WO2016158827A1 - Layered body - Google Patents

Layered body Download PDF

Info

Publication number
WO2016158827A1
WO2016158827A1 PCT/JP2016/059841 JP2016059841W WO2016158827A1 WO 2016158827 A1 WO2016158827 A1 WO 2016158827A1 JP 2016059841 W JP2016059841 W JP 2016059841W WO 2016158827 A1 WO2016158827 A1 WO 2016158827A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
front plate
resin
adhesive sheet
monomer
Prior art date
Application number
PCT/JP2016/059841
Other languages
French (fr)
Japanese (ja)
Inventor
大希 野澤
純 松井
谷口 浩一郎
Original Assignee
三菱樹脂株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱樹脂株式会社 filed Critical 三菱樹脂株式会社
Priority to CN201680020492.8A priority Critical patent/CN107531037B/en
Priority to JP2017509955A priority patent/JP6508330B2/en
Publication of WO2016158827A1 publication Critical patent/WO2016158827A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Definitions

  • the present invention relates to a laminate. Specifically, the present invention relates to a laminate that is used as a substrate material or a protective material, and can be suitably used as a cover material for a surface protection panel of an image display device, a mobile phone, a smartphone, a tablet device, a wearable terminal, or the like.
  • glass has been mainly used as a cover material for image display devices.
  • glass is easily broken by an impact and is heavy, substitution with a resin material has been studied.
  • the resin material as such a glass substitute material is mainly required to have impact resistance, surface hardness, and shape stability in a high temperature and high humidity environment.
  • Polycarbonate resin plates have transparency and are excellent in impact resistance and heat resistance, and thus are used for soundproof partitions, carports, signboards, glazing materials, lighting fixtures, and the like.
  • the surface hardness is low, it has a drawback of being easily scratched.
  • Patent Document 1 discloses a resin laminate obtained by subjecting a laminate obtained by coextruding a polycarbonate resin and an acrylic resin to a hard coat treatment.
  • Patent Document 2 discloses a resin laminate in which a methyl methacrylate-styrene copolymer resin (MS resin) is laminated on a polycarbonate resin.
  • MS resin methyl methacrylate-styrene copolymer resin
  • Patent Document 3 discloses a resin laminate in which the glass transition temperature difference and the water absorption difference of each layer in which a polycarbonate resin is laminated are defined.
  • a front plate having a polycarbonate resin layer and a layer made of a thermoplastic resin different from the polycarbonate resin is laminated on a base material via an adhesive sheet, for example, It is used as a surface protection panel and cover material.
  • the front plate having such a structure has a different coefficient of thermal expansion or moisture absorption between a polycarbonate resin and a thermoplastic resin different from the polycarbonate resin, for example, when placed in a high temperature and high humidity environment, one resin There was a problem that it was difficult to maintain the shape stability of the front plate, such as the layer absorbing moisture and changing dimensions.
  • the present invention relates to a laminate comprising a polycarbonate resin layer, a front plate having a thermoplastic resin layer different from the polycarbonate resin, and an adhesive sheet, and has excellent shape stability in a high temperature and high humidity environment.
  • a new laminate will be provided.
  • the present invention is a laminate including a front plate and an adhesive sheet, wherein the front plate includes a B layer mainly composed of a polycarbonate resin and a thermoplastic resin different from the polycarbonate resin as a main component.
  • the total thickness of the A layer is 10 to 250 ⁇ m
  • the ratio of the thickness (A) of the one A layer to the total thickness (T) of the A layer and the B layer is ((A) / (T)) is 0.05 to 0.40, and is determined by the formulas (1) and (2) described below, and the temperature is 85 ° C. and the humidity is 85% RH for 120 hours.
  • Proposed is a laminate in which the internal stress ( ⁇ ) of the front plate and the pressure-sensitive adhesive sheet is 0.47 MPa or less when the laminate is exposed.
  • the laminate proposed by the present invention includes a total thickness of a thermoplastic resin A layer mainly composed of a thermoplastic resin different from a polycarbonate resin in the configuration of the front plate, and A with respect to the total layer thickness of the A layer and the B layer.
  • a thickness ratio ((A) / (T)) for one layer and by defining the internal stress ( ⁇ ) within a predetermined range it has excellent shape stability in a high-temperature and high-humidity environment. Can be demonstrated. Therefore, the laminate proposed by the present invention can be suitably used as various substrate materials, protective materials, and the like, for example, by bonding them to a base material.
  • various substrate materials and protective materials as constituent materials for portable display devices such as mobile phone terminals, smartphones, portable electronic playground equipment, portable information terminals, tablet devices, mobile personal computers, wearable terminals, liquid crystal televisions, liquid crystal monitors
  • stationary display devices such as desktop personal computers, car navigation systems, and automobile meters.
  • the“ main component ”for each layer means a resin component having the highest content (mass%) in the resin composition forming each layer.
  • the total amount thereof corresponds to the content.
  • the“ main component ”of the polymer and its derivative means a monomer having the highest ratio among the monomer units constituting the polymer and its derivative.
  • a laminate according to an example of an embodiment of the present invention (hereinafter referred to as “the present laminate”) is a laminate including a front plate and an adhesive sheet. As described later, in a predetermined exposure test, the laminate and the front plate are adhered.
  • the laminate is characterized in that the internal stress of the sheet is within a predetermined range.
  • the front plate of this laminated body should just be provided with the B layer which has a polycarbonate-type resin as a main component, and the thermoplastic resin A layer which has a thermoplastic resin different from this polycarbonate-type resin as a main component.
  • the thermoplastic resin A layer which has a thermoplastic resin different from this polycarbonate-type resin as a main component.
  • thermoplastic resin A layer which has a thermoplastic resin different from this polycarbonate-type resin as a main component.
  • a front plate having a configuration in which an A layer is formed on one side or both sides of the B layer can be given.
  • the front plate preferably has characteristics such as transparency, rigidity, impact resistance, secondary workability, and high surface hardness.
  • the A layer is a layer mainly composed of a thermoplastic resin different from the polycarbonate resin.
  • “different” means that the types or composition ratios of the monomers constituting the polymer are not the same.
  • thermoplastic resin as the main component of the A layer is not particularly limited as long as it is different from the polycarbonate resin as the main component of the B layer described later.
  • polyethylene terephthalate polyethylene naphthalate, polypropylene terephthalate, polybutylene terephthalate.
  • Polyester resins typified by aromatic polyesters such as poly-1,4-cyclohexylenedimethylene terephthalate, and aliphatic polyesters such as polylactic acid polymers, polyolefin resins such as polyethylene, polypropylene, and cycloolefin resins , Polycarbonate resin, acrylic resin, polystyrene resin, polyamide resin, polyether resin, polyurethane resin, polyphenylene sulfide resin, polyesteramide resin, polyether Steal resin, vinyl chloride resin, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, modified polyphenylene ether resin, polyarylate resin, polysulfone resin, polyetherimide resin, polyamideimide resin , Polyimide resins and copolymers containing these as main components, or mixtures of these resins. These may be one kind or a mixture of two or more kinds.
  • polycarbonate resin as a main component of A layer, what is necessary is just different from the polycarbonate-type resin used as the main component of B layer mentioned later, for example, aliphatic polycarbonate, alicyclic polycarbonate, and bisphenol C are contained. And aromatic polycarbonate.
  • the A layer is a surface layer
  • a resin having a higher hardness than the B layer it is preferable to select a resin having a higher hardness than the B layer.
  • an acrylic resin (a1) described later or a polycarbonate resin (a3) having a specific structure can be used.
  • a layer containing an acrylic resin (a1) as a main component resin can be exemplified.
  • the A layer comprises an acrylic resin (a1), a copolymer having an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic anhydride monomer unit.
  • a2 a layer containing a polycarbonate resin (a3) containing a structural unit derived from a dihydroxy compound in a part of the structure as a main component resin can also be mentioned.
  • the acrylic resin (a1) is a (co) polymer obtained by polymerizing a (meth) acrylic acid ester monomer unit as a main component and a derivative thereof.
  • (meth) acrylic acid ester monomer unit is meant to include an acrylic acid ester monomer unit or a methacrylic acid ester monomer unit.
  • Examples of the (meth) acrylic acid ester monomer unit include, for example, methyl methacrylate, methacrylic acid, acrylic acid, benzyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and t-butyl.
  • the acrylic resin (a1) has a methyl methacrylate monomer, a methacrylic acid monomer, an acrylic acid monomer, a maleic anhydride monomer, and an aromatic vinyl monomer from the viewpoint of reducing internal stress.
  • a copolymer with at least one of a monomer and a vinyl cyanide monomer can be suitably used.
  • the three-dimensional structure of the (meth) acrylic acid ester monomer unit is preferred because the higher the proportion of the syndiotactic structure, the higher the glass transition temperature and the better the heat resistance.
  • the triad fractions of mm, mr, and rr those having a three-dimensional structure having the highest molar ratio of rr can be preferably used. This triad fraction can be measured by a known method using a nuclear magnetic resonance measuring apparatus (1H-NMR).
  • the A layer is preferably a layer containing the acrylic resin (a1) and the copolymer (a2). Among them, it is preferable to form the A layer by mixing the acrylic resin (a1) and the copolymer (a2).
  • the copolymer (a2) is a copolymer having an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic anhydride monomer unit.
  • aromatic vinyl monomer unit examples include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, p-tert-butylstyrene, ⁇ - Examples include units derived from styrene monomers such as methylstyrene and ⁇ -methyl-p-methylstyrene. These aromatic vinyl monomer units can be used alone or in combination of two or more. Of these, styrene units and ⁇ -methylstyrene units are preferred. Styrene monomer units are preferred because they are easily available industrially and are economical, and ⁇ -methylstyrene monomer units are preferred because they can improve the glass transition temperature.
  • (meth) acrylic acid ester monomer unit examples include methacrylic acid such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, and isobornyl methacrylate. Mention may be made of units derived from ester monomers and acrylic ester monomers such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate and decyl acrylate. These (meth) acrylic acid ester monomer units can be used alone or in combination of two or more. Among these, a methyl methacrylate monomer unit is preferable from the viewpoint of compatibility with the acrylic resin (a1) and appearance.
  • Examples of the “unsaturated dicarboxylic acid anhydride monomer unit” include units derived from respective anhydride monomers such as maleic acid anhydride, itaconic acid anhydride, citraconic acid anhydride, aconitic acid anhydride and the like. be able to. These unsaturated dicarboxylic acid anhydride monomer units can be used alone or in combination of two or more. Among these, a maleic anhydride monomer unit is preferable from the viewpoint of compatibility with the acrylic resin (a1) and transparency.
  • the constituent unit of the copolymer (a2) is preferably 45 to 85% by mass of an aromatic vinyl monomer unit, 4 to 45% by mass of a (meth) acrylic acid ester monomer unit, an unsaturated dicarboxylic acid anhydride unit. 8 to 20% by mass of a monomer unit, more preferably 55 to 85% by mass of an aromatic vinyl monomer unit, 5 to 30% by mass of a (meth) acrylic acid ester monomer unit, an unsaturated dicarboxylic acid anhydride unit It is in the range of 10 to 18% by mass of the monomer unit.
  • the structural unit of the copolymer (a2) can be qualitatively and quantitatively analyzed by a known method, for example, a nuclear magnetic resonance (NMR) measuring device or other instrumental analyzer.
  • NMR nuclear magnetic resonance
  • the aromatic vinyl monomer unit occupies 45% by mass or more, particularly 55% by mass or more among all the structural units of the copolymer (a2), the thermal stability is improved, and the acrylic resin (a1) and When mixed, a good appearance can be obtained, and water absorption can be reduced, which is preferable.
  • a (meth) acrylic acid ester monomer unit occupies 4 mass% or more among all the structural units of a copolymer (a2), especially 5 mass% or more, it will be a phase with acrylic resin (a1). It is preferable because the solubility is improved and the transparency is improved.
  • unsaturated dicarboxylic anhydride monomer unit occupies 8 mass% or more among all the structural units of a copolymer (a2), especially 10 mass% or more, it is a phase with acrylic resin (a1). It is preferable because the solubility is improved and the transparency and heat resistance are improved.
  • the ratio of the aromatic vinyl monomer unit is 85% by mass or less in the total constituent units of the copolymer (a2), the heat resistance is maintained while maintaining the miscibility with the acrylic resin (a1). This is preferable because it can improve water resistance and reduce water absorption.
  • the ratio of a (meth) acrylic acid ester monomer unit is 45 mass% or less among all the structural units of a copolymer (a2), especially if it is 30 mass% or less, with acrylic resin (a1) It is preferable because water absorption can be suppressed while ensuring compatibility.
  • the proportion of the unsaturated dicarboxylic acid anhydride unit is 20% by mass or less, particularly 18% by mass or less among all the structural units of the copolymer (a2), the compatibility with the acrylic resin (a1) is improved. While ensuring, improvement in thermal stability and water absorption can be suppressed, which is preferable.
  • the copolymer (a2) includes the above three monomer units, that is, an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic anhydride monomer unit.
  • Other copolymerizable units may be contained. However, the content is preferably 5% by mass or less.
  • the “other copolymerizable units” include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, N-methylmaleimide, and N-ethyl.
  • N-alkylmaleimide monomers such as maleimide, N-butylmaleimide, N-cyclohexylmaleimide, N-arylmaleimide monomers such as N-phenylmaleimide, N-methylphenylmaleimide, N-chlorophenylmaleimide, etc. Mention may be made of units derived from a monomer. These copolymerizable units can be used alone or in combination of two or more.
  • the copolymer (a2) preferably has a polystyrene-equivalent weight average molecular weight (Mw) of 100,000 to 200,000 as measured by gel permeation chromatography (GPC).
  • Mw polystyrene-equivalent weight average molecular weight
  • GPC gel permeation chromatography
  • the production method of the copolymer (a2) can be produced by a known polymerization method and is not particularly limited.
  • solution polymerization, bulk polymerization, and the like can be applied, and batch, semi-batch, and continuous methods can be appropriately employed as the polymerization process.
  • this laminate there are few by-products, and it is easy to control molecular weight adjustment and transparency, so that a batch polymerization process can be suitably used in solution polymerization.
  • (a1) / (a2) 70/30 to 40/60, particularly 70/30 to 60 / More preferably, it is 40.
  • the A layer is also preferably composed mainly of a polycarbonate resin (a3) having a specific structure. Thereby, a high surface hardness can be imparted to the laminate.
  • the polycarbonate resin (a3) is a polycarbonate resin containing a structural unit derived from a dihydroxy compound represented by the following (Chemical Formula 1) in a part of the structure.
  • Examples of the dihydroxy compound represented by the above (Chemical Formula 1) include isosorbide, isomannide and isoidet which are in a stereoisomeric relationship. These may be used alone or in combination of two or more.
  • the dihydroxy compound represented by the above is an ether diol that can be produced from a saccharide using a biogenic material as a raw material.
  • isosorbide can be produced at low cost by hydrogenating and dehydrating D-glucose obtained from starch, and can be obtained in abundant resources. For these reasons, isosorbide is most preferred.
  • the content ratio of the structural unit derived from the dihydroxy compound represented by the above (Chemical Formula 1) is preferably 50 mol% or more, and 60 mol% or more. More preferably, it is preferably 90 mol% or less, and more preferably 80 mol% or less.
  • the content ratio of the structural unit derived from the dihydroxy compound represented by (Chemical Formula 1) is in the above range, and thus the hardness of the polycarbonate resin (a3) is:
  • the intermediate value between the aromatic polycarbonate resin and the acrylic resin is taken, and the punching workability is dramatically improved as compared with the display front plate in which the acrylic resin layer is arranged on the surface layer. More specifically, when the content of the structural unit is 90 mol% or less, the surface hardness and heat resistance are excellent, and the impact resistance and the lowering of interlayer adhesion with the B layer described later can be suppressed.
  • this laminated body can obtain further sufficient surface hardness by disposing a hard coat layer on at least one surface, and is suitable for any use of a display front plate and a transparent building material.
  • the polycarbonate resin (a3) may have a structural unit other than the structural unit.
  • a structural unit derived from an aliphatic dihydroxy compound described in International Publication No. 2004/111106 pamphlet The structural unit derived from the alicyclic dihydroxy compound as described in 2007/148604 pamphlet can be mentioned.
  • structural units derived from the above aliphatic dihydroxy compounds selected from the group consisting of ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol. It is preferable to have a structural unit derived from at least one dihydroxy compound.
  • the structural units derived from the above alicyclic dihydroxy compounds those containing a 5-membered ring structure or a 6-membered ring structure are preferable.
  • the six-membered ring structure may be fixed in a chair shape or a boat shape by a covalent bond.
  • the heat resistance of the obtained polycarbonate can be increased.
  • the number of carbon atoms contained in the alicyclic dihydroxy compound is usually preferably 70 or less, more preferably 50 or less, and further preferably 30 or less.
  • Examples of the alicyclic dihydroxy compound containing the 5-membered ring structure or the 6-membered ring structure include those described in the above-mentioned International Publication No. 2007/148604.
  • cyclohexanedimethanol, tricyclodecanedimethanol, adamantanediol and pentacyclopentadecanedimethanol can be preferably exemplified.
  • cyclohexanedimethanol is preferably selected, and 1,4-cyclohexanedimethanol is particularly preferable.
  • tricyclododecane secondary methanol when importance is attached to heat resistance and interlayer adhesion with the B layer described later, it is preferable to select tricyclododecane secondary methanol.
  • the polycarbonate resin (a3) used for the A layer can be produced by a generally used polymerization method, and may be either a phosgene method or a transesterification method in which it reacts with a carbonic acid diester.
  • a polymerization catalyst in the presence of a polymerization catalyst, a dihydroxy compound represented by the above (Chemical Formula 1) in a part of the structure, an aliphatic and / or alicyclic hydroxy compound, and other dihydroxy compounds used as necessary And a transesterification method in which carbonic acid diester is reacted.
  • the transesterification method includes a dihydroxy compound represented by the above (Chemical Formula 1) as a part of the structure, an aliphatic and / or alicyclic hydroxy compound, other dihydroxy compounds used as necessary, and a carbonic acid diester. Is a basic catalyst, and further, an acidic substance that neutralizes the basic catalyst is added to perform a transesterification reaction.
  • carbonic acid diesters include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (biphenyl) carbonate, diethyl carbonate, dimethyl carbonate, dibutyl carbonate, and dicyclohexyl carbonate. Is mentioned. Of these, diphenyl carbonate is particularly preferably used.
  • the molecular weight of the polycarbonate resin (a3) can be represented by a reduced viscosity.
  • the lower limit of the reduced viscosity is preferably 0.20 dl / g or more, more preferably 0.30 dL / g or more, and 0.35 dL / g or more.
  • the upper limit of the reduced viscosity is preferably 1.20 dL / g or less, more preferably 1.00 dL / g or less, and even more preferably 0.80 dL / g or less. If the reduced viscosity of the polycarbonate resin is too low, the mechanical strength of the molded product may be small. If it is too large, the fluidity at the time of molding tends to decrease, and the productivity and moldability tend to decrease.
  • the layer A can appropriately contain various additives, modifiers and the like as long as the effects of the present invention are not impaired.
  • the additive include an antioxidant, an ultraviolet absorber, a light stabilizer, a lubricant, a flame retardant, and a colorant.
  • the modifier include impact resistance improvers, compatibilizers and antistatic agents.
  • B layer is a layer which shares the function which expresses especially impact resistance, heat resistance, etc. among the functions of this laminated body.
  • the polycarbonate resin (b1) can be used alone as a main component resin, and various modifiers (b2) described later are mixed with the polycarbonate resin (b1) as the main component resin. It can also be used.
  • Polycarbonate resin (b1)) examples include aromatic polycarbonate resins and aliphatic polycarbonate resins.
  • the polycarbonate resin (b1) may be a homopolymer or a copolymer with another copolymerizable monomer.
  • the structure of the polycarbonate resin (b1) may be a branched structure, a linear structure, or a mixture of a branched structure and a linear structure.
  • the polycarbonate resin (b1) may be obtained by any known production method such as a phosgene method, a transesterification method, or a pyridine method.
  • the weight-average molecular weight of the polycarbonate resin (b1) may be 10,000 to 100,000, particularly 20,000 or more and 40,000 or less, particularly 22,000 or more and 28,000 or less. Further preferred. As the polycarbonate resin (b1), only one kind can be used alone, or two or more kinds having different weight average molecular weights can be used in combination. If the weight average molecular weight of polycarbonate-type resin (b1) exists in the said range, since impact resistance is ensured and extrusion moldability is also favorable, it is preferable.
  • the polycarbonate resin (b1) and the modifier (b2) are preferably mixed and used to form the B layer.
  • a specific acrylic resin (b2) can be exemplified.
  • the acrylic resin (b2) is preferably an acrylic copolymer composed of 5 to 80% by mass of aromatic (meth) acrylate monomer units and 95 to 20% by mass of methyl methacrylate monomer units.
  • the acrylic resin (b2) if the content ratio of the aromatic (meth) acrylate monomer unit and the methyl methacrylate monomer unit is within the above range, the compatibility and the surface hardness with the polycarbonate resin (b1). Since the improvement effect can be expressed, it is preferable.
  • the aromatic (meth) acrylate monomer unit is preferably 10 to 70% by mass and the methyl methacrylate monomer unit 90 to 30% by mass, and the aromatic (meth) acrylate monomer unit 25 to More preferably, it is 60% by mass and 75 to 40% by mass of methyl methacrylate monomer units.
  • aromatic (meth) acrylate monomer unit examples include phenyl (meth) acrylate and benzyl (meth) acrylate. These can be used alone or in combination of two or more. Of these, phenyl methacrylate and benzyl methacrylate are preferred, and phenyl methacrylate is more preferred from the viewpoint of compatibility with the polycarbonate resin (b1).
  • the acrylic resin (b2) can contain other copolymerizable monomer units other than the aromatic (meth) acrylate monomer unit and the methyl methacrylate monomer unit, if necessary. When other monomer units are contained, the content is preferably 0.1 to 10% by mass in the acrylic resin (b2).
  • the acrylic resin (b2) preferably has a polystyrene-reduced weight average molecular weight (Mw) of 5,000 to 30,000 as measured by gel permeation chromatography (GPC).
  • Mw weight average molecular weight
  • the compatibility with the polycarbonate resin (b1) is good, and the moldability and surface hardness improvement effect and appearance of the obtained B layer are good. It is preferable because it is excellent.
  • the range of the weight average molecular weight (Mw) of the acrylic resin (b2) is more preferably 10,000 to 28,000.
  • the polycarbonate resin as the main component resin of the B layer is preferably as the glass transition temperature is higher. It is particularly preferable to use the homopolymer (b1). On the other hand, when importance is attached to the surface hardness of the laminate, those containing the polycarbonate resin (b1) and the modifier (b2) are preferable.
  • the B layer can be blended with the above-described various additives and other resins as long as the effects of the present invention are not impaired.
  • the additive include an antioxidant, an ultraviolet absorber, a light stabilizer, a lubricant, a flame retardant, a colorant, and a hydrolysis inhibitor.
  • the glass transition temperature of the A layer is preferably as small as the difference from the glass transition temperature of the B layer from the viewpoint of suppressing internal stress generated in a high-temperature and high-humidity environment, and is preferably 100 to 140 ° C. Above or 140 ° C. or less , among them 115 ° C. or more, more preferably 120 ° C. or more.
  • the glass transition temperature of the B layer is preferably as high as possible from the viewpoint of suppressing internal stress generated in a high-temperature and high-humidity environment, preferably 100 ° C. to 160 ° C., and more preferably 120 ° C. or more or 155 ° C. or less. Further preferred.
  • the absolute value of the difference between the glass transition temperature of the A layer and the glass transition temperature of the B layer is 30 ° C. or less, the warpage of the front plate after the high temperature and high humidity environment test at a temperature of 85 ° C. and a humidity of 85% RH It is preferable because it can be further suppressed.
  • the absolute value of the difference is preferably 30 ° C. or less, more preferably 20 ° C. or less, more preferably 10 ° C. or less, and particularly preferably 5 ° C. or less. More preferably.
  • the glass transition temperature is a value obtained by measuring at a heating rate of 10 ° C./min according to JIS K7121 using a differential scanning calorimeter.
  • the glass transition temperature can also be measured by other known instrument analyzers such as a dynamic viscoelastic device.
  • the front plate may further include a hard coat layer (C layer) as an outermost surface layer on one side or both sides.
  • the hard coat layer (C layer) may not be provided.
  • the hard coat layer (C layer) is a layer that imparts excellent surface hardness and scratch resistance to the front plate.
  • the hard coat layer (C layer) is cured by irradiating an energy beam such as an electron beam, radiation, or ultraviolet ray to cure the curable resin composition for forming the C layer, or curing for forming the C layer by heating. It can be formed by curing the functional resin composition. Among these, from the viewpoint of molding time and productivity, it is preferable to form a hard coat layer (C layer) by irradiating ultraviolet rays to cure the C layer forming curable resin composition.
  • the curable resin composition for forming the C layer for forming the hard coat layer (C layer) may be a resin composition containing the curable resin C1. As described above, when the C layer forming curable resin composition is cured by irradiating ultraviolet rays, the C layer forming curable resin composition starts photopolymerization in addition to the curable resin C1. A resin composition containing an agent is preferred.
  • curable resin C1 examples include, for example, acrylate compounds, urethane acrylate compounds, epoxy acrylate compounds, carboxyl group-modified epoxy acrylate compounds, polyester acrylate compounds, copolymer acrylates, alicyclic epoxy resins, glycidyl ether epoxy resins. , Vinyl ether compounds, oxetane compounds and the like. These curable resins can be used alone or in combination of two or more.
  • the curable resin C1 that imparts more excellent surface hardness
  • a polyfunctional acrylate compound a polyfunctional urethane acrylate compound, a polyfunctional epoxy acrylate compound, or the like
  • a radical polymerization curable compound an alkoxysilane, an alkylalkoxysilane, etc.
  • a thermopolymerizable curable compound can be mentioned, and further, an organic / inorganic composite curable resin composition obtained by adding an inorganic component to the curable resin may be used.
  • An organic / inorganic hybrid curable resin composition may be mentioned as a curable resin composition for forming a C layer that gives particularly excellent surface hardness.
  • the organic / inorganic hybrid curable resin composition include those composed of a curable resin composition containing an inorganic component having a reactive functional group in the curable resin. Utilizing such an inorganic component having a reactive functional group, for example, an organic / inorganic composite in which this inorganic component is copolymerized and crosslinked with a radical polymerizable monomer, so that the organic binder simply contains the inorganic component.
  • an organic / inorganic hybrid curable resin composition containing ultraviolet-reactive colloidal silica as an inorganic component having a reactive functional group can be mentioned as a more preferable example.
  • the concentration of the inorganic component contained in the hard coat layer (C layer), particularly the inorganic component having a reactive functional group is preferably 10 to 65% by mass. If the said density
  • the hard coat layer (C layer) can be filled with an inorganic component, particularly an inorganic component having a reactive functional group, with excellent surface hardness. Can be effectively imparted.
  • the concentration is preferably 10 to 65% by mass, more preferably 20% by mass or more and 60% by mass or less, and particularly preferably 40% by mass or more and 55% by mass or less.
  • the main component resin of a hard-coat layer (C layer) is an adhesive sheet.
  • the same resin as the main component resin is preferred.
  • the main component resin of the pressure-sensitive adhesive sheet is an acrylic resin
  • the main component resin of the hard coat layer (C layer) is also preferably an acrylic resin.
  • the curable resin composition for forming the C layer contains a photopolymerization initiator, and the photopolymerization initiator absorbs ultraviolet rays to be excited and activated to cause a polymerization reaction, thereby curing the ultraviolet curable resin. Those where the reaction takes place are preferred.
  • the photopolymerization initiator include benzyl, benzophenone and derivatives thereof, thioxanthones, benzyldimethyl ketals, ⁇ hydroxyalkylphenones, ⁇ -hydroxyacetophenones, hydroxyketones, aminoalkylphenones, acylphosphine oxides, and the like. Can be mentioned.
  • ⁇ -hydroxyalkylphenones are preferred because they hardly cause yellowing during curing and a transparent cured product is obtained.
  • aminoalkylphenones are preferable because they have very high reactivity and a cured product having excellent hardness can be obtained.
  • the said photoinitiator can be used individually by 1 type or in combination of 2 or more types.
  • the addition amount of the photopolymerization initiator is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the curable resin.
  • the curable resin composition for forming a C layer can contain a leveling agent as a surface adjustment component.
  • the leveling agent include silicone leveling agents and acrylic leveling agents.
  • those having a reactive functional group at the terminal are preferable, and those having a reactive functional group having two or more functionalities are more preferable.
