WO2020235130A1 - Motor drive device and method for controlling motor drive device - Google Patents

Motor drive device and method for controlling motor drive device Download PDF

Info

Publication number
WO2020235130A1
WO2020235130A1 PCT/JP2020/001403 JP2020001403W WO2020235130A1 WO 2020235130 A1 WO2020235130 A1 WO 2020235130A1 JP 2020001403 W JP2020001403 W JP 2020001403W WO 2020235130 A1 WO2020235130 A1 WO 2020235130A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
angular velocity
torque
torque command
vibration suppression
Prior art date
Application number
PCT/JP2020/001403
Other languages
French (fr)
Japanese (ja)
Inventor
隆一 小川
野村 昌克
山本 康弘
淳也 矢野
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Priority to CN202080037606.6A priority Critical patent/CN113875145B/en
Publication of WO2020235130A1 publication Critical patent/WO2020235130A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/04Arrangements or methods for the control of AC motors characterised by a control method other than vector control specially adapted for damping motor oscillations, e.g. for reducing hunting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the present invention relates to a system in which a motor drives a multi-inertial system of two or more inertial systems, and particularly relates to vibration suppression.
  • AC-DC converter rectifier
  • an inverter that converts the DC voltage into an AC voltage and applies it to a motor (electric motor), and the applied electrical energy.
  • the inverter generates an AC voltage with an amplitude and frequency that allows the motor to operate with an appropriate torque based on a torque command generated by operating the accelerator or operation panel, and applies it to the motor.
  • Systems with such a drive system include, for example, elevators and machine tools.
  • the target response by the total inertia converted to the motor shaft is compared with the detected motor angular velocity, and the vibration component is fed back to suppress the vibration.
  • vibration suppression control for a test device such as a transmission in Patent Document 2
  • vibration suppression that does not depend on the motor rotation speed is performed by detecting and feeding back the output torque.
  • vibration suppression is performed by comparing the speeds of the motor and the driven portion and feeding back the vibration component.
  • the application target is limited to automobiles, and the influence of the vibration suppression control on the current control system when a high frequency disturbance is input to the inertial system is not considered.
  • Patent Document 2 requires an output torque detecting means. Many electric motor drive systems do not have output torque detection means, and there is a risk of design changes and parts procurement costs when applied to general electric motor drive systems.
  • the motor drive device can converge to the torque command input from the upper control in the steady state, the low-order model can be easily mounted, and the stability of the current control is improved. Become.
  • the present invention has been devised in view of the above-mentioned conventional problems, and one aspect thereof is a motor driving device for driving one or a plurality of loads by a motor connected to an inverter.
  • a speed control unit that outputs a torque command based on the motor angular speed and speed command, and a filter that extracts the vibration component by subtracting the detected motor angular speed from the estimated motor angular speed and does not compensate the low frequency component and high frequency component for the vibration component.
  • Based on the vibration suppression control unit that feeds back the compensation torque and adds the compensation torque to the torque command to calculate the vibration suppression torque command, the detection motor phase, the detection current, and the vibration suppression torque command. It is characterized by including a current control unit that outputs a gate signal and an inverter that controls a switching element based on the gate signal and outputs a voltage to the motor.
  • the vibration suppression control unit calculates the estimated motor angular velocity by multiplying the vibration suppression torque command by the inertial frame model, and obtains the detected motor angular velocity from the estimated motor angular velocity.
  • a subtraction unit for subtraction, a filter that inputs the output of the subtraction unit and outputs the compensation torque, and an addition unit that adds the compensation torque to the torque command and outputs it as the vibration suppression torque command are provided. It is characterized by that.
  • the transmission coefficient of the filter is characterized by the following equation (9).
  • G FB Transfer function Jr: Internal model inertia
  • ⁇ H Strength of suppression compensation
  • ⁇ H Frequency band s: Laplace operator.
  • a motor drive device in a motor drive device, it is possible to converge on a torque command input from a higher-level control in a steady state, a low-order model can be easily mounted, and the stability of current control can be improved.
  • connection configuration diagram of motor and load The control system block diagram of the motor drive device in embodiment. Inertial frame block diagram in the embodiment. The block diagram of the vibration suppression control part in an embodiment. The step response diagram in the embodiment. Bode plot in the embodiment.
  • FIG. 1 shows a connection configuration diagram of a motor and a load in this embodiment.
  • FIG. 1 shows a four inertial drive system in which a motor M drives three loads A, B, and C via a shaft.
  • the reason for using the 4-inertial drive system is to explain as an example of multi-inertial system control, and the embodiment is not limited to the 4-inertial system. That is, the number of loads is not limited to three, and any number of one or more may be used.
  • Motor torque T M is the torque which is generated by controlling the current flowing through the motor M by the inverter to drive the motor M and the load A by the motor torque T M, B, and C.
  • the drive system of FIG. 1 is referred to as a plant.
  • FIG. 2 shows a control system configuration diagram according to the present embodiment.
  • the speed command ⁇ * is input to the control system according to the amount of operation of the accelerator and operation panel.
  • the position control may be performed before the speed command ⁇ * , and the speed command ⁇ * may be generated there.
  • the speed control unit 1 outputs a torque command T * for following the speed command ⁇ * based on the input speed command ⁇ * and the detection motor angular velocity ⁇ M.
  • the vibration suppression control unit 2 is a control unit that is the target of the present embodiment, and is a torque command for suppressing vibration from the input torque command T * and the detection motor angular velocity ⁇ M (hereinafter referred to as vibration suppression torque command). Output T ** .
  • the vibration suppression torque command T ** , the detection motor phase, and the detection current are input to the current control unit 3, the current control calculation for realizing the vibration suppression torque command T ** is performed, and the gate signal is given to the inverter 4.
  • inverter 4 switching is performed according to the gate signal, and a voltage is applied to the motor M.
  • a voltage is applied to the motor M.
  • speed motor torque T M corresponding to the current is generated.
  • the estimated motor phase may be calculated by current control or the like, that is, the speed sensor may be omitted. In that case, the estimated motor angular velocity is input to the speed control unit 1 and the vibration suppression control unit 2 instead of the detected motor angular velocity ⁇ M.
  • the detected motor angular velocity ⁇ M shall include the estimated motor angular velocity
  • the detected motor phase shall include the estimated motor phase.
  • FIG. 3 is a representation of FIG. 1 in the form of a block diagram.
  • J M, J A, J B , J C respectively motor M, the load A, load B, and the inertia of the load C.
  • the loss of the shaft refers to a component such as friction generated according to the angular velocity at which the shaft twists.
  • Block 7,11,15,18 with inertia such as 1 / J M s denotes the transfer function of the angular speed from the torque.
  • Blocks 9, 13 and 17 using shaft coefficients such as D MA s + K MA / s show the transfer function from angular velocity to torque.
  • Subtractors 8, 12 and 16 by feedback before blocks 9, 13 and 17 using the transfer function of the shaft coefficient are for deriving the angular velocity at which the shaft twists from the difference between the two angular velocities.
  • the subtractors 6, 10 and 14 by feedback before the blocks 7, 11, 15 and 18 using the transfer function of the inertia of the motor M or the loads A, B and C express the reaction force from the shaft.
  • the subtraction unit 5 subtracts the disturbance torque T dis from the motor torque T M.
  • the output of the first shaft block 9 is subtracted from the output of the subtraction unit 5.
  • the detected motor angular velocity ⁇ M is calculated by multiplying the output of the subtraction unit 6 by the motor inertia transfer function 1 / J M s.
  • the subtracting unit 8 subtracts the output of the first load inertia block 11 from the detection motor angular velocity ⁇ M.
  • the output of the subtraction unit 8 is multiplied by the first shaft transfer function D MA s + K MA / s.
  • the subtraction unit 10 subtracts the output of the second shaft block 13 from the output of the first shaft block 9. In the first load inertia block 11, it is multiplied by a first load transfer function 1 / J A s the output of the subtraction unit 10.
  • the subtracting unit 12 subtracts the output of the second load inertia block 15 from the output of the first load inertia block 11.
  • the output of the subtraction unit 12 is multiplied by the second shaft transfer function D AB s + K AB / s.
  • the subtraction unit 14 subtracts the output of the third shaft block 17 from the output of the second shaft block 13.
  • the output of the subtraction unit 14 is multiplied by the second load transfer function 1 / J B s.
  • the subtraction unit 16 subtracts the output of the third load inertia block 18 from the output of the second load inertia block 15.
  • the output of the subtraction unit 16 is multiplied by the third shaft transfer function DC C s + K BC / s.
  • the output of the third shaft block 17 is multiplied by the third load transfer function 1 / J C s.
  • FIG. 3 shows a case where the load is three, the load may be one or more.
  • the plant transfer function GP is a block from the subtraction unit 6 to the first load inertia block 11 (however, there is no subtraction unit 10).
  • the blocks are from the subtraction unit 6 to the second load inertia block 15 (however, there is no subtraction unit 14).
  • the load is 4 or more, the necessary blocks may be added to FIG.
  • the motor angular velocity is detected and used as the detected motor angular velocity ⁇ M in the control system of FIG.
  • the plant does not have to be a combination of linear transfer functions as shown in FIG. 3, that is, a configuration that can be combined into one plant transfer function GP , and is a plant having non-linear elements such as gear backlash. Also, this embodiment is applicable.
  • FIG. 4 shows a configuration diagram of the vibration suppression control unit 2.
  • GP is the plant transfer function shown in FIG.
  • the plant transfer function GP is an external term of the vibration suppression control unit 2 in FIG. 2, but is described for the sake of clarity of the vibration suppression control as a whole.
  • a detection means is provided for the resonating model, and the result is compared with the in-control calculation result having a component other than the resonance and fed back to the output.
  • This is the basic idea of control.
  • a model that expresses components other than resonance is a model that roughly represents the entire inertial system, and this is a first-order lag with the sum of all inertias of the inertial system as the time constant.
  • a torque command T * is input to the vibration suppression control unit 2.
  • the adder 19 adds the torque command T * and the fed-back compensation torque T FB to calculate the vibration suppression torque command T ** .
  • the inertial frame model block 20 calculates the estimated motor angular velocity ⁇ est by multiplying the vibration suppression torque command T ** by the inertial frame model (1 / Jrs ) inside the control.
  • J r is an internal model inertia.
  • the vibration suppression torque command T ** is the motor torque T M via the (omitted regarded as small primary delay time constant in this case) the current control system.
  • the disturbance torque T dis is subtracted from the motor torque T M, is input to the plant transfer function G P.
  • the output of the plant transfer function GP is the detection motor angular velocity ⁇ M.
  • the detected motor angular velocity ⁇ M is subtracted from the estimated motor angular velocity ⁇ est .
  • the internal model is compared with the detected value from the plant.
  • the subtracted result is added to the torque command T * as a compensating torque T FB for suppressing vibration via the filter 22 (transfer function G FB ).
  • the basic concept of vibration suppression control (FIG. 4) of the present embodiment will be described.
  • the motor angular velocity ⁇ M detected from the plant vibrates due to the rigidity of the plant.
  • the internal model is expressed only by the integral considering the inertia, and the estimated motor angular velocity ⁇ est obtained from it has no vibration component.
  • the internal model is appropriate, only the vibration component of the detected motor angular velocity ⁇ M can be extracted by comparing the detected motor angular velocity ⁇ M with the estimated motor angular velocity ⁇ est .
  • the obtained vibration component is passed through an appropriate filter (transfer function G FB ) and fed back to the torque command T * , so that the vibration of the detected motor angular velocity ⁇ M can be suppressed.
  • transfer function G FB transfer function
  • the vibration suppression control according to the configuration of FIG. 4 will be described using a mathematical formula.
  • the current control system can be regarded as a first-order lag with a small time constant, and the vibration suppression torque command T ** and the motor torque TM are equal.
  • the motor angular velocity of the plant is considered to be detected accurately without delay.
  • the inertial frame model inside the control will be described. Since we want to extract the vibration component by comparing the detected motor angular velocity ⁇ M with the estimated motor angular velocity ⁇ est as described above, the estimated motor angular velocity ⁇ est may be a simulation of the rough movement of the motor angular velocity.
  • the internal model inertia J r is adjusted to a value equal to or higher than the inertia J M so that vibration can be easily suppressed.
  • the internal model inertia Jr is the sum of the inertias of the motor M and the total loads A, B, and C as shown in the following equation (1).
  • the inertia of each load A, B, C seen from the motor M is the inertia measured separately. Since the above looks different, the estimated motor angular velocity ⁇ est deviates from the detected motor angular velocity ⁇ M if the equation (1) remains as it is. In such a case, the inertia of each load may be converted into the motor shaft using the gear ratio and turning radius, and the sum may be taken.
  • the transfer function from the torque command T * and the disturbance torque T dis to the motor torque T M is the following equation (2).
  • the transfer function from the torque command T * and the disturbance torque T dis to the detected motor angular velocity ⁇ M is as shown in equation (3) below.
  • the design is such that the low frequency component and the high frequency component are not compensated. -If there is no vibration, the value of the torque command T * is not changed, that is, steady compensation is not performed. -No compensation is provided that requires consideration of the balance with the current control response.
  • the frequency band ⁇ H and the strength of suppression compensation ⁇ H are adjusted so that vibration can be suppressed according to the plant, but in general, the frequency band ⁇ H is from the antiresonance point of the plant transfer function GP. Set low, and if the suppression compensation strength ⁇ H is small, the vibration suppression performance is weak, and if it is large, a steep compensation torque T FB is generated, so it is better to set it to about 0.2 ⁇ H ⁇ 0.8.
  • FIG. 5 shows the simulation results for the step response.
  • the left side of FIG. 5 shows the case where the torque command T * is changed, and the right side shows the case where the disturbance torque T dis is changed. It can be seen that the vibration of the detected motor angular velocity ⁇ M is suppressed regardless of whether the torque command T * or the disturbance torque T dis is changed. Both results even torque command T * and the vibration suppression torque command T **, where that is the motor torque T M is seen to converge eventually equal.
  • the vibration of the multi-inertial system can be suppressed while achieving the purpose of suppressing the vibration of the present embodiment, "the value of the torque command T * is not changed when there is no vibration".
  • the deviation in the degree of increase in the angular velocity in the disturbance torque response is derived from the fact that the torque that cancels the disturbance is generated by the amount of vibration suppression only when there is control.
  • FIG. 6 shows a Bode diagram. Since it is a 4-inertial system, there are three resonance points without vibration suppression control. When vibration suppression is performed, the gain at the resonance point can be suppressed for both the response to the torque command T * and the response to the disturbance torque T dis .
  • the first feature is steady-state characteristics.
  • the vibration suppression torque command T ** becomes equal to the torque command T * . This is advantageous when it is desired to output a particular motor torque T M or without disturbance.
  • the second feature is the order of the internal model. Normally, when trying to reproduce the resonance of a multi-inertial system with an internal model, the order of the transfer function becomes high, and the coefficient also differs greatly depending on the term, so it is necessary to pay attention to the decimal point position and calculation error at the time of mounting. However, internal model 1 / J r s of the present embodiment is able to reduce the difficulties of the orders lower mounting.
  • the third feature is the consideration of high frequency disturbance. If the vibration suppression control is designed to compensate for high-frequency disturbance, the compensation torque fluctuates at high frequencies, and there is a risk of destabilizing the current control. On the other hand, in the present embodiment, the GH that contributes to the disturbance response is set as in the equation (8), and the stability is ensured by not performing compensation for high frequencies. The above are the features of this embodiment.
  • the torque command input from the upper control in the steady state is fed back through a filter that does not compensate for low and high frequencies.
  • T * It can be easily implemented with a low-order model, and it is possible to perform vibration suppression control of a multi-inertial system that does not make current control unstable.
  • vibration control of automobiles may be performed by expressing resonance due to shaft rigidity with a model. This can be controlled with feedforward without overshoot, but model accuracy is important instead.
  • the control of this embodiment does not express resonance, but makes it possible to perform vibration damping control with a simple transfer function expression.

