire and can be deformed by rotation of the tire to generate power. The length A (mm) in the rotation direction of the tire is designed to satisfy A / B ≦ 0.16 with respect to the outer diameter B (mm) of the tire. Therefore, the power generation efficiency is improved and the amount of electric power that can be taken out is increased, so that the tire monitoring system of the present embodiment can function stably.
 以下、図面に基づき本実施形態のタイヤ監視システムを説明する。以下の図面では、図中の同一部分には同一の符号を付して重複する説明は省略する場合がある。 Hereinafter, the tire monitoring system of this embodiment will be described based on the drawings. In the following drawings, the same parts in the drawings may be designated by the same reference numerals and duplicate description may be omitted.
 <全体構成>
 図1は、本実施形態のタイヤ監視システムの概略構成を示すブロック図である。図1において、実線の矢印は、電力の供給方向を示し、破線の矢印は、信号の授受方向を示す。
<Overall configuration>
FIG. 1 is a block diagram showing a schematic configuration of the tire monitoring system of the present embodiment. In FIG. 1, the solid arrow indicates the power supply direction, and the broken line arrow indicates the signal transfer direction.
 図1において、本実施形態のタイヤ監視システム1は、タイヤ情報検出装置10と、情報送信装置40と、タイヤ情報検出装置10及び情報送信装置40に電力を供給可能な電源50とを備え、電源50は、蓄電装置20と、発電した電力を蓄電装置20に供給可能な発電装置30とを備えており、図示しないタイヤに装着される。 In FIG. 1, the tire monitoring system 1 of the present embodiment includes a tire information detection device 10, an information transmission device 40, and a power source 50 capable of supplying electric power to the tire information detection device 10 and the information transmission device 40. Reference numeral 50 denotes a power storage device 20 and a power generation device 30 capable of supplying the generated electric power to the power storage device 20, and is mounted on a tire (not shown).
 本実施形態のタイヤ監視システム1では、タイヤ情報検出装置10、蓄電装置20及び情報送信装置40が図示しない同一の容器内に収納され、その容器がシート状発電素子を備えた発電装置30の上に配置されている。ここで、タイヤ情報検出装置10、蓄電装置20及び情報送信装置40は、その一部が別の容器内に収納されていてもよい。本実施形態のタイヤ監視システム1は、実質的には全体としてタイヤ監視装置を構成していてもよい。 In the tire monitoring system 1 of the present embodiment, the tire information detection device 10, the power storage device 20, and the information transmission device 40 are housed in the same container (not shown), and the container is above the power generation device 30 provided with a sheet-shaped power generation element. It is located in. Here, a part of the tire information detection device 10, the power storage device 20, and the information transmission device 40 may be housed in another container. The tire monitoring system 1 of the present embodiment may substantially constitute a tire monitoring device as a whole.
 タイヤ情報検出装置10は、タイヤの空気圧、温度、加速度などのタイヤ情報を検出するが、タイヤ情報はこれらに限定されない。タイヤ情報検出装置10は、センサ部11と、演算部12とを備えている。センサ部11は、例えば、空気圧を測定可能な圧力センサ、温度を測定可能な温度センサ、加速度を測定可能な加速度センサなどによって構成されている。センサ部11は、常時又は一定間隔で、タイヤ内のタイヤ情報の測定データを検出信号として出力する。演算部12は、センサ部11から出力される検出信号に基づいてタイヤ内の空気圧、温度、加速度などを求める。 The tire information detection device 10 detects tire information such as tire pressure, temperature, and acceleration, but the tire information is not limited to these. The tire information detection device 10 includes a sensor unit 11 and a calculation unit 12. The sensor unit 11 is composed of, for example, a pressure sensor capable of measuring air pressure, a temperature sensor capable of measuring temperature, an acceleration sensor capable of measuring acceleration, and the like. The sensor unit 11 outputs measurement data of tire information in the tire as a detection signal at all times or at regular intervals. The calculation unit 12 obtains the air pressure, temperature, acceleration, etc. in the tire based on the detection signal output from the sensor unit 11.
 情報送信装置40は、通信部41と、アンテナ部42とを備え、演算部12で求められた各種測定データは、通信部41及びアンテナ部42を介して、無線で車両の図示しない制御装置に送信される。情報送信装置40による無線の通信方法は特に限定されず、電波、音波、光波などを用いた通信方法を採用できる。 The information transmission device 40 includes a communication unit 41 and an antenna unit 42, and various measurement data obtained by the calculation unit 12 are wirelessly transmitted to a control device (not shown) of the vehicle via the communication unit 41 and the antenna unit 42. Will be sent. The wireless communication method by the information transmitting device 40 is not particularly limited, and a communication method using radio waves, sound waves, light waves, or the like can be adopted.
 電源50は、蓄電装置20と、発電した電力を蓄電装置20に供給可能な発電装置30とを備えており、タイヤ情報検出装置10及び情報送信装置40に電力を供給することができる。より具体的には、蓄電装置20が、タイヤ情報検出装置10のセンサ部11及び演算部12、並びに情報送信装置40の通信部41に電力を供給する。蓄電装置20は、後述する発電装置30で発電した電力を貯蔵できる装置であれば特に限定されず、例えば、二次電池、コンデンサなどが使用できる。発電装置30が発電した電力は、例えばブリッジ回路などの整流回路を通じて蓄電装置20に供給される。 The power source 50 includes a power storage device 20 and a power generation device 30 capable of supplying the generated power to the power storage device 20, and can supply power to the tire information detection device 10 and the information transmission device 40. More specifically, the power storage device 20 supplies electric power to the sensor unit 11 and the calculation unit 12 of the tire information detection device 10, and the communication unit 41 of the information transmission device 40. The power storage device 20 is not particularly limited as long as it can store the power generated by the power generation device 30 described later, and for example, a secondary battery, a capacitor, or the like can be used. The electric power generated by the power generation device 30 is supplied to the power storage device 20 through a rectifier circuit such as a bridge circuit.