  • Specific examples include polyether-modified polydimethylsiloxane having an acrylic group having double bonds at both ends, and a polyester-modified polydimethylsiloxane having acrylic groups having two double bonds at the ends. be able to.
  • polyester-modified polydimethylsiloxane having an acrylic group that has a stable haze value and contributes to improvement of scratch resistance is particularly preferable.
  • the curable resin composition for forming the C layer includes, for example, a lubricant such as a silicon compound, a fluorine compound, or a mixed compound thereof, an antioxidant, an ultraviolet absorber, and an antistatic agent.
  • a lubricant such as a silicon compound, a fluorine compound, or a mixed compound thereof
  • an antioxidant such as a sulfur compound
  • an ultraviolet absorber such as a sulfur compound
  • an antistatic agent such as sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate, sodium bicarbonate
  • the thickness of the hard coat layer (C layer) is not particularly limited.
  • the thickness is preferably 1 ⁇ m to 30 ⁇ m, more preferably 3 ⁇ m or more and 25 ⁇ m or less, especially 5 ⁇ m or more and 20 ⁇ m or less, and particularly preferably 7 ⁇ m or more and 15 ⁇ m or less.
  • the thickness of the hard coat layer (C layer) is in the above range, scratch resistance can be imparted and cracks due to stress are unlikely to occur, which is preferable.
  • the thickness of each hard coat layer may be the same or different.
  • the thickness of each hard coat layer is in the range of 7 ⁇ m to 15 ⁇ m, and the hard coat layer on the surface of the acrylic resin layer (A layer) is hard coat on the surface of the polycarbonate resin layer (B layer).
  • the thickness is preferably equal to or greater than the thickness of the layer.
  • the front plate may have a layer structure having a thermoplastic resin layer (A layer) different from the polycarbonate resin on one side or both sides of the polycarbonate resin layer (B layer), and includes other layers. May be.
  • a layer thermoplastic resin layer
  • it may be a laminate having an acrylic resin layer (A layer) on one side or both sides of a polycarbonate resin layer (B layer), and other layers may be provided.
  • a hard coat layer (C layer) may be provided on the single-sided outermost surface or the double-sided outermost surface.
  • the layers may have the same composition or different compositions.
  • (A) / (B), (A) / (B) / (A), (C) / (A) / (B), (C) / (A) / (B) / (C ), (C) / (A) / (B) / (A) / (C) configurations are preferred.
  • (viewing side) (C) / (A) / (B) / (C) (light source side) or (viewing side) (C) / (A) / (B) It is more preferable to arrange on the light source side.
  • the thickness (a 1 ) of the front plate is not particularly limited, and is preferably, for example, 0.1 mm to 3.0 mm, particularly 1.5 mm or less, of which 0.15 mm or more or 1 More preferably, it is 2 mm or less.
  • the thickness (a 1 ) of the front plate has a preferable range depending on the application application of the laminate.
  • it is preferably 0.1 to 2.0 mm, 0.15 mm or more or 1.5 mm or less, 0.2 mm or more or 0.8 mm or less, More preferably, it is 0.2 mm or more or 0.7 mm or less. If it is in this range, it is preferable because it is excellent in lightness and rigidity and shape stability in a high temperature and high humidity environment.
  • the thickness of the front plate ( a 1 ) is preferably from 0.1 mm to 0.6 mm, more preferably from 0.15 mm to 0.5 mm.
  • the thickness (a 1 ) of the front plate is thinner in terms of reducing the internal stress ( ⁇ ) of the laminate.
  • the thickness (a 1 ) of the front plate is preferably 0.7 mm or less, more preferably 0.6 mm or less, and further preferably 0.5 mm or less.
  • the total thickness of layer A is preferably as small as possible in order to suppress internal stress generated in the high temperature and high humidity environment of the laminate, and further shape stability.
  • the thickness is preferably a certain thickness or more, and is preferably adjusted within an appropriate range according to the intended physical properties. From such a viewpoint, the total thickness of the A layer is preferably 10 ⁇ m to 250 ⁇ m, more preferably 30 ⁇ m or more and 200 ⁇ m or less, and particularly preferably 50 ⁇ m or more or 150 ⁇ m or less.
  • the total thickness for the two layers is the total thickness of the A layer.
  • the thermoplastic resin relative to the total thickness (T) of the thermoplastic resin layer A and the polycarbonate resin layer B layer.
  • the ratio (A) / (T) of the thickness (A) of layer A to layer 1 is preferably 0.05 to 0.40, more preferably 0.07 or more and 0.35 or less. More preferably, it is 10 or more or 0.30 or less.
  • the thickness of each A layer is mutually the same thickness.
  • the elastic modulus (E 1 ) of the front plate is preferably 1500 to 4500 (MPa) from the viewpoint of reducing the internal stress of the laminate in a high temperature and high humidity environment and improving the shape stability. 1800 or more or 4000 (MPa) or less, more preferably 2000 or more or 3500 (MPa) or less.
  • the front plate is allowed to stand for 120 hours in a temperature 85 ° C. and humidity 85% RH environment, and then the temperature 23 ° C.
  • the average value of the amount of warping at the four corners after leaving for 4 hours in a humidity 50% RH environment is preferably 1.5 mm or less, more preferably 1.0 mm or less, and most preferably 0.3 mm or less. Particularly preferred.
  • the lower limit value of the warpage amount ( ⁇ ) is preferably 0.01 mm or more, and more preferably 0.05 mm or more.
  • the total thickness of the A layer is reduced and the thickness of one A layer with respect to the total layer thickness (T) of the A layer and the B layer (A ) Ratio ((A) / (T)) and a method of balancing the elastic modulus, cure shrinkage, and thickness of the hard coat layers on the front and back sides are preferably employed.
  • a method of balancing the elastic modulus, cure shrinkage, and thickness of the hard coat layers on the front and back sides are preferably employed.
  • a film forming method for laminating the A layer and the B layer a known method can be adopted.
  • an extrusion casting method using a T-die having a melt mixing facility such as a single-screw extruder, a multi-screw extruder, a Banbury mixer, a kneader, etc. can be suitably used from the viewpoints of handling properties and productivity.
  • a method of co-extrusion molding of melt-kneaded resin with a T-die having a feed block or a multi-manifold can be suitably used.
  • a forming roll such as a metal elastic roll or a polishing roll
  • the molding temperature in the extrusion casting method using a T die is appropriately adjusted depending on the flow characteristics and film-forming properties of the resin composition used, but is generally 300 ° C. or less, preferably 230 to 260 ° C.
  • the molding roll temperature is approximately 90 to 160 ° C., preferably 95 to 150 ° C.
  • each layer extruder when each layer is extruded, a single screw extruder or a multi-screw extruder can be suitably used, and each layer extruder preferably has a vent function and a filter function.
  • the vent function is preferable because it can be used for drying the resin composition used for each layer, removing a small amount of volatile components, and the like, and a laminate having few defects such as bubbles can be obtained.
  • filter functions there are various types, and specific examples include a leaf disk filter, a back disk filter, a cone filter, a candle filter, and a cylindrical filter. Among them, a leaf disk filter that can easily secure an effective filtration area is preferable.
  • the filter function can remove foreign matters, minute gels, and the like, and a laminated body with few appearance defects can be obtained.
  • the resin composition for forming each layer may be used by mixing each component in advance with a mixer such as a tumbler, V-type blender, Banbury mixer, extruder, etc.
  • the components may be supplied directly, or the components weighed separately may be supplied to each supply port of an extruder having two or more supply ports.
  • the mixing method of various additives can use a well-known method. For example, (a) a master batch in which various additives are mixed in a suitable base resin at a high concentration (typically about 3 to 60% by mass) is prepared separately, and the concentration is added to the resin used. And (b) a method of directly mixing various additives into the resin to be used.
  • resin layer surface After coating the surface of layer A or layer B (referred to as “resin layer surface”) laminated as described above as a paint in which the above-described curable resin composition for C layer formation is dissolved or dispersed in an organic solvent
  • a method of forming and laminating on the surface of the resin layer can be exemplified. However, it is not limited to this method.
  • a method of laminating on the surface of the resin layer a known method can be used. For example, laminating method using cover film, dip coating method, natural coating method, reverse coating method, comma coater method, roll coating method, spin coating method, wire bar method, extrusion method, curtain coating method, spray coating method, The gravure coat method etc. are mentioned.
  • a method of using a transfer sheet in which a hard coat layer (C layer) is formed on a release layer and laminating the hard coat layer (C layer) on the surface of the resin layer may be employed.
  • various surface treatments such as corona treatment, plasma treatment and primer treatment can be performed on the resin layer surface.
  • the curable resin composition is cured by irradiating energy rays such as electron beam, radiation, and ultraviolet rays, or
  • the curable resin composition is preferably cured by heating.
  • curing by ultraviolet irradiation is preferable.
  • the light source that emits ultraviolet rays for example, an electrodeless high-pressure mercury lamp, an electroded high-pressure mercury lamp, an electrodeless metal halide lamp, an electroded metal halide lamp, a xenon lamp, an ultrahigh-pressure mercury lamp, or a mercury xenon lamp can be used.
  • an electrodeless high-pressure mercury lamp is preferable because it is easy to obtain ultraviolet rays with high illuminance and is advantageous for curing an ultraviolet curable resin.
  • the C-layer-forming curable resin composition is made of an ultraviolet curable resin and cured by irradiating with ultraviolet rays, since the transparency to the ultraviolet rays is high, the internal curing of the curable resin composition proceeds quickly. In some cases, the curing of the surface of the curable resin composition is delayed due to the inhibition effect of oxygen (referred to as oxygen damage).
  • oxygen damage it is preferable to irradiate the resin composition with a nitrogen gas atmosphere by supplying nitrogen gas and then irradiate with ultraviolet rays, since the curing of the surface can proceed rapidly together with the inside of the resin composition. .
  • the resin laminate may be heat treated.
  • the resin laminate is heat-treated in a temperature range lower by 5 ° C. to 30 ° C. than the glass transition temperature of the A layer, particularly in a temperature range lower by 5 ° C. to 25 ° C., particularly in a temperature range lower by 5 ° C.-20 ° C. Is preferred.
  • the outermost surface on one side or both sides of the front plate can be subjected to any one or more of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment.
  • Each processing method is not particularly limited, and a known method can be used. For example, a method of applying a reflection reducing coating, a method of depositing a dielectric thin film, a method of applying an antistatic coating, and the like can be exemplified.
  • the composition of the pressure-sensitive adhesive sheet used in the laminate is not particularly limited. However, it is preferable to use a pressure-sensitive adhesive sheet obtained by crosslinking a pressure-sensitive adhesive composition containing an acrylic resin as a main component resin from the viewpoint of adhesiveness, transparency, weather resistance, and the like.
  • the pressure-sensitive adhesive composition preferably contains an acrylic resin, a crosslinking monomer, and, if necessary, a crosslinking initiator, a reaction catalyst, and the like.
  • an acrylate polymer (including a copolymer) is preferable.
  • Acrylic acid ester polymers (including copolymers) have properties such as glass transition temperature (Tg) depending on the types and composition ratios of acrylic monomers and methacrylic monomers used to polymerize them, and polymerization conditions. It is possible to adjust appropriately.
  • acrylic monomer and methacrylic monomer used for polymerizing the acrylate polymer examples include 2-ethylhexyl acrylate, n-octyl acrylate, n-butyl acrylate, ethyl acrylate, methyl methacrylate, and the like.
  • Vinyl acetate, hydroxyethyl acrylate, acrylic acid, glycidyl acrylate, acrylamide, acrylonitrile, methacrylonitrile, fluorine acrylate, silicone acrylate, etc., which are copolymerized with a hydrophilic group or an organic functional group, can also be used.
  • (meth) acrylic acid alkyl ester copolymers are particularly preferable.
  • the (meth) acrylate used for forming the (meth) acrylic acid alkyl ester copolymer that is, the alkyl acrylate or alkyl methacrylate component
  • the alkyl group is n-octyl, isooctyl, 2-ethylhexyl, n-butyl
  • alkyl acrylate or alkyl methacrylate which is any one of isobutyl, methyl, ethyl and isopropyl, or a mixture of two or more selected from these is preferable.
  • an acrylate or methacrylate having an organic functional group such as a carboxyl group, a hydroxyl group, or a glycidyl group
  • an acrylate or methacrylate having an organic functional group such as a carboxyl group, a hydroxyl group, or a glycidyl group
  • a monomer component obtained by appropriately and selectively combining the alkyl (meth) acrylate component and the (meth) acrylate component having an organic functional group as a starting material is subjected to heat polymerization to form a (meth) acrylate ester copolymer.
  • a polymer polymer can be obtained.
  • alkyl acrylates such as iso-octyl acrylate, n-octyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, or a mixture of two or more selected from these, or iso-octyl acrylate
  • alkyl acrylates such as iso-octyl acrylate, n-octyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, or a mixture of two or more selected from these, or iso-octyl acrylate
  • alkyl acrylates such as iso-octyl acrylate, n-octyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, or a mixture of two or more selected from these, or iso-octyl acrylate
  • examples include those obtained by copolymerizing at
  • crosslinking monomers include organic compounds such as polyfunctional (meth) acrylates having two or more (meth) acryloyl groups, isocyanate groups, epoxy groups, melamine groups, glycol groups, siloxane groups, and amino groups.
  • a polyfunctional organic functional group resin having two or more functional groups, an organometallic compound having a metal complex such as zinc, aluminum, sodium, zirconium, or calcium can be used.
  • polyfunctional (meth) acrylates include, for example, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, trimethylolpropane triacrylate, and the like. be able to.
  • the content of the crosslinking monomer may be adjusted in combination with other factors so as to obtain a desired holding force, but is generally 0.01 to 40.0 parts by mass, preferably 100 parts by mass with respect to 100 parts by mass of the main component resin. Is preferably adjusted within a range of 0.1 to 30.0 parts by mass, particularly 0.5 to 30.0 parts by mass. However, this range may be exceeded in balance with other elements.
  • cross-linking initiators peroxidation initiators, photoinitiators
  • reaction catalysts tertiary amine compounds, quaternary ammonium compounds, tin laurate compounds, etc.
  • UV crosslinking In the case of UV irradiation crosslinking (also referred to as “UV crosslinking”), it is preferable to add a photoinitiator.
  • a photoinitiator either a cleavage type photoinitiator or a hydrogen abstraction type photoinitiator may be used, but both may be used in combination.
  • the cleavage type photoinitiator include benzoin butyl ether, benzyl dimethyl ketal, and hydroxyacetophenone.
  • examples of the hydrogen abstraction type photoinitiator include benzophenone, Michler's ketone, dibenzosuberone, 2-ethylanthraquinone, and isobutylthioxanthone. However, it is not limited to the substances listed above.
  • the addition amount of the photoinitiator may be adjusted as appropriate, but in general, the photoinitiator should be adjusted within a range of 0.05 to 5.0 parts by mass with respect to 100 parts by mass of the main component resin. It is preferable to use a mold and a cleavage type photoinitiator in a ratio of 1: 1. However, this range may be exceeded in balance with other elements.
  • pigments such as pigments and dyes having near-infrared absorption characteristics, tackifiers, antioxidants, antioxidants, hygroscopic agents, ultraviolet absorbers, silane coupling agents, natural products, Various additives such as synthetic resins, glass fibers and glass beads can be appropriately blended.
  • the above pressure-sensitive adhesive sheet is mixed with an acrylic resin as a main component resin and, if necessary, a cross-linking agent and a reaction initiator or a reaction catalyst, and the mixture is stirred and mixed so that a desired thickness is obtained on the release film.
  • the film can be formed into a pressure-sensitive adhesive sheet by crosslinking by heat drying or ultraviolet irradiation.
  • the thickness (a 2 ) of the pressure-sensitive adhesive sheet is preferably 10 ⁇ m to 300 ⁇ m from the viewpoint of reducing the internal stress of the laminate and increasing the shape stability in a high-temperature and high-humidity environment, and more preferably 30 ⁇ m or more or 250 ⁇ m or less. Among them, the thickness is particularly preferably 50 ⁇ m or more or 200 ⁇ m or less.
  • the elastic modulus (E 2 ) of the pressure-sensitive adhesive sheet is preferably 0.001 MPa or more from the viewpoint of enhancing shape stability in a high temperature and high humidity environment. From this viewpoint, it is more preferably 0.01 MPa or more, and further preferably 0.1 MPa or more. Further, from the viewpoint of improving tackiness, the elastic modulus (E 2 ) is 30 MPa or less, preferably 20 MPa or less, more preferably 10 MPa or less. Tack is defined as “representing the adhesive strength at the moment of bonding to an adherend”, and “is often judged qualitatively by fingers, etc.” (Mr.
  • the elastic modulus (E 2 ) of the pressure-sensitive adhesive sheet can be measured by performing a tensile test at a test speed of 300 mm / min in the length direction of the pressure-sensitive adhesive sheet cut out using a tensile tester.
  • Tg of the pressure-sensitive adhesive sheet is measured using a rheometer (“MARS” manufactured by Eihiro Seiki Co., Ltd.), pressure-sensitive adhesive jig: ⁇ 25 mm parallel plate, strain: 0.5%, frequency: 1 Hz, temperature: ⁇ 50 to 200 ° C. It can be measured by a loss tangent (tan ⁇ ) of dynamic viscoelasticity measurement by a shear method at a rate of 3 ° C./min.
  • This laminate is obtained by the following formula (1) and formula (2), and the front plate when the laminate of the front plate and the pressure-sensitive adhesive sheet is exposed for 120 hours in an environment of temperature 85 ° C. and humidity 85% RH.
  • the internal stress ( ⁇ ) of the pressure-sensitive adhesive sheet is 0.47 MPa or less.
  • each character in the said Formula (1) and Formula (2) is as follows.
  • When the front plate is exposed to a temperature of 85 ° C. and a humidity of 85% RH for 120 hours, the front plate is warped in a convex shape and the front plate end surface Lifting height from the stationary surface
  • L Sample length (10 cm)
  • The front plate warp shape when only the front plate is exposed to a temperature of 85 ° C. and a humidity of 85% RH for 120 hours, and the front plate is left in a horizontal shape with a convex downward shape.
  • this laminate is warped in a high-temperature and high-humidity environment as long as the internal stress ( ⁇ ) determined by the above formulas (1) and (2) is 0.47 MPa or less. It has been confirmed that can be effectively suppressed. From this point of view, the internal stress ( ⁇ ) in the laminate is preferably 0.47 MPa or less, particularly 0.46 MPa or less, and particularly preferably 0.45 MPa or less. Furthermore, 0.40 MPa or less is preferable, and 0.30 MPa or less is more preferable.
  • the internal stress ( ⁇ ) in this laminate is mainly the ratio of the thickness (A) of one layer (A layer) to the total thickness (T) of the A layer and the (A) layer and (B) layer ( (A) / (T)), the materials of the A layer and the B layer, the thickness and material of the pressure-sensitive adhesive sheet, and the like.
  • a temperature of 85 ° C. and a humidity of 85% RH are adopted as the high temperature and high humidity environment, but other environmental conditions such as a temperature of 60 ° C., Environmental conditions such as a humidity of 90% RH, a temperature of 70 ° C., and a humidity of 90% RH can also be adopted as the high temperature and high humidity environment.
  • the laminate is excellent in shape stability in a high temperature and high humidity environment, and can also improve transparency, impact resistance, surface hardness, and the like. Therefore, this laminated body can be suitably used as various substrate materials, protective materials, and the like by bonding them to various applications, for example, a base material.
  • a base material for example, in addition to various substrate materials and protective materials as constituent materials for image display devices such as mobile phone terminals, smartphones, portable electronic playground equipment, portable information terminals, tablet devices, mobile personal computers, wearable terminals, liquid crystal televisions, liquid crystal monitors, desktops It can be suitably used as various substrate materials and protective materials as constituent materials for stationary display devices such as personal computers, car navigation systems, and automobile meters.
  • This laminate can also be given a shape by various processing methods. For example, in addition to the method of heating and pressurizing using a mold, a pressure forming method, a vacuum forming method, a roll homing method and the like can be exemplified as the forming method. By imparting a shape to the laminate, it can be used for an image display device having a curved surface and various flexible devices.
  • “Sheet” generally refers to a product that is thin by definition in JIS and has a thickness that is small and flat for the length and width.
  • “film” is thicker than the length and width.
  • JISK6900 Japanese Industrial Standard
  • the term “sheet” is included and the term “sheet” is used.
  • “film” is included.
  • the expression “panel” such as an image display panel and a protection panel includes a plate, a sheet and a film, or a laminate thereof.
  • X to Y (X and Y are arbitrary numbers) is described, it means “preferably greater than X” or “preferably,” with the meaning of “X to Y” unless otherwise specified. The meaning of “smaller than Y” is also included. Further, when described as “X or more” (X is an arbitrary number), it means “preferably larger than X” unless otherwise specified, and described as “Y or less” (Y is an arbitrary number). In the case, unless otherwise specified, the meaning of “preferably smaller than Y” is included.
  • Thickness It measured using the commercially available thickness measuring device (made by MITUTOYO).
  • FIG. 1 a schematic diagram of the internal stress calculation model is shown in FIG.
  • the warpage amount ( ⁇ ) actually measured by the wet heat exposure test of the front plate alone is substituted into the equation (1), and only the front plate is placed in a temperature 85 ° C., humidity 85% RH environment for 120 hours.
  • the curvature radius ( ⁇ 1 ) of the warp shape of the front plate when exposed was calculated.
  • the sectional moments (I 1 and I 2 ) of the front plate and the pressure-sensitive adhesive were calculated from the following formulas (3) and (4).
  • the calculated ⁇ 1 and other physical property values were substituted into Equation (2) to calculate the internal stress ( ⁇ ).
  • Adhesive sheet As the pressure-sensitive adhesive sheet, a pressure-sensitive adhesive resin composition comprising an acrylic acid ester copolymer, a crosslinking agent and a photopolymerization initiator is sandwiched between two peeled polyethylene terephthalate films, and is formed into a sheet shape having a thickness of 150 ⁇ m.
  • Glass plate A commercially available soda lime glass (width: 100 mm ⁇ length: 100 mm ⁇ thickness: 0.5 mm) was used as the glass plate.
  • Example 1 100 parts by mass of a resin composition obtained by mixing 60 parts by mass of an acrylic resin (a1-1) and 40 parts by mass of a copolymer acrylic resin (a2-1), and a polycarbonate resin (b1-1) 100
  • the mass parts are respectively supplied to separate extruders having a vent function and a filter function, melt-kneaded at a resin temperature of 240 to 265 ° C., and a layered structure of (A layer) / (B layer) is formed by a feed block.
  • a resin composition obtained by mixing 60 parts by mass of an acrylic resin (a1-1) and 40 parts by mass of a copolymer acrylic resin (a2-1), and a polycarbonate resin (b1-1) 100
  • the mass parts are respectively supplied to separate extruders having a vent function and a filter function, melt-kneaded at a resin temperature of 240 to 265 ° C., and a layered structure of (A layer) / (B layer) is formed by a feed block
  • the product is cooled by sequentially passing through a first cooling roll set to 100 ° C., a second cooling roll set to 110 ° C., and a third cooling roll set to 150 ° C.
  • a front plate having a total thickness of 0.675 mm and a thickness of each layer (A layer) / (B layer) 0.075 mm / 0.600 mm was obtained.
  • the curable resin composition (cf) consisting of 60 parts by mass of the curable resin composition (c-1) and 40 parts by mass of the curable resin composition (c-2) is prepared using the bar coater. It was applied to the surface of the acrylic resin layer (A layer) of the face plate, dried in this state at 90 ° C. for 1 minute, and then exposed to ultraviolet rays at an exposure amount of 700 mJ / cm 2 to obtain a curable resin composition (c). Was cured to form a hard coat layer (Cf).
  • the curable resin composition (cb) consisting of 60 parts by mass of the curable resin composition (c-2) and 40 parts by mass of the curable resin composition (c-3) is mixed with the resin using a bar coater.
  • the pressure-sensitive adhesive surface exposed by peeling off one release film of the pressure-sensitive adhesive sheet was superimposed on the surface of the hard coat layer (Cb) of the front plate and adhered with a hand roller.
  • the remaining peeled film was peeled off, soda lime glass (thickness: 0.5 mm) was stacked on the exposed adhesive surface, and press-bonded under reduced pressure (absolute pressure 5 kPa), followed by autoclave treatment (50 ° C., 0.00 mm). (2 MPa, 20 minutes) was applied and pasted to prepare a laminate.
  • the pressure-sensitive adhesive sheet was cured by irradiating the laminated body with ultraviolet rays so that 365 nm ultraviolet rays reached 2000 mJ / cm 2 with a high pressure mercury lamp through soda lime glass, and the front plate / adhesive sheet / glass. A bonded body was prepared.
  • Example 1 As shown in Table 1, in Example 1, the front plate and the front plate / adhesive sheet were the same as in Example 1 except that the thickness ratio and total thickness of each of the A layer and B layer of the front plate were changed. / A glass laminate was produced.
  • thermoplastic resin (a3-1) and part by mass of polycarbonate resin (b1-1) are supplied to separate extruders having a vent function and a filter function, respectively, and are melt-kneaded at a resin temperature of 240 to 265 ° C. Then, after co-extrusion molding with a T die at 240 ° C.
  • thermoplastic resin (a3-1) and part by mass of polycarbonate resin (b1-1) are supplied to separate extruders having a vent function and a filter function, respectively, and are melt-kneaded at a resin temperature of 240 to 265 ° C. Then, after co-extrusion molding with a T die at 240 ° C.
  • the factors of the front plate that affect the internal stress include elastic modulus, thickness, and warpage amount from the formulas (1) and (2).
  • the internal stress can be reduced mainly by reducing the thickness or reducing the amount of warpage. Even if either is larger, the internal stress can be reduced and peeling can be suppressed by adjusting the other parameter to an appropriate range.
  • adjustments such as the layer configuration of the A layer and the B layer, the thickness ratio of the A layer and the B layer, the thickness ratio of the front and back coat layers, and the processing conditions such as the roll temperature condition during production Can be mentioned.
  • the layer configuration of the A layer and the B layer a 2-layer / 3-layer symmetrical configuration of A layer / B layer / A layer.
  • the difference between the expansion and contraction behaviors of the A layer and the B layer can be canceled on both sides, which is effective in reducing warpage.
  • the amount of warpage of the front plate is compared with that using the two types / two-layer configuration of A layer / B layer. It can be confirmed that the internal stress can be kept small.
  • the thickness of one layer (A layer) with respect to the total thickness (T) of the (A) layer and the (B) layer in a two-layer / two-layer configuration of A layer / B layer (A ) Ratio ((A) / (T)) is effective.
  • the cause of warping is due to the difference in expansion and contraction behavior of the two layers. For example, if the A layer is made extremely thin and the thickness ratio is made non-uniform so as to approach the single layer body of the B layer, the influence of the A layer Since it becomes difficult to express, warping behavior can be suppressed.
  • the front and back hard coat layers (C layers) As another means for reducing the amount of warpage, it is effective to bring the front and back hard coat layers (C layers) closer to the front and back objects.
  • the hard coat layer (C layer) When the hard coat layer (C layer) is exposed to the moist heat test, the hard coat layer itself shrinks due to the progress of curing shrinkage, which causes warpage.
  • the material composition of the hard coat layer is the same on the front and back sides, it is preferable to make the thicknesses close to each other. In consideration of the above, it is preferable to adjust the thickness so that the front and back are balanced.
  • the thermal strain in the cooling process is effective to reduce the thermal strain in the cooling process by adjusting the film forming conditions at the time of coextrusion. For example, by setting the third cooling roll to a high temperature within a range that does not cause poor appearance, the thermal distortion can be reduced by the annealing effect.
  • Comparative Examples 1 to 8 peeling occurs due to a large internal stress.
  • Comparative Example 1 even when the total thickness was as large as 1000 ⁇ m and the amount of warpage was small, the internal stress increased due to the large contribution of the thickness.
  • Comparative Examples 2 to 4 since the thickness ratio of the A layer to the B layer was large, the amount of warpage of the front plate was large and the internal stress was large.
  • Comparative Examples 5 to 6 the thickness of the back side hard coat layer (Cf) was thin and the front and back hard coat layers were not balanced, so the amount of warpage of the front plate was large and the internal stress was large.
  • Comparative Examples 7 to 8 the third cooling roll temperature was not sufficiently high, the amount of thermal distortion of the front plate was large, the amount of warpage was large, and the internal stress was large.
  • Lifting height of the front plate end surface from the stationary surface
  • L Sample length
  • Radius of curvature of the front plate warp shape
  • Vertical line from the center of curvature of the front plate warp shape to the contact point of the front plate, and the front Angle formed by a straight line connecting the center of curvature of the face plate warp shape and the end point of the front plate 10:
  • Front plate 20 Adhesive sheet

Abstract

The purpose of the present invention is to provide a novel layered body, which is a layered body that has an adhesive sheet and a front panel comprising a polycarbonate-based resin layer and a thermoplastic resin different from this polycarbonate-based resin, and that also has outstanding shape stability in a high-temperature and high-humidity environment. Provided is a layered body having a front panel and an adhesive sheet, the layered body being characterized in that: the front panel comprises a B layer having a polycarbonate-based resin as a principal constituent resin and an A layer having a thermoplastic resin different from the polycarbonate-based resin as a principal constituent; the total thickness of the A layer is 10-250 µm, and the ratio ((A)/(T)) of the thickness (A) of one A layer to the total thickness (T) of the A layer and the B layer is 0.05-0.40; and the internal stress (σ) of the front panel and the adhesive sheet when the layered body of the front panel and the adhesive sheet is exposed for 120 hours to an environment with a temperature of 85°C and a humidity of 85% RH is 0.47 MPa or less.

