WO2020194637A1 - Control method and control device for electric vehicle - Google Patents

Control method and control device for electric vehicle Download PDF

Info

Publication number
WO2020194637A1
WO2020194637A1 PCT/JP2019/013468 JP2019013468W WO2020194637A1 WO 2020194637 A1 WO2020194637 A1 WO 2020194637A1 JP 2019013468 W JP2019013468 W JP 2019013468W WO 2020194637 A1 WO2020194637 A1 WO 2020194637A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
axis current
axis
value
calculated
Prior art date
Application number
PCT/JP2019/013468
Other languages
French (fr)
Japanese (ja)
Inventor
翔 大野
弘征 小松
藤原 健吾
中島 孝
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2019/013468 priority Critical patent/WO2020194637A1/en
Publication of WO2020194637A1 publication Critical patent/WO2020194637A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/05Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for damping motor oscillations, e.g. for reducing hunting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a control method for an electric vehicle and a control device.
  • vibration suppression control that reduces torsional vibration of a drive shaft that connects the motor and drive wheels has been used.
  • the above-mentioned vibration suppression control is performed because the rotor magnetic flux generated in the motor fluctuates. It is difficult to apply it as it is.
  • JP5939316B discloses a method of applying the above-mentioned vibration damping control to an induction motor in which the rotor magnetic flux fluctuates.
  • JP5939316B is a control method for applying the above vibration damping control to an induction motor by correcting the torque current based on the exciting current ( ⁇ -axis current). Therefore, even if the control method is applied to a field winding type synchronous motor in which it is necessary to consider the current flowing through the field winding of the rotor (f-axis current) and the d-axis current that generates reluctance torque. It is difficult to obtain a vibration damping effect.
  • An object of the present invention is to provide a technique for applying vibration damping control for reducing torsional vibration of a drive shaft connecting a motor and a drive wheel to a field winding type synchronous motor.
  • the method for controlling an electric vehicle is to use an electric vehicle using a winding field synchronous motor as a drive source, which includes a rotor having a rotor winding and a stator having a stator winding.
  • This is a control method for an electric vehicle that controls a stator current flowing through a stator winding and a rotor current flowing through a rotor winding.
  • a basic torque command value is set based on vehicle information, and based on the basic torque command value and vehicle information, a d-axis current command value for a stator current, a first q-axis current command value, and The f-axis current command value for the rotor current is calculated, and the magnetic flux estimated value, which is the estimated value of the torque generated in the rotor, is calculated based on the d-axis current command value and the f-axis current command value, and the first q
  • the first torque command value is calculated based on the shaft current command value and the estimated magnetic flux value, and the vibration of the drive shaft torque transmission system of the electric vehicle is suppressed with respect to the first torque command value based on the vehicle information.
  • the vibration damping torque command value is calculated, and the second q-axis current command value is calculated based on the magnetic flux estimated value and the vibration damping torque command value. Then, the stator current and the rotor current are controlled based on the second q-axis current command value, the d-axis current command value, and the f-axis current command value.
  • FIG. 1 is a schematic configuration diagram of a vehicle system to which the electric vehicle control method of the first embodiment is applied.
  • FIG. 2 is a flowchart showing a flow of processing performed by the electric motor controller.
  • FIG. 3 is a diagram showing an example of an accelerator opening degree-torque table.
  • FIG. 4 is a block diagram of the motor control system of the first embodiment.
  • FIG. 5 is a block diagram of the q-axis current control unit.
  • FIG. 6 is a block diagram of the d-axis current control unit.
  • FIG. 7 is a block diagram of the f-axis current control unit.
  • FIG. 8 is a block diagram of the vibration damping control calculation unit.
  • FIG. 9 is a block diagram of the magnetic flux estimator.
  • FIG. 1 is a schematic configuration diagram of a vehicle system to which the electric vehicle control method of the first embodiment is applied.
  • FIG. 2 is a flowchart showing a flow of processing performed by the electric motor controller.
  • FIG. 3 is
  • FIG. 10 is a block diagram of a reluctance torque equivalent magnetic flux estimator.
  • FIG. 11 is a block diagram of the field magnetic flux estimator.
  • FIG. 12 is a block diagram of a vibration damping torque command value calculator.
  • FIG. 13 is a diagram for explaining the equation of motion of the electric vehicle.
  • FIG. 14 is a diagram showing the characteristics of the bandpass filter H (s).
  • FIG. 15 is a time chart showing the control result by the control method of the electric vehicle.
  • FIG. 16 is a block diagram of the motor control system of the second embodiment.
  • FIG. 17 is a block diagram of the f-axis current control unit.
  • FIG. 18 is a block diagram of the f-axis F / F compensator.
  • FIG. 19 is a block diagram of an f-axis current model.
  • FIG. 20 is a block diagram of an f-axis current F / B model.
  • FIG. 21 is a block diagram of the f-axis limit processing unit.
  • FIG. 22 is another example of the block diagram of the f-axis limit processing unit.
  • FIG. 23 is a block diagram of the f-axis F / B compensator.
  • FIG. 24 is a block diagram of an f-axis robust compensator.
  • FIG. 25 is a flowchart showing the control process of the motor.
  • FIG. 26 is a block diagram of a reluctance torque equivalent magnetic flux estimator.
  • FIG. 27 is a block diagram of the field magnetic flux estimator.
  • FIG. 28 is a block diagram of the vibration damping control calculation unit.
  • FIG. 29 is a time chart showing the control result by the control method of the electric vehicle.
  • FIG. 1 is a block diagram showing a configuration example of a motor control system 100 to which the electric vehicle control method according to the embodiment of the present invention is applied.
  • An electric vehicle is a vehicle that is provided with at least one winding field type synchronous motor (hereinafter, also simply referred to as a motor) as a part or all of the drive source of the vehicle and can run by the driving force of the motor. It includes electric vehicles and hybrid vehicles.
  • the battery 1 discharges the drive power of the winding field type synchronous motor 4 and charges the regenerative power of the motor 4.
  • the electric motor controller 2 (hereinafter, also simply referred to as a controller) is composed of, for example, a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). To.
  • the controller 2 has a vehicle speed V, an accelerator opening degree ⁇ , an electric angle ⁇ re of the motor 4, a stator current of the motor 4 (iu, iv, iw in the case of three-phase alternating current), and a rotor current (if) of the motor 4.
  • Signals of various vehicle variables indicating the vehicle state such as are input as digital signals.
  • the controller 2 generates a PWM signal for controlling the motor 4 based on the input signal. Further, the controller 2 generates a drive signal of the inverter 3 according to the generated PWM signal.
  • the inverter 3 is supplied from the battery 1 by turning on / off two switching elements (for example, power semiconductor elements such as IGBTs and MOS-FETs) provided for each phase in order to control the stator current.
  • the direct current is converted to alternating current or inversely converted, and a desired current is passed through the motor 4.
  • two pairs (four in total) of switching elements for example, power semiconductor elements such as IGBTs and MOS-FETs
  • a desired current is passed through the rotor winding.
  • two of the two pairs of switching elements located diagonally may be replaced with diodes.
  • the winding field type synchronous motor 4 (hereinafter, simply referred to as “motor 4”) has a rotor having a rotor winding (field winding) and a stator having a stator winding (armature winding). It is a winding field type synchronous motor equipped with.
  • the motor 4 serves as a drive source for the vehicle.
  • the motor 4 is controlled by controlling the rotor current flowing through the rotor winding and the stator current flowing through the stator winding.
  • the motor 4 generates a drive torque by the current supplied from the inverter 3, and transmits the drive force to the left and right drive wheels 9 via the speed reducer 5 and the drive shaft 8.
  • the motor 4 recovers the kinetic energy of the vehicle as electric energy by generating a regenerative driving force when the motor 4 is rotated by the drive wheels 9 while the vehicle is traveling.
  • the inverter 3 converts the alternating current generated during the regenerative operation of the motor 4 into a direct current and supplies it to the battery 1.
  • the current sensor 7 detects the three-phase currents iu, iv, and iwa (stator current) flowing in the stator winding of the motor 4, and also detects the current if (rotor current) flowing in the rotor winding of the motor 4. To do. However, since the sum of the three-phase AC currents iu, iv, and iw is 0 for the stator current, the current of any two phases may be detected and the current of the remaining one phase may be obtained by calculation.
  • the rotation sensor 6 is, for example, a resolver or an encoder, and detects the rotor phase ⁇ of the motor 4.
  • FIG. 2 is a flowchart showing the flow of processing performed by the controller 2.
  • the processes according to steps S201 to S204 are programmed in the controller 2 so as to be constantly executed at regular intervals while the vehicle system is running.
  • step S201 a signal indicating the vehicle state is input to the controller 2.
  • the DC voltage value V dc (V) of the battery 1 is input.
  • the vehicle speed V (km / h) is acquired by communication from a meter (not shown), a vehicle speed sensor, or another controller such as a brake controller.
  • the controller 2 obtains the vehicle speed v (m / s) by multiplying the rotor mechanical angular velocity ⁇ m by the tire driving radius r and dividing by the gear ratio of the final gear, and changes from m / s to km / s.
  • the vehicle speed V (km / h) is obtained by multiplying by the unit conversion coefficient (3600/1000).
  • the accelerator opening ⁇ (%) is obtained from an accelerator opening sensor (not shown).
  • the accelerator opening degree ⁇ (%) may be obtained from another controller such as a vehicle controller (not shown).
  • the electric angle ⁇ re (rad) of the motor 4 is acquired from the rotation sensor 6.
  • the electric angular velocity ⁇ re is divided by the pole pair number p of the electric motor to obtain the motor rotation speed detection value ⁇ m (rad / s) which is the mechanical angular velocity of the motor 4. It is obtained by multiplying the obtained motor rotation speed detection value ⁇ m by the unit conversion coefficient (60 / (2 ⁇ )) from rad / s to rpm.
  • the currents iu, iv, if, and if (A) flowing through the motor 4 are acquired from the current sensor 7.
  • the DC current value V dc (V) is detected by a voltage sensor (not shown) provided in the DC power supply line between the battery 1 and the inverter 3.
  • the DC voltage value V dc (V) may be detected by a signal transmitted from the battery controller (not shown).
  • step S202 the motor torque command value calculation process is executed.
  • the motor torque command value (motor torque command value () is obtained by referring to the accelerator opening-torque table shown in FIG. 3 based on the operation information such as the accelerator opening ⁇ and the vehicle speed V input in step S201.
  • Basic torque command value) T m * is set.
  • step S203 the vibration damping control calculation process is executed. Specifically, the controller 2 is based on the motor torque command value T m * set in step S202, without wasting the response of the drive shaft torque, and the driving force transmission system vibration (torsion vibration of the drive shaft 8 or the like). ) Is suppressed, the q-axis current command value I q2 * , the d-axis current command value i d1 * , and the f-axis current command value i f1 * are calculated. The details of the vibration damping control calculation process will be described later.
  • step S204 the current control calculation process is executed.
  • the d-axis current i d , the q-axis current i q, and the f-axis current i f are obtained by the q-axis current command value i q2 * , d-axis current command value i d1 *, and f-axis obtained in step S203.
  • Current control is performed to match each with the current command value I f1 * .
  • FIG. 4 is a diagram showing a configuration example of the motor control system 100, and is a control block diagram of the current control calculation processing unit 2a provided by the controller 2 as one functional unit.
  • the controller 2 uses the current control calculation processing unit 2a to execute the current control calculation processing according to step S204.
  • the current control calculation processing unit 2a includes a stator PWM conversion unit 401, a rotor PWM conversion unit 402, a look-ahead compensation unit 403, coordinate conversion units 404 and 410, a non-interference control unit 405, and a q-axis current control unit. It includes a 406, a d-axis current control unit 407, an f-axis current control unit 408, a voltage command value calculation unit 409, and an A / D conversion unit 411.
  • the stator PWM conversion unit 401 performs PWM_Duty to the stator switching element included in the inverter 3 based on the three-phase voltage command values v u * , v v * , and v w * output from the coordinate conversion unit 410 described later.
  • Drive signals (high voltage element drive signals) D uu * , D ul * , D vu * , D vl * , D wu * , D wl * are generated and output to the inverter 3.
  • the rotor PWM conversion unit 402 generates PWM_Duty drive signals D fu * and D fl * for the rotor switching element included in the inverter 3 based on the f-axis voltage command value v f * described later, and causes the inverter 3 to generate PWM_Duty drive signals D fu * and D fl *. Output.
  • the inverter 3 has an AC voltage v u , v v , for controlling the dq axis currents i d and i q flowing in the stator winding of the motor 4 based on the PWM_Duty drive signal generated by the stator PWM conversion unit 401.
  • V w is generated and supplied to the motor 4.
  • the inverter 3 generates an f-axis voltage v f for controlling the f-axis current if flowing in the rotor winding of the motor 4 based on the PWM_Duty drive signal generated by the rotor PWM conversion unit 402. It is supplied to the motor 4.
  • the current sensor 7 detects at least two phase currents, for example, u-phase current i u and v-phase current i v , among the three-phase AC currents supplied from the inverter 3 to the motor 4.
  • the detected two-phase currents i u and iv are converted into digital signals by the A / D (analog / digital) conversion unit 411 and input to the coordinate conversion unit 404.
  • the current sensor 7 detects the f axis current i f fed from the inverter 3 to the motor 4.
  • the detected f-axis current if is converted into a digital signal by the A / D conversion unit 411 and output to the f-axis current control unit 408.
  • the look-ahead compensation unit 403 inputs the electric angle ⁇ re and the electric angular velocity ⁇ re, and adds the product of the electric angular velocity ⁇ re and the dead time of the control system to the electric angle ⁇ re to perform the look-ahead compensation. Calculate the electrical angle ⁇ re '. After pre-reading compensation, the electric angle ⁇ re'is output to the coordinate conversion unit 410.
  • the coordinate conversion unit 404 converts the three-phase AC coordinate system (uvw axis) to the orthogonal two-axis DC coordinate system (dq axis). Specifically, the coordinate conversion unit 404 performs coordinate conversion processing from the u-phase current i u , the v-phase current i v , the w-phase current i w , and the electric angle ⁇ re using the following equation (1). By doing so, the d-axis current i d and the q-axis current i q are calculated.
  • the non-interference control unit 405 has an electric angular velocity ⁇ re , a d-axis current reference response id_ref , a q-axis current reference response i q_ref , and f output from the q-axis, d-axis, and f-axis current control units 406 , 407 , and 408 .
  • axis current nominal response i F_REF enter the differential value s ⁇ i d_ref the d-axis current nominal response, and a partial value s ⁇ i F_REF of f-axis current nominal response, d-axis, between the q-axis, and the f-axis
  • the non-interference voltages v d_dcpl , v q_dcpl , and v f_dcpl required to cancel the interference voltage are calculated using the voltage equation shown by the following equation (2).
  • the following equation (2) is a voltage equation of the winding field type synchronous motor 4 which is the controlled object of the present invention.
  • each parameter of the above equation (2) is as follows. Note that s in the equation is a Laplace operator. id : d-axis current i q : q-axis current i f : f-axis current v d : d-axis voltage v q : q-axis voltage v f : f-axis voltage L d : d-axis inductance L q : q-axis inductance L f : F-axis inductance M: Mutual inductance between stator / rotor L d ': d-axis dynamic inductance L q ': q-axis dynamic inductance L f ': f-axis dynamic inductance M': Controller / rotor Dynamic mutual inductance between R a : Controller winding resistance R f : Rotor winding resistance ⁇ re : Electric angular velocity
  • the voltage equation of the above equation (2) can be diagonalized as shown in the following equation (3).
  • the characteristics from the voltage to the current of the d-axis, the q-axis, and the f-axis have a first-order delay as shown in the following equations (4), (5), and (6), respectively. ..
  • the q-axis current control unit 406 desires the q-axis current i q , which is a measured value of the actual current (actual current), to the q-axis current command value (second q-axis current command value) i q2 * without steady deviation.
  • the first q-axis voltage command value v q_dsh for tracking with responsiveness is calculated and output to the voltage command value calculation unit 409. Details of the q-axis current control unit 406 will be described later with reference to FIG.
  • d-axis current control unit 407 the actual current (actual current) measurements at a d-axis current i d a d-axis current command value i d1 * in steady-state error without first for follow a desired response
  • the d-axis voltage command value v d_dsh is calculated and output to the voltage command value calculation unit 409. Details of the d-axis current control unit 407 will be described later with reference to FIG.
