WO2020235164A1 - Multilayer film - Google Patents

Multilayer film Download PDF

Info

Publication number
WO2020235164A1
WO2020235164A1 PCT/JP2020/007376 JP2020007376W WO2020235164A1 WO 2020235164 A1 WO2020235164 A1 WO 2020235164A1 JP 2020007376 W JP2020007376 W JP 2020007376W WO 2020235164 A1 WO2020235164 A1 WO 2020235164A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
cured resin
laminated film
mass
elastic modulus
Prior art date
Application number
PCT/JP2020/007376
Other languages
French (fr)
Japanese (ja)
Inventor
弘行 谷山
敦子 小西
剛司 加藤
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to KR1020217041767A priority Critical patent/KR20220013391A/en
Priority to CN202080034261.9A priority patent/CN113795375B/en
Priority to JP2021520055A priority patent/JP7302656B2/en
Publication of WO2020235164A1 publication Critical patent/WO2020235164A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a laminated film having excellent surface hardness and repeated bending characteristics.
  • the surface protective film for display screens used for such applications requires not only surface protective properties such as high hardness, scratch prevention, stain resistance, and abrasion resistance, but also high durability in terms of bendability. It was said that further performance improvement was requested.
  • Patent Document 1 in a hard coat layer having a laminated structure, the intermediate layer has a larger elastic modulus than the surface layer to improve the surface hardness and damage to the hard coat film due to stress concentration.
  • the technical contents regarding the hard coat film which prevents the stress and is hard to be scratched are disclosed.
  • Patent Document 2 discloses a hard coat layer having a laminated structure in which a radical material is used for the surface layer and a cationic material is used for the intermediate layer, and the interlayer adhesion is good.
  • Patent Document 3 discloses a technical content for controlling the elastic modulus of a hard coat coating film by including silica particles in the coating film.
  • the surface layer has a larger elastic modulus than the intermediate layer, and the abrasion resistance and flexibility are excellent by setting the elongation rate of the cured coating film within a specific range.
  • the technical contents related to the hard coat film are disclosed.
  • the present invention proposes a new laminated film that not only has excellent surface hardness but also has excellent practical repeated bending characteristics.
  • the present invention has a configuration in which a cured resin layer (A) and a cured resin layer (B) are sequentially laminated on the surface of a base film.
  • the elastic modulus measured by the micro-hardness meter measurement JIS Z 2255
  • the elastic modulus of the cured resin layer (B) is larger than the elastic modulus of the cured resin layer (A)
  • the cured resin layer (A) We propose a laminated film characterized in that the difference between the elastic modulus of the above and the elastic modulus of the cured resin layer (B) is larger than 0 (MPa) and smaller than 220 (MPa).
  • the present invention is characterized in that, as an example of the method for producing a laminated film, the cured resin layer (A) is formed by applying a curable composition onto a base film and curing the curable composition.
  • a method for producing a laminated film characterized in that the mass average molecular weight is in the range of 1,000 to 500,000.
  • the laminated film proposed by the present invention has a structure in which a cured resin layer (A) and a cured resin layer (B) are sequentially laminated on the surface of a base film, and the elastic modulus and curing of the cured resin layer (A) are provided.
  • the difference in elastic modulus of the resin layer (B) ((B)-(A)) is larger than 0 (MPa) and smaller than 220 (MPa). Therefore, it is possible to improve the practical repetitive bending characteristics while maintaining the surface hardness, and specifically, it is possible to obtain excellent repetitive bending characteristics that do not cause any problem even if the surface is repeatedly bent 200,000 times or more.
  • the laminated film (referred to as "the present laminated film") according to an example of the embodiment of the present invention has a cured resin layer (A) and a cured resin layer (A) on at least one side surface of the base film (referred to as the "main base film”). It is a laminated film having a structure in which a resin layer (B) is sequentially laminated.
  • the laminated film may have other layers as long as it has the above structure.
  • the material and composition of the base film are not limited as long as the film can obtain the necessary and sufficient rigidity and repeatability.
  • the base film may have a single-layer structure or a multi-layer structure.
  • the base film may have four or more layers as long as the gist of the present invention is not exceeded in addition to the two-layer and three-layer structure.
  • the main component resin of each layer is preferably polyester or polyimide (PI).
  • PI polyimide
  • the "main component resin” means the resin having the highest content ratio among the resins constituting the present base film, for example, 50% by mass or more, particularly 70% by mass of the resins constituting the present base film. % Or more, especially 80% by mass or more (including 100% by mass).
  • each layer constituting this base film may contain other resin other than polyester or polyimide, or component other than resin, as long as the main component resin is polyester or polyimide.
  • polyester The polyester (referred to as “the present polyester”) as the main component resin of each layer constituting the present base film may be a homopolyester or a copolymerized polyester.
  • the present polyester is made of a homopolyester, it is preferably obtained by polycondensing an aromatic dicarboxylic acid and an aliphatic glycol.
  • aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid.
  • aliphatic glycol include ethylene glycol, diethylene glycol, 1,4-cyclohexanedimethanol and the like.
  • examples of the dicarboxylic acid component include one or more of isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, sebacic acid and the like. be able to.
  • examples of the glycol component include one or more of ethylene glycol, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentyl glycol and the like.
  • polyesters include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polybutylene terephthalate (PBN), polyethylene furanoate (PEF), and the like. Can be done. Of these, PET and PEN are preferable in terms of handleability.
  • PET and PEN are preferable in terms of handleability.
  • the film is referred to as "polyethylene terephthalate film". The same applies when the other resin is the main component resin.
  • a polyimide film is also suitable in addition to the polyester film.
  • the imidization of the polyimide for example, a method of imidizing after polyamic acid polymerization of diamine and dianehydride, particularly aromatic dianhydride and aromatic diamine at a 1: 1 equivalent ratio is exemplified.
  • aromatic dianhydride examples include 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropanedianhydride (6FDA), 4- (2,5-dioxotetraki-yl) -1, 2,3,4-Tetrahydronaphthalene-1,2-dicarboxylic dianhydride (TDA), pyromellitic dianhydride (1,2,4,5-benzenetetracarboxylic dianhydride, PMDA), benzophenonetetra
  • TDA 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropanedianhydride
  • TDA 4- (2,5-dioxotetraki-yl) -1, 2,3,4-Tetrahydronaphthalene-1,2-dicarboxylic dianhydride
  • PMDA pyromellitic dianhydride
  • benzophenonetetra examples thereof include carboxylic acid dianhydride (BTDA), biphenylte
  • aromatic diamine examples include oxydianiline (ODA), p-phenylenediamine (pPDA), m-phenylenediamine (mPDA), p-methylenedianiline (pMDA), m-methylenedianiline (mMADA), Examples thereof include bistrifluoromethylbenzidine (TFDB), cyclohexanediamine (13CHD, 14CHD), and bisaminohydroxyphenylhexafluoropropane (DBOH). These may be used alone or in combination of two or more.
  • ODA oxydianiline
  • pPDA p-phenylenediamine
  • mPDA m-phenylenediamine
  • pMDA p-methylenedianiline
  • mMADA m-methylenedianiline
  • TFDB bistrifluoromethylbenzidine
  • DBOH bisaminohydroxyphenylhexafluoropropane
  • Each layer constituting the base film may contain a resin other than polyester and polyimide as a main component resin.
  • the main component resins include, for example, epoxy, polyarylate, polyethersulphon, polycarbonate, polyetherketone, polysulphon, polyphenylene sulfide, polyester-based liquid crystal polymer, triacetyl cellulose, cellulose derivative, polypropylene, polyamides, and poly. Cycloolefins and the like can be exemplified.
  • the base film may contain particles for the purpose of imparting slipperiness to the film surface and for the main purpose of preventing scratches in each step.
  • the type of the particles is not particularly limited as long as the particles can be easily slippery.
  • inorganic particles such as silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, magnesium phosphate, kaolin, aluminum oxide, titanium oxide, acrylic resin, styrene resin, urea resin, phenol resin, epoxy resin, benzoguanamine.
  • organic particles such as resin. These may be used alone or in combination of two or more of them.
  • precipitated particles in which a part of a metal compound such as a catalyst is precipitated and finely dispersed can also be used.
  • the shape of the particles is not particularly limited. For example, it may be spherical, lumpy, rod-shaped, flat-shaped, or the like. Further, the hardness, specific gravity, color and the like of the particles are not particularly limited. Two or more kinds of these series of particles may be used in combination, if necessary.
  • the average particle size of the particles is preferably 5 ⁇ m or less, more preferably 0.01 ⁇ m or more or 3 ⁇ m or less, and more preferably 0.5 ⁇ m or more or 2.5 ⁇ m or less. If it exceeds 5 ⁇ m, the surface roughness of the base film may become too rough, and a problem may occur when a cured resin layer made of various cured compositions is formed in a subsequent step.
  • the particle content is preferably 5% by mass or less of the present base film, particularly 0.0003% by mass or more or 3% by mass or less, and among them, 0.01% by mass or more or 2% by mass or less. More preferred. If the average particle size of the particles is within the above range, the surface roughness of the base film is not too coarse, so that a problem occurs when a cured resin layer made of various cured compositions is formed in a subsequent step. Can be suppressed.
  • the method of adding particles to the base film is not particularly limited, and a conventionally known method can be adopted.
  • it can be added at any stage in the production of a raw material resin such as polyester.
  • polyester it is preferable to add it after the esterification or transesterification reaction is completed.
  • the base film may contain, for example, conventionally known antioxidants, antistatic agents, heat stabilizers, lubricants, dyes, pigments, ultraviolet absorbers, and the like as other components. ..
  • the thickness of the base film is preferably, for example, 9 ⁇ m to 125 ⁇ m, more preferably 12 ⁇ m or more or 100 ⁇ m or less, and among them, 20 ⁇ m or more or 75 ⁇ m or less, from the viewpoint that necessary and sufficient rigidity and repeatability can be obtained. Is more preferable.
  • the base film can be formed, for example, by forming a resin composition into a film shape by a melt film forming method or a solution film forming method. In the case of a multi-layer structure, co-extrusion may be performed. Further, it may be uniaxially stretched or biaxially stretched, and a biaxially stretched film is preferable from the viewpoint of rigidity.
  • the tensile elastic modulus (JIS K 7161) of the base film is preferably 2.0 GPa or more, particularly 9.0 GPa or less, and 3 among them, from the viewpoint of obtaining necessary and sufficient rigidity and repetitive bendability. More preferably, it is 0.0 GPa or more or 8.0 GPa or less, and more preferably 3.0 GPa or more or 7.0 GPa or less.
  • the laminated film has a laminated structure in which a cured resin layer (A) is provided on at least one side surface of the base film, and a cured resin layer (B) is further provided on the surface side thereof.
  • the crosslinked resin layer means a layer having a crosslinked resin structure. Whether or not it has a crosslinked resin structure can be determined by analyzing the crystal structure using an apparatus such as TOFSIMS or IR to determine the presence or absence of the crosslinked resin structure. However, the method is not limited to this method.
  • Each of these cured resin layers (A) and (B) is a layer containing a cured resin, in other words, a resin having a crosslinked structure, and the elasticity of the cured resin layer (A) is higher than the elastic modulus of the cured resin layer (B). It is preferable that the rate is lower. Further, regarding the elastic modulus measured by the micro-hardness meter measurement (JIS Z 2255), the difference between the elastic modulus of the cured resin layer (A) and the elastic modulus of the cured resin layer (B) (elastic modulus of the cured resin layer (B)).
  • the elastic modulus of the cured resin layer (A) is preferably larger than 0 (MPa) and smaller than 220 (MPa).
  • MPa 0
  • MPa 220
  • the elastic modulus of the cured resin layer (A) is lower than that of the cured resin layer (B), and the difference between the elastic modulus of the cured resin layer (A) and the elastic modulus of the cured resin layer (B).
  • the difference in elastic modulus between the cured resin layer (A) and the cured resin layer (B) is more preferably 50 MPa or more, particularly 100 MPa or more, and particularly 150 MPa or more from the viewpoint of bendability. Is even more preferable.
  • the difference is preferably 210 MPa or less, more preferably 200 MPa or less, and more preferably 190 MPa or less.
  • the cured resin layer (A) satisfying the condition of the cured resin layer (B)> the cured resin layer (A) ⁇ 10 MPa exists as the lower layer of the cured resin layer (B), so that the stress It is possible to avoid concentration. Further, the cured resin layer (A) can be deformed to absorb an external force. Therefore, it is possible to obtain a laminated film having excellent repetitive bending characteristics.
  • the elastic modulus of the cured resin layer (A) is more preferably 20 MPa or more, particularly preferably 50 MPa or more, and particularly preferably 100 MPa or more.
  • the upper limit is preferably 495 MPa or less, more preferably 400 MPa or less, and more preferably 350 MPa or less.
  • the elastic modulus of the cured resin layer (B) is preferably 100 MPa or more, more preferably 200 MPa or more, and even more preferably 300 MPa or more, from the viewpoint of surface hardness. On the other hand, it is preferably 900 MPa or less, and more preferably 800 MPa or less, and more preferably 700 MPa or less.
  • the elastic properties of the cured resin layer (A) and the cured resin layer (B) are the thickness of each layer, the particle content, the selection of the curable monomer, the composition ratio of the curable monomer, and the crosslinkable monomer. It can be adjusted by changing the content ratio, the cross-linking density (molecular weight between the cross-linking points), the molecular weight of the base polymer forming each layer, the molecular weight of the cured resin composition forming each layer, and the like. However, the method is not limited to these methods.
  • the "base polymer” refers to a resin having the highest mass ratio among the resins constituting each layer.
  • the thickness of the cured resin layer (A) is preferably 10 to 300% of the thickness of the cured resin layer (B), particularly 20% or more or 200% or less, and among them, 30% or more or 100% or less. It is more preferable to have it.
  • the thickness of the cured resin layer (A) is preferably 1.0 ⁇ m or more and 30.0 ⁇ m or less. If it is 1.0 ⁇ m or more, for example, when the cured resin layer (A) is cured by irradiating with ultraviolet rays, insufficient curing due to oxygen inhibition or the like can be prevented. On the other hand, if it is 30.0 ⁇ m or less, it becomes easy to secure the surface smoothness of the laminated film, and it becomes easy to secure the transparency. From this point of view, the layer thickness is preferably 1.0 ⁇ m or more and 30.0 ⁇ m or less, and more preferably 20.0 ⁇ m or less, particularly 10.0 ⁇ m or less, and particularly 5.0 ⁇ m or less.
  • the layer thickness of the cured resin layer (B) is preferably 1.0 ⁇ m or more and 30.0 ⁇ m or less, more preferably 20.0 ⁇ m or less, of which 10.0 ⁇ m or less, and particularly 5 ⁇ m or less. Is even more preferable.
  • the total thickness of the cured resin layer (A) and the cured resin layer (B) is 20.0 ⁇ m or less, preferably 10.0 ⁇ m or less, more preferably 8.0 ⁇ m or less, and particularly 6 among them, from the viewpoint of bendability. It is preferably 0.0 ⁇ m or less, and 5.0 ⁇ m or less.
  • the cured resin layer (B) may contain particles, or the particle content of the cured resin layer (A) may be adjusted to the cured resin layer (B). It can be adjusted so that the elastic modulus of the cured resin layer (B) is higher than that of the cured resin layer (A). As a specific example of the latter, the particle content of the cured resin layer (A) is 1% by mass to 20% by mass, while the particle content of the cured resin layer (B) is 20% by mass to 60% by mass. The elastic modulus of can be adjusted.
  • the particle content of the cured resin layer (A) is more preferably 1% by mass or more, particularly 2% by mass or more, and more preferably 5% by mass or more, while 20% by mass or less, particularly 15% by mass or less. Among them, it is more preferably 10% by mass or less.
  • the particle content of the cured resin layer (B) is more preferably 20% by mass or more, particularly 25% by mass or more, and more preferably 30% by mass or more, while 60% by mass or less, particularly 55% by mass or less. Above all, it is more preferably 50% by mass or less.
  • the types of particles contained in the cured resin layer (A) and the cured resin layer (B) will be described later.
  • the surface of the cured resin layer (A) may be uneven or flat. Above all, it is preferable that it is flat from the viewpoint of appearance (surface gloss).
  • the surface of the cured resin layer (B) may also be uneven or flat. Above all, it is preferable that it is flat from the viewpoint of appearance (surface gloss).
  • Both the cured resin layers (A) and (B) are preferably transparent in consideration of optical applications.
  • the difference in refractive index between the cured resin layer (A) and the cured resin layer (B) is preferably 0.15 or less.
  • the difference in refractive index between the cured resin layer (A) and the cured resin layer (B) is 0.15 or less, the visibility can be improved.
  • the difference in refractive index between the cured resin layer (A) and the cured resin layer (B) is preferably 0.15 or less, more preferably 0.10 or less, and more preferably 0.05 or less. ..
  • the lower limit of the refractive index difference is 0.
  • Both the cured resin layer (A) and the cured resin layer (B) can be formed by curing a curable composition, that is, a composition having a ability to be cured. More specifically, a curable composition is applied and cured on at least one side surface of the base film to form a cured resin layer (A), and then the curable composition is applied and cured on the curable resin layer (A).
  • This laminated film can be manufactured by forming the cured resin layer (B). At this time, the cured resin layer (A) and the cured resin layer (B) may be cured at the same time.
  • the film is once wound into a roll, the film is unwound again, and the curable composition is applied onto the cured resin layer (A) and cured.
  • the cured resin layer (B) may be formed by forming the cured resin layer (B), or after the cured resin layer (A) is formed on the surface of the base film, the curable composition is continuously applied and cured to form the cured resin layer. (B) may be formed.
  • the method for producing the present laminated film is not limited to such a method.
  • the curable composition for forming the curable resin layer (A) and the curable resin layer (B) includes a curable monomer, a photopolymerization initiator, a solvent, particles, a cross-linking agent, and the like, if necessary. It is preferable to contain the components of. Each will be described below.
  • the cured resin layer (B) is formed by setting the mass average molecular weight of the base polymer forming the cured resin layer (A), that is, the curable monomer to the mass average molecular weight of the curable resin composition forming the cured resin layer (A).
  • the mass average molecular weight of the base polymer, that is, the curable monomer, or the mass average molecular weight of the curable resin composition forming the cured resin layer (B) larger than that of the cured resin layer (A), the cured resin layer It can be adjusted so that the elastic coefficient of (B) becomes high.
  • the total thickness of the cured resin layers (A) and (B) is 30 ⁇ m or less, particularly 20 ⁇ m or less, and among them, 10 ⁇ m or less.
  • the molecular weight is increased by an order of magnitude or more, that is, 10 times or more, from the mass average molecular weight of the base polymer forming the cured resin layer (B) to the mass average molecular weight of the curable resin composition forming the cured resin layer (B). Therefore, the elastic ratio of the cured resin layer (B) can be adjusted to be higher than that of the cured resin layer (A).
  • the mass average molecular weight of the base polymer forming the cured resin layer (A), that is, the curable monomer, or the mass average molecular weight of the curable resin composition forming the cured resin layer (A) is 1,000 or more. It is preferably 3,000 or more, and more preferably 5,000 or more. On the other hand, it is preferably 500,000 or less, more preferably 400,000 or less, and more preferably 250,000 or less.
  • the mass average molecular weight of the base polymer forming the cured resin layer (B), that is, the curable monomer, or the mass average molecular weight of the curable resin composition forming the cured resin layer (B) is preferably 100 or more. Above all, it is more preferably 200 or more, and among them, 400 or more. On the other hand, it is preferably 500,000 or less, more preferably 400,000 or less, and more preferably 250,000 or less.
  • the curable monomer may be any compound that can be cured.
  • those containing at least one selected from the group consisting of crosslinkable monomers, acrylic acid esters, and methacrylic acid esters are preferable from the viewpoint of achieving both excellent surface hardness and repetitive bendability.
  • it is it a comixture consisting of at least two kinds selected from crosslinkable monomers and (meth) acrylic acid esters from the viewpoint of handleability, industrial availability, and cost?
  • it is preferably a mixture consisting of at least two types selected from methacrylic acid esters and vinyl-based monomers.
  • the blending ratio (a / b) is preferably in the range of 90/10 to 10/90 in terms of mass ratio, and more preferably. , 80/20 to 40/60, and more preferably 70/30 to 40/60.
  • (meth) acrylic when used, it means one or both of “acrylic” and “methacrylic”. The same applies to “(meth) acrylate” and “(meth) acryloyl”.
  • (poly) propylene glycol shall mean one or both of “propylene glycol” and “polypropylene glycol”. “(Poly) ethylene glycol” has the same meaning.
  • each main component it is preferable to select each main component so that each of the cured resin layer (A) and the cured resin layer (B) can satisfy at least the elastic modulus and the refractive index described above.
  • the curable monomer used in the curable composition for forming the cured resin layer (A) is preferably selected so as to satisfy the above-mentioned elastic modulus and refractive index.
  • the curable monomer used in the curable composition for forming the cured resin layer (B) is preferably selected so as to satisfy the above-mentioned elastic modulus and refractive index.
  • the crosslinkable monomer refers to a monomer having one or more polymerizable functional groups in one molecule.
  • examples of the crosslinkable monomer include allyl acrylate, allyl methacrylate, 1-acryroxy-3-butane, 1-methacryloxy-3-butane, 1,2-diacryloxy-ethane, 1,2-dimethacryloxy-ethane, and the like.
  • hydroxyl group-containing (meth) acrylate compound examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 6.
  • -Hydroxyalkyl (meth) acrylates such as hydroxyhexyl (meth) acrylates, 2-hydroxyethylacryloyl phosphate, 2- (meth) acryloyloxyethyl-2-hydroxypropylphthalates, caprolactone-modified 2-hydroxyethyl (meth) acrylates, Dipropylene glycol (meth) acrylate, fatty acid-modified-glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate , Etc.
  • (meth) acrylate-based compound containing one ethylenically unsaturated group; containing two ethylenically unsaturated groups such as glycerindi (meth) acrylate and 2-hydroxy-3-acryloyl-oxypropyl methacrylate.
  • (Meta) acrylate compounds pentaerythritol tri (meth) acrylate, caprolactone-modified pentaerythritol tri (meth) acrylate, ethylene oxide-modified pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, caprolactone-modified dipentaerythritol Examples thereof include (meth) acrylate-based compounds containing three or more ethylenically unsaturated groups such as penta (meth) acrylate and ethylene oxide-modified dipentaerythritol penta (meth) acrylate.
  • crosslinkable monomer having a vinyl group examples include glycidyl (meth) acrylate, ⁇ -methylglucidyl (meth) acrylate, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, and p-vinylbenzyl glycidyl ether.
  • examples thereof include ⁇ -methyl-o-vinylbenzyl glycidyl ether, ⁇ -methyl-m-vinylbenzyl glycidyl ether, and ⁇ -methyl-p-vinylbenzyl glycidyl ether, among which o-vinylbenzyl glycidyl ether and m.
  • acrylic esters examples include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, and acrylic.
  • Acrylic acid acyclic alkyl esters such as amyl acid, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, dodecyl acrylate; cyclic alkyl acrylates such as cyclohexyl acrylate and isobornyl acrylate; Acrylic acid aryl esters such as phenyl acrylate and naphthyl acrylate; functional group-containing acrylic acid acyclic alkyl esters such as 2-hydroxyethyl acrylate, 2-methoxyethyl acrylate, and glycidyl acrylate can be exemplified.
  • methacrylic acid esters examples include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate and methacrylic acid.
  • Amilic methacrylic acid such as amyl acid, isoamyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, pentadecyl methacrylate, dodecyl methacrylate; cyclic alkyl methacrylate such as cyclohexyl methacrylate and isobornyl methacrylate; Arylmethacrylic acid esters such as phenyl methacrylate; functional group-containing acyclic alkyl esters of methacrylic acid such as 2-hydroxyethyl methacrylate, 2-methoxyethyl methacrylate, and glycidyl methacrylate can be exemplified. These may be used alone or in combination of two or more.
  • Photopolymerization initiator When the curable composition is photocured, it is preferable to add a photopolymerization initiator.
  • the photopolymerization initiator is not particularly limited, and examples thereof include a ketone-based photopolymerization initiator and an amine-based photopolymerization initiator.
  • a ketone-based photopolymerization initiator and an amine-based photopolymerization initiator.
  • a sensitizer may be used in combination with the photocuring initiator, if necessary.
  • the sensitizer include aliphatic amines such as n-butylamine, triethylamine, and ethyl p-dimethylaminobenzoate, and aromatic amines.
  • the content of the photopolymerization initiator is preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the curable composition. More preferably, the range is 1 to 5 parts by mass.
  • the content of the photopolymerization initiator is 1 part by mass or more, the desired polymerization initiation effect can be obtained, and when the content of the photopolymerization initiator is 10 parts by mass or less, the resin layer turns yellow. Can be suppressed.
  • the photocurable initiator and sensitizer are preferably used in a proportion of 20% by mass or less based on the solid content of the photocurable composition.
  • solvent examples include ketone solvents such as methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, diacetone alcohol and acetone; alcohol solvents such as pentanol, hexanol, heptanol and octanol; ethylene glycol monoethyl.
  • ketone solvents such as methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, diacetone alcohol and acetone
  • alcohol solvents such as pentanol, hexanol, heptanol and octanol
  • ethylene glycol monoethyl examples of the solvent include ketone solvents such as methyl ethyl ketone, methyl propyl ketone,