Description

積層体Laminated body
 本発明は、積層体に関する。詳しくは、基板材料や保護材料として使用され、例えば画像表示装置の表面保護パネルや、携帯電話、スマートフォン、タブレット機器、ウェアラブル端末等のカバー材として好適に使用することができる積層体に関する。 The present invention relates to a laminate. Specifically, the present invention relates to a laminate that is used as a substrate material or a protective material, and can be suitably used as a cover material for a surface protection panel of an image display device, a mobile phone, a smartphone, a tablet device, a wearable terminal, or the like.
 従来から、画像表示装置のカバー材としてガラスが主に用いられてきた。しかし、ガラスは、衝撃により割れやすく、重いことから、樹脂材料での代替が検討されている。 Conventionally, glass has been mainly used as a cover material for image display devices. However, since glass is easily broken by an impact and is heavy, substitution with a resin material has been studied.
 このようなガラス代替材料としての樹脂材料には、耐衝撃性、表面硬度、さらには高温高湿環境下での形状安定性が主に求められる。
 ポリカーボネート樹脂板は、透明性を有し、耐衝撃性や耐熱性に優れているため、防音隔壁やカーポート、看板、グレージング材、照明器具などに利用されている。しかし、表面硬度が低いために傷がつきやすいという欠点を抱えている。
The resin material as such a glass substitute material is mainly required to have impact resistance, surface hardness, and shape stability in a high temperature and high humidity environment.
Polycarbonate resin plates have transparency and are excellent in impact resistance and heat resistance, and thus are used for soundproof partitions, carports, signboards, glazing materials, lighting fixtures, and the like. However, since the surface hardness is low, it has a drawback of being easily scratched.
 この欠点を改良するため、例えば特許文献1には、ポリカーボネート樹脂とアクリル樹脂を共押出した積層体にハードコート処理を施した樹脂積層体が開示されている。 In order to improve this defect, for example, Patent Document 1 discloses a resin laminate obtained by subjecting a laminate obtained by coextruding a polycarbonate resin and an acrylic resin to a hard coat treatment.
 また、ポリカーボネート樹脂板の反りを抑制する方法として、例えば特許文献2には、ポリカーボネート樹脂上にメチルメタクリレート-スチレン共重合体樹脂(MS樹脂)を積層した樹脂積層体が開示されている。 As a method for suppressing the warpage of the polycarbonate resin plate, for example, Patent Document 2 discloses a resin laminate in which a methyl methacrylate-styrene copolymer resin (MS resin) is laminated on a polycarbonate resin.
 同じくポリカーボネート樹脂板の反りを抑制する方法として、特許文献3には、ポリカーボネート系樹脂を積層した各層のガラス転移温度差と吸水率差を規定した樹脂積層体が開示されている。 Similarly, as a method for suppressing the warpage of the polycarbonate resin plate, Patent Document 3 discloses a resin laminate in which the glass transition temperature difference and the water absorption difference of each layer in which a polycarbonate resin is laminated are defined.
特開2006-103169号公報JP 2006-103169 A 特開2010-167659号公報JP 2010-167659 A WO2014/061817WO2014 / 061817
 上述のように、ポリカーボネート系樹脂層と該ポリカーボネート系樹脂とは異なる熱可塑性樹脂からなる層とを備えた前面板は、例えば粘着シートを介して基材に積層するなどして、画像表示装置の表面保護パネルやカバー材として使用されている。しかし、かかる構成の前面板は、ポリカーボネート系樹脂と該ポリカーボネート系樹脂とは異なる熱可塑性樹脂との熱膨張係数や吸湿性などが異なるため、例えば高温高湿環境下に置かれると、一方の樹脂層が吸湿して寸法変化するなど、前面板の形状安定性を保つのが難しいという課題を抱えていた。 As described above, a front plate having a polycarbonate resin layer and a layer made of a thermoplastic resin different from the polycarbonate resin is laminated on a base material via an adhesive sheet, for example, It is used as a surface protection panel and cover material. However, since the front plate having such a structure has a different coefficient of thermal expansion or moisture absorption between a polycarbonate resin and a thermoplastic resin different from the polycarbonate resin, for example, when placed in a high temperature and high humidity environment, one resin There was a problem that it was difficult to maintain the shape stability of the front plate, such as the layer absorbing moisture and changing dimensions.
 そこで本発明は、ポリカーボネート系樹脂層と、該ポリカーボネート系樹脂とは異なる熱可塑性樹脂層を備えた前面板と粘着シートとを備えた積層体に関し、高温高湿な環境下における形状安定性に優れた新たな積層体を提供せんとするものである。 Therefore, the present invention relates to a laminate comprising a polycarbonate resin layer, a front plate having a thermoplastic resin layer different from the polycarbonate resin, and an adhesive sheet, and has excellent shape stability in a high temperature and high humidity environment. A new laminate will be provided.
 本発明は、前面板と、粘着シートとを含む積層体であって、前記前面板は、ポリカーボネート系樹脂を主成分とするB層と、前記ポリカーボネート系樹脂とは異なる熱可塑性樹脂を主成分とする熱可塑性樹脂A層とを備えており、A層の合計厚みが10~250μmであり、前記A層及び前記B層の合計厚み(T)に対する前記A層1層の厚み(A)の比((A)/(T))が0.05~0.40であり、後述する式(1)及び式(2)で求められる、温度85℃、湿度85%RH環境下で120時間、前記積層体を暴露した時の、前面板と粘着シートの内部応力(σ)が0.47MPa以下であることを特徴とする積層体を提案する。 The present invention is a laminate including a front plate and an adhesive sheet, wherein the front plate includes a B layer mainly composed of a polycarbonate resin and a thermoplastic resin different from the polycarbonate resin as a main component. The total thickness of the A layer is 10 to 250 μm, and the ratio of the thickness (A) of the one A layer to the total thickness (T) of the A layer and the B layer is ((A) / (T)) is 0.05 to 0.40, and is determined by the formulas (1) and (2) described below, and the temperature is 85 ° C. and the humidity is 85% RH for 120 hours. Proposed is a laminate in which the internal stress (σ) of the front plate and the pressure-sensitive adhesive sheet is 0.47 MPa or less when the laminate is exposed.
 本発明が提案する積層体は、前面板の構成においてポリカーボネート系樹脂とは異なる熱可塑性樹脂を主成分とする熱可塑性樹脂A層の合計厚みと、A層及び前記B層の合計層厚みに対するA層1層分の厚みの比率((A)/(T))を規定すると共に、内部応力(σ)を所定範囲に規定することにより、高温高湿な環境下における形状安定性に優れた性能を発揮することができる。
 よって、本発明が提案する積層体は、例えば基材に貼り合わせるなどして、各種基板材料や保護材料などとして好適に用いることができる。例えば携帯電話端末、スマートフォン、携帯型電子遊具、携帯情報端末、タブレット機器、モバイルパソコン、ウェアラブル端末などの携帯型ディスプレイデバイスの構成材料としての各種基板材料や保護材料のほか、液晶テレビ、液晶モニター、デスクトップパソコン、カーナビゲーション、自動車計器など設置型ディスプレイデバイスの構成材料としての各種基板材料や保護材料として好適に用いることができる。
The laminate proposed by the present invention includes a total thickness of a thermoplastic resin A layer mainly composed of a thermoplastic resin different from a polycarbonate resin in the configuration of the front plate, and A with respect to the total layer thickness of the A layer and the B layer. By defining the thickness ratio ((A) / (T)) for one layer and by defining the internal stress (σ) within a predetermined range, it has excellent shape stability in a high-temperature and high-humidity environment. Can be demonstrated.
Therefore, the laminate proposed by the present invention can be suitably used as various substrate materials, protective materials, and the like, for example, by bonding them to a base material. For example, in addition to various substrate materials and protective materials as constituent materials for portable display devices such as mobile phone terminals, smartphones, portable electronic playground equipment, portable information terminals, tablet devices, mobile personal computers, wearable terminals, liquid crystal televisions, liquid crystal monitors, It can be suitably used as various substrate materials and protective materials as constituent materials for stationary display devices such as desktop personal computers, car navigation systems, and automobile meters.
内部応力を算出するためのモデルの模式図である。It is a schematic diagram of a model for calculating internal stress.
 以下、本発明の実施形態の一例について詳しく説明する。 Hereinafter, an example of the embodiment of the present invention will be described in detail.
 本明細書において、“各層についての「主成分」”とは、各層を形成する樹脂組成物の中で最も含有割合(質量%)が高い樹脂成分の意味である。その具体的な含有量を規定するものではないが、目安としては、各層を形成する樹脂組成物に含まれる樹脂の50質量%以上、中でも80質量%以上、その中でも90質量%以上(100質量%を含む)を占める樹脂である。なお、主成分が2種類以上の場合は、それらの合計量が前記含有量に該当する。
 また、“重合体およびその誘導体についての「主成分」”とは、重合体およびその誘導体を構成する単量体単位の中で最も割合が高い単量体を意味する。
In the present specification, “the“ main component ”for each layer” means a resin component having the highest content (mass%) in the resin composition forming each layer. Although not specified, as a guideline, a resin that occupies 50% by mass or more, particularly 80% by mass or more, particularly 90% by mass (including 100% by mass) of the resin contained in the resin composition forming each layer. In addition, when there are two or more types of main components, the total amount thereof corresponds to the content.
Further, “the“ main component ”of the polymer and its derivative” means a monomer having the highest ratio among the monomer units constituting the polymer and its derivative.
 <本積層体>
 本発明の実施形態の一例に係る積層体(以下「本積層体」と称する)は、前面板と粘着シートを含む積層体であり、後述するように、所定の曝露試験において、前面板と粘着シートの内部応力が所定範囲であることを特徴とする積層体である。
<This laminate>
A laminate according to an example of an embodiment of the present invention (hereinafter referred to as “the present laminate”) is a laminate including a front plate and an adhesive sheet. As described later, in a predetermined exposure test, the laminate and the front plate are adhered. The laminate is characterized in that the internal stress of the sheet is within a predetermined range.
<前面板>
 本積層体の前面板は、ポリカーボネート系樹脂を主成分とするB層と、該ポリカーボネート系樹脂とは異なる熱可塑性樹脂を主成分とする熱可塑性樹脂A層とを備えていればよい。一例として、アクリル系樹脂を主成分樹脂とするA層と、ポリカーボネート系樹脂を主成分樹脂とするB層とを備えたものを挙げることができる。
<Front plate>
The front plate of this laminated body should just be provided with the B layer which has a polycarbonate-type resin as a main component, and the thermoplastic resin A layer which has a thermoplastic resin different from this polycarbonate-type resin as a main component. As an example, there may be mentioned those provided with an A layer containing an acrylic resin as a main component resin and a B layer containing a polycarbonate resin as a main component resin.
 また、例えば、B層の片面側又は両面側にA層を形成してなる構成の前面板を挙げることができる。
 ここで、該前面板は、透明性、剛性、耐衝撃性や二次加工性および高表面硬度などの特性を有することが好ましい。
Moreover, for example, a front plate having a configuration in which an A layer is formed on one side or both sides of the B layer can be given.
Here, the front plate preferably has characteristics such as transparency, rigidity, impact resistance, secondary workability, and high surface hardness.
<A層>
 A層は、前記ポリカーボネート系樹脂とは異なる熱可塑性樹脂を主成分とする層である。
 ここで、「異なる」とは、重合体を構成する単量体の種類または組成比が同一でない場合を意味する。
<A layer>
The A layer is a layer mainly composed of a thermoplastic resin different from the polycarbonate resin.
Here, “different” means that the types or composition ratios of the monomers constituting the polymer are not the same.
 A層の主成分としての熱可塑性樹脂は、後述するB層の主成分となるポリカーボネート系樹脂と異なるものであれば特に制限はなく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリ-1,4-シクロヘキシレンジメチレンテレフタレートなどの芳香族ポリエステル、およびポリ乳酸系重合体などの脂肪族ポリエステルに代表されるポリエステル系樹脂、ポリエチレン、ポリプロピレン、シクロオレフィン系樹脂などのポリオレフィン系樹脂、ポリカーボネート樹脂、アクリル系樹脂、ポリスチレン系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂、ポリウレタン系樹脂、ポリフェニレンスルフィド系樹脂、ポリエステルアミド系樹脂、ポリエーテルエステル系樹脂、塩化ビニル系樹脂、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、変性ポリフェニレンエーテル系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルイミド系樹脂、ポリアミドイミド系樹脂、ポリイミド系樹脂およびこれらを主たる成分とする共重合体、またはこれら樹脂の混合物等を挙げることができる。これらは1種または2種以上の混合物であってもよい。 The thermoplastic resin as the main component of the A layer is not particularly limited as long as it is different from the polycarbonate resin as the main component of the B layer described later. For example, polyethylene terephthalate, polyethylene naphthalate, polypropylene terephthalate, polybutylene terephthalate. Polyester resins typified by aromatic polyesters such as poly-1,4-cyclohexylenedimethylene terephthalate, and aliphatic polyesters such as polylactic acid polymers, polyolefin resins such as polyethylene, polypropylene, and cycloolefin resins , Polycarbonate resin, acrylic resin, polystyrene resin, polyamide resin, polyether resin, polyurethane resin, polyphenylene sulfide resin, polyesteramide resin, polyether Steal resin, vinyl chloride resin, acrylonitrile-styrene copolymer, acrylonitrile-butadiene-styrene copolymer, modified polyphenylene ether resin, polyarylate resin, polysulfone resin, polyetherimide resin, polyamideimide resin , Polyimide resins and copolymers containing these as main components, or mixtures of these resins. These may be one kind or a mixture of two or more kinds.
 また、A層の主成分としての上記ポリカーボネート樹脂としては、後述するB層の主成分となるポリカーボネート系樹脂と異なるものであればよく、例えば、脂肪族ポリカーボネートや脂環族ポリカーボネート、ビスフェノールCを含有する芳香族ポリカーボネート等を挙げることができる。 Moreover, as said polycarbonate resin as a main component of A layer, what is necessary is just different from the polycarbonate-type resin used as the main component of B layer mentioned later, for example, aliphatic polycarbonate, alicyclic polycarbonate, and bisphenol C are contained. And aromatic polycarbonate.
 ここで、本発明においては特に限定されるものではないが、例えばA層を表面層とする場合には、B層よりも硬度の高い樹脂を選定することが好ましい。具体的には、後述するアクリル系樹脂(a1)、または、特定の構造を有するポリカーボネート樹脂(a3)を用いることができる。 Here, although not particularly limited in the present invention, for example, when the A layer is a surface layer, it is preferable to select a resin having a higher hardness than the B layer. Specifically, an acrylic resin (a1) described later or a polycarbonate resin (a3) having a specific structure can be used.
<A層の好ましい具体的構成例>
 A層の好ましい一例として、アクリル系樹脂(a1)を主成分樹脂とする層を挙げることができる。好ましくは、A層は、アクリル系樹脂(a1)と、芳香族ビニル単量体単位、(メタ)アクリル酸エステル単量体単位及び不飽和ジカルボン酸無水物単量体単位を有する共重合体(a2)と、を含有する層である。
 また、A層の好ましい他の一例として、構造の一部にジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂(a3)を主成分樹脂とする層を挙げることもできる。
 次に、これら各成分樹脂(a1)~(a3)について説明する。
<Preferable specific configuration example of layer A>
As a preferred example of the A layer, a layer containing an acrylic resin (a1) as a main component resin can be exemplified. Preferably, the A layer comprises an acrylic resin (a1), a copolymer having an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic anhydride monomer unit. a2).
As another preferred example of the A layer, a layer containing a polycarbonate resin (a3) containing a structural unit derived from a dihydroxy compound in a part of the structure as a main component resin can also be mentioned.
Next, each of these component resins (a1) to (a3) will be described.
(アクリル系樹脂(a1))
 アクリル系樹脂(a1)は、(メタ)アクリル酸エステル単量体単位を主成分として重合してなる(共)重合体およびその誘導体である。
(Acrylic resin (a1))
The acrylic resin (a1) is a (co) polymer obtained by polymerizing a (meth) acrylic acid ester monomer unit as a main component and a derivative thereof.
 ここで、「(メタ)アクリル酸エステル単量体単位」とは、アクリル酸エステル単量体単位又はメタクリル酸エステル単量体単位を包含する意である。 Here, the “(meth) acrylic acid ester monomer unit” is meant to include an acrylic acid ester monomer unit or a methacrylic acid ester monomer unit.
 上記(メタ)アクリル酸エステル単量体単位としては、例えばメタクリル酸メチル、メタクリル酸、アクリル酸、ベンジル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、グリシジル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ノルボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アクリル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、コハク酸2-(メタ)アクロイルオキシエチル、マレイン酸2-(メタ)アクロイルオキシエチル、フタル酸2-(メタ)アクロイルオキシエチル、ヘキサヒドロフタル酸2-(メタ)アクリオイルオキシエチル、ペンタメチルピペリジル(メタ)アクリレート、テトラメチルピペリジル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレートなどを挙げることができる。これらは、1種のみを単独で又は2種以上を組み合わせて用いることができる。また、これらのアクリル系単量体単位と重合され得る他の単量体単位としては、例えばオレフィン系単量体単位、ビニル系単量体単位等を挙げることができる。 Examples of the (meth) acrylic acid ester monomer unit include, for example, methyl methacrylate, methacrylic acid, acrylic acid, benzyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, and t-butyl. (Meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, tridecyl (meth) acrylate, stearyl (meth) acrylate, glycidyl (meth) acrylate, hydroxypropyl (meth) acrylate, 2-methoxyethyl (meth) ) Acrylate, 2-ethoxyethyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, norbornyl (meth) acrylate, dicyclopentenyl (meth) acrylate, disic Pentanyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, acrylic (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2- (meth) acryloyloxyethyl succinate 2- (meth) acryloyloxyethyl maleate, 2- (meth) acryloyloxyethyl phthalate, 2- (meth) acryloyloxyethyl hexahydrophthalate, pentamethylpiperidyl (meth) acrylate, tetramethylpiperidyl (Meth) acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, etc. can be mentioned. These can be used alone or in combination of two or more. Examples of other monomer units that can be polymerized with these acrylic monomer units include olefin monomer units and vinyl monomer units.
 中でも、アクリル系樹脂(a1)は、内部応力を低減する観点から、メタクリル酸メチル単量体と、メタクリル酸単量体、アクリル酸単量体、マレイン酸無水物単量体、芳香族ビニル単量体、シアン化ビニル単量体のうちいずれか1種以上との共重合体を好適に用いることができる。 Among them, the acrylic resin (a1) has a methyl methacrylate monomer, a methacrylic acid monomer, an acrylic acid monomer, a maleic anhydride monomer, and an aromatic vinyl monomer from the viewpoint of reducing internal stress. A copolymer with at least one of a monomer and a vinyl cyanide monomer can be suitably used.
 アクリル系樹脂(a1)の立体規則性については特に制限はない。ただし、(メタ)アクリル酸エステル単量体単位の立体構造は、シンジオタクチック構造の割合が高いほどガラス転移温度が高くなり、耐熱性が向上するため、好ましい。かかる観点から、トリアッド分率のmm、mr及びrrの中で、該rrのモル比率が最も高い立体構造を有するものを好適に用いることができる。このトリアッド分率は、核磁気共鳴測定装置(1H-NMR)を用い、公知の方法で測定することができる。 There is no restriction | limiting in particular about the stereoregularity of acrylic resin (a1). However, the three-dimensional structure of the (meth) acrylic acid ester monomer unit is preferred because the higher the proportion of the syndiotactic structure, the higher the glass transition temperature and the better the heat resistance. From this viewpoint, among the triad fractions of mm, mr, and rr, those having a three-dimensional structure having the highest molar ratio of rr can be preferably used. This triad fraction can be measured by a known method using a nuclear magnetic resonance measuring apparatus (1H-NMR).
(共重合体(a2))
 上述したように、A層は、上記のアクリル系樹脂(a1)と共重合体(a2)を含有する層であるのが好ましい。中でも、アクリル系樹脂(a1)と共重合体(a2)を混合してA層を形成するのが好ましい。
(Copolymer (a2))
As described above, the A layer is preferably a layer containing the acrylic resin (a1) and the copolymer (a2). Among them, it is preferable to form the A layer by mixing the acrylic resin (a1) and the copolymer (a2).
 共重合体(a2)は、芳香族ビニル単量体単位と、(メタ)アクリル酸エステル単量体単位と、不飽和ジカルボン酸無水物単量体単位とを有する共重合体である。 The copolymer (a2) is a copolymer having an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic anhydride monomer unit.
 上記「芳香族ビニル単量体単位」としては、例えばスチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、2,4-ジメチルスチレン、エチルスチレン、p-tert-ブチルスチレン、α-メチルスチレン、α-メチル-p-メチルスチレン等の各スチレン系単量体に由来する単位を挙げることができる。これら芳香族ビニル単量体単位は、1種のみを単独で又は2種以上を組み合わせて用いることができる。
 中でも、スチレン単位やα-メチルスチレン単位が好ましい。スチレン単量体単位は、工業的に入手し易く、また経済性に優れるため好ましく、α-メチルスチレン単量体単位はガラス転移温度を向上させることができるため、好ましい。
Examples of the “aromatic vinyl monomer unit” include styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, 2,4-dimethylstyrene, ethylstyrene, p-tert-butylstyrene, α- Examples include units derived from styrene monomers such as methylstyrene and α-methyl-p-methylstyrene. These aromatic vinyl monomer units can be used alone or in combination of two or more.
Of these, styrene units and α-methylstyrene units are preferred. Styrene monomer units are preferred because they are easily available industrially and are economical, and α-methylstyrene monomer units are preferred because they can improve the glass transition temperature.
 上記「(メタ)アクリル酸エステル単量体単位」としては、例えばメタクリル酸メチル、メタクリル酸エチル、n-ブチルメタクリレート、2-エチルヘキシルメタクリレート、ジシクロペンタニルメタクリレート、イソボルニルメタクリレート等の各メタクリル酸エステル単量体、及びアクリル酸メチル、アクリル酸エチル、n-ブチルアクリレート、2-メチルヘキシルアクリレート、2-エチルヘキシルアクリレート、デシルアクリレート等のアクリル酸エステル単量体に由来する単位を挙げることができる。これら(メタ)アクリル酸エステル単量体単位は、1種のみを単独で又は2種以上を組み合わせて用いることができる。
 中でも、アクリル系樹脂(a1)との相溶性や外観などから、メタクリル酸メチル単量体単位が好ましい。
Examples of the “(meth) acrylic acid ester monomer unit” include methacrylic acid such as methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, dicyclopentanyl methacrylate, and isobornyl methacrylate. Mention may be made of units derived from ester monomers and acrylic ester monomers such as methyl acrylate, ethyl acrylate, n-butyl acrylate, 2-methylhexyl acrylate, 2-ethylhexyl acrylate and decyl acrylate. These (meth) acrylic acid ester monomer units can be used alone or in combination of two or more.
Among these, a methyl methacrylate monomer unit is preferable from the viewpoint of compatibility with the acrylic resin (a1) and appearance.
 上記「不飽和ジカルボン酸無水物単量体単位」としては、例えばマレイン酸無水物、イタコン酸無水物、シトラコン酸無水物、アコニット酸無水物などの各無水物単量体に由来する単位を挙げることができる。これら不飽和ジカルボン酸無水物単量体単位は、1種のみを単独で又は2種以上を組み合わせて用いることができる。
 中でも、アクリル系樹脂(a1)との相溶性や透明性などから、マレイン酸無水物単量体単位が好ましい。
Examples of the “unsaturated dicarboxylic acid anhydride monomer unit” include units derived from respective anhydride monomers such as maleic acid anhydride, itaconic acid anhydride, citraconic acid anhydride, aconitic acid anhydride and the like. be able to. These unsaturated dicarboxylic acid anhydride monomer units can be used alone or in combination of two or more.
Among these, a maleic anhydride monomer unit is preferable from the viewpoint of compatibility with the acrylic resin (a1) and transparency.
 上記共重合体(a2)の構成単位は、好ましくは芳香族ビニル単量体単位45~85質量%、(メタ)アクリル酸エステル単量体単位4~45質量%、不飽和ジカルボン酸無水物単量体単位8~20質量%であり、より好ましくは芳香族ビニル単量体単位55~85質量%、(メタ)アクリル酸エステル単量体単位5~30質量%、不飽和ジカルボン酸無水物単量体単位10~18質量%の範囲である。
 なお、共重合体(a2)の構成単位は、周知の方法、例えば、核磁気共鳴(NMR)測定装置、その他の機器分析装置で定性定量分析することができる。
The constituent unit of the copolymer (a2) is preferably 45 to 85% by mass of an aromatic vinyl monomer unit, 4 to 45% by mass of a (meth) acrylic acid ester monomer unit, an unsaturated dicarboxylic acid anhydride unit. 8 to 20% by mass of a monomer unit, more preferably 55 to 85% by mass of an aromatic vinyl monomer unit, 5 to 30% by mass of a (meth) acrylic acid ester monomer unit, an unsaturated dicarboxylic acid anhydride unit It is in the range of 10 to 18% by mass of the monomer unit.
The structural unit of the copolymer (a2) can be qualitatively and quantitatively analyzed by a known method, for example, a nuclear magnetic resonance (NMR) measuring device or other instrumental analyzer.
 共重合体(a2)の全構成単位のうち、芳香族ビニル単量体単位が45質量%以上、中でも55質量%以上を占めれば、熱安定性が向上し、アクリル系樹脂(a1)と混合した際に良好な外観が得られ、さらには吸水性を低減できるので、好ましい。
 また、共重合体(a2)の全構成単位のうち、(メタ)アクリル酸エステル単量体単位が4質量%以上、中でも5質量%以上を占めれば、アクリル系樹脂(a1)との相溶性が向上して透明性が良好になるため好ましい。
 また、共重合体(a2)の全構成単位のうち、不飽和ジカルボン酸無水物単量体単位が8質量%以上、中でも10質量%以上を占めれば、アクリル系樹脂(a1)との相溶性が向上して透明性や耐熱性が向上するため好ましい。
If the aromatic vinyl monomer unit occupies 45% by mass or more, particularly 55% by mass or more among all the structural units of the copolymer (a2), the thermal stability is improved, and the acrylic resin (a1) and When mixed, a good appearance can be obtained, and water absorption can be reduced, which is preferable.
Moreover, if a (meth) acrylic acid ester monomer unit occupies 4 mass% or more among all the structural units of a copolymer (a2), especially 5 mass% or more, it will be a phase with acrylic resin (a1). It is preferable because the solubility is improved and the transparency is improved.
