WO2020235394A1 - エネルギー管理システムおよびエネルギー管理方法 - Google Patents

エネルギー管理システムおよびエネルギー管理方法 Download PDF

Info

Publication number
WO2020235394A1
WO2020235394A1 PCT/JP2020/018985 JP2020018985W WO2020235394A1 WO 2020235394 A1 WO2020235394 A1 WO 2020235394A1 JP 2020018985 W JP2020018985 W JP 2020018985W WO 2020235394 A1 WO2020235394 A1 WO 2020235394A1
Authority
WO
WIPO (PCT)
Prior art keywords
environmental parameter
environmental
spatial
energy management
value
Prior art date
Application number
PCT/JP2020/018985
Other languages
English (en)
French (fr)
Inventor
幸太郎 坂田
富美乘 生田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2021520722A priority Critical patent/JP7270233B2/ja
Publication of WO2020235394A1 publication Critical patent/WO2020235394A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving

Definitions

  • This disclosure relates to an energy management system and an energy management method used for demand response.
  • Patent Document 1 discloses a technique for stabilizing an electric power system by responding to an increase / decrease demand for electric power while realizing comfort in a control area in which an electric device is installed.
  • This disclosure provides an energy management system, etc. that can appropriately respond to requests for increase or decrease in power demand.
  • the energy management system includes a request reception unit that receives a request for increase / decrease in power demand, and an information acquisition unit that acquires usage information and user attribute information that differ depending on the time zone in the spatial area where power is used.
  • the change tolerance derivation unit that derives the change tolerance of the environmental parameter including the temperature of the space region based on the application information and the user attribute information, the increase / decrease request of the power demand, and the change tolerance of the environmental parameter.
  • An environment parameter generation unit that generates the value of the environment parameter in the space area based on the above, and an environment control unit that controls the environment parameter of the space area based on the value of the environment parameter.
  • the energy management method includes a step of accepting an increase / decrease request of power demand, a step of acquiring usage information and user attribute information different depending on a time zone in a spatial area where power is used, and the usage information. And the step of deriving the change tolerance of the environmental parameter including the temperature of the spatial region based on the user attribute information, and the change tolerance of the spatial region based on the increase / decrease request of the power demand and the change tolerance of the environmental parameter. It includes a step of generating the value of the environmental parameter and a step of controlling the environmental parameter of the spatial region based on the value of the environmental parameter.
  • the energy management system or the like it is possible to appropriately respond to the demand for increase / decrease in electric power demand.
  • FIG. 1 is a diagram showing a DR system composed of an energy management system according to an embodiment, a power supply server, a plurality of spatial areas provided in a facility, and the like.
  • FIG. 2 is a diagram showing an electric device and a communication terminal installed in a spatial area.
  • FIG. 3 is a block diagram showing an energy management system according to an embodiment.
  • FIG. 4 is a diagram showing usage information of the spatial area.
  • FIG. 5 is a diagram showing user attribute information of a person who uses the spatial area.
  • FIG. 6 is a diagram showing schedule information including usage information and user attribute information of each spatial area.
  • FIG. 7 is a diagram showing an example of the change tolerance of the environmental parameters of each spatial region, the power reduction target assigned to each spatial region, and the values of the environmental parameters set in each spatial region.
  • FIG. 8 is a diagram showing an example of a screen displayed on a communication terminal.
  • FIG. 9 is a sequence diagram showing the operation of the DR system.
  • FIG. 1 is a diagram showing a DR system 1 composed of an energy management system 10, a power supply server 2, a plurality of spatial areas 6 provided in a facility 5, and the like according to an embodiment.
  • FIG. 2 is a diagram showing an electric device 7, a communication terminal 8 and 9, installed in the space area 6.
  • the DR system 1 includes a power supply server 2, a plurality of facilities 5 owned by consumers who use electric power, and energy management provided between the power supply server 2 and each facility 5. It is composed of a system 10 and the like.
  • Each facility 5 includes a plurality of spatial areas 6 in which electric power is used.
  • an electric device 7 that consumes electric power and a communication terminal 9 that communicates with the energy management system 10 are installed.
  • a communication terminal 8 for facility management that communicates with the energy management system 10 is also arranged.
  • the power supply server 2 is a server owned by a power supply company that manages the power system.
  • the electric power supply business operator is, for example, a power transmission and distribution business operator or a retail electric power business operator, and supplies electric power to each facility 5 of the consumer. Further, the power supply server 2 is connected to the energy management system 10 by a communication network such as an Internet line or a dedicated communication line.
  • the energy management system 10 is a server owned by an aggregator (energy management company), which is a company that mediates between a power supply company and a consumer in DR. Aggregators enter into DR contracts with consumers, for example, to force consumers to curb power consumption during peak power consumption.
  • aggregator energy management company
  • Each facility 5 is, for example, a school, an office, an apartment house, a factory, or a commercial facility.
  • the space area 6 of the facility 5 is an area having a space surrounded by the walls or partitions of the building, and includes various rooms and passages provided in the facility 5.
  • each spatial area 6 is a lecture room, a laboratory, a seminar room, an event hall, a lobby, a corridor, or the like.
  • each space area 6 is a business floor, a training room, a product manufacturing room, a guest room, an entrance floor, a moving passage, or the like.
  • the electric device 7 is connected to the power distribution network 300 via a switchboard 3 provided in each space area 6, and electric power is supplied. Further, the electric device 7 is connected to the energy management system 10 via the router 4 provided in each space area 6 and the Internet 400, and is controlled according to the control content determined by the energy management system 10.
  • the electric device 7 is, for example, an air conditioner or a lighting device. When the electric device 7 is an air conditioner, the energy management system 10 uses the air conditioner to control the temperature or humidity of the space region 6. When the electric device 7 is a luminaire, the energy management system 10 uses the luminaire to dimming and control the illuminance of the space region 6.
  • the communication terminal 8 and the communication terminal 9 are devices that accept operation input of a user or a user who uses the space area 6 and notify the consumer or the user of information about DR.
  • the communication terminal 8 is, for example, a personal computer, and is provided in a predetermined space area among a plurality of space areas 6.
  • the communication terminal 9 is a tablet terminal, a smartphone, or a wall switch with a touch panel, and is provided inside each space area 6 or at an entrance of each space area 6.
  • the communication terminals 8 and 9 are connected to the energy management system 10 via the router 4 and the Internet 400.
  • the usage information of the spatial area 6 and the user attribute information of the person who uses the spatial area 6 are input to, displayed, and stored in the communication terminals 8 and 9. Usage information and user attribute information will be described later.
  • the power supply server 2 first transmits a request for increase / decrease in power demand to the energy management system 10 based on the supply / demand situation of the power system.
  • the request for increase / decrease in power demand is to request consumers to increase or decrease the amount of power used in order to stabilize the power system.
  • the energy management system 10 Upon receiving this increase / decrease request, transmits an increase / decrease request for electric power demand to each facility 5 via the Internet 400.
  • the amount of electric power used is adjusted according to the received increase / decrease request. By adjusting the amount of electricity used, for example, the aggregator pays an incentive to the consumer.
  • FIG. 3 is a block diagram showing the energy management system 10.
  • the energy management system 10 includes communication units 11, 12 and 13, and a control unit 20. Note that FIG. 3 also shows a power supply server 2, an electric device 7, communication terminals 8, 9, and the like. Each communication unit 11 to 13 is connected to the control unit 20.
  • the communication unit 11 is a communication module that communicates with the power supply server 2.
  • the communication unit 11 receives a signal from the power supply server 2 instructing an increase / decrease request for power demand.
  • the communication unit 11 can also transmit various information including a response to a request for increase / decrease in power demand to the power supply server 2.
  • the communication unit 12 is a communication module that communicates with communication terminals 8 and 9 via the Internet 400.
  • the communication unit 12 receives the usage information of the spatial area 6 and the user attribute information of the person who uses the spatial area 6 (see FIGS. 4 and 5) transmitted from the communication terminals 8 and 9. Further, the communication unit 12 transmits the values of environmental parameters (see FIG. 6) such as the temperature of the space region 6 generated by the control unit 20 to the communication terminals 8 and 9.
  • the communication unit 12 can also receive various information including responses to requests for increase / decrease in power demand from the communication terminals 8 and 9.
  • the communication unit 13 is a communication module that communicates with the electric device 7 via the Internet 400.
  • the communication unit 13 transmits the control signal generated by the control unit 20 to the electric device 7.
  • the communication units 12 and 13 may be configured by different communication modules, or may be configured by the same communication module.