Abstract

On the basis of a detected motor angular velocity ωM and a velocity command ω*, a velocity control unit 1 outputs a torque command T*. A vibration suppression control unit 2 subtracts the detected motor angular velocity ωM from an estimated motor angular velocity ωest to extract the vibration component, feeds back a compensation torque TFB through a filter 22 which does not compensate low-frequency components and high-frequency components of the vibration component, and adds the compensation torque TFB to the torque command T* to calculate a vibration suppressing torque command T**. A current control unit 3 outputs a gate signal on the basis of the detected motor phase, the detected current, and the aforementioned vibration suppressing torque command. An inverter 4 controls a switching element on the basis of the gate signal, and outputs a voltage to the motor M. In the motor drive device, it is possible to converge to a torque command inputted from higher-level control in a normal state, a lower-order model can be easily implemented, and stability of current control is increased.

Description

モータ駆動装置及びモータ駆動装置の制御方法Motor drive device and control method of motor drive device
 本発明は、モータが2慣性系,もしくはそれ以上の多慣性系を駆動するシステムに係り、特に、振動抑制に関する。 The present invention relates to a system in which a motor drives a multi-inertial system of two or more inertial systems, and particularly relates to vibration suppression.
 バッテリもしくは交流電源とレクティファイア(交流-直流変換器)の組み合わせからなる直流電圧を生じさせる機構と、直流電圧を交流電圧に変換しモータ(電動機)に印加するインバータと、印加された電気エネルギーを力学的エネルギーに変換して回転するモータと、モータとシャフト等で連結された1つの負荷と、などから構成される2慣性駆動系、あるいは負荷が複数連結された多慣性駆動系を考える。 A mechanism that generates a DC voltage consisting of a combination of a battery or an AC power supply and a rectifier (AC-DC converter), an inverter that converts the DC voltage into an AC voltage and applies it to a motor (electric motor), and the applied electrical energy. Consider a two-inertial drive system consisting of a motor that rotates by converting it into mechanical energy, a single load connected to the motor by a shaft, or the like, or a multi-inertial drive system in which a plurality of loads are connected.
 ここでインバータは、アクセルや操作盤の操作によって生成されるトルク指令に基づいて、モータが適正なトルクで運転できるような振幅・周波数の交流電圧を生成してモータへ印加するものとする。このような駆動系をもつシステムには例えばエレベータ,工作機械といったものがある。 Here, the inverter generates an AC voltage with an amplitude and frequency that allows the motor to operate with an appropriate torque based on a torque command generated by operating the accelerator or operation panel, and applies it to the motor. Systems with such a drive system include, for example, elevators and machine tools.
 このようなシャフトを介する駆動系においては負荷を駆動させた際、シャフトにねじりに対する反力が生じ、共振を励起することがある。また、負荷に加わる外乱成分により慣性系が振動することがある。この慣性系の振動に対して、制御上の改善で対策を行う方法が知られている。 In such a drive system via a shaft, when a load is driven, a reaction force against torsion may be generated in the shaft, which may excite resonance. In addition, the inertial system may vibrate due to the disturbance component applied to the load. There is known a method of taking countermeasures against the vibration of this inertial system by improving the control.
 例えば、特許文献1に示される自動車用の振動抑制制御では、モータ軸換算した総合イナーシャによる目標応答と検出モータ角速度を比較し、振動成分をフィードバックして振動抑制を行っている。 For example, in the vibration suppression control for automobiles shown in Patent Document 1, the target response by the total inertia converted to the motor shaft is compared with the detected motor angular velocity, and the vibration component is fed back to suppress the vibration.
 特許文献2のトランスミッション等試験装置用の振動抑制制御では、出力トルクを検出しフィードバックすることでモータ回転速度に依存しない振動抑制を行っている。 In the vibration suppression control for a test device such as a transmission in Patent Document 2, vibration suppression that does not depend on the motor rotation speed is performed by detecting and feeding back the output torque.
 特許文献3の工作機械用の振動抑制制御では、モータと被駆動部の速度を比較し、振動成分をフィードバックすることで振動抑制を行っている。 In the vibration suppression control for machine tools of Patent Document 3, vibration suppression is performed by comparing the speeds of the motor and the driven portion and feeding back the vibration component.
 特許文献4の多慣性系の振動抑制制御では、外乱オブザーバと共振比制御を両立させて簡易な振動抑制制御を達成している。 In the vibration suppression control of the multi-inertial system of Patent Document 4, simple vibration suppression control is achieved by achieving both disturbance observer and resonance ratio control.
 特許文献1の振動抑制制御では、適用対象を自動車に限定した議論となっており、慣性系に高周波外乱が入力された場合の振動抑制制御が電流制御系へ与える影響が考慮されていない。 In the vibration suppression control of Patent Document 1, the application target is limited to automobiles, and the influence of the vibration suppression control on the current control system when a high frequency disturbance is input to the inertial system is not considered.
 特許文献2の振動抑制制御では、出力トルク検出手段を必要とする。電動機駆動系には出力トルク検出手段をもたないものも多く、一般の電動機駆動系への適用に当たっては設計変更,部品調達コストが生じる恐れがある。 The vibration suppression control of Patent Document 2 requires an output torque detecting means. Many electric motor drive systems do not have output torque detection means, and there is a risk of design changes and parts procurement costs when applied to general electric motor drive systems.
 特許文献3の振動抑制制御では、モータと被駆動部の両者に速度検出器が必要となる。検出器が2つの場合、1つの場合に比べて部品コスト増大,故障リスク増大といった問題が生じる。 In the vibration suppression control of Patent Document 3, a speed detector is required for both the motor and the driven unit. When there are two detectors, problems such as increased component cost and increased failure risk occur as compared with the case of one detector.
 特許文献4の振動抑制制御では、低周波成分をフィードバックするため、定常時に振動抑制補償後のトルク指令が速度制御からのトルク指令に収束しない。指令値の大小,外乱の有無にかかわらずモータトルクを具体的な値へと制御したい場合に不向きである。 In the vibration suppression control of Patent Document 4, since the low frequency component is fed back, the torque command after the vibration suppression compensation does not converge to the torque command from the speed control in the steady state. It is not suitable when you want to control the motor torque to a specific value regardless of the magnitude of the command value and the presence or absence of disturbance.
 以上示したようなことから、モータ駆動装置において、定常状態で上位制御から入力されるトルク指令に収束でき、低次のモデルが簡易に実装でき、電流制御の安定性を向上させることが課題となる。 From the above, it is an issue that the motor drive device can converge to the torque command input from the upper control in the steady state, the low-order model can be easily mounted, and the stability of the current control is improved. Become.
特許第6243279号Patent No. 6243279 特許第5037024号Patent No. 5037024 特許第6412071号Patent No. 6412071 特許第5329203号Patent No. 5329203
 本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、インバータに接続されたモータによって、1つ、または、複数の負荷を駆動するモータ駆動装置であって、検出モータ角速度と速度指令に基づいて、トルク指令を出力する速度制御部と、推定モータ角速度から前記検出モータ角速度を減じて振動成分を抽出し、前記振動成分を低周波成分および高周波成分を補償しないフィルタに通して補償トルクをフィードバックし、前記補償トルクを前記トルク指令に加算して振動抑制トルク指令を算出する振動抑制制御部と、検出モータ位相と検出電流と前記振動抑制トルク指令とに基づいて、ゲート信号を出力する電流制御部と、前記ゲート信号に基づいてスイッチング素子を制御し、前記モータに電圧を出力するインバータと、を備えたことを特徴とする。 The present invention has been devised in view of the above-mentioned conventional problems, and one aspect thereof is a motor driving device for driving one or a plurality of loads by a motor connected to an inverter. A speed control unit that outputs a torque command based on the motor angular speed and speed command, and a filter that extracts the vibration component by subtracting the detected motor angular speed from the estimated motor angular speed and does not compensate the low frequency component and high frequency component for the vibration component. Based on the vibration suppression control unit that feeds back the compensation torque and adds the compensation torque to the torque command to calculate the vibration suppression torque command, the detection motor phase, the detection current, and the vibration suppression torque command. It is characterized by including a current control unit that outputs a gate signal and an inverter that controls a switching element based on the gate signal and outputs a voltage to the motor.