Moreover, if unsaturated dicarboxylic anhydride monomer unit occupies 8 mass% or more among all the structural units of a copolymer (a2), especially 10 mass% or more, it is a phase with acrylic resin (a1). It is preferable because the solubility is improved and the transparency and heat resistance are improved.
 他方、共重合体(a2)の全構成単位のうち、芳香族ビニル単量体単位の割合が85質量%以下であれば、アクリル系樹脂(a1)との混合性を保持しながら、耐熱性の向上や吸水性の低減などが出来るため好ましい。
 また、共重合体(a2)の全構成単位のうち、(メタ)アクリル酸エステル単量体単位の割合が45質量%以下、中でも30質量%以下であれば、アクリル系樹脂(a1)との相溶性を確保しながら、吸水性を抑制できるため好ましい。
 また、共重合体(a2)の全構成単位のうち、不飽和ジカルボン酸無水物単位の割合が20質量%以下、中でも18質量%以下であれば、アクリル系樹脂(a1)との相溶性を確保しながら、熱安定性の向上や吸水性を抑制できるため好ましい。
On the other hand, if the ratio of the aromatic vinyl monomer unit is 85% by mass or less in the total constituent units of the copolymer (a2), the heat resistance is maintained while maintaining the miscibility with the acrylic resin (a1). This is preferable because it can improve water resistance and reduce water absorption.
Moreover, if the ratio of a (meth) acrylic acid ester monomer unit is 45 mass% or less among all the structural units of a copolymer (a2), especially if it is 30 mass% or less, with acrylic resin (a1) It is preferable because water absorption can be suppressed while ensuring compatibility.
If the proportion of the unsaturated dicarboxylic acid anhydride unit is 20% by mass or less, particularly 18% by mass or less among all the structural units of the copolymer (a2), the compatibility with the acrylic resin (a1) is improved. While ensuring, improvement in thermal stability and water absorption can be suppressed, which is preferable.
 共重合体(a2)は、上記3つの単量体単位、すなわち芳香族ビニル単量体単位、(メタ)アクリル酸エステル単量体単位及び不飽和ジカルボン酸無水物単量体単位以外に、「他の共重合可能な単位」を含有してもよい。但し、その含有割合は5質量%以下であるのが好ましい。
 当該「他の共重合可能な単位」としては、例えばアクリロニトリル、メタクリロニトリルなどのシアン化ビニル単量体、アクリル酸、メタクリル酸などのビニルカルボン酸単量体、N-メチルマレイミド、N-エチルマレイミド、N-ブチルマレイミド、N-シクロヘキシルマレイミドなどのN-アルキルマレイミド単量体、N-フェニルマレイミド、N-メチルフェニルマレイミド、N-クロルフェニルマレイミドなどのN-アリールマレイミド単量体などの各単量体に由来する単位を挙げることができる。これら共重合可能な単位は、1種のみを単独で又は2種以上を組み合わせて用いることができる。
The copolymer (a2) includes the above three monomer units, that is, an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and an unsaturated dicarboxylic anhydride monomer unit. Other copolymerizable units "may be contained. However, the content is preferably 5% by mass or less.
Examples of the “other copolymerizable units” include vinyl cyanide monomers such as acrylonitrile and methacrylonitrile, vinyl carboxylic acid monomers such as acrylic acid and methacrylic acid, N-methylmaleimide, and N-ethyl. N-alkylmaleimide monomers such as maleimide, N-butylmaleimide, N-cyclohexylmaleimide, N-arylmaleimide monomers such as N-phenylmaleimide, N-methylphenylmaleimide, N-chlorophenylmaleimide, etc. Mention may be made of units derived from a monomer. These copolymerizable units can be used alone or in combination of two or more.
 共重合体(a2)は、ゲルパーミエーションクロマトグラフィー(GPC)にて測定されるポリスチレン換算の重量平均分子量(Mw)が100,000~200,000であることが好ましい。ここで重量平均分子量(Mw)が該範囲であるとアクリル系樹脂(a1)と混合して得られるA層の成形性や外観などに優れるため好ましい。かかる観点から、より好ましい重量平均分子量(Mw)の範囲は110,000~180,000である。 The copolymer (a2) preferably has a polystyrene-equivalent weight average molecular weight (Mw) of 100,000 to 200,000 as measured by gel permeation chromatography (GPC). Here, it is preferable that the weight average molecular weight (Mw) is in this range because the A layer obtained by mixing with the acrylic resin (a1) is excellent in moldability and appearance. From this viewpoint, a more preferable range of weight average molecular weight (Mw) is 110,000 to 180,000.
 共重合体(a2)の製造方法は、公知の重合方法で製造可能であり特に限定されるものではない。例えば、溶液重合や塊状重合等が適用でき、重合プロセスも回分式や半回分式および連続式などを適宜採用することができる。本積層体においては、副生成物が少なく、また、分子量調整と透明性を制御し易いことなどから溶液重合で回分式重合プロセスを好適に用いることができる。 The production method of the copolymer (a2) can be produced by a known polymerization method and is not particularly limited. For example, solution polymerization, bulk polymerization, and the like can be applied, and batch, semi-batch, and continuous methods can be appropriately employed as the polymerization process. In this laminate, there are few by-products, and it is easy to control molecular weight adjustment and transparency, so that a batch polymerization process can be suitably used in solution polymerization.
((a1)/(a2))
 A層において、アクリル系樹脂(a1)と共重合体(a2)との混合質量比は、(a1)/(a2)=80/20~20/80であるのが好ましい。
 アクリル系樹脂(a1)と共重合体(a2)の混合割合が上記範囲内であれば、B層との層間密着性に優れ、アクリル系樹脂の特徴である表面硬度や透明性を維持しつつ、耐熱性の向上や吸水性が抑制されるため好ましい。
((A1) / (a2))
In the layer A, the mixing mass ratio of the acrylic resin (a1) and the copolymer (a2) is preferably (a1) / (a2) = 80/20 to 20/80.
If the mixing ratio of the acrylic resin (a1) and the copolymer (a2) is in the above range, the interlayer adhesion with the B layer is excellent, while maintaining the surface hardness and transparency that are the characteristics of the acrylic resin. It is preferable because heat resistance and water absorption are suppressed.
 また、本積層体の高温高湿環境下で発生する内部応力低減のためには、(a1)/(a2)=70/30~40/60であるのが好ましく、中でも70/30~60/40であるのがさらに好ましい。 In order to reduce the internal stress generated in the high temperature and high humidity environment of the present laminate, it is preferable that (a1) / (a2) = 70/30 to 40/60, particularly 70/30 to 60 / More preferably, it is 40.
(ポリカーボネート樹脂(a3))
 上述したように、A層は、特定の構造を有するポリカーボネート樹脂(a3)を主成分とすることもまた好ましい。このことにより、本積層体に高い表面硬度を付与することができる。
(Polycarbonate resin (a3))
As described above, the A layer is also preferably composed mainly of a polycarbonate resin (a3) having a specific structure. Thereby, a high surface hardness can be imparted to the laminate.
ここで、ポリカーボネート樹脂(a3)は、構造の一部に下記(化1)で表されるジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂である。 Here, the polycarbonate resin (a3) is a polycarbonate resin containing a structural unit derived from a dihydroxy compound represented by the following (Chemical Formula 1) in a part of the structure.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 上記(化1)で表されるジヒドロキシ化合物としては、例えば、立体異性体の関係にある、イソソルビド、イソマンニドおよびイソイデットを挙げることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いることができる。 Examples of the dihydroxy compound represented by the above (Chemical Formula 1) include isosorbide, isomannide and isoidet which are in a stereoisomeric relationship. These may be used alone or in combination of two or more.
 上記(化1)で表されるジヒドロキシ化合物は、生物起源物質を原料として糖質から製造可能なエーテルジオールである。とりわけイソソルビドは、澱粉から得られるD-グルコースを水添してから脱水することにより安価に製造可能であって、資源として豊富に入手することが可能である。これらの事情により、イソソルビドが最も好ましい。 The dihydroxy compound represented by the above (Chemical Formula 1) is an ether diol that can be produced from a saccharide using a biogenic material as a raw material. In particular, isosorbide can be produced at low cost by hydrogenating and dehydrating D-glucose obtained from starch, and can be obtained in abundant resources. For these reasons, isosorbide is most preferred.
 A層の主成分としてのポリカーボネート樹脂(a3)において、上記(化1)で表されるジヒドロキシ化合物に由来する構造単位の含有割合は、50モル%以上であることが好ましく、60モル%以上であることがより好ましく、また、90モル%以下であることが好ましく、80モル%以下であることがより好ましい。 In the polycarbonate resin (a3) as the main component of the A layer, the content ratio of the structural unit derived from the dihydroxy compound represented by the above (Chemical Formula 1) is preferably 50 mol% or more, and 60 mol% or more. More preferably, it is preferably 90 mol% or less, and more preferably 80 mol% or less.
 A層の主成分としてのポリカーボネート樹脂(a3)において、上記(化1)で表されるジヒドロキシ化合物に由来する構造単位の含有割合が上記範囲であることで、ポリカーボネート樹脂(a3)の硬度は、芳香族ポリカーボネート樹脂とアクリル樹脂との中間の値を取るようになり、表層にアクリル樹脂層が配置されたディスプレイ用前面板よりも打ち抜き加工性が飛躍的に向上する。
 より具体的に言えば、当該構造単位の含有割合が90モル%以下であることによって、表面硬度や耐熱性が優れ、かつ耐衝撃性および後述するB層との層間密着性の低下を抑止できるため、打ち抜き加工時の歩留まりの低下およびディスプレイ用前面板としての製品を取扱う際の破損などの種々の不具合を防止できる。
 一方、上記含有割合が50モル%以上であることによって、耐衝撃性や打ち抜き加工性が優れ、かつ表面硬度や耐熱性の低下を抑止できる。また、本積層体は、少なくとも一方の面にハードコート層を配置することでさらに十分な表面硬度を得ることが可能となり、ディスプレイ用前面板および透明建材のいずれの用途向けにも好適となる。
In the polycarbonate resin (a3) as the main component of the A layer, the content ratio of the structural unit derived from the dihydroxy compound represented by (Chemical Formula 1) is in the above range, and thus the hardness of the polycarbonate resin (a3) is: The intermediate value between the aromatic polycarbonate resin and the acrylic resin is taken, and the punching workability is dramatically improved as compared with the display front plate in which the acrylic resin layer is arranged on the surface layer.
More specifically, when the content of the structural unit is 90 mol% or less, the surface hardness and heat resistance are excellent, and the impact resistance and the lowering of interlayer adhesion with the B layer described later can be suppressed. Therefore, it is possible to prevent various problems such as a decrease in yield at the time of punching and breakage when handling a product as a display front plate.
On the other hand, when the content ratio is 50 mol% or more, impact resistance and punching workability are excellent, and a decrease in surface hardness and heat resistance can be suppressed. Moreover, this laminated body can obtain further sufficient surface hardness by disposing a hard coat layer on at least one surface, and is suitable for any use of a display front plate and a transparent building material.
 上記ポリカーボネート樹脂(a3)は、上記構造単位以外の構造単位を有していてもよく、例えば、国際公開第2004/111106号パンフレットに記載の脂肪族ジヒドロキシ化合物に由来する構造単位や、国際公開第2007/148604号パンフレットに記載の脂環式ジヒドロキシ化合物に由来する構造単位を挙げることができる。 The polycarbonate resin (a3) may have a structural unit other than the structural unit. For example, a structural unit derived from an aliphatic dihydroxy compound described in International Publication No. 2004/111106 pamphlet, The structural unit derived from the alicyclic dihydroxy compound as described in 2007/148604 pamphlet can be mentioned.
 上記脂肪族ジヒドロキシ化合物に由来する構造単位の中でも、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオールおよび1,6-ヘキサンジオールからなる群より選ばれた少なくとも1種のジヒドロキシ化合物に由来する構造単位を有することが好ましい。 Among structural units derived from the above aliphatic dihydroxy compounds, selected from the group consisting of ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol. It is preferable to have a structural unit derived from at least one dihydroxy compound.
 上記脂環式ジヒドロキシ化合物に由来する構造単位の中でも、5員環構造または6員環構造を含むものであることが好ましい。6員環構造は共有結合によって椅子形または舟形に固定されていてもよい。5員環構造または6員環構造である脂環式ジヒドロキシ化合物に由来する構造単位を含むことにより、得られるポリカーボネートの耐熱性を高くすることができる。脂環式ジヒドロキシ化合物に含まれる炭素原子数は通常70以下であることが好ましく、50以下であることがより好ましく、30以下であることがさらに好ましい。 Among the structural units derived from the above alicyclic dihydroxy compounds, those containing a 5-membered ring structure or a 6-membered ring structure are preferable. The six-membered ring structure may be fixed in a chair shape or a boat shape by a covalent bond. By including a structural unit derived from an alicyclic dihydroxy compound having a 5-membered ring structure or a 6-membered ring structure, the heat resistance of the obtained polycarbonate can be increased. The number of carbon atoms contained in the alicyclic dihydroxy compound is usually preferably 70 or less, more preferably 50 or less, and further preferably 30 or less.
 上記5員環構造または6員環構造を含む脂環式ジヒドロキシ化合物としては、上述の国際公開第2007/148604号に記載のものを挙げることができる。中でも、シクロヘキサンジメタノール、トリシクロデカンジメタノール、アダマンタンジオールおよびペンタシクロペンタデカンジメタノールを好適に例示することができる。
 なお、工業的に入手が容易である観点から、シクロヘキサンジメタノールを選択することが好ましく、なかでも、1,4-シクロヘキサンジメタノールが好ましい。一方、耐熱性や後述するB層との層間接着性を重視する場合には、トリシクロドデカン次メタノールを選択することが好ましい。
Examples of the alicyclic dihydroxy compound containing the 5-membered ring structure or the 6-membered ring structure include those described in the above-mentioned International Publication No. 2007/148604. Among these, cyclohexanedimethanol, tricyclodecanedimethanol, adamantanediol and pentacyclopentadecanedimethanol can be preferably exemplified.
In view of industrial availability, cyclohexanedimethanol is preferably selected, and 1,4-cyclohexanedimethanol is particularly preferable. On the other hand, when importance is attached to heat resistance and interlayer adhesion with the B layer described later, it is preferable to select tricyclododecane secondary methanol.
 上記A層に用いるポリカーボネート樹脂(a3)は、一般に用いられる重合方法で製造することができ、ホスゲン法または炭酸ジエステルと反応させるエステル交換法のいずれでもよい。なかでも、重合触媒の存在下に、構造の一部に上記(化1)で表されるジヒドロキシ化合物と、脂肪族及び/又は脂環式ヒドロキシ化合物と、必要に応じて用いられるその他のジヒドロキシ化合物と、炭酸ジエステルとを反応させるエステル交換法が好ましい。 The polycarbonate resin (a3) used for the A layer can be produced by a generally used polymerization method, and may be either a phosgene method or a transesterification method in which it reacts with a carbonic acid diester. Among them, in the presence of a polymerization catalyst, a dihydroxy compound represented by the above (Chemical Formula 1) in a part of the structure, an aliphatic and / or alicyclic hydroxy compound, and other dihydroxy compounds used as necessary And a transesterification method in which carbonic acid diester is reacted.
 エステル交換法は、構造の一部に上記(化1)で表されるジヒドロキシ化合物と、脂肪族及び/又は脂環式ヒドロキシ化合物と、必要に応じて用いられるその他のジヒドロキシ化合物と、炭酸ジエステルとを塩基性触媒、さらにはこの塩基性触媒を中和する酸性物質を添加し、エステル交換反応を行う製造方法である。 The transesterification method includes a dihydroxy compound represented by the above (Chemical Formula 1) as a part of the structure, an aliphatic and / or alicyclic hydroxy compound, other dihydroxy compounds used as necessary, and a carbonic acid diester. Is a basic catalyst, and further, an acidic substance that neutralizes the basic catalyst is added to perform a transesterification reaction.
 炭酸ジエステルの代表例としては、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジナフチルカーネート、ビス(ビフェニル)カーボネート、ジエチルカーボネート、ジメチルカーボネート、ジブチルカーボネートおよびジシクロヘキシルカーボネートなどが挙げられる。これらのうち、特にジフェニルカーボネートが好ましく用いられる。 Representative examples of carbonic acid diesters include diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, bis (biphenyl) carbonate, diethyl carbonate, dimethyl carbonate, dibutyl carbonate, and dicyclohexyl carbonate. Is mentioned. Of these, diphenyl carbonate is particularly preferably used.
 ポリカーボネート樹脂(a3)の分子量は、還元粘度で表すことができ、当該還元粘度の下限については、0.20dl/g以上が好ましく、0.30dL/g以上がより好ましく、0.35dL/g以上が更に好ましく、還元粘度の上限については、1.20dL/g以下が好ましく、1.00dL/g以下がより好ましく、0.80dL/g以下が更に好ましい。
 ポリカーボネート樹脂の還元粘度が低すぎると成形品の機械的強度が小さい可能性があり、大きすぎると、成形する際の流動性が低下し、生産性や成形性を低下させる傾向がある。
The molecular weight of the polycarbonate resin (a3) can be represented by a reduced viscosity. The lower limit of the reduced viscosity is preferably 0.20 dl / g or more, more preferably 0.30 dL / g or more, and 0.35 dL / g or more. The upper limit of the reduced viscosity is preferably 1.20 dL / g or less, more preferably 1.00 dL / g or less, and even more preferably 0.80 dL / g or less.
If the reduced viscosity of the polycarbonate resin is too low, the mechanical strength of the molded product may be small. If it is too large, the fluidity at the time of molding tends to decrease, and the productivity and moldability tend to decrease.
(その他の成分)
 A層は、本発明の効果を阻害しない範囲で適宜、種々の添加剤や改質剤などを含有することができる。ここで添加剤としては、例えば酸化防止剤、紫外線吸収剤、光安定剤、滑剤、難燃剤、着色剤などを挙げることができる。また、改質剤としては、例えば耐衝撃性改良剤、相容化剤、帯電防止剤などを挙げることができる。
(Other ingredients)
The layer A can appropriately contain various additives, modifiers and the like as long as the effects of the present invention are not impaired. Here, examples of the additive include an antioxidant, an ultraviolet absorber, a light stabilizer, a lubricant, a flame retardant, and a colorant. Examples of the modifier include impact resistance improvers, compatibilizers and antistatic agents.
<B層>
 B層は、本積層体の機能のうち、特に耐衝撃性や耐熱性などを発現させる機能を分担する層である。
<B layer>
B layer is a layer which shares the function which expresses especially impact resistance, heat resistance, etc. among the functions of this laminated body.
 B層は、ポリカーボネート系樹脂(b1)を単独で主成分樹脂として用いることもできるし、また、ポリカーボネート系樹脂(b1)に後述する種々の改質剤(b2)を混合して主成分樹脂として用いることもできる。 In the B layer, the polycarbonate resin (b1) can be used alone as a main component resin, and various modifiers (b2) described later are mixed with the polycarbonate resin (b1) as the main component resin. It can also be used.
(ポリカーボネート系樹脂(b1))
 ポリカーボネート系樹脂(b1)としては、芳香族ポリカーボネート系樹脂及び脂肪族ポリカーボネート系樹脂を挙げることができる。
 ポリカーボネート系樹脂(b1)は、単独重合体でもよいし、また、他の共重合可能なモノマーとの共重合体であってもよい。
 さらに、ポリカーボネート系樹脂(b1)の構造は、分岐構造であってもよいし、直鎖構造であってもよいし、分岐構造と直鎖構造の混合物であってもよい。
 また、ポリカーボネート系樹脂(b1)は、ホスゲン法やエステル交換法、ピリジン法など、公知のいずれの製造方法で得られたものであってもよい。
(Polycarbonate resin (b1))
Examples of the polycarbonate resin (b1) include aromatic polycarbonate resins and aliphatic polycarbonate resins.
The polycarbonate resin (b1) may be a homopolymer or a copolymer with another copolymerizable monomer.
Further, the structure of the polycarbonate resin (b1) may be a branched structure, a linear structure, or a mixture of a branched structure and a linear structure.
The polycarbonate resin (b1) may be obtained by any known production method such as a phosgene method, a transesterification method, or a pyridine method.
 ポリカーボネート系樹脂(b1)の重量平均分子量は、10,000~100,000であればよく、中でも20,000以上或いは40,000以下、その中でも22,000以上或いは28,000以下であるのがさらに好ましい。
 ポリカーボネート系樹脂(b1)は、1種のみを単独で用いることもできるし、また、重量平均分子量が異なる2種以上を組み合わせて用いることもできる。
 ポリカーボネート系樹脂(b1)の重量平均分子量が上記範囲にあれば、耐衝撃性が確保され、押出成形性も良好であるため好ましい。
The weight-average molecular weight of the polycarbonate resin (b1) may be 10,000 to 100,000, particularly 20,000 or more and 40,000 or less, particularly 22,000 or more and 28,000 or less. Further preferred.
As the polycarbonate resin (b1), only one kind can be used alone, or two or more kinds having different weight average molecular weights can be used in combination.
If the weight average molecular weight of polycarbonate-type resin (b1) exists in the said range, since impact resistance is ensured and extrusion moldability is also favorable, it is preferable.
(改質剤(b2))
 溶融粘度の調整および硬度向上などのために、上記ポリカーボネート系樹脂(b1)と改質剤(b2)とを混合してB層の形成に用いるのが好ましい。
(Modifier (b2))
In order to adjust the melt viscosity and improve the hardness, the polycarbonate resin (b1) and the modifier (b2) are preferably mixed and used to form the B layer.
 改質剤(b2)としては、特定のアクリル系樹脂(b2)を例示することができる。 As the modifier (b2), a specific acrylic resin (b2) can be exemplified.
(アクリル系樹脂(b2))
 アクリル系樹脂(b2)は、芳香族(メタ)アクリレート単量体単位5~80質量%およびメチルメタクリレート単量体単位95~20質量%からなるアクリル系共重合体であるのが好ましい。
 アクリル系樹脂(b2)において、芳香族(メタ)アクリレート単量体単位とメチルメタクリレート単量体単位との含有割合が上記範囲内にあれば、ポリカーボネート系樹脂(b1)との相溶性や表面硬度向上効果が発現できるため好ましい。
 かかる観点から、芳香族(メタ)アクリレート単量体単位10~70質量%およびメチルメタクリレート単量体単位90~30質量%であることがより好ましく、芳香族(メタ)アクリレート単量体単位25~60質量%およびメチルメタクリレート単量体単位75~40質量%であることがさらに好ましい。
(Acrylic resin (b2))
The acrylic resin (b2) is preferably an acrylic copolymer composed of 5 to 80% by mass of aromatic (meth) acrylate monomer units and 95 to 20% by mass of methyl methacrylate monomer units.
In the acrylic resin (b2), if the content ratio of the aromatic (meth) acrylate monomer unit and the methyl methacrylate monomer unit is within the above range, the compatibility and the surface hardness with the polycarbonate resin (b1). Since the improvement effect can be expressed, it is preferable.
From this viewpoint, the aromatic (meth) acrylate monomer unit is preferably 10 to 70% by mass and the methyl methacrylate monomer unit 90 to 30% by mass, and the aromatic (meth) acrylate monomer unit 25 to More preferably, it is 60% by mass and 75 to 40% by mass of methyl methacrylate monomer units.
 上記の芳香族(メタ)アクリレート単量体単位としては、例えばフェニル(メタ)アクリレート、ベンジル(メタ)アクリレートなどを例示することができる。これらは1種のみを単独で又は2種以上を組み合わせて用いることができる。
 中でも、ポリカーボネート系樹脂(b1)との相溶性などから、フェニルメタクリレートやベンジルメタクリレートが好ましく、フェニルメタクリレートがより好ましい。
Examples of the aromatic (meth) acrylate monomer unit include phenyl (meth) acrylate and benzyl (meth) acrylate. These can be used alone or in combination of two or more.
Of these, phenyl methacrylate and benzyl methacrylate are preferred, and phenyl methacrylate is more preferred from the viewpoint of compatibility with the polycarbonate resin (b1).
 アクリル系樹脂(b2)には、必要に応じて芳香族(メタ)アクリレート単量体単位およびメチルメタクリレート単量体単位以外の共重合可能な他の単量体単位を含有させることができる。
 その他の単量体単位を含有させる場合には、アクリル系樹脂(b2)中に0.1~10質量%であることが好ましい。
The acrylic resin (b2) can contain other copolymerizable monomer units other than the aromatic (meth) acrylate monomer unit and the methyl methacrylate monomer unit, if necessary.
When other monomer units are contained, the content is preferably 0.1 to 10% by mass in the acrylic resin (b2).
 アクリル系樹脂(b2)は、ゲルパーミエーションクロマトグラフィー(GPC)にて測定されるポリスチレン換算の重量平均分子量(Mw)が5,000~30,000であることが好ましい。
 アクリル系樹脂(b2)の重量平均分子量(Mw)が上記範囲であると、ポリカーボネート系樹脂(b1)との相溶性が良好であり、得られるB層の成形性や表面硬度向上効果および外観などに優れるため好ましい。
 かかる観点から、アクリル系樹脂(b2)の重量平均分子量(Mw)の範囲は10,000~28,000であることがより好ましい。
The acrylic resin (b2) preferably has a polystyrene-reduced weight average molecular weight (Mw) of 5,000 to 30,000 as measured by gel permeation chromatography (GPC).
When the weight average molecular weight (Mw) of the acrylic resin (b2) is in the above range, the compatibility with the polycarbonate resin (b1) is good, and the moldability and surface hardness improvement effect and appearance of the obtained B layer are good. It is preferable because it is excellent.
From this viewpoint, the range of the weight average molecular weight (Mw) of the acrylic resin (b2) is more preferably 10,000 to 28,000.
 ポリカーボネート系樹脂(b1)と上記アクリル系樹脂(b2)の混合質量比は、特に制限されるものではなく、(b1)/(b2)=99~65/1~35であることが好ましい。両者の混合割合が該範囲内にあれば、得られるB層の成形性や表面硬度向上効果および外観などに優れるため好ましい。
 かかる観点から、(b1)/(b2)=95/5~70/30であることがより好ましい。
The mixing mass ratio of the polycarbonate resin (b1) and the acrylic resin (b2) is not particularly limited, and is preferably (b1) / (b2) = 99 to 65/1 to 35. It is preferable if the mixing ratio of the two is within the above range because the obtained B layer is excellent in moldability, surface hardness improvement effect, appearance, and the like.
From this viewpoint, it is more preferable that (b1) / (b2) = 95/5 to 70/30.
(好ましいポリカーボネート系樹脂)
 以上の中でも、本積層体の高温高湿環境下で発生する内部応力を低減する観点で言えば、B層の主成分樹脂としてのポリカーボネート系樹脂は、ガラス転移温度が高いほど好ましく、ポリカーボネート系樹脂(b1)の単独重合体を用いるのが特に好ましい。一方、積層体の表面硬度を重視する場合には、上記ポリカーボネート系樹脂(b1)と上記改質剤(b2)を含有するものが好ましい。
(Preferred polycarbonate resin)
Among these, from the viewpoint of reducing the internal stress generated in the high temperature and high humidity environment of the laminate, the polycarbonate resin as the main component resin of the B layer is preferably as the glass transition temperature is higher. It is particularly preferable to use the homopolymer (b1). On the other hand, when importance is attached to the surface hardness of the laminate, those containing the polycarbonate resin (b1) and the modifier (b2) are preferable.