  • the f-axis current control section 408 the actual current (actual current) a measure of the f-axis current i f the f-axis current command value i f1 * the steady-state error without first for follow a desired response of
  • the f-axis voltage command value v f_dsh is calculated and output to the voltage command value calculation unit 409. Details of the f-axis current control unit 408 will be described later with reference to FIG. 7.
  • FIG. 5 is a diagram illustrating details of the q-axis current control unit 406 of the present embodiment.
  • the q-axis current control unit 406 includes a control block 501, gains 502 and 503, an integrator 504, a subtractor 505, and an adder 506.
  • Control block 501 q-axis current command value i q2 * transfer characteristics of the first order lag of the response delay to simulate the actual current i q for 1 / ( ⁇ q s + 1 ) is.
  • the control block 501 inputs the q-axis current command value i q2 * and outputs the q-axis current norm response i q_ref .
  • the transfer characteristic 1 / ( ⁇ q s + 1 ) in such a tau q is a q-axis current nominal response time constant.
  • the gain 502 is a proportional gain K pq and is represented by the following equation (7).
  • the gain 502 takes the deviation between the q-axis current command value i q2 * and the q-axis current i q as an input, and outputs the value obtained by multiplying the input value by the proportional gain K pq to the adder 506.
  • the gain 503 is a proportional gain K iq and is represented by the following equation (8).
  • the gain 503 takes the deviation between the q-axis current command value i q2 * and the q-axis current i q as an input, and outputs the value obtained by multiplying the input value by the proportional gain K iq to the integrator 504.
  • the output of the integrator 504 is input to the adder 506.
  • the adder 506 calculates the first q-axis voltage command value V q_dsh by adding the output of the gain 502 and the output of the integrator 504.
  • the q-axis current control unit 406 sets the gains of the gains 502 and 503 as shown in the above equations (7) and (8), whereby the q-axis current command value i q2 * to the q-axis current i
  • the transmission characteristics up to q can be matched with the normative response represented by the following equation (9).
  • FIG. 6 is a diagram illustrating details of the d-axis current control unit 407 of the present embodiment.
  • the d-axis current control unit 407 includes control blocks 601 and 602, gains 603 and 604, an integrator 605, a subtractor 606, and an adder 607.
  • the control block 601 has a first-order delay transmission characteristic (d-axis current transmission characteristic) 1 / ( ⁇ d s + 1) that simulates the response delay of the actual current (d-axis current id ) with respect to the d-axis current command value id1 * . ..
  • Control block 601 receives as input the d-axis current command value i d1 *, and outputs the d-axis current nominal response i d_ref.
  • the transfer characteristic 1 / ( ⁇ d s + 1 ) in such a tau d is the d-axis current nominal response time constant.
  • Control block 602 the transfer characteristic s / ( ⁇ d s + 1 ) for calculating a differential value of d-axis current nominal response i d_ref against d-axis current command value i d1 * is.
  • Control block 602 receives as input the d-axis current command value i d1 *, and outputs the d-axis current nominal response differential value s ⁇ i d_ref.
  • the gain 603 is a proportional gain K pd and is expressed by the following equation (10).
  • Gain 603 inputs the deviation between the d-axis current command value i d1 * and d-axis current i d, and outputs a value obtained by multiplying a proportional gain K pd input values to the adder 607.
  • the gain 604 is a proportional gain K id and is represented by the following equation (11).
  • Gain 604 inputs the deviation between the d-axis current command value i d1 * and d-axis current i d, and outputs a value obtained by multiplying a proportional gain K id to the input value to the integrator 605.
  • the output of the integrator 605 is input to the adder 607.
  • the adder 607 calculates the first d-axis voltage command value v d_dsh by adding the output of the gain 603 and the output of the integrator 605.
  • the d-axis current control unit 407 sets the gains of the gains 603 and 604 as shown in the above equations (10) and (11), whereby the d-axis current command value i d1 * to the d-axis current i
  • the transmission characteristics up to d can be matched with the normative response represented by the following equation (12).
  • FIG. 7 is a diagram illustrating details of the f-axis current control unit 408 of the present embodiment.
  • the f-axis current control unit 408 includes control blocks 701 and 702, gains 703 and 704, an integrator 705, a subtractor 706, and an adder 707.
  • the control block 701 has a first-order delay transmission characteristic 1 / ( ⁇ f s + 1) that simulates a response delay of the actual current if with respect to the f-axis current command value i f1 * .
  • the control block 701 receives the f-axis current command value if f1 * as an input, and outputs the f-axis current reference response if_ref .
  • the transfer characteristic 1 / ( ⁇ f s + 1 ) in such a tau f is the f-axis current nominal response time constant.
  • the control block 702 is a transmission characteristic s / ( ⁇ f s + 1) for calculating the differential value of the f-axis current normative response if_ref with respect to the f-axis current command value if f1 * .
  • the control block 702 receives the f-axis current command value if f1 * as an input, and outputs the f-axis current norm response differential value s ⁇ if_ref .
  • the gain 703 is a proportional gain K pf and is represented by the following equation (13).
  • Gain 703 inputs the deviation between the f-axis current command value i f1 * and f-axis current i f, and outputs a value obtained by multiplying a proportional gain K pf the input value to the adder 707.
  • the gain 704 is a proportional gain K if and is represented by the following equation (14).
  • Gain 704 inputs the deviation between the f-axis current command value i f1 * and f-axis current i f, and outputs a value obtained by multiplying a proportional gain K an if the input value to the integrator 705.
  • the output of the integrator 705 is input to the adder 707.
  • the adder 707 calculates the first f-axis voltage command value v f_dsh by adding the output of the gain 703 and the output of the integrator 705.
  • the f-axis current control unit 408 sets the gains of the gains 703 and 704 as in the above equations (13) and (14), whereby the f-axis current command value i f1 * to the f-axis current i
  • the transmission characteristics up to f can be matched with the normative response represented by the following equation (15).
  • the voltage command value calculation unit 409 has a first q-axis voltage command value v q_dsh and a first d, which are outputs of the q-axis current control unit 406, the d-axis current control unit 407, and the f-axis current control unit 408.
  • the shaft voltage command value v d_dsh and the first f-axis voltage command value v f_dsh are corrected by using the non-interference voltages v q_dcpl , v d_dcpl , and v f_dcpl which are the outputs of the non-interference control unit 405 (in this embodiment). to add.
  • the voltage command value calculation unit 409 outputs the second q-axis voltage command value v q * and the second d-axis voltage command value v d * obtained by the correction to the coordinate conversion unit 410.
  • the second f-axis voltage command value v f * is output to the rotor PWM converter 402.
  • the coordinate conversion unit 410 converts the orthogonal 2-axis DC coordinate system (dq-axis) rotating at the electric angular velocity ⁇ re into the 3-phase AC coordinate system (uvw phase). Specifically, the coordinate conversion unit 410 uses the input second d-axis voltage command value v d * , the second q-axis voltage command value v q * , and the pre-reading compensation post-electric angle ⁇ re '. By performing the coordinate conversion process using the following equation (16), the voltage command values v u * , v v * , and v w * of each uvw phase are calculated.
  • step S203 the details of the vibration damping control process executed in step S203 (see FIG. 2) will be described.
  • FIG. 8 is a control block diagram of the vibration damping control calculation unit 2b provided in front of the current control calculation processing unit 2a shown in FIG. 1 as a functional unit of the controller 2. That is, the output from the vibration damping control calculation unit 2b is input to the current control calculation processing unit 2a.
  • the controller 2 uses the vibration damping control calculation unit 2b to execute the vibration damping control process according to step S203.
  • the vibration damping control calculation unit 2b includes a first current command value calculator 801, a magnetic flux estimator 802, a first torque command value calculator 803, a vibration damping torque command value calculator 804, and a second q. It is configured to include an axial current command value calculator 805.
  • the first current command value calculator 801 inputs the motor torque command value T m * , the motor rotation speed (mechanical angular speed) ⁇ rm, and the DC voltage V dc, and the q-axis current command values i q1 * , d. Calculate the shaft current command value i d1 * and the f-axis current command value i f1 * .
  • the first current command value calculator 801 includes each of the q-axis current command value i q1 * , the d-axis current command value i d1 * , and the f-axis current command value if f1 * , and the motor torque command value (basic torque command).
  • T m * motor rotation speed (mechanical angular speed) ⁇ rm , and map data that defines the relationship with the DC voltage V dc are stored in advance, and each value is calculated by referring to the map data.
  • the calculated q-axis current command value i q1 * is output to the first torque command value calculator 803, and the d-axis current command value i d1 * and the f-axis current command value i f1 * are the magnetic flux estimator 802. Is output to.
  • FIG. 9 is a control block diagram of the magnetic flux estimator 802.
  • the magnetic flux estimator 802 includes a reluctance torque equivalent magnetic flux estimator 901, a field magnetic flux estimator 902, and an adder 903.
  • Reluctance torque equivalent flux estimator 901 inputs the d-axis current command value i d1 *, calculates the reluctance equivalent flux estimation value [phi] r ⁇ .
  • Field flux estimator 902 inputs the f-axis current command value i f1 *, calculates the magnetic field flux estimate .phi.f ⁇ .
  • the adder 903 calculates the magnetic flux estimated value ⁇ ⁇ by adding the reluctance equivalent magnetic flux estimated value ⁇ r ⁇ and the field magnetic flux estimated value ⁇ f ⁇ .
  • FIG. 10 is a control block diagram of the reluctance torque equivalent magnetic flux estimator 901.
  • the relaxation torque equivalent magnetic flux estimator 901 includes a phase lead compensator 1001 and a multiplier 1002.
  • the phase lead compensator 1001 has a transmission characteristic (d-axis current transmission characteristic (see control block 601)) in which the q-axis current response is phase-advance compensated with respect to the transmission characteristic of the first-order delay simulating the d-axis current response delay. ⁇ q s + 1) / ( ⁇ d s + 1). The phase lead compensator 1001 outputs a value obtained by performing phase lead compensation using the transfer characteristic ( ⁇ q s + 1) / ( ⁇ d s + 1) on the d-axis current command value id1 * to the multiplier 1002.
  • the multiplier 1002 calculates the output of the phase lead compensator 1001 multiplies the difference L d -L q and d-axis inductance L d and q-axis inductance L q, the reluctance torque equivalent flux estimation value [phi] r ⁇ To do.
  • the d-axis inductance L d and the q-axis inductance L q the values at arbitrary operating points (representative operating points) of the motor 4 may be used, or may be obtained by referring to the map data stored in advance.
  • the reluctance torque generated in the rotor by the dq axis currents i d and i q is expressed by the following equation (17). Therefore, it is possible to define the following formula (17) in the section (L d -L q) i d and reluctance torque equivalent flux.
  • p n is the logarithm of the motor 4.
  • the vibration suppression control calculation unit 2b uses the reluctance torque equivalent magnetic flux estimated value ⁇ r ⁇ in which the phase advance compensation of the q-axis current response is performed by the phase advance compensator 1001, so that the q-axis current in consideration of the q-axis current response delay is taken into consideration.
  • the command value (second q-axis current command value) i q2 * can be calculated.
  • FIG. 11 is a control block diagram of the field magnetic flux estimator 902.
  • the field magnetic flux estimator 902 includes a phase lead compensator 1101 and a multiplier 1102.
  • the phase lead compensator 1101 advances and compensates for the q-axis current response with respect to the transmission characteristic of the first-order delay simulating the f-axis current response delay (see control block 701) ( ⁇ q s + 1) / ( ⁇ f ). s + 1).
  • Phase lead compensator 1101 outputs a value obtained by performing phase-lead compensation using the f-axis current command value i f1 * the transfer characteristic ( ⁇ q s + 1) / ( ⁇ f s + 1) to the multiplier 1102.
  • the multiplier 1102 calculates the field magnetic flux estimated value ⁇ f ⁇ by multiplying the output of the phase lead compensator 1101 by the mutual inductance M f between the stator and the rotor.
  • the mutual inductance M f may be a value at an arbitrary operating point (representative operating point) of the motor 4, or may be obtained by referring to map data stored in advance.
  • the vibration suppression control calculation unit 2b uses the field magnetic flux estimated value ⁇ f ⁇ in which the phase advance compensator 1101 compensates for the advance of the q-axis current response, so that the q-axis current command value in consideration of the q-axis current response delay. i q2 * can be calculated.
  • the description will be continued by returning to FIG.
  • the first torque command value calculator 803 multiplies the q-axis current command value i q1 * , the estimated magnetic flux value ⁇ ⁇ , and the number of pole pairs p n of the motor 4 to obtain the first torque command value (vibration suppression). Pre-control torque command value) Calculate T m1 * . The calculated first torque command value T m1 * is output to the vibration damping torque command value calculator 804.
  • the vibration damping torque command value calculator 804 performs feed forward control, which is a filter process for removing the natural vibration frequency component of the drive shaft torque transmission system of the vehicle, and motor rotation with respect to the first torque command value T m1 * .
  • the vibration damping torque command value T mfin * is calculated by performing vibration damping control called feedback control based on the number ⁇ rm .
  • FIG. 12 is a control block diagram of the vibration damping torque command value calculator 804.
  • the vibration damping torque command value calculator 804 includes a feed forward compensator 1201, a control block 1202, a feedback compensator 1203, an adder 1204, and a subtractor 1205.
  • the control block 1202, the feedback compensator 1203, and the subtractor 1205 may be collectively referred to as the feedback controller 1207.
  • the feed forward compensator 1201 When the feed forward compensator 1201 receives the input of the first torque command value T m1 * , the feed forward compensator 1201 performs a filter process consisting of Gr (s) / Gp (s) on the first torque command value T m1 * . Calculate the second torque command value T m2 * .
  • Gr (s) and Gp (s) will be described with reference to FIG. 13 described later.
  • the control block 1202 performs a filter process consisting of the transmission characteristic Gp (s) on the vibration damping torque command value T mfin * output from the adder 1204, and calculates the motor angular velocity estimated value ⁇ m ⁇ .
  • the second torque command value T m2 * output from the feed forward compensator 1201 and the third torque command value T m3 * output from the feedback compensator 1203 are added.
  • the vibration damping torque command value T mfin * is calculated.
  • the feedback controller 1207 first, in the subtractor 1205, the actual motor angular velocity ⁇ m is subtracted from the motor angular velocity estimated value ⁇ m ⁇ . Then, the feedback compensator 1203 performs a filter process consisting of H (s) / Gp (s) on the difference between the motor angular velocity estimated value ⁇ m ⁇ output from the subtractor 1205 and the actual motor angular velocity ⁇ m. , Calculate the third torque command value T m3 * .
  • H (s) is configured such that the difference between the denominator order and the numerator order is larger than the difference between the denominator order and the numerator order of Gp (s).
  • the control system can be stabilized by H (s) / Gp (s).
  • FIG. 13 is a diagram in which the driving force transmission system of the vehicle is converted into a control block 601. Each parameter in the figure is as shown below.
  • J m Motor inertia
  • J w Drive wheel inertia (for one axis)
  • M Vehicle mass
  • K d Torsional rigidity of drive shaft (drive shaft)
  • K t Factor related to friction between tire and road surface
  • N al Overall gear ratio
  • r Tire load radius
  • ⁇ m Motor angular velocity
  • ⁇ w Drive wheel angular velocity
  • T m Motor torque
  • T d Drive shaft torque
  • V Body speed
  • Gp (s) can be expressed as the following equation (26).
  • ⁇ p and ⁇ p in Eq. (26) are the damping coefficient and the natural vibration frequency of the drive shaft torsional vibration system, respectively.
  • the ideal normative model Gr (s) indicating the response target of the motor rotation speed to the torque input to the vehicle is the following equation (27)
  • the inverse characteristic of the linearly approximated vehicle transfer characteristic Gp (s) and The transfer function Ginv (s) having the characteristics of Gr (s) / Gp (s), which is composed of the normative model Gr (s) can be expressed by the following equation (28).
  • ⁇ m and ⁇ m in the equations (27) and (28) are the damping coefficient and the natural vibration frequency of the drive shaft torsional vibration system, respectively.
  • H (s) is a feedback element that reduces only vibration when a bandpass filter is used. At this time, if the characteristics of the filter are set as shown in FIG. 14, the greatest effect can be obtained. That is, the transfer function H (s) has substantially the same damping characteristics on both the low-pass side with a low frequency and the high-pass side with a high frequency, and the torsional resonance frequency of the drive system is on the logarithmic axis (log scale). It is set to be near the center of the pass band.