  • the control unit 20 includes a request reception unit 21, an information acquisition unit 22, a change tolerance derivation unit 24, an environment parameter generation unit 25, an environment control unit 23, and a storage unit 26. Be prepared.
  • the control unit 20 is a circuit that controls each component of the energy management system 10, and is realized by a microprocessor, a memory, and a program stored in the memory.
  • the request reception unit 21 receives information regarding an increase / decrease request for power demand transmitted from the power supply server 2 via the communication unit 11.
  • the information regarding the request for increase / decrease in power demand is used to generate the values of the environmental parameters described later.
  • the information acquisition unit 22 acquires usage information and user attribute information of the space area 6 in which electric power is used.
  • the usage information and user attribute information are used to derive the change tolerance of the environmental parameters described later.
  • FIG. 4 is a diagram showing usage information of the spatial area 6.
  • the usage information is information indicating the purpose of use of the spatial area 6.
  • the usage information when the facility 5 is a school is information selected from lectures, experiments, lectures, student meetings, etc.
  • the usage information when the facility 5 is a factory is office work, meetings, product manufacturing, etc. , Information selected from visitors, etc.
  • FIG. 5 is a diagram showing user attribute information of a person who uses the spatial area 6.
  • the user attribute information is information indicating the affiliation of a person who uses the spatial area 6.
  • the user attribute information when the facility 5 is a school is information selected from students, teachers, off-campus speakers, general participants, etc.
  • the user attribute information when the facility 5 is a factory is employees, officers, etc. , Information selected from visitors, etc.
  • the user attribute information also includes information indicating whether the user belongs to the community (facility-related person) or outside the community (non-facility-related person).
  • the information acquisition unit 22 acquires the usage information and the user attribute information of the spatial area 6 transmitted from the communication terminal 8 or the communication terminal 9. When the information acquisition unit 22 acquires information from the facility management communication terminal 8, it is also possible to collectively acquire the usage information and the user attribute information of each spatial area 6.
  • the storage unit 26 stores the usage information and the user attribute information acquired by the information acquisition unit 22.
  • FIG. 6 is a diagram showing schedule information including usage information and user attribute information of each spatial area 6.
  • the usage information and the user attribute information of each spatial area 6 are aggregated for each time and stored as schedule information.
  • the change tolerance derivation unit 24 derives the change tolerance of the environmental parameter of the spatial area 6 based on the usage information and the user attribute information.
  • the environmental parameter is a variable indicating the environmental state of the space region 6, and is, for example, temperature, humidity, illuminance, and the like.
  • the change tolerance of the environmental parameter is the degree to which the change of the environmental parameter is permitted. For example, it is expressed in four stages, and indicates that the change of the environmental state is permitted as the number increases from 0 to 3. This change tolerance is used to generate the values of the environmental parameters described below.
  • FIG. 7 is a diagram showing an example of the change tolerance of the environmental parameters of each space area 6, the power reduction target assigned to each space area 6, and the values of the environment parameters set in each space area 6. In the following, a case where there is a request to reduce the power demand will be described as an example.
  • room 101 of facility 5 is used for plant growth experiments, and the change tolerance is set to 0 because the environment of the spatial area 6 must not be changed.
  • Room 102 is used for lectures presented by off-campus speakers, and it is desirable not to change the environment of the spatial area 6, so the change tolerance is set to 1.
  • Room 103 is used for lectures attended by students and faculty members in the community, and since it is allowed to change the environment to some extent, the change tolerance is set to 2.
  • Room 104 is used for student meetings only by students in the community, and the environment can be changed, so the change tolerance is set to 3.
  • the environmental parameter generation unit 25 determines the environmental parameters of each spatial area 6 based on the power demand reduction request received by the request reception unit 21 and the change tolerance of the environmental parameters derived by the change tolerance derivation unit 24. Generate a value for.
  • the environmental parameter generation unit 25 allocates power to reduce the power consumption of each space area 6 according to the power demand reduction request and the change tolerance of the environmental parameters.
  • the environmental parameter generation unit 25 determines the value of the environmental parameter so that the space area 6 having a higher tolerance for changing the environmental parameter has a greater contribution to the demand for increase / decrease in power demand than the space area 6. To generate.
  • the environmental parameter generation unit 25 generates the value of the environmental parameter so that the temperature of the space region 6 having a higher temperature is higher than that of the space region 6 having a lower tolerance for changing the environmental parameter during the cooling operation.
  • the environmental parameter generation unit 25 generates the value of the environmental parameter so that the temperature of the space region 6 having a higher temperature is lower than that of the space region 6 having a lower tolerance for changing the environmental parameter during the heating operation.
  • the environmental parameter generation unit 25 receives a power reduction request of 4500 kWh between 11:00 am and 2:00 pm
  • the power reduction target of each space area 6 is determined according to the change tolerance of the environmental parameters of each space area 6. Allocate. For example, the environmental parameter generation unit 25 sets the power reduction target to 0 for rooms 101 and 102 because the change tolerance is 1 or less, and sets the power reduction target to 2000 kWh for room 103 because the change tolerance is 2, and sets the power reduction target to room 104. Since the change tolerance is 3, the power reduction target is set to 2500kWh, which is more than that of Room 103.
  • the environmental parameter generation unit 25 calculates the power reduction target of each space area 6 so that the facility as a whole can meet the power reduction request.
  • the environment parameter generation unit 25 executed the size of each space area 6, the capacity and number of electric devices 7 used in each space area 6, and the power reduction.
  • the power reduction target may be determined in consideration of the discomfort level of each spatial area 6 in the case.
  • the environmental parameter generation unit 25 generates the changed temperature of each space area 6 according to the calculated power reduction target.
  • the environmental parameter generation unit 25 does not change the temperatures of rooms 101 and 102, but changes the temperature of room 103 from 25 ° C to 27 ° C, and changes the temperature of room 104 from 25 ° C to 28 ° C. Generate values for environment parameters.
  • the environmental parameter generation unit 25 changes the value of the environmental parameter in the space region 6 in which the change tolerance of the environmental parameter is equal to or higher than the threshold value in response to the request for increase / decrease in the power demand, and the change tolerance of the environmental parameter is the threshold value.
  • the value of the environmental parameter of the space area 6 smaller than is not changed in response to the demand for increase / decrease in power demand.
  • the environmental parameter generation unit 25 sets the values of the environmental parameters of room 101 having a change tolerance of 0 and room 102 having a change tolerance of 1. Without changing, the values of the environmental parameters of Room 103, which has a change tolerance of 2, and Room 104, which has a change tolerance of 3, are changed.
  • the above threshold value may be set in advance by the aggregator, or may be set according to the wishes of the consumer.
  • the value of the environment parameter generated by the environment parameter generation unit 25 is transmitted to the communication terminals 8 and 9 via the communication unit 12.
  • FIG. 8 is a diagram showing an example of the screen 9a displayed on the communication terminal 9.
  • the spatial area number, the time zone for executing the power reduction, the power reduction target, the changed temperature, and the like, etc. Information is displayed on the screen 9a of the communication terminal 9, in order to notify the user of the power demand reduction request, the spatial area number, the time zone for executing the power reduction, the power reduction target, the changed temperature, and the like, etc. Information is displayed.
  • the Yes icon on the screen 9a is pressed by the user, the value of the above environment parameter is permitted to the user.
  • the communication terminal 8 may be used instead of the communication terminal 9. Good.
  • the environmental control unit 23 controls the environmental parameter such as the temperature of the space region 6 based on the value of the environmental parameter. Specifically, the environment control unit 23 controls the operation of the electric device 7 such as the air conditioner device via the communication unit 13. Although the example in which the environment control unit 23 controls the temperature with the air conditioner has been described above, the present invention is not limited to this, and the humidity of the space region 6 may be controlled by the air conditioner. Further, when the electric device 7 is a lighting device, the environment control unit 23 may control the illuminance of the space area 6.
  • the energy management system 10 generates the values of the environmental parameters based on the usage information and the user attribute information of the space area 6, and adjusts the power consumption of the space area 6, thereby being suitable for the demand for increase / decrease of the power demand. Can be accommodated.
  • FIG. 9 is a sequence diagram showing the operation of the DR system 1.
  • the power supply server 2 requests the energy management system 10 to increase or decrease the power demand.