(その他の成分)
 B層は、本発明の効果を阻害しない範囲で、前記した種々の添加剤や他の樹脂を配合することができる。
 該添加剤としては、例えば酸化防止剤、紫外線吸収剤、光安定剤、滑剤、難燃剤、着色剤、加水分解防止剤などを挙げることができる。
(Other ingredients)
The B layer can be blended with the above-described various additives and other resins as long as the effects of the present invention are not impaired.
Examples of the additive include an antioxidant, an ultraviolet absorber, a light stabilizer, a lubricant, a flame retardant, a colorant, and a hydrolysis inhibitor.
(各層のガラス転移温度)
 A層のガラス転移温度は、高温高湿環境下で発生する内部応力を抑制する観点からB層のガラス転移温度との差が小さいほど好ましく、100~140℃であることが好ましく、中でも110℃以上或いは140℃以下その中でも115℃以上、さらにその中でも120℃以上であるのが特に好ましい。
 他方、B層のガラス転移温度は、高温高湿環境下発生する内部応力抑制する観点から高いほど好ましく、100℃~160℃であることが好ましく、中でも120℃以上或いは155℃以下であるのがさらに好ましい。
(Glass transition temperature of each layer)
The glass transition temperature of the A layer is preferably as small as the difference from the glass transition temperature of the B layer from the viewpoint of suppressing internal stress generated in a high-temperature and high-humidity environment, and is preferably 100 to 140 ° C. Above or 140 ° C. or less , among them 115 ° C. or more, more preferably 120 ° C. or more.
On the other hand, the glass transition temperature of the B layer is preferably as high as possible from the viewpoint of suppressing internal stress generated in a high-temperature and high-humidity environment, preferably 100 ° C. to 160 ° C., and more preferably 120 ° C. or more or 155 ° C. or less. Further preferred.
 また、A層のガラス転移温度とB層のガラス転移温度との差の絶対値が30℃以下であると、温度85℃、湿度85%RHの高温高湿環境試験後の前面板の反りをさらに抑制できるため好ましい。かかる観点から、該差の絶対値は、30℃以下であるのが好ましく、中でも20℃以下であるのがより好ましく、その中でも10℃以下であることがさらに好ましく、中でも特に5℃以下であることがさらに好ましい。
 これは、高温高湿環境下でA層は吸水により軟化温度が低下することで種々の歪の緩和現象が生じ易いが、該差の絶対値が上記範囲内であれば、高温高湿環境下で両層の寸法変化挙動が近くなり、結果として反りが抑制されるものと考えられるからである。
 なお、上記ガラス転移温度は、示差走査熱量計を用いて、JIS K7121に準じて加熱速度10℃/分で測定して得られる値である。但し、その他の公知の機器分析装置、例えば動的粘弾性装置などでも上記ガラス転移温度を測定することができる。
Further, if the absolute value of the difference between the glass transition temperature of the A layer and the glass transition temperature of the B layer is 30 ° C. or less, the warpage of the front plate after the high temperature and high humidity environment test at a temperature of 85 ° C. and a humidity of 85% RH It is preferable because it can be further suppressed. From such a viewpoint, the absolute value of the difference is preferably 30 ° C. or less, more preferably 20 ° C. or less, more preferably 10 ° C. or less, and particularly preferably 5 ° C. or less. More preferably.
This is because, in a high-temperature and high-humidity environment, the A layer is susceptible to various strain relaxation phenomena due to a decrease in softening temperature due to water absorption, but if the absolute value of the difference is within the above range, This is because the dimensional change behaviors of both layers are close to each other, and as a result, warpage is considered to be suppressed.
The glass transition temperature is a value obtained by measuring at a heating rate of 10 ° C./min according to JIS K7121 using a differential scanning calorimeter. However, the glass transition temperature can also be measured by other known instrument analyzers such as a dynamic viscoelastic device.
<ハードコート層(C層)>
 前面板は、さらに片面側又は両面側の最表面層としてハードコート層(C層)を備えていてもよい。但し、ハードコート層(C層)を備えていなくてもよい。
 該ハードコート層(C層)は、前面板に優れた表面硬度や耐擦傷性を付与する層である。
<Hard coat layer (C layer)>
The front plate may further include a hard coat layer (C layer) as an outermost surface layer on one side or both sides. However, the hard coat layer (C layer) may not be provided.
The hard coat layer (C layer) is a layer that imparts excellent surface hardness and scratch resistance to the front plate.
 ハードコート層(C層)は、例えば、電子線、放射線、紫外線などのエネルギー線を照射することにより、C層形成用硬化性樹脂組成物を硬化させるか、或いは、加熱によりC層形成用硬化性樹脂組成物を硬化させて形成することができる。
 中でも、成形時間および生産性の観点から、紫外線を照射することにより、C層形成用硬化性樹脂組成物を硬化させてハードコート層(C層)を形成するのが好ましい。
For example, the hard coat layer (C layer) is cured by irradiating an energy beam such as an electron beam, radiation, or ultraviolet ray to cure the curable resin composition for forming the C layer, or curing for forming the C layer by heating. It can be formed by curing the functional resin composition.
Among these, from the viewpoint of molding time and productivity, it is preferable to form a hard coat layer (C layer) by irradiating ultraviolet rays to cure the C layer forming curable resin composition.
 ハードコート層(C層)を形成するためのC層形成用硬化性樹脂組成物は、硬化性樹脂C1を含有する樹脂組成物であればよい。上述のように、紫外線を照射することにより、C層形成用硬化性樹脂組成物を硬化させる場合には、該C層形成用硬化性樹脂組成物は、硬化性樹脂C1のほかに光重合開始剤を含有する樹脂組成物であるのが好ましい。 The curable resin composition for forming the C layer for forming the hard coat layer (C layer) may be a resin composition containing the curable resin C1. As described above, when the C layer forming curable resin composition is cured by irradiating ultraviolet rays, the C layer forming curable resin composition starts photopolymerization in addition to the curable resin C1. A resin composition containing an agent is preferred.
 上記の硬化性樹脂C1の具体例としては、例えばアクリレート化合物、ウレタンアクリレート化合物、エポキシアクリレート化合物、カルボキシル基変性エポキシアクリレート化合物、ポリエステルアクリレート化合物、共重合系アクリレート、脂環式エポキシ樹脂、グリシジルエーテルエポキシ樹脂、ビニルエーテル化合物、オキセタン化合物などを例示することができる。これらの硬化性樹脂は、1種のみを単独で又は2種以上を組み合わせて用いることができる。
 より優れた表面硬度を付与する硬化性樹脂C1としては、多官能アクリレート化合物、多官能ウレタンアクリレート化合物、多官能エポキシアクリレート化合物など、ラジカル重合系の硬化性化合物や、アルコキシシラン、アルキルアルコキシシランなど、熱重合系の硬化性化合物を挙げることができ、さらに、前記硬化性樹脂に無機成分を含有させてなる有機・無機複合系硬化性樹脂組成物であってもよい。
Specific examples of the curable resin C1 include, for example, acrylate compounds, urethane acrylate compounds, epoxy acrylate compounds, carboxyl group-modified epoxy acrylate compounds, polyester acrylate compounds, copolymer acrylates, alicyclic epoxy resins, glycidyl ether epoxy resins. , Vinyl ether compounds, oxetane compounds and the like. These curable resins can be used alone or in combination of two or more.
As the curable resin C1 that imparts more excellent surface hardness, a polyfunctional acrylate compound, a polyfunctional urethane acrylate compound, a polyfunctional epoxy acrylate compound, or the like, a radical polymerization curable compound, an alkoxysilane, an alkylalkoxysilane, etc. A thermopolymerizable curable compound can be mentioned, and further, an organic / inorganic composite curable resin composition obtained by adding an inorganic component to the curable resin may be used.
 特に優れた表面硬度を付与するC層形成用硬化性樹脂組成物として、有機・無機ハイブリッド系硬化性樹脂組成物を挙げることができる。有機・無機ハイブリッド系硬化性樹脂組成物としては、前記硬化性樹脂に反応性官能基を有する無機成分を含有させた硬化性樹脂組成物から構成されるものを挙げることができる。
 このような反応性官能基を有する無機成分を利用して、例えば、この無機成分がラジカル重合性モノマーと共重合および架橋することで、単に有機バインダーに無機成分を含有させてなる有機・無機複合系硬化性樹脂組成物に比べて、硬化収縮が生じにくく、かつ高い表面硬度を発現することができるので好ましい。さらに、硬化収縮の低減の観点からは、反応性官能基を有する無機成分として紫外線反応性のコロイダルシリカを含む有機・無機ハイブリッド系硬化性樹脂組成物をより好ましい例として挙げることができる。
An organic / inorganic hybrid curable resin composition may be mentioned as a curable resin composition for forming a C layer that gives particularly excellent surface hardness. Examples of the organic / inorganic hybrid curable resin composition include those composed of a curable resin composition containing an inorganic component having a reactive functional group in the curable resin.
Utilizing such an inorganic component having a reactive functional group, for example, an organic / inorganic composite in which this inorganic component is copolymerized and crosslinked with a radical polymerizable monomer, so that the organic binder simply contains the inorganic component. Compared to the system curable resin composition, it is preferable because curing shrinkage hardly occurs and high surface hardness can be expressed. Furthermore, from the viewpoint of reducing curing shrinkage, an organic / inorganic hybrid curable resin composition containing ultraviolet-reactive colloidal silica as an inorganic component having a reactive functional group can be mentioned as a more preferable example.
 ハードコート層(C層)に特に優れた表面硬度を付与するため、ハードコート層(C層)に含有される無機成分、特に反応性官能基を有する無機成分の濃度を調整することが好ましい。
 かかる観点から、ハードコート層(C層)に含有される無機成分、特に反応性官能基を有する無機成分の濃度を10~65質量%とするのが好ましい。当該濃度が10質量%以上であれば、ハードコート層(C層)に優れた表面硬度を付与する効果が得られるので好ましい。他方、当該濃度が65質量%以下であれば、ハードコート層(C層)において、無機成分、特に反応性官能基を有する無機成分を最密に充填することが可能になり、優れた表面硬度を効果的に付与することができるので好ましい。
 かかる観点から、当該濃度は10~65質量%であるのが好ましく、中でも20質量%以上或いは60質量%以下、その中でも40質量%以上或いは55質量%以下であるのがさらに好ましい。
In order to give a particularly excellent surface hardness to the hard coat layer (C layer), it is preferable to adjust the concentration of the inorganic component contained in the hard coat layer (C layer), particularly the inorganic component having a reactive functional group.
From this viewpoint, the concentration of the inorganic component contained in the hard coat layer (C layer), particularly the inorganic component having a reactive functional group, is preferably 10 to 65% by mass. If the said density | concentration is 10 mass% or more, since the effect which provides the surface hardness excellent in the hard-coat layer (C layer) is acquired, it is preferable. On the other hand, if the concentration is 65% by mass or less, the hard coat layer (C layer) can be filled with an inorganic component, particularly an inorganic component having a reactive functional group, with excellent surface hardness. Can be effectively imparted.
From this viewpoint, the concentration is preferably 10 to 65% by mass, more preferably 20% by mass or more and 60% by mass or less, and particularly preferably 40% by mass or more and 55% by mass or less.
 なお、後述する粘着シートとの接着性を高めると共に、本積層体の高温高湿環境下で発生する内部応力を低減する観点から、ハードコート層(C層)の主成分樹脂は、粘着シートの主成分樹脂と同一樹脂であるのが好ましい。例えば、粘着シートの主成分樹脂がアクリル系樹脂の場合、ハードコート層(C層)の主成分樹脂もアクリル系樹脂であるのが好ましい。 In addition, while improving adhesiveness with the adhesive sheet mentioned later, and reducing the internal stress which generate | occur | produces in the high-temperature, high-humidity environment of this laminated body, the main component resin of a hard-coat layer (C layer) is an adhesive sheet. The same resin as the main component resin is preferred. For example, when the main component resin of the pressure-sensitive adhesive sheet is an acrylic resin, the main component resin of the hard coat layer (C layer) is also preferably an acrylic resin.
 C層形成用硬化性樹脂組成物は、光重合開始剤を含有し、該光重合開始剤が紫外線を吸収して、励起、活性化されることで重合反応を起こし、紫外線硬化性樹脂の硬化反応が起こるものが好ましい。
 光重合開始剤としては、例えば、ベンジル、ベンゾフェノンやその誘導体、チオキサントン類、ベンジルジメチルケタール類、αヒドロキシアルキルフェノン類、α-ヒドロキシアセトフェノン類、ヒドロキシケトン類、アミノアルキルフェノン類、アシルホスフィンオキサイド類などを挙げることができる。中でも、α-ヒドロキシアルキルフェノン類は硬化時に黄変を起こしにくく、透明な硬化物が得られるので好ましい。また、アミノアルキルフェノン類は、非常に高い反応性を備え、優れた硬度の硬化物が得られるので好ましい。上記光重合開始剤は、1種のみを単独で又は2種以上を組み合わせて用いることができる。
 光重合開始剤の添加量は、硬化性樹脂100質量部に対して、0.1~5質量部添加することが好ましい。
The curable resin composition for forming the C layer contains a photopolymerization initiator, and the photopolymerization initiator absorbs ultraviolet rays to be excited and activated to cause a polymerization reaction, thereby curing the ultraviolet curable resin. Those where the reaction takes place are preferred.
Examples of the photopolymerization initiator include benzyl, benzophenone and derivatives thereof, thioxanthones, benzyldimethyl ketals, αhydroxyalkylphenones, α-hydroxyacetophenones, hydroxyketones, aminoalkylphenones, acylphosphine oxides, and the like. Can be mentioned. Of these, α-hydroxyalkylphenones are preferred because they hardly cause yellowing during curing and a transparent cured product is obtained. In addition, aminoalkylphenones are preferable because they have very high reactivity and a cured product having excellent hardness can be obtained. The said photoinitiator can be used individually by 1 type or in combination of 2 or more types.
The addition amount of the photopolymerization initiator is preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the curable resin.
 C層形成用硬化性樹脂組成物は、表面調整成分としてレベリング剤を含むことができる。
 レベリング剤としては、シリコーン系レベリング剤、アクリル系レベリング剤などを挙げることができ、特に、末端に反応性の官能基を有するものが好ましく、2官能以上の反応性の官能基を有するものがより好ましい。
 具体的には、両末端に2重結合を有するアクリル基を有するポリエーテル変性ポリジメチルシロキサンや、2重結合を末端に2個ずつ計4個有するアクリル基を有するポリエステル変性ポリジメチルシロキサンなどを挙げることができる。
 これらの中でも、ヘイズの値が安定し、かつ耐擦傷性の向上に寄与するアクリル基を有するポリエステル変性ポリジメチルシロキサンが特に好ましい。
The curable resin composition for forming a C layer can contain a leveling agent as a surface adjustment component.
Examples of the leveling agent include silicone leveling agents and acrylic leveling agents. In particular, those having a reactive functional group at the terminal are preferable, and those having a reactive functional group having two or more functionalities are more preferable. preferable.
Specific examples include polyether-modified polydimethylsiloxane having an acrylic group having double bonds at both ends, and a polyester-modified polydimethylsiloxane having acrylic groups having two double bonds at the ends. be able to.
Among these, polyester-modified polydimethylsiloxane having an acrylic group that has a stable haze value and contributes to improvement of scratch resistance is particularly preferable.
 C層形成用硬化性樹脂組成物は、硬化性樹脂成分のほかに、例えば、ケイ素系化合物、フッ素系化合物、またはこれらの混合化合物などの滑剤や、酸化防止剤、紫外線吸収剤、帯電防止剤、シリコーン系化合物などの難燃剤、フィラー、ガラス繊維、耐衝撃性改質剤等の各種添加剤を本発明の効果を阻害しない範囲で含有することができる。 In addition to the curable resin component, the curable resin composition for forming the C layer includes, for example, a lubricant such as a silicon compound, a fluorine compound, or a mixed compound thereof, an antioxidant, an ultraviolet absorber, and an antistatic agent. In addition, various additives such as a flame retardant such as a silicone compound, a filler, glass fiber, and an impact modifier can be contained within a range that does not impair the effects of the present invention.
 前記したハードコート層(C層)の厚みは、特に制限されるものではない。例えば1μm~30μmであるのが好ましく、中でも3μm以上或いは25μm以下、その中でも5μm以上或いは20μm以下、その中でも7μm以上或いは15μm以下であるのが特に好ましい。
 ここで、ハードコート層(C層)の厚みが上記範囲にあれば、耐擦傷性が付与でき、また、応力によるクラックが発生し難いため好ましい。
The thickness of the hard coat layer (C layer) is not particularly limited. For example, the thickness is preferably 1 μm to 30 μm, more preferably 3 μm or more and 25 μm or less, especially 5 μm or more and 20 μm or less, and particularly preferably 7 μm or more and 15 μm or less.
Here, if the thickness of the hard coat layer (C layer) is in the above range, scratch resistance can be imparted and cracks due to stress are unlikely to occur, which is preferable.
 また、両面にハードコート層(C層)を有する場合、各ハードコート層の厚みは、同一でもよいし異なっていてもよい。中でも、各ハードコート層の厚みは、共に7μm~15μmの範囲であって、かつ、アクリル系樹脂層(A層)表面のハードコート層の厚みがポリカーボネート系樹脂層(B層)表面のハードコート層の厚みと同等以上であることが好ましい。 When the hard coat layers (C layers) are provided on both sides, the thickness of each hard coat layer may be the same or different. In particular, the thickness of each hard coat layer is in the range of 7 μm to 15 μm, and the hard coat layer on the surface of the acrylic resin layer (A layer) is hard coat on the surface of the polycarbonate resin layer (B layer). The thickness is preferably equal to or greater than the thickness of the layer.
<前面板の積層構成>
 前面板は、ポリカーボネート系樹脂層(B層)の片面側又は両面側に、該ポリカーボネート系樹脂とは異なる熱可塑性樹脂層(A層)を有する層構成であればよく、他の層を備えていてもよい。例えばポリカーボネート系樹脂層(B層)の片面側又は両面側に、アクリル系樹脂層(A層)を有する積層体であればよく、他の層を備えていてもよい。
 また、例えば上述のように、片面側最表面又は両面側最表面にハードコート層(C層)を備えていてもよい。
<Laminated structure of front plate>
The front plate may have a layer structure having a thermoplastic resin layer (A layer) different from the polycarbonate resin on one side or both sides of the polycarbonate resin layer (B layer), and includes other layers. May be. For example, it may be a laminate having an acrylic resin layer (A layer) on one side or both sides of a polycarbonate resin layer (B layer), and other layers may be provided.
Further, for example, as described above, a hard coat layer (C layer) may be provided on the single-sided outermost surface or the double-sided outermost surface.
 前面板の層構成としては、(A)/(B)、(A)/(B)/(A)、(C)/(A)/(B)、(C)/(A)/(B)/(A)、(C)/(A)/(B)/(C)、および(C)/(A)/(B)/(A)/(C)などを例示することができる。
 ここで、層構成の中に同一分類層を2層以上有する場合には、該層は同一組成でもよいし、異なった組成でもよい。
 以上の中でも、(A)/(B)、(A)/(B)/(A)、(C)/(A)/(B)、(C)/(A)/(B)/(C)、(C)/(A)/(B)/(A)/(C)構成が好ましい。
 また、ディスプレイパネルなどの場合には、(視認側)(C)/(A)/(B)/(C)(光源側)や、(視認側)(C)/(A)/(B)(光源側)に配置することがより好ましい。
As the layer structure of the front plate, (A) / (B), (A) / (B) / (A), (C) / (A) / (B), (C) / (A) / (B ) / (A), (C) / (A) / (B) / (C), and (C) / (A) / (B) / (A) / (C).
Here, when two or more of the same classification layers are included in the layer structure, the layers may have the same composition or different compositions.
Among these, (A) / (B), (A) / (B) / (A), (C) / (A) / (B), (C) / (A) / (B) / (C ), (C) / (A) / (B) / (A) / (C) configurations are preferred.
In the case of a display panel or the like, (viewing side) (C) / (A) / (B) / (C) (light source side) or (viewing side) (C) / (A) / (B) It is more preferable to arrange on the light source side.
<前面板の厚み>
 前面板において、前面板の厚み(a)は、特に制限されるものではなく、例えば0.1mm~3.0mmであるのが好ましく、中でも1.5mm以下、その中でも0.15mm以上或いは1.2mm以下であるのがさらに好ましい。
<Thickness of front plate>
In the front plate, the thickness (a 1 ) of the front plate is not particularly limited, and is preferably, for example, 0.1 mm to 3.0 mm, particularly 1.5 mm or less, of which 0.15 mm or more or 1 More preferably, it is 2 mm or less.
 また、前面板の厚み(a)は、本積層体の適用用途によっても好ましい範囲がある。例えば、各種画像表示装置のフロントカバー材に適用する場合には、0.1~2.0mmであることが好ましく、0.15mm以上或いは1.5mm以下、0.2mm以上或いは0.8mm以下、0.2mm以上或いは0.7mm以下であることがさらに好ましい。該範囲内であれば、軽量性と剛性および高温や高湿な環境における形状安定性に優れるため好ましい。 Further, the thickness (a 1 ) of the front plate has a preferable range depending on the application application of the laminate. For example, when applied to the front cover material of various image display devices, it is preferably 0.1 to 2.0 mm, 0.15 mm or more or 1.5 mm or less, 0.2 mm or more or 0.8 mm or less, More preferably, it is 0.2 mm or more or 0.7 mm or less. If it is in this range, it is preferable because it is excellent in lightness and rigidity and shape stability in a high temperature and high humidity environment.
 また、前面板に粘着層などを積層し、ガラスなどの表面の汚れや傷付きから保護したり、破壊した破片などの飛散を防止したりする用途に適用する場合には、前面板の厚み(a)は、0.1mm~0.6mmであることが好ましく、中でも0.15mm以上或いは0.5mm以下であることがより好ましい。 Also, when applying an adhesive layer etc. to the front plate to protect it from dirt or scratches on the surface of glass, etc., or to prevent scattering of broken pieces, the thickness of the front plate ( a 1 ) is preferably from 0.1 mm to 0.6 mm, more preferably from 0.15 mm to 0.5 mm.
 いずれの用途の場合においても、本積層体の内部応力(σ)を低減するという点においては、前面板の厚み(a)は薄いほうが好ましい。かかる観点から、前面板の厚み(a)は0.7mm以下であることが好ましく、0.6mm以下であることがより好ましく、0.5mm以下であることがさらに好ましい。 In any case, it is preferable that the thickness (a 1 ) of the front plate is thinner in terms of reducing the internal stress (σ) of the laminate. From this viewpoint, the thickness (a 1 ) of the front plate is preferably 0.7 mm or less, more preferably 0.6 mm or less, and further preferably 0.5 mm or less.
 本積層体において、A層の合計厚みは、本積層体の高温高湿環境下で発生する内部応力、さらに形状安定性を抑制するためには小さいほど好ましいが、一方で表面硬度を向上させるためには一定以上の厚みであることが好ましく、目的とする物性に合わせて適切な範囲内に調整することが好ましい。
 かかる観点から、A層の合計厚みは、10μm~250μmであるのが好ましく、中でも30μm以上或いは200μm以下、その中でも50μm以上或いは150μm以下であるのがさらに好ましい。
 なお、本積層体が、例えばA層として2層を備えている場合には、当該2層分の合計厚みがA層の合計厚みとなる。
In the present laminate, the total thickness of layer A is preferably as small as possible in order to suppress internal stress generated in the high temperature and high humidity environment of the laminate, and further shape stability. On the other hand, in order to improve surface hardness. The thickness is preferably a certain thickness or more, and is preferably adjusted within an appropriate range according to the intended physical properties.
From such a viewpoint, the total thickness of the A layer is preferably 10 μm to 250 μm, more preferably 30 μm or more and 200 μm or less, and particularly preferably 50 μm or more or 150 μm or less.
In addition, when this laminated body is provided with two layers as A layer, for example, the total thickness for the two layers is the total thickness of the A layer.
 また、本積層体の内部応力を低減して、高温高湿環境における形状安定性を高める観点から、熱可塑性樹脂層A層及びポリカーボネート系樹脂層B層の合計厚み(T)に対する、熱可塑性樹脂層A層1層の厚み(A)の比((A)/(T))が0.05~0.40であるのが好ましく、中でも0.07以上或いは0.35以下、その中でも0.10以上或いは0.30以下であるのがさらに好ましい。
 なお、A層を2層設ける場合、A層とB層の膨張収縮挙動の差を表裏でキャンセルできるため、各A層の厚みは互いに同じ厚さとするのが好ましい。
Further, from the viewpoint of reducing the internal stress of the laminate and enhancing the shape stability in a high temperature and high humidity environment, the thermoplastic resin relative to the total thickness (T) of the thermoplastic resin layer A and the polycarbonate resin layer B layer. The ratio (A) / (T) of the thickness (A) of layer A to layer 1 is preferably 0.05 to 0.40, more preferably 0.07 or more and 0.35 or less. More preferably, it is 10 or more or 0.30 or less.
In addition, when providing two A layers, since the difference of the expansion / contraction behavior of A layer and B layer can be canceled by the front and back, it is preferable that the thickness of each A layer is mutually the same thickness.
<前面板の弾性率>
 前面板の弾性率(E)は、本積層体の高温高湿環境下での内部応力を低減して、形状安定性を高める観点から、1500~4500(MPa)であるのが好ましく、中でも1800以上或いは4000(MPa)以下、その中でも2000以上或いは3500(MPa)以下であるのがさらに好ましい。
<Elastic modulus of front plate>
The elastic modulus (E 1 ) of the front plate is preferably 1500 to 4500 (MPa) from the viewpoint of reducing the internal stress of the laminate in a high temperature and high humidity environment and improving the shape stability. 1800 or more or 4000 (MPa) or less, more preferably 2000 or more or 3500 (MPa) or less.
<前面板の反り量>
 本積層体の内部応力を低減して、高温高湿環境における形状安定性を高める観点から、上記前面板を、温度85℃、湿度85%RH環境下に120時間静置し、次いで温度23℃、湿度50%RH環境下に4時間放置した後の、4隅の反り量の平均値が1.5mm以下であるのが好ましく、中でも1.0mm以下、その中でも0.3mm以下であるのが特に好ましい。
 一方で、前記反り量(δ)がある程度大きい場合であっても、前面板の厚みを薄くする、粘着シートの弾性率を低くするなどにより、本積層体の内部応力(σ)を所定の範囲に調整することができ、高温高湿環境における形状安定性を高めることができる。
 前面板の工業的な生産性や歩留りなどの観点からは、上記反り量(δ)の下限値は、0.01mm以上であることが好ましく、さらに0.05mm以上であることがさらに好ましい。
<War amount of front plate>