  • Ether solvents such as ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate; methyl acetate, ethyl acetate, butyl acetate, methoxybutyl acetate, amyl acetate, propyl acetate, ethyl lactate, methyl lactate, Ester-based solvents such as butyl lactate; organic solvents such as hydrocarbon solvents such as toluene, xylene, solventnaphtha, hexane, cyclohexane, ethylcyclohexane, methylcyclohexane, heptane, octane, and decane can be exemplified. These organic solvents may be used alone or in combination of two or more.
  • the curable composition can contain a predetermined amount of particles in order to improve slipperiness and blocking, and further to adjust the elastic modulus of each layer.
  • the particles include inorganic particles such as silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, magnesium phosphate, kaolin, aluminum oxide, titanium oxide, acrylic resin, styrene resin, urea resin, and phenol resin.
  • Organic particles such as epoxy resin and benzoguanamine resin can be mentioned. These may be used alone or in combination of two or more of them. Further, during the polyester manufacturing process, precipitated particles in which a part of a metal compound such as a catalyst is precipitated and finely dispersed can also be used.
  • the shape of the particles is not particularly limited. For example, it may be spherical, lumpy, rod-shaped, flat-shaped, or the like. Further, the hardness, specific gravity, color and the like of the particles are not particularly limited. Two or more kinds of these series of particles may be used in combination, if necessary.
  • the thickness is preferably 5 ⁇ m or less, more preferably 0.01 ⁇ m or more or 3 ⁇ m or less, and more preferably 0.5 ⁇ m or more or 2.5 ⁇ m or less.
  • Cross-linking agent From the viewpoint of improving chemical resistance or elastic modulus, it is preferable to add a cross-linking agent.
  • the cross-linking agent referred to here means a cross-linking agent other than the above-mentioned cross-linking monomer.
  • examples of the cross-linking agent include oxazoline compounds, isocyanate compounds, epoxy compounds, melamine compounds, and carbodiimide compounds. Above all, from the viewpoint of improving adhesion, it is more preferable to use at least one of an oxazoline compound or an isocyanate compound.
  • the above-mentioned oxazoline compound used as a cross-linking agent is a compound having an oxazoline group in the molecule, and a polymer containing an oxazoline group is particularly preferable, and it is prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer. be able to.
  • the addition polymerizable oxazoline group-containing monomer include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, and 2-isopropenyl-2-.
  • Examples thereof include oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and one or a mixture of two or more thereof can be used. .. Among them, 2-isopropenyl-2-oxazoline is suitable because it is easily available industrially.
  • the other monomer is not limited as long as it is a monomer copolymerizable with an addition-polymerizable oxazoline group-containing monomer, and is, for example, an alkyl (meth) acrylate (the alkyl group is a methyl group, an ethyl group, an n-propyl group, or an isopropyl).
  • (Meta) acrylic acid esters such as group, n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid , Unsaturated carboxylic acids such as styrene sulfonic acid and salts thereof (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); unsaturated nitriles such as acrylonitrile and methacrylonitrile; (meth) acrylamide, N- Alkyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide, (alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2
  • the amount of the oxazoline group of the oxazoline compound is preferably 0.5 to 10 mmol / g, particularly 1 mmol / g or more or 9 mmol / g or less, and 3 mmol / g or more or 8 mmol / g or less among them. Among them, it is more preferably 4 mmol / g or more or 6 mmol / g or less.
  • the isocyanate compound used as a cross-linking agent is, for example, an isocyanate or a compound having an isocyanate derivative structure typified by blocked isocyanate.
  • the isocyanate has, for example, aromatic isocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyldiisocyanate, phenylenedi isocyanate and naphthalenedi isocyanate, and aromatic rings such as ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylxylylene diisocyanate.
  • Aliphatic isocyanates such as aliphatic isocyanates, methylene diisocyanates, propylene diisocyanates, lysine diisocyanates, trimethylhexamethylene diisocyanates, hexamethylene diisocyanates, cyclohexane diisocyanates, methylcyclohexane diisocyanates, isophorone diisocyanates, methylenebis (4-cyclohexylisocyanates), isopropyridene dicyclohexyldiisocyanates, etc.
  • the alicyclic isocyanate of the above can be exemplified.
  • polymers and derivatives such as burettes, isocyanurates, uretdiones, and carbodiimides of these isocyanates can also be mentioned. These may be used alone or in combination of two or more.
  • isocyanates aliphatic isocyanates or alicyclic isocyanates are preferable as measures against yellowing due to ultraviolet irradiation.
  • the blocking agent When used in the state of blocked isocyanate, the blocking agent includes, for example, phenolic compounds such as heavy sulfites, phenol, cresol and ethylphenol, and alcoholic compounds such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol and ethanol.
  • phenolic compounds such as heavy sulfites, phenol, cresol and ethylphenol
  • alcoholic compounds such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol and ethanol.
  • Compounds, active methylene compounds such as methyl isobutanoyl acetate, dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate, acetylacetone, mercaptan compounds such as butyl mercaptan and dodecyl mercaptan, ⁇ -caprolactam, ⁇ -valerolact
  • Lactam compounds such as diphenylaniline, aniline, ethyleneimine, acetoanilide, acid amide compounds of acetate amide, formaldehyde, acetoaldoxime, acetone oxime, methyl ethyl ketone oxime, cyclohexanone oxime and other oxime compounds. These can be used alone or in combination of two or more.
  • the isocyanate compound may be used alone, or may be used as a mixture or a bond with various polymers. From the viewpoint of improving the dispersibility and crosslinkability of the isocyanate compound, it is preferable to use a mixture or a bond with a polyester resin or a urethane resin.
  • the epoxy compound used as a cross-linking agent is a compound having an epoxy group in the molecule, and is, for example, a condensate of epichlorohydrin and a hydroxyl group or an amino group such as ethylene glycol, polyethylene glycol, glycerin, polyglycerin, or bisphenol A. Examples thereof include polyepoxy compounds, diepoxy compounds, monoepoxy compounds, and glycidylamine compounds.
  • polyepoxy compound examples include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyltris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, and trimethylolpropane.
  • polyglycidyl ether and the diepoxy compound examples include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and propylene glycol diglycidyl ether.
  • Polypropylene glycol diglycidyl ether, Polytetramethylene glycol diglycidyl ether, Monoepoxy compounds include, for example, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenylglycidyl ether, glycidylamine compounds N, N, N', N ′ -Tetraglycidyl-m-xylylene diamine, 1,3-bis (N, N-diglycidylamino) cyclohexane and the like can be mentioned. From the viewpoint of improving adhesion, a polyether epoxy compound is preferable. Further, as the amount of the epoxy group, a polyepoxy compound having trifunctional or higher functionalities is preferable to bifunctional.
  • the above-mentioned melamine compound used as a cross-linking agent is a compound having a melamine skeleton in the compound, for example, an alkylolated melamine derivative or a compound obtained by reacting an alkylolated melamine derivative with an alcohol to partially or completely etherify. , And a mixture thereof can be used.
  • the alcohol used for etherification methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like are preferably used.
  • the melamine compound may be either a monomer or a multimer of a dimer or more, or a mixture thereof may be used.
  • a type in which urea or the like is copolymerized with a part of melamine, or a catalyst can be used in combination to improve the reactivity of the melamine compound.
  • the content of the cross-linking agent is preferably 10 parts by mass or more, particularly 20 parts by mass or more, and 25 parts by mass among them, with respect to 100 parts by mass of the curable monomer, from the viewpoint of obtaining good coating film strength.
  • the above is more preferable.
  • it is preferably 70 parts by mass or less, more preferably 60 parts by mass or less, and more preferably 40 parts by mass or less.
  • the carbodiimide compound used as a cross-linking agent is a compound having a carbodiimide structure, and is a compound having one or more carbodiimide structures in the molecule.
  • a polycarbodiimide-based compound having two or more in the molecule is more preferable for better adhesion and the like.
  • This carbodiimide compound can be synthesized by a conventionally known technique, and a condensation reaction of a diisocyanate compound is generally used.
  • the diisocyanate compound is not particularly limited, and any aromatic or aliphatic type can be used.
  • tolylene diisocyanate xylene diisocyanate, diphenylmethane diisocyanate, phenylenedi isocyanate, naphthalenedi isocyanate, etc.
  • examples thereof include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyldiisocyanis, and dicyclohexylmethane diisocyanate.
  • the content of the carbodiimide group contained in the carbodiimide compound is a carbodiimide equivalent (weight [g] of the carbodiimide compound for giving 1 mol of the carbodiimide group), preferably 100 to 1000, and more than 250 or 800 or less. Among them, it is more preferably 300 or more or 700 or less. By using in the above range, the durability of the coating film is improved.
  • polyol compound examples include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, neopentyl glycol, 1,2-butanediol, 1,3-butanediol, 2,3-butanediol, and 1,4-butane.
  • Diol 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, 1,9-nonanediol, 2,2-dimethylolheptan, tri Methylene glycol, 1,4-tetramethylene glycol, dipropylene glycol, 1,3-tetramethylenediol, 2-methyl-1,3-trimethylenediol, 2,4-diethyl-1,5-pentamethylenediol, water Additive bisphenol A, hydroxyalkylated bisphenol A, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediol, 2,2,4-trimethyl-1,3-pentanediol, N, N-bis- (2-hydroxy) Low molecular weight diols such as ethyl) dimethyl hydantin; polyether polyols, polyester
  • polyether polyol examples include oxyalkylene structure-containing polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutylene glycol, and polyhexamethylene glycol, and random or block co-weights of these polyalkylene glycols. Coalescence is mentioned.
  • an oxyalkylene structure-containing polyether polyol is preferable, and the number of carbon atoms in the alkylene structure is preferably 2 to 6, particularly preferably 2 to 4, and even more preferably 4.
  • polyester-based polyol examples include a condensation polymer of a polyhydric alcohol and a polyvalent carboxylic acid; a ring-opening polymer of a cyclic ester (lactone); a polyhydric alcohol, a polyvalent carboxylic acid, and a cyclic ester. Examples thereof include reactants.
  • the polyhydric alcohol examples include the low molecular weight diols mentioned above.
  • polyvalent carboxylic acid examples include aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecandioic acid; 1,4 An alicyclic dicarboxylic acid such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, paraphenylenedicarboxylic acid and trimellitic acid can be mentioned.
  • cyclic ester examples include propiolactone, ⁇ -methyl- ⁇ -valerolactone, and ⁇ -caprolactone.
  • Examples of the polycarbonate-based polyol include a reaction product of a polyhydric alcohol and a phosgene; a transesterification reaction product of a carbonic acid ester and a polyhydric alcohol.
  • Examples of the polyhydric alcohol include the low molecular weight diol and the like, and examples of the alkylene carbonate include ethylene carbonate, dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, dibutyl carbonate, dicyclohexyl carbonate and the like. Examples include diphenyl carbonate.
  • the polycarbonate-based polyol may be a compound having a carbonate bond in the molecule and having a hydroxyl group at the end, and may have an ester bond together with the carbonate bond.
  • Examples of the curable composition for forming the cured resin layers (A) and (B) include a combination of a hydroxyl group-containing (meth) acrylate compound and an isocyanate compound, or a hydroxyl group-containing (meth) acrylate compound and an isocyanate. Examples thereof include urethane (meth) acrylate compounds obtained by combining a compound and a polyol compound.
  • a combination of acrylic acid esters and a crosslinkable monomer having a vinyl group a combination of methacrylic acid esters and a crosslinkable monomer having a vinyl group, acrylic acid esters and a hydroxyl group-containing (meth) acrylate type.
  • examples thereof include a combination with a compound, a combination of methacrylic acid esters and a hydroxyl group-containing (meth) acrylate-based compound, and the like. However, it is not limited to these.
  • the curable composition for forming the cured resin layers (A) and (B) preferably has a viscosity at 25 ° C. of 10 to 60 mPa ⁇ s as measured by an E-type viscometer in order to improve coatability. Above all, it is more preferably 30 mPa ⁇ s or less, among them 20 mPa ⁇ s or less, among them 15 mPa ⁇ s or less, and among them 12 mPa ⁇ s or less.
  • the cured resin layer (A) is coated with a curable composition using a conventionally known coating method such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, curtain coating, and inkjet, and then light. It is preferably formed by irradiation, for example, irradiation with ultraviolet rays and curing.
  • a curable composition is applied by using a conventionally known coating method such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, curtain coating, and inkjet. After that, it is preferably formed by irradiating with light, for example, ultraviolet rays and curing.
  • the surface hardness of the film specifically, the pencil hardness on the surface of the cured resin layer (B) can be 2H or more, and in particular, 3H or more.
  • the laminated film having the above structure is provided with a cured resin layer (A) on the surface of the base film, and the elasticity of the cured resin layer (A) is higher than that of the cured resin layer (B).
  • R repeated bendability
  • the film haze is preferably 5.0% or less, more preferably 4.0% or less, and particularly preferably 3.0% or less. ..
  • a resin component composed of an acrylic monomer which has been considered difficult to use, can also be used, which has an advantage of increasing the degree of freedom when designing a laminated film. .. Furthermore, it is presumed that the two-layer structure of the cured resin layer (A) and the cured resin layer (B) can be expected to disperse stress in the thickness direction, which can contribute to further improvement of bending durability.
  • the elastic modulus of the cured resin layer (A) is set to be lower than the elastic modulus of the cured resin layer (B)
  • the base film used is constructed as necessary. It was necessary to review the structural design of the raw material and further increase the tensile elastic modulus.
  • a target surface hardness for example, 2H or more
  • the base film used is constructed as necessary. It was necessary to review the structural design of the raw material and further increase the tensile elastic modulus.
  • the two-layer structure of the cured resin layer (A) and the cured resin layer (B) as described above it is possible to appropriately select a general-purpose base film on the market. It has the advantage of increasing the degree of freedom in terms of selecting the base film.
  • This laminated film has excellent surface hardness, practical repetitive bendability, and can also obtain transparency, so it is used for surface protection, displays, and especially for front panels. Can be used for. For example, it can be suitably used as a surface protective film, particularly a surface protective film for a display, and among them, a surface protective film for a flexible display. However, the use of this laminated film is not limited to these uses.
  • X to Y (X, Y are arbitrary numbers) is described, it means “X or more and Y or less” and “preferably larger than X” or “preferably Y”, unless otherwise specified. It also includes the meaning of “smaller”.
  • X or more (X is an arbitrary number) is described, it includes the meaning of "preferably larger than X” and is described as “Y or less” (Y is an arbitrary number) unless otherwise specified. In this case, unless otherwise specified, it also includes the meaning of "preferably smaller than Y”.
  • a borazon cutting edge having a width of 300 ⁇ m is set in the sample in which a notch having a width of 300 ⁇ m is made in advance, and each cured resin layer is measured at an arbitrary depth, a horizontal speed of 1 ⁇ m / s, and a vertical speed of 0.5 ⁇ m / s.
  • the film thickness was measured.
  • a boron nitride blade having a blade width dimension of 0.3 mm, a squeeze angle of 20 °, and a niger angle of 10 ° was used. The material strength was measured from the vertical displacement position and the cutting force, and the thickness of each layer was confirmed.
  • Pencil hardness (hard coat property) The pencil hardness was evaluated with a pencil hardness tester (manufactured by Yasuda Seiki Co., Ltd.) under a load condition of 750 g in accordance with JIS K 5600-5-4. Based on the result, it was judged according to the following criteria. (Criteria) A (good): Pencil hardness is 3H or more. B (little good): Pencil hardness is 2H or more and less than 3H. C (poor): Pencil hardness is less than 2H.
  • Refractive index of the cured resin layer (A) and the cured resin layer (B) The refractive index of each layer was determined by Abbe measurement. Based on the result, it was judged according to the following criteria.
  • a (good) The difference in refractive index between the cured resin layer (A) and the cured resin layer (B) is 0.15 or less.
  • Adhesion between the cured resin layer (A) and the cured resin layer (B) In accordance with JIS K 5600-5-6, the cured resin layer (A) and the cured resin layer (A) are subjected to the cross-cut method (10 x 10 100 squares). The adhesion with the cured resin layer (B) was evaluated. Based on the result, it was judged according to the following criteria. (Criteria) A (good): Good adhesion on the entire surface (area of adhesion: 100%) B (little good): Partially peeled off. (Area in close contact: 50% or more and less than 100%) C (poor): Partial peeling or total peeling occurs. (Area in close contact: less than 50%)
  • C (poor): Transparency, hard coat property, repetitive bendability, bend direction, refractive index difference between the cured resin layer (A) and the cured resin layer (B), the cured resin layer (A) and the cured resin layer (B), the cured resin layer (A) and the cured resin layer (B) (
  • the adhesion of B at least one of the hard coat property, the repeat bendability and the bend directionability is C, and the rest is A or B.
  • ⁇ Base film F2> Made by Teijin: Polyethylene naphthalate biaxially stretched film (grade name "Theonex W51”), thickness: 50 ⁇ m, tensile modulus (JIS K 7161) 6.4 GPa.
  • V-65 2,2'-azobis (2,4-dimethylvaleronitrile)
  • Fuji Film Wako Pure Chemical Industries, Ltd. the temperature inside the system was raised to 65 ° C.
  • 0.5 parts by mass of V-65 was further added and the mixture was stirred at 65 ° C. for 3 hours.
  • Example 1 The curable composition a prepared as described below is applied onto the base film F2 with a bar coater at 25 ° C. so that the coating thickness (after drying) is 2.0 ⁇ m, and 1 min at 90 ° C. It was dried by heating.
  • the curable composition b prepared as described below was applied with a bar coater so as to coat the cured resin layer (A) so that the coating thickness (after drying) was 3.0 ⁇ m, and 90 After drying by heating at ° C.
  • the cured resin layers (A) and (B) are cured by irradiating with ultraviolet rays of 400 mJ / cm 2 in an integrated light amount, and the base film F2 / cured resin layer (A) / A laminated film having a laminated structure of the cured resin layer (B) was obtained.
  • curable composition a A curable composition a was prepared by adding 5 parts by mass of a photopolymerization initiator to 100 parts by mass of the acrylate (A). The mass average molecular weight of the curable composition a was 15,000, and the refractive index of the cured resin layer (A) was 1.53.
  • Example 2 A laminated film was obtained in the same manner as in Example 1 except that the thicknesses of the cured resin layer (A) and the cured resin layer (B) were changed in Example 1.
  • Example 3 In Example 1, the curable composition b was changed to the next curable composition b1 and produced in the same manner as in Example 1 to obtain a laminated film.
  • curable composition b1 67 parts by mass of alumina particles (ALTPGDA manufactured by CIK Nanotech Co., Ltd.) and 5 parts by mass of a photopolymerization initiator were added to 100 parts by mass of acrylate (A) to prepare a curable composition b1.
  • the mass average molecular weight of the curable composition b1 was 15,000, and the refractive index of the cured resin layer (B) was 1.54.
  • Example 4 In Example 1, a laminated film was obtained in the same manner as in Example 1 except that the base film F2 was changed to the above base film F1.
  • Example 5 In Example 1, a laminated film was obtained in the same manner as in Example 1 except that the base film F2 was changed to the base film F3.
  • Example 1 Similar to Example 1, the curable composition a is applied onto the base film F2 with a bar coater at 25 ° C. so that the coating thickness (after drying) is 5.0 ⁇ m, and heated at 90 ° C. for 1 min. After drying, a cured resin layer (A) having a thickness (after drying) of 5.0 ⁇ m was formed by irradiating ultraviolet rays of 400 mJ / cm 2 with an integrated light amount to obtain a laminated film. At this time, the cured resin layer (B) was not formed.
  • Example 2 Similar to Example 1, the curable composition b was applied onto the base film F2 with a bar coater so that the coating thickness (after drying) was evenly 5.0 ⁇ m, and heated at 90 ° C. for 1 min. After drying, a cured resin layer (B) having a thickness (after drying) of 5.0 ⁇ m was formed by irradiating ultraviolet rays of 400 mJ / cm 2 with an integrated light amount to obtain a laminated film. At this time, the cured resin layer (A) was not formed.
  • curable composition a1 A curable composition a1 was prepared by adding 5 parts by mass of a photopolymerization initiator to 100 parts by mass of urethane acrylate (Shikou "UV-6640B” manufactured by Mitsubishi Chemical Corporation). The curable composition a1 had a mass average molecular weight of 5,000 and the refractive index of the cured resin layer (A) was 1.51.
  • curable composition b2 was prepared by adding 80 parts by mass of DPHA and 5 parts by mass of a photopolymerization initiator to 100 parts by mass of urethane acrylate (Shikou "UV-1700B” manufactured by Mitsubishi Chemical Corporation).
  • the curable composition b2 had a mass average molecular weight of 2,000, and the refractive index of the cured resin layer (B) was 1.51.
  • DPHA Aronix M-404 (dipentaerythritol hexaacrylate / dipentaerythritol pentaacrylate) manufactured by Toagosei Co., Ltd.
  • Example 4 A laminated film was obtained in the same manner as in Example 1 except that the order of applying the curable composition a and the curable composition b was reversed in Example 1.
  • curable composition a2 was prepared by adding 100 parts by mass of 6 molEO-modified DPHA, 200 parts by mass of silica particles (MEK-AC-2140Y manufactured by Nissan Chemical Industries, Ltd.), and 5 parts by mass of a photopolymerization initiator to 100 parts by mass of the above DPHA. ..
  • the mass average molecular weight of the curable composition a2 was 790, and the refractive index of the cured resin layer (A) was 1.50.
  • curable composition b3 was prepared by adding 100 parts by mass of pentaerythritol triacrylate and 5 parts by mass of a photopolymerization initiator to 100 parts by mass of urethane acrylate (Shikou "UV-7650B” manufactured by Mitsubishi Chemical Corporation).
  • the curable composition b3 had a mass average molecular weight of 2,300, and the refractive index of the cured resin layer (B) was 1.51.
  • curable composition a3 To 100 parts by mass of the following (meth) acrylic polymer solution, 6 parts by mass of the following polyisocyanate and 23 parts by mass of DPHA were added to prepare a curable composition a3.
  • the mass average molecular weight of the curable composition a3 was 15,000, and the refractive index of the cured resin layer (A) was 1.50.
  • ((Meta) acrylic polymer solution) 283 parts by mass of methylisobutylketone, 149 parts by mass of glycidyl methacrylate, 276 parts by mass of methyl methacrylate, and 25 parts by mass of t-butylperoxy-2-ethylhexanoate (manufactured by Nippon Emulsifier Co., Ltd., trade name: Perbutyl O) was synthesized to obtain a precursor, and 76 parts by mass of acrylic acid was added thereto for synthesis to obtain 1000 parts by mass (50.0% by mass) of a methylisobutylketone solution of a (meth) acrylic polymer.
  • the property values of the (meth) acrylic polymer were as follows. Weight Average Molecular Weight (Mw): 15,000, Theoretical acryloyl group equivalent in terms of solid content: 478 g / eq, Hydroxy group value: 117 mgKOH / g.
  • curable composition b4 was prepared by adding 6 parts by mass of the following polyisocyanate and 8 parts by mass of the DPHA to 100 parts by mass of the following (meth) acrylic polymer solution.
  • the curable composition b4 had a mass average molecular weight of 40,000, and the refractive index of the cured resin layer (B) was 1.52.
  • ((Meta) acrylic polymer solution) 229 parts by mass of methyl isobutyl ketone was charged into a reactor equipped with a stirrer, a cooling tube, a dropping funnel and a nitrogen introduction tube, and the temperature was raised to 110 ° C. with stirring, and then glycidyl methacrylate 309
  • a mixed solution consisting of 10 parts by mass of mass, 34 parts by mass of methyl methacrylate, and 10 parts by mass of t-butylperoxy-2-ethylhexanoate (manufactured by Nippon Emulsifier Co., Ltd., product name: perbutyl O) was added dropwise over 3 hours. After further dropping, the mixture was kept at 110 ° C. for 15 hours.
  • the cured resin layer (A) and the cured resin layer (B) are sequentially laminated on the surface of the base film, and the elastic modulus is described.
  • By having the characteristics of being larger than MPa) and smaller than 220 (MPa), it has a high level of surface hardness (for example, 2H or more in pencil hardness evaluation) and repetitive bendability (under the condition of R 2.5, 200,000).
  • the elastic modulus of each of the cured resin layers (A) and (B) should be adjusted by adjusting the thickness and composition of each of the cured resin layers (A) and (B), for example, the particle content.
  • a resin component composed of an acrylic monomer which has been considered difficult to use, can also be used, which has an advantage of increasing the degree of freedom when designing a laminated film. ..
  • the difference ((B)-(A)) between the elastic modulus of the cured resin layer (A) and the elastic modulus of the cured resin layer (B) is larger than 0 (MPa) and smaller than 220 (MPa), it can be used. It was also found that it is not necessary to make the tensile elastic modulus of the base film to be extremely large. Conventionally, in a laminated film having a surface layer having a high surface hardness, when designing a target surface hardness to a desired level (for example, 2H or more), the base film used is constructed as necessary. The structural design of the raw material had to be reviewed to further increase the tensile modulus.
  • the base film can be appropriately selected. It has the advantage of increasing the degree of freedom in terms of selection.
  • the elastic modulus of the cured resin layer (A) measured by the micro-hardness meter measurement (JIS Z 2255) is 330 MPa is examined.
  • JIS Z 2255 micro-hardness meter measurement

Abstract

A multilayer film which has a configuration wherein a cured resin layer (A) and a cured resin layer (B) are sequentially superposed on the surface of a base material film, and which is characterized in that with respect to elastic modulus as determined by measurement using a microhardness gauge (JIS Z 2255), the elastic modulus of the cured resin layer (B) is higher than the elastic modulus of the of the cured resin layer (A), and the difference between the elastic modulus of the of the cured resin layer (A) and the elastic modulus of the cured resin layer (B) is more than 0 (MPa) but less than 220 (MPa).