  • the second q-axis current command value calculator 805 shown in FIG. 8 has a vibration damping torque command value T mfin * output from the vibration damping torque command value calculator 804 and a magnetic flux output from the magnetic flux estimator 802.
  • the q-axis current command value (second q-axis current command value) i q2 * is calculated using the following equation (31).
  • the calculated q-axis current command value i q2 * is input to the q-axis current control unit 406 of the current control calculation processing unit 2a shown in FIG.
  • the magnetic flux estimated value ⁇ ⁇ is the d-axis current command value i d1 * and the f-axis current command value i f1 set according to the motor torque command value T m * set based on the vehicle information.
  • the q-axis current command value i q2 * of the present embodiment is set according to the motor torque command value T m * in consideration of the d-axis current command value i d1 * and the f-axis current command value i f1 *. It is calculated by correcting the q-axis current command value i q1 * .
  • the vibration damping control calculation unit 2b considers the influence of the reluctance torque generated by the d-axis current command value i d1 * and the field magnetic flux generated by the f-axis current command value i f1 * , and drives the drive shaft. It is possible to suppress the occurrence of torsional vibration of the torque transmission system.
  • FIG. 15 is a time chart showing the control results of the present embodiment and the comparative example.
  • the horizontal axis represents time
  • the vertical axis represents the motor torque command value [Nm], the vehicle front-rear acceleration [m / s2], and the f-axis voltage [V] in order from top to bottom on the left side, and from the top on the right side.
  • the q-axis current command value [A] the d-axis current command value [A]
  • the f-axis current command value [A] are shown.
  • the solid line in the figure shows the present embodiment
  • the dotted line shows a comparative example.
  • the f-axis current norm response time constant ⁇ f is set to a value at which f-axis voltage saturation does not occur.
  • the motor torque command value is changed (started up) in steps at the timing of time t1 from the state where the vehicle is stopped to accelerate.
  • the f-current command value is increased stepwise as shown in the lower right part of the figure in order to change the rotor magnetic flux at time t1
  • the f-axis voltage is increased as shown in the lower left part of the figure. After rising, converges to a predetermined value.
  • the d current command value for controlling the magnetic field component falls.
  • the f-axis current is not taken into consideration when calculating the q-axis current command value, and the influence of the field magnetic flux generated by the f-axis current and the reluctance torque generated by the d-axis current is further affected. Not considered. Therefore, as shown in the upper right part of the figure, the q-axis current command value for controlling the torque component increases in a stepwise manner, and as shown in the middle left part of the figure, the vehicle front-rear acceleration vibrates.
  • the q-axis current i q2 * is calculated in consideration of the f-axis current i f1 * and the d-axis current i d1 * as shown in FIG. Therefore, the q-axis current is controlled so as to decrease after the rise at time t1 and then converge to a predetermined value.
  • the motor torque that suppresses the drive shaft torsional vibration is realized by the q-axis current command value i q2 * calculated in consideration of the d-axis current id and the f-axis current if, which is shown in the middle left of the figure. As shown, the vibration of the vehicle front-rear acceleration is suppressed.
  • the method for controlling an electric vehicle according to the first embodiment is in an electric vehicle using a winding field type synchronous motor 4 as a drive source, which includes a rotor having a rotor winding and a stator having a stator winding.
  • This is a control method for an electric vehicle that controls a stator current flowing through a stator winding and a rotor current flowing through a rotor winding.
  • the motor torque command value T m * is set based on the operation information
  • the d-axis current command for the stator current is based on the motor torque command value T m * and the motor angular speed ⁇ m which is the vehicle information.
  • the values i d1 *, the first q-axis current command value i q1 *, and the f-axis current command value i f1 * for the rotor current are calculated, and the d-axis current command value i d1 * and the f-axis current command value i are calculated.
  • the magnetic flux estimated value ⁇ ⁇ which is an estimated value of the magnetic flux generated in the rotor, is calculated based on f1 *, and the first torque command is calculated based on the first q-axis current command value i q1 * and the magnetic flux estimated value ⁇ ⁇ .
  • the torque command value T mfin * is calculated, and the second q-axis current command value i q2 * is calculated based on the magnetic flux estimated value ⁇ ⁇ and the vibration damping torque command value T mfin * .
  • stator current and the rotor current are controlled based on the second q-axis current command value i q2 * , the d-axis current command value i d1 *, and the f-axis current command value i f1 * .
  • the second q-axis current command value i q2 * can be calculated in consideration of the d-axis current command value i d1 * and the f-axis current command value i f1 *. Therefore, the d-axis current command value i d1 and the reluctance torque generated by the *, taking into account the influence of the field magnetic flux generated by the f-axis current command value i f1 *, the electric vehicle as a driving source for winding field synchronous motor 4 driving shaft torque transmission Vibration suppression control that suppresses the torsional vibration of the system can be applied.
  • the feed forward compensator 1201 is used for the first calculation.
  • the second torque command value T m2 * is calculated by performing feed forward control with respect to the torque command value T m1 * of.
  • the vibration damping torque command value T mfin * is calculated by adding the second torque command value T m2 * and the third torque command value T m3 * .
  • the vibration damping torque command value calculator 804 calculates the vibration damping torque command value T m2 * calculated by the feed forward control and the calculation by the feedback control.
  • the vibration damping torque command value T mfin * is calculated, so that the vibration that may occur in the vehicle can be suppressed accurately.
  • the transmission characteristic Gp (s) of the linear approximation model in the electric vehicle and the transmission characteristic Gp (s) of the linear approximation model with respect to the first torque command value T m1 * is calculated by performing Gr (s) / Gp (s) filtering based on the transmission characteristic Gr (s) of the normative model.
  • the control block 1202 filters the vibration damping torque command value T mfin * including the second torque command value T m2 * based on the transmission characteristic Gp (s) of the linear approximation model.
  • the standard motor angular velocity ⁇ m ⁇ is obtained.
  • the linear approximation model Gp (s) and the bandpass filter H for the difference between the reference motor angular velocity ⁇ m ⁇ calculated by the subtractor 1205 and the measured motor angular velocity ⁇ m
  • the third torque command value T m3 * is calculated.
  • the second torque command value T m2 * calculated by feedforward control and the third torque command value T m3 * calculated by feedback control are added to each other.
  • the vibration damping torque command value T mfin * is calculated. Therefore, even when a disturbance or a model error occurs, the feedforward control and the feedback control composed of a plurality of transfer functions are performed, so that the vibration of the drive shaft torque transmission system of the vehicle can be suppressed.
  • the second q-axis current command value i q2 * is calculated by dividing the vibration damping torque command value T mfin * by the magnetic flux estimated value ⁇ ⁇ . To. As a result, it is possible to calculate the q-axis current command value i q2 * that realizes the vibration control torque command value T mfin * with vibration control control.
  • to calculate the estimated value is the field flux estimate of the magnetic field flux of the rotor .phi.f ⁇ based on the f-axis current command value i f1 *, d based on the axis current value i d1 *, and calculates the equivalent flux estimation value of the reluctance torque generated in the rotor [phi] r ⁇
  • the magnetic flux estimation value phi ⁇ is the field flux estimate .phi.f ⁇ equivalent flux estimation value [phi] r ⁇ and Is calculated by adding.
  • damping control calculates the q-axis current command value i q2 * for realizing the damping torque command value T MFIN * subjected be able to.
  • the field magnetic flux estimated value ⁇ ⁇ simulates the response delay of the f-axis current if constituting the rotor current with respect to the f-axis current command value i f1 *. It is calculated using a transmission characteristic (phase advance compensator 1101) configured to compensate the q-axis current response with respect to the f-axis current transfer characteristic. Thus, it is possible to calculate the d-axis current i q-axis current command value q-axis current response delay is considered for d i q2 *.
  • the f-axis current transfer characteristic is a transfer function of the first-order lag.
  • the equivalent magnetic flux estimated value ⁇ r ⁇ simulates the response delay of the d-axis current id constituting the stator current to the d-axis current command value i d1 * . It is calculated using a transmission characteristic (phase advance compensator 1001) configured to compensate the q-axis current response with respect to the shaft current transmission characteristic. As a result, the q-axis current command value i q2 * can be calculated in consideration of the q-axis current response delay with respect to the f-axis current if .
  • the control method of the electric vehicle of the present embodiment is a control method applied on the premise that the f-axis current if is controlled in consideration of the f-axis voltage saturation, and is particularly provided by the vibration damping control calculation unit 2b.
  • the configuration related to feedforward and the configuration related to feedback of the magnetic flux estimator 802 are different from those of the first embodiment.
  • FIG. 16 is a diagram showing a configuration example of the motor control system 200 of the second embodiment.
  • the power supply voltage V dc of the battery 1 and the non-interference voltage v f_dcpl which is the output of the non-interference control unit 405 are input to the f-axis current control unit 408. 1 Different from the embodiment.
  • FIG. 17 is a control block diagram of the f-axis current control unit 408.
  • the first f is such that the f-axis current if input from the A / D conversion unit 411 follows the f-axis current command value if f1 * with a desired response without steady deviation.
  • the shaft voltage command value v f_dsh Calculate the shaft voltage command value v f_dsh .
  • the f-axis current control unit 408 calculates the f-axis current normative response if_ref and the differential values s ⁇ if_ref of the f-axis current normative response to be used in the subsequent processing.
  • the f-axis current control unit 408 is composed of an f-axis F / F (feed forward) compensator 1701, an f-axis F / B compensator 1702, an f-axis robust compensator 1703, and an f-axis limit processing unit 1704. , The details of each will be described below.
  • the f-axis F / F compensator 1701 takes the f-axis current command value i f1 * as an input, and in addition to the f-axis F / F compensation voltage v f_ff , the f-axis current normative response if_ref and its differential value. Calculate the differential value s ⁇ if_ref of the f-axis current normative response.
  • the f-axis F / F compensator 1701 outputs the f-axis current normative response if_ref and the differential value s ⁇ if_ref of the f-axis current normative response, which is the differential value thereof, to the non-interference control unit 405, and f.
  • the shaft current norm response if_ref is output to the f-axis F / B compensator 1702. Details of the f-axis F / F compensator 1701 will be described later with reference to FIG. Although not shown, the power supply voltage V dc output from the battery 1 and the non-interference voltage v f_dcpl output from the non-interference control unit 405 are input to the f-axis F / F compensator 1701. ..
  • the f-axis F / B compensator 1702 is a compensator that performs general feedback compensation.
  • f-axis F / B compensator 1702 with respect to the f-axis current nominal response i F_REF calculated in the f-axis F / F compensator 1701, is negatively fed back to the f-axis current i f that is measured by the current sensor 7 F
  • the f-axis F / B compensation voltage v f_fb is calculated so that the f-axis current if follows the f-axis current normative response if_ref .
  • the f-axis F / B compensator 1702 outputs the f-axis F / B compensation voltage v f_fb to the adder 1705. Details of the f-axis F / B compensator 1702 will be described later with reference to FIG.
  • the f-axis F / B compensator 1702 is an example of a block that executes the F / B compensation step.
  • the f-axis robust compensator 1703 includes a first f-axis voltage command value v f_dsh calculated by the f-axis limit processing unit 1704 described later and finally output from the f-axis current control unit 408, and an f-axis current if . Based on, the f-axis robust compensation voltage v f_rbst for ensuring the robustness of the system is calculated. The f-axis robust compensator 1703 outputs the f-axis robust compensation voltage v f_rbst to the adder 1706. Details of the f-axis robust compensator 1703 will be described later with reference to FIG. 24.
  • Two adders 1705 and 1706 are provided in front of the f-axis limit processing unit 1704.
  • the f-axis F / B compensation voltage v f_fb is added by the adder 1705 to the f-axis F / F compensation voltage v f_ff calculated by the f-axis F / F compensator 1701, and further, the f-axis by the adder 1706.
  • the robust compensation voltage v f_rbst is added. Then, the final addition value is input to the f-axis limit processing unit 1704.
  • the f-axis limiting processor 1704 with respect to the f-axis F / F compensation voltage v F_ff a F / F command value, F / B is a compensation value f-axis F / B compensation voltage v F_fb and, The sum of the f-axis robust compensation voltage v f_rbst, which is the f-axis robust compensation value, is input.
  • the f-axis limit processing unit 1704 limits the input voltage command value and calculates the first f-axis voltage command value v f_dsh .
  • the f-axis limit processing unit 1704 outputs the f-axis voltage command value v f_dsh to the voltage command value calculation unit 409 and the f-axis robust compensator 1703.
  • the f-axis limit processing unit 1704 performs the same processing as the f-axis limit processing unit 303 described later with reference to FIGS. 22 and 23.
  • FIG. 18 is a detailed block diagram of the f-axis F / F compensator 1701.
  • the f-axis F / F compensator 1701 has an f-axis current model 1801, an f-axis current pseudo F / B model 1802, and an f-axis limit processing unit 1803.
  • the f-axis current model 1801 is a filter that models the normative response characteristics from the f-axis voltage to the f-axis current.
  • the f-axis current model 1801 performs filtering processing on the f-axis F / F compensation voltage v f_ff output from the f-axis limit processing unit 1803 described later using a normative response model from voltage to current on the f-axis.
  • the f-axis current normative response if_ref which is the normative response, is calculated and output to the non-interference control unit 405 and the f-axis F / B compensator 202.
  • the f-axis current model 1801 outputs the differential value s ⁇ if_ref of the f-axis current normative response, which is the differential value of the f-axis current normative response if_ref, to the non-interference control unit 405 for use in the subsequent processing. To do. Details of the f-axis current model 1801 will be described later with reference to FIG.
  • the f-axis current pseudo F / B model 1802 In the f-axis current pseudo F / B model 1802, the f-axis current normative response i output from the f-axis current model 1801 to the f-axis current command value i f1 * calculated by the vibration damping control calculation unit 2b. f_ref is negatively fed back.
  • the f-axis current pseudo F / B model 1802 has a pseudo FB voltage command value v f_pse_fb in order to make the f-axis current normative response if_ref follow the f-axis current command value if f1 * with a desired response without steady deviation. Is calculated and output to the f-axis limit processing unit 1803. Details of the f-axis current pseudo F / B model 1802 will be described later with reference to FIG.
  • the f-axis limit processing unit 1803 limits the pseudo FB voltage command value v f_fb_psu output from the f-axis current pseudo F / B model 1802, calculates the f-axis F / F compensation voltage v f_ff, and addser . Output to 205 and f-axis current model 1801. Details of the f-axis limit processing unit 1803 will be described later with reference to FIGS. 21 and 22.
  • the power supply voltage V dc output from the battery 1 and the non-interference voltage v f_dcpl output from the non-interference control unit 405 are input to the f-axis limit processing unit 1803.
  • the f-axis F / F compensation voltage v f_ff output from the f-axis F / F compensator 1701 passes through the adder 1705, the adder 1706, and the f-axis limit processing unit 1704.
  • the first f-axis voltage command value v f_dsh is calculated.
  • the f-axis current model is not the F / B system in which the measured f-axis current if is negatively fed back to the f-axis current pseudo F / B model 1802.
  • a pseudo F / B system is constructed in which the f-axis current normative response if_ref calculated in 1801 is negatively fed back.
  • the f-axis voltage v f is generated by the battery 1, the upper limit of the f-axis voltage v f is limited by the power supply voltage V dc of the battery 1 and saturated. Therefore, in the f-axis F / F compensator 1701 shown in FIG. 18, an f-axis limit processing unit 1803 that models saturation at the power supply voltage V dc is provided to limit the first f-axis voltage command value v f_dsh . Then, the f-axis F / F compensation voltage v f_ff is calculated. By feeding back the f-axis F / F compensation voltage v f_ff in consideration of voltage saturation to the f-axis current pseudo F / B model 1802, the accuracy of rotation control can be improved.
  • FIG. 197 is a detailed block diagram of the f-axis current model 1801.
  • the f-axis current model 1801 has a multiplier 1901, a subtractor 1902, a divider 1903, and an integrator 1904.
  • the multiplier 1901 is one of the final outputs of the f-axis current model 1801, and the rotor winding resistance R f is multiplied by the f-axis current normative response if_ref output from the integrator 1904 described later. , The multiplication result is output to the subtractor 1902. The result of this multiplication corresponds to the voltage value of the normative response.
  • the subtractor 1902 subtracts the voltage value of the normative response output from the multiplier 1901 from the f-axis F / F compensation voltage v f_ff output from the f-axis limit processing unit 1803, and outputs the subtracted value to the divider 1903. To do.