 また、その一態様として、前記振動抑制制御部は、前記振動抑制トルク指令に慣性系モデルを乗算して前記推定モータ角速度を算出する慣性系モデルブロックと、前記推定モータ角速度から前記検出モータ角速度を減算する減算部と、前記減算部の出力を入力して前記補償トルクを出力する前記フィルタと、前記トルク指令に前記補償トルクを加算して前記振動抑制トルク指令として出力する加算部と、を備えたことを特徴とする。 Further, as one aspect thereof, the vibration suppression control unit calculates the estimated motor angular velocity by multiplying the vibration suppression torque command by the inertial frame model, and obtains the detected motor angular velocity from the estimated motor angular velocity. A subtraction unit for subtraction, a filter that inputs the output of the subtraction unit and outputs the compensation torque, and an addition unit that adds the compensation torque to the torque command and outputs it as the vibration suppression torque command are provided. It is characterized by that.
 また、その一態様として、前記フィルタの伝達係数は、以下の(9)式とすることを特徴とする。 Further, as one aspect thereof, the transmission coefficient of the filter is characterized by the following equation (9).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
FB:伝達関数
Jr:内部モデルイナーシャ
ζH:抑制補償の強さ
ωH:周波数帯域
s:ラプラス演算子。
G FB : Transfer function Jr: Internal model inertia ζ H : Strength of suppression compensation ω H : Frequency band s: Laplace operator.
 本発明によれば、モータ駆動装置において、定常状態で上位制御から入力されるトルク指令に収束でき、低次のモデルが簡易に実装でき、電流制御の安定性を向上させることが可能となる。 According to the present invention, in a motor drive device, it is possible to converge on a torque command input from a higher-level control in a steady state, a low-order model can be easily mounted, and the stability of current control can be improved.
モータと負荷の接続構成図。Connection configuration diagram of motor and load. 実施形態におけるモータ駆動装置の制御システム構成図。The control system block diagram of the motor drive device in embodiment. 実施形態における慣性系ブロック図。Inertial frame block diagram in the embodiment. 実施形態における振動抑制制御部の構成図。The block diagram of the vibration suppression control part in an embodiment. 実施形態におけるステップ応答図。The step response diagram in the embodiment. 実施形態におけるボード線図。Bode plot in the embodiment.
 以下、本願発明におけるモータ駆動装置の実施形態を図1~図6に基づいて詳述する。 Hereinafter, embodiments of the motor drive device according to the present invention will be described in detail with reference to FIGS. 1 to 6.
 [実施形態]
 図1に本実施形態におけるモータと負荷の接続構成図を示す。図1はモータMがシャフトを介して3つの負荷A,B,Cを駆動する4慣性駆動系を示している。4慣性駆動系としたのは多慣性系制御の例として説明するためであり、実施形態が対象とするのは4慣性系だけではない。つまり、負荷の個数は3つに限定されず、1個以上の任意の個数でよい。モータトルクTMはモータMに流れる電流をインバータで制御することにより発生させたトルクであり、モータトルクTMによってモータM及び負荷A,B,Cを駆動する。以下では図1の駆動系をプラントと称する。
[Embodiment]
FIG. 1 shows a connection configuration diagram of a motor and a load in this embodiment. FIG. 1 shows a four inertial drive system in which a motor M drives three loads A, B, and C via a shaft. The reason for using the 4-inertial drive system is to explain as an example of multi-inertial system control, and the embodiment is not limited to the 4-inertial system. That is, the number of loads is not limited to three, and any number of one or more may be used. Motor torque T M is the torque which is generated by controlling the current flowing through the motor M by the inverter to drive the motor M and the load A by the motor torque T M, B, and C. Hereinafter, the drive system of FIG. 1 is referred to as a plant.
 図2に本実施形態における制御システム構成図を示す。制御システムにはアクセル,操作盤などの操作量に応じた速度指令ω*が入力される。速度指令ω*の前に位置制御があり、そこで速度指令ω*が生成される構成でもよい。速度制御部1は入力された速度指令ω*と検出モータ角速度ωMに基づき速度指令ω*に追従するためのトルク指令T*を出力する。 FIG. 2 shows a control system configuration diagram according to the present embodiment. The speed command ω * is input to the control system according to the amount of operation of the accelerator and operation panel. The position control may be performed before the speed command ω * , and the speed command ω * may be generated there. The speed control unit 1 outputs a torque command T * for following the speed command ω * based on the input speed command ω * and the detection motor angular velocity ω M.
 振動抑制制御部2は本実施形態の対象とする制御部であり、入力されたトルク指令T*と検出モータ角速度ωMから振動を抑制するためのトルク指令(以下、振動抑制トルク指令と称する)T**を出力する。 The vibration suppression control unit 2 is a control unit that is the target of the present embodiment, and is a torque command for suppressing vibration from the input torque command T * and the detection motor angular velocity ω M (hereinafter referred to as vibration suppression torque command). Output T ** .
 電流制御部3には振動抑制トルク指令T**と検出モータ位相,検出電流が入力され、振動抑制トルク指令T**を実現するための電流制御演算を行い、ゲート信号をインバータ4に与える。 The vibration suppression torque command T ** , the detection motor phase, and the detection current are input to the current control unit 3, the current control calculation for realizing the vibration suppression torque command T ** is performed, and the gate signal is given to the inverter 4.
 インバータ4ではゲート信号の通りにスイッチングが行われ、電圧をモータMに印加する。モータMに電圧が印加されると電流が流れ、速度,電流に応じたモータトルクTMが生じる。 In the inverter 4, switching is performed according to the gate signal, and a voltage is applied to the motor M. When the voltage to the motor M is applied current flows, speed, motor torque T M corresponding to the current is generated.
 ここで、図2では検出モータ角速度ωMおよび検出モータ位相を用いているが、電流制御などで推定モータ位相を演算する、つまり速度センサレスとしてもよい。その場合、速度制御部1,振動抑制制御部2には検出モータ角速度ωMの代わりに推定したモータ角速度を入力するものとする。本明細書では、検出モータ角速度ωMは推定したモータ角速度を含むものとし、検出モータ位相は推定モータ位相を含むものとする。 Here, although the detection motor angular velocity ω M and the detection motor phase are used in FIG. 2, the estimated motor phase may be calculated by current control or the like, that is, the speed sensor may be omitted. In that case, the estimated motor angular velocity is input to the speed control unit 1 and the vibration suppression control unit 2 instead of the detected motor angular velocity ω M. In the present specification, the detected motor angular velocity ω M shall include the estimated motor angular velocity, and the detected motor phase shall include the estimated motor phase.
 また、以下の振動抑制制御の検討に関して電流制御は十分正確であると仮定し、電流制御応答と同じ時定数の一次遅れ伝達関数とみなす。 In addition, regarding the following examination of vibration suppression control, it is assumed that the current control is sufficiently accurate, and it is regarded as the first-order lag transfer function of the same time constant as the current control response.
 図3は図1をブロック図の形で表したものである。JM,JA,JB,JCはそれぞれモータM,負荷A,負荷B,負荷Cのイナーシャである。また、DMA,DAB,DBCはモータMと負荷A,負荷Aと負荷B,負荷Bと負荷Cを接続するシャフトの損失を表現する減衰定数,KMA,KAB,KBCはモータMと負荷A,負荷Aと負荷B,負荷Bと負荷Cを接続するシャフトの剛性である。シャフトの損失とはシャフトがねじれる角速度に応じて発生する摩擦などの成分を示す。 FIG. 3 is a representation of FIG. 1 in the form of a block diagram. J M, J A, J B , J C respectively motor M, the load A, load B, and the inertia of the load C. Further, D MA, D AB, D BC motor M and the load A, the load A and the load B, the attenuation constant representing the loss of the shaft to be connected to the load B load C, K MA, K AB, the K BC motor The rigidity of the shaft connecting M and the load A, the load A and the load B, and the load B and the load C. The loss of the shaft refers to a component such as friction generated according to the angular velocity at which the shaft twists.