Description

積層フィルムLaminated film
 本発明は、表面硬度と繰返し折曲げ特性に優れた積層フィルムに関する。 The present invention relates to a laminated film having excellent surface hardness and repeated bending characteristics.
 近年、電子機器などの小型化、軽量化にともないフレキシブル基板やフレキシブルプリント回路が用いられる傾向にある。また、その流れに伴い、ディスプレイ用途においてもフレキシブル性の要求が高まる傾向にある。そして、このような用途に用いる表示画面用の表面保護フィルムにおいては、高硬度、傷つき防止、耐汚染性、耐摩耗性などの表面保護特性ばかりではなく、折り曲げ性について、高度な耐久性が必要とされ、更なる性能向上が要望されていた。 In recent years, flexible substrates and flexible printed circuits have tended to be used as electronic devices become smaller and lighter. In addition, along with this trend, the demand for flexibility tends to increase also in display applications. The surface protective film for display screens used for such applications requires not only surface protective properties such as high hardness, scratch prevention, stain resistance, and abrasion resistance, but also high durability in terms of bendability. It was said that further performance improvement was requested.
 そのため、近年、表面保護フィルムに関し、高硬度で耐擦傷性を保持しつつ、フレキシブル性乃至屈曲性を改善するために多くの提案がなされている。
 例えば特許文献1には、積層構成からなるハードコ-ト層において、弾性率に関して中間層の方が表層よりも大きくすることで、表面硬度の向上を図るとともに、応力集中によるハードコートフィルムの損状を防ぎ、傷付きにくいハードコートフィルムに関する技術内容が開示されている。
Therefore, in recent years, many proposals have been made for surface protective films in order to improve flexibility or flexibility while maintaining high hardness and scratch resistance.
For example, in Patent Document 1, in a hard coat layer having a laminated structure, the intermediate layer has a larger elastic modulus than the surface layer to improve the surface hardness and damage to the hard coat film due to stress concentration. The technical contents regarding the hard coat film which prevents the stress and is hard to be scratched are disclosed.
 特許文献2には、表層にラジカル系材料、中間層にはカチオン系材料を用いて、層間密着性が良好である積層構成のハードコート層が開示されている。 Patent Document 2 discloses a hard coat layer having a laminated structure in which a radical material is used for the surface layer and a cationic material is used for the intermediate layer, and the interlayer adhesion is good.
 特許文献3には、シリカ粒子を塗膜中に含むことで、ハードコート塗膜の弾性率を制御する技術内容が開示されている。 Patent Document 3 discloses a technical content for controlling the elastic modulus of a hard coat coating film by including silica particles in the coating film.
 特許文献4には、積層構成からなるハードコ-ト層において、弾性率に関して表層の方が中間層より大きく、硬化塗膜の伸び率を特定範囲にすることでは耐磨耗性と屈曲性に優れるハードコートフィルムに関する技術内容が開示されている。 According to Patent Document 4, in the hard coat layer having a laminated structure, the surface layer has a larger elastic modulus than the intermediate layer, and the abrasion resistance and flexibility are excellent by setting the elongation rate of the cured coating film within a specific range. The technical contents related to the hard coat film are disclosed.
特許第4574766号公報Japanese Patent No. 45747666 特許第4160217号公報Japanese Patent No. 4160217 特許第5320848号公報Japanese Patent No. 5320848 特許第4569807号公報Japanese Patent No. 4569807
 前述のように近年、画像表示画面(ディスプレイ)を折り曲げたり、折り畳んだりすることができるフレキシブル携帯端末の開発が進められており、この類の画像表示画面に用いる表面保護フィルムに関しても、優れた表面硬度と共に、実用的に繰り返し折り曲げ可能、具体的には、例えば20万回以上繰り返し折り曲げ可能な耐久性が求められている。
 しかしながら、特許文献1~特許文献4記載の発明はいずれも、繰り返し折り曲げする用途を想定しておらず、対応困難な場合があった。
As mentioned above, in recent years, the development of flexible mobile terminals capable of folding or folding an image display screen (display) has been promoted, and the surface protective film used for this type of image display screen also has an excellent surface. Along with hardness, durability that can be repeatedly bent practically, specifically, for example, 200,000 times or more is required.
However, all of the inventions described in Patent Documents 1 to 4 are not intended for repeated bending, and may be difficult to deal with.
 そこで本発明は、優れた表面硬度を備えているばかりではなく、実用的な繰返し折曲げ特性に優れた、新たな積層フィルムを提案せんとするものである。 Therefore, the present invention proposes a new laminated film that not only has excellent surface hardness but also has excellent practical repeated bending characteristics.
 本発明は、基材フィルムの表面に、硬化樹脂層(A)及び硬化樹脂層(B)が順次積層した構成を備えており、
 微小硬度計測定(JIS Z 2255)により測定される弾性率に関し、硬化樹脂層(A)の弾性率よりも硬化樹脂層(B)の弾性率の方が大きく、かつ、硬化樹脂層(A)の弾性率と硬化樹脂層(B)の弾性率の差が0(MPa)より大きく、220(MPa)より小さいことを特徴とする、積層フィルムを提案する。
The present invention has a configuration in which a cured resin layer (A) and a cured resin layer (B) are sequentially laminated on the surface of a base film.
Regarding the elastic modulus measured by the micro-hardness meter measurement (JIS Z 2255), the elastic modulus of the cured resin layer (B) is larger than the elastic modulus of the cured resin layer (A), and the cured resin layer (A) We propose a laminated film characterized in that the difference between the elastic modulus of the above and the elastic modulus of the cured resin layer (B) is larger than 0 (MPa) and smaller than 220 (MPa).
 本発明は、上記積層フィルムの製造方法の一例として、硬化樹脂層(A)は、硬化性組成物を基材フィルム上に塗布し硬化させて形成することを特徴とし、当該硬化性組成物は、質量平均分子量が1,000~500,000の範囲であることを特徴とする、積層フィルムの製造方法を提案する。 The present invention is characterized in that, as an example of the method for producing a laminated film, the cured resin layer (A) is formed by applying a curable composition onto a base film and curing the curable composition. , A method for producing a laminated film, characterized in that the mass average molecular weight is in the range of 1,000 to 500,000.
 本発明が提案する積層フィルムは、基材フィルムの表面に、硬化樹脂層(A)及び硬化樹脂層(B)が順次積層した構成を備えており、硬化樹脂層(A)の弾性率と硬化樹脂層(B)の弾性率の差((B)-(A))が、0(MPa)より大きく、220(MPa)より小さいという特徴を有している。そのため、表面硬度を維持しつつ、実用的な繰返し折曲げ特性を高めることができ、具体的には、20万回以上繰り返し折り曲げても問題のない優れた繰返し折曲げ特性を得ることができる。 The laminated film proposed by the present invention has a structure in which a cured resin layer (A) and a cured resin layer (B) are sequentially laminated on the surface of a base film, and the elastic modulus and curing of the cured resin layer (A) are provided. The difference in elastic modulus of the resin layer (B) ((B)-(A)) is larger than 0 (MPa) and smaller than 220 (MPa). Therefore, it is possible to improve the practical repetitive bending characteristics while maintaining the surface hardness, and specifically, it is possible to obtain excellent repetitive bending characteristics that do not cause any problem even if the surface is repeatedly bent 200,000 times or more.
 次に、実施の形態例に基づいて本発明を説明する。但し、本発明が次に説明する実施形態に限定されるものではない。 Next, the present invention will be described based on an example embodiment. However, the present invention is not limited to the embodiments described below.
<<本積層フィルム>>
 本発明の実施形態の一例に係る積層フィルム(「本積層フィルム」と称する)は、基材フィルム(「本基材フィルム」と称する)の少なくとも片面側表面に、硬化樹脂層(A)及び硬化樹脂層(B)を順次積層してなる構成を備えた積層フィルムである。
 なお、本積層フィルムは上記構成を備えていれば他の層を備えていてもよい。
<< This laminated film >>
The laminated film (referred to as "the present laminated film") according to an example of the embodiment of the present invention has a cured resin layer (A) and a cured resin layer (A) on at least one side surface of the base film (referred to as the "main base film"). It is a laminated film having a structure in which a resin layer (B) is sequentially laminated.
The laminated film may have other layers as long as it has the above structure.
<本基材フィルム>
 本基材フィルムは、必要十分な剛性及び繰り返し折り曲げ性を得ることができるフィルムであれば、材質及び構成を限定するものではない。
<This base film>
The material and composition of the base film are not limited as long as the film can obtain the necessary and sufficient rigidity and repeatability.
 本基材フィルムは、単層構成であっても、多層構成であってもよい。
 本基材フィルムが多層構成の場合、2層、3層構成以外にも本発明の要旨を越えない限り、4層またはそれ以上の多層であってもよい。
The base film may have a single-layer structure or a multi-layer structure.
When the base film has a multi-layer structure, it may have four or more layers as long as the gist of the present invention is not exceeded in addition to the two-layer and three-layer structure.
 本基材フィルムは、単層構成であっても、多層構成であっても、各層の主成分樹脂はポリエステル又はポリイミド(PI)であるのが好ましい。このようなフィルムを「ポリエステルフィルム」又は「ポリイミドフィルム」と称する。
 この際、「主成分樹脂」とは、本基材フィルムを構成する樹脂のうち最も含有割合の多い樹脂を意味し、例えば本基材フィルムを構成する樹脂のうち50質量%以上、特に70質量%以上、中でも80質量%以上(100質量%を含む)を占める樹脂である。
 なお、本基材フィルムを構成する各層は、その主成分樹脂がポリエステル又はポリイミドであれば、ポリエステル又はポリイミド以外のその他の樹脂或いは樹脂以外の成分を含有していてもよい。
Regardless of whether the base film has a single-layer structure or a multi-layer structure, the main component resin of each layer is preferably polyester or polyimide (PI). Such a film is referred to as a "polyester film" or a "polyimide film".
At this time, the "main component resin" means the resin having the highest content ratio among the resins constituting the present base film, for example, 50% by mass or more, particularly 70% by mass of the resins constituting the present base film. % Or more, especially 80% by mass or more (including 100% by mass).
In addition, each layer constituting this base film may contain other resin other than polyester or polyimide, or component other than resin, as long as the main component resin is polyester or polyimide.
(ポリエステル)
 本基材フィルムを構成する各層の主成分樹脂としてのポリエステル(「本ポリエステル」と称する)は、ホモポリエステルであっても、共重合ポリエステルであってもよい。
(polyester)
The polyester (referred to as “the present polyester”) as the main component resin of each layer constituting the present base film may be a homopolyester or a copolymerized polyester.
 本ポリエステルが、ホモポリエステルからなる場合、芳香族ジカルボン酸と脂肪族グリコールとを重縮合させて得られるものが好ましい。
 前記芳香族ジカルボン酸としては、テレフタル酸、2,6-ナフタレンジカルボン酸などを挙げることができる。
 前記脂肪族グリコールとしては、エチレングリコール、ジエチレングリコール、1,4-シクロヘキサンジメタノール等を挙げることができる。
When the present polyester is made of a homopolyester, it is preferably obtained by polycondensing an aromatic dicarboxylic acid and an aliphatic glycol.
Examples of the aromatic dicarboxylic acid include terephthalic acid and 2,6-naphthalenedicarboxylic acid.
Examples of the aliphatic glycol include ethylene glycol, diethylene glycol, 1,4-cyclohexanedimethanol and the like.
 他方、本ポリエステルが、共重合ポリエステルである場合、そのジカルボン酸成分としては、例えばイソフタル酸、フタル酸、テレフタル酸、2,6-ナフタレンジカルボン酸、セバシン酸などの1種または2種以上を挙げることができる。他方、そのグリコール成分としては、例えばエチレングリコール、ジエチレングリコール、プロピレングリコール、ブタンジオール、1、4-シクロヘキサンジメタノール、ネオペンチルグリコール等の1種または2種以上を挙げることができる。 On the other hand, when the present polyester is a copolymerized polyester, examples of the dicarboxylic acid component include one or more of isophthalic acid, phthalic acid, terephthalic acid, 2,6-naphthalenedicarboxylic acid, sebacic acid and the like. be able to. On the other hand, examples of the glycol component include one or more of ethylene glycol, diethylene glycol, propylene glycol, butanediol, 1,4-cyclohexanedimethanol, neopentyl glycol and the like.
 代表的なポリエステルの具体例としては、例えばポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)、ポリブチレンナフタレート(PBN)、ポリエチレンフラノエート(PEF)などを例示することができる。中でも、PET、PENが取扱い性の点で好ましい。
 なお、本基材フィルムを構成する各層の主成分樹脂が、例えばポリエチレンテレフタレートである場合、そのフィルムを「ポリエチレンテレフタレートフィルム」と称する。他の樹脂が主成分樹脂である場合も同様である。
Specific examples of typical polyesters include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), polybutylene terephthalate (PBN), polyethylene furanoate (PEF), and the like. Can be done. Of these, PET and PEN are preferable in terms of handleability.
When the main component resin of each layer constituting the base film is, for example, polyethylene terephthalate, the film is referred to as "polyethylene terephthalate film". The same applies when the other resin is the main component resin.
(ポリイミド)
 本基材フィルムは、ポリエステルフィルムの他に、ポリイミドフィルムも好適である。前記ポリイミドのイミド化に関しては、例えばジアミンとジアンヒドリド、特に芳香族ジアンヒドリドと芳香族ジアミンとを1:1の当量比でポリアミド酸重合した後にイミド化する方法が例示される。
 当該芳香族ジアンヒドリドとしては、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物(6FDA)、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸二無水物(TDA)、ピロメリット酸二無水物(1,2,4,5-ベンゼンテトラカルボン酸二無水物、PMDA)、ベンゾフェノンテトラカルボン酸二無水物(BTDA)、ビフェニルテトラカルボン酸二無水物(BPDA)、及びビスカルボキシフェニルジメチルシラン二無水物(SiDA)などが例示される。これらは単独で用いてもよいし、2種類以上を併用してもよい。
 また、前記芳香族ジアミンとしては、オキシジアニリン(ODA)、p-フェニレンジアミン(pPDA)、m-フェニレンジアミン(mPDA)、p-メチレンジアニリン(pMDA)、m-メチレンジアニリン(mMDA)、ビストリフルオロメチルベンジジン(TFDB)、シクロヘキサンジアミン(13CHD、14CHD)、及びビスアミノヒドロキシフェニルヘキサフルオロプロパン(DBOH)などが例示される。これらは単独で用いてもよいし、2種類以上を併用してもよい。
(Polyimide)
As the base film, a polyimide film is also suitable in addition to the polyester film. Regarding the imidization of the polyimide, for example, a method of imidizing after polyamic acid polymerization of diamine and dianehydride, particularly aromatic dianhydride and aromatic diamine at a 1: 1 equivalent ratio is exemplified.
Examples of the aromatic dianhydride include 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropanedianhydride (6FDA), 4- (2,5-dioxotetraki-yl) -1, 2,3,4-Tetrahydronaphthalene-1,2-dicarboxylic dianhydride (TDA), pyromellitic dianhydride (1,2,4,5-benzenetetracarboxylic dianhydride, PMDA), benzophenonetetra Examples thereof include carboxylic acid dianhydride (BTDA), biphenyltetracarboxylic dianhydride (BPDA), and biscarboxyphenyldimethylsilane dianhydride (SiDA). These may be used alone or in combination of two or more.
Examples of the aromatic diamine include oxydianiline (ODA), p-phenylenediamine (pPDA), m-phenylenediamine (mPDA), p-methylenedianiline (pMDA), m-methylenedianiline (mMADA), Examples thereof include bistrifluoromethylbenzidine (TFDB), cyclohexanediamine (13CHD, 14CHD), and bisaminohydroxyphenylhexafluoropropane (DBOH). These may be used alone or in combination of two or more.
(その他樹脂成分)
 本基材フィルムを構成する各層が、ポリエステル及びポリイミド以外のその他の樹脂を主成分樹脂とするものであってもよい。その場合の主成分樹脂としては、例えば、エポキシ、ポリアリレート、ポリエーテルスルフォン、ポリカーボネート、ポリエーテルケトン、ポリスルフォン、ポリフェニレンサルファイド、ポリエステル系液晶ポリマー、トリアセチルセルロース、セルロース誘導体、ポリプロピレン、ポリアミド類、ポリシクロオレフィン類等を例示することができる。
(Other resin components)
Each layer constituting the base film may contain a resin other than polyester and polyimide as a main component resin. In that case, the main component resins include, for example, epoxy, polyarylate, polyethersulphon, polycarbonate, polyetherketone, polysulphon, polyphenylene sulfide, polyester-based liquid crystal polymer, triacetyl cellulose, cellulose derivative, polypropylene, polyamides, and poly. Cycloolefins and the like can be exemplified.
(粒子)
 本基材フィルムは、フィルム表面に易滑性を付与する目的及び各工程での傷発生防止を主たる目的として、粒子を含有してもよい。
 当該粒子の種類は、易滑性付与可能な粒子であれば特に限定されるものではない。例えば、シリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化チタン等の無機粒子、アクリル樹脂、スチレン樹脂、尿素樹脂、フェノール樹脂、エポキシ樹脂、ベンゾグアナミン樹脂等の有機粒子等を挙げることができる。これらは1種単独で用いても、これらのうちの2種以上を組み合わせて用いてもよい。
さらに、ポリエステル製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。
(particle)
The base film may contain particles for the purpose of imparting slipperiness to the film surface and for the main purpose of preventing scratches in each step.
The type of the particles is not particularly limited as long as the particles can be easily slippery. For example, inorganic particles such as silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, magnesium phosphate, kaolin, aluminum oxide, titanium oxide, acrylic resin, styrene resin, urea resin, phenol resin, epoxy resin, benzoguanamine. Examples include organic particles such as resin. These may be used alone or in combination of two or more of them.
Further, during the polyester manufacturing process, precipitated particles in which a part of a metal compound such as a catalyst is precipitated and finely dispersed can also be used.
 上記粒子の形状は、特に限定されるわけではない。例えば球状、塊状、棒状、扁平状等のいずれであってもよい。
 また、上記粒子の硬度、比重、色等についても特に制限はない。これら一連の粒子は、必要に応じて2種類以上を併用してもよい。
The shape of the particles is not particularly limited. For example, it may be spherical, lumpy, rod-shaped, flat-shaped, or the like.
Further, the hardness, specific gravity, color and the like of the particles are not particularly limited. Two or more kinds of these series of particles may be used in combination, if necessary.
 上記粒子の平均粒径は、5μm以下であるのが好ましく、中でも0.01μm以上或いは3μm以下、その中でも0.5μm以上或いは2.5μm以下であるのがさらに好ましい。5μmを超える場合には、本基材フィルムの表面粗度が粗くなりすぎて、後工程において各種の硬化組成物からなる硬化樹脂層を形成させる場合等に不具合が生じる場合がある。 The average particle size of the particles is preferably 5 μm or less, more preferably 0.01 μm or more or 3 μm or less, and more preferably 0.5 μm or more or 2.5 μm or less. If it exceeds 5 μm, the surface roughness of the base film may become too rough, and a problem may occur when a cured resin layer made of various cured compositions is formed in a subsequent step.
 粒子含有量は、本基材フィルムの5質量%以下であるのが好ましく、中でも0.0003質量%以上或いは3質量%以下、その中でも0.01質量%以上或いは2質量%以下であるのがさらに好ましい。
 粒子の平均粒径が上記範囲内であれば、本基材フィルムの表面粗度が粗過ぎることはないから、後工程において各種の硬化組成物からなる硬化樹脂層を形成させる場合等に生じる不具合を抑制することができる。
The particle content is preferably 5% by mass or less of the present base film, particularly 0.0003% by mass or more or 3% by mass or less, and among them, 0.01% by mass or more or 2% by mass or less. More preferred.
If the average particle size of the particles is within the above range, the surface roughness of the base film is not too coarse, so that a problem occurs when a cured resin layer made of various cured compositions is formed in a subsequent step. Can be suppressed.
 本基材フィルムに粒子を添加する方法としては、特に限定されるものではなく、従来公知の方法を採用することができる。例えば、ポリエステル等の原料樹脂を製造する任意の段階において添加することができる。ポリエステルである場合は、好ましくはエステル化もしくはエステル交換反応終了後、添加するのが良い。 The method of adding particles to the base film is not particularly limited, and a conventionally known method can be adopted. For example, it can be added at any stage in the production of a raw material resin such as polyester. In the case of polyester, it is preferable to add it after the esterification or transesterification reaction is completed.
(他の成分)
 本基材フィルムには、必要に応じて、他の成分として、例えば従来公知の酸化防止剤、帯電防止剤、熱安定剤、潤滑剤、染料、顔料、紫外線吸収剤等を含有してもよい。
(Other ingredients)
If necessary, the base film may contain, for example, conventionally known antioxidants, antistatic agents, heat stabilizers, lubricants, dyes, pigments, ultraviolet absorbers, and the like as other components. ..
(厚み)
 本基材フィルムの厚みは、必要十分な剛性と繰り返し折り曲げ性を得ることができる点から、例えば9μm~125μmであるのが好ましく、さらに好ましくは12μm以上或いは100μm以下、その中でも20μm以上或いは75μm以下であるのがさらに好ましい。
(Thickness)
The thickness of the base film is preferably, for example, 9 μm to 125 μm, more preferably 12 μm or more or 100 μm or less, and among them, 20 μm or more or 75 μm or less, from the viewpoint that necessary and sufficient rigidity and repeatability can be obtained. Is more preferable.
(製法)
 本基材フィルムは、例えば樹脂組成物を溶融製膜方法や溶液製膜方法によりフィルム形状にすることにより形成することができる。多層構造の場合は、共押出してもよい。
 また、一軸延伸又は二軸延伸したものであってもよく、剛性の点から、二軸延伸フィルムが好ましい。 
(Manufacturing method)
The base film can be formed, for example, by forming a resin composition into a film shape by a melt film forming method or a solution film forming method. In the case of a multi-layer structure, co-extrusion may be performed.
Further, it may be uniaxially stretched or biaxially stretched, and a biaxially stretched film is preferable from the viewpoint of rigidity.
(本基材フィルムの特性)
 本基材フィルムの引張弾性率(JIS K 7161)は、必要十分な剛性と繰り返し折り曲げ性を得ることができる点から、2.0GPa以上であるのが好ましく、中でも9.0GPa以下、その中でも3.0GPa以上或いは8.0GPa以下、その中でも3.0GPa以上或いは7.0GPa以下であるのがさらに好ましい。
(Characteristics of this base film)
The tensile elastic modulus (JIS K 7161) of the base film is preferably 2.0 GPa or more, particularly 9.0 GPa or less, and 3 among them, from the viewpoint of obtaining necessary and sufficient rigidity and repetitive bendability. More preferably, it is 0.0 GPa or more or 8.0 GPa or less, and more preferably 3.0 GPa or more or 7.0 GPa or less.
<硬化樹脂層(A)(B)>
 本積層フィルムは、本基材フィルムの少なくとも片面側表面に、硬化樹脂層(A)を設け、その表面側にさらに硬化樹脂層(B)を設けてなる積層構成を備えている。
 なお、架橋樹脂層とは、架橋樹脂構造を有する層を意味する。架橋樹脂構造を有しているか否かは、TOFSIMSやIRなどの装置を用いて結晶構造を分析して架橋樹脂構造の有無を判断することができる。但し、このような方法に限定するものではない。
<Curing resin layers (A) (B)>
The laminated film has a laminated structure in which a cured resin layer (A) is provided on at least one side surface of the base film, and a cured resin layer (B) is further provided on the surface side thereof.
The crosslinked resin layer means a layer having a crosslinked resin structure. Whether or not it has a crosslinked resin structure can be determined by analyzing the crystal structure using an apparatus such as TOFSIMS or IR to determine the presence or absence of the crosslinked resin structure. However, the method is not limited to this method.
(各層の弾性率)
 これら硬化樹脂層(A)(B)はいずれも、硬化樹脂、言い換えれば架橋構造を有する樹脂を含有する層であり、硬化樹脂層(B)の弾性率よりも硬化樹脂層(A)の弾性率の方が低いことが好ましい。
 さらに、微小硬度計測定(JIS Z 2255)により測定される弾性率に関し、硬化樹脂層(A)の弾性率と硬化樹脂層(B)の弾性率の差(硬化樹脂層(B)の弾性率-硬化樹脂層(A)の弾性率)が0(MPa)より大きく、220(MPa)より小さいことが好ましい。
 本基材フィルムの少なくとも片面側表面に硬化樹脂層(B)だけが存在する場合は、当該積層フィルムに外力が加わった際に変形に耐えられず、積層フィルム表面に破壊が生じたり、不可逆的なクレーズが発生したりする。これに対し、硬化樹脂層(B)よりも硬化樹脂層(A)の方が、弾性率が低く、且つ、硬化樹脂層(A)の弾性率と硬化樹脂層(B)の弾性率の差が0(MPa)より大きく、220(MPa)より小さいことにより、応力集中を避けることが可能となり、更には、硬化樹脂層(A)が変形することによって外力を吸収することが出来る。そのため、優れた繰返し折曲げ特性を有する積層フィルムとすることができる。
(Elastic modulus of each layer)
Each of these cured resin layers (A) and (B) is a layer containing a cured resin, in other words, a resin having a crosslinked structure, and the elasticity of the cured resin layer (A) is higher than the elastic modulus of the cured resin layer (B). It is preferable that the rate is lower.
Further, regarding the elastic modulus measured by the micro-hardness meter measurement (JIS Z 2255), the difference between the elastic modulus of the cured resin layer (A) and the elastic modulus of the cured resin layer (B) (elastic modulus of the cured resin layer (B)). -The elastic modulus of the cured resin layer (A) is preferably larger than 0 (MPa) and smaller than 220 (MPa).
When only the cured resin layer (B) is present on at least one side surface of the base film, it cannot withstand deformation when an external force is applied to the laminated film, and the surface of the laminated film is damaged or irreversible. Craze occurs. On the other hand, the elastic modulus of the cured resin layer (A) is lower than that of the cured resin layer (B), and the difference between the elastic modulus of the cured resin layer (A) and the elastic modulus of the cured resin layer (B). Is larger than 0 (MPa) and smaller than 220 (MPa), so that stress concentration can be avoided, and further, external force can be absorbed by the deformation of the cured resin layer (A). Therefore, it is possible to obtain a laminated film having excellent repetitive bending characteristics.
 中でも、硬化樹脂層(A)と硬化樹脂層(B)との前記弾性率の差は、折り曲げ性の観点から、50MPa以上であるのがさらに好ましく、中でも100MPa以上、その中でも特に150MPa以上であるのがさらに好ましい。その一方、表面硬度の観点から、当該差は210MPa以下であるのが好ましく、中でも200MPa以下、その中でも190MPa以下であるのがさらに好ましい。 Above all, the difference in elastic modulus between the cured resin layer (A) and the cured resin layer (B) is more preferably 50 MPa or more, particularly 100 MPa or more, and particularly 150 MPa or more from the viewpoint of bendability. Is even more preferable. On the other hand, from the viewpoint of surface hardness, the difference is preferably 210 MPa or less, more preferably 200 MPa or less, and more preferably 190 MPa or less.
 また、微小硬度計測定(JIS Z 2255)により測定される弾性率に関し、硬化樹脂層(B)>硬化樹脂層(A)≧10MPaであるのが好ましい。