From the viewpoint of reducing the internal stress of the laminate and enhancing the shape stability in a high-temperature and high-humidity environment, the front plate is allowed to stand for 120 hours in a temperature 85 ° C. and humidity 85% RH environment, and then the temperature 23 ° C. The average value of the amount of warping at the four corners after leaving for 4 hours in a humidity 50% RH environment is preferably 1.5 mm or less, more preferably 1.0 mm or less, and most preferably 0.3 mm or less. Particularly preferred.
On the other hand, even when the amount of warpage (δ) is large to some extent, the internal stress (σ) of the laminate is kept within a predetermined range by reducing the thickness of the front plate, decreasing the elastic modulus of the adhesive sheet, and the like. The shape stability in a high temperature and high humidity environment can be improved.
From the viewpoint of industrial productivity and yield of the front plate, the lower limit value of the warpage amount (δ) is preferably 0.01 mm or more, and more preferably 0.05 mm or more.
 前面板の上記反り量(δ)を上記範囲に調整するには、A層の合計厚みを小さくすると共に、A層及びB層の合計層厚み(T)に対するA層1層分の厚み(A)の比率((A)/(T))を調整する方法や、表裏のハードコート層の弾性率、硬化収縮量、厚みのバランスをとる方法を採用するのが好ましい。但し、その方法に限定するものではない。 In order to adjust the warpage amount (δ) of the front plate to the above range, the total thickness of the A layer is reduced and the thickness of one A layer with respect to the total layer thickness (T) of the A layer and the B layer (A ) Ratio ((A) / (T)) and a method of balancing the elastic modulus, cure shrinkage, and thickness of the hard coat layers on the front and back sides are preferably employed. However, it is not limited to that method.
<前面板の製造方法>
 A層とB層とを積層する際の製膜方法としては、公知の方法を採用することができる。例えば単軸押出機、多軸押出機、バンバリーミキサー、ニーダーなどの溶融混合設備を有し、Tダイを用いる押出キャスト法がハンドリング性や生産性等の観点から好適に用いることができる。
<Method for manufacturing front plate>
As a film forming method for laminating the A layer and the B layer, a known method can be adopted. For example, an extrusion casting method using a T-die having a melt mixing facility such as a single-screw extruder, a multi-screw extruder, a Banbury mixer, a kneader, etc. can be suitably used from the viewpoints of handling properties and productivity.
 積層方法としては、溶融混練された樹脂をフィードブロック或いはマルチマニホールドを有するTダイにより共押出成形する方法を好適に用いることができる。
 本積層体の外観を良好にするために、表面を鏡面処理された成形ロール(金属弾性ロールやポリシングロールなど)を用いることが好ましい。
 Tダイを用いる押出キャスト法での成形温度は、用いる樹脂組成物の流動特性や製膜性等によって適宜調整されるが、概ね300℃以下、好ましくは、230~260℃である。成形ロール温度は、概ね90~160℃、好ましくは、95~150℃である。
As a lamination method, a method of co-extrusion molding of melt-kneaded resin with a T-die having a feed block or a multi-manifold can be suitably used.
In order to improve the appearance of the laminate, it is preferable to use a forming roll (such as a metal elastic roll or a polishing roll) whose surface is mirror-finished.
The molding temperature in the extrusion casting method using a T die is appropriately adjusted depending on the flow characteristics and film-forming properties of the resin composition used, but is generally 300 ° C. or less, preferably 230 to 260 ° C. The molding roll temperature is approximately 90 to 160 ° C., preferably 95 to 150 ° C.
 また、各層を押出する際は、単軸押出機や多軸押出機が好適に用いることができ、各層の押出機にはベント機能とフィルター機能を有することが好ましい。ベント機能は、各層に用いる樹脂組成物の乾燥や微量の揮発成分の除去などに活用でき、気泡などの欠陥が少ない積層体を得ることができるため好ましい。また、フィルター機能は、種々の方式があり、具体的には、リーフディスクフィルター、バックディスクフィルター、コーン型フィルター、キャンドルフィルター、円筒型フィルターなどを例示することができる。中でも有効ろ過面積を確保し易いリーフディスクフィルターが好ましい。フィルター機能により異物や微小ゲルブツなどを除去することができ、外観不良の少ない積層体を得ることができるため好ましい。 Further, when each layer is extruded, a single screw extruder or a multi-screw extruder can be suitably used, and each layer extruder preferably has a vent function and a filter function. The vent function is preferable because it can be used for drying the resin composition used for each layer, removing a small amount of volatile components, and the like, and a laminate having few defects such as bubbles can be obtained. In addition, there are various types of filter functions, and specific examples include a leaf disk filter, a back disk filter, a cone filter, a candle filter, and a cylindrical filter. Among them, a leaf disk filter that can easily secure an effective filtration area is preferable. The filter function can remove foreign matters, minute gels, and the like, and a laminated body with few appearance defects can be obtained.
 なお、各層を形成するための樹脂組成物は、予め各成分をタンブラー、V型ブレンダー、バンバリーミキサー、押出機などの混合機により混合して使用してもよく、また押出機の供給口に計量した各成分を直接供給したり、更には2ヶ所以上の供給口を有する押出機の各供給口に別々に計量した成分を供給したりしてもよい。
 さらに各種添加剤の混合方法は、公知の方法を用いることができる。例えば、(a)各種添加剤を適当なベース樹脂に高濃度(代表的な含有量としては3~60質量%程度)に混合したマスターバッチを別途作製しておき、これを使用する樹脂に濃度を調整して混合する方法、(b)使用する樹脂に直接各種添加剤を混合する方法などを挙げることができる。
In addition, the resin composition for forming each layer may be used by mixing each component in advance with a mixer such as a tumbler, V-type blender, Banbury mixer, extruder, etc. The components may be supplied directly, or the components weighed separately may be supplied to each supply port of an extruder having two or more supply ports.
Furthermore, the mixing method of various additives can use a well-known method. For example, (a) a master batch in which various additives are mixed in a suitable base resin at a high concentration (typically about 3 to 60% by mass) is prepared separately, and the concentration is added to the resin used. And (b) a method of directly mixing various additives into the resin to be used.
 上記のように積層したA層又はB層の表面(「樹脂層表面」と称する)に、前記したC層形成用硬化性樹脂組成物を有機溶剤に溶解或いは分散させた塗料として塗工した後、硬化膜とすることにより、樹脂層表面に形成して積層する方法を挙げることができる。但し、この方法に限定されるものではない。 After coating the surface of layer A or layer B (referred to as “resin layer surface”) laminated as described above as a paint in which the above-described curable resin composition for C layer formation is dissolved or dispersed in an organic solvent By using a cured film, a method of forming and laminating on the surface of the resin layer can be exemplified. However, it is not limited to this method.
 樹脂層表面に積層する方法としては、公知の方法が使用可能である。例えば、カバーフィルムを使用するラミネート方式、ディップコート法、ナチュラルコート法、リバースコート法、カンマコーター法、ロールコート法、スピンコート法、ワイヤーバー法、エクストルージョン法、カーテンコート法、スプレコート法、グラビアコート法等が挙げられる。その他、例えば、離型層にハードコート層(C層)が形成されてなる転写シートを用いて、該ハードコート層(C層)を樹脂層表面に積層する方法を採用してもよい。
 また、該ハードコート層(C層)と樹脂層表面との密着性を向上させる目的で、樹脂層表面にコロナ処理やプラズマ処理及びプライマー処理などの各種表面処理を行うことができる。
As a method of laminating on the surface of the resin layer, a known method can be used. For example, laminating method using cover film, dip coating method, natural coating method, reverse coating method, comma coater method, roll coating method, spin coating method, wire bar method, extrusion method, curtain coating method, spray coating method, The gravure coat method etc. are mentioned. In addition, for example, a method of using a transfer sheet in which a hard coat layer (C layer) is formed on a release layer and laminating the hard coat layer (C layer) on the surface of the resin layer may be employed.
Moreover, for the purpose of improving the adhesion between the hard coat layer (C layer) and the resin layer surface, various surface treatments such as corona treatment, plasma treatment and primer treatment can be performed on the resin layer surface.
 そして、樹脂層表面にC層形成用硬化性樹脂組成物を積層した後、例えば、電子線、放射線、紫外線などのエネルギー線を照射することにより、該硬化性樹脂組成物を硬化させるか、或いは、加熱により該硬化性樹脂組成物を硬化させるのが好ましい。中でも、成形時間および生産性の観点から、紫外線照射によって硬化させるのが好ましい。
 ここで、紫外線を発する光源としては、例えば無電極高圧水銀灯、有電極高圧水銀灯、無電極メタルハライドランプ、有電極メタルハライドランプ、キセノンランプ、超高圧水銀灯または水銀キセノンランプ等を用いることができる。中でも、無電極高圧水銀灯は、高照度の紫外線を得られやすく、紫外線硬化性樹脂の硬化に有利となるため好ましい。
And after laminating the curable resin composition for forming the C layer on the surface of the resin layer, for example, the curable resin composition is cured by irradiating energy rays such as electron beam, radiation, and ultraviolet rays, or The curable resin composition is preferably cured by heating. Among these, from the viewpoint of molding time and productivity, curing by ultraviolet irradiation is preferable.
Here, as the light source that emits ultraviolet rays, for example, an electrodeless high-pressure mercury lamp, an electroded high-pressure mercury lamp, an electrodeless metal halide lamp, an electroded metal halide lamp, a xenon lamp, an ultrahigh-pressure mercury lamp, or a mercury xenon lamp can be used. Among these, an electrodeless high-pressure mercury lamp is preferable because it is easy to obtain ultraviolet rays with high illuminance and is advantageous for curing an ultraviolet curable resin.
 C層形成用硬化性樹脂組成物が紫外線硬化性樹脂からなり紫外線を照射することにより硬化させる場合、紫外線に対して透明度が高いため、硬化性樹脂組成物の内部の硬化は速やかに進行する反面、酸素による硬化阻害作用(酸素障害と称する)のため、硬化性樹脂組成物の表面では硬化が滞る場合がある。この酸素障害に対しては、窒素ガスの供給により樹脂組成物周囲を窒素ガス雰囲気下とした上で紫外線を照射すると、樹脂組成物の内部とともに表面の硬化を速やかに進行させることができるので好ましい。 When the C-layer-forming curable resin composition is made of an ultraviolet curable resin and cured by irradiating with ultraviolet rays, since the transparency to the ultraviolet rays is high, the internal curing of the curable resin composition proceeds quickly. In some cases, the curing of the surface of the curable resin composition is delayed due to the inhibition effect of oxygen (referred to as oxygen damage). For this oxygen disorder, it is preferable to irradiate the resin composition with a nitrogen gas atmosphere by supplying nitrogen gas and then irradiate with ultraviolet rays, since the curing of the surface can proceed rapidly together with the inside of the resin composition. .
 ポリカーボネート系樹脂層(B層)の片面側又は両面側に熱可塑性樹脂層(A層)を積層させて樹脂積層体とした後、前記樹脂積層体を熱処理するようにしてもよい。
 熱処理条件としては、A層のガラス転移温度よりも5℃~30℃低い温度領域、中でも5℃~25℃低い温度領域、その中でも5℃~20℃低い温度領域で、樹脂積層体を熱処理するのが好ましい。
After the thermoplastic resin layer (A layer) is laminated on one side or both sides of the polycarbonate resin layer (B layer) to form a resin laminate, the resin laminate may be heat treated.
As the heat treatment conditions, the resin laminate is heat-treated in a temperature range lower by 5 ° C. to 30 ° C. than the glass transition temperature of the A layer, particularly in a temperature range lower by 5 ° C. to 25 ° C., particularly in a temperature range lower by 5 ° C.-20 ° C. Is preferred.
 また、前面板の片面側又は両面側の最表面は、反射防止処理、防汚処理、帯電防止処理、耐候性処理および防眩処理のうちに何れか一つ以上の処理を施すことができる。
 各々の処理の方法は特に限定されず、公知の方法を用いることができる。例えば反射低減塗料を塗布する方法、誘電体薄膜を蒸着する方法、帯電防止塗料を塗布する方法などが例示できる。
Further, the outermost surface on one side or both sides of the front plate can be subjected to any one or more of antireflection treatment, antifouling treatment, antistatic treatment, weather resistance treatment and antiglare treatment.
Each processing method is not particularly limited, and a known method can be used. For example, a method of applying a reflection reducing coating, a method of depositing a dielectric thin film, a method of applying an antistatic coating, and the like can be exemplified.
 <粘着シート>
 本積層体に用いる粘着シートは、その組成を特に限定するものではない。但し、粘着性、透明性及び耐候性などの観点から、アクリル系樹脂を主成分樹脂とする粘着剤組成物を架橋してなる粘着シートを用いるのが好ましい。
<Adhesive sheet>
The composition of the pressure-sensitive adhesive sheet used in the laminate is not particularly limited. However, it is preferable to use a pressure-sensitive adhesive sheet obtained by crosslinking a pressure-sensitive adhesive composition containing an acrylic resin as a main component resin from the viewpoint of adhesiveness, transparency, weather resistance, and the like.
(粘着剤組成物)
 上記粘着剤組成物は、アクリル系樹脂と、架橋モノマーと、必要に応じて架橋開始剤、反応触媒などを含有するものが好ましい。
(Adhesive composition)
The pressure-sensitive adhesive composition preferably contains an acrylic resin, a crosslinking monomer, and, if necessary, a crosslinking initiator, a reaction catalyst, and the like.
 主成分樹脂としてのアクリル系樹脂としては、アクリル酸エステル重合体(共重合体を含む)が好ましい。
 アクリル酸エステル重合体(共重合体を含む)は、これを重合するために用いられるアクリルモノマーやメタクリルモノマーの種類、組成比率、さらには重合条件等によって、ガラス転移温度(Tg)等の特性を適宜調整することが可能である。
As the acrylic resin as the main component resin, an acrylate polymer (including a copolymer) is preferable.
Acrylic acid ester polymers (including copolymers) have properties such as glass transition temperature (Tg) depending on the types and composition ratios of acrylic monomers and methacrylic monomers used to polymerize them, and polymerization conditions. It is possible to adjust appropriately.
 アクリル酸エステル重合体を重合するために用いられるアクリルモノマーやメタクリルモノマーとしては、例えば2-エチルヘキシルアクリレート、n-オクチルアクリート、n-ブチルアクリレート、エチルアクリレート、メチルメタクリレート等を挙げることができる。これらに親水基や有機官能基などを共重合させた酢酸ビニル、ヒドロキシエチルアクリレート、アクリル酸、グリシジルアクリレート、アクリルアミド、アクリルニトリル、メタクリルニトリル、フッ素アクリレート、シリコーンアクリレートなども用いることができる。 Examples of the acrylic monomer and methacrylic monomer used for polymerizing the acrylate polymer include 2-ethylhexyl acrylate, n-octyl acrylate, n-butyl acrylate, ethyl acrylate, methyl methacrylate, and the like. Vinyl acetate, hydroxyethyl acrylate, acrylic acid, glycidyl acrylate, acrylamide, acrylonitrile, methacrylonitrile, fluorine acrylate, silicone acrylate, etc., which are copolymerized with a hydrophilic group or an organic functional group, can also be used.
 アクリル酸エステル重合体の中でも、(メタ)アクリル酸アルキルエステル系共重合体が特に好ましい。
 (メタ)アクリル酸アルキルエステル系共重合体を形成するために用いる(メタ)アクリレート、即ち、アルキルアクリレート又はアルキルメタクリレート成分としては、アルキル基がn-オクチル、イソオクチル、2-エチルヘキシル、n-ブチル、イソブチル、メチル、エチル、イソプロピルのうちのいずれか1つであるアルキルアクリレート又はアルキルメタクリレートの1種又はこれらから選ばれた2種以上の混合物であるのが好ましい。
Among the acrylic ester polymers, (meth) acrylic acid alkyl ester copolymers are particularly preferable.
As the (meth) acrylate used for forming the (meth) acrylic acid alkyl ester copolymer, that is, the alkyl acrylate or alkyl methacrylate component, the alkyl group is n-octyl, isooctyl, 2-ethylhexyl, n-butyl, One of alkyl acrylate or alkyl methacrylate which is any one of isobutyl, methyl, ethyl and isopropyl, or a mixture of two or more selected from these is preferable.
 その他の成分として、カルボキシル基、水酸基、グリシジル基等の有機官能基を有するアクリレート又はメタクリレートを共重合させてもよい。具体的には、前記アルキル(メタ)アクリレート成分と有機官能基を有する(メタ)アクリレート成分とを適宜に選択的に組み合わせたモノマー成分を出発原料として加熱重合して(メタ)アクリル酸エステル系共重合体ポリマーを得ることができる。
 中でも好ましくは、イソ-オクチルアクリレート、n-オクチルアクリレート、n-ブチルアクリレート、2-エチルヘキシルアクリレート等のアルキルアクリレートの1種又はこれらから選ばれた2種以上の混合物か、或いは、イソ-オクチルアクリレート、n-オクチルアクリレート、n-ブチルアクリレート、2-エチルヘキシルアクリレート等から少なくとも1種類以上と、アクリル酸とを共重合させたものを挙げることができる。
As other components, an acrylate or methacrylate having an organic functional group such as a carboxyl group, a hydroxyl group, or a glycidyl group may be copolymerized. Specifically, a monomer component obtained by appropriately and selectively combining the alkyl (meth) acrylate component and the (meth) acrylate component having an organic functional group as a starting material is subjected to heat polymerization to form a (meth) acrylate ester copolymer. A polymer polymer can be obtained.
Among them, preferably, one of alkyl acrylates such as iso-octyl acrylate, n-octyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, or a mixture of two or more selected from these, or iso-octyl acrylate, Examples include those obtained by copolymerizing at least one or more of n-octyl acrylate, n-butyl acrylate, 2-ethylhexyl acrylate, and the like with acrylic acid.
 架橋モノマー(「架橋剤」とも称する)としては、(メタ)アクリロイル基を2個以上有する多官能(メタ)アクリレート、イソシアネート基、エポキシ基、メラミン基、グリコール基、シロキサン基、アミノ基などの有機官能基を2個以上有する多官能有機官能基樹脂、亜鉛、アルミ、ナトリウム、ジルコニウム、カルシウムなどの金属錯体を有する有機金属化合物を用いることができる。
 上記の多官能(メタ)アクリレートの例を挙げると、例えば1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、トリメチロールプロパントリアクリレートなどを挙げることができる。
Examples of crosslinking monomers (also referred to as “crosslinking agents”) include organic compounds such as polyfunctional (meth) acrylates having two or more (meth) acryloyl groups, isocyanate groups, epoxy groups, melamine groups, glycol groups, siloxane groups, and amino groups. A polyfunctional organic functional group resin having two or more functional groups, an organometallic compound having a metal complex such as zinc, aluminum, sodium, zirconium, or calcium can be used.
Examples of the above polyfunctional (meth) acrylates include, for example, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, trimethylolpropane triacrylate, and the like. be able to.
 架橋モノマーの含有量は、所望の保持力が得られるよう他の要因と併せて調整すればよいが、一般的には主成分樹脂100質量部に対し0.01~40.0質量部、好ましくは0.1~30.0質量部、中でも0.5~30.0質量部の割合の範囲内で調整するのがよい。但し、他の要素とのバランスでこの範囲を超えてもよい。 The content of the crosslinking monomer may be adjusted in combination with other factors so as to obtain a desired holding force, but is generally 0.01 to 40.0 parts by mass, preferably 100 parts by mass with respect to 100 parts by mass of the main component resin. Is preferably adjusted within a range of 0.1 to 30.0 parts by mass, particularly 0.5 to 30.0 parts by mass. However, this range may be exceeded in balance with other elements.
 アクリル酸エステル重合体を架橋する際には、架橋開始剤(過酸化開始剤、光開始剤)や反応触媒(三級アミン系化合物、四級アンモニウム系化合物、ラウリル酸スズ化合物など)を適宜添加すると効果的である。 When cross-linking acrylate polymers, cross-linking initiators (peroxidation initiators, photoinitiators) and reaction catalysts (tertiary amine compounds, quaternary ammonium compounds, tin laurate compounds, etc.) are added as appropriate It is effective.
 紫外線照射架橋(「UV架橋」とも称する)する場合には、光開始剤を配合するのが好ましい。
 光開始剤としては、開裂型光開始剤及び水素引抜型光開始剤のいずれを使用してもよいが、両者を併用することもできる。
 開裂型光開始剤としては、例えばベンゾインブチルエーテル、ベンジルジメチルケタール、ヒドロキシアセトフェノンなどを挙げることができる。
 他方、水素引抜型光開始剤としては、例えばベンゾフェノン、ミヒラーケトン、ジベンゾスベロン、2-エチルアントラキノン、イソブチルチオキサンソンなどを挙げルことができる。
 但し、前記に挙げた物質に限定するものではない。
In the case of UV irradiation crosslinking (also referred to as “UV crosslinking”), it is preferable to add a photoinitiator.
As the photoinitiator, either a cleavage type photoinitiator or a hydrogen abstraction type photoinitiator may be used, but both may be used in combination.
Examples of the cleavage type photoinitiator include benzoin butyl ether, benzyl dimethyl ketal, and hydroxyacetophenone.
On the other hand, examples of the hydrogen abstraction type photoinitiator include benzophenone, Michler's ketone, dibenzosuberone, 2-ethylanthraquinone, and isobutylthioxanthone.
However, it is not limited to the substances listed above.
 光開始剤の添加量は、適宜調整すればよいが、一般的には主成分樹脂100質量部に対し0.05~5.0質量部の割合の範囲内で調整するのがよく、水素引抜型と開裂型の各光開始剤を1:1の割合で併用するのがよい。但し、他の要素とのバランスでこの範囲を超えてもよい。 The addition amount of the photoinitiator may be adjusted as appropriate, but in general, the photoinitiator should be adjusted within a range of 0.05 to 5.0 parts by mass with respect to 100 parts by mass of the main component resin. It is preferable to use a mold and a cleavage type photoinitiator in a ratio of 1: 1. However, this range may be exceeded in balance with other elements.
(他の添加剤)
 上記成分のほか、必要に応じて、近赤外線吸収特性を有する顔料や染料などの色素、粘着付与剤、酸化防止剤、老化防止剤、吸湿剤、紫外線吸収剤、シランカップリング剤、天然物や合成物の樹脂類、ガラス繊維やガラスビーズなどの各種の添加剤を適宜配合することもできる。
(Other additives)
In addition to the above components, pigments such as pigments and dyes having near-infrared absorption characteristics, tackifiers, antioxidants, antioxidants, hygroscopic agents, ultraviolet absorbers, silane coupling agents, natural products, Various additives such as synthetic resins, glass fibers and glass beads can be appropriately blended.
 上記の粘着シートは、主成分樹脂としてのアクリル系樹脂と、必要に応じて架橋剤及び反応開始剤或いは反応触媒等を添加して攪拌混合し、離型フィルム上に目的の厚さになるように製膜し、加熱乾燥或いは紫外線照射して架橋させることで粘着シートとすることができる。 The above pressure-sensitive adhesive sheet is mixed with an acrylic resin as a main component resin and, if necessary, a cross-linking agent and a reaction initiator or a reaction catalyst, and the mixture is stirred and mixed so that a desired thickness is obtained on the release film. The film can be formed into a pressure-sensitive adhesive sheet by crosslinking by heat drying or ultraviolet irradiation.
(厚み)
 粘着シートの厚み(a)は、本積層体の内部応力を低減して、高温高湿環境における形状安定性を高める観点から、10μm~300μmであるのが好ましく、中でも30μm以上或いは250μm以下、その中でも50μm以上或いは200μm以下であるのが特に好ましい。
(Thickness)
The thickness (a 2 ) of the pressure-sensitive adhesive sheet is preferably 10 μm to 300 μm from the viewpoint of reducing the internal stress of the laminate and increasing the shape stability in a high-temperature and high-humidity environment, and more preferably 30 μm or more or 250 μm or less. Among them, the thickness is particularly preferably 50 μm or more or 200 μm or less.
(弾性率)
 粘着シートの弾性率(E)は、高温高湿環境下における形状安定性を高めるなどの観点から、0.001MPa以上であれば好ましい。かかる観点から、0.01MPa以上であることがより好ましく、0.1MPa以上であることがさらに好ましい。
 また、タック性を高めるなどの観点から、弾性率(E)は、30MPa以下、好ましくは20MPa以下であることがより好ましく、10MPa以下であることがさらに好ましい。
 タックとは、“被着体に接着させた瞬間の粘着力を表すもの”として定義されており、“指などにより定性的に判断される場合が多い。”(木村馨・砂川誠ほか著「高機能接着剤・粘着剤」共立出版株式会社 1989年2月20日発行)
 なお、粘着シートの弾性率(E)は、引張試験機を用いて切り出した粘着シートの長さ方向に試験速度300mm/minで引張り試験を行うことによって測定できる。
(Elastic modulus)
The elastic modulus (E 2 ) of the pressure-sensitive adhesive sheet is preferably 0.001 MPa or more from the viewpoint of enhancing shape stability in a high temperature and high humidity environment. From this viewpoint, it is more preferably 0.01 MPa or more, and further preferably 0.1 MPa or more.
Further, from the viewpoint of improving tackiness, the elastic modulus (E 2 ) is 30 MPa or less, preferably 20 MPa or less, more preferably 10 MPa or less.
Tack is defined as “representing the adhesive strength at the moment of bonding to an adherend”, and “is often judged qualitatively by fingers, etc.” (Mr. Kimura, Makoto Sunagawa et al., “ High-performance adhesives and adhesives "issued by Kyoritsu Publishing Co., Ltd. on February 20, 1989)
The elastic modulus (E 2 ) of the pressure-sensitive adhesive sheet can be measured by performing a tensile test at a test speed of 300 mm / min in the length direction of the pressure-sensitive adhesive sheet cut out using a tensile tester.
(Tg)
粘着シートのTgは、レオメータ(英弘精機株式会社製「MARS」)を用いて、粘着治具:Φ25mmパラレルプレート、歪み:0.5%、周波数:1Hz、温度:-50~200℃、昇温速度:3℃/minで、せん断法による動的粘弾性測定の損失正接(tanδ)により測定できる。
(Tg)
Tg of the pressure-sensitive adhesive sheet is measured using a rheometer (“MARS” manufactured by Eihiro Seiki Co., Ltd.), pressure-sensitive adhesive jig: Φ25 mm parallel plate, strain: 0.5%, frequency: 1 Hz, temperature: −50 to 200 ° C. It can be measured by a loss tangent (tan δ) of dynamic viscoelasticity measurement by a shear method at a rate of 3 ° C./min.
<本積層体の特性>
 本積層体は、下記式(1)及び式(2)で求められる、温度85℃、湿度85%RH環境下に120時間、前面板と粘着シートの積層体を暴露した時の、前面板と粘着シートの内部応力(σ)が0.47MPa以下であることを特徴とするものである。
<Characteristics of this laminate>
This laminate is obtained by the following formula (1) and formula (2), and the front plate when the laminate of the front plate and the pressure-sensitive adhesive sheet is exposed for 120 hours in an environment of temperature 85 ° C. and humidity 85% RH. The internal stress (σ) of the pressure-sensitive adhesive sheet is 0.47 MPa or less.
Figure JPOXMLDOC01-appb-I000005
 