  • the divider 1903 divides the difference calculated by the subtractor 1902 with the f-axis dynamic inductance L f ' , and outputs the division result to the non-interference control unit 405 and the integrator 1904. In this way, the differential value s ⁇ if_ref of the f-axis current normative response is calculated.
  • Integrator 1904 the differential value s ⁇ i F_REF of f-axis current norms response outputted from the divider 1903 integration processing to calculate the f-axis current nominal response i F_REF, non-interference of the f-axis current nominal response i F_REF It outputs to the control unit 405, the f-axis F / B compensator 1702, and the multiplier 1901.
  • the f-axis current normative response if_ref which is one of the final outputs, is multiplied by the rotor winding resistance R f by the multiplier 1901, and the f-axis is the input. Negative feedback is given to the F / F compensation voltage v f_ff .
  • the negative feedback divider 1903 the result value of is divided by the f-axis dynamic inductance L f ', f axis current nominal response i F_REF based on the f-axis F / F compensation voltage v F_ff, and its differential value s ⁇ If_ref can be obtained.
  • FIG. 20 is a detailed block diagram of the f-axis current pseudo F / B model 1802.
  • the f-axis current pseudo-F / B model 1802 has a filter 2001, a filter 2002, and a subtractor 2003.
  • the filter 2002 multiplies the f-axis current norm response if_ref output from the f-axis current model 301 by the gain G bf , and outputs the filtered value to the subtractor 2003.
  • the subtractor 2003 calculates the pseudo F / B voltage command value v f_fb_psu by subtracting the output value of the filter 2002 from the output value of the filter 2001, and sends the pseudo FB voltage command value v f_fb_psu to the f-axis limit processing unit 1803. Is output. That is, a pseudo F / B control is configured by negatively feeding back the f-axis current norm response if_ref, which is not a measured value.
  • ⁇ f is an f-axis current control norm response time constant (f-axis current norm response time constant).
  • FIG. 21 is a detailed block diagram of the f-axis limit processing unit 1803.
  • the f-axis limit processing unit 1803 includes a comparator 2101, a reversing device 2102, a comparator 2103, and a subtractor 2104, 2105.
  • the subtractor 2104 provided in front of the comparator 2101, a subtraction value obtained by subtracting the f-axis non-interference voltage v f_dcpl output from the non-interference control unit 405 from the power supply voltage V dc of the battery 1 is obtained. Then, the comparator 2101 compares the pseudo FB voltage command value v f_pse_fb , which is the output value from the f-axis current pseudo F / B model 1802, with the subtracted value in the subtractor 2104, and transfers a smaller value to the comparator 2103. Is output.
  • the inverting device 2102 inverts the sign of the power supply voltage V dc .
  • a subtractor 2105 is provided in front of the comparator 2103.
  • the subtractor 2105 a subtraction value obtained by subtracting the f-axis non-interference voltage v f_dcpl output from the non-interference control unit 405 from the output of the reversing device 2102. Is required.
  • the comparator 2103 compares the output value of the comparator 2101 with the subtracted value of the subtractor 2105, and outputs a larger value to the f-axis current model 1801 and the adder 1705.
  • the f-axis limit processing unit 1803 adds the f-axis non-interference voltage v f_dcpl to the pseudo FB voltage command value v f_pse_fb , which is the output value of the f-axis current pseudo F / B model 1802.
  • Limit processing based on the power supply voltage V dc offset to the minus by the f-axis non-interference voltage v f_dcpl , specifically, the upper limit is "V dc -v f_dcpl " and the lower limit is " -V dc -v f_dcpl "is performed.
  • the f-axis limit processing unit 1803 may be configured as shown in FIG.
  • FIG. 22 is another example of a detailed block diagram of the f-axis limit processing unit 1803.
  • the f-axis limit processing unit 1803 has a comparator 2201, a reversing device 2202, a comparator 2203, a subtractor 2204, and an adder 2205.
  • An adder 2205 is provided in front of the comparer 2201.
  • the adder 2205 the f-axis non-interference voltage v f_dcpl output from the non-interference control unit 405 and the f-axis current pseudo F / B model 1802 output.
  • the pseudo FB voltage command value vf_pse_fb to be added is added.
  • the comparator 2201 compares the power supply voltage V dc of the battery 1 with the addition result in the adder 2205, and outputs a smaller value to the comparator 2203.
  • the inverting device 2202 inverts the sign of the power supply voltage V dc .
  • the comparator 2203 compares the output from the comparator 2201 with the output from the inverting device 2202 and outputs a large value to the subtractor 2204.
  • the subtractor 2204 calculates the f-axis F / F compensation voltage v f_ff by subtracting the f-axis non-interference voltage v f_dcpl output from the non-interference control unit 405 from the output value of the comparator 2203.
  • the subtractor 2204 outputs the f-axis F / F compensation voltage v f_ff to the f-axis current model 1801 and the adder 1706 constituting the f-axis current control unit 408.
  • the f-axis non-interference voltage v f_dcpl is added to the pseudo FB voltage command value v f_pse_fb which is the output value of the f-axis current pseudo F / B model 1802.
  • Limit processing based on the power supply voltage V dc offset negatively by the f-axis non-interference voltage v f_dcpl in order to obtain a margin specifically, the upper limit is "V dc -v f_dcpl " and the lower limit is "-”. Restriction processing such as "V dc -v f_dcpl " is performed.
  • FIG. 23 is a detailed block diagram of the f-axis F / B compensator 1702.
  • the f-axis F / B compensator 1702 has a block 2301, a multiplier 2302, and a subtractor 2303.
  • the block 2301 is a delay filter, and performs delay processing for the dead time L of the control system.
  • the block 2301 delays the f-axis current normative response if_ref with respect to the input of the f-axis current normative response if_ref output from the f-axis F / F compensator 1701, and the f-axis current normative response if_ref and the f-axis current.
  • calculating a dead time after treatment f axis current nominal response i F_REF 'in order to match the phase of the i f and outputs to the subtractor 2303 provided upstream of the multiplier 2302.
  • Block 2301 is an example of a block that executes a delay step.
  • a dead time after treatment f axis current nominal response i F_REF 'output from block 2301 subtracts the f axis current i f which is output from the A / D conversion unit 411 calculates the subtraction result.
  • the multiplier 2302 is input with the subtraction result in the subtracter 2303 calculates the f-axis F / B compensation voltage v F_fb by multiplying the f-axis F / B gain K f, the f-axis F / B compensation voltage v F_fb Is output to the adder 1705.
  • the value of the f-axis F / B gain K f is determined by adjusting it experimentally so that the stability such as the gain margin and the phase margin satisfies a predetermined standard.
  • the f-axis F / B compensator 1702 calculates the f-axis F / B compensation voltage v f_fb based on the f-axis current if .
  • FIG. 24 is a detailed block diagram of the f-axis robust compensator 1703.
  • the f-axis robust compensator 1703 is composed of a block 2401, a block 2402, a block 2403, and a subtractor 2404.
  • Block 2401 calculates the first f-axis voltage estimated value v F_est1 filtering process on the input of the f-axis current i f which is output from the A / D conversion unit 411, the f-axis voltage estimated value v F_est1 Output to the subtractor 2404.
  • the block 2401 is a delay filter having the characteristics of (L f ' ⁇ s + R f ) / ( ⁇ h_f ⁇ s + 1) including the low-pass filter 1 / ( ⁇ h_f ⁇ s + 1) of the block 2403 described later.
  • Block 2402 is the same delay filter as block 1801.
  • the block 2402 delays the first f-axis voltage command value v f_dsh output from the f-axis limit processing unit 204 by the dead time L of the control system, and delays the second f-axis voltage estimated value v f_est2. Is calculated. Then, the block 2402 outputs the second f-axis voltage estimated value v f_est2 to the block 2403.
  • Block 2403 is a low-pass filter having a characteristic of 1 / ( ⁇ h_f ⁇ s + 1).
  • the block 2403 performs a low-pass filter process on the second f-axis voltage estimated value v f_est2 output from the block 2402, and calculates the third f-axis voltage estimated value v f_est3 . Then, the block 2403 outputs the third f-axis voltage estimated value v f_est3 to the subtractor 2404.
  • the subtractor 2404 calculates the f-axis robust compensation voltage v f_rbst into the adder 1706 by subtracting the first f-axis voltage estimate v f_est1 from the third f-axis voltage estimate v f_est3 .
  • the first f-axis voltage command value v f_dsh is processed to process the delay filter block 2401 and the low-pass filter block 2403, and the first f-axis based on the measured value is processed.
  • the voltage estimate v f_est1 the f-axis low- pass compensation voltage v f_rbst for further improving stability is calculated.
  • FIG. 25 is a flowchart showing the control process of the motor 4 described with reference to FIGS. 16 to 24 described above. These controls are performed by the controller 2 executing a predetermined program.
  • step S1 the A / D conversion unit 411 acquires the current values (u-phase current i us , v-phase current i vs , and f-axis current if ) and the electric angle ⁇ re of the motor 4.
  • step S2 the motor rotation speed ⁇ rm , which is the mechanical angular velocity, and the electric angular velocity ⁇ re are calculated based on the electric angle ⁇ re acquired in step S1.
  • step S3 the prefetch compensator 403 based on the electric angle theta re calculated at step S2, and calculates the post-prefetch compensation electrical angle theta re '.
  • step S4 the coordinate conversion unit 404 calculates the d-axis current i d and the q-axis current i q based on the u-phase current i u and v-phase current i v calculated in step S1.
  • step S5 the d-axis current command value id * , the q-axis current command value i q * , and the f-axis current command are based on the motor rotation speed ⁇ rm , the torque command value T * , and the power supply voltage V dc. The value if * is calculated.
  • step S6 the q-axis current control unit 406, the d-axis current control unit 407, and the f-axis current control unit 408 perform the first d-axis voltage command value v d_dsh , the d-axis current normative response id_ref , and the d-axis current.
  • step S7 the non-interference control section 405, and the electrical angular velocity omega re calculated in step S2, the d-axis current nominal response i d_ref, the differential value s ⁇ i d_ref the d-axis current nominal response calculated in step S6,
  • the non-interference voltages v d_dcpl , v q_dcpl , and v f_dcpl are calculated according to the q-axis current normative response i q_ref , the f-axis current normative response if_ref , and the differential values s ⁇ if_ref of the f-axis current normative response.
  • step S8 the voltage command value calculation unit 409 uses the first d-axis voltage command value v d_dsh , the first q-axis voltage command value v q_dsh , and the first f-axis voltage command calculated in step S6. for each value v F_dsh, step S7 incoherent voltage v D_dcpl calculated, v Q_dcpl, and, v F_dcpl by adding the second d-axis voltage command value v d *, a second q-axis The voltage command value v q * and the second f-axis voltage command value v f * are calculated.
  • step S9 the coordinate conversion unit 410 sets the second d-axis voltage command value v d * , the second q-axis voltage command value v q * , and the second f-axis voltage command calculated in step S8.
  • the voltage command values v u * , v v * , and v w * of each phase of uvw are calculated.
  • the controller 2 executes the processes of steps S1 to S9 to generate a command value for controlling the motor 4.
  • the voltage command values v u * , v v * , and v w * calculated in step S9 are fixed to the motor 4 via the stator PWM converter 401 and the inverter 3. It is applied to the winding on the child side.
  • the second f-axis voltage command value v f * calculated in step S8 is applied to the winding on the rotor side of the motor 4 via the rotor PWM conversion unit 402. In this way, the rotation control of the motor 4 is performed.
  • a motor control method for controlling the f-axis current i f in consideration of the f-axis voltage saturation When vibration damping control processing is applied to such motor control, the reluctance torque equivalent magnetic flux estimator 901 and the field reluctance estimator 902 constituting the magnetic flux estimator 802 included in the vibration damping control calculation unit 2b are f. It is necessary to perform processing in consideration of shaft voltage saturation.
  • FIG. 26 shows a control block diagram of the reluctance torque equivalent magnetic flux estimator 901 in the magnetic flux estimator 802 of the present embodiment.
  • the relaxation torque equivalent magnetic flux estimator 901 of the present embodiment is composed of a multiplier 2601.
  • the multiplier 2601 has a difference L between the d-axis inductance L d and the q-axis inductance L q with respect to the d-axis current command value id1 * output from the first current command value calculator 801 of the second embodiment. Multiply d ⁇ L q to calculate the reluctance torque equivalent magnetic flux estimated value ⁇ r ⁇ .
  • the values at arbitrary operating points (representative operating points) of the motor 4 may be used, or may be obtained by referring to the map data stored in advance.
  • the configuration of the reluctance torque equivalent magnetic flux estimator 901 shown in the present embodiment can be simplified as compared with the configuration of FIG. 10 shown in the first embodiment.
  • FIG. 27 is a control block diagram of the field magnetic flux estimator 902 of the second embodiment.
  • the field magnetic flux estimator 902 of the present embodiment includes control blocks 2701 and 2704, a multiplier 2702, a control block 2703, a limiter 2705, and an adder 2706.
  • the control block 2701 is an f-axis model that models the transmission characteristics from the f-axis voltage v f to the f-axis current if .
  • the f-axis model has a characteristic of ( ⁇ q s + 1) / (L f s + R f ).
  • Control block 2701 enter the f axis current nominal response v Fc_lim considering f-axis voltage saturation characteristic outputted from the limiter 2705, in consideration of the transfer characteristic from the f-axis voltage v f to f axis current i f f
  • the shaft current reference response if_ref is calculated and output to the multiplier 2702 and the control block 2704.
  • the multiplier 2702 calculates the field magnetic flux estimated value ⁇ f ⁇ by multiplying the f-axis current norm response if_ref by the mutual inductance M f between the stator and the rotor.
  • the mutual inductance Mf may be a value at an arbitrary operating point (representative operating point) of the motor 4, or may be obtained by referring to map data stored in advance.
  • the control block 2703 is composed of a gain G af .
  • the gain G af is represented by the above equation (32).
  • Control block 2703 outputs obtained by multiplying the gain G af the f-axis current command value i f1 * input values to the adder 2706.
  • the control block 2704 is a filter composed of a gain G bf and 1 / ( ⁇ qs +1).
  • the gain G bf is shown in the above equation (32).
  • the control block 2704 outputs the value obtained by filtering the f-axis current norm response if_ref to the adder 2706.
  • the adder 2706 calculates the f-axis voltage command value v fc by adding the output values of the control blocks 2703 and 2704.
  • the calculated f-axis voltage command value v fc is output to the f-axis limiter 2705.
  • the field magnetic flux estimator 902 of the present embodiment includes the control block 2703 and the control block 2704, and the gain G af is multiplied by the f-axis current command value i f1 * and the f-axis current normative response i.
  • the current F / B system (f-axis current F / B model) is constructed by multiplying f_ref by the gain G bf .
  • the f-axis limiter 2705 simulates the f-axis voltage saturation characteristic by limiting the f-axis current command value v fc according to the power supply voltage V dc .
  • the field magnetic flux estimator 902 can calculate the f-axis current norm response if_ref in consideration of the f-axis voltage saturation characteristic in the control block 2701 arranged at the subsequent stage .
  • the q-axis current is provided by the phase lead compensation ( ⁇ qs +1) of the q-axis current response on the control blocks 2701 and 2704 included in the magnetic flux estimator 802.
  • the q-axis current command value i q2 * can be calculated in consideration of the response delay. That is, the field magnetic flux estimated value ⁇ f ⁇ of the present embodiment is an f-axis model that models the characteristics from the f-axis voltage vf to the f-axis current if that constitutes the rotor current, and the f-axis current command value if f1 *.
  • a pseudo F / B system composed of an f-axis current F / B model in which and the output of the f-axis model are input, and an f-axis limiter 2705 that limits the output of the f-axis current F / B model.
  • the q-axis current response is phase-advanced and compensated for the f-axis model and the f-axis current F / B model.
  • the vibration damping control calculation unit 2b can appropriately simulate the f-axis current response when there is f-axis voltage saturation.
  • FIG. 28 is a control block diagram of the vibration damping control calculation unit 2b of the second embodiment.
  • the vibration damping control calculation process is composed of a feedforward compensator 2801 and a feedback compensator 2802.
  • the feed forward compensator 2801 subtracts the value obtained by integrating the F / B gain from the torque command value and the pseudo torsion angular velocity with the vehicle model 2804 composed of the vehicle parameter and the dead zone model simulating the gear back crash. It is composed of a drive shaft torsional velocity F / B model 2805, and calculates a second torque command value T m2 * and a first motor angular velocity estimated value ⁇ m1 ⁇ .