  • the energy management system 10 receives a request for increase / decrease in power demand transmitted from the power supply server 2 (step S11).
  • the request for increase / decrease in power demand includes information on a target for increasing or decreasing power in a predetermined time zone.
  • the aggregator who owns the energy management system 10 has a DR contract with a plurality of consumers in advance.
  • the energy management system 10 transmits a request for increase / decrease in power demand to the facility 5 of the consumer.
  • the energy management system 10 acquires usage information of each space area 6 of the facility 5 in which electric power is used and user attribute information of a person who uses the space area 6 (step S12).
  • the energy management system 10 acquires these usage information and user attribute information from the communication terminal 8 or the communication terminal 9.
  • the energy management system 10 may acquire usage information and user attribute information before step S11.
  • the energy management system 10 derives the change tolerance of the environmental parameter of the spatial area 6 based on the acquired usage information and user attribute information (step S13).
  • the change tolerance is expressed by a number, for example, and the larger the number, the more the environment can be changed.
  • the energy management system 10 generates the value of the environmental parameter of the spatial region 6 based on the request for increase / decrease of the electric power demand received in step S11 and the change tolerance of the environmental parameter derived in step S13 (step). S14).
  • the value of the environmental parameter is generated so that, for example, the spatial region 6 having a higher tolerance for changing the environmental parameter has a greater contribution to the demand for increase / decrease in power demand than the spatial region 6.
  • the energy management system 10 transmits various information including the values of the environmental parameters to the communication terminal 8 or the communication terminal 9 installed in the space area 6 (step S15). Specifically, the number of the spatial area 6, the time zone for executing the power demand increase / decrease request, the power increase / decrease amount, and the changed environmental parameter values are transmitted.
  • the value of the changed environment parameter is allowed by the user, that is, when the communication terminal 8 or 9 accepts a permission input permitting the value of the changed environment parameter (step S15A)
  • the communication terminal 8 or 9 A permission signal indicating it is transmitted to the energy management system 10.
  • the energy management system 10 When the energy management system 10 receives this permission signal, it controls the environmental parameters of the spatial region 6 based on the values of the environmental parameters generated in step S14 (step S16). In this way, by generating the values of the environmental parameters based on the usage information and the user attribute information of the space area 6 and adjusting the power consumption of the space area 6, it is possible to appropriately respond to the request for increase / decrease of the power demand. ..
  • the energy management system 10 acquires information that acquires usage information and user attribute information that differ depending on the time zone of the request receiving unit 21 that receives an increase / decrease request for power demand and the space area 6 where power is used.
  • the change tolerance deriving unit 24 for deriving the change tolerance of the environmental parameter including the temperature of the space region 6 based on the application information and the user attribute information, and the power demand increase / decrease request and the change of the environmental parameter. It includes an environment parameter generation unit 25 that generates the value of the environment parameter of the space area 6 based on the tolerance, and an environment control unit 23 that controls the environment parameter of the space area 6 based on the value of the environment parameter.
  • the change tolerance of the environmental parameter of the spatial area 6 is derived according to the usage information and the user attribute information of the spatial area 6 that differ depending on the time zone, and the demand response (DR) is calculated based on this change tolerance. Will be executed. As a result, it is possible to appropriately meet the demand for increase / decrease in power demand.
  • the information acquisition unit 22 acquires the usage information and the user attribute information of each of the spatial areas 6 from the facility 5 having the plurality of spatial areas 6, and the change tolerance derivation unit 24 acquires the environmental parameters of each of the plurality of spatial areas 6.
  • the change tolerance of the above is derived, and the environment parameter generation unit 25 may generate the value of the environment parameter of each of the plurality of spatial regions 6.
  • the change tolerance of the environmental parameter of each spatial area 6 is derived according to the usage information and the user attribute information of the plurality of spatial areas 6, and the demand response is executed based on this change tolerance. As a result, it is possible to appropriately meet the demand for increase / decrease in power demand.
  • the energy management system 10 may further include a communication unit 12 that transmits the value of the environmental parameter to the communication terminal 9 provided in the space area 6.
  • the environment parameter generation unit 25 generates the value of the environment parameter so that the space area 6 having a higher tolerance for changing the environment parameter has a greater contribution to the demand for increase / decrease in power demand than the space area 6. May be good.
  • the environmental parameter generation unit 25 generates the value of the environmental parameter so that the temperature is higher in the space area 6 having a higher temperature than the space area 6 having a lower tolerance for changing the environmental parameter during the cooling operation, and the environment during the heating operation.
  • the value of the environmental parameter may be generated so that the temperature of the space region 6 having a high parameter change tolerance is lower than that of the space region 6 having a low tolerance for changing the parameter.
  • the environmental parameter generation unit 25 changes the value of the environmental parameter in the space area 6 in which the change tolerance of the environmental parameter is equal to or higher than the threshold value in response to the request for increase / decrease of the power demand, and the change tolerance of the environmental parameter is greater than the above threshold value. It is not necessary to change the value of the environmental parameter of the small space area 6 according to the demand for increase / decrease in power demand.
  • the spatial region 6 in which the change tolerance of the environmental parameter is smaller than the threshold value is excluded from the execution target of the demand response. Therefore, for example, the environmental parameter of the spatial region 6 under the plant growth experiment is determined by an external factor. It can be avoided to be changed.
  • the environmental parameter further includes the illuminance of the spatial region 6, and the environmental control unit 23 dims the lighting equipment provided in the spatial region 6 based on the value of the environmental parameter generated by the environmental parameter generation unit 25. You may control it.
  • the dimming of the lighting equipment By controlling the dimming of the lighting equipment according to the demand response in this way, the optimum illuminance that matches the usage information and user attribute information of the spatial area 6 is realized, and the demand for increase / decrease in power demand is appropriately met. be able to.
  • the energy management method includes a step of accepting an increase / decrease request of power demand, a step of acquiring usage information and user attribute information different depending on a time zone in the space area 6 where power is used, and the above usage information. And the step of deriving the change tolerance of the environmental parameter including the temperature of the spatial area 6 based on the above user attribute information, and the environmental parameter of the spatial area 6 based on the request for increase / decrease of the power demand and the change tolerance of the environmental parameter. Includes a step of generating the value of and a step of controlling the environmental parameter of the spatial region 6 based on the value of the environmental parameter.
  • the change tolerance of the environmental parameter of the spatial area 6 is derived according to the usage information and the user attribute information of the spatial area 6 that differ depending on the time zone, and the demand response is executed based on this change tolerance. .. As a result, it is possible to appropriately meet the demand for increase / decrease in power demand.
  • the energy management system 10 controls the environmental parameters of the spatial area 6 after the value of the environmental parameters is permitted by the user has been shown, but the present invention is not limited to this.
  • the energy management system 10 does not perform step S14, i.e. seeks the user's permission. You may control the environmental parameters of the spatial region 6 without using it.
  • the above user attribute information information indicating the affiliation of a person has been described as an example, but the description is not limited to this.
  • a camera is provided in the space area 6, the age of the person in the space area 6 is derived based on the information captured by the camera, and the energy management system 10 treats the information related to this age as user attribute information, and the space You may control the environmental parameters of region 6.
  • the communication method between the devices described in the above embodiment is an example, and any wired or wireless communication method may be used between the devices.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • another processing unit may execute the processing executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel.
  • the comprehensive or specific aspects of the present disclosure may be realized by a recording medium such as a system, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM.
  • the comprehensive or specific aspects of the present disclosure may be realized by any combination of systems, methods, integrated circuits, computer programs or recording media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Tourism & Hospitality (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Abstract