 本基材フィルムの少なくとも片面側表面に硬化樹脂層(B)だけが存在する場合は、当該積層フィルムに外力が加わった際に変形に耐えられず、積層フィルム表面に破壊が生じたり、不可逆的なクレーズが発生したりする。これに対し、本積層フィルムは、硬化樹脂層(B)>硬化樹脂層(A)≧10MPaを満足する硬化樹脂層(A)が、硬化樹脂層(B)の下層として存在することにより、応力集中を避けることが可能となる。更には、硬化樹脂層(A)が変形することによって外力を吸収することが出来る。そのため、優れた繰返し折曲げ特性を有する積層フィルムとすることができる。
Further, regarding the elasticity measured by the micro-hardness meter measurement (JIS Z 2255), it is preferable that the cured resin layer (B)> the cured resin layer (A) ≥ 10 MPa.
When only the cured resin layer (B) is present on at least one side surface of the base film, it cannot withstand deformation when an external force is applied to the laminated film, and the surface of the laminated film is damaged or irreversible. Craze occurs. On the other hand, in this laminated film, the cured resin layer (A) satisfying the condition of the cured resin layer (B)> the cured resin layer (A) ≥ 10 MPa exists as the lower layer of the cured resin layer (B), so that the stress It is possible to avoid concentration. Further, the cured resin layer (A) can be deformed to absorb an external force. Therefore, it is possible to obtain a laminated film having excellent repetitive bending characteristics.
 上記観点から、硬化樹脂層(A)の弾性率は、20MPa以上であるのがさらに好ましく、その中でも50MPa以上、その中でも特に100MPa以上であるのがさらに好ましい。一方、上限に関しては、495MPa以下であるのが好ましく、中でも400MPa以下、その中でも350MPa以下であるのがさらに好ましい。 From the above viewpoint, the elastic modulus of the cured resin layer (A) is more preferably 20 MPa or more, particularly preferably 50 MPa or more, and particularly preferably 100 MPa or more. On the other hand, the upper limit is preferably 495 MPa or less, more preferably 400 MPa or less, and more preferably 350 MPa or less.
 他方、硬化樹脂層(B)の前記弾性率は、表面硬度の観点から、100MPa以上であるのが好ましく、その中でも200MPa以上、その中でも300MPa以上であるのがさらに好ましい。その一方、900MPa以下であるのが好ましく、その中で800MPa以下、その中でも700MPa以下であるのがさらに好ましい。 On the other hand, the elastic modulus of the cured resin layer (B) is preferably 100 MPa or more, more preferably 200 MPa or more, and even more preferably 300 MPa or more, from the viewpoint of surface hardness. On the other hand, it is preferably 900 MPa or less, and more preferably 800 MPa or less, and more preferably 700 MPa or less.
(各層の弾性率の調整方法)
 硬化樹脂層(A)及び硬化樹脂層(B)の弾性率は、各層の厚さ、粒子含有量、硬化性単量体の選択、硬化性単量体の組成比、架橋性単量体の含有割合、架橋密度(架橋点間の分子量)、各層を形成するベースポリマーの分子量乃至各層を形成する硬化樹脂組成物の分子量などを変更することで、調整することができる。但し、これらの方法に限定するものではない。
 なお、本発明において「ベースポリマー」とは、各層を構成する樹脂の中で最も質量割合の高い樹脂を示す。
(How to adjust the elastic modulus of each layer)
The elastic properties of the cured resin layer (A) and the cured resin layer (B) are the thickness of each layer, the particle content, the selection of the curable monomer, the composition ratio of the curable monomer, and the crosslinkable monomer. It can be adjusted by changing the content ratio, the cross-linking density (molecular weight between the cross-linking points), the molecular weight of the base polymer forming each layer, the molecular weight of the cured resin composition forming each layer, and the like. However, the method is not limited to these methods.
In the present invention, the "base polymer" refers to a resin having the highest mass ratio among the resins constituting each layer.
(各層の厚さ)
 硬化樹脂層(A)(B)それぞれの厚さを変更することで、硬化樹脂層(A)(B)の弾性率を調整することができるばかりか、表面硬度を向上させることができる。例えば、硬化樹脂層(A)の厚さよりも、硬化樹脂層(B)の厚さを大きくすることで、表面硬度を向上させることができる。
 硬化樹脂層(A)の厚さは、硬化樹脂層(B)の厚さの10~300%であるのが好ましく、中でも20%以上或いは200%以下、その中でも30%以上或いは100%以下であるのがさらに好ましい。
(Thickness of each layer)
By changing the thickness of each of the cured resin layers (A) and (B), not only the elastic modulus of the cured resin layers (A) and (B) can be adjusted, but also the surface hardness can be improved. For example, the surface hardness can be improved by increasing the thickness of the cured resin layer (B) rather than the thickness of the cured resin layer (A).
The thickness of the cured resin layer (A) is preferably 10 to 300% of the thickness of the cured resin layer (B), particularly 20% or more or 200% or less, and among them, 30% or more or 100% or less. It is more preferable to have it.
 上記関係を満足した上で、硬化樹脂層(A)層厚みは、1.0μm以上30.0μm以下であるのが好ましい。1.0μm以上であれば、例えば紫外線を照射して硬化樹脂層(A)を硬化させる際、酸素阻害等による硬化不足を防ぐことができる。一方、30.0μm以下であれば、本積層フィルムの表面平滑性を確保しやすくなり、透明性の確保が容易となる。かかる観点から、当該層厚みは、1.0μm以上30.0μm以下であるのが好ましく、中でも20.0μm以下、その中でも10.0μm以下、その中でも特に5.0μm以下であるのがさらに好ましい。
 他方、硬化樹脂層(B)の層厚は、1.0μm以上30.0μm以下であるのが好ましく、さらに好ましくは20.0μm以下、その中でも10.0μm以下、その中でも特に5μm以下であるのがさらに好ましい。
After satisfying the above relationship, the thickness of the cured resin layer (A) is preferably 1.0 μm or more and 30.0 μm or less. If it is 1.0 μm or more, for example, when the cured resin layer (A) is cured by irradiating with ultraviolet rays, insufficient curing due to oxygen inhibition or the like can be prevented. On the other hand, if it is 30.0 μm or less, it becomes easy to secure the surface smoothness of the laminated film, and it becomes easy to secure the transparency. From this point of view, the layer thickness is preferably 1.0 μm or more and 30.0 μm or less, and more preferably 20.0 μm or less, particularly 10.0 μm or less, and particularly 5.0 μm or less.
On the other hand, the layer thickness of the cured resin layer (B) is preferably 1.0 μm or more and 30.0 μm or less, more preferably 20.0 μm or less, of which 10.0 μm or less, and particularly 5 μm or less. Is even more preferable.
 なお、硬化樹脂層(A)及び硬化樹脂層(B)の合計厚みは、折り曲げ性の観点から、20.0μm以下、好ましくは10.0μm以下、さらに好ましくは8.0μm以下、その中でも特に6.0μm以下、その中でも5.0μm以下であるのがよい。 The total thickness of the cured resin layer (A) and the cured resin layer (B) is 20.0 μm or less, preferably 10.0 μm or less, more preferably 8.0 μm or less, and particularly 6 among them, from the viewpoint of bendability. It is preferably 0.0 μm or less, and 5.0 μm or less.
(各層の粒子含有量)
 また、硬化樹脂層(A)には粒子を含有させない一方、硬化樹脂層(B)には粒子を含有させたり、或いは、硬化樹脂層(A)の粒子含有量を、硬化樹脂層(B)のそれよりも少なくしたりして、硬化樹脂層(A)よりも硬化樹脂層(B)の弾性率が高くなるように調整することができる。
 後者の具体例としては、硬化樹脂層(A)の粒子含有量を1質量%~20質量%とする一方、硬化樹脂層(B)の粒子含有量を20質量%~60質量%として、各層の弾性率を調整することができる。
 この際、硬化樹脂層(A)の粒子含有量は1質量%以上、中でも2質量%以上、その中でも5質量%以上であるのがさらに好ましい一方、20質量%以下、中でも15質量%以下、その中でも10質量%以下であるのがさらに好ましい。
 他方、硬化樹脂層(B)の粒子含有量は20質量%以上、中でも25質量%以上、その中でも30質量%以上であるのがさらに好ましい一方、60質量%以下、中でも55質量%以下、その中でも50質量%以下であるのがさらに好ましい
 なお、硬化樹脂層(A)及び硬化樹脂層(B)が含有する粒子の種類については後述する。
(Particle content of each layer)
Further, while the cured resin layer (A) does not contain particles, the cured resin layer (B) may contain particles, or the particle content of the cured resin layer (A) may be adjusted to the cured resin layer (B). It can be adjusted so that the elastic modulus of the cured resin layer (B) is higher than that of the cured resin layer (A).
As a specific example of the latter, the particle content of the cured resin layer (A) is 1% by mass to 20% by mass, while the particle content of the cured resin layer (B) is 20% by mass to 60% by mass. The elastic modulus of can be adjusted.
At this time, the particle content of the cured resin layer (A) is more preferably 1% by mass or more, particularly 2% by mass or more, and more preferably 5% by mass or more, while 20% by mass or less, particularly 15% by mass or less. Among them, it is more preferably 10% by mass or less.
On the other hand, the particle content of the cured resin layer (B) is more preferably 20% by mass or more, particularly 25% by mass or more, and more preferably 30% by mass or more, while 60% by mass or less, particularly 55% by mass or less. Above all, it is more preferably 50% by mass or less. The types of particles contained in the cured resin layer (A) and the cured resin layer (B) will be described later.
(各層の表面状態)
 硬化樹脂層(A)の表面は、凹凸であっても平坦であってもよい。中でも、外観(表面光沢)の観点から、平坦であるのが好ましい。
 他方、硬化樹脂層(B)の表面も、凹凸であっても平坦であってもよい。中でも、外観(表面光沢)の観点から、平坦であるのが好ましい。
(Surface condition of each layer)
The surface of the cured resin layer (A) may be uneven or flat. Above all, it is preferable that it is flat from the viewpoint of appearance (surface gloss).
On the other hand, the surface of the cured resin layer (B) may also be uneven or flat. Above all, it is preferable that it is flat from the viewpoint of appearance (surface gloss).
(各層の光学特性)
 硬化樹脂層(A)(B)はいずれも、光学用途を考慮すると、透明であるのが好ましい。
(Optical characteristics of each layer)
Both the cured resin layers (A) and (B) are preferably transparent in consideration of optical applications.
 中でも、高度なレベルで視認性を良好とするために、硬化樹脂層(A)と硬化樹脂層(B)の屈折率差は0.15以下であるのが好ましい。
 硬化樹脂層(A)と硬化樹脂層(B)の屈折率差が0.15以下であれば、視認性を高めることができる。具体的には、フィルム面に対して斜め45度の角度から目視した際、硬化樹脂層(A)由来の輪郭が見えにくくなる。
 かかる観点から、硬化樹脂層(A)と硬化樹脂層(B)の屈折率差は0.15以下であるのが好ましく、中でも0.10以下、その中でも0.05以下であるのがさらに好ましい。屈折率差の下限は0である。
Above all, in order to improve visibility at a high level, the difference in refractive index between the cured resin layer (A) and the cured resin layer (B) is preferably 0.15 or less.
When the difference in refractive index between the cured resin layer (A) and the cured resin layer (B) is 0.15 or less, the visibility can be improved. Specifically, when viewed from an angle of 45 degrees with respect to the film surface, the contour derived from the cured resin layer (A) becomes difficult to see.
From this point of view, the difference in refractive index between the cured resin layer (A) and the cured resin layer (B) is preferably 0.15 or less, more preferably 0.10 or less, and more preferably 0.05 or less. .. The lower limit of the refractive index difference is 0.
<<本積層フィルムの製造方法>>
 硬化樹脂層(A)及び硬化樹脂層(B)はいずれも、硬化性組成物、すなわち硬化させることができる性能を有する組成物を硬化させて形成することができる。
 より具体的には、本基材フィルムの少なくとも片面側表面に、硬化性組成物を塗布し硬化させて硬化樹脂層(A)を形成した後、その上に、硬化性組成物を塗布し硬化させて硬化樹脂層(B)を形成するようにして、本積層フィルムを製造することができる。この際、硬化樹脂層(A)と硬化樹脂層(B)の硬化を同時に行うようにしてもよい。
 また、硬化樹脂層(A)を形成した後、一旦、フィルムをロール状に巻き取った後、再度、フィルムを巻出して、硬化樹脂層(A)上に硬化性組成物を塗布し硬化させて硬化樹脂層(B)を形成するようにしてもよいし、基材フィルム表面に硬化樹脂層(A)を形成した後、連続して、硬化性組成物を塗布し硬化させて硬化樹脂層(B)を形成するようにしてもよい。本積層フィルムの製造方法はかかる方法に何ら限定するものではない。
<< Manufacturing method of this laminated film >>
Both the cured resin layer (A) and the cured resin layer (B) can be formed by curing a curable composition, that is, a composition having a ability to be cured.
More specifically, a curable composition is applied and cured on at least one side surface of the base film to form a cured resin layer (A), and then the curable composition is applied and cured on the curable resin layer (A). This laminated film can be manufactured by forming the cured resin layer (B). At this time, the cured resin layer (A) and the cured resin layer (B) may be cured at the same time.
Further, after forming the cured resin layer (A), the film is once wound into a roll, the film is unwound again, and the curable composition is applied onto the cured resin layer (A) and cured. The cured resin layer (B) may be formed by forming the cured resin layer (B), or after the cured resin layer (A) is formed on the surface of the base film, the curable composition is continuously applied and cured to form the cured resin layer. (B) may be formed. The method for producing the present laminated film is not limited to such a method.
<硬化性組成物>
 硬化樹脂層(A)及び硬化樹脂層(B)を形成するための硬化性組成物は、硬化性単量体のほか、必要に応じて、光重合開始剤、溶剤、粒子、架橋剤、その他の成分を含有するのが好ましい。以下、それぞれについて説明する。
<Curable composition>
The curable composition for forming the curable resin layer (A) and the curable resin layer (B) includes a curable monomer, a photopolymerization initiator, a solvent, particles, a cross-linking agent, and the like, if necessary. It is preferable to contain the components of. Each will be described below.
 硬化樹脂層(A)を形成するベースポリマーすなわち硬化性単量体の質量平均分子量乃至硬化樹脂層(A)を形成する硬化性樹脂組成物の質量平均分子量を、硬化樹脂層(B)を形成するベースポリマーすなわち硬化性単量体の質量平均分子量乃至硬化樹脂層(B)を形成する硬化性樹脂組成物の質量平均分子量よりも大きくすることにより、硬化樹脂層(A)よりも硬化樹脂層(B)の弾性率が高くなるように調整することができる。
 中でも、硬化樹脂層(A)及び(B)の合計厚みを小さくしつつ、例えば硬化樹脂層(A)及び(B)の合計厚みを30μm以下、中でも20μm以下、その中でも10μm以下としつつ、表面硬度を維持して繰返し折曲げ特性を高めることができる観点から、硬化樹脂層(A)を形成するベースポリマーの質量平均分子量乃至硬化樹脂層(A)を形成する硬化性樹脂組成物の質量平均分子量を、硬化樹脂層(B)を形成するベースポリマーの質量平均分子量乃至硬化樹脂層(B)を形成する硬化性樹脂組成物の質量平均分子量よりも、1桁以上大きくする、すなわち10倍以上とすることにより、硬化樹脂層(A)よりも硬化樹脂層(B)の弾性率が高くなるように調整することもできる。
The cured resin layer (B) is formed by setting the mass average molecular weight of the base polymer forming the cured resin layer (A), that is, the curable monomer to the mass average molecular weight of the curable resin composition forming the cured resin layer (A). By making the mass average molecular weight of the base polymer, that is, the curable monomer, or the mass average molecular weight of the curable resin composition forming the cured resin layer (B) larger than that of the cured resin layer (A), the cured resin layer It can be adjusted so that the elastic coefficient of (B) becomes high.
Above all, while reducing the total thickness of the cured resin layers (A) and (B), for example, the total thickness of the cured resin layers (A) and (B) is 30 μm or less, particularly 20 μm or less, and among them, 10 μm or less. From the viewpoint of maintaining hardness and enhancing repeated bending characteristics, the mass average molecular weight of the base polymer forming the cured resin layer (A) or the mass average of the curable resin composition forming the cured resin layer (A). The molecular weight is increased by an order of magnitude or more, that is, 10 times or more, from the mass average molecular weight of the base polymer forming the cured resin layer (B) to the mass average molecular weight of the curable resin composition forming the cured resin layer (B). Therefore, the elastic ratio of the cured resin layer (B) can be adjusted to be higher than that of the cured resin layer (A).
 かかる観点から、硬化樹脂層(A)を形成するベースポリマーすなわち硬化性単量体の質量平均分子量乃至硬化樹脂層(A)を形成する硬化性樹脂組成物の質量平均分子量は1,000以上であるのが好ましく、中でも3,000以上、その中でも5,000以上であるのがさらに好ましい。その一方、500,000以下であるのが好ましく、中でも400,000以下、その中でも250,000以下であるのがさらに好ましい。
 他方、硬化樹脂層(B)を形成するベースポリマーすなわち硬化性単量体の質量平均分子量乃至硬化樹脂層(B)を形成する硬化性樹脂組成物の質量平均分子量は100以上であるのが好ましく、中でも200以上、その中でも400以上であるのがさらに好ましい。その一方、500,000以下であるのが好ましく、中でも400,000以下、その中でも250,000以下であるのがさらに好ましい。
From this point of view, the mass average molecular weight of the base polymer forming the cured resin layer (A), that is, the curable monomer, or the mass average molecular weight of the curable resin composition forming the cured resin layer (A) is 1,000 or more. It is preferably 3,000 or more, and more preferably 5,000 or more. On the other hand, it is preferably 500,000 or less, more preferably 400,000 or less, and more preferably 250,000 or less.
On the other hand, the mass average molecular weight of the base polymer forming the cured resin layer (B), that is, the curable monomer, or the mass average molecular weight of the curable resin composition forming the cured resin layer (B) is preferably 100 or more. Above all, it is more preferably 200 or more, and among them, 400 or more. On the other hand, it is preferably 500,000 or less, more preferably 400,000 or less, and more preferably 250,000 or less.
(硬化性単量体)
 前記硬化性単量体は、硬化させることができる化合物であればよい。中でも、優れた表面硬度と繰り返し折り曲げ性を両立させる観点から、架橋性単量体、アクリル酸エステル類、メタクリル酸エステル類からなる群より選択される1種類以上を含有するものが好ましい。
 その中でも、ハンドリング性、工業的な入手の容易さ、コストの観点から、架橋性単量体及び(メタ)アクリル酸エステル類の中から選択される少なくとも2種類以上からなる共混合物であるか、又は、メタクリル酸エステル類及びビニル系単量体の中から選択される少なくとも2種類以上からなる混合物であるのが好ましい。
 上記のように、2種類の単量体(a/b)を用いる場合、配合比率(a/b)は、質量比で90/10~10/90の範囲であることが好ましく、さらに好ましくは、80/20~40/60の範囲、その中でも、70/30~40/60の範囲がよい。
(Curable monomer)
The curable monomer may be any compound that can be cured. Among them, those containing at least one selected from the group consisting of crosslinkable monomers, acrylic acid esters, and methacrylic acid esters are preferable from the viewpoint of achieving both excellent surface hardness and repetitive bendability.
Among them, is it a comixture consisting of at least two kinds selected from crosslinkable monomers and (meth) acrylic acid esters from the viewpoint of handleability, industrial availability, and cost? Alternatively, it is preferably a mixture consisting of at least two types selected from methacrylic acid esters and vinyl-based monomers.
As described above, when two types of monomers (a / b) are used, the blending ratio (a / b) is preferably in the range of 90/10 to 10/90 in terms of mass ratio, and more preferably. , 80/20 to 40/60, and more preferably 70/30 to 40/60.
 なお、本発明において、「(メタ)アクリル」という表現を用いた場合、「アクリル」と「メタクリル」の一方又は両方を意味するものとする。「(メタ)アクリレート」「(メタ)アクリロイル」についても同様である。また、「(ポリ)プロピレングリコール」は「プロピレングリコール」と「ポリプロピレングリコール」の一方又は両方を意味するものとする。「(ポリ)エチレングリコール」についても同様の意味をもつこととする。 In the present invention, when the expression "(meth) acrylic" is used, it means one or both of "acrylic" and "methacrylic". The same applies to "(meth) acrylate" and "(meth) acryloyl". Further, "(poly) propylene glycol" shall mean one or both of "propylene glycol" and "polypropylene glycol". “(Poly) ethylene glycol” has the same meaning.
 これらの混合物の中から、硬化樹脂層(A)及び硬化樹脂層(B)のそれぞれが、少なくとも前述した弾性率及び屈折率を満足できるように、各主成分を選択するのが好ましい。
 中でも、硬化樹脂層(A)を形成するための硬化性組成物に用いる硬化性単量体は、前述した弾性率及び屈折率を満足できるように選択するのが好ましい。
 他方、硬化樹脂層(B)を形成するための硬化性組成物に用いる硬化性単量体は、前述した弾性率及び屈折率を満足するように、選択するのが好ましい。
From these mixtures, it is preferable to select each main component so that each of the cured resin layer (A) and the cured resin layer (B) can satisfy at least the elastic modulus and the refractive index described above.
Above all, the curable monomer used in the curable composition for forming the cured resin layer (A) is preferably selected so as to satisfy the above-mentioned elastic modulus and refractive index.
On the other hand, the curable monomer used in the curable composition for forming the cured resin layer (B) is preferably selected so as to satisfy the above-mentioned elastic modulus and refractive index.
(架橋性単量体)
 前記架橋性単量体は、一分子中に1つまたは2つ以上の重合性官能基を有する単量体のことを指す。
 当該架橋性単量体としては、例えばアクリル酸アリル、メタクリル酸アリル、1-アクリロキシ-3-ブテン、1-メタクリロキシ-3-ブテン、1,2-ジアクリロキシ-エタン、1,2-ジメタクリロキシ-エタン、1,2-ジアクリロキシ-プロパン、1,3-ジアクリロキシ-プロパン、1,4-ジアクリロキシ-ブタン、1,3-ジメタクリロキシ-プロパン、1,2-ジメタクリロキシ-プロパン、1,4-ジメタクリロキシ-ブタン、トリエチレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、1,6-ヘキサンジオールジメタクリレート、1.9-ノナンジオールジメタクリレート、トリエチレングリコールジアクリレート、1,6-ヘキサンジオールジアクリレート、1.9-ノナンジオールジアクリレート、1,4-ペンタジエン、トリメチロールプロパントリアクリレートなどが例示される。
(Crosslinkable monomer)
The crosslinkable monomer refers to a monomer having one or more polymerizable functional groups in one molecule.
Examples of the crosslinkable monomer include allyl acrylate, allyl methacrylate, 1-acryroxy-3-butane, 1-methacryloxy-3-butane, 1,2-diacryloxy-ethane, 1,2-dimethacryloxy-ethane, and the like. 1,2-Diacryloxy-propane, 1,3-diacryloxy-propane, 1,4-diacryloxy-butane, 1,3-dimethacryloxy-propane, 1,2-dimethacryloxy-propane, 1,4-dimethacryloxy-butane, triethylene Glycoldimethacrylate, polyethylene glycol diacrylate, 1,6-hexanediol dimethacrylate, 1.9-nonanediol dimethacrylate, triethylene glycol diacrylate, 1,6-hexanediol diacrylate, 1.9-nonanediol diacrylate , 1,4-Pentadiene, trimethylolpropane triacrylate and the like.
 また、水酸基含有(メタ)アクリレート系化合物としては、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、6-ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、2-ヒドロキシエチルアクリロイルホスフェート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシプロピルフタレート、カプロラクトン変性2-ヒドロキシエチル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、脂肪酸変性-グリシジル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、等のエチレン性不飽和基を1つ含有する(メタ)アクリレート系化合物;グリセリンジ(メタ)アクリレート、2-ヒドロキシ-3-アクリロイル-オキシプロピルメタクリレート等のエチレン性不飽和基を2つ含有する(メタ)アクリレート系化合物;ペンタエリスリトールトリ(メタ)アクリレート、カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート、エチレンオキサイド変性ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート、エチレンオキサイド変性ジペンタエリスリトールペンタ(メタ)アクリレート等のエチレン性不飽和基を3つ以上含有する(メタ)アクリレート系化合物がなどを挙げることができる。 Examples of the hydroxyl group-containing (meth) acrylate compound include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, and 6. -Hydroxyalkyl (meth) acrylates such as hydroxyhexyl (meth) acrylates, 2-hydroxyethylacryloyl phosphate, 2- (meth) acryloyloxyethyl-2-hydroxypropylphthalates, caprolactone-modified 2-hydroxyethyl (meth) acrylates, Dipropylene glycol (meth) acrylate, fatty acid-modified-glycidyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate , Etc. (meth) acrylate-based compound containing one ethylenically unsaturated group; containing two ethylenically unsaturated groups such as glycerindi (meth) acrylate and 2-hydroxy-3-acryloyl-oxypropyl methacrylate. (Meta) acrylate compounds; pentaerythritol tri (meth) acrylate, caprolactone-modified pentaerythritol tri (meth) acrylate, ethylene oxide-modified pentaerythritol tri (meth) acrylate, dipentaerythritol penta (meth) acrylate, caprolactone-modified dipentaerythritol Examples thereof include (meth) acrylate-based compounds containing three or more ethylenically unsaturated groups such as penta (meth) acrylate and ethylene oxide-modified dipentaerythritol penta (meth) acrylate.
 ビニル基を有する架橋性単量体として、例えば、グリシジル(メタ)アクリレート、β-メチルグルシジル(メタ)アクリレート、o-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、α-メチル-o-ビニルベンジルグリシジルエーテル、α-メチル-m-ビニルベンジルグリシジルエーテル、α-メチル-p-ビニルベンジルグリシジルエーテルを例示することができ、その中ではo-ビニルベンジルグリシジルエーテル、m-ビニルベンジルグリシジルエーテル、p-ビニルベンジルグリシジルエーテル、3,4-エポキシシクロヘキシルメチル(メタ)アクリレートが例示される。これらは単独でも2種類以上を併用してもよい。 Examples of the crosslinkable monomer having a vinyl group include glycidyl (meth) acrylate, β-methylglucidyl (meth) acrylate, o-vinylbenzyl glycidyl ether, m-vinylbenzyl glycidyl ether, and p-vinylbenzyl glycidyl ether. Examples thereof include α-methyl-o-vinylbenzyl glycidyl ether, α-methyl-m-vinylbenzyl glycidyl ether, and α-methyl-p-vinylbenzyl glycidyl ether, among which o-vinylbenzyl glycidyl ether and m. -Vinylbenzyl glycidyl ether, p-vinylbenzyl glycidyl ether, 3,4-epoxycyclohexylmethyl (meth) acrylate are exemplified. These may be used alone or in combination of two or more.
(アクリル酸エステル類)
 上記アクリル酸エステル類としては、例えばアクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸sec-ブチル、アクリル酸tert-ブチル、アクリル酸アミル、アクリル酸イソアミル、アクリル酸n-ヘキシル、アクリル酸2-エチルヘキシル、アクリル酸ペンタデシル、アクリル酸ドデシルなどのアクリル酸非環状アルキルエステル;アクリル酸シクロヘキシル、アクリル酸イソボルニルなどのアクリル酸環状アルキルエステル;アクリル酸フェニル、アクリル酸ナフチルなどのアクリル酸アリールエステル;アクリル酸2-ヒドロキシエチル、アクリル酸2-メトキシエチル、アクリル酸グリシジルなどの官能基含有アクリル酸非環状アルキルエステル等を例示することができる。
(Acrylic esters)
Examples of the acrylic acid esters include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, sec-butyl acrylate, tert-butyl acrylate, and acrylic. Acrylic acid acyclic alkyl esters such as amyl acid, isoamyl acrylate, n-hexyl acrylate, 2-ethylhexyl acrylate, pentadecyl acrylate, dodecyl acrylate; cyclic alkyl acrylates such as cyclohexyl acrylate and isobornyl acrylate; Acrylic acid aryl esters such as phenyl acrylate and naphthyl acrylate; functional group-containing acrylic acid acyclic alkyl esters such as 2-hydroxyethyl acrylate, 2-methoxyethyl acrylate, and glycidyl acrylate can be exemplified.
(メタクリル酸エステル類)