  • a vehicle model composed of a dead zone model simulating a gear back crash and modeling a torque transmission system is used, and the first motor angular velocity estimated value ⁇ m1 ⁇ is set according to the motor torque T m .
  • the pseudo drive shaft torsional velocity ⁇ d ⁇ is obtained.
  • the pseudo drive shaft torsional velocity ⁇ d ⁇ is obtained by simulating the torsional angular velocity generated in the drive shaft 8 to which the torque of the motor 4 is transmitted.
  • the drive shaft torsion angle speed F / B model 2805 feedback control is performed in which the pseudo drive shaft torsion angle velocity ⁇ d ⁇ multiplied by the gain is subtracted from the first torque command value T m1 * before the vibration suppression control. , The second torque command value T m2 * is obtained.
  • the torsional angular velocity FB model is used, and this torsional angular velocity FB model is obtained by using a part of the vehicle model.
  • the feedback compensator 2802 In the feedback compensator 2802, the first motor angular velocity estimated value ⁇ m1 ⁇ and the motor angular velocity ⁇ m are input. Then, the feedback compensator 2802 outputs a third torque command value T m3 * from these inputs.
  • the feedback compensator 2802 uses the transmission characteristic Gp (s) of the vehicle model shown in the block 2806 with respect to the third torque command value T m3 * output from itself in order to perform feedback control.
  • the motor angular velocity estimated value (second motor angular velocity estimated value) ⁇ m2 ⁇ corresponding to the second torque command value T m2 * is calculated.
  • the adder 2807 the first motor angular velocity estimated value ⁇ m1 ⁇ and the second motor angular velocity estimated value ⁇ m2 ⁇ are added to calculate the third motor angular velocity estimated value ⁇ m3 ⁇ .
  • the third torque command value T m3 * is calculated by processing the filter H (s) / Gp (s) shown in the block 2809 with respect to this deviation.
  • the filter H (s) / Gp (s) is composed of an inverse characteristic of the transmission characteristic Gp (s) of the vehicle model and a bandpass filter H (s).
  • the second torque command value T m2 * output from the feedforward compensator 2801 and the third torque command value T m3 * output from the feedback compensator 2802 are added. Then, the vibration damping torque command value T mfin * is calculated.
  • FIG. 29 is a time chart showing the control results of the present embodiment and the comparative example.
  • the horizontal axis represents time
  • the vertical axis represents the motor torque command value [Nm], the vehicle front-rear acceleration [m / s2], and the f-axis voltage [V] in order from top to bottom on the left side, and from the top on the right side.
  • the q-axis current command value [A] the d-axis current command value [A]
  • the f-axis current command value [A] are shown.
  • the solid line in the figure shows the present embodiment, and the dotted line shows a comparative example.
  • the f-axis current norm response time constant ⁇ f is set to a value at which f-axis voltage saturation occurs.
  • FIG. 29 shows a scene in which the motor torque command value is changed (started up) in steps at the timing of time t1 while the vehicle is decelerating due to the regenerative torque of the motor 4. ..
  • the motor torque command value (vibration damping torque command value) that suppresses the drive shaft torsional vibration is calculated in consideration of the influence of the backlash of the gear. are doing.
  • the motor torque command value is changed (started up) in steps at the timing of time t1 to accelerate.
  • the f current command value is increased stepwise as shown in the lower right part of the figure, the f-axis voltage rises as shown in the lower left part of the figure.
  • the f-axis current normative response time constant ⁇ f is set to a value at which f-axis voltage saturation occurs. Therefore, the f-axis voltage is saturated as shown in the lower left part of the figure. Then, as shown in the middle right of the figure, the d current command value changes stepwise from a positive value to a negative value.
  • the f-axis current is not taken into consideration when calculating the q-axis current command value, and the influence of the field magnetic flux generated by the f-axis current and the reluctance torque generated by the d-axis current is further affected. Not considered. Therefore, as shown in the upper right part of the figure, the q-axis current command value also increases stepwise. Then, as shown in the middle left of the figure, the vehicle front-rear acceleration vibrates after increasing due to the influence of gear back crash.
  • the q-axis current i q2 * is calculated in consideration of the f-axis current i f1 * and the d-axis current i d1 * as shown in FIG. .. Therefore, the q-axis current is controlled so as to decrease after the rise at time t1 and then converge to a predetermined value.
  • the motor torque that suppresses the drive shaft torsional vibration is realized by the q-axis current command value i q2 * calculated in consideration of the d-axis current id and the f-axis current if, which is shown in the middle left of the figure. As you can see, the vehicle front-rear acceleration vibration is suppressed.
  • the feed forward compensator 2801 is configured by a dead zone model simulating a gear back crash with respect to the output second torque command value T m2 * , and torque is transmitted.
  • the vehicle model 2804 that models the system, the first motor angular velocity estimated value ⁇ m1 ⁇ and the pseudo drive shaft torsional velocity ⁇ d ⁇ can be obtained according to the motor torque T m .
  • the drive shaft torsional velocity F / B model 2805 feedback control is performed in which the pseudo drive shaft torsional velocity ⁇ d ⁇ multiplied by the gain is subtracted from the first torque command value T m1 * before the vibration damping control. Therefore, the second torque command value T m2 * is obtained.
  • the output third torque command value T m3 * is filtered by Gp (s) based on the linear approximation model in the electric vehicle.
  • the adder 2807 the first motor angular velocity estimated value ⁇ m1 ⁇ calculated in the feed forward control and the second motor angular velocity estimated value ⁇ m2 ⁇ are added to obtain a third motor angular velocity estimated value. Calculate ⁇ m3 ⁇ .
  • the difference between the third motor angular velocity estimated value ⁇ m3 ⁇ and the measured motor angular velocity ⁇ m is filtered based on a linear approximation model and a bandpass filter to perform a third filter process. Calculate the torque command value T m3 * .
  • vibration damping torque command value T mfin * is calculated by adding the second torque command value T m2 * and the third torque command value T m3 * .
  • the second torque command value T m2 * calculated by feedforward control using the dead zone model and the third torque command value T m3 * calculated by feedback control are added.
  • the vibration damping torque command value T mfin * is calculated. Therefore, in the case of re-acceleration during deceleration due to regenerative torque, vibration in the drive shaft torque transmission system of the vehicle can be suppressed even if gear backlash or the like occurs.
  • the vibration control calculation unit 2b provides phase advance compensation ( ⁇ qs +1) for the q-axis current response to the control blocks 2701 and 2704 provided in the magnetic flux estimator 902.
  • the q-axis current command value i q2 * can be calculated in consideration of the q-axis current response delay.
  • the magnetic field flux estimate ⁇ f of the present embodiment ⁇ includes a f-axis model 2701 models the characteristics of to f axis current i f that constitute the rotor current from the f-axis voltage vf, f-axis current command value i
  • a pseudo F composed of an f-axis current F / B model 2704 in which f1 * and the output of the f-axis model are input, and an f-axis limiter 2705 that limits the output of the f-axis current F / B model.
  • the vibration damping control calculation unit 2b can appropriately simulate the f-axis current response when the f-axis voltage is saturated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

In this control method for an electric vehicle: a basic torque command value is set on the basis of an operating state; a d-axis current command value and a first q-axis current command value with respect to the stator current, and an f-axis current command value with respect to the rotor current, are calculated on the basis of the basic torque command value and the vehicle information; a magnetic flux estimated value, which is an estimated value of magnetic flux generated in the rotor, is calculated on the basis of the d-axis current command value and the f-axis current command value; a first torque command value is calculated on the basis of the first q-axis current command value and the magnetic flux estimated value; calculation is performed to control vibration of the drive shaft torque transmission system of the electric vehicle, on the basis of the vehicle information, in relation to the first torque command value, whereby a vibration-damping torque command value is calculated; and a second q-axis current command value is calculated on the basis of the magnetic flux estimated value and the vibration-damping torque command value. The stator current and the rotor current are controlled on the basis of the second q-axis current command value, the d-axis current command value, and the f-axis current command value.

Description

電動車両の制御方法、及び、制御装置Electric vehicle control method and control device
 本発明は、電動車両の制御方法、及び、制御装置に関する。 The present invention relates to a control method for an electric vehicle and a control device.
 従来、ロータに永久磁石を用いる同期モータを動力源とする電動車両の制御方法として、モータと駆動輪との間を接続する駆動軸のねじり振動を低減する制振制御が用いられている。 Conventionally, as a control method for an electric vehicle using a synchronous motor that uses a permanent magnet as a rotor as a power source, vibration suppression control that reduces torsional vibration of a drive shaft that connects the motor and drive wheels has been used.
 しかしながら、モータに生じるロータ磁束が一定となる上記の同期モータに対して、ロータに永久磁石を用いない界磁巻線型同期モータでは、モータに生じるロータ磁束が変動するために上記の制振制御をそのまま適用することは困難である。 However, in contrast to the above-mentioned synchronous motor in which the rotor magnetic flux generated in the motor is constant, in the field winding type synchronous motor which does not use a permanent magnet in the rotor, the above-mentioned vibration suppression control is performed because the rotor magnetic flux generated in the motor fluctuates. It is difficult to apply it as it is.
 一方で、JP5939316Bでは、ロータ磁束が変動する誘導モータに上記の制振制御を適用する方法が開示されている。しかしながら、JP5939316Bに開示されているのは、励磁電流(γ軸電流)に基づいてトルク電流を補正することで上記の制振制御を誘導モータに適用する制御方法である。そのため、当該制御方法を、ロータの界磁巻線に流れる電流(f軸電流)や、リラクタンストルクを発生させるd軸電流などを考慮する必要がある界磁巻線型同期モータに適用しても、制振効果を得ることが難しい。 On the other hand, JP5939316B discloses a method of applying the above-mentioned vibration damping control to an induction motor in which the rotor magnetic flux fluctuates. However, what is disclosed in JP5939316B is a control method for applying the above vibration damping control to an induction motor by correcting the torque current based on the exciting current (γ-axis current). Therefore, even if the control method is applied to a field winding type synchronous motor in which it is necessary to consider the current flowing through the field winding of the rotor (f-axis current) and the d-axis current that generates reluctance torque. It is difficult to obtain a vibration damping effect.
 本発明は、モータと駆動輪との間を接続する駆動軸のねじり振動を低減する制振制御を、界磁巻線型同期モータに適用する技術を提供することを目的とする。 An object of the present invention is to provide a technique for applying vibration damping control for reducing torsional vibration of a drive shaft connecting a motor and a drive wheel to a field winding type synchronous motor.
 本発明の一態様における電動車両の制御方法は、回転子巻線を有する回転子と、固定子巻線を有する固定子とを備える巻線界磁型同期モータを駆動源とする電動車両において、固定子巻線に流れる固定子電流と回転子巻線に流れる回転子電流とを制御する電動車両の制御方法である。当該制御方法は、車両情報に基づいて基本トルク指令値を設定し、基本トルク指令値と車両情報とに基づいて、固定子電流に対するd軸電流指令値および第1のq軸電流指令値と、回転子電流に対するf軸電流指令値とを算出し、d軸電流指令値とf軸電流指令値とに基づいて回転子に生じる磁束の推定値である磁束推定値を算出し、第1のq軸電流指令値と磁束推定値とに基づいて第1のトルク指令値を算出し、第1のトルク指令値に対して、車両情報に基づいて、電動車両の駆動軸トルク伝達系の振動を抑制する演算を行うことにより、制振トルク指令値を算出し、磁束推定値と制振トルク指令値とに基づいて第2のq軸電流指令値を算出する。そして、第2のq軸電流指令値とd軸電流指令値とf軸電流指令値とに基づいて、固定子電流と回転子電流とを制御する。 The method for controlling an electric vehicle according to one aspect of the present invention is to use an electric vehicle using a winding field synchronous motor as a drive source, which includes a rotor having a rotor winding and a stator having a stator winding. This is a control method for an electric vehicle that controls a stator current flowing through a stator winding and a rotor current flowing through a rotor winding. In the control method, a basic torque command value is set based on vehicle information, and based on the basic torque command value and vehicle information, a d-axis current command value for a stator current, a first q-axis current command value, and The f-axis current command value for the rotor current is calculated, and the magnetic flux estimated value, which is the estimated value of the torque generated in the rotor, is calculated based on the d-axis current command value and the f-axis current command value, and the first q The first torque command value is calculated based on the shaft current command value and the estimated magnetic flux value, and the vibration of the drive shaft torque transmission system of the electric vehicle is suppressed with respect to the first torque command value based on the vehicle information. The vibration damping torque command value is calculated, and the second q-axis current command value is calculated based on the magnetic flux estimated value and the vibration damping torque command value. Then, the stator current and the rotor current are controlled based on the second q-axis current command value, the d-axis current command value, and the f-axis current command value.
 本発明の実施形態については、添付された図面とともに以下に詳細に説明する。 The embodiment of the present invention will be described in detail below together with the attached drawings.
図1は、第1実施形態の電動車両の制御方法が適用される車両システムの概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle system to which the electric vehicle control method of the first embodiment is applied. 図2は、電動モータコントローラによって行われる処理の流れを示すフローチャートである。FIG. 2 is a flowchart showing a flow of processing performed by the electric motor controller. 図3は、アクセル開度-トルクテーブルの一例を示す図である。FIG. 3 is a diagram showing an example of an accelerator opening degree-torque table. 図4は、第1実施形態のモータ制御システムのブロック図である。FIG. 4 is a block diagram of the motor control system of the first embodiment. 図5は、q軸電流制御部のブロック図である。FIG. 5 is a block diagram of the q-axis current control unit. 図6は、d軸電流制御部のブロック図である。FIG. 6 is a block diagram of the d-axis current control unit. 図7は、f軸電流制御部のブロック図である。FIG. 7 is a block diagram of the f-axis current control unit. 図8は、制振制御演算部のブロック図である。FIG. 8 is a block diagram of the vibration damping control calculation unit. 図9は、磁束推定器のブロック図である。FIG. 9 is a block diagram of the magnetic flux estimator. 図10は、リラクタンストルク等価磁束推定器のブロック図である。FIG. 10 is a block diagram of a reluctance torque equivalent magnetic flux estimator. 図11は、界磁磁束推定器のブロック図である。FIG. 11 is a block diagram of the field magnetic flux estimator. 図12は、制振トルク指令値演算器のブロック図である。FIG. 12 is a block diagram of a vibration damping torque command value calculator. 図13は、電動車両の運動方程式を説明する図である。FIG. 13 is a diagram for explaining the equation of motion of the electric vehicle. 図14は、バンドパスフィルタH(s)の特性を示す図である。FIG. 14 is a diagram showing the characteristics of the bandpass filter H (s). 図15は、電動車両の制御方法による制御結果を示すタイムチャートである。FIG. 15 is a time chart showing the control result by the control method of the electric vehicle. 図16は、第2実施形態のモータ制御システムのブロック図である。FIG. 16 is a block diagram of the motor control system of the second embodiment. 図17は、f軸電流制御部のブロック図である。FIG. 17 is a block diagram of the f-axis current control unit. 図18は、f軸F/F補償器のブロック図である。FIG. 18 is a block diagram of the f-axis F / F compensator. 図19は、f軸電流モデルのブロック図である。FIG. 19 is a block diagram of an f-axis current model. 図20は、f軸電流F/Bモデルのブロック図である。FIG. 20 is a block diagram of an f-axis current F / B model. 図21は、f軸リミット処理部のブロック図である。FIG. 21 is a block diagram of the f-axis limit processing unit. 図22は、f軸リミット処理部のブロック図の他の一例である。FIG. 22 is another example of the block diagram of the f-axis limit processing unit. 図23は、f軸F/B補償器のブロック図である。FIG. 23 is a block diagram of the f-axis F / B compensator. 図24は、f軸ロバスト補償器のブロック図である。FIG. 24 is a block diagram of an f-axis robust compensator. 図25は、モータの制御処理を示すフローチャートである。FIG. 25 is a flowchart showing the control process of the motor. 図26は、リラクタンストルク等価磁束推定器のブロック図である。FIG. 26 is a block diagram of a reluctance torque equivalent magnetic flux estimator. 図27は、界磁磁束推定器のブロック図である。FIG. 27 is a block diagram of the field magnetic flux estimator. 図28は、制振制御演算部のブロック図である。FIG. 28 is a block diagram of the vibration damping control calculation unit. 図29は、電動車両の制御方法による制御結果を示すタイムチャートである。FIG. 29 is a time chart showing the control result by the control method of the electric vehicle.