エネルギー管理システム(10)は、電力需要の増減要求を受け付ける要求受付部(21)と、電力が使用される空間領域(6)の、時間帯によって異なる用途情報およびユーザ属性情報を取得する情報取得部(22)と、上記用途情報および上記ユーザ属性情報に基づいて、空間領域(6)の温度を含む環境パラメータの変更許容度を導出する変更許容度導出部(24)と、電力需要の増減要求および環境パラメータの変更許容度に基づいて、空間領域(6)の環境パラメータの値を生成する環境パラメータ生成部(25)と、環境パラメータの値に基づいて、空間領域(6)の環境パラメータを制御する環境制御部(23)とを備える。

Description

エネルギー管理システムおよびエネルギー管理方法
 本開示は、デマンドレスポンスに用いられるエネルギー管理システムおよびエネルギー管理方法に関する。
 電力系統の安定化を図る仕組みであるデマンドレスポンス(DR:Demand Response)が知られている(例えば、特許文献1参照)。特許文献1には、電気機器が設置された管理エリアの快適性を実現しつつ、電力需要の増減要求に応じることで電力系統の安定化を図る技術が開示されている。
特開2013-247719号公報
 しかしながら、例えば電力を使用する空間領域が時間帯によって異なる使い方をされる場合、電力需要の増減要求に適切に応じることが困難となることがある。
 本開示は、電力需要の増減要求に適切に応じることができるエネルギー管理システム等を提供する。
 本開示の一態様に係るエネルギー管理システムは、電力需要の増減要求を受け付ける要求受付部と、電力が使用される空間領域の、時間帯によって異なる用途情報およびユーザ属性情報を取得する情報取得部と、前記用途情報および前記ユーザ属性情報に基づいて、前記空間領域の温度を含む環境パラメータの変更許容度を導出する変更許容度導出部と、前記電力需要の増減要求および前記環境パラメータの変更許容度に基づいて、前記空間領域の前記環境パラメータの値を生成する環境パラメータ生成部と、前記環境パラメータの値に基づいて、前記空間領域の環境パラメータを制御する環境制御部とを備える。
 本開示の一態様に係るエネルギー管理方法は、電力需要の増減要求を受け付けるステップと、電力が使用される空間領域の、時間帯によって異なる用途情報およびユーザ属性情報を取得するステップと、前記用途情報および前記ユーザ属性情報に基づいて、前記空間領域の温度を含む環境パラメータの変更許容度を導出するステップと、前記電力需要の増減要求および前記環境パラメータの変更許容度に基づいて、前記空間領域の前記環境パラメータの値を生成するステップと、前記環境パラメータの値に基づいて、前記空間領域の環境パラメータを制御するステップとを含む。
 本開示の一態様に係るエネルギー管理システム等によれば、電力需要の増減要求に適切に応じることができる。
図1は、実施の形態に係るエネルギー管理システム、電力供給サーバ、および、施設に設けられた複数の空間領域などによって構成されるDRシステムを示す図である。 図2は、空間領域に設置される電気機器および通信端末を示す図である。 図3は、実施の形態に係るエネルギー管理システムを示すブロック図である。 図4は、空間領域の用途情報を示す図である。 図5は、空間領域を使用する人のユーザ属性情報を示す図である。 図6は、各空間領域の用途情報およびユーザ属性情報を含むスケジュール情報を示す図である。 図7は、各空間領域の環境パラメータの変更許容度、各空間領域に割り当てられる電力削減目標、および、各空間領域に設定される環境パラメータの値の一例を示す図である。 図8は、通信端末に表示される画面の一例を示す図である。 図9は、DRシステムの動作を示すシーケンス図である。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、本開示の一形態に係る実現形態を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。本開示の実現形態は、現行の独立請求項に限定されるものではなく、他の独立請求項によっても表現され得る。
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略または簡略化される場合がある。
 (実施の形態)
 [1.DRシステムの全体構成]
 まず、DRシステム(デマンドレスポンスシステム)の全体構成について、図1および図2を参照しながら説明する。
 図1は、実施の形態に係るエネルギー管理システム10、電力供給サーバ2、および、施設5に設けられた複数の空間領域6などによって構成されるDRシステム1を示す図である。図2は、空間領域6に設置される電気機器7、通信端末8および9を示す図である。
 図1に示されるように、DRシステム1は、電力供給サーバ2、電力を使用する需要家が所有する複数の施設5、および、電力供給サーバ2と各施設5との間に設けられるエネルギー管理システム10などによって構成される。各施設5は、電力が使用される複数の空間領域6を備えている。図2に示されるように、各空間領域6には、電力を消費する電気機器7、および、エネルギー管理システム10と通信する通信端末9が設置されている。また、図2に示す空間領域6には、エネルギー管理システム10と通信する施設管理用の通信端末8も配置されている。
 電力供給サーバ2は、電力系統を管理する電力供給事業者が所有するサーバである。電力供給事業者は、例えば送配電事業者または小売電気事業者などのことであり、需要家の各施設5に電力を供給する。また、電力供給サーバ2は、インターネット回線または専用の通信回線などの通信ネットワークによってエネルギー管理システム10と接続されている。
 エネルギー管理システム10は、DRにおいて電力供給事業者と需要家とを仲介する事業者であるアグリゲータ(エネルギー管理事業者)が所有するサーバである。アグリゲータは、需要家とDRの契約を結び、例えば、電力消費のピーク時に需要家に電力消費を抑制させる。
 各施設5には、電力供給サーバ2または配電事業者が所有する配電網300(電力線310)を通じて電力が供給される。また、各施設5はインターネット400(信号線410)を通じてエネルギー管理システム10と接続されている。各施設5は、例えば、学校、オフィス、集合住宅、工場、商業施設である。施設5の空間領域6は、建物の壁またはパーテーションに囲まれた空間を有する領域であり、施設5に設けられた各種の部屋および通路などを含む。例えば施設5が学校である場合、各空間領域6は、講義室、実験室、セミナー室、イベントホール、ロビーまたは廊下などである。例えば施設5が工場である場合、各空間領域6は、業務フロア、研修室、製品製造室、来客室、玄関フロアまたは移動通路などである。
 電気機器7は、各空間領域6に設けられた配電盤3を介して配電網300に接続され、電力が供給される。また、電気機器7は、各空間領域6に設けられたルータ4、および、インターネット400を介してエネルギー管理システム10に接続され、エネルギー管理システム10で決定された制御内容に応じて制御される。電気機器7は、例えば、空調機器または照明器具である。電気機器7が空調機器である場合、エネルギー管理システム10は、空調機器を用いて空間領域6の温度または湿度を制御する。電気機器7が照明器具である場合、エネルギー管理システム10は、照明器具を用いて空間領域6の照度を調光制御する。