 上記二次電池としては、例えば、リチウムイオン二次電池などが使用できるが、特に負極活物質にリチウム合金を使用した耐熱性に優れるリチウムイオン二次電池が好ましい。上記コンデンサとしては、例えば、電解コンデンサ、非電解コンデンサ、スーパーコンデンサなどが使用できる。 As the above secondary battery, for example, a lithium ion secondary battery or the like can be used, but a lithium ion secondary battery having excellent heat resistance using a lithium alloy as the negative electrode active material is particularly preferable. As the capacitor, for example, an electrolytic capacitor, a non-electrolytic capacitor, a super capacitor and the like can be used.
 発電装置30は、蓄電装置20に発電した電力を供給し、発電装置30は、図示しない変形して発電することのできる発電体シートを含むシート状発電素子を備え、上記シート状発電素子をタイヤの回転により変形する位置に装着することにより発電する。発電装置30の詳細については、シート状発電素子の発電体シートが、圧電材料からなる圧電体シートである場合を例示して、以下で説明する。 The power generation device 30 supplies the generated electric power to the power storage device 20, and the power generation device 30 includes a sheet-shaped power generation element including a power generation body sheet (not shown) that can be deformed to generate power. Power is generated by mounting it in a position that deforms due to the rotation of. The details of the power generation device 30 will be described below by exemplifying a case where the power generation sheet of the sheet-shaped power generation element is a piezoelectric sheet made of a piezoelectric material.
 <発電装置>
 図2は、本実施形態のタイヤ監視システムを構成する発電装置に用いるシート状発電素子の一例を示す模式平面図であり、図3は、図2のI-I線の模式断面図である。図2において、シート状発電素子30aは、端子32a、圧電材料からなる圧電体シート33a及び樹脂層35aを備えている。また、図3において、シート状発電素子30aは、圧電体シート33aの両面に集電用の金属層34aを備え、圧電体シート33aの外周及び金属層34aの外面にはそれぞれ保護用の樹脂層35aを備えている。
<Power generation device>
FIG. 2 is a schematic plan view showing an example of a sheet-shaped power generation element used in the power generation device constituting the tire monitoring system of the present embodiment, and FIG. 3 is a schematic cross-sectional view taken along the line II of FIG. In FIG. 2, the sheet-shaped power generation element 30a includes a terminal 32a, a piezoelectric sheet 33a made of a piezoelectric material, and a resin layer 35a. Further, in FIG. 3, the sheet-shaped power generation element 30a is provided with metal layers 34a for collecting electricity on both sides of the piezoelectric sheet 33a, and a protective resin layer is provided on the outer periphery of the piezoelectric sheet 33a and the outer surface of the metal layer 34a, respectively. It is equipped with 35a.
 図3において、圧電体シート33aを構成する圧電材料としては特に限定されず、例えば、石英、チタン酸バリウム、硫化カドミウム、ジルコン酸チタン酸鉛、ポリフッ化ビニリデン(PVDF)、ポリ塩化ビニル(PVC)などを用いることができる。これらの中でも、圧電体シート33aに可撓性を付与しやすいPVDF及びPVCが好ましく、より具体的には、PVDF製シート、PVC製シートなどを矩形状に切断して使用することが好ましい。 In FIG. 3, the piezoelectric material constituting the piezoelectric sheet 33a is not particularly limited, and for example, quartz, barium titanate, cadmium sulfide, lead zirconate titanate, polyvinylidene fluoride (PVDF), polyvinyl chloride (PVC). Etc. can be used. Among these, PVDF and PVC that easily impart flexibility to the piezoelectric sheet 33a are preferable, and more specifically, it is preferable to cut a PVDF sheet, a PVC sheet, or the like into a rectangular shape and use it.
 図3において、金属層34aを構成する金属材料としては特に限定されず、例えば、Al、Ni、Cuなどを用いることができる。金属層34aは、金属蒸着法、金属シートの圧着法などにより形成できる。 In FIG. 3, the metal material constituting the metal layer 34a is not particularly limited, and for example, Al, Ni, Cu, or the like can be used. The metal layer 34a can be formed by a metal vapor deposition method, a crimping method of a metal sheet, or the like.
 図3において、樹脂層35aを構成する樹脂材料としては耐熱性があれば特に限定されず、例えば、ポリエチレンテレフタレート、ポリアミド、フッ素樹脂、ポリフェニレンエーテル、ポリスルフォン、ポリアリレート、ポリエーテルスルフォン、ポリフェニレンサルファイド、ポリエーテルエーテルケトンなどの耐熱樹脂が使用できる。樹脂層35aは、樹脂溶液を用いる塗布法、樹脂シートを用いるラミネート法などで形成できる。圧電体シート33aを保護するために、樹脂層35aの大きさを圧電体シート33aよりも大きくし、圧電体シート33aの周囲を樹脂層35aで覆うようにすることが望ましい。 In FIG. 3, the resin material constituting the resin layer 35a is not particularly limited as long as it has heat resistance. For example, polyethylene terephthalate, polyamide, fluororesin, polyphenylene ether, polysulphon, polyarylate, polyethersulphon, polyphenylene sulfide, Heat-resistant resins such as polyetheretherketone can be used. The resin layer 35a can be formed by a coating method using a resin solution, a laminating method using a resin sheet, or the like. In order to protect the piezoelectric sheet 33a, it is desirable that the size of the resin layer 35a is larger than that of the piezoelectric sheet 33a and the periphery of the piezoelectric sheet 33a is covered with the resin layer 35a.
 図4は、本実施形態のタイヤ監視システムを構成する発電装置に用いるシート状発電素子の他の例を示す模式平面図である。図4において、シート状発電素子30bは、端子32b、圧電材料からなる圧電体シート33b及び樹脂層35bを備えている。また、図4に示したシート状発電素子30bは、本体の外形を円形にした以外は、図2及び図3に示したシート状発電素子30aと同様の構成を有している。 FIG. 4 is a schematic plan view showing another example of the sheet-shaped power generation element used in the power generation device constituting the tire monitoring system of the present embodiment. In FIG. 4, the sheet-shaped power generation element 30b includes a terminal 32b, a piezoelectric sheet 33b made of a piezoelectric material, and a resin layer 35b. Further, the sheet-shaped power generation element 30b shown in FIG. 4 has the same configuration as the sheet-shaped power generation element 30a shown in FIGS. 2 and 3 except that the outer shape of the main body is circular.