Figure JPOXMLDOC01-appb-I000005
 
Figure JPOXMLDOC01-appb-I000006
 
Figure JPOXMLDOC01-appb-I000006
 
 ここで、上記式(1)及び式(2)における各文字の意味は次のとおりである。
δ:前面板のみを温度85℃、湿度85%RH環境下に120時間暴露した時の前面板
反り形状において、前面板を下に凸の形状で水平に静置した時の、前面板端面の静置
面からの浮き上がり高さ
L:サンプル長さ(10cm)
θ:前面板のみを温度85℃、湿度85%RH環境下に120時間暴露した時の前面板反り形状において、前面板を下に凸の形状で水平に静置した時の、前面板反り形状の曲率中心から前面板の接地点におろした垂線と、前面板反り形状の曲率中心と前面板の端点を結ぶ直線のなす角度
ρ:前面板のみを温度85℃、湿度85%RH環境下に120時間暴露した時の前面板反り形状の曲率半径
:前面板の厚み
:粘着シートの厚み
b:サンプル幅(10cm)
:前面板の弾性率
:粘着シートの弾性率
:前面板の断面2次モーメント
:粘着シートの断面2次モーメント
h:a1+a2
σ:内部応力
Here, the meaning of each character in the said Formula (1) and Formula (2) is as follows.
δ: When the front plate is exposed to a temperature of 85 ° C. and a humidity of 85% RH for 120 hours, the front plate is warped in a convex shape and the front plate end surface Lifting height from the stationary surface L: Sample length (10 cm)
θ: The front plate warp shape when only the front plate is exposed to a temperature of 85 ° C. and a humidity of 85% RH for 120 hours, and the front plate is left in a horizontal shape with a convex downward shape. of a perpendicular line drawn to the ground of the front plate from the center of curvature, the front plate warped shape of curvature center and the front plate straight angle [rho 1 connecting the end points of: the front plate only the temperature 85 ° C., 85% humidity RH environment Radius of curvature of the front plate warp when exposed for 120 hours a 1 : thickness of the front plate a 2 : thickness of the adhesive sheet b: sample width (10 cm)
E 1 : Elastic modulus of front plate E 2 : Elastic modulus of adhesive sheet I 1 : Secondary moment of inertia of front plate I 2 : Secondary moment of inertia of adhesive sheet h: a1 + a2
σ: Internal stress
 本発明者が行った試験結果から、本積層体は、上記式(1)及び式(2)で求められる内部応力(σ)が0.47MPa以下であれば、高温高湿な環境下における反りを効果的に抑制できることを確認することができた。
 かかる観点から、本積層体における上記内部応力(σ)は0.47MPa以下であるのが好ましく、中でも0.46MPa以下、その中でも0.45MPa以下であるのが特に好ましい。さらには、0.40MPa以下が好ましく、0.30MPa以下がより好ましい。
From the test results conducted by the present inventors, this laminate is warped in a high-temperature and high-humidity environment as long as the internal stress (σ) determined by the above formulas (1) and (2) is 0.47 MPa or less. It has been confirmed that can be effectively suppressed.
From this point of view, the internal stress (σ) in the laminate is preferably 0.47 MPa or less, particularly 0.46 MPa or less, and particularly preferably 0.45 MPa or less. Furthermore, 0.40 MPa or less is preferable, and 0.30 MPa or less is more preferable.
 本積層体における上記内部応力(σ)は、主に、A層の厚み、(A)層及び(B)層の合計厚み(T)に対する(A層)1層の厚み(A)の比((A)/(T))、A層及びB層の材料、粘着シートの厚みと材料などによって調整することができる。 The internal stress (σ) in this laminate is mainly the ratio of the thickness (A) of one layer (A layer) to the total thickness (T) of the A layer and the (A) layer and (B) layer ( (A) / (T)), the materials of the A layer and the B layer, the thickness and material of the pressure-sensitive adhesive sheet, and the like.
 なお、後述する実施例では、高温高湿環境下での反り評価方法として、温度85℃、湿度85%RH環境を高温高湿環境として採用したが、他の環境条件、例えば、温度60℃、湿度90%RHや、温度70℃、湿度90%RHなどの環境条件を高温高湿環境として採用することもできる。 In the examples described later, as a warp evaluation method under a high temperature and high humidity environment, a temperature of 85 ° C. and a humidity of 85% RH are adopted as the high temperature and high humidity environment, but other environmental conditions such as a temperature of 60 ° C., Environmental conditions such as a humidity of 90% RH, a temperature of 70 ° C., and a humidity of 90% RH can also be adopted as the high temperature and high humidity environment.
<本積層体の用途>
 以上説明したように、本積層体は、高温高湿環境下における形状安定性に優れるほか、透明性、耐衝撃性、表面硬度などを高めることも可能である。よって、本積層体は、種々の用途、例えば基材に貼り合わせるなどして、各種基板材料や保護材料などとして好適に用いることができる。例えば携帯電話端末、スマートフォン、携帯型電子遊具、携帯情報端末、タブレット機器、モバイルパソコン、ウェアラブル端末などの画像表示装置の構成材料としての各種基板材料や保護材料のほか、液晶テレビ、液晶モニター、デスクトップパソコン、カーナビゲーション、自動車計器など設置型ディスプレイデバイスの構成材料としての各種基板材料や保護材料として好適に用いることができる。
<Use of this laminate>
As described above, the laminate is excellent in shape stability in a high temperature and high humidity environment, and can also improve transparency, impact resistance, surface hardness, and the like. Therefore, this laminated body can be suitably used as various substrate materials, protective materials, and the like by bonding them to various applications, for example, a base material. For example, in addition to various substrate materials and protective materials as constituent materials for image display devices such as mobile phone terminals, smartphones, portable electronic playground equipment, portable information terminals, tablet devices, mobile personal computers, wearable terminals, liquid crystal televisions, liquid crystal monitors, desktops It can be suitably used as various substrate materials and protective materials as constituent materials for stationary display devices such as personal computers, car navigation systems, and automobile meters.
 本積層体はまた、種々の加工方法で形状を付与することもできる。例えば、金型を用いて加熱・加圧する方法のほか、圧空成型法、真空成型法、ロールホーミング法などを成形方法として例示することができる。本積層体に形状を付与することで、曲面を有する画像表示装置や各種フレキシブル機器へ利用することが可能となる。 This laminate can also be given a shape by various processing methods. For example, in addition to the method of heating and pressurizing using a mold, a pressure forming method, a vacuum forming method, a roll homing method and the like can be exemplified as the forming method. By imparting a shape to the laminate, it can be used for an image display device having a curved surface and various flexible devices.
<語句の説明など>
 一般的に「シート」とは、JISにおける定義上、薄く、その厚さが長さと幅のわりには小さく平らな製品をいい、一般的に「フィルム」とは、長さ及び幅に比べて厚さが極めて小さく、最大厚さが任意に限定されている薄い平らな製品で、通常、ロールの形で供給されるものをいう(日本工業規格JISK6900)。しかし、シートとフィルムの境界は定かでなく、本発明において文言上両者を区別する必要がないので、本発明においては、「フィルム」と称する場合でも「シート」を含むものとし、「シート」と称する場合でも「フィルム」を含むものとする。
 また、画像表示パネル、保護パネル等のように「パネル」と表現する場合、板体、シートおよびフィルム、又はこれらの積層体を包含するものである。
<Explanation of phrases>
“Sheet” generally refers to a product that is thin by definition in JIS and has a thickness that is small and flat for the length and width. In general, “film” is thicker than the length and width. A thin flat product with an extremely small thickness and an arbitrarily limited maximum thickness, usually supplied in the form of a roll (Japanese Industrial Standard JISK6900). However, since the boundary between the sheet and the film is not clear and it is not necessary to distinguish the two in terms of the present invention, in the present invention, even when the term “film” is used, the term “sheet” is included and the term “sheet” is used. In some cases, “film” is included.
In addition, the expression “panel” such as an image display panel and a protection panel includes a plate, a sheet and a film, or a laminate thereof.
 本明細書において、「X~Y」(X,Yは任意の数字)と記載した場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくはYより小さい」の意も包含するものである。
 また、「X以上」(Xは任意の数字)と記載した場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と記載した場合、特にことわらない限り「好ましくはYより小さい」の意を包含する。
In the present specification, when “X to Y” (X and Y are arbitrary numbers) is described, it means “preferably greater than X” or “preferably,” with the meaning of “X to Y” unless otherwise specified. The meaning of “smaller than Y” is also included.
Further, when described as “X or more” (X is an arbitrary number), it means “preferably larger than X” unless otherwise specified, and described as “Y or less” (Y is an arbitrary number). In the case, unless otherwise specified, the meaning of “preferably smaller than Y” is included.
 以下に実施例でさらに詳しく説明する。但し、本発明が、以下に説明する実施例に限定されるものではない。
 なお、本明細書中に表示される種々の測定値および評価は次のようにして行った。
Examples will be described in more detail below. However, the present invention is not limited to the examples described below.
Various measured values and evaluations displayed in this specification were performed as follows.
(1)厚み
 市販の厚み測定器(MITUTOYO製)を用いて測定した。
(1) Thickness It measured using the commercially available thickness measuring device (made by MITUTOYO).
(2)弾性率(E、E
 前面板の弾性率(E1)については、JISK-7198A法に記載の動的粘弾性測定法により、アイティー計測制御(株)製動的粘弾性測定装置「DVA-200」を用い、フィルムの横方向(TD)について、振動周波数10Hz、歪み0.1%にて、昇温速度1℃/分で-100℃から200℃まで測定し、得られたデータから温度20℃での貯蔵弾性率(E’)を求め、この貯蔵弾性率(E’)をEとして用いた。
 粘着シートの弾性率(E)については、引張試験機を用いて切り出した粘着シートの長さ方向を試験速度300mm/minで引張り、測定した。
(2) modulus of elasticity (E 1, E 2)
Regarding the elastic modulus (E1) of the front plate, a dynamic viscoelasticity measuring method “DVA-200” manufactured by IT Measurement Control Co., Ltd. was used according to the dynamic viscoelasticity measuring method described in JISK-7198A. In the transverse direction (TD), measured from −100 ° C. to 200 ° C. at a temperature rising rate of 1 ° C./min at a vibration frequency of 10 Hz and a strain of 0.1%, and from the obtained data, the storage elastic modulus at a temperature of 20 ° C. (E ′) was determined, and this storage elastic modulus (E ′) was used as E 1 .
The elastic modulus (E 2 ) of the pressure-sensitive adhesive sheet was measured by pulling the length direction of the pressure-sensitive adhesive sheet cut out using a tensile tester at a test speed of 300 mm / min.
(3)前面板単体の湿熱暴露試験による反り評価
 実施例・比較例で得られた樹脂積層体(前面板)を、10cm×10cmの大きさに切り出し、温度85℃湿度85%RHに設定した恒温恒湿槽中に120時間放置し、次いで温度23℃湿度50%RH環境に設定した恒温恒湿槽中に4時間放置した直後の、4隅の反り量を評価した。
 反り量は、試験片すなわち樹脂積層体(前面板)の凸面を石英製定盤の上に静置し、ハイトゲージを使用して目視にて4隅の定盤からの浮き高さを測定し、4隅の反り量δ(mm)の平均値を算出した。
(3) Warp evaluation by wet heat exposure test of front plate alone The resin laminates (front plates) obtained in the examples and comparative examples were cut into a size of 10 cm × 10 cm and set to a temperature of 85 ° C. and a humidity of 85% RH. The amount of warping at the four corners was evaluated immediately after being left in a constant temperature and humidity chamber for 120 hours, and then left in a constant temperature and humidity chamber set at a temperature of 23 ° C. and a humidity of 50% RH for 4 hours.
The amount of warpage was determined by placing the convex surface of the test piece, that is, the resin laminate (front plate) on a quartz surface plate, and visually measuring the floating height from the surface plate at the four corners using a height gauge. The average value of the corner curvature δ (mm) was calculated.
(4)内部応力の算出
実施例・比較例で得られた前面板を、10cm×10cmの大きさに切り出し、温度85℃湿度85%RHに設定した恒温恒湿槽中に120時間曝露した時に生じる内部応力を、下記に示す式(1)、式(2)を用いて算出した。
(4) Calculation of internal stress When the front plate obtained in Examples / Comparative Examples was cut into a size of 10 cm × 10 cm and exposed to a constant temperature and humidity chamber set at a temperature of 85 ° C. and a humidity of 85% RH for 120 hours. The resulting internal stress was calculated using the following formulas (1) and (2).
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000008
 
Figure JPOXMLDOC01-appb-I000008
 
δ:前面板のみを温度85℃、湿度85%RH環境下に120時間暴露した時の前面板
反り形状において、前面板を下に凸の形状で水平に静置した時の、前面板端面の静置
面からの浮き上がり高さ
L:サンプル長さ(10cm)
θ:前面板のみを温度85℃、湿度85%RH環境下に120時間暴露した時の前面板反り形状において、前面板を下に凸の形状で水平に静置した時の、前面板反り形状の曲率中心から前面板の接地点におろした垂線と、前面板反り形状の曲率中心と前面板の端点を結ぶ直線のなす角度
ρ1:前面板のみを温度85℃、湿度85%RH環境下に120時間暴露した時の前面板反り形状の曲率半径
1:前面板の厚み
2:粘着シートの厚み
b:サンプル幅(10cm)
1:前面板の弾性率
2:粘着シートの弾性率
1:前面板の断面2次モーメント 
2:粘着シートの断面2次モーメント
h:a+a
σ:内部応力
δ: When the front plate is exposed to a temperature of 85 ° C. and a humidity of 85% RH for 120 hours, the front plate is warped in a convex shape and the front plate end surface Lifting height from the stationary surface
L: Sample length (10cm)
θ: The front plate warp shape when only the front plate is exposed to a temperature of 85 ° C. and a humidity of 85% RH for 120 hours, and the front plate is left in a horizontal shape with a convex downward shape. of a perpendicular line drawn to the ground of the front plate from the center of curvature, the front plate warped shape of curvature center and the front plate straight angle [rho 1 connecting the end points of: the front plate only the temperature 85 ° C., 85% humidity RH environment Curvature radius of front plate when exposed for 120 hours a 1 : thickness of front plate a 2 : thickness of adhesive sheet b: sample width (10 cm)
E 1 : Elastic modulus of the front plate E 2 : Elastic modulus of the adhesive sheet I 1 : Cross-sectional second moment of the front plate
I 2 : Cross-sectional secondary moment of adhesive sheet h: a 1 + a 2
σ: Internal stress
 ここで、内部応力計算モデルの模式図を図1に示す。
 計算の過程としては、まず式(1)に、前面板単体の上記湿熱暴露試験により実測した反り量(δ)を代入し、前面板のみを温度85℃、湿度85%RH環境下に120時間暴露した時の前面板反り形状の曲率半径(ρ1)を算出した。
 次に、下記式(3)、式(4)より、前面板と粘着剤の断面2次モーメント(I1、2)をそれぞれ算出した。次いで、式(2)に、算出したρ1、他の物性値を代入し、内部応力(σ)を算出した。
Here, a schematic diagram of the internal stress calculation model is shown in FIG.
As a calculation process, first, the warpage amount (δ) actually measured by the wet heat exposure test of the front plate alone is substituted into the equation (1), and only the front plate is placed in a temperature 85 ° C., humidity 85% RH environment for 120 hours. The curvature radius (ρ 1 ) of the warp shape of the front plate when exposed was calculated.
Next, the sectional moments (I 1 and I 2 ) of the front plate and the pressure-sensitive adhesive were calculated from the following formulas (3) and (4). Next, the calculated ρ 1 and other physical property values were substituted into Equation (2) to calculate the internal stress (σ).
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000010
(5)前面板/粘着シート/ガラス 積層体の湿熱暴露試験
 実施例・比較例で得られた前面板/粘着シート/ガラスの積層体を、温度85℃、湿度85%RHに設定した恒温恒湿槽中に120時間放置し、次いで温度23℃、湿度50%RH環境に設定した恒温恒湿槽中に4時間放置した直後、試験片の外観を目視で確認した。
(5) Moist heat exposure test of front plate / adhesive sheet / glass laminate The front plate / adhesive sheet / glass laminate obtained in Examples and Comparative Examples was set to a temperature of 85 ° C. and a humidity of 85% RH. Immediately after being left in a humidity chamber for 120 hours and then left in a constant temperature and humidity chamber set at a temperature of 23 ° C. and a humidity of 50% RH for 4 hours, the appearance of the test piece was visually confirmed.
 この時、前面板の湿熱暴露による反り量が大きいと、前面板と粘着シートの界面に剥がれが発生し、剥がれた箇所の気泡(エア)混入により外観不良が生じる。外観不良部の大きさを目視により下記の基準で評価した。
 ○(good):外観不良部の面積割合が10%未満
 ×(poor):外観不良部の面積割合が10%以上
At this time, if the amount of warpage of the front plate due to wet heat exposure is large, peeling occurs at the interface between the front plate and the pressure-sensitive adhesive sheet, resulting in poor appearance due to air bubbles (air) mixing in the peeled portion. The size of the appearance defect portion was visually evaluated according to the following criteria.
○ (good): Area ratio of appearance defective part is less than 10% × (poor): Area ratio of appearance defective part is 10% or more
<実施例・比較例>
 実施例、比較例に用いた主な原料、材料について説明する。
<Examples and comparative examples>
The main raw materials and materials used in Examples and Comparative Examples will be described.
(熱可塑性樹脂(a1-1))
 アクリル系樹脂(三菱レイヨン(株)製、商品名:アクリペット VH001、密度:1.19g/cm、メタクリル酸メチル/アクリル酸メチル=99/1質量%、立体規則性(トリアッド分率):mm(9.2モル%)、mr(41.8モル%)、rr(49.0モル%)、Tg:111℃、MFR(温度:230℃、荷重:37.3N):2.0g/10min)
(Thermoplastic resin (a1-1))
Acrylic resin (Mitsubishi Rayon Co., Ltd., trade name: Acrypet VH001, density: 1.19 g / cm 3 , methyl methacrylate / methyl acrylate = 99/1% by mass, stereoregularity (triad fraction): mm (9.2 mol%), mr (41.8 mol%), rr (49.0 mol%), Tg: 111 ° C., MFR (temperature: 230 ° C., load: 37.3 N): 2.0 g / 10 min)
(熱可塑性樹脂(a2-1))
 共重合体(電気化学工業(株)製、商品名:レジスファイ R-100、密度:1.14g/cm、スチレン/メタクリル酸メチル/マレイン酸無水物=75/15/10質量%、Tg:127℃、MFR(温度:230℃、荷重:37.3N):4.2g/10min)
(Thermoplastic resin (a2-1))
Copolymer (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: Regisphi R-100, density: 1.14 g / cm 3 , styrene / methyl methacrylate / maleic anhydride = 75/15/10% by mass, Tg: 127 ° C., MFR (temperature: 230 ° C., load: 37.3 N): 4.2 g / 10 min)
(熱可塑性樹脂(a3-1))
 特開2008-024919号公報に準じた方法により得られた、ジヒドロキシ化合物であるイソソルビドに由来する単量体単位とトリシクロデカンジメタノールに由来する単量体単位のモル比率がイソソルビド/トリシクロデカンジメタノール=70/30モル%であるポリカーボネート共重合体(密度:1.36g/cm、Tg:128℃、MFR(温度:230℃、荷重:37.3N):9.6g/10min)
(Thermoplastic resin (a3-1))
A molar ratio of a monomer unit derived from isosorbide, which is a dihydroxy compound, and a monomer unit derived from tricyclodecane dimethanol, obtained by a method according to Japanese Patent Application Laid-Open No. 2008-024919, is isosorbide / tricyclode Polycarbonate copolymer with candimethanol = 70/30 mol% (density: 1.36 g / cm 3 , Tg: 128 ° C., MFR (temperature: 230 ° C., load: 37.3 N): 9.6 g / 10 min)
(ポリカーボネート系樹脂(b1-1))
 住化スタイロンポリカーボネート(株)製、商品名:カリバー 301-15、密度:1.20g/cm、Tg:149℃、MFR(温度:300℃、荷重:11.8N):15.0g/10min)
(Polycarbonate resin (b1-1))
Product name: Caliber 301-15, density: 1.20 g / cm 3 , Tg: 149 ° C., MFR (temperature: 300 ° C., load: 11.8 N): 15.0 g / 10 min, manufactured by Sumika Stylon Polycarbonate Co., Ltd. )
(硬化性樹脂組成物(c))
 (c-1)(MOMENTIVE社製、商品名「UVHC7800G」)
 (c-2)(MOMENTIVE社製、商品名「XRC39-6210」)
(Curable resin composition (c))
(C-1) (Product name “UVHC7800G” manufactured by MOMENTIVE)
(C-2) (Product name “XRC39-6210” manufactured by MOMENTIVE)
(粘着シート)
 粘着シートとしては、アクリル酸エステル共重合体、架橋剤及び光重合開始剤からなる粘着剤樹脂組成物を、剥離処理された2枚のポリエチレンテレフタレートフィルム間に挟み、厚さ150μmとなるようシート状に賦形してなり、弾性率(E):0.30MPa、Tg:-10℃のものを用いた。
(Adhesive sheet)
As the pressure-sensitive adhesive sheet, a pressure-sensitive adhesive resin composition comprising an acrylic acid ester copolymer, a crosslinking agent and a photopolymerization initiator is sandwiched between two peeled polyethylene terephthalate films, and is formed into a sheet shape having a thickness of 150 μm. The elastic modulus (E 2 ): 0.30 MPa, Tg: −10 ° C. was used.
(ガラス板)
 ガラス板として、市販のソーダライムガラス(幅:100mm×長さ:100mm×厚み:0.5mm)を用いた。
(Glass plate)
A commercially available soda lime glass (width: 100 mm × length: 100 mm × thickness: 0.5 mm) was used as the glass plate.
<実施例1>
 アクリル系樹脂(a1-1)60質量部及び共重合体アクリル系樹脂(a2-1)40質量部を混合して得られた樹脂組成物100質量部と、ポリカーボネート系樹脂(b1-1)100質量部とをそれぞれ、ベント機能及びフィルター機能を有する別々の押出機に供給し、樹脂温度240~265℃で溶融混練し、フィードブロックで(A層)/(B層)の積層構成となるように、260℃のTダイにて共押出成形した後、100℃に設定した第1冷却ロール、110℃に設定した第2冷却ロール及び150℃に設定した第3冷却ロールに順次通して冷却し、総厚みが0.675mm、各層厚みが(A層)/(B層)=0.075mm/0.600mmである前面板を得た。
<Example 1>
100 parts by mass of a resin composition obtained by mixing 60 parts by mass of an acrylic resin (a1-1) and 40 parts by mass of a copolymer acrylic resin (a2-1), and a polycarbonate resin (b1-1) 100 The mass parts are respectively supplied to separate extruders having a vent function and a filter function, melt-kneaded at a resin temperature of 240 to 265 ° C., and a layered structure of (A layer) / (B layer) is formed by a feed block. In addition, after co-extrusion with a 260 ° C. T-die, the product is cooled by sequentially passing through a first cooling roll set to 100 ° C., a second cooling roll set to 110 ° C., and a third cooling roll set to 150 ° C. A front plate having a total thickness of 0.675 mm and a thickness of each layer (A layer) / (B layer) = 0.075 mm / 0.600 mm was obtained.
 次に、硬化性樹脂組成物(c-1)60質量部及び硬化性樹脂組成物(c-2)40質量部からなる硬化性樹脂組成物(cf)を、バーコーターを用いて、前記前面板のアクリル系樹脂層(A層)の面に塗布し、この状態のまま90℃で1分間乾燥した後、700mJ/cmの露光量で紫外線を露光して硬化性樹脂組成物(c)を硬化させて、ハードコート層(Cf)を形成した。
 次に、硬化性樹脂組成物(c-2)60質量部及び硬化性樹脂組成物(c-3)40質量部からなる硬化性樹脂組成物(cb)を、バーコーターを用いて、前記樹脂積層体のポリカーボネート系樹脂層(B層)の面に塗布し、この状態のまま90℃で1分間乾燥した後、700mJ/cmの露光量で紫外線を露光して硬化性樹脂組成物(c)を硬化させて、ハードコート層(Cb)を形成して、前面板を作製した。
Next, the curable resin composition (cf) consisting of 60 parts by mass of the curable resin composition (c-1) and 40 parts by mass of the curable resin composition (c-2) is prepared using the bar coater. It was applied to the surface of the acrylic resin layer (A layer) of the face plate, dried in this state at 90 ° C. for 1 minute, and then exposed to ultraviolet rays at an exposure amount of 700 mJ / cm 2 to obtain a curable resin composition (c). Was cured to form a hard coat layer (Cf).
Next, the curable resin composition (cb) consisting of 60 parts by mass of the curable resin composition (c-2) and 40 parts by mass of the curable resin composition (c-3) is mixed with the resin using a bar coater. It was applied to the surface of the polycarbonate-based resin layer (B layer) of the laminate, dried in this state at 90 ° C. for 1 minute, and then exposed to ultraviolet rays at an exposure amount of 700 mJ / cm 2 to obtain a curable resin composition (c ) Was cured to form a hard coat layer (Cb) to prepare a front plate.
 次に、粘着シートの一方の剥離フィルムを剥がして露出した粘着面を、前記前面板のハードコート層(Cb)の表面に重ねてハンドローラにて貼着した。次いで、残る剥離フィルムを剥がし、露出した粘着面にソーダライムガラス(厚み:0.5mm)を重ねて、減圧下(絶対圧5kPa)にてプレス貼合した後、オートクレーブ処理(50℃、0.2MPa、20分)を施して貼着して積層体を作製した。さらに、この積層体に対し、ソーダライムガラス越しに高圧水銀ランプにて、365nmの紫外線が2000mJ/cm到達するように紫外線照射して粘着シートを硬化させて、前記前面板/粘着シート/ガラスの貼合体を作製した。 Next, the pressure-sensitive adhesive surface exposed by peeling off one release film of the pressure-sensitive adhesive sheet was superimposed on the surface of the hard coat layer (Cb) of the front plate and adhered with a hand roller. Next, the remaining peeled film was peeled off, soda lime glass (thickness: 0.5 mm) was stacked on the exposed adhesive surface, and press-bonded under reduced pressure (absolute pressure 5 kPa), followed by autoclave treatment (50 ° C., 0.00 mm). (2 MPa, 20 minutes) was applied and pasted to prepare a laminate. Further, the pressure-sensitive adhesive sheet was cured by irradiating the laminated body with ultraviolet rays so that 365 nm ultraviolet rays reached 2000 mJ / cm 2 with a high pressure mercury lamp through soda lime glass, and the front plate / adhesive sheet / glass. A bonded body was prepared.
<実施例2、3>
 表1に示すように、実施例1において、前面板のA層、B層各層の厚み比率および総厚みを変更した以外は、実施例1と同様にして前面板、及び、前面板/粘着シート/ガラスの貼合体を作製した。
<Examples 2 and 3>
As shown in Table 1, in Example 1, the front plate and the front plate / adhesive sheet were the same as in Example 1 except that the thickness ratio and total thickness of each of the A layer and B layer of the front plate were changed. / A glass laminate was produced.
<実施例4>
 熱可塑性樹脂(a3-1)100質量部と、ポリカーボネート系樹脂(b1-1)質量部をそれぞれ、ベント機能及びフィルター機能を有する別々の押出機に供給し、樹脂温度240~265℃で溶融混練し、マルチマニホールドを有するTダイで(Af層)/(B層)/(Ab層)の2種3層の積層構成となるように、240℃のTダイにて共押出成形した後、100℃に設定した第1冷却ロール、110℃に設定した第2冷却ロール及び120℃に設定した第3冷却ロールに順次通して冷却し、総厚みが0.675mm、各層厚みが(Af層)/(B層)/(Ab層)=0.075mm/0.525mm/0.075mmである前面板を得た後、実施例1と同様にしてハードコート層を塗布し、前面板/粘着シート/ガラスの貼合体を作製した。
<Example 4>
100 parts by mass of thermoplastic resin (a3-1) and part by mass of polycarbonate resin (b1-1) are supplied to separate extruders having a vent function and a filter function, respectively, and are melt-kneaded at a resin temperature of 240 to 265 ° C. Then, after co-extrusion molding with a T die at 240 ° C. so as to have a laminated structure of two types and three layers of (Af layer) / (B layer) / (Ab layer) with a T die having a multi-manifold, The first cooling roll set to ° C, the second cooling roll set to 110 ° C, and the third cooling roll set to 120 ° C are sequentially passed through the cooling, the total thickness is 0.675 mm, and each layer thickness is (Af layer) / (B layer) / (Ab layer) = 0.075 mm / 0.525 mm / 0.075 mm After obtaining the front plate, a hard coat layer was applied in the same manner as in Example 1, and the front plate / adhesive sheet / A glass laminate was prepared. .
<実施例5>
 熱可塑性樹脂(a3-1)100質量部と、ポリカーボネート系樹脂(b1-1)質量部をそれぞれ、ベント機能及びフィルター機能を有する別々の押出機に供給し、樹脂温度240~265℃で溶融混練し、マルチマニホールドを有するTダイで(Af層)/(B層)/(Ab層)の2種3層の積層構成となるように、240℃のTダイにて共押出成形した後、100℃に設定した第1冷却ロール、110℃に設定した第2冷却ロール及び120℃に設定した第3冷却ロールに順次通して冷却し、総厚みが0.275mm、各層厚みが(Af層)/(B層)/(Ab層)=0.075mm/0.125mm/0.075mmである前面板を得た後、実施例1と同様にしてハードコート層を塗布し、前面板/粘着シート/ガラスの貼合体を作製した。
<Example 5>
100 parts by mass of thermoplastic resin (a3-1) and part by mass of polycarbonate resin (b1-1) are supplied to separate extruders having a vent function and a filter function, respectively, and are melt-kneaded at a resin temperature of 240 to 265 ° C. Then, after co-extrusion molding with a T die at 240 ° C. so as to have a laminated structure of two types and three layers of (Af layer) / (B layer) / (Ab layer) with a T die having a multi-manifold, The first cooling roll set to ° C, the second cooling roll set to 110 ° C, and the third cooling roll set to 120 ° C are sequentially passed through the cooling, the total thickness is 0.275 mm, and each layer thickness is (Af layer) / (B layer) / (Ab layer) = 0.075 mm / 0.125 mm / 0.075 mm After obtaining the front plate, a hard coat layer was applied in the same manner as in Example 1, and the front plate / adhesive sheet / A glass laminate was prepared. .
<比較例1~4>
 表1に示すように、実施例1において、前面板のA層、B層の厚み比率および総厚みを変更した以外は、実施例1と同様にして前面板を得た後、前面板/粘着シート/ガラスの貼合体を作製した。
<Comparative Examples 1 to 4>
As shown in Table 1, after obtaining the front plate in the same manner as in Example 1 except that the thickness ratio and total thickness of the A layer and B layer of the front plate were changed in Example 1, the front plate / adhesive A sheet / glass laminate was produced.
<比較例5,6>
 表1に示すように、実施例1において、ハードコート層(Cb)の厚みを変更した以外は、実施例1と同様にして前面板を得た後、前面板/粘着シート/ガラスの貼合体を作製した。
<Comparative Examples 5 and 6>
As shown in Table 1, after obtaining a front plate in the same manner as in Example 1 except that the thickness of the hard coat layer (Cb) was changed in Example 1, a front plate / adhesive sheet / glass laminate was obtained. Was made.
<比較例7,8>
 表1に示すように、実施例1において、前面板の共押し出し成形時に、第3冷却ロール温度を変更した以外は、実施例1と同様にして前面板を得た後、前面板/粘着シート/ガラスの貼合体を作製した。
<Comparative Examples 7 and 8>
As shown in Table 1, after obtaining the front plate in the same manner as in Example 1 except that the third cooling roll temperature was changed during coextrusion molding of the front plate in Example 1, the front plate / adhesive sheet / A glass laminate was produced.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表1、2に示したように、実施例1~5の構成では、湿熱環境試験時の剥がれがなく良好な結果であったのに対し、比較例1~8では、剥がれが生じた。
 湿熱環境試験に供した際の剥がれ挙動と、式(1)及び式(2)により算出した内部応力σとの間には相関性が認められ、内部応力σが一定以下であると、湿熱環境試験時の剥がれを抑制できることが確認できた。これは、前記前面板のみを湿熱曝露試験に供した時に発生する反りによる内部応力が一定以下に小さくなると、粘着シートとの密着力が勝り、剥がれを抑制できるものと考えられる。おおよそ内部応力:0.47MPaが剥がれが生じる閾値となっていることが確認できた。
As shown in Tables 1 and 2, the configurations of Examples 1 to 5 showed good results with no peeling during the wet heat environment test, whereas Comparative Examples 1 to 8 caused peeling.
There is a correlation between the peeling behavior when subjected to the wet heat environment test and the internal stress σ calculated by the equations (1) and (2), and if the internal stress σ is below a certain level, It was confirmed that peeling during the test could be suppressed. This is considered that when the internal stress due to warpage generated when only the front plate is subjected to a wet heat exposure test is reduced below a certain level, the adhesion with the pressure-sensitive adhesive sheet is superior and peeling can be suppressed. It was confirmed that the internal stress: 0.47 MPa was a threshold value at which peeling occurred.
 内部応力に影響する前面板の因子として、式(1)、式(2)から、弾性率、厚み、反り量が挙げられる。中でも主に、厚みを薄くすること、または、反り量を小さくすることによって内部応力を低減できる。仮にどちらかが大きい場合でも、もう一方のパラメーターを適切な範囲に調整することで、内部応力を低減し剥がれを抑制できる。 The factors of the front plate that affect the internal stress include elastic modulus, thickness, and warpage amount from the formulas (1) and (2). In particular, the internal stress can be reduced mainly by reducing the thickness or reducing the amount of warpage. Even if either is larger, the internal stress can be reduced and peeling can be suppressed by adjusting the other parameter to an appropriate range.
 反り量を低減するための手段として、A層とB層の層構成、A層とB層の厚み比率、表裏コート層の厚み比率、製造時のロール温度条件などの加工条件、などの調整が挙げられる。 As means for reducing the amount of warpage, adjustments such as the layer configuration of the A layer and the B layer, the thickness ratio of the A layer and the B layer, the thickness ratio of the front and back coat layers, and the processing conditions such as the roll temperature condition during production Can be mentioned.
 中でも、A層とB層の層構成を、A層/B層/A層の2種3層対称構成にすることが有効である。対称構成とすることで、A層とB層の膨張収縮挙動の差を表裏でキャンセルできるため反りの低減に有効である。
 実施例4,5より、前面板として2種3層の表裏対称構成を用いたものについては、A層/B層の2種2層構成を用いたものと比較して、前面板の反り量および内部応力を小さく抑えることができることを確認できる。
In particular, it is effective to make the layer configuration of the A layer and the B layer a 2-layer / 3-layer symmetrical configuration of A layer / B layer / A layer. By adopting a symmetric configuration, the difference between the expansion and contraction behaviors of the A layer and the B layer can be canceled on both sides, which is effective in reducing warpage.
From Examples 4 and 5, as for the front plate using the two-type / three-layer front / back symmetrical configuration, the amount of warpage of the front plate is compared with that using the two types / two-layer configuration of A layer / B layer. It can be confirmed that the internal stress can be kept small.
 反り量を低減する他の手段として、A層/B層の2種2層構成において、(A)層及び(B)層の合計厚み(T)に対する、(A層)1層の厚み(A)の比((A)/(T))を小さくすることが有効である。反りの原因は2層の膨張収縮挙動の差に起因するため、例えば、A層を極端に薄くして、B層の単層体に近づけるように厚み比率を不均一にすると、A層の影響が発現しづらくなるので、反り挙動を抑制することができる。 As another means for reducing the amount of warpage, the thickness of one layer (A layer) with respect to the total thickness (T) of the (A) layer and the (B) layer in a two-layer / two-layer configuration of A layer / B layer (A ) Ratio ((A) / (T)) is effective. The cause of warping is due to the difference in expansion and contraction behavior of the two layers. For example, if the A layer is made extremely thin and the thickness ratio is made non-uniform so as to approach the single layer body of the B layer, the influence of the A layer Since it becomes difficult to express, warping behavior can be suppressed.
 反り量を低減する他の手段として、表裏のハードコート層(C層)の構成を、表裏対象に近づけることが有効である。ハードコート層(C層)は、湿熱試験に暴露した際に硬化収縮の進行により、ハードコート層自体が収縮して反りの原因となってしまうため、反りの抑制のためには、表裏のハードコート層の構成すなわち材料及び厚さのバランスをとることが好ましい。
 ハードコート層の材料組成が表裏で同じ場合は、両者の厚みを近づけることが好ましく、ハードコート層の材料組成が表裏で異なる場合は、それぞれのハードコート層の材質による弾性率及び、硬化収縮量を勘案して、表裏のバランスをとるように厚みを調整することが好ましい。
As another means for reducing the amount of warpage, it is effective to bring the front and back hard coat layers (C layers) closer to the front and back objects. When the hard coat layer (C layer) is exposed to the moist heat test, the hard coat layer itself shrinks due to the progress of curing shrinkage, which causes warpage. It is preferable to balance the constitution of the coat layer, that is, the material and thickness.
When the material composition of the hard coat layer is the same on the front and back sides, it is preferable to make the thicknesses close to each other. In consideration of the above, it is preferable to adjust the thickness so that the front and back are balanced.
 反り量を低減する他の手段として、共押し出し時の製膜条件の調整により、冷却過程で熱歪みを小さくすることが有効である。例えば、第3冷却ロールを外観不良とならない範囲で高温にすることにより、アニーリング効果により熱歪みを小さくすることができる。 As another means of reducing the warpage amount, it is effective to reduce the thermal strain in the cooling process by adjusting the film forming conditions at the time of coextrusion. For example, by setting the third cooling roll to a high temperature within a range that does not cause poor appearance, the thermal distortion can be reduced by the annealing effect.
 比較例1~8は、内部応力が大きいため、剥がれが発生するものである。
 比較例1は、総厚みが1000μmと厚く、反り量が小さい場合でも、厚みの寄与が大きいため内部応力が大きくなった。
 比較例2~4は、B層に対するA層の厚み比率が大きいため、前面板の反り量が大きく、内部応力が大きくなった。
 比較例5~6は、裏面のハードコート層(Cf)の厚みが薄く、表裏のハードコート層のバランスがとれていないため、前面板の反り量が大きく、内部応力が大きくなった。
 比較例7~8は、第3冷却ロール温度が十分高温となっておらず、前面板の熱歪み量が大きく、反り量が大きくなってしまい、内部応力が大きくなった。
In Comparative Examples 1 to 8, peeling occurs due to a large internal stress.
In Comparative Example 1, even when the total thickness was as large as 1000 μm and the amount of warpage was small, the internal stress increased due to the large contribution of the thickness.
In Comparative Examples 2 to 4, since the thickness ratio of the A layer to the B layer was large, the amount of warpage of the front plate was large and the internal stress was large.
In Comparative Examples 5 to 6, the thickness of the back side hard coat layer (Cf) was thin and the front and back hard coat layers were not balanced, so the amount of warpage of the front plate was large and the internal stress was large.
In Comparative Examples 7 to 8, the third cooling roll temperature was not sufficiently high, the amount of thermal distortion of the front plate was large, the amount of warpage was large, and the internal stress was large.
δ:前面板端面の静置面からの浮き上がり高さ
L:サンプル長さ
ρ:前面板反り形状の曲率半径
θ:前面板反り形状の曲率中心から前面板の接地点におろした垂線と、前面板反り形状の曲率中心と前面板の端点を結ぶ直線のなす角度
10:前面板
20:粘着シート
 