 1/JMsなどといったイナーシャを用いたブロック7,11,15,18はトルクから角速度への伝達関数を示す。DMAs+KMA/sなどといったシャフト係数を用いたブロック9,13,17は角速度からトルクへの伝達関数を示す。 Block 7,11,15,18 with inertia, such as 1 / J M s denotes the transfer function of the angular speed from the torque. Blocks 9, 13 and 17 using shaft coefficients such as D MA s + K MA / s show the transfer function from angular velocity to torque.
 シャフト係数の伝達関数を用いたブロック9,13,17手前のフィードバックによる減算器8,12,16は2つの角速度の差からシャフトがねじれる角速度を導出するためのものである。モータMまたは負荷A,B,Cのイナーシャの伝達関数を用いたブロック7,11,15,18手前のフィードバックによる減算器6,10,14はシャフトからの反力を表現したものである。 Subtractors 8, 12 and 16 by feedback before blocks 9, 13 and 17 using the transfer function of the shaft coefficient are for deriving the angular velocity at which the shaft twists from the difference between the two angular velocities. The subtractors 6, 10 and 14 by feedback before the blocks 7, 11, 15 and 18 using the transfer function of the inertia of the motor M or the loads A, B and C express the reaction force from the shaft.
 図3に基づいて、具体的に説明する。減算部5において、モータトルクTMから外乱トルクTdisを減算する。減算部6において、減算部5の出力から第1シャフトブロック9の出力を減算する。 A specific description will be given with reference to FIG. In the subtraction unit 5 subtracts the disturbance torque T dis from the motor torque T M. In the subtraction unit 6, the output of the first shaft block 9 is subtracted from the output of the subtraction unit 5.
 モータイナーシャブロック7において、減算部6の出力にモータイナーシャ伝達関数1/JMsを乗算して検出モータ角速度ωMを算出する。減算部8において、検出モータ角速度ωMから第1負荷イナーシャブロック11の出力を減算する。第1シャフトブロック9において、減算部8の出力に第1シャフト伝達関数DMAs+KMA/sを乗算する。 In the motor inertia block 7, the detected motor angular velocity ω M is calculated by multiplying the output of the subtraction unit 6 by the motor inertia transfer function 1 / J M s. The subtracting unit 8 subtracts the output of the first load inertia block 11 from the detection motor angular velocity ω M. In the first shaft block 9, the output of the subtraction unit 8 is multiplied by the first shaft transfer function D MA s + K MA / s.
 減算部10において、第1シャフトブロック9の出力から第2シャフトブロック13の出力を減算する。第1負荷イナーシャブロック11において、減算部10の出力に第1負荷伝達関数1/JAsを乗算する。減算部12において、第1負荷イナーシャブロック11の出力から第2負荷イナーシャブロック15の出力を減算する。 The subtraction unit 10 subtracts the output of the second shaft block 13 from the output of the first shaft block 9. In the first load inertia block 11, it is multiplied by a first load transfer function 1 / J A s the output of the subtraction unit 10. The subtracting unit 12 subtracts the output of the second load inertia block 15 from the output of the first load inertia block 11.
 第2シャフトブロック13において、減算部12の出力に第2シャフト伝達関数DABs+KAB/sを乗算する。減算部14において、第2シャフトブロック13の出力から第3シャフトブロック17の出力を減算する。第2負荷イナーシャブロック15において、減算部14の出力に第2負荷伝達関数1/JBsを乗算する。減算部16において、第2負荷イナーシャブロック15の出力から第3負荷イナーシャブロック18の出力を減算する。 In the second shaft block 13, the output of the subtraction unit 12 is multiplied by the second shaft transfer function D AB s + K AB / s. The subtraction unit 14 subtracts the output of the third shaft block 17 from the output of the second shaft block 13. In the second load inertia block 15, the output of the subtraction unit 14 is multiplied by the second load transfer function 1 / J B s. The subtraction unit 16 subtracts the output of the third load inertia block 18 from the output of the second load inertia block 15.
 第3シャフトブロック17において、減算部16の出力に第3シャフト伝達関数DBCs+KBC/sを乗算する。第3負荷イナーシャブロック18において、第3シャフトブロック17の出力に第3負荷伝達関数1/JCsを乗算する。 In the third shaft block 17, the output of the subtraction unit 16 is multiplied by the third shaft transfer function DC C s + K BC / s. In the third load inertia block 18, the output of the third shaft block 17 is multiplied by the third load transfer function 1 / J C s.
 図3では、負荷が3つの場合について示しているが、負荷は1つ以上であればよい。負荷が1つの場合、プラント伝達関数GPは、減算部6~第1負荷イナーシャブロック11までのブロックとなる(ただし、減算部10はない)。負荷が2つの場合は、減算部6~第2負荷イナーシャブロック15までのブロックとなる(ただし、減算部14はない)。負荷が4つ以上の場合は、図3に対して必要なブロックを追加すればよい。 Although FIG. 3 shows a case where the load is three, the load may be one or more. When there is one load, the plant transfer function GP is a block from the subtraction unit 6 to the first load inertia block 11 (however, there is no subtraction unit 10). When there are two loads, the blocks are from the subtraction unit 6 to the second load inertia block 15 (however, there is no subtraction unit 14). When the load is 4 or more, the necessary blocks may be added to FIG.
 モータトルクTM、及び、外乱トルクTdisを入力すると、図3に基づいてモータM,負荷A,B,Cが駆動される。モータ角速度が検出され、検出モータ角速度ωMとして図2の制御システムで用いられる。モータトルクTM,外乱トルクTdisの減算以降を、プラント入力トルクから検出モータ角速度ωMまでのプラント伝達関数GPと称する。ただし、プラントは図3のように線形な伝達関数の組み合わせ、つまり1つのプラント伝達関数GPにまとめられるような構成である必要はなく、ギアのバックラッシュなど非線形な要素を有するプラントである場合も本実施形態は適用可能である。 Motor torque T M and, by entering the disturbance torque T dis, the motor M on the basis of FIG. 3, the load A, B, C are driven. The motor angular velocity is detected and used as the detected motor angular velocity ω M in the control system of FIG. Motor torque T M, the subsequent subtraction of the disturbance torque T dis, referred to as the plant transfer function G P from the plant input torque to the detection motor angular velocity omega M. However, the plant does not have to be a combination of linear transfer functions as shown in FIG. 3, that is, a configuration that can be combined into one plant transfer function GP , and is a plant having non-linear elements such as gear backlash. Also, this embodiment is applicable.
 図4に振動抑制制御部2の構成図を示す。GPは図3に示すプラント伝達関数である。プラント伝達関数GPは図2の振動抑制制御部2の外部の項であるが、振動抑制制御全体のわかりやすさのために記した。 FIG. 4 shows a configuration diagram of the vibration suppression control unit 2. GP is the plant transfer function shown in FIG. The plant transfer function GP is an external term of the vibration suppression control unit 2 in FIG. 2, but is described for the sake of clarity of the vibration suppression control as a whole.
 本実施形態は、共振するモデルに対し検出手段を設け、共振以外の成分をもった制御内演算結果と比較して出力にフィードバックする。これが制御の基本的な考え方となる。共振以外の成分を表現するモデルとは、おおまかに慣性系全体を表すモデルということであり、これは慣性系の全てのイナーシャの和を時定数とする一次遅れである。 In this embodiment, a detection means is provided for the resonating model, and the result is compared with the in-control calculation result having a component other than the resonance and fed back to the output. This is the basic idea of control. A model that expresses components other than resonance is a model that roughly represents the entire inertial system, and this is a first-order lag with the sum of all inertias of the inertial system as the time constant.
 振動抑制制御部2にはトルク指令T*が入力される。加算器19により、トルク指令T*とフィードバックされた補償トルクTFBを加算して振動抑制トルク指令T**を算出する。 A torque command T * is input to the vibration suppression control unit 2. The adder 19 adds the torque command T * and the fed-back compensation torque T FB to calculate the vibration suppression torque command T ** .
 慣性系モデルブロック20は、振動抑制トルク指令T**に制御内部の慣性系モデル(1/Jrs)を乗算して推定モータ角速度ωestを算出する。ここで、Jrは内部モデルイナーシャである。また、振動抑制トルク指令T**は電流制御系(ここでは時定数の小さい一次遅れとみなし省略する)を介してモータトルクTMとなる。減算器5において、モータトルクTMから外乱トルクTdisを減算し、プラント伝達関数GPに入力される。プラント伝達関数GPの出力は検出モータ角速度ωMとなる。 The inertial frame model block 20 calculates the estimated motor angular velocity ω est by multiplying the vibration suppression torque command T ** by the inertial frame model (1 / Jrs ) inside the control. Here, J r is an internal model inertia. The vibration suppression torque command T ** is the motor torque T M via the (omitted regarded as small primary delay time constant in this case) the current control system. In the subtracter 5, the disturbance torque T dis is subtracted from the motor torque T M, is input to the plant transfer function G P. The output of the plant transfer function GP is the detection motor angular velocity ω M.