 シート状発電素子30a、30b及び圧電体シート33a、33bは、矩形状、円形状に形成したが、それらに限らず、例えば、多角形状、楕円形状などに形成することができる。また、シート状発電素子と圧電体シートの形状を異なる形状にしてもよい。そして、シート状発電素子30a、30bは、図示しないタイヤに取り付けられる。シート状発電素子30a、30bは、例えば、その長手方向をタイヤの回転方向に合わせて取り付けられる。シート状発電素子30a、30bは、タイヤの回転により圧電体シート33a、33bが変形することにより発電する。 The sheet-shaped power generation elements 30a and 30b and the piezoelectric sheets 33a and 33b are formed in a rectangular shape and a circular shape, but are not limited to these, and can be formed in, for example, a polygonal shape and an elliptical shape. Further, the shapes of the sheet-shaped power generation element and the piezoelectric sheet may be different. Then, the sheet-shaped power generation elements 30a and 30b are attached to tires (not shown). The sheet-shaped power generation elements 30a and 30b are attached, for example, by aligning their longitudinal directions with the rotation direction of the tire. The sheet-shaped power generation elements 30a and 30b generate power when the piezoelectric sheets 33a and 33b are deformed by the rotation of the tire.
 図2及び図4において、タイヤに装着されたシート状発電素子30a、30bにおける、圧電体シート33a、33bの、タイヤの回転方向における長さをL、タイヤの回転軸方向の長さをWとすると、Lのタイヤの外径に対する比の値が、0.16以下となるよう圧電体シートの長さLを設定することにより、発電素子の発電量を大きくすることができる。 In FIGS. 2 and 4, the lengths of the piezoelectric sheets 33a and 33b in the sheet-shaped power generation elements 30a and 30b mounted on the tire in the tire rotation direction are L, and the length in the tire rotation axis direction is W. Then, by setting the length L of the piezoelectric sheet so that the value of the ratio of L to the outer diameter of the tire is 0.16 or less, the amount of power generated by the power generation element can be increased.
 ここで、タイヤが回転した際に、路面に接地した部分(特に、接地し始めと接地が終わる部分)が変形し、それが発電素子の圧電体シートに伝わって素子が発電すると考えられる。従って、1つの発電素子の圧電体シートにおいて、実際に発電に寄与するのは、タイヤの接地部分の近傍、特に、接地し始めの部分及び接地が終わる部分の近傍に位置する領域であり、路面と接しない位置に存在する領域では、発電が行われないと考えられる。 Here, it is considered that when the tire rotates, the portion that touches the road surface (particularly, the portion that starts and ends the ground contact) is deformed, which is transmitted to the piezoelectric sheet of the power generation element to generate power. Therefore, in the piezoelectric sheet of one power generation element, what actually contributes to power generation is a region located near the ground contact portion of the tire, particularly near the portion where the ground contact starts and the portion where the ground contact ends, and the road surface. It is considered that power generation is not performed in the area where the tire is not in contact with the ground.
 そのため、タイヤの回転方向における圧電体シートの長さが、タイヤの接地している長さに比べて長くなるほど、タイヤが回転して発電素子が路面側に位置していても、圧電体シートの中で発電に寄与しない領域の割合が大きくなる。 Therefore, as the length of the piezoelectric sheet in the tire rotation direction becomes longer than the length of the tire in contact with the ground, even if the tire rotates and the power generation element is located on the road surface side, the piezoelectric sheet Among them, the proportion of areas that do not contribute to power generation increases.
 そのような発電素子において、発電された電力は、そのまま取り出せるわけではなく、圧電体シートのうち発電に寄与しない領域で一部が消費され、減衰した電力しか取り出すことができなくなる。 In such a power generation element, the generated power cannot be taken out as it is, and a part of the piezoelectric sheet that does not contribute to power generation is consumed, and only the attenuated power can be taken out.
 従って、タイヤに装着された発電素子から電力を効率よく取り出すためには、1つの発電素子について、タイヤが回転した際にできるだけタイヤの接地面に圧電体シートの全体が収まるような大きさ(タイヤの回転方向における長さ)にする必要がある。 Therefore, in order to efficiently extract electric power from the power generation element mounted on the tire, the size of one power generation element is such that the entire piezoelectric sheet fits on the ground contact surface of the tire as much as possible when the tire rotates (tire). It is necessary to make the length in the direction of rotation of.
 即ち、タイヤの回転方向におけるタイヤの接地面の長さが、タイヤの外径に比例すると仮定した場合に、圧電体シートのタイヤの回転方向における長さA(mm)が、タイヤの外径B(mm)に対し、A/B≦0.16を満たす大きさであれば、タイヤが回転して発電素子が装着された領域が接地した際に、圧電体シートの大部分の領域でほぼ同時に起電力を生じることになり、効率よく大きな発電量を取り出すことができるものと考えられる。 That is, assuming that the length of the contact patch of the tire in the rotation direction of the tire is proportional to the outer diameter of the tire, the length A (mm) of the piezoelectric sheet in the rotation direction of the tire is the outer diameter B of the tire. If the size satisfies A / B ≦ 0.16 with respect to (mm), when the tire rotates and the region where the power generation element is mounted touches the ground, most of the region of the piezoelectric sheet is almost simultaneously. It will generate electromotive force, and it is considered that a large amount of power generation can be efficiently extracted.
 一方、圧電体シートのタイヤの回転方向における長さA(mm)が短くなるほど、トータルの発電量が減少するため、一定以上の発電量を得るためには、A/Bの値は、0.04以上とすることが好ましく、0.07以上とすることがより好ましく、0.1以上とすることが最も好ましい。 On the other hand, as the length A (mm) of the piezoelectric sheet in the rotation direction of the tire becomes shorter, the total amount of power generation decreases. Therefore, in order to obtain a certain amount of power generation or more, the value of A / B is set to 0. It is preferably 04 or more, more preferably 0.07 or more, and most preferably 0.1 or more.