δ: Lifting height of the front plate end surface from the stationary surface L: Sample length ρ: Radius of curvature of the front plate warp shape θ: Vertical line from the center of curvature of the front plate warp shape to the contact point of the front plate, and the front Angle formed by a straight line connecting the center of curvature of the face plate warp shape and the end point of the front plate 10: Front plate 20: Adhesive sheet

Claims (11)

  1.  前面板と、粘着シートとを含む積層体であって、
     前記前面板は、ポリカーボネート系樹脂を主成分とするB層と、該ポリカーボネート系樹脂とは異なる熱可塑性樹脂を主成分とする熱可塑性樹脂A層とを備えており、A層の合計厚みが10μm~250μmであり、前記A層及び前記B層の合計厚み(T)に対する前記A層1層の厚み(A)の比((A)/(T))が0.05~0.40であり、
     下記式(1)及び式(2)で求められる、温度85℃、湿度85%RH環境下に120時間、前面板と粘着シートの積層体を暴露した時の、前面板と粘着シートの内部応力(σ)が0.47MPa以下であることを特徴とする積層体。
    Figure JPOXMLDOC01-appb-I000001
    Figure JPOXMLDOC01-appb-I000002
    δ:前面板のみを温度85℃、湿度85%RH環境下に120時間暴露した時の前面板
    反り形状において、前面板を下に凸の形状で水平に静置した時の、前面板端面の静置
    面からの浮き上がり高さ
    L:サンプル長さ(10cm)
    θ:前面板のみを温度85℃、湿度85%RH環境下に120時間暴露した時の前面板
    反り形状において、前面板を下に凸の形状で水平に静置した時の、前面板反り形状の
    曲率中心から前面板の接地点におろした垂線と、前面板反り形状の曲率中心と前面板
    の端点を結ぶ直線のなす角度
    ρ:前面板のみを温度85℃、湿度85%RH環境下に120時間暴露した時の前面板反り形状の曲率半径
    :前面板の厚み
    :粘着シートの厚み
    b:サンプル幅(10cm)
    :前面板の弾性率
    :粘着シートの弾性率
    :前面板の断面2次モーメント 
    :粘着シートの断面2次モーメント
    h:a+a
    σ:内部応力
    A laminate including a front plate and an adhesive sheet,
    The front plate includes a B layer mainly composed of a polycarbonate resin and a thermoplastic resin A layer mainly composed of a thermoplastic resin different from the polycarbonate resin, and the total thickness of the A layer is 10 μm. The ratio of the thickness (A) of one A layer to the total thickness (T) of the A layer and the B layer ((A) / (T)) is 0.05 to 0.40. ,
    The internal stress of the front plate and the pressure-sensitive adhesive sheet obtained when the laminate of the front plate and the pressure-sensitive adhesive sheet is exposed for 120 hours in an environment of temperature 85 ° C. and humidity 85% RH, which is determined by the following formulas (1) and (2). A laminate having (σ) of 0.47 MPa or less.
    Figure JPOXMLDOC01-appb-I000001
    Figure JPOXMLDOC01-appb-I000002
    δ: When the front plate is exposed to a temperature of 85 ° C. and a humidity of 85% RH for 120 hours, the front plate is warped in a convex shape and the front plate end surface Lifting height from the stationary surface L: Sample length (10 cm)
    θ: The front plate warp shape when only the front plate is exposed to a temperature of 85 ° C. and a humidity of 85% RH for 120 hours, and the front plate is left in a horizontal shape with a convex downward shape. of a perpendicular line drawn to the ground of the front plate from the center of curvature, the front plate warped shape of curvature center and the front plate straight angle [rho 1 connecting the end points of: the front plate only the temperature 85 ° C., 85% humidity RH environment Radius of curvature of the front plate warp when exposed for 120 hours a 1 : thickness of the front plate a 2 : thickness of the adhesive sheet b: sample width (10 cm)
    E 1 : Elastic modulus of the front plate E 2 : Elastic modulus of the adhesive sheet I 1 : Sectional moment of inertia of the front plate
    I 2 : Cross-sectional secondary moment of the adhesive sheet h: a 1 + a 2
    σ: Internal stress
  2.  前記前面板を、温度85℃、湿度85%RH環境下に120時間静置し、次いで温度23℃、湿度50%RH環境下に4時間放置した後の、4隅の反り量(δ)の平均値が1.5mm以下であることを特徴とする請求項1に記載の積層体。 After the front plate was allowed to stand for 120 hours in an environment of temperature 85 ° C. and humidity 85% RH, and then left for 4 hours in an environment of temperature 23 ° C. and humidity 50% RH, The laminated body according to claim 1, wherein an average value is 1.5 mm or less.
  3.  A層の主成分樹脂としての熱可塑性樹脂はアクリル系樹脂であることを特徴とする請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the thermoplastic resin as the main component resin of the A layer is an acrylic resin.
  4.  A層の主成分樹脂としての熱可塑性樹脂は、メタクリル酸メチル単量体と、メタクリル酸単量体、アクリル酸単量体、マレイン酸無水物単量体、芳香族ビニル単量体、シアン化ビニル単量体のうちいずれか1種以上との共重合体からなるアクリル系樹脂(a1)であることを特徴とする請求項1~3の何れかに記載の積層体。 The thermoplastic resin as the main component resin of layer A is composed of methyl methacrylate monomer, methacrylic acid monomer, acrylic acid monomer, maleic anhydride monomer, aromatic vinyl monomer, cyanide The laminate according to any one of claims 1 to 3, which is an acrylic resin (a1) made of a copolymer with at least one of vinyl monomers.
  5.  A層の主成分樹脂としての熱可塑性樹脂は、メタクリル酸メチル単量体と、メタクリル酸単量体、アクリル酸単量体、マレイン酸無水物単量体、芳香族ビニル単量体、シアン化ビニル単量体のうちいずれか1種以上との共重合体からなるアクリル系樹脂(a1)と、芳香族ビニル単量体単位、(メタ)アクリル酸エステル単量体単位及びマレイン酸無水物単量体を有する共重合体(a2)とを含有することを特徴とする請求項1~3の何れかに記載の積層体。 The thermoplastic resin as the main component resin of layer A is composed of methyl methacrylate monomer, methacrylic acid monomer, acrylic acid monomer, maleic anhydride monomer, aromatic vinyl monomer, cyanide Acrylic resin (a1) comprising a copolymer with one or more of vinyl monomers, an aromatic vinyl monomer unit, a (meth) acrylic acid ester monomer unit, and a maleic anhydride unit The laminate according to any one of claims 1 to 3, comprising a copolymer (a2) having a monomer.
  6.  A層の主成分としての熱可塑性樹脂は、構造の一部に下記(化1)で表されるジヒドロキシ化合物に由来する構造単位を含むポリカーボネート樹脂(a3)であることを特徴とする請求項1又は2に記載の積層体。
    Figure JPOXMLDOC01-appb-C000003
     
    The thermoplastic resin as a main component of the A layer is a polycarbonate resin (a3) containing a structural unit derived from a dihydroxy compound represented by the following (Chemical Formula 1) in a part of the structure. Or the laminated body of 2.
    Figure JPOXMLDOC01-appb-C000003
  7.  B層の主成分樹脂としてのポリカーボネート系樹脂は、ポリカーボネート系樹脂(b1)と、芳香族(メタ)アクリレート単量体5~80%質量%およびメチルメタクリレート単量体単位95~20%質量%からなるアクリル系共重合体(b2)と、を含有することを特徴とする請求項1~6の何れかに記載の積層体。 The polycarbonate-based resin as the main component resin of the B layer is composed of the polycarbonate-based resin (b1), 5 to 80% by mass of the aromatic (meth) acrylate monomer, and 95 to 20% by mass of the methyl methacrylate monomer unit. The laminate according to any one of claims 1 to 6, which comprises an acrylic copolymer (b2).
  8.  粘着シートの弾性率(E)が0.001~30MPaであることを特徴とする請求項1~7の何れかに記載の積層体。 The laminate according to any one of claims 1 to 7, wherein the adhesive sheet has an elastic modulus (E 2 ) of 0.001 to 30 MPa.
  9.  前記前面板の総厚みが0.7mm以下であることを特徴とする請求項1~8の何れかに記載の積層体。 The laminate according to any one of claims 1 to 8, wherein the total thickness of the front plate is 0.7 mm or less.
  10.  前記前面板は、前記A層及びB層の他に、粘着シートと積層される側に、当該粘着シートの主成分樹脂と同一樹脂を主成分として含有するハードコート層を備えることを特徴とする請求項1~9の何れかに記載の積層体。 In addition to the A layer and the B layer, the front plate includes a hard coat layer containing, as a main component, the same resin as the main component resin of the pressure sensitive adhesive sheet on the side laminated with the pressure sensitive adhesive sheet. The laminate according to any one of claims 1 to 9.
  11.  請求項1~10の何れかに記載された積層体を備えた画像表示装置。
     
    An image display device comprising the laminate according to any one of claims 1 to 10.
PCT/JP2016/059841 2015-03-31 2016-03-28 Layered body WO2016158827A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680020492.8A CN107531037B (en) 2015-03-31 2016-03-28 Laminated body
JP2017509955A JP6508330B2 (en) 2015-03-31 2016-03-28 Laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015072075 2015-03-31
JP2015-072075 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016158827A1 true WO2016158827A1 (en) 2016-10-06

Family

ID=57005044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059841 WO2016158827A1 (en) 2015-03-31 2016-03-28 Layered body

Country Status (4)

Country Link
JP (1) JP6508330B2 (en)
CN (1) CN107531037B (en)
TW (1) TWI723985B (en)
WO (1) WO2016158827A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043627A1 (en) * 2016-09-01 2018-03-08 大日本印刷株式会社 Optical film and image display device
WO2018143194A1 (en) * 2017-02-03 2018-08-09 帝人株式会社 Multilayer body
JPWO2017141787A1 (en) * 2016-02-15 2018-12-13 三菱瓦斯化学株式会社 Transparent resin laminate
JP2020003448A (en) * 2018-07-02 2020-01-09 凸版印刷株式会社 Stimulus-responsive reversible deformation structure and method for manufacturing the same
WO2020162395A1 (en) 2019-02-07 2020-08-13 三菱瓦斯化学株式会社 Adhesive film and method for producing adhesive film
WO2021241426A1 (en) * 2020-05-27 2021-12-02 三菱瓦斯化学株式会社 Resin multilayer body

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110843266A (en) * 2018-08-20 2020-02-28 住友化学株式会社 Composite front panel and method of manufacturing the same
JPWO2021200685A1 (en) * 2020-03-31 2021-10-07
CN111816077B (en) * 2020-07-13 2022-04-26 武汉华星光电半导体显示技术有限公司 Foldable display module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202816A (en) * 2012-03-27 2013-10-07 Teijin Ltd Laminate
JP2014198454A (en) * 2013-03-13 2014-10-23 住友化学株式会社 Resin laminate and scratch-resistant resin laminate using the same
WO2015050051A1 (en) * 2013-10-02 2015-04-09 株式会社クラレ Laminate
JP2015128899A (en) * 2013-12-02 2015-07-16 住友化学株式会社 Resin laminate and scratch-resistant resin laminate using the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1174259A4 (en) * 1999-11-11 2006-03-22 Tdk Corp Transparent plastic film having hard coat layer
JP2010167659A (en) * 2009-01-22 2010-08-05 Teijin Chem Ltd Resin laminate
KR101885386B1 (en) * 2010-05-21 2018-09-11 미츠비시 가스 가가쿠 가부시키가이샤 Synthetic resin laminate
KR101413900B1 (en) * 2012-02-28 2014-06-30 미쓰비시 쥬시 가부시끼가이샤 Abrasion-resistant resin laminate, material for front cover of display and image display device
JP2014091775A (en) * 2012-11-02 2014-05-19 Dainippon Printing Co Ltd Tacky-adhesive sheet, production method thereof, and transparent protective laminate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013202816A (en) * 2012-03-27 2013-10-07 Teijin Ltd Laminate
JP2014198454A (en) * 2013-03-13 2014-10-23 住友化学株式会社 Resin laminate and scratch-resistant resin laminate using the same
WO2015050051A1 (en) * 2013-10-02 2015-04-09 株式会社クラレ Laminate
JP2015128899A (en) * 2013-12-02 2015-07-16 住友化学株式会社 Resin laminate and scratch-resistant resin laminate using the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017141787A1 (en) * 2016-02-15 2018-12-13 三菱瓦斯化学株式会社 Transparent resin laminate
EP3418051A4 (en) * 2016-02-15 2019-06-19 Mitsubishi Gas Chemical Company, Inc. Transparent resin laminate
US10792901B2 (en) 2016-09-01 2020-10-06 Dai Nippon Printing Co., Ltd. Optical film and image display device
WO2018043627A1 (en) * 2016-09-01 2018-03-08 大日本印刷株式会社 Optical film and image display device
JP2020183124A (en) * 2017-02-03 2020-11-12 帝人株式会社 Multilayer body
JPWO2018143194A1 (en) * 2017-02-03 2019-11-07 帝人株式会社 Multilayer
CN110248808A (en) * 2017-02-03 2019-09-17 帝人株式会社 Layered body
WO2018143194A1 (en) * 2017-02-03 2018-08-09 帝人株式会社 Multilayer body
CN110248808B (en) * 2017-02-03 2021-10-29 帝人株式会社 Multilayer body
US11339285B2 (en) 2017-02-03 2022-05-24 Teijin Limited Multilayer body
JP2020003448A (en) * 2018-07-02 2020-01-09 凸版印刷株式会社 Stimulus-responsive reversible deformation structure and method for manufacturing the same
WO2020162395A1 (en) 2019-02-07 2020-08-13 三菱瓦斯化学株式会社 Adhesive film and method for producing adhesive film
KR20210123292A (en) 2019-02-07 2021-10-13 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Adhesive film, and method for producing an adhesive film
WO2021241426A1 (en) * 2020-05-27 2021-12-02 三菱瓦斯化学株式会社 Resin multilayer body

Also Published As

Publication number Publication date
CN107531037A (en) 2018-01-02
CN107531037B (en) 2019-10-01
TW201700300A (en) 2017-01-01
JPWO2016158827A1 (en) 2017-10-12
TWI723985B (en) 2021-04-11
JP6508330B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
WO2016158827A1 (en) Layered body
TWI534009B (en) Forming body, material for front cover of display, and image display device
JP6571528B2 (en) Transparent resin laminate
WO2019235160A1 (en) Glass laminate, method for producing same, and display device front panel using same
JP6680036B2 (en) Laminate
US9802395B2 (en) Synthetic resin laminate
JP6693041B2 (en) Laminate
TWI661934B (en) Synthetic resin laminate
WO2018079732A1 (en) Laminated glass and film material for laminated-glass interlayer
JP6783112B2 (en) Acrylic resin film and its manufacturing method
TW202103948A (en) Resin sheet for high hardness molding and molded article using same
TW201829184A (en) Laminated glass and production method therefor, and photocurable resin composition for laminated-glass interlayer
TW201730312A (en) Adhesive and article comprising same
WO2021029266A1 (en) Resin sheet for molding and molded article using same
JP6565573B2 (en) Laminated body and manufacturing method thereof
WO2016068658A1 (en) Plastic film laminate
JP6880839B2 (en) Coating film and adhesive sheet laminate
JP2018030338A (en) Laminate
JP6908083B2 (en) Laminate
JP2017035855A (en) Manufacturing method of laminate with adhesive layer
JP2014004747A (en) Thermoplastic resin laminate
JP2020011517A (en) Laminate
WO2024057985A1 (en) Anti-glare laminate and method for manufacturing same
TW202244141A (en) Optical film and polarizing plate
JP2016107468A (en) Laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772708

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772708

Country of ref document: EP

Kind code of ref document: A1