 減算部21において、推定モータ角速度ωestから検出モータ角速度ωMが減算される。つまり、内部モデルとプラントからの検出値を比較している。減算した結果はフィルタ22(伝達関数GFB)を介して振動抑制用の補償トルクTFBとしてトルク指令T*に加算される。 In the subtraction unit 21, the detected motor angular velocity ω M is subtracted from the estimated motor angular velocity ω est . In other words, the internal model is compared with the detected value from the plant. The subtracted result is added to the torque command T * as a compensating torque T FB for suppressing vibration via the filter 22 (transfer function G FB ).
 ここでは、図2の速度制御,電流制御は特別の問題なく動作するものとして、振動抑制制御のみを考える。 Here, assuming that the speed control and current control in FIG. 2 operate without any special problem, only the vibration suppression control is considered.
 本実施形態の振動抑制制御(図4)における基本的な考え方を説明する。プラントからの検出モータ角速度ωMはプラントの剛性により振動する。これに対し内部モデルはイナーシャを考慮した積分だけで表現され、そこから得られる推定モータ角速度ωestは振動成分を持たない。つまり内部モデルが適切であれば、検出モータ角速度ωMと推定モータ角速度ωestを比較することで、検出モータ角速度ωMの振動成分のみを取り出せる。そして得られた振動成分を適切なフィルタ(伝達関数GFB)に通し、トルク指令T*にフィードバックすることで検出モータ角速度ωMの振動を抑制することができる。以上が基本的な振動抑制の考え方となる。 The basic concept of vibration suppression control (FIG. 4) of the present embodiment will be described. The motor angular velocity ω M detected from the plant vibrates due to the rigidity of the plant. On the other hand, the internal model is expressed only by the integral considering the inertia, and the estimated motor angular velocity ω est obtained from it has no vibration component. In other words, if the internal model is appropriate, only the vibration component of the detected motor angular velocity ω M can be extracted by comparing the detected motor angular velocity ω M with the estimated motor angular velocity ω est . Then, the obtained vibration component is passed through an appropriate filter (transfer function G FB ) and fed back to the torque command T * , so that the vibration of the detected motor angular velocity ω M can be suppressed. The above is the basic concept of vibration suppression.
 数式を用いて、図4の構成による振動抑制制御を説明する。ここでは、電流制御系が時定数の小さい一次遅れとみなせ、振動抑制トルク指令T**とモータトルクTMが等しいものと仮定する。また、プラントのモータ角速度は遅れなく正確に検出されるものとみなす。 The vibration suppression control according to the configuration of FIG. 4 will be described using a mathematical formula. Here, it is assumed that the current control system can be regarded as a first-order lag with a small time constant, and the vibration suppression torque command T ** and the motor torque TM are equal. In addition, the motor angular velocity of the plant is considered to be detected accurately without delay.
 まず、制御内部の慣性系モデルについて述べる。上記のように検出モータ角速度ωMと推定モータ角速度ωestを比較して振動成分を取り出したいため、推定モータ角速度ωestはモータ角速度の大まかな動きを模擬したものであればよい。 First, the inertial frame model inside the control will be described. Since we want to extract the vibration component by comparing the detected motor angular velocity ω M with the estimated motor angular velocity ω est as described above, the estimated motor angular velocity ω est may be a simulation of the rough movement of the motor angular velocity.
 よって、モータMに負荷A,B,Cが連結されたことを模擬するため、内部モデルイナーシャJrをイナーシャJM以上の値として振動抑制しやすいよう調整することになる。イナーシャの情報が事前に分かっている場合の望ましい値としては、以下の(1)式のように内部モデルイナーシャJrをモータM、及び全負荷A,B,Cのイナーシャの総和とする。 Therefore, in order to simulate that the loads A, B, and C are connected to the motor M, the internal model inertia J r is adjusted to a value equal to or higher than the inertia J M so that vibration can be easily suppressed. As a desirable value when the inertia information is known in advance, the internal model inertia Jr is the sum of the inertias of the motor M and the total loads A, B, and C as shown in the following equation (1).
 ここで注意点として、ギアなどを介して力を伝達する場合、車輪など回転力を前後運動に変換する場合はモータMから見る各負荷A,B,Cのイナーシャは単一で測定するイナーシャとは違って見えるため、(1)式のままでは推定モータ角速度ωestは検出モータ角速度ωMから乖離してしまう。このような場合は、ギア比,回転半径を用いて各負荷のイナーシャをモータ軸に換算し、総和を取ればよい。 As a caveat here, when transmitting force via gears, etc., when converting rotational force such as wheels into forward and backward movement, the inertia of each load A, B, C seen from the motor M is the inertia measured separately. Since the above looks different, the estimated motor angular velocity ω est deviates from the detected motor angular velocity ω M if the equation (1) remains as it is. In such a case, the inertia of each load may be converted into the motor shaft using the gear ratio and turning radius, and the sum may be taken.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 次に、フィルタ(伝達関数GFB)の設計について述べる。トルク指令T*及び外乱トルクTdisからモータトルクTMへの伝達関数は以下の(2)式となる。トルク指令T*及び外乱トルクTdisから検出モータ角速度ωMまでの伝達関数は以下の(3)式のようになる。 Next, the design of the filter (transfer function G FB ) will be described. The transfer function from the torque command T * and the disturbance torque T dis to the motor torque T M is the following equation (2). The transfer function from the torque command T * and the disturbance torque T dis to the detected motor angular velocity ω M is as shown in equation (3) below.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ここで、プラント伝達関数GPを分子GPN,分母GPDで表現する。さらに、検出モータ角速度ωMの振動を抑制することを考え、(3)式におけるトルク指令T*の係数部分をGXとおく。すると以下の(4)式,(5)式のようになる。 Here, expressing the plant transfer function G P molecules G PN, in the denominator G PD. Further, in consideration of suppressing the vibration of the detection motor angular velocity ω M , the coefficient portion of the torque command T * in the equation (3) is set to G X. Then, the following equations (4) and (5) are obtained.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 設計可能な伝達関数1/Jrs,GFBに注目し、以下の(6)式で置き換えを行い、(5)式を整理しなおすと以下の(7)式が得られる。 Paying attention to the designable transfer functions 1 / Jrs , G FB , replace with the following equation (6), and rearrange the equation (5) to obtain the following equation (7).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 (7)式の分母に注目すると、プラント伝達関数GPの分母GPDが引き起こす共振をGHによって抑制できる形になっていることがわかる。 (7) Focusing on the expression of the denominator, it can be seen that has a resonance caused by the denominator G PD of the plant transfer function G P in a form that can be suppressed by G H.
 ここで、本実施形態の振動抑制では、以下の2点を重視し、低周波成分,高周波成分の補償は行わない設計とする。
・振動がない場合はトルク指令T*の値を変化させない、つまり定常的な補償は行わない。
・電流制御応答との兼ね合いを考慮する必要がある補償は行わない。
Here, in the vibration suppression of the present embodiment, the following two points are emphasized, and the design is such that the low frequency component and the high frequency component are not compensated.
-If there is no vibration, the value of the torque command T * is not changed, that is, steady compensation is not performed.
-No compensation is provided that requires consideration of the balance with the current control response.
 (3)式,(6)式から外乱トルクTdisに対する検出モータ角速度ωMの応答はGX・GHであることをふまえて、GHを(8)式のようなノッチフィルタに設定する。ωHは周波数帯域,ζHは抑制補償の強さを決めている。 From Eqs. (3) and (6), based on the fact that the response of the detected motor angular velocity ω M to the disturbance torque T dis is G X G H , set G H to the notch filter as shown in Eq. (8). .. ω H determines the frequency band, and ζ H determines the strength of suppression compensation.