 同様に圧電体シートの面積は、1500mm2以上であることが好ましく、1800mm2以上であることがより好ましく、2500mm2以上であることが最も好ましい。 Similarly, the area of the piezoelectric sheet is preferably 1500 mm 2 or more, more preferably 1800 mm 2 or more, and most preferably 2500 mm 2 or more.
 また、発電素子が装着されたタイヤの領域が接地した際に、圧電体シートの変形が大きくなるほど発電量が大きくなるため、同じ形状であれば、発電素子の全体をタイヤに貼り付けて固定するよりも、発電素子のうち、圧電体シートが存在する部分の少なくとも一部がタイヤに固定されておらず、タイヤから離れて変形することができる状態となるように発電素子を装着することが望ましい。 Further, when the area of the tire on which the power generation element is mounted touches the ground, the amount of power generation increases as the deformation of the piezoelectric sheet increases. Therefore, if the shape is the same, the entire power generation element is attached to the tire and fixed. Rather, it is desirable to mount the power generation element so that at least a part of the power generation element where the piezoelectric sheet is present is not fixed to the tire and can be deformed away from the tire. ..
 例えば、発電素子の外周部のみをタイヤに貼り付け、それよりも内側(中央側)はタイヤから離れて変形可能な状態でタイヤに装着することが考えられる。 For example, it is conceivable to attach only the outer peripheral portion of the power generation element to the tire, and attach the inner side (center side) to the tire in a deformable state away from the tire.
 発電素子の圧電体シートが存在する部分のうち、タイヤに固定されていない部分の面積は、圧電体シートの変形をより大きくして発電量を増やすために、圧電体シート全体の面積の10%以上とすることが好ましく、30%以上とすることがより好ましく、50%以上とすることが特に好ましく、圧電体シートが存在する部分の全体をタイヤに固定しないことが最も好ましい。 Of the part where the piezoelectric sheet of the power generation element exists, the area of the part that is not fixed to the tire is 10% of the total area of the piezoelectric sheet in order to increase the deformation of the piezoelectric sheet and increase the amount of power generation. It is preferably more than that, more preferably 30% or more, particularly preferably 50% or more, and most preferably not fixing the entire portion where the piezoelectric sheet is present to the tire.
 一方、走行中に発電素子がタイヤから剥離するのを防ぐために、発電素子全体の面積のうち、接着などによりタイヤに固定する面積は、10%以上とすることが好ましく、20%以上とすることがより好ましく、30%以上とすることが最も好ましい。 On the other hand, in order to prevent the power generation element from peeling off from the tire during traveling, the area fixed to the tire by adhesion or the like is preferably 10% or more, and 20% or more of the total area of the power generation element. Is more preferable, and 30% or more is most preferable.
 以上、変形を発電に利用する発電体シートとして、圧電材料からなる圧電体シートを用いて発電装置30の実施態様を説明したが、変形して発電することのできる発電体であれば、他の材料で構成されたシートを用いてもよい。例えば、お互いに接触させ帯電させることにより発電を行うことのできる、一対の帯電シートを有する摩擦帯電方式の発電体のシートを用いることもできる。 Although the embodiment of the power generation device 30 has been described above using the piezoelectric sheet made of a piezoelectric material as the generator sheet that uses the deformation for power generation, other generators that can be deformed to generate power have been described. A sheet made of a material may be used. For example, a triboelectric generator sheet having a pair of charging sheets, which can generate electricity by contacting each other and charging, can also be used.
 前記帯電シートは、それぞれ、ナイロン、ポリウレタン、ポリエステル、ポリイミド、フッ素樹脂、ポリメチルメタクリレート、ポリアクリロニトリル、ポリジフェノールカーボネート、天然ゴム、ポリクロロプレン、ポリビニルブチラール、パーフルオロポリエーテル、ダイヤモンドライクカーボンなどの材料により構成され、一方の帯電シートが正に帯電し、もう一方の帯電シートが負に帯電するよう組み合わされ、対向するよう配置される。 The charging sheet is made of materials such as nylon, polyurethane, polyester, polyimide, fluororesin, polymethylmethacrylate, polyacrylonitrile, polydiphenol carbonate, natural rubber, polychloroprene, polyvinyl butyral, perfluoropolyether, and diamond-like carbon, respectively. It is configured so that one charged sheet is positively charged and the other charged sheet is negatively charged, combined and arranged to face each other.
 摩擦帯電方式の発電体のシートを用いる場合にも、発電体シートの形状や寸法などは、前述した圧電体シートの場合と同様にすればよい。 Even when a triboelectric generator sheet is used, the shape and dimensions of the generator sheet may be the same as in the case of the piezoelectric sheet described above.
 (タイヤ組立体の実施形態)
 本願で開示するタイヤ組立体の実施形態は、前述の実施形態のタイヤ監視システムと、タイヤとを備えている。本実施形態のタイヤ組立体は、前述の実施形態のタイヤ監視システムを備えているため、シート状発電素子から効率よく電力を取り出すことができ、タイヤ情報を安定して監視できる。
(Embodiment of tire assembly)
An embodiment of a tire assembly disclosed in the present application includes the tire monitoring system of the above-described embodiment and a tire. Since the tire assembly of the present embodiment includes the tire monitoring system of the above-described embodiment, electric power can be efficiently extracted from the sheet-shaped power generation element, and tire information can be stably monitored.
 上記タイヤ監視システムに含まれるシート状発電素子は、通常、タイヤの内周面の上に取り付けられる。上記内周面への取り付けは、タイヤ直張り接着剤を用いて、タイヤとシート状発電素子とを接着することで容易に行える。また、上記シート状発電素子は、タイヤの内部に埋め込んで配置することもできる。 The sheet-shaped power generation element included in the tire monitoring system is usually mounted on the inner peripheral surface of the tire. The attachment to the inner peripheral surface can be easily performed by adhering the tire and the sheet-shaped power generation element with a tire direct adhesive. Further, the sheet-shaped power generation element may be embedded in the tire and arranged.
 以下、図面に基づき本実施形態のタイヤ組立体を説明する。以下の図面では、図中の同一部分には同一の符号を付して重複する説明は省略する場合がある。 Hereinafter, the tire assembly of the present embodiment will be described based on the drawings. In the following drawings, the same parts in the drawings may be designated by the same reference numerals and duplicate description may be omitted.