 上記メタクリル酸エステル類としては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル、メタクリル酸n-ブチル、メタクリル酸イソブチル、メタクリル酸sec-ブチル、メタクリル酸tert-ブチル、メタクリル酸アミル、メタクリル酸イソアミル、メタクリル酸n-ヘキシル、メタクリル酸2-エチルヘキシル、メタクリル酸ペンタデシル、メタクリル酸ドデシルなどのメタクリル酸非環状アルキルエステル;メタクリル酸シクロヘキシル、メタクリル酸イソボルニルなどのメタクリル酸環状アルキルエステル;メタクリル酸フェニルなどのメタクリル酸アリールエステル;メタクリル酸2-ヒドロキシエチル、メタクリル酸2-メトキシエチル、メタクリル酸グリシジルなどの官能基含有メタクリル酸非環状アルキルエステル等を例示することができる。これらは単独でも2種類以上を併用してもよい。
(Methacrylic acid esters)
Examples of the methacrylic acid esters include methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, tert-butyl methacrylate and methacrylic acid. Amilic methacrylic acid such as amyl acid, isoamyl methacrylate, n-hexyl methacrylate, 2-ethylhexyl methacrylate, pentadecyl methacrylate, dodecyl methacrylate; cyclic alkyl methacrylate such as cyclohexyl methacrylate and isobornyl methacrylate; Arylmethacrylic acid esters such as phenyl methacrylate; functional group-containing acyclic alkyl esters of methacrylic acid such as 2-hydroxyethyl methacrylate, 2-methoxyethyl methacrylate, and glycidyl methacrylate can be exemplified. These may be used alone or in combination of two or more.
(光重合開始剤)
 上記硬化性組成物を光硬化させる場合には、光重合開始剤を配合するのが好ましい。
(Photopolymerization initiator)
When the curable composition is photocured, it is preferable to add a photopolymerization initiator.
 当該光重合開始剤は、特に制限するものではなく、例えばケトン系光重合開始剤、アミン系光重合開始剤等を挙げることができる。具体的には、例えばベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(t-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ジ(メトキシカルボニル)-4,4’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ジ(メトキシカルボニル)-4,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ジ(メトキシカルボニル)-3,3’-ジ(t-ブチルペルオキシカルボニル)ベンゾフェノン、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(o-ベンゾイルオキシム)、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、又は2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイドなどを挙げることができる。これらの光重合開始剤は、1種のみを用いてもよいし、2種以上を用いてもよい。 The photopolymerization initiator is not particularly limited, and examples thereof include a ketone-based photopolymerization initiator and an amine-based photopolymerization initiator. Specifically, for example, benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone, 2-hydroxy-2-methylpro. Piophenone, 2-Hydroxy-2-methyl-4'-isopropylpropiophenone, 1-hydroxycyclohexylphenylketone, isopropylbenzoin ether, isobutylbenzoin ether, 2,2-diethoxyacetophenone, 2,2-dimethoxy-2- Phenylacetophenone, camphorquinone, benzanthron, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -Butanone-1, 4-dimethylaminobenzoate ethyl, 4-dimethylaminobenzoate isoamyl, 4,4'-di (t-butylperoxycarbonyl) benzophenone, 3,4,4'-tri (t-butylperoxycarbonyl) ) Benzophenone, 3,3', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 3,3', 4,4'-tetra (t-hexylperoxycarbonyl) benzophenone, 3,3'-di ( Methoxycarbonyl) -4,4'-di (t-butylperoxycarbonyl) benzophenone, 3,4'-di (methoxycarbonyl) -4,3'-di (t-butylperoxycarbonyl) benzophenone, 4,4'- Di (methoxycarbonyl) -3,3'-di (t-butylperoxycarbonyl) benzophenone, 1,2-octanedione, 1- [4- (phenylthio) phenyl]-, 2- (o-benzoyloxime), 2 -(4'-methoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (3', 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2', 4'-dimethoxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (2'-methoxystyryl) -4,6-bis (trichloromethyl) -s-triazine , 2- (4'-Pentyloxystyryl) -4,6-bis (trichloromethyl) -s-triazine, 4- [pn, N-di (ethoxycarbonylmethyl)]-2,6-di (trichloromethyl) Methyl) -s-triazine, 1 , 3-bis (trichloromethyl) -5- (2'-chlorophenyl) -s-triazine, 1,3-bis (trichloromethyl) -5- (4'-methoxyphenyl) -s-triazine, 2- (p -Dimethylaminostyryl) benzoxazole, 2- (p-dimethylaminostyryl) benzthiazole, 2-mercaptobenzothiazole, 3,3'-carbonylbis (7-diethylaminocoumarin), 2- (o-chlorophenyl) -4, 4', 5,5'-Tetraphenyl-1,2'-biimidazole, 2,2'-bis (2-chlorophenyl) -4,4', 5,5'-tetrakis (4-ethoxycarbonylphenyl)- 1,2'-bimidazole, 2,2'-bis (2,4-dichlorophenyl) -4,4', 5,5'-tetraphenyl-1,2'-bimidazole, 2,2'-bis ( 2,4-Dibromophenyl) -4,4', 5,5'-tetraphenyl-1,2'-biimidazole, 2,2'-bis (2,4,6-trichlorophenyl) -4,4' , 5,5'-Tetraphenyl-1,2'-biimidazole, 3- (2-methyl-2-dimethylaminopropionyl) carbazole, 3,6-bis (2-methyl-2-morpholinopropionyl) -9- n-dodecylcarbazole, 1-hydroxycyclohexylphenylketone, bis (η5-2,4-cyclopentadiene-1-yl) -bis (2,6-difluoro-3- (1H-pyrrole-1-yl) -phenyl) Examples thereof include titanium, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, and 2,4,6-trimethylbenzoyldiphenylphosphine oxide. Only one kind of these photopolymerization initiators may be used, or two or more kinds thereof may be used.
 また、光硬化開始剤とともに、必要に応じて、増感剤を併用してもよい。増感剤の具体例として、n-ブチルアミン、トリエチルアミン、p-ジメチルアミノ安息香酸エチル等の脂肪族アミン、芳香族アミン等を例示することができる。 Further, a sensitizer may be used in combination with the photocuring initiator, if necessary. Specific examples of the sensitizer include aliphatic amines such as n-butylamine, triethylamine, and ethyl p-dimethylaminobenzoate, and aromatic amines.
 光重合開始剤の含有量は、硬化性組成物100質量部に対して1~10質量部の範囲であることが好ましい。さらに好ましくは1~5質量部の範囲がよい。
 光重合開始剤の含有量が1質量部以上であることで、所望する重合開始効果が得られ、また、光重合開始剤の含有量が10質量部以下であることで、樹脂層の黄変を抑制することができる。光硬化開始剤及び増感剤は、光硬化性組成物の固形分基準として20質量%以下の割合で使用することが好ましい。
The content of the photopolymerization initiator is preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the curable composition. More preferably, the range is 1 to 5 parts by mass.
When the content of the photopolymerization initiator is 1 part by mass or more, the desired polymerization initiation effect can be obtained, and when the content of the photopolymerization initiator is 10 parts by mass or less, the resin layer turns yellow. Can be suppressed. The photocurable initiator and sensitizer are preferably used in a proportion of 20% by mass or less based on the solid content of the photocurable composition.
(溶剤)
 前記の溶剤として、例えばメチルエチルケトン、メチルプロピルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロヘキサノン、ジアセトンアルコール、アセトン等のケトン系溶媒;ペンタノール、ヘキサノール、ヘプタノール、オクタノール等のアルコール系溶媒;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のエーテル系溶媒;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸メトキシブチル、酢酸アミル、酢酸プロピル、乳酸エチル、乳酸メチル、乳酸ブチル等のエステル系溶媒;トルエン、キシレン、ソルベントナフサ、ヘキサン、シクロヘキサン、エチルシクロヘキサン、メチルシクロヘキサン、ヘプタン、オクタン、デカン等の炭化水素系溶媒等の有機溶媒を例示することができる。これらの有機溶媒は単独で用いても2種類以上を併用してもよい。
(solvent)
Examples of the solvent include ketone solvents such as methyl ethyl ketone, methyl propyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, diacetone alcohol and acetone; alcohol solvents such as pentanol, hexanol, heptanol and octanol; ethylene glycol monoethyl. Ether solvents such as ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate; methyl acetate, ethyl acetate, butyl acetate, methoxybutyl acetate, amyl acetate, propyl acetate, ethyl lactate, methyl lactate, Ester-based solvents such as butyl lactate; organic solvents such as hydrocarbon solvents such as toluene, xylene, solventnaphtha, hexane, cyclohexane, ethylcyclohexane, methylcyclohexane, heptane, octane, and decane can be exemplified. These organic solvents may be used alone or in combination of two or more.
(粒子)
 硬化性組成物には、滑り性やブロッキングの改良のため、さらには各層の弾性率を調整するため、所定量の粒子を含有させることができる。
 当該粒子としては、例えばシリカ、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、硫酸カルシウム、リン酸カルシウム、リン酸マグネシウム、カオリン、酸化アルミニウム、酸化チタン等の無機粒子、アクリル樹脂、スチレン樹脂、尿素樹脂、フェノール樹脂、エポキシ樹脂、ベンゾグアナミン樹脂等の有機粒子等を挙げることができる。これらは1種単独で用いても、これらのうちの2種以上を組み合わせて用いてもよい。
 さらに、ポリエステル製造工程中、触媒等の金属化合物の一部を沈殿、微分散させた析出粒子を用いることもできる。
(particle)
The curable composition can contain a predetermined amount of particles in order to improve slipperiness and blocking, and further to adjust the elastic modulus of each layer.
Examples of the particles include inorganic particles such as silica, calcium carbonate, magnesium carbonate, barium carbonate, calcium sulfate, calcium phosphate, magnesium phosphate, kaolin, aluminum oxide, titanium oxide, acrylic resin, styrene resin, urea resin, and phenol resin. Organic particles such as epoxy resin and benzoguanamine resin can be mentioned. These may be used alone or in combination of two or more of them.
Further, during the polyester manufacturing process, precipitated particles in which a part of a metal compound such as a catalyst is precipitated and finely dispersed can also be used.
 上記粒子の形状は、特に限定されるわけではない。例えば球状、塊状、棒状、扁平状等のいずれであってもよい。
 また、上記粒子の硬度、比重、色等についても特に制限はない。これら一連の粒子は、必要に応じて2種類以上を併用してもよい。
The shape of the particles is not particularly limited. For example, it may be spherical, lumpy, rod-shaped, flat-shaped, or the like.
Further, the hardness, specific gravity, color and the like of the particles are not particularly limited. Two or more kinds of these series of particles may be used in combination, if necessary.
 上記粒子の平均粒径は、大き過ぎると、表面粗度が粗くなりすぎて、後工程において各種の硬化組成物からなる硬化樹脂層を形成させる場合等に不具合が生じる場合がある一方、小さ過ぎると、粒子を添加する効果が低減するため、5μm以下であるのが好ましく、中でも0.01μm以上或いは3μm以下、その中でも0.5μm以上或いは2.5μm以下であるのがさらに好ましい。 If the average particle size of the particles is too large, the surface roughness becomes too coarse, which may cause problems when forming a cured resin layer made of various cured compositions in a subsequent step, but it is too small. In order to reduce the effect of adding particles, the thickness is preferably 5 μm or less, more preferably 0.01 μm or more or 3 μm or less, and more preferably 0.5 μm or more or 2.5 μm or less.
(架橋剤)
 耐薬品性向上又は弾性率向上の観点からは、架橋剤を配合するのが好ましい。ここでいう架橋剤とは、前記の架橋性単量体以外のものを意味する。
 当該架橋剤としては、例えばオキサゾリン化合物、イソシアネート化合物、エポキシ化合物、メラミン化合物、カルボジイミド化合物等を挙げることができる。中でも密着性向上の観点から、オキサゾリン化合物またはイソシアネート化合物の少なくとも1種を使用することがより好ましい。
(Crosslinking agent)
From the viewpoint of improving chemical resistance or elastic modulus, it is preferable to add a cross-linking agent. The cross-linking agent referred to here means a cross-linking agent other than the above-mentioned cross-linking monomer.
Examples of the cross-linking agent include oxazoline compounds, isocyanate compounds, epoxy compounds, melamine compounds, and carbodiimide compounds. Above all, from the viewpoint of improving adhesion, it is more preferable to use at least one of an oxazoline compound or an isocyanate compound.
(オキサゾリン化合物)
 架橋剤に用いる上記オキサゾリン化合物とは、分子内にオキサゾリン基を有する化合物であり、特にオキサゾリン基を含有する重合体が好ましく、付加重合性オキサゾリン基含有モノマー単独もしくは他のモノマーとの重合によって作成することができる。
 当該付加重合性オキサゾリン基含有モノマーとして、例えば2-ビニル-2-オキサゾリン、2-ビニル-4-メチル-2-オキサゾリン、2-ビニル-5-メチル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン、2-イソプロペニル-4-メチル-2-オキサゾリン、2-イソプロペニル-5-エチル-2-オキサゾリン等を挙げることができ、これらの1種または2種以上の混合物を使用することができる。中でも2-イソプロペニル-2-オキサゾリンが工業的にも入手しやすく好適である。
上記の他のモノマーは、付加重合性オキサゾリン基含有モノマーと共重合可能なモノマーであれば制限なく、例えばアルキル(メタ)アクリレート(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基)等の(メタ)アクリル酸エステル類;アクリル酸、メタクリル酸、イタコン酸、マレイン酸、フマール酸、クロトン酸、スチレンスルホン酸及びその塩(ナトリウム塩、カリウム塩、アンモニウム塩、第三級アミン塩等)等の不飽和カルボン酸類;アクリロニトリル、メタクリロニトリル等の不飽和ニトリル類;(メタ)アクリルアミド、N-アルキル(メタ)アクリルアミド、N,N-ジアルキル(メタ)アクリルアミド、(アルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、2-エチルヘキシル基、シクロヘキシル基等)等の不飽和アミド類;酢酸ビニル、プロピオン酸ビニル等のビニルエステル類;メチルビニルエーテル、エチルビニルエーテル等のビニルエーテル類;エチレン、プロピレン等のα-オレフィン類;塩化ビニル、塩化ビニリデン等の含ハロゲンα,β-不飽和モノマー類;スチレン、α-メチルスチレン等のα,β-不飽和芳香族モノマー等を挙げることができ、これらの1種または2種以上のモノマーを使用することができる。
(Oxazoline compound)
The above-mentioned oxazoline compound used as a cross-linking agent is a compound having an oxazoline group in the molecule, and a polymer containing an oxazoline group is particularly preferable, and it is prepared by polymerization of an addition polymerizable oxazoline group-containing monomer alone or with another monomer. be able to.
Examples of the addition polymerizable oxazoline group-containing monomer include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, and 2-isopropenyl-2-. Examples thereof include oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, and one or a mixture of two or more thereof can be used. .. Among them, 2-isopropenyl-2-oxazoline is suitable because it is easily available industrially.
The other monomer is not limited as long as it is a monomer copolymerizable with an addition-polymerizable oxazoline group-containing monomer, and is, for example, an alkyl (meth) acrylate (the alkyl group is a methyl group, an ethyl group, an n-propyl group, or an isopropyl). (Meta) acrylic acid esters such as group, n-butyl group, isobutyl group, t-butyl group, 2-ethylhexyl group, cyclohexyl group); acrylic acid, methacrylic acid, itaconic acid, maleic acid, fumaric acid, crotonic acid , Unsaturated carboxylic acids such as styrene sulfonic acid and salts thereof (sodium salt, potassium salt, ammonium salt, tertiary amine salt, etc.); unsaturated nitriles such as acrylonitrile and methacrylonitrile; (meth) acrylamide, N- Alkyl (meth) acrylamide, N, N-dialkyl (meth) acrylamide, (alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, 2 -Unsaturated amides such as ethylhexyl group, cyclohexyl group, etc .; Vinyl esters such as vinyl acetate and vinyl propionate; Vinyl ethers such as methyl vinyl ether and ethyl vinyl ether; α-olefins such as ethylene and propylene; Vinyl chloride, Halogen-containing α, β-unsaturated monomers such as vinylidene chloride; α, β-unsaturated aromatic monomers such as styrene and α-methylstyrene can be mentioned, and one or more of these monomers can be used. Can be used.
 密着性向上の観点から、オキサゾリン化合物のオキサゾリン基量は、0.5~10mmol/gであるのが好ましく、中でも1mmol/g以上或いは9mmol/g以下、その中でも3mmol/g以上或いは8mmol/g以下、その中でも4mmol/g以上或いは6mmol/g以下であるのがさらに好ましい。 From the viewpoint of improving adhesion, the amount of the oxazoline group of the oxazoline compound is preferably 0.5 to 10 mmol / g, particularly 1 mmol / g or more or 9 mmol / g or less, and 3 mmol / g or more or 8 mmol / g or less among them. Among them, it is more preferably 4 mmol / g or more or 6 mmol / g or less.
(イソシアネート化合物)
 架橋剤に用いる上記イソシアネート化合物とは、例えばイソシアネート、あるいはブロックイソシアネートに代表されるイソシアネート誘導体構造を有する化合物のことである。
 当該イソシアネートとしては、例えばトリレンジイソシアネート、キシリレンジイソシアネート、メチレンジフェニルジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート等の芳香族イソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族イソシアネート、メチレンジイソシアネート、プロピレンジイソシアネート、リジンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネート等の脂肪族イソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、イソプロピリデンジシクロヘキシルジイソシアネート等の脂環族イソシアネート等を例示することができる。また、これらイソシアネートのビュレット化物、イソシアヌレート化物、ウレトジオン化物、カルボジイミド変性体等の重合体や誘導体も挙げられる。これらは単独で用いても、複数種併用してもよい。上記イソシアネートの中でも、紫外線照射による黄変対策として、脂肪族イソシアネートまたは脂環族イソシアネートが好適である。
(Isocyanate compound)
The isocyanate compound used as a cross-linking agent is, for example, an isocyanate or a compound having an isocyanate derivative structure typified by blocked isocyanate.
The isocyanate has, for example, aromatic isocyanates such as tolylene diisocyanate, xylylene diisocyanate, methylene diphenyldiisocyanate, phenylenedi isocyanate and naphthalenedi isocyanate, and aromatic rings such as α, α, α', α'-tetramethylxylylene diisocyanate. Aliphatic isocyanates such as aliphatic isocyanates, methylene diisocyanates, propylene diisocyanates, lysine diisocyanates, trimethylhexamethylene diisocyanates, hexamethylene diisocyanates, cyclohexane diisocyanates, methylcyclohexane diisocyanates, isophorone diisocyanates, methylenebis (4-cyclohexylisocyanates), isopropyridene dicyclohexyldiisocyanates, etc. The alicyclic isocyanate of the above can be exemplified. In addition, polymers and derivatives such as burettes, isocyanurates, uretdiones, and carbodiimides of these isocyanates can also be mentioned. These may be used alone or in combination of two or more. Among the above isocyanates, aliphatic isocyanates or alicyclic isocyanates are preferable as measures against yellowing due to ultraviolet irradiation.
 ブロックイソシアネートの状態で使用する場合、そのブロック剤としては、例えば重亜硫酸塩類、フェノール、クレゾール、エチルフェノールなどのフェノール系化合物、プロピレングリコールモノメチルエーテル、エチレングリコール、ベンジルアルコール、メタノール、エタノールなどのアルコール系化合物、イソブタノイル酢酸メチル、マロン酸ジメチル、マロン酸ジエチル、アセト酢酸メチル、アセト酢酸エチル、アセチルアセトンなどの活性メチレン系化合物、ブチルメルカプタン、ドデシルメルカプタンなどのメルカプタン系化合物、ε‐カプロラクタム、δ‐バレロラクタムなどのラクタム系化合物、ジフェニルアニリン、アニリン、エチレンイミンなどのアミン系化合物、アセトアニリド、酢酸アミドの酸アミド化合物、ホルムアルデヒド、アセトアルドオキシム、アセトンオキシム、メチルエチルケトンオキシム、シクロヘキサノンオキシムなどのオキシム系化合物を挙げることができ、これらは単独でも2種以上の併用であってもよい。 When used in the state of blocked isocyanate, the blocking agent includes, for example, phenolic compounds such as heavy sulfites, phenol, cresol and ethylphenol, and alcoholic compounds such as propylene glycol monomethyl ether, ethylene glycol, benzyl alcohol, methanol and ethanol. Compounds, active methylene compounds such as methyl isobutanoyl acetate, dimethyl malonate, diethyl malonate, methyl acetoacetate, ethyl acetoacetate, acetylacetone, mercaptan compounds such as butyl mercaptan and dodecyl mercaptan, ε-caprolactam, δ-valerolactam, etc. Lactam compounds, amine compounds such as diphenylaniline, aniline, ethyleneimine, acetoanilide, acid amide compounds of acetate amide, formaldehyde, acetoaldoxime, acetone oxime, methyl ethyl ketone oxime, cyclohexanone oxime and other oxime compounds. These can be used alone or in combination of two or more.
 イソシアネート系化合物は単体で用いてもよいし、各種ポリマーとの混合物や結合物として用いてもよい。イソシアネート系化合物の分散性や架橋性向上の点において、ポリエステル樹脂やウレタン樹脂との混合物や結合物を使用することが好ましい。 The isocyanate compound may be used alone, or may be used as a mixture or a bond with various polymers. From the viewpoint of improving the dispersibility and crosslinkability of the isocyanate compound, it is preferable to use a mixture or a bond with a polyester resin or a urethane resin.
(エポキシ化合物)
 架橋剤に用いる上記エポキシ化合物とは、分子内にエポキシ基を有する化合物であり、例えばエピクロロヒドリンとエチレングリコール、ポリエチレングリコール、グリセリン、ポリグリセリン、ビスフェノールA等の水酸基やアミノ基との縮合物を挙げることができ、ポリエポキシ化合物、ジエポキシ化合物、モノエポキシ化合物、グリシジルアミン化合物等を挙げることができる。
 上記ポリエポキシ化合物としては、例えばソルビトールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリグリシジルトリス(2-ヒドロキシエチル)イソシアネート、グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ジエポキシ化合物としては、例えば、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、レゾルシンジグリシジルエーテル、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、モノエポキシ化合物としては、例えば、アリルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルアミン化合物としてはN,N,N’,N’-テトラグリシジル-m-キシリレンジアミン、1,3-ビス(N,N-ジグリシジルアミノ)シクロヘキサン等を挙げることができる。密着性向上の観点から、ポリエーテル系のエポキシ化合物が好ましい。また、エポキシ基の量としては、2官能より、3官能以上の多官能であるポリエポキシ化合物が好ましい。
(Epoxy compound)
The epoxy compound used as a cross-linking agent is a compound having an epoxy group in the molecule, and is, for example, a condensate of epichlorohydrin and a hydroxyl group or an amino group such as ethylene glycol, polyethylene glycol, glycerin, polyglycerin, or bisphenol A. Examples thereof include polyepoxy compounds, diepoxy compounds, monoepoxy compounds, and glycidylamine compounds.
Examples of the polyepoxy compound include sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, pentaerythritol polyglycidyl ether, diglycerol polyglycidyl ether, triglycidyltris (2-hydroxyethyl) isocyanate, glycerol polyglycidyl ether, and trimethylolpropane. Examples of the polyglycidyl ether and the diepoxy compound include neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, resorcin diglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, and propylene glycol diglycidyl ether. , Polypropylene glycol diglycidyl ether, Polytetramethylene glycol diglycidyl ether, Monoepoxy compounds include, for example, allyl glycidyl ether, 2-ethylhexyl glycidyl ether, phenylglycidyl ether, glycidylamine compounds N, N, N', N ′ -Tetraglycidyl-m-xylylene diamine, 1,3-bis (N, N-diglycidylamino) cyclohexane and the like can be mentioned. From the viewpoint of improving adhesion, a polyether epoxy compound is preferable. Further, as the amount of the epoxy group, a polyepoxy compound having trifunctional or higher functionalities is preferable to bifunctional.
(メラミン化合物)
 架橋剤に用いる上記メラミン化合物とは、化合物中にメラミン骨格を有する化合物のことであり、例えばアルキロール化メラミン誘導体、アルキロール化メラミン誘導体にアルコールを反応させて部分的あるいは完全にエーテル化した化合物、及びこれらの混合物を用いることができる。
 エーテル化に用いるアルコールとしては、メチルアルコール、エチルアルコール、イソプロピルアルコール、n-ブタノール、イソブタノール等が好適に用いられる。また、メラミン化合物としては、単量体、あるいは2量体以上の多量体のいずれであってもよく、あるいはこれらの混合物を用いてもよい。さらに、メラミンの一部に尿素等を共縮合したタイプ、メラミン化合物の反応性向上のために触媒を併用することもできる。
(Melamine compound)
The above-mentioned melamine compound used as a cross-linking agent is a compound having a melamine skeleton in the compound, for example, an alkylolated melamine derivative or a compound obtained by reacting an alkylolated melamine derivative with an alcohol to partially or completely etherify. , And a mixture thereof can be used.
As the alcohol used for etherification, methyl alcohol, ethyl alcohol, isopropyl alcohol, n-butanol, isobutanol and the like are preferably used. Further, the melamine compound may be either a monomer or a multimer of a dimer or more, or a mixture thereof may be used. Further, a type in which urea or the like is copolymerized with a part of melamine, or a catalyst can be used in combination to improve the reactivity of the melamine compound.
 架橋剤の含有量は、良好な塗膜強度が得られる観点から、硬化性単量体100質量部に対して10質量部以上であるのが好ましく、中でも20質量部以上、その中でも25質量部以上であるのがさらに好ましい。他方、膜同士の良好な密着性が得られる観点からは、70質量部以下であるのが好ましく、中でも60質量部以下、その中でも40質量部以下の範囲であるのがさらに好ましい。 The content of the cross-linking agent is preferably 10 parts by mass or more, particularly 20 parts by mass or more, and 25 parts by mass among them, with respect to 100 parts by mass of the curable monomer, from the viewpoint of obtaining good coating film strength. The above is more preferable. On the other hand, from the viewpoint of obtaining good adhesion between the films, it is preferably 70 parts by mass or less, more preferably 60 parts by mass or less, and more preferably 40 parts by mass or less.
(カルボジイミド化合物)
 架橋剤に用いる上記カルボジイミド化合物とは、カルボジイミド構造を有する化合物のことであり、分子内にカルボジイミド構造を1つ以上有する化合物である。より良好な密着性等のために、分子内に2つ以上有するポリカルボジイミド系化合物がより好ましい。
 このカルボジイミド化合物は、従来公知の技術で合成することができ、一般的には、ジイソシアネート化合物の縮合反応が用いられる。当該ジイソシアネート化合物としては、特に限定されるものではなく、芳香族系、脂肪族系いずれも使用することができ、具体的には、トリレンジイソシアネート、キシレンジイソシアネート、ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、ナフタレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、シクロヘキサンジイソシアネート、メチルシクロヘキサンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルジイソシアネート、ジシクロヘキシルメタンジイソシアネートなどを挙げることができる。
(Carbodiimide compound)
The carbodiimide compound used as a cross-linking agent is a compound having a carbodiimide structure, and is a compound having one or more carbodiimide structures in the molecule. A polycarbodiimide-based compound having two or more in the molecule is more preferable for better adhesion and the like.
This carbodiimide compound can be synthesized by a conventionally known technique, and a condensation reaction of a diisocyanate compound is generally used. The diisocyanate compound is not particularly limited, and any aromatic or aliphatic type can be used. Specifically, tolylene diisocyanate, xylene diisocyanate, diphenylmethane diisocyanate, phenylenedi isocyanate, naphthalenedi isocyanate, etc. Examples thereof include hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, cyclohexane diisocyanate, methylcyclohexane diisocyanate, isophorone diisocyanate, dicyclohexyldiisocyanis, and dicyclohexylmethane diisocyanate.