 通信端末8および通信端末9は、需要家または空間領域6を使用するユーザの操作入力を受け付けたり、需要家またはユーザにDRに関する情報を通知したりする装置である。通信端末8は、例えばパーソナルコンピュータであり、複数の空間領域6のうちの所定の空間領域に設けられる。通信端末9は、タブレット端末、スマートフォン、または、タッチパネル付の壁スイッチであり、各空間領域6の内部または各空間領域6の入口に設けられる。通信端末8、9は、ルータ4およびインターネット400を介してエネルギー管理システム10に接続される。通信端末8、9には、空間領域6の用途情報および空間領域6を使用する人のユーザ属性情報が入力され、表示され、および保存される。用途情報およびユーザ属性情報については後述する。
 上記のようなDRシステム1においては、まず、電力供給サーバ2が、電力系統の需給の状況に基づいて電力需要の増減要求をエネルギー管理システム10に送信する。電力需要の増減要求とは、電力系統の安定化を図るため、需要家に対して電力使用量の増加または削減を求めることである。この増減要求を受信したエネルギー管理システム10は、インターネット400を通じて各施設5に電力需要の増減要求を送信する。各施設5では、受信した増減要求に応じて電力使用量が調整される。この電力使用量の調整により、例えばアグリゲータから需要家にインセンティブが支払われる。
 [2.エネルギー管理システムの構成]
 次に、実施の形態のエネルギー管理システム10について、図3~図8を参照しながら説明する。
 図3は、エネルギー管理システム10を示すブロック図である。
 図3に示されるように、エネルギー管理システム10は、通信部11、12および13と、制御部20とを備える。なお、図3には、電力供給サーバ2、電気機器7および通信端末8、9なども示されている。各通信部11~13は、制御部20に接続されている。
 通信部11は、電力供給サーバ2と通信する通信モジュールである。通信部11は、電力供給サーバ2から電力需要の増減要求を指示する信号を受信する。なお、通信部11は、電力需要の増減要求に対する応答を含む各種情報を電力供給サーバ2に送信することも可能である。
 通信部12は、インターネット400を介して通信端末8、9と通信する通信モジュールである。通信部12は、通信端末8、9から送信された、空間領域6の用途情報および空間領域6を使用する人のユーザ属性情報(図4および図5参照)を受信する。また、通信部12は、制御部20にて生成した、空間領域6の温度などの環境パラメータの値(図6参照)を通信端末8、9に送信する。なお、通信部12は、電力需要の増減要求に対する応答を含む各種情報を通信端末8、9から受信することも可能である。
 通信部13は、インターネット400を介して電気機器7と通信する通信モジュールである。通信部13は、制御部20にて生成した制御信号を電気機器7に送信する。なお、通信部12および13は、それぞれ異なる通信モジュールによって構成されていてもよいし、同じ1つの通信モジュールによって構成されていてもよい。
 図3に示されるように制御部20は、要求受付部21と、情報取得部22と、変更許容度導出部24と、環境パラメータ生成部25と、環境制御部23と、記憶部26とを備える。制御部20は、エネルギー管理システム10が有する各構成要素を制御する回路であり、マイクロプロセッサ、メモリ、およびメモリに格納されたプログラムによって実現される。
 要求受付部21は、通信部11を介して、電力供給サーバ2から送信された電力需要の増減要求に関する情報を受け付ける。電力需要の増減要求に関する情報は、後述する環境パラメータの値を生成するために用いられる。
 情報取得部22は、電力が使用される空間領域6の用途情報およびユーザ属性情報を取得する。用途情報およびユーザ属性情報は、後述する環境パラメータの変更許容度を導出するために用いられる。
 図4は、空間領域6の用途情報を示す図である。用途情報は、空間領域6の使用目的を示す情報である。例えば施設5が学校である場合の用途情報は、講義、実験、講演会、学生集会などから選択される情報であり、施設5が工場である場合の用途情報は、事務作業、会議、製品製造、来客などから選択される情報である。
 図5は、空間領域6を使用する人のユーザ属性情報を示す図である。ユーザ属性情報は、空間領域6を使用する人の所属を示す情報である。例えば施設5が学校である場合のユーザ属性情報は、学生、教員、学外講演者、一般参加者などから選択される情報であり、施設5が工場である場合のユーザ属性情報は、社員、役員、来訪者などから選択される情報である。また、ユーザ属性情報には、ユーザがコミュニティ内(施設関係者)およびコミュニティ外(施設関係者以外)のいずれに属するかを示す情報も含まれる。
 情報取得部22は、通信端末8または通信端末9から送信された、空間領域6の用途情報およびユーザ属性情報を取得する。なお、情報取得部22は、施設管理用の通信端末8から情報を取得する場合、各空間領域6の用途情報およびユーザ属性情報を一括して取得することも可能である。
 記憶部26は、情報取得部22で取得した用途情報およびユーザ属性情報を保存する。
 図6は、各空間領域6の用途情報およびユーザ属性情報を含むスケジュール情報を示す図である。記憶部26では、各空間領域6の用途情報およびユーザ属性情報が時間ごとに集約され、スケジュール情報として保存されている。
 例えば、図6には、午前11時から午後2時までの時間帯において、101号室は植物生育実験のために学生、教員によって使用され、102号室は講演会のために学生、教員、学外講演者によって使用され、103号室は講義のために学生、教員によって使用され、104号室は学生集会のために学生のみによって使用されることが示されている。このように、各空間領域6の使用目的および使用する人が時間帯によって変わるので、各空間領域6の用途情報およびユーザ属性情報は時間帯によって異なる情報となる。
 変更許容度導出部24は、上記用途情報および上記ユーザ属性情報に基づいて、空間領域6の環境パラメータの変更許容度を導出する。環境パラメータとは、空間領域6の環境状態を示す変数であり、例えば、温度、湿度、照度などである。環境パラメータの変更許容度とは、環境パラメータの変更が許される度合であり、例えば4段階で表され、0から3に数字が大きくなるにしたがい環境状態の変更が許されることを示す。この変更許容度は、後述する環境パラメータの値を生成するために用いられる。
 図7は、各空間領域6の環境パラメータの変更許容度、各空間領域6に割り当てられる電力削減目標、および、各空間領域6に設定される環境パラメータの値の一例を示す図である。なお以下では、電力需要を削減する要求があった場合を例に挙げて説明する。
 例えば図7に示されるように、施設5の101号室は、植物生育実験に用いられ、空間領域6の環境を変えてはならないので変更許容度が0に設定される。また、102号室は、学外講演者が発表する講演会に用いられ、空間領域6の環境を変えないほうが望ましいので変更許容度が1に設定される。103号室は、コミュニティ内の学生および教員が出席する講義に用いられ、環境を変えることがある程度許されるので変更許容度が2に設定される。104号室は、コミュニティ内の学生のみによる学生集会に用いられ、環境を変えることが許されるので変更許容度が3に設定される。