 図5は、本実施形態のタイヤ組立体の模式断面図である。図5において、本実施形態のタイヤ組立体100は、タイヤ101と、前述の実施形態のタイヤ監視システム1とを備えている。タイヤ監視システム1は、図示しないタイヤ情報検出装置、蓄電装置及び情報送信装置を収納した容器60と、シート状発電素子30aとを備え、シート状発電素子30aは、容器60内の各装置と、図示しない配線で電気的に接続されている。 FIG. 5 is a schematic cross-sectional view of the tire assembly of the present embodiment. In FIG. 5, the tire assembly 100 of the present embodiment includes the tire 101 and the tire monitoring system 1 of the above-described embodiment. The tire monitoring system 1 includes a container 60 containing a tire information detection device, a power storage device, and an information transmission device (not shown), and a sheet-shaped power generation element 30a. The sheet-shaped power generation element 30a includes each device in the container 60 and a container 60. It is electrically connected by wiring (not shown).
 図6は、本実施形態のタイヤ組立体をホイールに装着した状態の模式斜視断面図である。図6において、本実施形態のタイヤ組立体100は、ホイール102に装着されている。 FIG. 6 is a schematic perspective sectional view of the tire assembly of the present embodiment mounted on the wheel. In FIG. 6, the tire assembly 100 of this embodiment is mounted on the wheel 102.
 図5及び図6において、タイヤ101と、シート状発電素子30aとは、タイヤ直張り接着剤により接着されている。タイヤ直張り接着剤としては、例えば、Cyberbond社製の“CB 2250”(商品名)などを用いることができる。 In FIGS. 5 and 6, the tire 101 and the sheet-shaped power generation element 30a are adhered to each other by a tire direct adhesive. As the tire direct adhesive, for example, "CB 2250" (trade name) manufactured by Cyberbond Co., Ltd. can be used.
 図7は、本実施形態のタイヤ組立体と、そのタイヤ組立体の接地状態を示す模式断面図である。但し、図7において断面を示すハッチングは省略している。図7Aは、接地前のタイヤ組立体100を示し、図7Bは、タイヤ組立体100の接地状態を示し、図中の矢印はタイヤの回転方向を示す。 FIG. 7 is a schematic cross-sectional view showing the tire assembly of the present embodiment and the ground contact state of the tire assembly. However, the hatching showing the cross section in FIG. 7 is omitted. FIG. 7A shows the tire assembly 100 before touchdown, FIG. 7B shows the contact state of the tire assembly 100, and the arrows in the figure indicate the direction of rotation of the tire.
 図7Bに示すように、タイヤ組立体100は、接地状態で回転することにより変形し、それに伴いシート状発電素子30aの図示しない圧電体シートも変形して発電を行うことができる。その発電メカニズムを以下に簡単に説明する。 As shown in FIG. 7B, the tire assembly 100 is deformed by rotating in a grounded state, and the piezoelectric sheet (not shown) of the sheet-shaped power generation element 30a is also deformed accordingly to generate power. The power generation mechanism will be briefly described below.
 図8は、シート状発電素子の変形状態の一例を示す模式断面図であり、図9は、シート状発電素子の変形状態の他の例を示す模式断面図である。但し、図8及び図9において断面を示すハッチングは省略している。図8において、シート状発電素子30aの図示しない圧電体シートは、タイヤ101が接地することにより変形し、図8の矢印方向に応力が発生し、その応力により圧迫される図8の斜線部やその近傍で発電する。タイヤ101が回転することにより、当該斜線部がシート状発電素子30aの図示しない圧電体シート内を連続的に移動することにより、シート状発電素子30aは、連続的に発電することができる。 FIG. 8 is a schematic cross-sectional view showing an example of the deformed state of the sheet-shaped power generation element, and FIG. 9 is a schematic cross-sectional view showing another example of the deformed state of the sheet-shaped power generation element. However, the hatching showing the cross section in FIGS. 8 and 9 is omitted. In FIG. 8, the piezoelectric sheet (not shown) of the sheet-shaped power generation element 30a is deformed when the tire 101 touches the ground, stress is generated in the direction of the arrow in FIG. 8, and the shaded portion of FIG. 8 is pressed by the stress. Power is generated in the vicinity. As the tire 101 rotates, the shaded portion continuously moves in the piezoelectric sheet (not shown) of the sheet-shaped power generation element 30a, so that the sheet-shaped power generation element 30a can continuously generate power.
 また、図9に示すように、タイヤ101が何らかの障害物に乗り上げた場合にも、シート状発電素子30aの図示しない圧電体シートは変形し、図9の矢印方向に応力が発生し、その応力により引っ張られる図9の斜線部やその近傍で間欠的に発電する。 Further, as shown in FIG. 9, even when the tire 101 rides on some obstacle, the piezoelectric sheet (not shown) of the sheet-shaped power generation element 30a is deformed, and stress is generated in the direction of the arrow in FIG. 9, and the stress is generated. The power is generated intermittently in or near the shaded area of FIG. 9 pulled by.
 なお、摩擦帯電方式の発電体シートなど、他の方式の発電体を用いてシート状発電素子を構成した場合にも、発電の様式は異なるものの、前記圧電体シートの場合と同様に、タイヤが回転する際の変形により、発電を行うことができる。 Even when the sheet-shaped power generation element is configured by using a power generation body of another type such as a triboelectric power generation body sheet, the tires are similar to the case of the piezoelectric sheet, although the mode of power generation is different. Power can be generated by the deformation when rotating.
 以下、実施例に基づいて本願で開示するタイヤ監視システム用の電源について説明する。但し、本願で開示するタイヤ監視システム用の電源は、以下の実施例に限定されるものではない。 Hereinafter, the power supply for the tire monitoring system disclosed in the present application will be described based on the examples. However, the power source for the tire monitoring system disclosed in the present application is not limited to the following examples.