 カルボジイミド化合物に含有されるカルボジイミド基の含有量は、カルボジイミド当量(カルボジイミド基1molを与えるためのカルボジイミド化合物の重さ[g])で、100~1000であるのが好ましく、中でも250以上或いは800以下、その中でも300以上或いは700以下であるのがさらに好ましい。上記範囲で使用することで、塗膜の耐久性が向上する。 The content of the carbodiimide group contained in the carbodiimide compound is a carbodiimide equivalent (weight [g] of the carbodiimide compound for giving 1 mol of the carbodiimide group), preferably 100 to 1000, and more than 250 or 800 or less. Among them, it is more preferably 300 or more or 700 or less. By using in the above range, the durability of the coating film is improved.
(その他の成分)
(ポリオール系化合物)
 ポリオール系化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、ネオペンチルグリコール、1,2-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2,2-ジメチロールヘプタン、トリメチレングリコール、1,4-テトラメチレングリコール、ジプロピレングリコール、1,3-テトラメチレンジオール、2-メチル-1,3-トリメチレンジオール、2,4-ジエチル-1,5-ペンタメチレンジオール、水添ビスフェノールA、ヒドロキシアルキル化ビスフェノールA、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、N,N-ビス-(2-ヒドロキシエチル)ジメチルヒダントイン等の低分子量のジオール;ポリエーテル系ポリオール、ポリエステル系ポリオール、ポリカーボネート系ポリオール、ポリオレフィン系ポリオール、ポリブタジエン系ポリオール、(メタ)アクリル系ポリオール、ポリカプロラクトン系ポリオール、ポリシロキサン系ポリオール、ポリウレタン系ポリオール等の高分子量のポリオールが挙げられる。
(Other ingredients)
(Polyol compound)
Examples of the polyol compound include ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, neopentyl glycol, 1,2-butanediol, 1,3-butanediol, 2,3-butanediol, and 1,4-butane. Diol, 1,5-pentanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,8-octanediol, 1,9-nonanediol, 2,2-dimethylolheptan, tri Methylene glycol, 1,4-tetramethylene glycol, dipropylene glycol, 1,3-tetramethylenediol, 2-methyl-1,3-trimethylenediol, 2,4-diethyl-1,5-pentamethylenediol, water Additive bisphenol A, hydroxyalkylated bisphenol A, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediol, 2,2,4-trimethyl-1,3-pentanediol, N, N-bis- (2-hydroxy) Low molecular weight diols such as ethyl) dimethyl hydantin; polyether polyols, polyester polyols, polycarbonate polyols, polyolefin polyols, polybutadiene polyols, (meth) acrylic polyols, polycaprolactone polyols, polysiloxane polyols, polyurethanes Examples thereof include high molecular weight polyols such as system polyols.
 ポリエーテル系ポリオールとしては、例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリブチレングリコール、ポリヘキサメチレングリコール等のオキシアルキレン構造含有ポリエーテル系ポリオールや、これらポリアルキレングリコールのランダム或いはブロック共重合体が挙げられる。 Examples of the polyether polyol include oxyalkylene structure-containing polyether polyols such as polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polybutylene glycol, and polyhexamethylene glycol, and random or block co-weights of these polyalkylene glycols. Coalescence is mentioned.
 これらの中でも、オキシアルキレン構造含有ポリエーテル系ポリオールが好ましく、アルキレン構造の炭素数としては、好ましくは2~6、特に好ましくは2~4、更に好ましくは4である。 Among these, an oxyalkylene structure-containing polyether polyol is preferable, and the number of carbon atoms in the alkylene structure is preferably 2 to 6, particularly preferably 2 to 4, and even more preferably 4.
 ポリエステル系ポリオールとしては、例えば、多価アルコールと多価カルボン酸との縮合重合物;環状エステル(ラクトン)の開環重合物;多価アルコール、多価カルボン酸及び環状エステルの3種類の成分による反応物などが挙げられる。
 上記多価アルコールとしては、前記の低分子量ジオール等が挙げられる。
 上記多価カルボン酸としては、例えば、マロン酸、マレイン酸、フマル酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジオン酸等の脂肪族ジカルボン酸;1,4-シクロヘキサンジカルボン酸等の脂環式ジカルボン酸;テレフタル酸、イソフタル酸、オルトフタル酸、2,6-ナフタレンジカルボン酸、パラフェニレンジカルボン酸、トリメリット酸等の芳香族ジカルボン酸などが挙げられる。
 上記環状エステルとしては、例えば、プロピオラクトン、β-メチル-δ-バレロラクトン、ε-カプロラクトンなどが挙げられる。
Examples of the polyester-based polyol include a condensation polymer of a polyhydric alcohol and a polyvalent carboxylic acid; a ring-opening polymer of a cyclic ester (lactone); a polyhydric alcohol, a polyvalent carboxylic acid, and a cyclic ester. Examples thereof include reactants.
Examples of the polyhydric alcohol include the low molecular weight diols mentioned above.
Examples of the polyvalent carboxylic acid include aliphatic dicarboxylic acids such as malonic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, and dodecandioic acid; 1,4 An alicyclic dicarboxylic acid such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, orthophthalic acid, 2,6-naphthalenedicarboxylic acid, paraphenylenedicarboxylic acid and trimellitic acid can be mentioned.
Examples of the cyclic ester include propiolactone, β-methyl-δ-valerolactone, and ε-caprolactone.
 ポリカーボネート系ポリオールとしては、例えば、多価アルコールとホスゲンとの反応物;炭酸エステルと多価アルコールとのエステル交換反応物などが挙げられる。
 上記多価アルコールとしては、前記の低分子量ジオール等が挙げられ、上記アルキレンカーボネートとしては、例えば、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、ジイソプロピルカーボネート、ジブチルカーボネート、ジシクロヘキシルカーボネート及びジフェニルカーボネートなどが挙げられる。
 なお、ポリカーボネート系ポリオールは、分子内にカーボネート結合を有し、末端がヒドロキシル基である化合物であればよく、カーボネート結合とともにエステル結合を有していてもよい。
Examples of the polycarbonate-based polyol include a reaction product of a polyhydric alcohol and a phosgene; a transesterification reaction product of a carbonic acid ester and a polyhydric alcohol.
Examples of the polyhydric alcohol include the low molecular weight diol and the like, and examples of the alkylene carbonate include ethylene carbonate, dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, diisopropyl carbonate, dibutyl carbonate, dicyclohexyl carbonate and the like. Examples include diphenyl carbonate.
The polycarbonate-based polyol may be a compound having a carbonate bond in the molecule and having a hydroxyl group at the end, and may have an ester bond together with the carbonate bond.
<硬化樹脂層(A)(B)を形成するための硬化性組成物>
 硬化樹脂層(A)(B)を形成するための硬化性組成物の例として、例えば、水酸基含有(メタ)アクリレート系化合物とイソシアネート化合物との組み合わせ、あるいは水酸基含有(メタ)アクリレート系化合物とイソシアネート化合物とポリオール系化合物との組み合わせにより得られるウレタン(メタ)アクリレート系化合物を挙げることができる。
 また、アクリル酸エステル類とビニル基を有する架橋性単量体との組み合わせ、メタクリル酸エステル類とビニル基を有する架橋性単量体との組み合わせ、アクリル酸エステル類と水酸基含有(メタ)アクリレート系化合物との組み合わせ、メタクリル酸エステル類と水酸基含有(メタ)アクリレート系化合物との組み合わせなどを例示することができる。但し、これらに限定するものではない。
<Curable composition for forming the cured resin layers (A) and (B)>
Examples of the curable composition for forming the cured resin layers (A) and (B) include a combination of a hydroxyl group-containing (meth) acrylate compound and an isocyanate compound, or a hydroxyl group-containing (meth) acrylate compound and an isocyanate. Examples thereof include urethane (meth) acrylate compounds obtained by combining a compound and a polyol compound.
Further, a combination of acrylic acid esters and a crosslinkable monomer having a vinyl group, a combination of methacrylic acid esters and a crosslinkable monomer having a vinyl group, acrylic acid esters and a hydroxyl group-containing (meth) acrylate type. Examples thereof include a combination with a compound, a combination of methacrylic acid esters and a hydroxyl group-containing (meth) acrylate-based compound, and the like. However, it is not limited to these.
 硬化樹脂層(A)(B)を形成するための硬化性組成物は、塗布性を良好とするためにE型粘度計で測定した25℃における粘度が10~60mPa・sであるのが好ましく、中でも30mPa・s以下、その中でも20mPa・s以下、その中でも15mPa・s以下、その中でも12mPa・s以下であるのがさらに好ましい。 The curable composition for forming the cured resin layers (A) and (B) preferably has a viscosity at 25 ° C. of 10 to 60 mPa · s as measured by an E-type viscometer in order to improve coatability. Above all, it is more preferably 30 mPa · s or less, among them 20 mPa · s or less, among them 15 mPa · s or less, and among them 12 mPa · s or less.
<硬化樹脂層(A)の形成方法>
 硬化樹脂層(A)は、例えばリバースグラビアコート、ダイレクトグラビアコート、ロールコート、ダイコート、バーコート、カーテンコート、インクジェット等、従来公知の塗布方式を用いて、硬化性組成物を塗布した後、光照射、例えば紫外線を照射して硬化させて形成するのが好ましい。
<Method of forming the cured resin layer (A)>
The cured resin layer (A) is coated with a curable composition using a conventionally known coating method such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, curtain coating, and inkjet, and then light. It is preferably formed by irradiation, for example, irradiation with ultraviolet rays and curing.
<硬化樹脂層(B)の形成方法>
 硬化樹脂層(B)を設ける方法は、例えばリバースグラビアコート、ダイレクトグラビアコート、ロールコート、ダイコート、バーコート、カーテンコート、インクジェット等、従来公知の塗布方式を用いて、硬化性組成物を塗布した後、光照射、例えば紫外線を照射して硬化させて形成するのが好ましい。
<Method of forming the cured resin layer (B)>
As a method of providing the cured resin layer (B), a curable composition is applied by using a conventionally known coating method such as reverse gravure coating, direct gravure coating, roll coating, die coating, bar coating, curtain coating, and inkjet. After that, it is preferably formed by irradiating with light, for example, ultraviolet rays and curing.
<<本積層フィルムの物性>>
(鉛筆硬度)
 上記構成を備えた本積層フィルムは、フィルムの表面硬度、具体的には、硬化樹脂層(B)表面の鉛筆硬度を2H以上とすることができ、中でも3H以上とすることができる。
<< Physical properties of this laminated film >>
(Pencil hardness)
In the present laminated film having the above structure, the surface hardness of the film, specifically, the pencil hardness on the surface of the cured resin layer (B) can be 2H or more, and in particular, 3H or more.
(繰り返し折り曲げ性)
 上記構成を備えた本積層フィルムは、本基材フィルムの表面に、硬化樹脂層(A)を設け、しかも、硬化樹脂層(A)の弾性率を硬化樹脂層(B)の弾性率よりも低く設定したことにより、実用的な繰り返し特性をさらに高めることができた。
 よって、本積層フィルムは、繰り返し折り曲げ性評価(R=2.5の条件下)において20万回以上折り曲げても、クラックが生じない耐久性を得ることができる。
(Repeat bendability)
The laminated film having the above structure is provided with a cured resin layer (A) on the surface of the base film, and the elasticity of the cured resin layer (A) is higher than that of the cured resin layer (B). By setting it low, it was possible to further enhance the practical repeatability.
Therefore, this laminated film can obtain durability without cracks even if it is bent 200,000 times or more in the repeated bendability evaluation (under the condition of R = 2.5).
(フィルムヘーズ)
 本積層フィルムは、光学用途への適用を想定する場合、フィルムヘーズが5.0%以下であるのが好ましく、中でも4.0%以下、その中でも特に3.0%以下であるのがさらに好ましい。
(Film haze)
When the present laminated film is assumed to be applied to optical applications, the film haze is preferably 5.0% or less, more preferably 4.0% or less, and particularly preferably 3.0% or less. ..
<<本積層フィルムの特徴及び用途>>
 実施例及びこれまで発明者が行ってきた試験結果から、本積層フィルムを用いれば、高度なレベルで表面硬度(鉛筆硬度評価で例えば2H以上)と繰り返し折り曲げ性(R=2.5の条件下、20万回屈曲できること)との両立が可能であることが分かった。
 一層目にあたる硬化樹脂層(A)と二層目の硬化樹脂層(B)の厚さを調整することにより、本積層フィルム屈曲時に加わる、硬化樹脂層(B)内への応力伝搬を低減することが可能になると推察される。そのため、従来法(単層構成による全面塗布処方)では、その使用が困難とされていたアクリル単量体から構成される樹脂成分も使用可能となり、積層フィルム設計時の自由度が増す利点を有する。さらに、硬化樹脂層(A)と硬化樹脂層(B)との二層構成とすることで、厚み方向への応力分散も期待できるため、さらなる屈曲耐久性の向上に寄与できることが推察される。
<< Features and applications of this laminated film >>
From the examples and the test results conducted by the inventor so far, if this laminated film is used, the surface hardness (for example, 2H or more in the pencil hardness evaluation) and the repetitive bendability (R = 2.5 condition) are used at a high level. , 200,000 times bending) was found to be compatible.
By adjusting the thickness of the cured resin layer (A) corresponding to the first layer and the cured resin layer (B) of the second layer, the stress propagation into the cured resin layer (B) applied when the laminated film is bent is reduced. It is speculated that it will be possible. Therefore, in the conventional method (whole coating formulation with a single layer structure), a resin component composed of an acrylic monomer, which has been considered difficult to use, can also be used, which has an advantage of increasing the degree of freedom when designing a laminated film. .. Furthermore, it is presumed that the two-layer structure of the cured resin layer (A) and the cured resin layer (B) can be expected to disperse stress in the thickness direction, which can contribute to further improvement of bending durability.
 また、硬化樹脂層(A)の弾性率を、硬化樹脂層(B)の弾性率よりも低く設定することで、高度なレベルで表面硬度(鉛筆硬度評価で例えば2H以上)と繰り返し折り曲げ性(R=2.5の条件下、20万回屈曲できること)との両立が可能であることが分かった。これに対し、単純に前記のような二層構成とする(比較例3~比較例5)だけでは、所望するハードコート性と繰り返し折り曲げ性とを両立させるのが困難であることも分かった。 Further, by setting the elastic modulus of the cured resin layer (A) to be lower than the elastic modulus of the cured resin layer (B), the surface hardness (for example, 2H or more in the pencil hardness evaluation) and the repetitive bending property (for example, 2H or more in the pencil hardness evaluation) are set at a high level. It was found that it is possible to achieve compatibility with the fact that it can be bent 200,000 times under the condition of R = 2.5). On the other hand, it was also found that it is difficult to achieve both the desired hard coat property and the repetitive bendability by simply adopting the above-mentioned two-layer structure (Comparative Examples 3 to 5).
 また、上記のような硬化樹脂層(A)及び硬化樹脂層(B)からなる二層構成とすれば、使用する基材フィルムの引張弾性率を極端に大きくする必要がないことが分かった。
 従来、表面硬度の高い表面層を有する、積層フィルムにおいて、目標とする表面硬度を所望するレベル(例えば2H以上など)に設計する際、必要に応じて、使用している基材フィルムを構成する原料の構造設計から見直して、引張弾性率をさらに大きくしなければならなかった。
 これに対し、上記のような硬化樹脂層(A)と硬化樹脂層(B)との二層構成を用いれば、市場に流通している汎用の基材フィルムを適宜選択することも可能であり、基材フィルム選択の面で自由度が増す利点を有する。
Further, it was found that it is not necessary to extremely increase the tensile elastic modulus of the base film to be used if the two-layer structure including the cured resin layer (A) and the cured resin layer (B) as described above is used.
Conventionally, in a laminated film having a surface layer having a high surface hardness, when designing a target surface hardness to a desired level (for example, 2H or more), the base film used is constructed as necessary. It was necessary to review the structural design of the raw material and further increase the tensile elastic modulus.
On the other hand, by using the two-layer structure of the cured resin layer (A) and the cured resin layer (B) as described above, it is possible to appropriately select a general-purpose base film on the market. It has the advantage of increasing the degree of freedom in terms of selecting the base film.
 本積層フィルムは、優れた表面硬度と、実用的な繰り返し折り曲げ性を備えており、さらには、透明性を得ることもできるから、表面保護用、ディスプレイ用、その中でも特に前面板用などの用途に用いることができる。例えば表面保護フィルム、中でもディスプレイ用の表面保護フィルム、その中でも、フレキシブルディスプレイ用の表面保護フィルムとして好適に用いることができる。但し、本積層フィルムの用途をこれらの用途に限定するものではない。 This laminated film has excellent surface hardness, practical repetitive bendability, and can also obtain transparency, so it is used for surface protection, displays, and especially for front panels. Can be used for. For example, it can be suitably used as a surface protective film, particularly a surface protective film for a display, and among them, a surface protective film for a flexible display. However, the use of this laminated film is not limited to these uses.
<<語句の説明>>
 本発明においては、「フィルム」と称する場合でも「シート」を含むものとし、「シート」と称する場合でも「フィルム」を含むものとする。
<< Explanation of words >>
In the present invention, the term "film" shall include the "sheet", and the term "sheet" shall include the "film".
 本発明において、「X~Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含するものである。
 また、「X以上」(Xは任意の数字)と記載した場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と記載した場合、特にことわらない限り「好ましくはYより小さい」の意も包含するものである。
In the present invention, when "X to Y" (X, Y are arbitrary numbers) is described, it means "X or more and Y or less" and "preferably larger than X" or "preferably Y", unless otherwise specified. It also includes the meaning of "smaller".
In addition, when "X or more" (X is an arbitrary number) is described, it includes the meaning of "preferably larger than X" and is described as "Y or less" (Y is an arbitrary number) unless otherwise specified. In this case, unless otherwise specified, it also includes the meaning of "preferably smaller than Y".
 以下、実施例により本発明を具体的に説明する。但し、本発明は、以下の実施例により何ら限定されるものではない。
 本発明で用いた測定法及び評価方法は次のとおりである。
Hereinafter, the present invention will be specifically described with reference to Examples. However, the present invention is not limited to the following examples.
The measurement method and evaluation method used in the present invention are as follows.
(1)硬化樹脂層の膜厚測定方法
 各積層フィルムを、ガラス製スライドガラス上に東亜合成(株)製「アロンアルファシリーズ」を用いて、接着し、SAICS(サイカス)用サンプルとした。得られたSAICS用サンプルを、サイカス(ダイプラ・ウィンテス株式会社製 DN-01型)にセットして、あらかじめダイヤ刃先で、300μm幅、深さ1μmの切れ込みを入れた。切れ込みには、V角寸法80°、スクイ角5°、ニゲ角5°の単結晶ダイヤモンド刃を用いて行った。測定は前記あらかじめ300μm幅の切れ込みを入れたサンプルに、幅300μmのボラゾン切刃をセットして、任意の深さ、水平速度1μm/s、垂直速度0.5μm/sで、各硬化樹脂層の膜厚を測定した。測定には、刃幅寸法0.3mm、スクイ角20°、ニゲ角10°の窒化ホウ素製刃を使用した。垂直変位位置および切削力から材料強度を測定し各層の厚みを確認した。
(1) Method for measuring film thickness of cured resin layer Each laminated film was adhered onto a glass slide glass using "Aron Alpha Series" manufactured by Toagosei Co., Ltd. to prepare a sample for SAICS (Psycus). The obtained SAICS sample was set in Cycus (DN-01 type manufactured by Daipla Wintes Co., Ltd.), and a notch with a width of 300 μm and a depth of 1 μm was made in advance with a diamond cutting edge. The cut was made using a single crystal diamond blade having a V angle of 80 °, a squeeze angle of 5 °, and a niger angle of 5 °. For the measurement, a borazon cutting edge having a width of 300 μm is set in the sample in which a notch having a width of 300 μm is made in advance, and each cured resin layer is measured at an arbitrary depth, a horizontal speed of 1 μm / s, and a vertical speed of 0.5 μm / s. The film thickness was measured. For the measurement, a boron nitride blade having a blade width dimension of 0.3 mm, a squeeze angle of 20 °, and a niger angle of 10 ° was used. The material strength was measured from the vertical displacement position and the cutting force, and the thickness of each layer was confirmed.
(2)フィルムヘーズ(透明性)
 JIS K 7136に準拠し、村上色彩技術研究所製ヘーズメーターHM-150を使用して、各積層フィルムのフィルムヘーズを測定した。
 (判定基準)
 A(good):5%以下
 B(poor):5%より高い
(2) Film haze (transparency)
The film haze of each laminated film was measured using a haze meter HM-150 manufactured by Murakami Color Technology Research Institute in accordance with JIS K 7136.
(Criteria)
A (good): 5% or less B (poor): higher than 5%
(3)鉛筆硬度(ハードコート性)
 JIS K 5600-5-4に準拠し、750g荷重条件で、鉛筆硬度試験機(安田精機社製)にて、鉛筆硬度の評価をした。その結果をもとに下記判定基準により判定した。
 (判定基準)
 A(good):鉛筆硬度が3H以上。
 B(little good):鉛筆硬度が2H以上3H未満。
 C(poor):鉛筆硬度が2H未満。
(3) Pencil hardness (hard coat property)
The pencil hardness was evaluated with a pencil hardness tester (manufactured by Yasuda Seiki Co., Ltd.) under a load condition of 750 g in accordance with JIS K 5600-5-4. Based on the result, it was judged according to the following criteria.
(Criteria)
A (good): Pencil hardness is 3H or more.
B (little good): Pencil hardness is 2H or more and less than 3H.
C (poor): Pencil hardness is less than 2H.
(4)繰り返し折り曲げ性
 折り曲げ試験機(ユアサシステム機器(株)社製、DLDMLH-FS)を用いて、積層フィルムの硬化樹脂層側が外側表面となるように試験を行い、該外側表面における硬化樹脂層のクラック発生の有無を目視確認した。
そして、クラックが発生しない最小の半径(R)と共に繰り返し折り曲げ回数を測定し、その結果をもとに下記判定基準により判定した。
 (判定基準)
  A(good):R=2.5以下で且つ繰り返し折り曲げ回数が20万回可能。
  B(little good):R=2.5を超えるか、または繰り返し折り曲げ回数が1万回以上20万回未満
  C(poor):R=2.5を超えるか、または繰り返し折り曲げ回数が1万回未満。
(4) Repeated foldability A bending tester (DLDMLLH-FS, manufactured by Yuasa System Co., Ltd.) was used to perform a test so that the cured resin layer side of the laminated film was the outer surface, and the cured resin on the outer surface. The presence or absence of cracks in the layer was visually confirmed.
Then, the number of repeated bends was measured together with the minimum radius (R) at which cracks did not occur, and the determination was made according to the following criteria based on the result.
(Criteria)
A (good): R = 2.5 or less and can be repeatedly bent 200,000 times.
B (little good): R = 2.5 or more, or the number of repeated bends is 10,000 or more and less than 200,000 C (poor): R = 2.5 or more, or the number of repeated bends is 10,000 times Less than.
(5)折り曲げ方向(In/Out)指定による評価
 折り曲げ試験機(ユアサシステム機器(株)社製、DLDMLH-FS)を用いて、積層フィルムの硬化樹脂層側が内側表面(In)又は外側表面(Out)となるように試験を行い、内側表面(In)又は外側表面(Out)における硬化樹脂層のクラック発生の有無を目視確認した。
 そして、クラックが発生しない最小の半径(R)を測定し、その結果をもとに下記判定基準により判定した。
 (判定基準)
  A(good):Out/In共にR=1.5以上2.0未満
  B(little good):OutがR=2.0以上、R2.5未満
  C(poor):OutがR=2.5以上
(5) Evaluation by specifying the bending direction (In / Out) Using a bending tester (DLDMLLH-FS manufactured by Yuasa System Co., Ltd.), the cured resin layer side of the laminated film is the inner surface (In) or the outer surface (In). The test was carried out so as to be Out), and the presence or absence of cracks in the cured resin layer on the inner surface (In) or the outer surface (Out) was visually confirmed.
Then, the minimum radius (R) at which cracks do not occur was measured, and based on the result, the determination was made according to the following criteria.
(Criteria)
A (good): R = 1.5 or more and less than 2.0 for both Out / In B (little good): Out is R = 2.0 or more and less than R2.5 C (poor): Out is R = 2.5 that's all
(6)硬化樹脂層(A)及び硬化樹脂層(B)の弾性率
 ダイナミック超微小硬度計(DUH-W201、島津製作所社製)を用いて、JIS Z 2255に準じて弾性率(MPa)を求めた。
 この際、サンプル温度は25℃、試験力4mN、負荷速度0.7mN/S、保持時間5秒とした。
(6) Elastic modulus of the cured resin layer (A) and the cured resin layer (B) Using a dynamic ultra-micro hardness tester (DUH-W201, manufactured by Shimadzu Corporation), the elastic modulus (MPa) according to JIS Z 2255. Asked.
At this time, the sample temperature was 25 ° C., the test force was 4 mN, the load speed was 0.7 mN / S, and the holding time was 5 seconds.
(7)硬化樹脂層(A)及び硬化樹脂層(B)の屈折率
 アッベ測定により、各層の屈折率を求めた。その結果をもとに下記判定基準により判定した。
 (判定基準)
 A(good):硬化樹脂層(A)と硬化樹脂層(B)との屈折率差が0.15以下。
 B(poor):硬化樹脂層(A)と硬化樹脂層(B)との屈折率差が0.15を超えた。
(7) Refractive index of the cured resin layer (A) and the cured resin layer (B) The refractive index of each layer was determined by Abbe measurement. Based on the result, it was judged according to the following criteria.
(Criteria)
A (good): The difference in refractive index between the cured resin layer (A) and the cured resin layer (B) is 0.15 or less.
B (poor): The difference in refractive index between the cured resin layer (A) and the cured resin layer (B) exceeded 0.15.
(8)硬化樹脂層(A)及び硬化樹脂層(B)の密着性
 JIS K 5600-5-6に準拠し、クロスカット法(10×10の100マス)により、硬化樹脂層(A)と硬化樹脂層(B)との密着性の評価をした。その結果をもとに下記判定基準により判定した。
 (判定基準)
 A(good):全面密着性が良好(密着している面積:100%)
 B(little good):部分的にはがれる。
         (密着している面積:50%以上100%未満)
 C(poor):部分的にはがれる、あるいは全面剥離が発生する。
      (密着している面積:50%未満)
(8) Adhesion between the cured resin layer (A) and the cured resin layer (B) In accordance with JIS K 5600-5-6, the cured resin layer (A) and the cured resin layer (A) are subjected to the cross-cut method (10 x 10 100 squares). The adhesion with the cured resin layer (B) was evaluated. Based on the result, it was judged according to the following criteria.
(Criteria)
A (good): Good adhesion on the entire surface (area of adhesion: 100%)
B (little good): Partially peeled off.
(Area in close contact: 50% or more and less than 100%)
C (poor): Partial peeling or total peeling occurs.
(Area in close contact: less than 50%)
(9)総合評価
 実施例及び比較例で得られた、各積層フィルムについて、下記判定基準により、判定を行った。
(判定基準)
 A(good):透明性、ハードコート性、繰り返し折り曲げ性、折り曲げ方向性、硬化樹脂層(A)と硬化樹脂層(B)との屈折率差、硬化樹脂層(A)及び硬化樹脂層(B)の密着性の各項目について、すべてがAである。
 B(little good):透明性、ハードコート性、繰り返し折り曲げ性、折り曲げ方向性、硬化樹脂層(A)と硬化樹脂層(B)との屈折率差、硬化樹脂層(A)及び硬化樹脂層(B)の密着性の各項目について、少なくとも一つがBであり、残りがAである。