 <第1実施形態>
 図1は、本発明の一実施形態に係る電動車両の制御方法が適用されるモータ制御システム100の構成例を示すブロック図である。なお、電動車両とは、車両の駆動源の一部または全部として、少なくとも一つの巻線界磁型の同期モータ(以下単にモータともいう)を備え、モータの駆動力により走行可能な自動車のことであり、電気自動車や、ハイブリッド自動車が含まれる。
<First Embodiment>
FIG. 1 is a block diagram showing a configuration example of a motor control system 100 to which the electric vehicle control method according to the embodiment of the present invention is applied. An electric vehicle is a vehicle that is provided with at least one winding field type synchronous motor (hereinafter, also simply referred to as a motor) as a part or all of the drive source of the vehicle and can run by the driving force of the motor. It includes electric vehicles and hybrid vehicles.
 バッテリ1は、巻線界磁型同期モータ4の駆動電力の放電、および、モータ4の回生電力の充電を行う。 The battery 1 discharges the drive power of the winding field type synchronous motor 4 and charges the regenerative power of the motor 4.
 電動モータコントローラ2(以下単にコントローラともいう)は、例えば、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、および、入出力インタフェース(I/Oインタフェース)から構成される。コントローラ2には、車速V、アクセル開度θ、モータ4の電気角θre、モータ4の固定子電流(三相交流の場合は、iu、iv、iw)、モータ4の回転子電流(if)等の車両状態を示す各種車両変数の信号がデジタル信号として入力される。コントローラ2は、入力された信号に基づいてモータ4を制御するためのPWM信号を生成する。また、コントローラ2は、生成したPWM信号に応じてインバータ3の駆動信号を生成する。 The electric motor controller 2 (hereinafter, also simply referred to as a controller) is composed of, for example, a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). To. The controller 2 has a vehicle speed V, an accelerator opening degree θ, an electric angle θre of the motor 4, a stator current of the motor 4 (iu, iv, iw in the case of three-phase alternating current), and a rotor current (if) of the motor 4. Signals of various vehicle variables indicating the vehicle state such as are input as digital signals. The controller 2 generates a PWM signal for controlling the motor 4 based on the input signal. Further, the controller 2 generates a drive signal of the inverter 3 according to the generated PWM signal.
 インバータ3は、固定子電流を制御するために相ごとに備えられた2個のスイッチング素子(例えば、IGBTやMOS-FET等のパワー半導体素子)をオン/オフすることにより、バッテリ1から供給される直流の電流を交流に変換あるいは逆変換し、モータ4に所望の電流を流す。また、インバータ3は、回転子電流を制御するために回転子巻線の両端にそれぞれ2対(計4個)のスイッチング素子(例えば、IGBTやMOS-FET等のパワー半導体素子)を接続し、これらを駆動信号に応じてオン/オフすることにより、回転子巻線に所望の電流を流す。ただし、回転子へ流す電流の方向が一方向のみの場合には、2対のスイッチング素子のうち、対角に位置するスイッチング素子2つをダイオードに置き換えてもよい。 The inverter 3 is supplied from the battery 1 by turning on / off two switching elements (for example, power semiconductor elements such as IGBTs and MOS-FETs) provided for each phase in order to control the stator current. The direct current is converted to alternating current or inversely converted, and a desired current is passed through the motor 4. Further, in the inverter 3, two pairs (four in total) of switching elements (for example, power semiconductor elements such as IGBTs and MOS-FETs) are connected to both ends of the rotor winding in order to control the rotor current. By turning these on / off according to the drive signal, a desired current is passed through the rotor winding. However, when the direction of the current flowing through the rotor is only one direction, two of the two pairs of switching elements located diagonally may be replaced with diodes.
 巻線界磁型同期モータ4(以下、単に「モータ4」という)は、回転子巻線(界磁巻線)を有する回転子と、固定子巻線(電機子巻線)を有する固定子とを備える巻線界磁型の同期モータである。本実施形態のモータ制御システム100が車両に搭載される場合、モータ4は車両の駆動源となる。詳細は後述するが、モータ4は、回転子巻線を流れる回転子電流と、固定子巻線を流れる固定子電流とが制御されることによって制御される。モータ4は、インバータ3から供給される電流により駆動トルクを発生し、減速機5および駆動軸8を介して、左右の駆動輪9に駆動力を伝達する。また、モータ4は、車両の走行時に駆動輪9に連れ回されて回転するときに、回生駆動力を発生させることで、車両の運動エネルギーを電気エネルギーとして回収する。この場合、インバータ3は、モータ4の回生運転時に発生する交流電流を直流電流に変換して、バッテリ1に供給する。 The winding field type synchronous motor 4 (hereinafter, simply referred to as “motor 4”) has a rotor having a rotor winding (field winding) and a stator having a stator winding (armature winding). It is a winding field type synchronous motor equipped with. When the motor control system 100 of the present embodiment is mounted on a vehicle, the motor 4 serves as a drive source for the vehicle. Although the details will be described later, the motor 4 is controlled by controlling the rotor current flowing through the rotor winding and the stator current flowing through the stator winding. The motor 4 generates a drive torque by the current supplied from the inverter 3, and transmits the drive force to the left and right drive wheels 9 via the speed reducer 5 and the drive shaft 8. Further, the motor 4 recovers the kinetic energy of the vehicle as electric energy by generating a regenerative driving force when the motor 4 is rotated by the drive wheels 9 while the vehicle is traveling. In this case, the inverter 3 converts the alternating current generated during the regenerative operation of the motor 4 into a direct current and supplies it to the battery 1.
 電流センサ7は、モータ4の固定子巻線に流れる3相電流iu、iv、iw(固定子電流)を検出するとともに、モータ4の回転子巻線に流れる電流if(回転子電流)を検出する。ただし、固定子電流については、3相交流電流iu、iv、iwの和は0であるため、任意の2相の電流を検出して、残りの1相の電流は演算により求めてもよい。 The current sensor 7 detects the three-phase currents iu, iv, and iwa (stator current) flowing in the stator winding of the motor 4, and also detects the current if (rotor current) flowing in the rotor winding of the motor 4. To do. However, since the sum of the three-phase AC currents iu, iv, and iw is 0 for the stator current, the current of any two phases may be detected and the current of the remaining one phase may be obtained by calculation.
 回転センサ6は、例えば、レゾルバやエンコーダであり、モータ4の回転子位相αを検出する。 The rotation sensor 6 is, for example, a resolver or an encoder, and detects the rotor phase α of the motor 4.
 図2は、コントローラ2によって行われる処理の流れを示すフローチャートである。ステップS201からステップS204に係る処理は、車両システムが起動している間、一定の間隔で常時実行されるようにコントローラ2にプログラムされている。 FIG. 2 is a flowchart showing the flow of processing performed by the controller 2. The processes according to steps S201 to S204 are programmed in the controller 2 so as to be constantly executed at regular intervals while the vehicle system is running.
 ステップS201では、車両状態を示す信号がコントローラ2に入力される。ここでは、車速V(km/h)、アクセル開度θ(%)、モータ4の電気角θre、モータ4のモータ回転数Nm(rpm)、モータ4に流れる電流iu、iv、iw、if、及び、バッテリ1の直流電圧値Vdc(V)が入力される。 In step S201, a signal indicating the vehicle state is input to the controller 2. Here, the vehicle speed V (km / h), the accelerator opening θ (%), the electric angle θre of the motor 4, the motor rotation speed Nm (rpm) of the motor 4, and the currents iu, iv, if, if, which flow through the motor 4. Then, the DC voltage value V dc (V) of the battery 1 is input.
 車速V(km/h)は、図示しないメータや、車速センサ、または、ブレーキコントローラ等の他のコントローラより通信にて取得される。あるいは、コントローラ2は、回転子機械角速度ωmにタイヤ動半径rを乗算し、ファイナルギヤのギヤ比で除算することにより車両速度v(m/s)を求め、m/sからkm/sへの単位変換係数(3600/1000)を乗算することにより、車速V(km/h)を求める。 The vehicle speed V (km / h) is acquired by communication from a meter (not shown), a vehicle speed sensor, or another controller such as a brake controller. Alternatively, the controller 2 obtains the vehicle speed v (m / s) by multiplying the rotor mechanical angular velocity ωm by the tire driving radius r and dividing by the gear ratio of the final gear, and changes from m / s to km / s. The vehicle speed V (km / h) is obtained by multiplying by the unit conversion coefficient (3600/1000).
 アクセル開度θ(%)は、図示しないアクセル開度センサから取得する。なお、アクセル開度θ(%)は、図示しない車両コントローラ等の他のコントローラから取得するようにしても良い。 The accelerator opening θ (%) is obtained from an accelerator opening sensor (not shown). The accelerator opening degree θ (%) may be obtained from another controller such as a vehicle controller (not shown).
 モータ4の電気角θre(rad)は、回転センサ6から取得される。モータ4の回転数Nm(rpm)は、電気角速度ωreを電動モータの極対数pで除算して、モータ4の機械的な角速度であるモータ回転数検出値ωm(rad/s)を求め、求めたモータ回転数検出値ωmに、rad/sからrpmへの単位変換係数(60/(2π))を乗算することによって求められる。 The electric angle θ re (rad) of the motor 4 is acquired from the rotation sensor 6. For the rotation speed N m (rpm) of the motor 4, the electric angular velocity ω re is divided by the pole pair number p of the electric motor to obtain the motor rotation speed detection value ω m (rad / s) which is the mechanical angular velocity of the motor 4. It is obtained by multiplying the obtained motor rotation speed detection value ω m by the unit conversion coefficient (60 / (2π)) from rad / s to rpm.
 モータ4に流れる電流iu、iv、iw、およびif(A)は、電流センサ7から取得される。 The currents iu, iv, if, and if (A) flowing through the motor 4 are acquired from the current sensor 7.
 直流電流値Vdc(V)は、バッテリ1とインバータ3間の直流電源ラインに設けられた電圧センサ(不図示)により検出する。なお、直流電圧値Vdc(V)は、バッテリコントローラ(不図示)から送信される信号により検出するようにしてもよい。 The DC current value V dc (V) is detected by a voltage sensor (not shown) provided in the DC power supply line between the battery 1 and the inverter 3. The DC voltage value V dc (V) may be detected by a signal transmitted from the battery controller (not shown).
 ステップS202では、モータトルク指令値算出処理が実行される。モータトルク指令値算出処理では、ステップS201で入力されたアクセル開度θ及び車速V等の運転情報に基づいて、図3に示すアクセル開度-トルクテーブルを参照することにより、モータトルク指令値(基本トルク指令値)Tm *が設定される。 In step S202, the motor torque command value calculation process is executed. In the motor torque command value calculation process, the motor torque command value (motor torque command value () is obtained by referring to the accelerator opening-torque table shown in FIG. 3 based on the operation information such as the accelerator opening θ and the vehicle speed V input in step S201. Basic torque command value) T m * is set.
 ステップS203では、制振制御演算処理が実行される。具体的には、コントローラ2は、ステップS202で設定されたモータトルク指令値Tm *に基づいて、駆動軸トルクの応答を無駄にすることなく駆動力伝達系振動(駆動軸8のねじり振動など)を抑制するq軸電流指令値Iq2 *、d軸電流指令値id1 *、及び、f軸電流指令値if1 *を算出する。制振制御演算処理の詳細については後述する。 In step S203, the vibration damping control calculation process is executed. Specifically, the controller 2 is based on the motor torque command value T m * set in step S202, without wasting the response of the drive shaft torque, and the driving force transmission system vibration (torsion vibration of the drive shaft 8 or the like). ) Is suppressed, the q-axis current command value I q2 * , the d-axis current command value i d1 * , and the f-axis current command value i f1 * are calculated. The details of the vibration damping control calculation process will be described later.
 ステップS204では、電流制御演算処理が実行される。電流制御演算処理では、d軸電流id、q軸電流iq及びf軸電流ifを、ステップS203で求めたq軸電流指令値iq2 *、d軸電流指令値id1 *及びf軸電流指令値If1 *とそれぞれ一致させるための電流制御が行われる。電流制御演算処理の詳細について、以下図4を用いて説明する。 In step S204, the current control calculation process is executed. In the current control arithmetic processing, the d-axis current i d , the q-axis current i q, and the f-axis current i f are obtained by the q-axis current command value i q2 * , d-axis current command value i d1 *, and f-axis obtained in step S203. Current control is performed to match each with the current command value I f1 * . The details of the current control calculation processing will be described below with reference to FIG.
 図4は、モータ制御システム100の構成例を示す図であって、コントローラ2が一機能部として備える電流制御演算処理部2aの制御ブロック図である。コントローラ2は、電流制御演算処理部2aを用いてステップS204に係る電流制御演算処理を実行する。 FIG. 4 is a diagram showing a configuration example of the motor control system 100, and is a control block diagram of the current control calculation processing unit 2a provided by the controller 2 as one functional unit. The controller 2 uses the current control calculation processing unit 2a to execute the current control calculation processing according to step S204.
 電流制御演算処理部2aは、固定子PWM変換部401と、回転子PWM変換部402と、先読み補償部403と、座標変換部404、410と、非干渉制御部405と、q軸電流制御部406と、d軸電流制御部407と、f軸電流制御部408と、電圧指令値演算部409と、A/D変換部411と、を備える。 The current control calculation processing unit 2a includes a stator PWM conversion unit 401, a rotor PWM conversion unit 402, a look-ahead compensation unit 403, coordinate conversion units 404 and 410, a non-interference control unit 405, and a q-axis current control unit. It includes a 406, a d-axis current control unit 407, an f-axis current control unit 408, a voltage command value calculation unit 409, and an A / D conversion unit 411.
 固定子PWM変換部401は、後述の座標変換部410から出力される三相電圧指令値vu *、vv *、vw *に基づいて、インバータ3が備える固定子用スイッチング素子へのPWM_Duty駆動信号(強電素子駆動信号)Duu *、Dul *、Dvu *、Dvl *、Dwu *、Dwl *を生成し、インバータ3に出力する。 The stator PWM conversion unit 401 performs PWM_Duty to the stator switching element included in the inverter 3 based on the three-phase voltage command values v u * , v v * , and v w * output from the coordinate conversion unit 410 described later. Drive signals (high voltage element drive signals) D uu * , D ul * , D vu * , D vl * , D wu * , D wl * are generated and output to the inverter 3.
 回転子PWM変換部402は、後述のf軸電圧指令値vf *に基づいて、インバータ3が備える回転子用スイッチング素子へのPWM_Duty駆動信号Dfu *、Dfl *を生成し、インバータ3に出力する。 The rotor PWM conversion unit 402 generates PWM_Duty drive signals D fu * and D fl * for the rotor switching element included in the inverter 3 based on the f-axis voltage command value v f * described later, and causes the inverter 3 to generate PWM_Duty drive signals D fu * and D fl *. Output.
 インバータ3は、固定子PWM変換部401が生成するPWM_Duty駆動信号に基づいて、モータ4の固定子巻線に流れるdq軸電流id、iqを制御するための交流電圧vu、vv、vwを生成し、モータ4に供給する。また、インバータ3は、回転子PWM変換部402が生成するPWM_Duty駆動信号に基づいて、モータ4の回転子巻線に流れるf軸電流ifを制御するためのf軸電圧vfを生成し、モータ4に供給する。 The inverter 3 has an AC voltage v u , v v , for controlling the dq axis currents i d and i q flowing in the stator winding of the motor 4 based on the PWM_Duty drive signal generated by the stator PWM conversion unit 401. V w is generated and supplied to the motor 4. Further, the inverter 3 generates an f-axis voltage v f for controlling the f-axis current if flowing in the rotor winding of the motor 4 based on the PWM_Duty drive signal generated by the rotor PWM conversion unit 402. It is supplied to the motor 4.
 電流センサ7は、インバータ3からモータ4に供給される三相交流電流のうち、少なくとも2相の電流、例えば、u相電流iu、v相電流ivを検出する。検出された2相の電流iu、ivは、A/D(アナログ/デジタル)変換部411でデジタル信号に変換され、座標変換部404に入力される。また、電流センサ7は、インバータ3からモータ4に供給されるf軸電流ifを検出する。検出されたf軸電流ifは、A/D変換部411でデジタル信号に変換され、f軸電流制御部408に出力される。 The current sensor 7 detects at least two phase currents, for example, u-phase current i u and v-phase current i v , among the three-phase AC currents supplied from the inverter 3 to the motor 4. The detected two-phase currents i u and iv are converted into digital signals by the A / D (analog / digital) conversion unit 411 and input to the coordinate conversion unit 404. The current sensor 7 detects the f axis current i f fed from the inverter 3 to the motor 4. The detected f-axis current if is converted into a digital signal by the A / D conversion unit 411 and output to the f-axis current control unit 408.