 環境パラメータ生成部25は、要求受付部21にて受け付けた電力需要の削減要求、および、変更許容度導出部24にて導出した環境パラメータの変更許容度に基づいて、各空間領域6の環境パラメータの値を生成する。
 環境パラメータ生成部25は、電力需要の削減要求および環境パラメータの変更許容度に応じて、各空間領域6の電力使用量を削減するための割り振りを行う。この割り振りを行う際、環境パラメータ生成部25は、環境パラメータの変更許容度が低い空間領域6よりも高い空間領域6のほうが電力需要の増減要求に対する貢献度が多くなるように、環境パラメータの値を生成する。例えば、環境パラメータ生成部25は、冷房稼働時には環境パラメータの変更許容度が低い空間領域6よりも高い空間領域6のほうが温度が高くなるように、環境パラメータの値を生成する。また、環境パラメータ生成部25は、暖房稼働時には環境パラメータの変更許容度が低い空間領域6よりも高い空間領域6のほうが温度が低くなるように、環境パラメータの値を生成する。
 ここで図7を参照しながら、各空間領域6に対して電力削減目標を割り振る例について説明する。まず、環境パラメータ生成部25は、午前11時から午後2時の間に4500kWhの電力の削減要求を受け付けると、各空間領域6の環境パラメータの変更許容度に応じて、各空間領域6の電力削減目標を割り振る。例えば、環境パラメータ生成部25は、101号室および102号室については変更許容度が1以下なので電力削減目標を0とし、103号室については変更許容度が2なので電力削減目標を2000kWhとし、104号室については変更許容度が3なので電力削減目標を103号室よりも多い2500kWhとする。
 このように環境パラメータ生成部25は、施設全体として電力の削減要求に応えられるように各空間領域6の電力削減目標を算出する。なお、環境パラメータ生成部25は、各空間領域6の電力削減目標を割り振る際、各空間領域6の広さ、各空間領域6で使用される電気機器7の能力および台数、電力削減を実行した場合の各空間領域6の不快さレベルなども考慮して電力削減目標を決めてもよい。
 そして、環境パラメータ生成部25は、図7に示されるように、算出した電力削減目標に応じて各空間領域6の変更後の温度を生成する。例えば、環境パラメータ生成部25は、101号室および102号室の温度を変更せず、103号室の温度を25℃から27℃に変更し、104号室の温度を25℃から28℃に変更するように環境パラメータの値を生成する。
 このように、環境パラメータ生成部25は、環境パラメータの変更許容度が閾値以上である空間領域6の環境パラメータの値を電力需要の増減要求に応じて変更し、環境パラメータの変更許容度が閾値よりも小さい空間領域6の環境パラメータの値を電力需要の増減要求に応じて変更しない。例えば、エネルギー管理システム10において上記閾値が2に設定されている場合、環境パラメータ生成部25は、変更許容度が0である101号室および変更許容度が1である102号室の環境パラメータの値は変更せず、変更許容度が2である103号室および変更許容度が3である104号室の環境パラメータの値を変更する。上記閾値は、アグリゲータによってあらかじめ設定されていてもよいし、需要家からの希望に応じて設定されてもよい。
 環境パラメータ生成部25で生成された環境パラメータの値は、通信部12を介して通信端末8、9に送信される。
 図8は、通信端末9に表示される画面9aの一例を示す図である。
 図8に示されるように通信端末9の画面9aには、電力需要の削減要求をユーザに通知するため、空間領域の番号、電力削減を実行する時間帯、電力削減目標および変更後の温度などの情報が表示される。ここで画面9a上のYesのアイコンがユーザによって押圧されると、上記環境パラメータの値がユーザに許可されたことになる。なお、上記では通信端末9を用いて、電力需要の削減要求の通知、および、環境パラメータの値の許可を行う例を示したが、通信端末9の代わりに通信端末8を用いて行ってもよい。
 上記環境パラメータの値が許可されると、環境制御部23は、上記環境パラメータの値に基づいて空間領域6の温度などの環境パラメータを制御する。具体的には、環境制御部23は、通信部13を介して、空調機器などの電気機器7の作動を制御する。なお、上記では環境制御部23が空調機器で温度を制御する例について説明したが、それに限られず、空調機器で空間領域6の湿度を制御してもよい。また、電気機器7が照明器具である場合は、環境制御部23は、空間領域6の照度を制御してもよい。このようにエネルギー管理システム10が、空間領域6の用途情報およびユーザ属性情報に基づいて環境パラメータの値を生成し、空間領域6の電力使用量を調整することで、電力需要の増減要求に適切に応じることができる。
 [3.DRシステムの動作]
 次に、DRシステム1の動作について、図9を参照しながら説明する。図9は、DRシステム1の動作を示すシーケンス図である。
 まず、電力供給サーバ2がエネルギー管理システム10に電力需要の増減要求を行う。エネルギー管理システム10は、電力供給サーバ2から送信された電力需要の増減要求を受け付ける(ステップS11)。電力需要の増減要求には、所定の時間帯における電力の増加目標または削減目標に関する情報が含まれている。
 エネルギー管理システム10を所有するアグリゲータは、あらかじめ複数の需要家とDRの契約を結んでいる。エネルギー管理システム10は、需要家の施設5に対して、電力需要の増減要求を送信する。
 一方、エネルギー管理システム10は、電力が使用される施設5の各空間領域6の用途情報および空間領域6を使用する人のユーザ属性情報を取得する(ステップS12)。エネルギー管理システム10は、これらの用途情報およびユーザ属性情報を通信端末8または通信端末9から取得する。なお、エネルギー管理システム10は、ステップS11よりも前に用途情報およびユーザ属性情報を取得してもよい。
 エネルギー管理システム10は、取得した用途情報およびユーザ属性情報に基づいて、空間領域6の環境パラメータの変更許容度を導出する(ステップS13)。変更許容度は、例えば数字で表され、数字が大きくなるほど環境の変更が可能であるように決定される。
 次に、エネルギー管理システム10は、ステップS11で受け付けた電力需要の増減要求、および、ステップS13で導出した環境パラメータの変更許容度に基づいて、空間領域6の環境パラメータの値を生成する(ステップS14)。環境パラメータの値は、例えば、環境パラメータの変更許容度が低い空間領域6よりも高い空間領域6のほうが電力需要の増減要求に対する貢献度が多くなるように生成される。
 次に、エネルギー管理システム10は、空間領域6に設置された通信端末8または通信端末9に環境パラメータの値を含む各種情報を送信する(ステップS15)。具体的には、空間領域6の番号、電力需要の増減要求を実行する時間帯、電力増減量、および、変更後の環境パラメータの値を送信する。変更後の環境パラメータの値がユーザによって許可されると、すなわち、通信端末8または9が、変更後の環境パラメータの値を許可する許可入力を受け付けると(ステップS15A)、通信端末8または9は、それを示す許可信号をエネルギー管理システム10に送信する。