 プラントに合わせて振動を抑制できるように周波数帯域ωH,抑制補償の強さζHを調節することになるが、一般的には、周波数帯域ωHはプラント伝達関数GPの反共振点より低く設定し、抑制補償の強さζHは小さければ振動抑制性能が弱く、大きければ急峻な補償トルクTFBを発生させるため0.2<ζH<0.8程度に設定するのが良い。 The frequency band ω H and the strength of suppression compensation ζ H are adjusted so that vibration can be suppressed according to the plant, but in general, the frequency band ω H is from the antiresonance point of the plant transfer function GP. Set low, and if the suppression compensation strength ζ H is small, the vibration suppression performance is weak, and if it is large, a steep compensation torque T FB is generated, so it is better to set it to about 0.2 <ζ H <0.8.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 振動抑制制御に用いるフィルタ(伝達関数GFB)については(8)式から以下の(9)式が導かれる。 For the filter (transfer function G FB ) used for vibration suppression control, the following equation (9) is derived from equation (8).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 以上が本実施形態の振動抑制制御の説明となる。本実施形態の効果をシミュレーションにより確認した。図5にステップ応答に対するシミュレーション結果を示す。図5の左側がトルク指令T*を変化させた場合、右側が外乱トルクTdisを変化させた場合を示している。トルク指令T*,外乱トルクTdisのどちらを変化させた場合でも、検出モータ角速度ωMの振動が抑制されていることがわかる。どちらの結果でもトルク指令T*と振動抑制トルク指令T**,ここではつまりモータトルクTMは最終的に同じ値に収束していることがわかる。 The above is the description of the vibration suppression control of this embodiment. The effect of this embodiment was confirmed by simulation. FIG. 5 shows the simulation results for the step response. The left side of FIG. 5 shows the case where the torque command T * is changed, and the right side shows the case where the disturbance torque T dis is changed. It can be seen that the vibration of the detected motor angular velocity ω M is suppressed regardless of whether the torque command T * or the disturbance torque T dis is changed. Both results even torque command T * and the vibration suppression torque command T **, where that is the motor torque T M is seen to converge eventually equal.
 よって、本実施形態の振動抑制が目的とする「振動がない場合はトルク指令T*の値を変化させない」を達成しつつ多慣性系の振動が抑制できていることがわかる。外乱トルク応答における角速度の上昇度合いのずれは、制御ありの場合のみ振動抑制の分だけ外乱を打ち消すトルクを生じたことに由来する。 Therefore, it can be seen that the vibration of the multi-inertial system can be suppressed while achieving the purpose of suppressing the vibration of the present embodiment, "the value of the torque command T * is not changed when there is no vibration". The deviation in the degree of increase in the angular velocity in the disturbance torque response is derived from the fact that the torque that cancels the disturbance is generated by the amount of vibration suppression only when there is control.
 図6にボード線図を示す。4慣性系のため、振動抑制制御なしでは共振点が3つ存在している。そして、振動抑制を行った場合、トルク指令T*に対する応答、外乱トルクTdisに対する応答の両者について共振点のゲインを抑えることができている。 FIG. 6 shows a Bode diagram. Since it is a 4-inertial system, there are three resonance points without vibration suppression control. When vibration suppression is performed, the gain at the resonance point can be suppressed for both the response to the torque command T * and the response to the disturbance torque T dis .
 本実施形態の特長を考察する。 Consider the features of this embodiment.
 1つ目の特長は定常特性である。振動抑制を行った後の定常状態において、振動抑制トルク指令T**はトルク指令T*と等しくなる。これは、外乱の有無にかかわらず特定のモータトルクTMを出力したい場合に有利である。 The first feature is steady-state characteristics. In the steady state after vibration suppression, the vibration suppression torque command T ** becomes equal to the torque command T * . This is advantageous when it is desired to output a particular motor torque T M or without disturbance.
 2つ目の特長は内部モデルの次数である。通常、多慣性系の共振を内部モデルで再現しようとすれば伝達関数の次数が高くなり、その係数も項によって大きく違うため、実装時は小数点位置や演算誤差に気を配る必要がある。しかし、本実施形態の内部モデル1/Jrsは次数が低く実装上の難点を少なくできている。 The second feature is the order of the internal model. Normally, when trying to reproduce the resonance of a multi-inertial system with an internal model, the order of the transfer function becomes high, and the coefficient also differs greatly depending on the term, so it is necessary to pay attention to the decimal point position and calculation error at the time of mounting. However, internal model 1 / J r s of the present embodiment is able to reduce the difficulties of the orders lower mounting.
 3つ目の特長は高周波外乱の考慮である。高周波外乱を補償する振動抑制制御の設計だと補償トルクが高周波数で変動し、電流制御を不安定にする危険性がある。これに対し、本実施形態は外乱応答に寄与するGHを(8)式のように設定し、高周波数に対して補償を行わないようにして安定性を確保している。
以上が本実施形態の特長となる。
The third feature is the consideration of high frequency disturbance. If the vibration suppression control is designed to compensate for high-frequency disturbance, the compensation torque fluctuates at high frequencies, and there is a risk of destabilizing the current control. On the other hand, in the present embodiment, the GH that contributes to the disturbance response is set as in the equation (8), and the stability is ensured by not performing compensation for high frequencies.
The above are the features of this embodiment.
 以下に本実施形態の効果を説明する。 The effects of this embodiment will be described below.
 振動する検出モータ角速度ωMから振動成分をもたない推定モータ角速度ωestを減じたのち、低周波数,高周波数を補償しないフィルタを通してフィードバックすることで、定常状態で上位制御から入力されるトルク指令T*に収束でき、
低次のモデルで簡易に実装でき、電流制御を不安定にさせにくい、多慣性系の振動抑制制御を行うことができる。
After subtracting the estimated motor angular velocity ω est , which has no vibration component, from the vibrating detection motor angular velocity ω M, the torque command input from the upper control in the steady state is fed back through a filter that does not compensate for low and high frequencies. Can converge to T *
It can be easily implemented with a low-order model, and it is possible to perform vibration suppression control of a multi-inertial system that does not make current control unstable.
 従来においては、シャフト剛性による共振までモデルで表現して自動車の制振制御が行われている場合がある。これはフィードフォワードでオーバーシュートなく制御を行えるが、代わりにモデル精度が重要となる。 Conventionally, vibration control of automobiles may be performed by expressing resonance due to shaft rigidity with a model. This can be controlled with feedforward without overshoot, but model accuracy is important instead.
 車両モデルを離散伝達関数にした際の共振(剛性)の表現項はそれ以外の項に比べてかなり微小であり、かといって0とみなして近似すると共振の表現がすべてなくなってしまい、制振が行えなくなってしまう。よって、従来は共振の表現のために制振制御に特化して対策している。 The expression term of resonance (rigidity) when the vehicle model is made into a discrete transfer function is considerably smaller than the other terms, but if it is regarded as 0 and approximated, all the representations of resonance disappear, and vibration suppression Can not be done. Therefore, in the past, measures have been taken specifically for damping control to express resonance.
 本実施形態の制御は共振の表現を行わず、容易な伝達関数表現で制振制御が行えるようにしている。 The control of this embodiment does not express resonance, but makes it possible to perform vibration damping control with a simple transfer function expression.
 特許文献1~4に対しては、慣性系に高周波外乱が入力された場合の電流制御系へ与える影響を考慮している、出力トルク検出手段を必要としない、速度検出器は多くともモータに対しての1つのみでよい、定常時に振動抑制後トルク指令は速度制御からのトルク指令に収束する、という利点を持つ。 For Patent Documents 1 to 4, the influence on the current control system when a high-frequency disturbance is input to the inertial system is taken into consideration, no output torque detecting means is required, and the speed detector is at most a motor. On the other hand, there is an advantage that only one is required, and the torque command after vibration suppression in the steady state converges to the torque command from the speed control.
 以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。 Although the above description has been made in detail only with respect to the specific examples described in the present invention, it is clear to those skilled in the art that various modifications and modifications can be made within the scope of the technical idea of the present invention. It goes without saying that such modifications and modifications fall within the scope of claims.