 C(poor):透明性、ハードコート性、繰り返し折り曲げ性、折り曲げ方向性、硬化樹脂層(A)と硬化樹脂層(B)との屈折率差、硬化樹脂層(A)及び硬化樹脂層(B)の密着性の各項目について、少なくともハードコート性、繰り返し折り曲げ性及び折り曲げ方向性の何れか一つがCであり、残りがAまたはBである。
(9) Comprehensive evaluation Each laminated film obtained in Examples and Comparative Examples was judged according to the following judgment criteria.
(Criteria)
A (good): Transparency, hard coat property, repetitive bendability, bend direction, refractive index difference between the cured resin layer (A) and the cured resin layer (B), the cured resin layer (A) and the cured resin layer ( For each item of adhesion in B), all are A.
B (little good): transparency, hard coat property, repetitive bendability, bending direction, refractive index difference between the cured resin layer (A) and the cured resin layer (B), the cured resin layer (A) and the cured resin layer. For each item of adhesion in (B), at least one is B and the rest is A.
C (poor): Transparency, hard coat property, repetitive bendability, bend direction, refractive index difference between the cured resin layer (A) and the cured resin layer (B), the cured resin layer (A) and the cured resin layer ( For each item of the adhesion of B), at least one of the hard coat property, the repeat bendability and the bend directionability is C, and the rest is A or B.
 実施例及び比較例において使用した各種材料は、以下のようにして準備したものである。 The various materials used in the examples and comparative examples were prepared as follows.
<基材フィルムF1>
 三菱ケミカル社製:ポリエチレンテレフタレート2軸延伸フィルム(製品名「ダイアホイルT612タイプ」)、厚み:50μm、引張弾性率(JIS K 7161)4.3GPa。
<Base film F1>
Mitsubishi Chemical Corporation: Polyethylene terephthalate biaxially stretched film (product name "Diafoil T612 type"), thickness: 50 μm, tensile modulus (JIS K 7161) 4.3 GPa.
<基材フィルムF2>
 帝人製:ポリエチレンナフタレート2軸延伸フィルム(グレード名「テオネックスW51」)、厚み:50μm、引張弾性率(JIS K 7161)6.4GPa。
<Base film F2>
Made by Teijin: Polyethylene naphthalate biaxially stretched film (grade name "Theonex W51"), thickness: 50 μm, tensile modulus (JIS K 7161) 6.4 GPa.
<基材フィルムF3>
 コーロン社製:ポリイミドフィルム(製品名「C50」)、厚み:50μm、引張弾性率(JIS K 7161)6.9GPa。
<Base film F3>
Co., Ltd .: Polyimide film (product name "C50"), thickness: 50 μm, tensile elastic modulus (JIS K 7161) 6.9 GPa.
<アクリレート(A)>
 撹拌機、還流冷却管及び温度計を取り付けた反応器に、グリシジルメタクリレート(三菱ケミカル社製「アクリエステルG」)98質量部、メチルメタクリレート(三菱ケミカル社製「アクリエステルM」)1質量部、エチルアクリレート(三菱ケミカル社製)1質量部、メルカプトプロピルトリメトキシシラン(信越化学工業社製「KBM803」)1.9質量部、プロピレングリコールモノメチルエーテル(PGM)157.3質量部を仕込み、撹拌開始後に系内を窒素置換し、55℃に昇温した。ここへ、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(富士フィルム和光純薬工業社製「V-65」)1質量部を添加した後、系内を65℃まで昇温し、3時間撹拌した後、さらに、V-65を0.5質量部添加して65℃で3時間撹拌した。系内を100℃まで昇温し、30分間撹拌した後、p-メトキシフェノール(富士フィルム和光純薬工業社製)0.45質量部、PGM138.1質量部を加え、再度系内を100℃まで昇温した。次に、トリフェニルホスフィン(富士フィルム和光純薬工業社製)3.1質量部を添加した後、アクリル酸(三菱ケミカル社製)50.7質量部を加え、110℃まで昇温し6時間撹拌し、側鎖に(メタ)アクリロイル基を有するアクリレート(A)の溶液を得た。なお、反応液の組成はX/PGM=30/70(質量比)であった。
<Acrylate (A)>
98 parts by mass of glycidyl methacrylate ("Acryester G" manufactured by Mitsubishi Chemical Co., Ltd.) and 1 part by mass of methyl methacrylate ("Acryester M" manufactured by Mitsubishi Chemical Co., Ltd.) in a reactor equipped with a stirrer, a reflux cooling tube and a thermometer. Add 1 part by mass of ethyl acrylate (manufactured by Mitsubishi Chemical Co., Ltd.), 1.9 parts by mass of mercaptopropyltrimethoxysilane ("KBM803" manufactured by Shinetsu Chemical Industry Co., Ltd.), and 157.3 parts by mass of propylene glycol monomethyl ether (PGM), and start stirring. Later, the inside of the system was replaced with nitrogen, and the temperature was raised to 55 ° C. After adding 1 part by mass of 2,2'-azobis (2,4-dimethylvaleronitrile) ("V-65" manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), the temperature inside the system was raised to 65 ° C. After stirring for 3 hours, 0.5 parts by mass of V-65 was further added and the mixture was stirred at 65 ° C. for 3 hours. The temperature inside the system was raised to 100 ° C., and after stirring for 30 minutes, 0.45 parts by mass of p-methoxyphenol (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 138.1 parts by mass of PGM were added, and the temperature inside the system was again 100 ° C. The temperature was raised to. Next, after adding 3.1 parts by mass of triphenylphosphine (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.), 50.7 parts by mass of acrylic acid (manufactured by Mitsubishi Chemical Industries, Ltd.) was added, and the temperature was raised to 110 ° C. for 6 hours. Stirring gave a solution of acrylate (A) having a (meth) acryloyl group in the side chain. The composition of the reaction solution was X / PGM = 30/70 (mass ratio).
[実施例1]
 上記基材フィルムF2上に、下記のように調製した硬化性組成物aを、バーコーターで塗布厚さ(乾燥後)が2.0μmになるように、25℃で塗布し、90℃で1min加熱するようにして乾燥させた。
 次に、硬化樹脂層(A)を被覆するように、下記のように調製した硬化性組成物bを、バーコーターで塗布厚さ(乾燥後)が3.0μmになるように塗布し、90℃で1min加熱するようにして乾燥させた後、積算光量で400mJ/cmの紫外線照射を施して硬化樹脂層(A)(B)を硬化させ、基材フィルムF2/硬化樹脂層(A)/硬化樹脂層(B)の積層構成からなる積層フィルムを得た。
[Example 1]
The curable composition a prepared as described below is applied onto the base film F2 with a bar coater at 25 ° C. so that the coating thickness (after drying) is 2.0 μm, and 1 min at 90 ° C. It was dried by heating.
Next, the curable composition b prepared as described below was applied with a bar coater so as to coat the cured resin layer (A) so that the coating thickness (after drying) was 3.0 μm, and 90 After drying by heating at ° C. for 1 min, the cured resin layers (A) and (B) are cured by irradiating with ultraviolet rays of 400 mJ / cm 2 in an integrated light amount, and the base film F2 / cured resin layer (A) / A laminated film having a laminated structure of the cured resin layer (B) was obtained.
(硬化性組成物a)
 100質量部のアクリレート(A)に、5質量部の光重合開始剤を加えて硬化性組成物aを調製した。当該硬化性組成物aの質量平均分子量は15,000であり、硬化樹脂層(A)の屈折率は1.53であった。
(Curable composition a)
A curable composition a was prepared by adding 5 parts by mass of a photopolymerization initiator to 100 parts by mass of the acrylate (A). The mass average molecular weight of the curable composition a was 15,000, and the refractive index of the cured resin layer (A) was 1.53.
(硬化性組成物b)
 100質量部のウレタンアクリレート(三菱ケミカル株式会社製 紫光「UT-5670」)に、シリカ粒子(日産化学株式会社製 MEK-AC-2140Y)67質量部、光重合開始剤5質量部を加えて硬化性組成物bを調製した。当該硬化性組成物bの質量平均分子量は10,500であり、硬化樹脂層(B)の屈折率は1.50であった。
(Curable composition b)
To 100 parts by mass of urethane acrylate (Shikou "UT-5670" manufactured by Mitsubishi Chemical Co., Ltd.), 67 parts by mass of silica particles (MEK-AC-2140Y manufactured by Nissan Chemical Co., Ltd.) and 5 parts by mass of photopolymerization initiator are added and cured. The sex composition b was prepared. The mass average molecular weight of the curable composition b was 10,500, and the refractive index of the cured resin layer (B) was 1.50.
[実施例2]
 実施例1において、硬化樹脂層(A)及び硬化樹脂層(B)の厚みを変更した以外は、実施例1と同様にして製造し、積層フィルムを得た。
[Example 2]
A laminated film was obtained in the same manner as in Example 1 except that the thicknesses of the cured resin layer (A) and the cured resin layer (B) were changed in Example 1.
[実施例3]
 実施例1において、硬化性組成物bを次の硬化性組成物b1に変更した以外は実施例1と同様にして製造し、積層フィルムを得た。
[Example 3]
In Example 1, the curable composition b was changed to the next curable composition b1 and produced in the same manner as in Example 1 to obtain a laminated film.
(硬化性組成物b1)
 100質量部のアクリレート(A)に、アルミナ粒子(CIKナノテック株式会社製 ALTPGDA)67質量部、光重合開始剤5質量部を加えて硬化性組成物b1を調製した。当該硬化性組成物b1の質量平均分子量は15,000であり、硬化樹脂層(B)の屈折率は1.54であった。
(Curable composition b1)
67 parts by mass of alumina particles (ALTPGDA manufactured by CIK Nanotech Co., Ltd.) and 5 parts by mass of a photopolymerization initiator were added to 100 parts by mass of acrylate (A) to prepare a curable composition b1. The mass average molecular weight of the curable composition b1 was 15,000, and the refractive index of the cured resin layer (B) was 1.54.
[実施例4]
 実施例1において、基材フィルムF2を上記基材フィルムF1に変更した以外は実施例1と同様にして製造し、積層フィルムを得た。
[Example 4]
In Example 1, a laminated film was obtained in the same manner as in Example 1 except that the base film F2 was changed to the above base film F1.
[実施例5]
 実施例1において、基材フィルムF2を上記基材フィルムF3に変更した以外は実施例1と同様にして製造し、積層フィルムを得た。
[Example 5]
In Example 1, a laminated film was obtained in the same manner as in Example 1 except that the base film F2 was changed to the base film F3.
[比較例1]
 基材フィルムF2上に、実施例1同様、硬化性組成物aを、バーコーターで塗布厚さ(乾燥後)が5.0μmになるように25℃で塗布し、90℃で1min加熱するようにして乾燥させた後、積算光量で400mJ/cmの紫外線を照射して厚み(乾燥後)5.0μmの硬化樹脂層(A)を形成し、積層フィルムを得た。この際、硬化樹脂層(B)は形成しなかった。
[Comparative Example 1]
Similar to Example 1, the curable composition a is applied onto the base film F2 with a bar coater at 25 ° C. so that the coating thickness (after drying) is 5.0 μm, and heated at 90 ° C. for 1 min. After drying, a cured resin layer (A) having a thickness (after drying) of 5.0 μm was formed by irradiating ultraviolet rays of 400 mJ / cm 2 with an integrated light amount to obtain a laminated film. At this time, the cured resin layer (B) was not formed.
[比較例2]
 基材フィルムF2上に、実施例1同様、硬化性組成物bをバーコーターで塗布厚さ(乾燥後)が均等に5.0μmになるように塗布し、90℃で1min加熱するようにして乾燥させた後、積算光量で400mJ/cmの紫外線を照射して厚み(乾燥後)5.0μmの硬化樹脂層(B)を形成し、積層フィルムを得た。この際、硬化樹脂層(A)は形成しなかった。
[Comparative Example 2]
Similar to Example 1, the curable composition b was applied onto the base film F2 with a bar coater so that the coating thickness (after drying) was evenly 5.0 μm, and heated at 90 ° C. for 1 min. After drying, a cured resin layer (B) having a thickness (after drying) of 5.0 μm was formed by irradiating ultraviolet rays of 400 mJ / cm 2 with an integrated light amount to obtain a laminated film. At this time, the cured resin layer (A) was not formed.
[比較例3]
 実施例1において、硬化性組成物aを次の硬化性組成物a1に変更し、硬化性組成物bを次の硬化性組成物b2に変更した以外は、実施例1と同様にして積層フィルムを得た。
[Comparative Example 3]
Laminated film in the same manner as in Example 1 except that the curable composition a was changed to the next curable composition a1 and the curable composition b was changed to the next curable composition b2 in Example 1. Got
(硬化性組成物a1)
 100質量部のウレタンアクリレート(三菱ケミカル株式会社製紫光「UV-6640B」)に、5質量部の光重合開始剤を加えて硬化性組成物a1を調製した。当該硬化性組成物a1の質量平均分子量は5,000であり、硬化樹脂層(A)の屈折率は1.51であった。
(Curable composition a1)
A curable composition a1 was prepared by adding 5 parts by mass of a photopolymerization initiator to 100 parts by mass of urethane acrylate (Shikou "UV-6640B" manufactured by Mitsubishi Chemical Corporation). The curable composition a1 had a mass average molecular weight of 5,000 and the refractive index of the cured resin layer (A) was 1.51.
(硬化性組成物b2)
 100質量部のウレタンアクリレート(三菱ケミカル株式会社製 紫光「UV-1700B」)に、DPHA80質量部、光重合開始剤5質量部を加えて硬化性組成物b2を調製した。当該硬化性組成物b2の質量平均分子量は2,000であり、硬化樹脂層(B)の屈折率は1.51であった。
 DPHA:東亜合成株式会社製アロニックス(aronix)M-404(ジペンタエリスリトールヘキサアクリレート/ジペンタエリスリトールペンタアクリレート)
(Curable composition b2)
A curable composition b2 was prepared by adding 80 parts by mass of DPHA and 5 parts by mass of a photopolymerization initiator to 100 parts by mass of urethane acrylate (Shikou "UV-1700B" manufactured by Mitsubishi Chemical Corporation). The curable composition b2 had a mass average molecular weight of 2,000, and the refractive index of the cured resin layer (B) was 1.51.
DPHA: Aronix M-404 (dipentaerythritol hexaacrylate / dipentaerythritol pentaacrylate) manufactured by Toagosei Co., Ltd.
[比較例4]
 実施例1において、硬化性組成物a及び硬化性組成物bを塗布する順番を逆にした以外は実施例1と同様にして積層フィルムを得た。
[Comparative Example 4]
A laminated film was obtained in the same manner as in Example 1 except that the order of applying the curable composition a and the curable composition b was reversed in Example 1.
[比較例5]
 実施例1において、硬化性組成物aを次の硬化性組成物a2に変更し、硬化性組成物bを次の硬化性組成物b3に変更した以外は、実施例1と同様にして積層フィルムを得た。
[Comparative Example 5]
Laminated film in the same manner as in Example 1 except that the curable composition a was changed to the next curable composition a2 and the curable composition b was changed to the next curable composition b3 in Example 1. Got
(硬化性組成物a2)
 100質量部の上記DPHAに、6molEO変性DPHA100質量部、シリカ粒子(日産化学株式会社製 MEK-AC-2140Y)200質量部、光重合開始剤5質量部を加えて硬化性組成物a2を調製した。当該硬化性組成物a2の質量平均分子量は790であり、硬化樹脂層(A)の屈折率は1.50であった。
(Curable composition a2)
A curable composition a2 was prepared by adding 100 parts by mass of 6 molEO-modified DPHA, 200 parts by mass of silica particles (MEK-AC-2140Y manufactured by Nissan Chemical Industries, Ltd.), and 5 parts by mass of a photopolymerization initiator to 100 parts by mass of the above DPHA. .. The mass average molecular weight of the curable composition a2 was 790, and the refractive index of the cured resin layer (A) was 1.50.
(硬化性組成物b3)
 100質量部のウレタンアクリレート(三菱ケミカル株式会社製紫光「UV-7650B」)に、ペンタエリスリトールトリアクリレート100質量部、光重合開始剤5質量部を加えて硬化性組成物b3を調製した。当該硬化性組成物b3の質量平均分子量は2,300であり、硬化樹脂層(B)の屈折率は1.51であった。
(Curable composition b3)
A curable composition b3 was prepared by adding 100 parts by mass of pentaerythritol triacrylate and 5 parts by mass of a photopolymerization initiator to 100 parts by mass of urethane acrylate (Shikou "UV-7650B" manufactured by Mitsubishi Chemical Corporation). The curable composition b3 had a mass average molecular weight of 2,300, and the refractive index of the cured resin layer (B) was 1.51.
[比較例6]
 実施例1において、硬化性組成物aを次の硬化性組成物a3に変更し、硬化性組成物bを次の硬化性組成物b4に変更した以外は、実施例1と同様にして積層フィルムを得た。
[Comparative Example 6]
Laminated film in the same manner as in Example 1 except that the curable composition a was changed to the next curable composition a3 and the curable composition b was changed to the next curable composition b4 in Example 1. Got
(硬化性組成物a3)
 100質量部の下記(メタ)アクリル重合体溶液に、下記ポリイソシアネート6質量部と、上記DPHA23質量部とを加えて硬化性組成物a3を調製した。当該硬化性組成物a3の質量平均分子量は15,000であり、硬化樹脂層(A)の屈折率は1.50であった。
(Curable composition a3)
To 100 parts by mass of the following (meth) acrylic polymer solution, 6 parts by mass of the following polyisocyanate and 23 parts by mass of DPHA were added to prepare a curable composition a3. The mass average molecular weight of the curable composition a3 was 15,000, and the refractive index of the cured resin layer (A) was 1.50.
((メタ)アクリル重合体溶液)
 メチルイソブチルケトン283質量部、グリシジルメタアクリレート149質量部、メチルメタアクリレート276質量部、及びt-ブチルパーオキシ-2-エチルヘキサノエート(日本乳化剤株式会社製、商品名:パーブチルO)25質量部を合成して前駆体を得、これにアクリル酸76質量部を加えて合成して、(メタ)アクリル重合体のメチルイソブチルケトン溶液1000質量部(不揮発成分50.0質量%)を得た。
 該(メタ)アクリル重合体の性状値は以下のようであった。
 重量平均分子量(Mw):15,000、
 固形分換算の理論アクリロイル基当量:478g/eq、
 水酸基価:117mgKOH/g。
((Meta) acrylic polymer solution)
283 parts by mass of methylisobutylketone, 149 parts by mass of glycidyl methacrylate, 276 parts by mass of methyl methacrylate, and 25 parts by mass of t-butylperoxy-2-ethylhexanoate (manufactured by Nippon Emulsifier Co., Ltd., trade name: Perbutyl O) Was synthesized to obtain a precursor, and 76 parts by mass of acrylic acid was added thereto for synthesis to obtain 1000 parts by mass (50.0% by mass) of a methylisobutylketone solution of a (meth) acrylic polymer.
The property values of the (meth) acrylic polymer were as follows.
Weight Average Molecular Weight (Mw): 15,000,
Theoretical acryloyl group equivalent in terms of solid content: 478 g / eq,
Hydroxy group value: 117 mgKOH / g.
(ポリイソシアネート)
 DIC株式会社製バーノックDN-950(アダクト(adduct)型ポリイソシアネート)
(Polyisocyanate)
Burnock DN-950 (adduct type polyisocyanate) manufactured by DIC Corporation
(硬化性組成物b4)
 100質量部の下記(メタ)アクリル重合体溶液に、下記ポリイソシアネート6質量部と、上記DPHA8質量部とを加えて硬化性組成物b4を調製した。当該硬化性組成物b4の質量平均分子量は40,000であり、硬化樹脂層(B)の屈折率は1.52であった。
(Curable composition b4)
A curable composition b4 was prepared by adding 6 parts by mass of the following polyisocyanate and 8 parts by mass of the DPHA to 100 parts by mass of the following (meth) acrylic polymer solution. The curable composition b4 had a mass average molecular weight of 40,000, and the refractive index of the cured resin layer (B) was 1.52.
((メタ)アクリル重合体溶液)
 撹拌装置、冷却管、滴下ロートおよび窒素導入管を備えた反応装置に、メチルイソブチルケトン229質量部を仕込み、撹拌しながら系内温度が110℃になるまで昇温し、次いで、グリシジルメタアクリレート309質量部、メチルメタアクリレート34質量部、およびt-ブチルパーオキシ-2-エチルヘキサノエート(日本乳化剤株式会社製、製品名:パーブチルO)10質量部からなる混合液を3時間かけて滴下ロートより滴下した後、110℃で15時間保持した。次いで、90℃まで上記混合液の温度を下降した後、メトキノン0.1質量部、およびアクリル酸157質量部を仕込んだ後、トリフェニルホスフィン3質量部を添加し、100℃まで昇温して8時間保持した後にメチルイソブチルケトンで稀釈させて、(メタ)アクリル重合体(A1)のメチルイソブチルケトン溶液1000質量部(不揮発成分50.0質量%)を得た。
 上記(メタ)アクリル重合体(A)の性状値は以下のようであった。
 重量平均分子量(Mw):40,000、
 固形分換算の理論アクリロイル基当量:230g/eq、
 水酸基価:244mgKOH/g。
((Meta) acrylic polymer solution)
229 parts by mass of methyl isobutyl ketone was charged into a reactor equipped with a stirrer, a cooling tube, a dropping funnel and a nitrogen introduction tube, and the temperature was raised to 110 ° C. with stirring, and then glycidyl methacrylate 309 A mixed solution consisting of 10 parts by mass of mass, 34 parts by mass of methyl methacrylate, and 10 parts by mass of t-butylperoxy-2-ethylhexanoate (manufactured by Nippon Emulsifier Co., Ltd., product name: perbutyl O) was added dropwise over 3 hours. After further dropping, the mixture was kept at 110 ° C. for 15 hours. Then, after lowering the temperature of the mixed solution to 90 ° C., 0.1 part by mass of methquinone and 157 parts by mass of acrylic acid were charged, and then 3 parts by mass of triphenylphosphine was added and the temperature was raised to 100 ° C. After holding for 8 hours, the mixture was diluted with methyl isobutyl ketone to obtain 1000 parts by mass (50.0% by mass) of a methyl isobutyl ketone solution of the (meth) acrylic polymer (A1).
The property values of the (meth) acrylic polymer (A) were as follows.
Weight average molecular weight (Mw): 40,000,
Theoretical acryloyl group equivalent in terms of solid content: 230 g / eq,
Hydroxy group value: 244 mgKOH / g.
(ポリイソシアネート)
 DIC株式会社製バーノック(Barnock)DN-980S(イソシアヌレート型ポリイソシアネート)
(Polyisocyanate)
Barnock DN-980S (isocyanurate type polyisocyanate) manufactured by DIC Corporation
<評価結果>
 上記実施例及び比較例で得られた、各積層フィルムの特性を下記表1に示す。
<Evaluation result>
The characteristics of each laminated film obtained in the above Examples and Comparative Examples are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<考察>
 上記実施例及びこれまで発明者が行ってきた試験結果から、基材フィルムの表面に、硬化樹脂層(A)及び硬化樹脂層(B)が順次積層した構成を備えており、前記弾性率に関して、硬化樹脂層(B)>硬化樹脂層(A)であり、硬化樹脂層(A)の弾性率と硬化樹脂層(B)の弾性率の差((B)-(A))が0(MPa)より大きく、220(MPa)より小さいという特徴を有することにより、高度なレベルで表面硬度(鉛筆硬度評価で例えば2H以上)と、繰り返し折り曲げ性(R=2.5の条件下、20万回屈曲できること)との両立が可能であることが分かった。
 これに対し、比較例3~比較例6のように二層構成とするだけでは、所望するハードコート性と繰り返し折り曲げ性とを両立させるのが困難であることも分かった。
 このような差異が生じる要因は、硬化樹脂層(A)の弾性率と硬化樹脂層(B)の弾性率の差((B)-(A))が0(MPa)より大きく、220(MPa)より小さいことにより、積層フィルム屈曲時に加わる、硬化樹脂層(B)内への応力伝搬を低減することが可能となるほか、厚み方向への応力が分散され、屈曲耐久性の向上に寄与しているものと推察される。
<Discussion>
Based on the above examples and the test results conducted by the inventor so far, the cured resin layer (A) and the cured resin layer (B) are sequentially laminated on the surface of the base film, and the elastic modulus is described. , The cured resin layer (B)> the cured resin layer (A), and the difference between the elastic modulus of the cured resin layer (A) and the elastic modulus of the cured resin layer (B) ((B)-(A)) is 0 ( By having the characteristics of being larger than MPa) and smaller than 220 (MPa), it has a high level of surface hardness (for example, 2H or more in pencil hardness evaluation) and repetitive bendability (under the condition of R = 2.5, 200,000). It was found that it is possible to achieve both the ability to bend and bend.
On the other hand, it was also found that it is difficult to achieve both the desired hard coat property and the repetitive bendability only by forming the two-layer structure as in Comparative Examples 3 to 6.
The reason why such a difference occurs is that the difference ((B)-(A)) between the elastic modulus of the cured resin layer (A) and the elastic modulus of the cured resin layer (B) is larger than 0 (MPa) and 220 (MPa). ), It is possible to reduce the stress propagation into the cured resin layer (B) that is applied when the laminated film is bent, and the stress in the thickness direction is dispersed, which contributes to the improvement of bending durability. It is presumed that it is.
 この際、硬化樹脂層(A)(B)それぞれの厚さ及び組成、例えば粒子含有量を調整することにより、硬化樹脂層(A)(B)それぞれの弾性率を調整すればよいことを確認することができた。そのため、従来法(単層構成による全面塗布処方)では、その使用が困難とされていたアクリル単量体から構成される樹脂成分も使用可能となり、積層フィルム設計時の自由度が増す利点を有する。 At this time, it was confirmed that the elastic modulus of each of the cured resin layers (A) and (B) should be adjusted by adjusting the thickness and composition of each of the cured resin layers (A) and (B), for example, the particle content. We were able to. Therefore, in the conventional method (whole coating formulation with a single layer structure), a resin component composed of an acrylic monomer, which has been considered difficult to use, can also be used, which has an advantage of increasing the degree of freedom when designing a laminated film. ..
 なお、硬化樹脂層(A)の弾性率と硬化樹脂層(B)の弾性率の差((B)-(A))が0(MPa)より大きく、220(MPa)より小さくすれば、使用する基材フィルムの引張弾性率を極端に大きくする必要がないことも分かった。
 従来、表面硬度の高い表面層を有する、積層フィルムにおいて、目標とする表面硬度を所望するレベル(例えば2H以上など)に設計する際、必要に応じて、使用している基材フィルムを構成する原料の構造設計から見直して、引張弾性率をさらに大きくしなければならなかった。
 これに対し、前記硬化樹脂層(A)及び硬化樹脂層(B)の二層構成とすれば、市場に流通している汎用の基材フィルムを適宜選択することも可能であり、基材フィルム選択の面で自由度が増す利点を有する。
If the difference ((B)-(A)) between the elastic modulus of the cured resin layer (A) and the elastic modulus of the cured resin layer (B) is larger than 0 (MPa) and smaller than 220 (MPa), it can be used. It was also found that it is not necessary to make the tensile elastic modulus of the base film to be extremely large.
Conventionally, in a laminated film having a surface layer having a high surface hardness, when designing a target surface hardness to a desired level (for example, 2H or more), the base film used is constructed as necessary. The structural design of the raw material had to be reviewed to further increase the tensile modulus.
On the other hand, if the two-layer structure of the cured resin layer (A) and the cured resin layer (B) is used, it is possible to appropriately select a general-purpose base film on the market, and the base film can be appropriately selected. It has the advantage of increasing the degree of freedom in terms of selection.
 上記実施例では、微小硬度計測定(JIS Z 2255)により測定される硬化樹脂層(A)の弾性率が330MPaの場合について検討している。例えば、粘着剤層など、極端に柔軟な層を除外する観点から、硬化樹脂層(A)の弾性率が10MPa以上であれば、それと同様の効果を得ることができると推察される。 In the above example, the case where the elastic modulus of the cured resin layer (A) measured by the micro-hardness meter measurement (JIS Z 2255) is 330 MPa is examined. For example, from the viewpoint of excluding an extremely flexible layer such as an adhesive layer, it is presumed that the same effect can be obtained if the elastic modulus of the cured resin layer (A) is 10 MPa or more.
 本発明の積層フィルムは高度なレベルにおいて、ハードコート性(鉛筆硬度評価で例えば2H以上)及び繰り返し折り曲げ性(R=2.5の条件下、20万回屈曲できること)良好であり、各種表面保護用に対応可能である。その中でも特にフレキシブル性が必要とされるディスプレイ用部材(表面保護フィルムなど)などの光学用途に好適に利用することができる。
 