 先読み補償部403は、電気角度θreと電気角速度ωreとを入力して、電気角速度ωreと制御系が持つむだ時間との乗算値を電気角θreに加算することにより、先読み補償後電気角θre'を算出する。先読み補償後電気角θre'は、座標変換部410に出力される。 The look-ahead compensation unit 403 inputs the electric angle θ re and the electric angular velocity ω re, and adds the product of the electric angular velocity ω re and the dead time of the control system to the electric angle θ re to perform the look-ahead compensation. Calculate the electrical angle θ re '. After pre-reading compensation, the electric angle θ re'is output to the coordinate conversion unit 410.
 座標変換部404は、3相交流座標系(uvw軸)から直交2軸直流座標系(d-q軸)への変換を行う。具体的には、座標変換部404は、u相電流iu、v相電流iv、w相電流iw、及び電気角θreとから、以下式(1)を用いて座標変換処理を行うことによって、d軸電流idとq軸電流iqを算出する。 The coordinate conversion unit 404 converts the three-phase AC coordinate system (uvw axis) to the orthogonal two-axis DC coordinate system (dq axis). Specifically, the coordinate conversion unit 404 performs coordinate conversion processing from the u-phase current i u , the v-phase current i v , the w-phase current i w , and the electric angle θ re using the following equation (1). By doing so, the d-axis current i d and the q-axis current i q are calculated.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 非干渉制御部405は、電気角速度ωreと、q軸、d軸、f軸電流制御部406、407、408から出力されるd軸電流規範応答id_ref、q軸電流規範応答iq_ref、f軸電流規範応答if_ref、d軸電流規範応答の微分値s・id_ref、およびf軸電流規範応答の部分値s・if_refとを入力して、d軸、q軸、及びf軸間の干渉電圧を相殺するために必要な非干渉電圧vd_dcpl、vq_dcpl、及びvf_dcplを以下式(2)で示す電圧方程式を用いて算出する。以下式(2)は、本発明の制御対象である巻線界磁型同期モータ4の電圧方程式である。 The non-interference control unit 405 has an electric angular velocity ω re , a d-axis current reference response id_ref , a q-axis current reference response i q_ref , and f output from the q-axis, d-axis, and f-axis current control units 406 , 407 , and 408 . axis current nominal response i F_REF, enter the differential value s · i d_ref the d-axis current nominal response, and a partial value s · i F_REF of f-axis current nominal response, d-axis, between the q-axis, and the f-axis The non-interference voltages v d_dcpl , v q_dcpl , and v f_dcpl required to cancel the interference voltage are calculated using the voltage equation shown by the following equation (2). The following equation (2) is a voltage equation of the winding field type synchronous motor 4 which is the controlled object of the present invention.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ただし、上記式(2)の各パラメータは以下のとおりである。なお、式中のsはラプラス演算子である。
d    :     d軸電流
q    :     q軸電流
f    :     f軸電流
d    :     d軸電圧
q    :     q軸電圧
f    :     f軸電圧
d    :     d軸インダクタンス
q    :     q軸インダクタンス
f    :     f軸インダクタンス
M     :     固定子/回転子間の相互インダクタンス
d'   :     d軸動的インダクタンス
q'   :     q軸動的インダクタンス
f'   :     f軸動的インダクタンス
M'    :     固定子/回転子間の動的相互インダクタンス
a    :     固定子巻線抵抗
f    :     回転子巻線抵抗
ωre   :     電気角速度
However, each parameter of the above equation (2) is as follows. Note that s in the equation is a Laplace operator.
id : d-axis current i q : q-axis current i f : f-axis current v d : d-axis voltage v q : q-axis voltage v f : f-axis voltage L d : d-axis inductance L q : q-axis inductance L f : F-axis inductance M: Mutual inductance between stator / rotor L d ': d-axis dynamic inductance L q ': q-axis dynamic inductance L f ': f-axis dynamic inductance M': Controller / rotor Dynamic mutual inductance between R a : Controller winding resistance R f : Rotor winding resistance ω re : Electric angular velocity
 ここで、非干渉制御部405による非干渉制御が理想的に機能すれば、上記式(2)の電圧方程式は、以下式(3)に示すように対角化することができる。 Here, if the non-interference control by the non-interference control unit 405 functions ideally, the voltage equation of the above equation (2) can be diagonalized as shown in the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 上記式(3)によれば、d軸、q軸、及びf軸の電圧から電流までの特性は、それぞれ以下式(4)、(5)、及び(6)に示すとおりの一次遅れとなる。 According to the above equation (3), the characteristics from the voltage to the current of the d-axis, the q-axis, and the f-axis have a first-order delay as shown in the following equations (4), (5), and (6), respectively. ..
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 q軸電流制御部406は、実際の電流(実電流)の計測値であるq軸電流iqをq軸電流指令値(第2のq軸電流指令値)iq2 *に定常偏差なく所望の応答性で追従させるための第1のq軸電圧指令値vq_dshを算出して、電圧指令値演算部409に出力する。q軸電流制御部406の詳細は、図5を用いて後述する。 The q-axis current control unit 406 desires the q-axis current i q , which is a measured value of the actual current (actual current), to the q-axis current command value (second q-axis current command value) i q2 * without steady deviation. The first q-axis voltage command value v q_dsh for tracking with responsiveness is calculated and output to the voltage command value calculation unit 409. Details of the q-axis current control unit 406 will be described later with reference to FIG.
 d軸電流制御部407は、実際の電流(実電流)の計測値であるd軸電流idをd軸電流指令値id1 *に定常偏差なく所望の応答性で追従させるための第1のd軸電圧指令値vd_dshを算出して、電圧指令値演算部409に出力する。d軸電流制御部407の詳細は、図6を用いて後述する。 d-axis current control unit 407, the actual current (actual current) measurements at a d-axis current i d a d-axis current command value i d1 * in steady-state error without first for follow a desired response The d-axis voltage command value v d_dsh is calculated and output to the voltage command value calculation unit 409. Details of the d-axis current control unit 407 will be described later with reference to FIG.
 f軸電流制御部408は、実際の電流(実電流)の計測値であるf軸電流ifをf軸電流指令値if1 *に定常偏差なく所望の応答性で追従させるための第1のf軸電圧指令値vf_dshを算出して、電圧指令値演算部409に出力する。f軸電流制御部408の詳細は、図7を用いて後述する。 f-axis current control section 408, the actual current (actual current) a measure of the f-axis current i f the f-axis current command value i f1 * the steady-state error without first for follow a desired response of The f-axis voltage command value v f_dsh is calculated and output to the voltage command value calculation unit 409. Details of the f-axis current control unit 408 will be described later with reference to FIG. 7.
 図5は、本実施形態のq軸電流制御部406の詳細を説明する図である。q軸電流制御部406は、制御ブロック501と、ゲイン502、503と、積分器504と、減算器505と、加算器506とを含んで構成される。 FIG. 5 is a diagram illustrating details of the q-axis current control unit 406 of the present embodiment. The q-axis current control unit 406 includes a control block 501, gains 502 and 503, an integrator 504, a subtractor 505, and an adder 506.
 制御ブロック501は、q軸電流指令値iq2 *に対する実電流iqの応答遅れを模擬した一次遅れの伝達特性1/(τqs+1)である。制御ブロック501は、q軸電流指令値iq2 *を入力とし、q軸電流規範応答iq_refを出力する。なお、伝達特性1/(τqs+1)にかかるτqは、q軸電流規範応答時定数である。 Control block 501, q-axis current command value i q2 * transfer characteristics of the first order lag of the response delay to simulate the actual current i q for 1 / (τ q s + 1 ) is. The control block 501 inputs the q-axis current command value i q2 * and outputs the q-axis current norm response i q_ref . Incidentally, the transfer characteristic 1 / (τ q s + 1 ) in such a tau q is a q-axis current nominal response time constant.
 ゲイン502は、比例ゲインKpqであって、以下式(7)で表される。ゲイン502は、q軸電流指令値iq2 *とq軸電流iqとの偏差を入力とし、入力値に比例ゲインKpqを乗算して得た値を加算器506に出力する。 The gain 502 is a proportional gain K pq and is represented by the following equation (7). The gain 502 takes the deviation between the q-axis current command value i q2 * and the q-axis current i q as an input, and outputs the value obtained by multiplying the input value by the proportional gain K pq to the adder 506.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ゲイン503は、比例ゲインKiqであって、以下式(8)で表される。ゲイン503は、q軸電流指令値iq2 *とq軸電流iqとの偏差を入力とし、入力値に比例ゲインKiqを乗算して得た値を積分器504に出力する。積分器504の出力は、加算器506に入力される。 The gain 503 is a proportional gain K iq and is represented by the following equation (8). The gain 503 takes the deviation between the q-axis current command value i q2 * and the q-axis current i q as an input, and outputs the value obtained by multiplying the input value by the proportional gain K iq to the integrator 504. The output of the integrator 504 is input to the adder 506.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 そして、加算器506は、ゲイン502の出力と積分器504の出力とを加算することにより第1のq軸電圧指令値Vq_dshを算出する。以上の通り、q軸電流制御部406は、ゲイン502、503の各ゲインを上記式(7)、(8)のように設定することにより、q軸電流指令値iq2 *からq軸電流iqまでの伝達特性を下記式(9)で示す規範応答に一致させることができる。 Then, the adder 506 calculates the first q-axis voltage command value V q_dsh by adding the output of the gain 502 and the output of the integrator 504. As described above, the q-axis current control unit 406 sets the gains of the gains 502 and 503 as shown in the above equations (7) and (8), whereby the q-axis current command value i q2 * to the q-axis current i The transmission characteristics up to q can be matched with the normative response represented by the following equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 図6は、本実施形態のd軸電流制御部407の詳細を説明する図である。d軸電流制御部407は、制御ブロック601、602と、ゲイン603、604と、積分器605と、減算器606と、加算器607とを含んで構成される。 FIG. 6 is a diagram illustrating details of the d-axis current control unit 407 of the present embodiment. The d-axis current control unit 407 includes control blocks 601 and 602, gains 603 and 604, an integrator 605, a subtractor 606, and an adder 607.
 制御ブロック601は、d軸電流指令値id1 *に対する実電流(d軸電流id)の応答遅れを模擬した一次遅れの伝達特性(d軸電流伝達特性)1/(τds+1)である。制御ブロック601は、d軸電流指令値id1 *を入力とし、d軸電流規範応答id_refを出力する。なお、伝達特性1/(τds+1)にかかるτdは、d軸電流規範応答時定数である。 The control block 601 has a first-order delay transmission characteristic (d-axis current transmission characteristic) 1 / (τ d s + 1) that simulates the response delay of the actual current (d-axis current id ) with respect to the d-axis current command value id1 * . .. Control block 601 receives as input the d-axis current command value i d1 *, and outputs the d-axis current nominal response i d_ref. Incidentally, the transfer characteristic 1 / (τ d s + 1 ) in such a tau d is the d-axis current nominal response time constant.
 制御ブロック602は、d軸電流指令値id1 *に対するd軸電流規範応答id_refの微分値を算出する伝達特性s/(τds+1)である。制御ブロック602は、d軸電流指令値id1 *を入力とし、d軸電流規範応答微分値s・id_refを出力する。 Control block 602, the transfer characteristic s / (τ d s + 1 ) for calculating a differential value of d-axis current nominal response i d_ref against d-axis current command value i d1 * is. Control block 602 receives as input the d-axis current command value i d1 *, and outputs the d-axis current nominal response differential value s · i d_ref.
 ゲイン603は、比例ゲインKpdであって、以下式(10)で表される。ゲイン603は、d軸電流指令値id1*とd軸電流idとの偏差を入力とし、入力値に比例ゲインKpdを乗算して得た値を加算器607に出力する。 The gain 603 is a proportional gain K pd and is expressed by the following equation (10). Gain 603 inputs the deviation between the d-axis current command value i d1 * and d-axis current i d, and outputs a value obtained by multiplying a proportional gain K pd input values to the adder 607.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 ゲイン604は、比例ゲインKidであって、以下式(11)で表される。ゲイン604は、d軸電流指令値id1 *とd軸電流idとの偏差を入力とし、入力値に比例ゲインKidを乗算して得た値を積分器605に出力する。積分器605の出力は、加算器607に入力される。 The gain 604 is a proportional gain K id and is represented by the following equation (11). Gain 604 inputs the deviation between the d-axis current command value i d1 * and d-axis current i d, and outputs a value obtained by multiplying a proportional gain K id to the input value to the integrator 605. The output of the integrator 605 is input to the adder 607.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 そして、加算器607は、ゲイン603の出力と積分器605の出力とを加算することにより第1のd軸電圧指令値vd_dshを算出する。以上の通り、d軸電流制御部407は、ゲイン603、604の各ゲインを上記式(10)、(11)のように設定することにより、d軸電流指令値id1 *からd軸電流idまでの伝達特性を下記式(12)で示す規範応答に一致させることができる。 Then, the adder 607 calculates the first d-axis voltage command value v d_dsh by adding the output of the gain 603 and the output of the integrator 605. As described above, the d-axis current control unit 407 sets the gains of the gains 603 and 604 as shown in the above equations (10) and (11), whereby the d-axis current command value i d1 * to the d-axis current i The transmission characteristics up to d can be matched with the normative response represented by the following equation (12).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 図7は、本実施形態のf軸電流制御部408の詳細を説明する図である。f軸電流制御部408は、制御ブロック701、702と、ゲイン703、704と、積分器705と、減算器706と、加算器707とを含んで構成される。 FIG. 7 is a diagram illustrating details of the f-axis current control unit 408 of the present embodiment. The f-axis current control unit 408 includes control blocks 701 and 702, gains 703 and 704, an integrator 705, a subtractor 706, and an adder 707.
 制御ブロック701は、f軸電流指令値if1 *に対する実電流ifの応答遅れを模擬した一次遅れの伝達特性1/(τfs+1)である。制御ブロック701は、f軸電流指令値if1 *を入力とし、f軸電流規範応答if_refを出力する。なお、伝達特性1/(τfs+1)にかかるτfは、f軸電流規範応答時定数である。 The control block 701 has a first-order delay transmission characteristic 1 / (τ f s + 1) that simulates a response delay of the actual current if with respect to the f-axis current command value i f1 * . The control block 701 receives the f-axis current command value if f1 * as an input, and outputs the f-axis current reference response if_ref . Incidentally, the transfer characteristic 1 / (τ f s + 1 ) in such a tau f is the f-axis current nominal response time constant.
 制御ブロック702は、f軸電流指令値if1 *に対するf軸電流規範応答if_refの微分値を算出する伝達特性s/(τfs+1)である。制御ブロック702は、f軸電流指令値if1 *を入力とし、f軸電流規範応答微分値s・if_refを出力する。 The control block 702 is a transmission characteristic s / (τ f s + 1) for calculating the differential value of the f-axis current normative response if_ref with respect to the f-axis current command value if f1 * . The control block 702 receives the f-axis current command value if f1 * as an input, and outputs the f-axis current norm response differential value s · if_ref .