Claims (4)

  1.  インバータに接続されたモータによって、1つ、または、複数の負荷を駆動するモータ駆動装置であって、
     検出モータ角速度と速度指令に基づいて、トルク指令を出力する速度制御部と、
     推定モータ角速度から前記検出モータ角速度を減じて振動成分を抽出し、前記振動成分を低周波成分および高周波成分を補償しないフィルタに通して補償トルクをフィードバックし、前記補償トルクを前記トルク指令に加算して振動抑制トルク指令を算出する振動抑制制御部と、
     検出モータ位相と検出電流と前記振動抑制トルク指令とに基づいて、ゲート信号を出力する電流制御部と、
     前記ゲート信号に基づいてスイッチング素子を制御し、前記モータに電圧を出力するインバータと、
     を備えたことを特徴とするモータ駆動装置。
    A motor drive that drives one or more loads by a motor connected to an inverter.
    A speed control unit that outputs a torque command based on the detection motor angular velocity and speed command,
    The detected motor angular velocity is subtracted from the estimated motor angular velocity to extract the vibration component, the vibration component is passed through a filter that does not compensate for the low frequency component and the high frequency component, the compensation torque is fed back, and the compensation torque is added to the torque command. Vibration suppression control unit that calculates the vibration suppression torque command
    A current control unit that outputs a gate signal based on the detection motor phase, the detection current, and the vibration suppression torque command.
    An inverter that controls a switching element based on the gate signal and outputs a voltage to the motor.
    A motor drive device characterized by being equipped with.
  2.  前記振動抑制制御部は、
     前記振動抑制トルク指令に慣性系モデルを乗算して前記推定モータ角速度を算出する慣性系モデルブロックと、
     前記推定モータ角速度から前記検出モータ角速度を減算する減算部と、
     前記減算部の出力を入力して前記補償トルクを出力する前記フィルタと、
     前記トルク指令に前記補償トルクを加算して前記振動抑制トルク指令として出力する加算部と、を備えたことを特徴とする請求項1記載のモータ駆動装置。
    The vibration suppression control unit
    An inertial model block that calculates the estimated motor angular velocity by multiplying the vibration suppression torque command by an inertial model.
    A subtraction unit that subtracts the detected motor angular velocity from the estimated motor angular velocity,
    The filter that inputs the output of the subtraction unit and outputs the compensation torque,
    The motor drive device according to claim 1, further comprising an adder that adds the compensation torque to the torque command and outputs the vibration suppression torque command.
  3.  前記フィルタの伝達係数は、以下の(9)式とすることを特徴とする請求項2に記載のモータ駆動装置。
    Figure JPOXMLDOC01-appb-M000001
    FB:伝達関数
    Jr:内部モデルイナーシャ
    ζH:抑制補償の強さ
    ωH:周波数帯域
    s:ラプラス演算子
    The motor drive device according to claim 2, wherein the transmission coefficient of the filter is the following equation (9).
    Figure JPOXMLDOC01-appb-M000001
    G FB : Transfer function Jr: Internal model inertia ζ H : Strength of suppression compensation ω H : Frequency band s: Laplace operator
  4.  インバータに接続されたモータによって、1つ、または、複数の負荷を駆動するモータ駆動装置の制御方法であって、
     速度制御部において、検出モータ角速度と速度指令に基づいて、トルク指令を出力し、
     振動抑制制御部において、推定モータ角速度から前記検出モータ角速度を減じて振動成分を抽出し、前記振動成分を低周波成分および高周波成分を補償しないフィルタを通して補償トルクをフィードバックし、前記補償トルクを前記トルク指令に加算して振動抑制トルク指令を算出し、
     電流制御部において、検出モータ位相と検出電流と前記振動抑制トルク指令とに基づいて、ゲート信号を出力し、
     インバータにおいて、前記ゲート信号に基づいてスイッチング素子を制御し、前記モータに電圧を出力することを特徴とするモータ駆動装置の制御方法。
    A control method for a motor drive device that drives one or more loads by a motor connected to an inverter.
    The speed control unit outputs a torque command based on the detected motor angular velocity and speed command.
    In the vibration suppression control unit, the detection motor angular velocity is subtracted from the estimated motor angular velocity to extract the vibration component, the compensation torque is fed back through the filter that does not compensate the low frequency component and the high frequency component, and the compensation torque is used as the torque. Calculate the vibration suppression torque command by adding to the command,
    The current control unit outputs a gate signal based on the detection motor phase, the detection current, and the vibration suppression torque command.
    A method for controlling a motor drive device, which comprises controlling a switching element based on the gate signal in an inverter and outputting a voltage to the motor.
PCT/JP2020/001403 2019-05-23 2020-01-17 Motor drive device and method for controlling motor drive device WO2020235130A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080037606.6A CN113875145B (en) 2019-05-23 2020-01-17 Motor drive device and control method for motor drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-096450 2019-05-23
JP2019096450A JP6750707B1 (en) 2019-05-23 2019-05-23 Motor drive device and method of controlling motor drive device