 
 

 
The laminated film of the present invention has good hard coatability (for example, 2H or more in pencil hardness evaluation) and repetitive bendability (can be bent 200,000 times under the condition of R = 2.5) at a high level, and various surface protections. It is available for use. Among them, it can be suitably used for optical applications such as display members (surface protective films, etc.) that require particularly flexibility.




Claims (16)

  1.  基材フィルムの表面に、硬化樹脂層(A)及び硬化樹脂層(B)が順次積層した構成を備えており、
     微小硬度計測定(JIS Z 2255)により測定される弾性率に関し、硬化樹脂層(A)の弾性率よりも硬化樹脂層(B)の弾性率の方が大きく、かつ、硬化樹脂層(A)の弾性率と硬化樹脂層(B)の弾性率の差が0(MPa)より大きく、220(MPa)より小さいことを特徴とする、積層フィルム。
    A cured resin layer (A) and a cured resin layer (B) are sequentially laminated on the surface of the base film.
    Regarding the elastic modulus measured by the micro-hardness meter measurement (JIS Z 2255), the elastic modulus of the cured resin layer (B) is larger than the elastic modulus of the cured resin layer (A), and the cured resin layer (A) The laminated film is characterized in that the difference between the elastic modulus of the above and the elastic modulus of the cured resin layer (B) is larger than 0 (MPa) and smaller than 220 (MPa).
  2.  硬化樹脂層(A)の弾性率が10(MPa)以上である請求項1記載の積層フィルム。 The laminated film according to claim 1, wherein the elastic modulus of the cured resin layer (A) is 10 (MPa) or more.
  3.  硬化樹脂層(B)表面の鉛筆硬度が2H以上である、請求項1又は2に記載の積層フィルム。 The laminated film according to claim 1 or 2, wherein the pencil hardness on the surface of the cured resin layer (B) is 2H or more.
  4.  繰り返し折り曲げ性評価(R=2.5の条件下)において、20万回以上折り曲げ可能である、請求項1~3の何れかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 3, which can be bent 200,000 times or more in a repeated foldability evaluation (under the condition of R = 2.5).
  5.  フィルムヘーズが5.0%以下である、請求項1~4の何れかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 4, wherein the film haze is 5.0% or less.
  6.  基材フィルムの引張弾性率(JIS K 7161)が2.0GPa以上である、請求項1~5の何れかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 5, wherein the tensile elastic modulus (JIS K 7161) of the base film is 2.0 GPa or more.
  7.  基材フィルムがポリエステルフィルムである、請求項1~6の何れかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 6, wherein the base film is a polyester film.
  8.  基材フィルムがポリエチレンナフタレート(PEN)フィルムである、請求項1~7の何れかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 7, wherein the base film is a polyethylene naphthalate (PEN) film.
  9.  基材フィルムがポリエチレンテレフタレート(PET)フィルムである、請求項1~7の何れかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 7, wherein the base film is a polyethylene terephthalate (PET) film.
  10.  基材フィルムがポリイミド(PI)フィルムである、請求項1~7の何れかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 7, wherein the base film is a polyimide (PI) film.
  11.  硬化樹脂層(A)と硬化樹脂層(B)の屈折率差が0.15以下である、請求項1~10の何れかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 10, wherein the difference in refractive index between the cured resin layer (A) and the cured resin layer (B) is 0.15 or less.
  12.  硬化樹脂層(A)と硬化樹脂層(B)の合計厚みが6.0μm以下である、請求項1~11の何れかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 11, wherein the total thickness of the cured resin layer (A) and the cured resin layer (B) is 6.0 μm or less.
  13.  表面保護用である請求項1~12の何れかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 12, which is for surface protection.
  14.  ディスプレイ用である請求項1~12の何れかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 12, which is for a display.
  15.  前面板用である、請求項1~12の何れかに記載の積層フィルム。 The laminated film according to any one of claims 1 to 12, which is used for a front plate.
  16.  請求項1~12の何れかに記載の積層フィルムの製造方法であって、
     硬化樹脂層(A)は、硬化性組成物を基材フィルム上に塗布し硬化させて形成することを特徴とし、当該硬化性組成物は、質量平均分子量が1,000~500,000の範囲であることを特徴とする、積層フィルムの製造方法。
    The method for producing a laminated film according to any one of claims 1 to 12.
    The cured resin layer (A) is characterized in that the curable composition is applied onto a base film and cured to form the curable composition, and the curable composition has a mass average molecular weight in the range of 1,000 to 500,000. A method for producing a laminated film, which is characterized by the above.
PCT/JP2020/007376 2019-05-22 2020-02-25 Multilayer film WO2020235164A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217041767A KR20220013391A (en) 2019-05-22 2020-02-25 laminated film
CN202080034261.9A CN113795375B (en) 2019-05-22 2020-02-25 Laminated Film
JP2021520055A JP7302656B2 (en) 2019-05-22 2020-02-25 laminated film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-096205 2019-05-22
JP2019096205 2019-05-22

Publications (1)

Publication Number Publication Date
WO2020235164A1 true WO2020235164A1 (en) 2020-11-26

Family

ID=73458427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007376 WO2020235164A1 (en) 2019-05-22 2020-02-25 Multilayer film

Country Status (4)

Country Link
JP (1) JP7302656B2 (en)
KR (1) KR20220013391A (en)
CN (1) CN113795375B (en)
WO (1) WO2020235164A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115404020A (en) * 2022-10-14 2022-11-29 深圳市高仁电子新材料有限公司 Acrylic optical adhesive film with three-layer structure for fully-laminated and flexible folding screen and preparation method thereof
WO2023085184A1 (en) * 2021-11-11 2023-05-19 味の素株式会社 Multilayer resin sheet

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058350A (en) * 1991-07-05 1993-01-19 Catalysts & Chem Ind Co Ltd Base material with hard coat film
JP2000071392A (en) * 1998-09-01 2000-03-07 Toppan Printing Co Ltd Hard coat film or sheet
JP2013217445A (en) * 2012-04-09 2013-10-24 Denso Corp Refrigerant transportation hose
WO2016163554A1 (en) * 2015-04-10 2016-10-13 富士フイルム株式会社 Transparent film, polarizing plate, and image display device
JP2018095920A (en) * 2016-12-13 2018-06-21 古河電気工業株式会社 Resin-coated metal wire and electric electronic component
JP2019025739A (en) * 2017-07-28 2019-02-21 東レ株式会社 Laminate and resin film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1211559A (en) 1967-01-04 1970-11-11 Data Packaging Corp Tape cartridge
JP4574766B2 (en) 1998-11-17 2010-11-04 大日本印刷株式会社 Hard coat film and antireflection film
JP4160217B2 (en) 1999-10-13 2008-10-01 尾池工業株式会社 Hard coat film
JP4569807B2 (en) * 2004-04-26 2010-10-27 Dic株式会社 How to make a hard coat film
CN108899359A (en) * 2014-07-22 2018-11-27 Flosfia 株式会社 Crystalline semiconductor film and plate body and semiconductor device
KR101874616B1 (en) * 2015-07-22 2018-07-05 스미또모 가가꾸 가부시키가이샤 A resin film, a laminate, an optical member, a gas barrier material, and a touch sensor base material
KR101862251B1 (en) * 2015-08-03 2018-05-29 주식회사 엘지화학 Flexible plastic film
KR101854524B1 (en) * 2015-08-06 2018-05-03 동우 화인켐 주식회사 Hard Coating Film and Flexible Display Having the Same
KR102040299B1 (en) * 2017-02-21 2019-11-04 삼성에스디아이 주식회사 Protective film for window film, optical member comprising the same and display apparatus comprising the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH058350A (en) * 1991-07-05 1993-01-19 Catalysts & Chem Ind Co Ltd Base material with hard coat film
JP2000071392A (en) * 1998-09-01 2000-03-07 Toppan Printing Co Ltd Hard coat film or sheet
JP2013217445A (en) * 2012-04-09 2013-10-24 Denso Corp Refrigerant transportation hose
WO2016163554A1 (en) * 2015-04-10 2016-10-13 富士フイルム株式会社 Transparent film, polarizing plate, and image display device
JP2018095920A (en) * 2016-12-13 2018-06-21 古河電気工業株式会社 Resin-coated metal wire and electric electronic component
JP2019025739A (en) * 2017-07-28 2019-02-21 東レ株式会社 Laminate and resin film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085184A1 (en) * 2021-11-11 2023-05-19 味の素株式会社 Multilayer resin sheet
CN115404020A (en) * 2022-10-14 2022-11-29 深圳市高仁电子新材料有限公司 Acrylic optical adhesive film with three-layer structure for fully-laminated and flexible folding screen and preparation method thereof
CN115404020B (en) * 2022-10-14 2023-06-30 深圳市高仁电子新材料有限公司 Acrylic optical adhesive film with three-layer structure for full-lamination and flexible folding screen and preparation method thereof

Also Published As

Publication number Publication date
CN113795375B (en) 2024-04-09
CN113795375A (en) 2021-12-14
KR20220013391A (en) 2022-02-04
TW202106501A (en) 2021-02-16
JPWO2020235164A1 (en) 2020-11-26
JP7302656B2 (en) 2023-07-04

Similar Documents

Publication Publication Date Title
KR101413900B1 (en) Abrasion-resistant resin laminate, material for front cover of display and image display device
JP5620644B2 (en) Multi-layer extrusion resin plate for touch panel and surface coating plate for touch panel
JPWO2013191254A1 (en) Energy ray curable resin composition, cured product and laminate
JP6508330B2 (en) Laminate
WO2015133517A1 (en) Coating agent, cured film, laminate, molded product
KR102159516B1 (en) Method for producing molded body and molded body
JP7302656B2 (en) laminated film
WO2014142015A1 (en) Layered film and display device
JP6680036B2 (en) Laminate
WO2013140965A1 (en) Multilayer film for supporting optical function member, prism sheet, light source unit and display device
JP2017170671A (en) Laminated film
JP2015136792A (en) Laminate
JP5306635B2 (en) Method for producing hard coat laminate
JP7225767B2 (en) laminated film
TWI840536B (en) Laminated Film
JP2022080795A (en) Laminate film
JP6565573B2 (en) Laminated body and manufacturing method thereof
JP2021123059A (en) Laminate film
WO2024005216A1 (en) Laminated film
JP2024007531A (en) Laminate film
US20230088428A1 (en) Thermoforming laminate and method for molding laminate
JP2023130090A (en) laminated film
JP2023171010A (en) laminated film
JP2023130091A (en) laminated film
JP2021156999A (en) Hiding film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20810720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021520055

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217041767

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20810720

Country of ref document: EP

Kind code of ref document: A1