 エネルギー管理システム10は、この許可信号を受け取ると、ステップS14にて生成した環境パラメータの値に基づいて、空間領域6の環境パラメータを制御する(ステップS16)。このように、空間領域6の用途情報およびユーザ属性情報に基づいて環境パラメータの値を生成し、空間領域6の電力使用量を調整することで、電力需要の増減要求に適切に応じることができる。
 [4.効果]
 本実施の形態に係るエネルギー管理システム10は、電力需要の増減要求を受け付ける要求受付部21と、電力が使用される空間領域6の、時間帯によって異なる用途情報およびユーザ属性情報を取得する情報取得部22と、上記用途情報および上記ユーザ属性情報に基づいて、空間領域6の温度を含む環境パラメータの変更許容度を導出する変更許容度導出部24と、電力需要の増減要求および環境パラメータの変更許容度に基づいて、空間領域6の環境パラメータの値を生成する環境パラメータ生成部25と、環境パラメータの値に基づいて、空間領域6の環境パラメータを制御する環境制御部23とを備える。
 これによれば、時間帯によって異なる空間領域6の用途情報およびユーザ属性情報に応じて、空間領域6の環境パラメータの変更許容度が導出され、この変更許容度に基づいてデマンドレスポンス(DR)が実行される。これにより、電力需要の増減要求に適切に応じることができる。
 また、情報取得部22は、複数の空間領域6を有する施設5から空間領域6それぞれの用途情報およびユーザ属性情報を取得し、変更許容度導出部24は、複数の空間領域6それぞれの環境パラメータの変更許容度を導出し、環境パラメータ生成部25は、複数の空間領域6それぞれの環境パラメータの値を生成してもよい。
 これによれば、複数の空間領域6の用途情報およびユーザ属性情報に応じて、各空間領域6の環境パラメータの変更許容度が導出され、この変更許容度に基づいてデマンドレスポンスが実行される。これにより、電力需要の増減要求に適切に応じることができる。
 また、エネルギー管理システム10は、さらに、環境パラメータの値を空間領域6に設けられた通信端末9に送信する通信部12を備えていてもよい。
 これによれば、環境パラメータの値が空間領域6に設けられた通信端末9に送信されるので、空間領域6の用途情報およびユーザ属性情報に対応した快適性を実現し、かつ、電力需要の増減要求に適切に応じることができる。
 また、環境パラメータ生成部25は、環境パラメータの変更許容度が低い空間領域6よりも高い空間領域6のほうが電力需要の増減要求に対する貢献度が多くなるように、環境パラメータの値を生成してもよい。
 これによれば、各空間領域6の用途情報およびユーザ属性情報に対応した快適性を確保し、かつ、電力需要の増減要求に適切に応じることができる。
 また、環境パラメータ生成部25は、冷房稼働時には環境パラメータの変更許容度が低い空間領域6よりも高い空間領域6のほうが温度が高くなるように、環境パラメータの値を生成し、暖房稼働時には環境パラメータの変更許容度が低い空間領域6よりも高い空間領域6のほうが温度が低くなるように、環境パラメータの値を生成してもよい。
 これによれば、各空間領域6の用途情報、ユーザ属性情報および周囲の寒暖状況に照らし合わせて無理することなく電力需要の増減要求に応えることができる。
 また、環境パラメータ生成部25は、環境パラメータの変更許容度が閾値以上である空間領域6の環境パラメータの値を電力需要の増減要求に応じて変更し、環境パラメータの変更許容度が上記閾値よりも小さい空間領域6の環境パラメータの値を電力需要の増減要求に応じて変更しなくてもよい。
 これによれば、環境パラメータの変更許容度が閾値よりも小さい空間領域6が、デマンドレスポンスの実行対象から除外されるので、例えば、植物生育実験中である空間領域6の環境パラメータが外部要因によって変更されることを避けることができる。
 また、環境パラメータは、さらに、空間領域6の照度を含み、環境制御部23は、環境パラメータ生成部25で生成した環境パラメータの値に基づいて、空間領域6に設けられた照明器具を調光制御してもよい。
 このようにデマンドレスポンスに応じて照明器具の調光を制御することで、空間領域6の用途情報およびユーザ属性情報に合った最適な照度が実現され、かつ、電力需要の増減要求に適切に応じることができる。
 本実施の形態に係るエネルギー管理方法は、電力需要の増減要求を受け付けるステップと、電力が使用される空間領域6の、時間帯によって異なる用途情報およびユーザ属性情報を取得するステップと、上記用途情報および上記ユーザ属性情報に基づいて、空間領域6の温度を含む環境パラメータの変更許容度を導出するステップと、電力需要の増減要求および環境パラメータの変更許容度に基づいて、空間領域6の環境パラメータの値を生成するステップと、環境パラメータの値に基づいて、空間領域6の環境パラメータを制御するステップとを含む。
 これによれば、時間帯によって異なる空間領域6の用途情報およびユーザ属性情報に応じて、空間領域6の環境パラメータの変更許容度が導出され、この変更許容度に基づいてデマンドレスポンスが実行される。これにより、電力需要の増減要求に適切に応じることができる。
 (その他の実施の形態)
 以上、実施の形態について説明したが、本開示は、上記実施の形態に限定されるものではない。
 例えば上記DRシステム1の動作では、環境パラメータの値がユーザによって許可された後、エネルギー管理システム10が空間領域6の環境パラメータを制御する例について示したが、それに限られない。例えば、アグリゲータがユーザの許可を得ずに空間領域6の環境パラメータを制御するように需要家と契約している場合、エネルギー管理システム10は、ステップS14を実行せず、すなわちユーザの許可を求めずに空間領域6の環境パラメータを制御してもよい。
 また、上記ユーザ属性情報として、人の所属を示す情報を例に挙げて説明したが、それに限られない。例えば、空間領域6内にカメラを設け、カメラで撮像した情報に基づいて空間領域6にいる人の年齢を導出し、そしてエネルギー管理システム10が、この年齢に関する情報をユーザ属性情報として扱い、空間領域6の環境パラメータを制御してもよい。
 また、上記実施の形態において説明した装置間の通信方式は、一例であり、装置間においては有線または無線のどのような通信方式が用いられてもよい。
 なお、上記実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよいし、複数の処理が並行して実行されてもよい。
 なお、本開示の包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよい。また、本開示の包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。
 なお、本開示は、これらの実施の形態またはその変形例に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態またはその変形例に施したもの、あるいは異なる実施の形態またはその変形例における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
 5   施設
 6   空間領域
 8、9 通信端末
 10  エネルギー管理システム
 11、12、13 通信部
 21  要求受付部
 22  情報取得部
 23  環境制御部
 24  変更許容度導出部
 25  環境パラメータ生成部