 (実施例1)
 <シート状発電素子の作製>
 図4に示す形態のシート状発電素子を次にように作製した。先ず、圧電体シートとして、直径が50mmの円形で、厚さ220μmのPVDFシート(クレハ社製のKFピエゾセンサー“KFP-40AS”(型番))を準備した。次に、上記PVDFシートの両面にAlを蒸着した。続いて、Al蒸着層の両面にNi製の端子を取り付け、その後、Al蒸着層の外面をPETによりコーティングして樹脂層を形成した。また、平面視でPVDFシートの周囲にも、幅5mmで樹脂層を形成することにより、直径が60mmのシート状発電素子を作製した。
(Example 1)
<Manufacturing of sheet-shaped power generation element>
A sheet-shaped power generation element having the form shown in FIG. 4 was manufactured as follows. First, as a piezoelectric sheet, a circular PVDF sheet having a diameter of 50 mm and a thickness of 220 μm (KF piezo sensor “KFP-40AS” (model number) manufactured by Kureha Corporation) was prepared. Next, Al was vapor-deposited on both sides of the PVDF sheet. Subsequently, terminals made of Ni were attached to both sides of the Al-deposited layer, and then the outer surface of the Al-deposited layer was coated with PET to form a resin layer. Further, a sheet-shaped power generation element having a diameter of 60 mm was produced by forming a resin layer having a width of 5 mm around the PVDF sheet in a plan view.
 <タイヤ監視システム用の電源の作製>
 前記シート状発電素子を、ブリッジ回路及び蓄電用キャパシタを有する蓄電装置に接続した後、シート状発電素子及び蓄電装置を接着剤でタイヤの内周面の上に貼り付けて固定し、タイヤ監視システム用の電源を作製した。
<Manufacturing power supply for tire monitoring system>
After connecting the sheet-shaped power generation element to a power storage device having a bridge circuit and a power storage capacitor, the sheet-shaped power generation element and the power storage device are attached and fixed on the inner peripheral surface of the tire with an adhesive to fix the tire monitoring system. I made a power supply for.
 上記シート状発電素子は、その全面を接着剤でタイヤに固定した。また、タイヤは、17インチホイールに装着する外径が634mmのものを用い、タイヤの回転方向におけるシート状発電素子の圧電体シートの長さA(50mm)と、タイヤの外径Bとの比A/Bは、0.079であった。 The entire surface of the sheet-shaped power generation element was fixed to the tire with an adhesive. Further, the tire used has an outer diameter of 634 mm mounted on the 17-inch wheel, and the ratio of the length A (50 mm) of the piezoelectric sheet of the sheet-shaped power generation element in the rotation direction of the tire to the outer diameter B of the tire. The A / B was 0.079.
 (実施例2)
 シート状発電素子のうち、平面視で圧電体シートが存在していない外周部の幅5mmの部分のみを接着剤でタイヤに固定した以外は実施例1と同様にして、タイヤ監視システム用の電源を作製した。上記発電素子において、平面視で圧電体シートが存在する部分の全体をタイヤに固定せず、発電素子の全面積のうち、接着剤でタイヤに固定された部分の面積の割合は、31%であった。
(Example 2)
A power source for a tire monitoring system in the same manner as in Example 1 except that only a portion of the sheet-shaped power generation element having a width of 5 mm on the outer periphery where the piezoelectric sheet does not exist in a plan view is fixed to the tire with an adhesive. Was produced. In the above power generation element, the entire part where the piezoelectric sheet exists in a plan view is not fixed to the tire, and the ratio of the area of the part fixed to the tire with the adhesive is 31% of the total area of the power generation element. there were.
 (比較例1)
 実施例1と同様にして、長辺方向の長さLが400mmで、短辺方向の長さWが50mmのPVDFシートを有し、その周囲に幅5mmで樹脂層を形成した、図2及び図3に示す形態のシート状発電素子を作製した。更に、長辺方向がタイヤの回転方向と一致するようにして、上記シート状発電素子の全面を接着剤でタイヤに固定し、以下、実施例1と同様にしてタイヤ監視システム用の電源を作製した。
(Comparative Example 1)
Similar to the first embodiment, a PVDF sheet having a length L in the long side direction of 400 mm and a length W in the short side direction of 50 mm was provided, and a resin layer having a width of 5 mm was formed around the PVDF sheet. A sheet-shaped power generation element having the form shown in FIG. 3 was produced. Further, the entire surface of the sheet-shaped power generation element is fixed to the tire with an adhesive so that the long side direction coincides with the rotation direction of the tire, and the power supply for the tire monitoring system is manufactured in the same manner as in the first embodiment. did.
 タイヤの回転方向におけるシート状発電素子の圧電体シートの長さA(400mm)と、タイヤの外径Bとの比A/Bは、0.63であった。 The ratio A / B of the length A (400 mm) of the piezoelectric sheet of the sheet-shaped power generation element in the direction of rotation of the tire to the outer diameter B of the tire was 0.63.
 <タイヤ監視システム用の電源の発電能力の評価>
 実施例1、実施例2及び比較例1のタイヤ監視システム用の電源に対し、蓄電用キャパシタの電圧値をデジタル変換するADコンバーターと、その情報を一定時間ごとに送信する回路とを備えた情報送信装置を接続し、上記情報送信装置をタイヤの内周面の上に貼り付けて固定することにより、タイヤ監視システム用の電源の発電能力を評価するための測定装置を構成した。
<Evaluation of power generation capacity of power supply for tire monitoring system>
Information including an AD converter that digitally converts the voltage value of a power storage capacitor and a circuit that transmits the information at regular intervals to the power supply for the tire monitoring system of Example 1, Example 2, and Comparative Example 1. By connecting the transmitter and attaching and fixing the information transmitter on the inner peripheral surface of the tire, a measuring device for evaluating the power generation capacity of the power source for the tire monitoring system was constructed.
 次に、それぞれのタイヤを図6に示すように、ホイールに装着し、走行試験を実施した。走行速度を30km/hに設定し、情報送信装置から送信されてくる蓄電用キャパシタの電圧値をモニターして、それぞれの電源のシート状発電素子の発電能力を評価した。 Next, as shown in Fig. 6, each tire was mounted on a wheel and a running test was conducted. The traveling speed was set to 30 km / h, the voltage value of the storage capacitor transmitted from the information transmission device was monitored, and the power generation capacity of the sheet-shaped power generation element of each power source was evaluated.