Publications (1)

Publication Number Publication Date
WO2020235130A1 true WO2020235130A1 (en) 2020-11-26

Family

ID=72240857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/001403 WO2020235130A1 (en) 2019-05-23 2020-01-17 Motor drive device and method for controlling motor drive device

Country Status (3)

Country Link
JP (1) JP6750707B1 (en)
CN (1) CN113875145B (en)
WO (1) WO2020235130A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009566A (en) * 2001-06-18 2003-01-10 Nissan Motor Co Ltd Vehicle vibration damping and controlling device using electric motor
JP2013179810A (en) * 2012-02-29 2013-09-09 Meidensha Corp Dynamo meter system
WO2014061083A1 (en) * 2012-10-15 2014-04-24 三菱電機株式会社 Electric vehicle motor control device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09121580A (en) * 1995-10-26 1997-05-06 Meidensha Corp Vibration suppressor of two-inertia resonance system by low inertia control
JP5648870B2 (en) * 2013-01-08 2015-01-07 株式会社安川電機 Motor control device, motor control method and mechanical system
JP6604157B2 (en) * 2015-11-20 2019-11-13 株式会社明電舎 Resonance suppression controller in multi-inertia resonance system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003009566A (en) * 2001-06-18 2003-01-10 Nissan Motor Co Ltd Vehicle vibration damping and controlling device using electric motor
JP2013179810A (en) * 2012-02-29 2013-09-09 Meidensha Corp Dynamo meter system
WO2014061083A1 (en) * 2012-10-15 2014-04-24 三菱電機株式会社 Electric vehicle motor control device

Also Published As

Publication number Publication date
CN113875145A (en) 2021-12-31
JP2020191744A (en) 2020-11-26
JP6750707B1 (en) 2020-09-02
CN113875145B (en) 2022-06-03

Similar Documents

Publication Publication Date Title
US8040098B2 (en) Position controller
JP3227000B2 (en) Motor speed control device
US10507866B2 (en) Electric power steering system with ripple compensation
JP3892823B2 (en) Motor speed control device
JP5541314B2 (en) Control device for dynamometer system
JP5644409B2 (en) Electric motor position control device
JP4914979B2 (en) Motor control device and motor control method
JP4862752B2 (en) Electric inertia control method
JP6042124B2 (en) 2-inertia speed controller
US10558176B2 (en) Feedback control system with periodic disturbance suppression and resonance/disturbance suppression using μ-synthesis
WO2004083978A1 (en) Motor control device
US11415948B2 (en) Device for controlling electric motor
WO2018190303A1 (en) Electric inertia control device
WO2020235130A1 (en) Motor drive device and method for controlling motor drive device
JP7245978B2 (en) electric motor controller
JP6720714B2 (en) Electric vehicle control method and electric vehicle control device
JP2007060767A (en) Motor controller equipped with machinical constant identifier
WO2020194637A1 (en) Control method and control device for electric vehicle
US6914404B2 (en) Motor controller
JP2010120453A (en) Disturbance vibration suppressing controller
JP2014174103A (en) Power system testing device
JP5263143B2 (en) Electric motor control device
JP2016152689A (en) Motor controller, motor, machinery, electrical power steering device, vehicle, and motor control method
WO2020188880A1 (en) Backlash control device and backlash control method in electric motor drive system
JP2023128462A (en) Control method for electric vehicle and control device for electric vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809735

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809735

Country of ref document: EP

Kind code of ref document: A1