Claims (8)

  1.  電力需要の増減要求を受け付ける要求受付部と、
     電力が使用される空間領域の、時間帯によって異なる用途情報およびユーザ属性情報を取得する情報取得部と、
     前記用途情報および前記ユーザ属性情報に基づいて、前記空間領域の温度を含む環境パラメータの変更許容度を導出する変更許容度導出部と、
     前記電力需要の増減要求および前記環境パラメータの変更許容度に基づいて、前記空間領域の前記環境パラメータの値を生成する環境パラメータ生成部と、
     前記環境パラメータの値に基づいて、前記空間領域の環境パラメータを制御する環境制御部と
     を備えるエネルギー管理システム。
  2.  前記情報取得部は、複数の前記空間領域を有する施設から前記空間領域それぞれの前記用途情報および前記ユーザ属性情報を取得し、
     前記変更許容度導出部は、複数の前記空間領域それぞれの前記環境パラメータの変更許容度を導出し、
     前記環境パラメータ生成部は、複数の前記空間領域それぞれの前記環境パラメータの値を生成する
     請求項1に記載のエネルギー管理システム。
  3.  さらに、前記環境パラメータの値を前記空間領域に設けられた通信端末に送信する通信部を備える
     請求項1または2に記載のエネルギー管理システム。
  4.  前記環境パラメータ生成部は、前記環境パラメータの変更許容度が低い前記空間領域よりも高い前記空間領域のほうが前記電力需要の増減要求に対する貢献度が多くなるように、前記環境パラメータの値を生成する
     請求項3に記載のエネルギー管理システム。
  5.  前記環境パラメータ生成部は、冷房稼働時には前記環境パラメータの変更許容度が低い前記空間領域よりも高い前記空間領域のほうが前記温度が高くなるように、前記環境パラメータの値を生成し、暖房稼働時には前記環境パラメータの変更許容度が低い前記空間領域よりも高い前記空間領域のほうが前記温度が低くなるように、前記環境パラメータの値を生成する
     請求項1~4のいずれか1項に記載のエネルギー管理システム。
  6.  前記環境パラメータ生成部は、前記環境パラメータの変更許容度が閾値以上である前記空間領域の前記環境パラメータの値を前記電力需要の増減要求に応じて変更し、前記環境パラメータの変更許容度が前記閾値よりも小さい前記空間領域の前記環境パラメータの値を前記電力需要の増減要求に応じて変更しない
     請求項1~5のいずれか1項に記載のエネルギー管理システム。
  7.  前記環境パラメータは、さらに、前記空間領域の照度を含み、
     前記環境制御部は、前記環境パラメータ生成部で生成した前記環境パラメータの値に基づいて、前記空間領域に設けられた照明器具を調光制御する
     請求項1~6のいずれか1項に記載のエネルギー管理システム。
  8.  電力需要の増減要求を受け付けるステップと、
     電力が使用される空間領域の、時間帯によって異なる用途情報およびユーザ属性情報を取得するステップと、
     前記用途情報および前記ユーザ属性情報に基づいて、前記空間領域の温度を含む環境パラメータの変更許容度を導出するステップと、
     前記電力需要の増減要求および前記環境パラメータの変更許容度に基づいて、前記空間領域の前記環境パラメータの値を生成するステップと、
     前記環境パラメータの値に基づいて、前記空間領域の環境パラメータを制御するステップと
     を含むエネルギー管理方法。
PCT/JP2020/018985 2019-05-21 2020-05-12 エネルギー管理システムおよびエネルギー管理方法 WO2020235394A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021520722A JP7270233B2 (ja) 2019-05-21 2020-05-12 エネルギー管理システムおよびエネルギー管理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019095141 2019-05-21
JP2019-095141 2019-05-21

Publications (1)

Publication Number Publication Date
WO2020235394A1 true WO2020235394A1 (ja) 2020-11-26

Family

ID=73459258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018985 WO2020235394A1 (ja) 2019-05-21 2020-05-12 エネルギー管理システムおよびエネルギー管理方法

Country Status (2)

Country Link
JP (1) JP7270233B2 (ja)
WO (1) WO2020235394A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114880753A (zh) * 2022-07-04 2022-08-09 华中科技大学 房屋电热负荷需求响应模型的建模方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236520A (ja) * 2012-05-10 2013-11-21 Toshiba Corp 電力管理支援装置、電力管理支援方法、電力管理支援プログラム
WO2014057614A1 (ja) * 2012-10-12 2014-04-17 パナソニック株式会社 エネルギー管理装置、管理装置、遠隔管理装置
JP2016163457A (ja) * 2015-03-03 2016-09-05 株式会社東芝 エネルギー管理装置、エネルギー管理方法、およびエネルギー管理プログラム
JP2017139865A (ja) * 2016-02-02 2017-08-10 三菱電機株式会社 電力調整システム、電気機器、通信アダプタ、電力調整方法及びプログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6797037B2 (ja) 2017-01-24 2020-12-09 東京瓦斯株式会社 電力制御装置、電力制御プログラム及び熱電供給システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013236520A (ja) * 2012-05-10 2013-11-21 Toshiba Corp 電力管理支援装置、電力管理支援方法、電力管理支援プログラム
WO2014057614A1 (ja) * 2012-10-12 2014-04-17 パナソニック株式会社 エネルギー管理装置、管理装置、遠隔管理装置
JP2016163457A (ja) * 2015-03-03 2016-09-05 株式会社東芝 エネルギー管理装置、エネルギー管理方法、およびエネルギー管理プログラム
JP2017139865A (ja) * 2016-02-02 2017-08-10 三菱電機株式会社 電力調整システム、電気機器、通信アダプタ、電力調整方法及びプログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114880753A (zh) * 2022-07-04 2022-08-09 华中科技大学 房屋电热负荷需求响应模型的建模方法及装置
CN114880753B (zh) * 2022-07-04 2022-09-30 华中科技大学 房屋电热负荷需求响应模型的建模方法及装置

Also Published As

Publication number Publication date
JP7270233B2 (ja) 2023-05-10
JPWO2020235394A1 (ja) 2020-11-26

Similar Documents

Publication Publication Date Title
US10169833B2 (en) Using customer premises to provide ancillary services for a power grid
CN105556995A (zh) 使用地理围栏周界用于能量高效的建筑物控制
US20160170428A1 (en) Display device, power control system, display method, power control method, display program, and power control program
WO2016088353A1 (ja) 環境制御装置および環境制御システム
CN109751742B (zh) 预定空间区域的生物体统计和设备控制
JP2012191707A (ja) 電力制御装置、電力制御システム及び方法
Zhang et al. A packetized direct load control mechanism for demand side management
CN111578461B (zh) 运行计划方法、运行控制装置和运行计划系统
WO2020235394A1 (ja) エネルギー管理システムおよびエネルギー管理方法
US10496066B2 (en) System and apparatus for and methods of control of localized energy use in a building using price set points
EP3723012A1 (en) Lighting system with usage modeling
CN106779456B (zh) 一种能源分配控制方法及装置
US20150170297A1 (en) Real-time demand control system and method of controlling the same
US10020955B2 (en) Multi-networked lighting device
JP6212562B2 (ja) ブロードキャスト媒体を介した自動電力レベルトリミング
WO2020241246A1 (ja) 管理システムおよび管理方法
KR101365168B1 (ko) 클라우드 서비스를 이용한 가입자 공간 전원제어 시스템 및 그 제어방법
Xu et al. Predictive control for indoor environment based on thermal adaptation
Im et al. Lighting control system based on the RTP of smart grid in WSN
CN106123210A (zh) 基于空调器的空气质量调节方法
Chatzigiannakis et al. A collective awareness platform for energy efficient smart buildings
US11821642B2 (en) Supervisory-level control system demand control of an HVAC system
Auslander et al. A distributed intelligent automated demand response building management system
Shen et al. The Demonstration of Power over Ethernet (PoE) Technologies in Commercial and Institutional Buildings
JP2014187792A (ja) 電力分配装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20808822

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520722

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20808822

Country of ref document: EP

Kind code of ref document: A1