 走行開始から3分後の、それぞれの蓄電用キャパシタの電圧値を表1に示す。 Table 1 shows the voltage values of each storage capacitor 3 minutes after the start of running.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 以上の結果から、シート状発電素子における圧電体シートの、タイヤの回転方向における長さAと、タイヤの外径Bとの比A/Bを0.16以下の範囲とした実施例1及び実施例2のタイヤ監視システム用の電源は、上記比の値を0.16よりも大きくした比較例1の電源よりも発電能力を大幅に向上させることができ、タイヤ監視システムを安定して機能させることのできる電源となっていることが分かった。 Based on the above results, Examples 1 and the embodiment in which the ratio A / B of the length A of the piezoelectric sheet in the sheet-shaped power generation element to the outer diameter B of the tire in the rotation direction of the tire is in the range of 0.16 or less. The power source for the tire monitoring system of Example 2 can significantly improve the power generation capacity as compared with the power source of Comparative Example 1 in which the value of the above ratio is larger than 0.16, and makes the tire monitoring system function stably. It turned out that it is a power source that can be used.
 特に、シート状発電素子のうち、圧電体シートが存在する部分をタイヤに固定していない実施例2の電源は、シート状発電素子の全体をタイヤに固定した実施例1の電源よりも優れた発電能力を有していた。 In particular, the power source of Example 2 in which the portion of the sheet-shaped power generation element in which the piezoelectric sheet is present is not fixed to the tire is superior to the power source of Example 1 in which the entire sheet-shaped power generation element is fixed to the tire. It had a power generation capacity.
 本願は、その趣旨を逸脱しない範囲で、上記以外の形態としても実施が可能である。本願に開示された実施形態は一例であって、これらに限定はされない。本願の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。 The present application can be implemented in a form other than the above as long as the purpose is not deviated. The embodiments disclosed in the present application are examples, and the present invention is not limited thereto. The scope of the present application shall be construed in preference to the description of the appended claims over the description of the specification described above, and all changes within the scope of the claims shall be included in the scope of the claims. It is something that can be done.
 本願で開示するタイヤ監視システム用の電源は、変形して発電することのできるシート状発電素子を用いても、発電して取り出せる電力量が大きく、安定してシステムを機能させることができ、信頼性の高いタイヤ監視システムを提供できる。 The power supply for the tire monitoring system disclosed in the present application is reliable because the amount of power that can be generated and extracted is large even if a sheet-shaped power generation element that can be deformed to generate power is used, and the system can function stably. It is possible to provide a highly reliable tire monitoring system.
  1 タイヤ監視システム
 10 タイヤ情報検出装置
 11 センサ部
 12 演算部
 20 蓄電装置
 30 発電装置
 30a、30b シート状発電素子
 32a、32b 端子
 33a、33b 圧電体シート
 34a 金属層
 35a、35b 樹脂層
 40 情報送信装置
 41 通信部
 42 アンテナ部
 50 電源
 60 容器
100 タイヤ組立体
101 タイヤ
102 ホイール
1 Tire monitoring system 10 Tire information detection device 11 Sensor unit 12 Calculation unit 20 Power storage device 30 Power generation device 30a, 30b Sheet-type power generation element 32a, 32b Terminal 33a, 33b Piezoelectric sheet 34a Metal layer 35a, 35b Resin layer 40 Information transmission device 41 Communication unit 42 Antenna unit 50 Power generation 60 Container 100 Tire assembly 101 Tire 102 Wheel

Claims (13)

  1.  蓄電装置と、発電した電力を前記蓄電装置に供給可能な発電装置とを含むタイヤ監視システム用の電源であって、
     前記発電装置は、シート状発電素子を備え、
     前記シート状発電素子は、変形を発電に利用する発電体シートを備え、
     前記シート状発電素子は、タイヤに取り付けられ、タイヤの回転により変形して発電することができ、
     前記発電体シートは、タイヤの回転方向における長さA(mm)が、タイヤの外径B(mm)に対し、A/B≦0.16を満たすことを特徴とするタイヤ監視システム用の電源。
    A power source for a tire monitoring system including a power storage device and a power generation device capable of supplying the generated electric power to the power storage device.
    The power generation device includes a sheet-shaped power generation element.
    The sheet-shaped power generation element includes a power generation body sheet that utilizes deformation for power generation.
    The sheet-shaped power generation element is attached to a tire and can be deformed by the rotation of the tire to generate power.
    The power generator sheet is a power source for a tire monitoring system, wherein the length A (mm) in the rotation direction of the tire satisfies A / B ≦ 0.16 with respect to the outer diameter B (mm) of the tire. ..
  2.  前記発電体シートは、0.04≦A/Bを満たす請求項1に記載のタイヤ監視システム用の電源。 The power source for the tire monitoring system according to claim 1, wherein the generator sheet satisfies 0.04 ≤ A / B.
  3.  前記シート状発電素子において、前記発電体シートが存在する部分の少なくとも一部がタイヤに固定されない請求項1又は2に記載のタイヤ監視システム用の電源。 The power supply for the tire monitoring system according to claim 1 or 2, wherein at least a part of the portion of the sheet-shaped power generation element in which the generator sheet exists is not fixed to the tire.
  4.  前記シート状発電素子において、前記発電体シートが存在する部分の面積の10%以上が、タイヤに固定されていない請求項3に記載のタイヤ監視システム用の電源。 The power source for the tire monitoring system according to claim 3, wherein in the sheet-shaped power generation element, 10% or more of the area of the portion where the power generator sheet exists is not fixed to the tire.
  5.  前記シート状発電素子において、前記発電体シートが存在する部分の全体をタイヤに固定しない請求項3に記載のタイヤ監視システム用の電源。 The power source for the tire monitoring system according to claim 3, wherein the entire portion of the sheet-shaped power generation element in which the generator sheet exists is not fixed to the tire.
  6.  前記シート状発電素子において、タイヤに固定する部分の面積が、発電素子全体の面積の10%以上である請求項3~5のいずれか1項に記載のタイヤ監視システム用の電源。 The power supply for a tire monitoring system according to any one of claims 3 to 5, wherein the area of the sheet-shaped power generation element fixed to the tire is 10% or more of the total area of the power generation element.
  7.  前記発電体シートが、圧電材料を含む圧電体シートである請求項1~6のいずれか1項に記載のタイヤ監視システム用の電源。 The power source for the tire monitoring system according to any one of claims 1 to 6, wherein the generator sheet is a piezoelectric sheet containing a piezoelectric material.
  8.  タイヤ情報検出装置と、情報送信装置と、前記タイヤ情報検出装置及び前記情報送信装置に電力を供給可能な電源とを含むタイヤ監視システムであって、
     前記情報送信装置は、前記タイヤ情報検出装置が検出したタイヤ情報を送信し、
     前記電源として、請求項1~7のいずれか1項に記載のタイヤ監視システム用の電源を備えたことを特徴とするタイヤ監視システム。
    A tire monitoring system including a tire information detection device, an information transmission device, and a power source capable of supplying power to the tire information detection device and the information transmission device.
    The information transmitting device transmits tire information detected by the tire information detecting device, and the information transmitting device transmits the tire information.
    A tire monitoring system comprising a power source for the tire monitoring system according to any one of claims 1 to 7 as the power source.
  9.  前記タイヤ情報検出装置は、センサ部と演算部とを含む請求項8に記載のタイヤ監視システム。 The tire monitoring system according to claim 8, wherein the tire information detection device includes a sensor unit and a calculation unit.
  10.  前記タイヤ情報検出装置は、空気圧、温度及び加速度から選ばれる少なくとも一つのタイヤ情報を検出する請求項8又は9に記載のタイヤ監視システム。 The tire monitoring system according to claim 8 or 9, wherein the tire information detection device detects at least one tire information selected from air pressure, temperature, and acceleration.
  11.  前記情報送信装置は、通信部とアンテナ部とを含む請求項8~10のいずれか1項に記載のタイヤ監視システム。 The tire monitoring system according to any one of claims 8 to 10, wherein the information transmission device includes a communication unit and an antenna unit.
  12.  請求項8~11のいずれか1項に記載のタイヤ監視システムと、タイヤとを含むことを特徴とするタイヤ組立体。 A tire assembly comprising the tire monitoring system according to any one of claims 8 to 11.
  13.  前記タイヤ監視システムに含まれるシート状発電素子が、前記タイヤの内部に埋め込んで配置されている請求項12に記載のタイヤ組立体。 The tire assembly according to claim 12, wherein the sheet-shaped power generation element included in the tire monitoring system is embedded in the tire and arranged.
PCT/JP2020/019092 2019-05-17 2020-05-13 Power source for tire monitoring system, tire monitoring system, and tire assembly WO2020235415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021520731A JPWO2020235415A1 (en) 2019-05-17 2020-05-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019093495 2019-05-17
JP2019-093495 2019-05-17

Publications (1)

Publication Number Publication Date
WO2020235415A1 true WO2020235415A1 (en) 2020-11-26

Family

ID=73458470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019092 WO2020235415A1 (en) 2019-05-17 2020-05-13 Power source for tire monitoring system, tire monitoring system, and tire assembly

Country Status (2)

Country Link
JP (1) JPWO2020235415A1 (en)
WO (1) WO2020235415A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119716A1 (en) * 2009-04-15 2010-10-21 株式会社村田製作所 Piezoelectric power generator
JP2016088473A (en) * 2014-11-11 2016-05-23 株式会社デンソー Tire assembly
JP2017154649A (en) * 2016-03-03 2017-09-07 マツダ株式会社 Tire air pressure alarm device for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119716A1 (en) * 2009-04-15 2010-10-21 株式会社村田製作所 Piezoelectric power generator
JP2016088473A (en) * 2014-11-11 2016-05-23 株式会社デンソー Tire assembly
JP2017154649A (en) * 2016-03-03 2017-09-07 マツダ株式会社 Tire air pressure alarm device for vehicle

Also Published As

Publication number Publication date
JPWO2020235415A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
US11148480B2 (en) Tire assembly, tire monitoring system, and tire monitoring method
US7781942B2 (en) Tire with electric power generation device
JP5313381B2 (en) System and method for generating electrical power from the mechanical energy of a rotating tire
US6807853B2 (en) System and method for generating electric power from a rotating tire&#39;s mechanical energy using piezoelectric fiber composites
US8166809B2 (en) In-tire multi-element piezoelectric sensor
EP1506101B1 (en) System for generating electric power from a rotating tire&#39;s mechanical energy using reinforced piezoelectric materials
JP2006151372A (en) System and method for generating power out of mechanical energy obtained from rotating tire
JP4809211B2 (en) System and method for recovering power from static electricity of a rotating tire
EP1897078B1 (en) Inductive coupling of pulses from piezoelectric device
US8578767B2 (en) Tire module and tires equipped therewith
JP2005525265A5 (en)
CN112533777B (en) Tyre comprising a monitoring device
JP2006025593A (en) Piezoelectric ceramic fiber with metal core
CN101093185A (en) Tire parameter monitoring system with inductive power source
JP7292644B2 (en) Tire assembly, tire monitoring system and method
JPH029964B2 (en)
WO2020235415A1 (en) Power source for tire monitoring system, tire monitoring system, and tire assembly
EP2415619A1 (en) Self-powered sensing module and system for monitoring the conditions of the tyres of a vehicle provided with at least one self-powered sensing module
CN114761260B (en) Motorcycle tyre comprising a monitoring device
JPWO2020235415A5 (en)
KR20110016798A (en) Self generation system for vehicle
JP7183105B2 (en) sensor module
KR20130056415A (en) Energy harvesting device using rotational energy of vehicle wheel and tire pressure monitoring system using the same
US20090207011A1 (en) Auto-charging alert device for rotatable pneumatic object
KR20160015810A (en) Wireless power transfer device for harvesting energy of automotive wheel, system including the device and wireless power transfer method using the system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20808640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520731

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20808640

Country of ref document: EP

Kind code of ref document: A1