 ゲイン703は、比例ゲインKpfであって、以下式(13)で表される。ゲイン703は、f軸電流指令値if1 *とf軸電流ifとの偏差を入力とし、入力値に比例ゲインKpfを乗算して得た値を加算器707に出力する。 The gain 703 is a proportional gain K pf and is represented by the following equation (13). Gain 703 inputs the deviation between the f-axis current command value i f1 * and f-axis current i f, and outputs a value obtained by multiplying a proportional gain K pf the input value to the adder 707.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ゲイン704は、比例ゲインKifであって、以下式(14)で表される。ゲイン704は、f軸電流指令値if1 *とf軸電流ifとの偏差を入力とし、入力値に比例ゲインKifを乗算して得た値を積分器705に出力する。積分器705の出力は、加算器707に入力される。 The gain 704 is a proportional gain K if and is represented by the following equation (14). Gain 704 inputs the deviation between the f-axis current command value i f1 * and f-axis current i f, and outputs a value obtained by multiplying a proportional gain K an if the input value to the integrator 705. The output of the integrator 705 is input to the adder 707.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 そして、加算器707は、ゲイン703の出力と積分器705の出力とを加算することにより第1のf軸電圧指令値vf_dshを算出する。以上の通り、f軸電流制御部408は、ゲイン703、704の各ゲインを上記式(13)、(14)のように設定することにより、f軸電流指令値if1 *からf軸電流ifまでの伝達特性を下記式(15)で示す規範応答に一致させることができる。 Then, the adder 707 calculates the first f-axis voltage command value v f_dsh by adding the output of the gain 703 and the output of the integrator 705. As described above, the f-axis current control unit 408 sets the gains of the gains 703 and 704 as in the above equations (13) and (14), whereby the f-axis current command value i f1 * to the f-axis current i The transmission characteristics up to f can be matched with the normative response represented by the following equation (15).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
 図4に戻って説明を続ける。電圧指令値演算部409は、q軸電流制御部406、d軸電流制御部407、及び、f軸電流制御部408の各出力である第1のq軸電圧指令値vq_dsh、第1のd軸電圧指令値vd_dsh、及び、第1のf軸電圧指令値vf_dshを、非干渉制御部405の出力である非干渉電圧vq_dcpl、vd_dcpl、vf_dcplを用いて補正(本実施形態では加算)する。そして、電圧指令値演算部409は、当該補正により得た、第2のq軸電圧指令値vq *、及び、第2のd軸電圧指令値vd *を座標変換部410に出力するとともに、第2のf軸電圧指令値vf *を回転子PWM変換部402に出力する。 The explanation will be continued by returning to FIG. The voltage command value calculation unit 409 has a first q-axis voltage command value v q_dsh and a first d, which are outputs of the q-axis current control unit 406, the d-axis current control unit 407, and the f-axis current control unit 408. The shaft voltage command value v d_dsh and the first f-axis voltage command value v f_dsh are corrected by using the non-interference voltages v q_dcpl , v d_dcpl , and v f_dcpl which are the outputs of the non-interference control unit 405 (in this embodiment). to add. Then, the voltage command value calculation unit 409 outputs the second q-axis voltage command value v q * and the second d-axis voltage command value v d * obtained by the correction to the coordinate conversion unit 410. , The second f-axis voltage command value v f * is output to the rotor PWM converter 402.
 座標変換部410は、電気角速度ωreで回転する直交2軸直流座標系(d‐q軸)から3相交流座標系(uvw相)への変換を行う。具体的には、座標変換部410は、入力される第2のd軸電圧指令値vd *、第2のq軸電圧指令値vq *、及び、先読み補償後電気角θre'から、以下式(16)を用いて座標変換処理を行うことによって、uvw各相の電圧指令値vu *、vv *、vw *を算出する。 The coordinate conversion unit 410 converts the orthogonal 2-axis DC coordinate system (dq-axis) rotating at the electric angular velocity ω re into the 3-phase AC coordinate system (uvw phase). Specifically, the coordinate conversion unit 410 uses the input second d-axis voltage command value v d * , the second q-axis voltage command value v q * , and the pre-reading compensation post-electric angle θ re '. By performing the coordinate conversion process using the following equation (16), the voltage command values v u * , v v * , and v w * of each uvw phase are calculated.
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
 続いて、ステップS203(図2参照)で実行される制振制御処理の詳細について説明する。 Subsequently, the details of the vibration damping control process executed in step S203 (see FIG. 2) will be described.
 図8は、コントローラ2の一機能部として、図1に示される電流制御演算処理部2aの前段に設けられる制振制御演算部2bの制御ブロック図である。すなわち、制振制御演算部2bからの出力が、電流制御演算処理部2aに入力される。コントローラ2は、制振制御演算部2bを用いてステップS203に係る制振制御処理を実行する。 FIG. 8 is a control block diagram of the vibration damping control calculation unit 2b provided in front of the current control calculation processing unit 2a shown in FIG. 1 as a functional unit of the controller 2. That is, the output from the vibration damping control calculation unit 2b is input to the current control calculation processing unit 2a. The controller 2 uses the vibration damping control calculation unit 2b to execute the vibration damping control process according to step S203.
 制振制御演算部2bは、第1の電流指令値演算器801と、磁束推定器802と、第1のトルク指令値演算器803と、制振トルク指令値演算器804と、第2のq軸電流指令値演算器805とを含んで構成される。 The vibration damping control calculation unit 2b includes a first current command value calculator 801, a magnetic flux estimator 802, a first torque command value calculator 803, a vibration damping torque command value calculator 804, and a second q. It is configured to include an axial current command value calculator 805.
 第1の電流指令値演算器801は、モータトルク指令値Tm *と、モータ回転数(機械角速度)ωrmと、直流電圧Vdcとを入力とし、q軸電流指令値iq1 *、d軸電流指令値id1 *、及びf軸電流指令値if1 *を算出する。第1の電流指令値演算器801は、q軸電流指令値iq1 *、d軸電流指令値id1 *、及びf軸電流指令値if1 *の各々と、モータトルク指令値(基本トルク指令値)Tm *、モータ回転数(機械角速度)ωrm、及び直流電圧Vdcとの関係を定めたマップデータを予め記憶しており、当該マップデータを参照することにより各値を算出する。算出されたq軸電流指令値iq1 *は、第1のトルク指令値演算器803に出力され、d軸電流指令値id1 *、及びf軸電流指令値if1 *は、磁束推定器802に出力される。 The first current command value calculator 801 inputs the motor torque command value T m * , the motor rotation speed (mechanical angular speed) ω rm, and the DC voltage V dc, and the q-axis current command values i q1 * , d. Calculate the shaft current command value i d1 * and the f-axis current command value i f1 * . The first current command value calculator 801 includes each of the q-axis current command value i q1 * , the d-axis current command value i d1 * , and the f-axis current command value if f1 * , and the motor torque command value (basic torque command). Value) T m * , motor rotation speed (mechanical angular speed) ω rm , and map data that defines the relationship with the DC voltage V dc are stored in advance, and each value is calculated by referring to the map data. The calculated q-axis current command value i q1 * is output to the first torque command value calculator 803, and the d-axis current command value i d1 * and the f-axis current command value i f1 * are the magnetic flux estimator 802. Is output to.
 図9は、磁束推定器802の制御ブロック図である。磁束推定器802は、リラクタンストルク等価磁束推定器901と、界磁磁束推定器902と、加算器903とを含んで構成される。 FIG. 9 is a control block diagram of the magnetic flux estimator 802. The magnetic flux estimator 802 includes a reluctance torque equivalent magnetic flux estimator 901, a field magnetic flux estimator 902, and an adder 903.
 リラクタンストルク等価磁束推定器901は、d軸電流指令値id1 *を入力とし、リラクタンス等価磁束推定値φr^を算出する。界磁磁束推定器902は、f軸電流指令値if1 *を入力とし、界磁磁束推定値φf^を算出する。そして、加算器903は、リラクタンス等価磁束推定値φr^と、界磁磁束推定値φf^とを足し合わせて磁束推定値φ^を算出する。 Reluctance torque equivalent flux estimator 901 inputs the d-axis current command value i d1 *, calculates the reluctance equivalent flux estimation value [phi] r ^. Field flux estimator 902 inputs the f-axis current command value i f1 *, calculates the magnetic field flux estimate .phi.f ^. Then, the adder 903 calculates the magnetic flux estimated value φ ^ by adding the reluctance equivalent magnetic flux estimated value φr ^ and the field magnetic flux estimated value φf ^.
 図10は、リラクタンストルク等価磁束推定器901の制御ブロック図である。リラクタンストルク等価磁束推定器901は、位相進み補償器1001と、乗算器1002とを含んで構成される。 FIG. 10 is a control block diagram of the reluctance torque equivalent magnetic flux estimator 901. The relaxation torque equivalent magnetic flux estimator 901 includes a phase lead compensator 1001 and a multiplier 1002.
 位相進み補償器1001は、d軸電流応答遅れを模擬した1次遅れの伝達特性(d軸電流伝達特性(制御ブロック601参照))に対して、q軸電流応答を位相進み補償した伝達特性(τqs+1)/(τds+1)である。位相進み補償器1001は、d軸電流指令値id1 *に伝達特性(τqs+1)/(τds+1)を用いた位相進み補償を施すことにより得た値を乗算器1002に出力する。 The phase lead compensator 1001 has a transmission characteristic (d-axis current transmission characteristic (see control block 601)) in which the q-axis current response is phase-advance compensated with respect to the transmission characteristic of the first-order delay simulating the d-axis current response delay. τ q s + 1) / (τ d s + 1). The phase lead compensator 1001 outputs a value obtained by performing phase lead compensation using the transfer characteristic (τ q s + 1) / (τ d s + 1) on the d-axis current command value id1 * to the multiplier 1002.
 乗算器1002は、位相進み補償器1001の出力に対して、d軸インダクタンスLdとq軸インダクタンスLqとの差分Ld-Lqを乗算して、リラクタンストルク等価磁束推定値φr^を算出する。d軸インダクタンスLdとq軸インダクタンスLqとは、モータ4の任意の動作点(代表動作点)における値を使用しても良いし、予め記憶したマップデータを参照して求めてもよい。なお、dq軸電流id、iqによって回転子に発生するリラクタンストルクは、下記式(17)で表される。従って、下記式(17)中の(Ld-Lq)idの項をリラクタンストルク等価磁束と定義することができる。ただし、pnは、モータ4の極対数である。 The multiplier 1002 calculates the output of the phase lead compensator 1001 multiplies the difference L d -L q and d-axis inductance L d and q-axis inductance L q, the reluctance torque equivalent flux estimation value [phi] r ^ To do. As the d-axis inductance L d and the q-axis inductance L q , the values at arbitrary operating points (representative operating points) of the motor 4 may be used, or may be obtained by referring to the map data stored in advance. The reluctance torque generated in the rotor by the dq axis currents i d and i q is expressed by the following equation (17). Therefore, it is possible to define the following formula (17) in the section (L d -L q) i d and reluctance torque equivalent flux. However, p n is the logarithm of the motor 4.
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
 制振制御演算部2bは、位相進み補償器1001によってq軸電流応答の位相進み補償を行ったリラクタンストルク等価磁束推定値φr^を用いることにより、q軸電流応答遅れが考慮されたq軸電流指令値(第2のq軸電流指令値)iq2 *を算出することができる。 The vibration suppression control calculation unit 2b uses the reluctance torque equivalent magnetic flux estimated value φr ^ in which the phase advance compensation of the q-axis current response is performed by the phase advance compensator 1001, so that the q-axis current in consideration of the q-axis current response delay is taken into consideration. The command value (second q-axis current command value) i q2 * can be calculated.
 図11は、界磁磁束推定器902の制御ブロック図である。界磁磁束推定器902は、位相進み補償器1101と、乗算器1102とを含んで構成される。 FIG. 11 is a control block diagram of the field magnetic flux estimator 902. The field magnetic flux estimator 902 includes a phase lead compensator 1101 and a multiplier 1102.
 位相進み補償器1101は、f軸電流応答遅れを模擬した1次遅れの伝達特性(制御ブロック701参照)に対して、q軸電流応答を進み補償した伝達特性(τqs+1)/(τfs+1)である。位相進み補償器1101は、f軸電流指令値if1 *に伝達特性(τqs+1)/(τfs+1)を用いて位相進み補償を施すことにより得た値を乗算器1102に出力する。 The phase lead compensator 1101 advances and compensates for the q-axis current response with respect to the transmission characteristic of the first-order delay simulating the f-axis current response delay (see control block 701) (τ q s + 1) / (τ f ). s + 1). Phase lead compensator 1101 outputs a value obtained by performing phase-lead compensation using the f-axis current command value i f1 * the transfer characteristic (τ q s + 1) / (τ f s + 1) to the multiplier 1102.
 乗算器1102は、位相進み補償器1101の出力に対して、固定子と回転子との間の相互インダクタンスMfを乗算して、界磁磁束推定値φf^を算出する。相互インダクタンスMfは,モータ4の任意の動作点(代表動作点)における値を使用しても良いし、予め記憶したマップデータを参照して求めてもよい。 The multiplier 1102 calculates the field magnetic flux estimated value φf ^ by multiplying the output of the phase lead compensator 1101 by the mutual inductance M f between the stator and the rotor. The mutual inductance M f may be a value at an arbitrary operating point (representative operating point) of the motor 4, or may be obtained by referring to map data stored in advance.
 制振制御演算部2bは、位相進み補償器1101によってq軸電流応答の進み補償を行った界磁磁束推定値φf^を用いることにより、q軸電流応答遅れが考慮されたq軸電流指令値iq2 *を算出することができる。以下、図8に戻って説明を続ける。 The vibration suppression control calculation unit 2b uses the field magnetic flux estimated value φf ^ in which the phase advance compensator 1101 compensates for the advance of the q-axis current response, so that the q-axis current command value in consideration of the q-axis current response delay. i q2 * can be calculated. Hereinafter, the description will be continued by returning to FIG.
 第1のトルク指令値演算器803は、q軸電流指令値iq1 *と、磁束推定値φ^と、モータ4の極対数pnとを乗算することにより第1のトルク指令値(制振制御前トルク指令値)Tm1 *を算出する。算出した第1のトルク指令値Tm1 *は、制振トルク指令値演算器804に出力される。 The first torque command value calculator 803 multiplies the q-axis current command value i q1 * , the estimated magnetic flux value φ ^, and the number of pole pairs p n of the motor 4 to obtain the first torque command value (vibration suppression). Pre-control torque command value) Calculate T m1 * . The calculated first torque command value T m1 * is output to the vibration damping torque command value calculator 804.
 制振トルク指令値演算器804は、第1のトルク指令値Tm1 *に対して、車両の駆動軸トルク伝達系の固有振動周波数成分を除去するフィルタ処理であるフィードフォワード制御、及び、モータ回転数ωrmに基づいたフィードバック制御という制振制御を行うことにより制振トルク指令値Tmfin *を算出する。 The vibration damping torque command value calculator 804 performs feed forward control, which is a filter process for removing the natural vibration frequency component of the drive shaft torque transmission system of the vehicle, and motor rotation with respect to the first torque command value T m1 * . The vibration damping torque command value T mfin * is calculated by performing vibration damping control called feedback control based on the number ω rm .
 図12は、制振トルク指令値演算器804の制御ブロック図である。この図に示されるように、制振トルク指令値演算器804は、フィードフォワード補償器1201、制御ブロック1202、フィードバック補償器1203、加算器1204、及び、減算器1205で構成される。なお、制御ブロック1202、フィードバック補償器1203、及び、減算器1205を、まとめて、フィードバック制御器1207と称してもよい。 FIG. 12 is a control block diagram of the vibration damping torque command value calculator 804. As shown in this figure, the vibration damping torque command value calculator 804 includes a feed forward compensator 1201, a control block 1202, a feedback compensator 1203, an adder 1204, and a subtractor 1205. The control block 1202, the feedback compensator 1203, and the subtractor 1205 may be collectively referred to as the feedback controller 1207.
 フィードフォワード補償器1201は、第1のトルク指令値Tm1 *の入力を受け付けると、第1のトルク指令値Tm1 *に対してGr(s)/Gp(s)からなるフィルタ処理を行い、第2のトルク指令値Tm2 *を算出する。なお、Gr(s)、及び、Gp(s)については、後述の図13を用いて説明する。 When the feed forward compensator 1201 receives the input of the first torque command value T m1 * , the feed forward compensator 1201 performs a filter process consisting of Gr (s) / Gp (s) on the first torque command value T m1 * . Calculate the second torque command value T m2 * . In addition, Gr (s) and Gp (s) will be described with reference to FIG. 13 described later.
 制御ブロック1202は、加算器1204から出力される制振トルク指令値Tmfin *に対して、伝達特性Gp(s)からなるフィルタ処理を行い、モータ角速度推定値ωm^を演算する。なお、加算器1204においては、フィードフォワード補償器1201から出力される第2のトルク指令値Tm2 *と、フィードバック補償器1203から出力される第3のトルク指令値Tm3 *が加算されて、制振トルク指令値Tmfin *が算出される。 The control block 1202 performs a filter process consisting of the transmission characteristic Gp (s) on the vibration damping torque command value T mfin * output from the adder 1204, and calculates the motor angular velocity estimated value ω m ^. In the adder 1204, the second torque command value T m2 * output from the feed forward compensator 1201 and the third torque command value T m3 * output from the feedback compensator 1203 are added. The vibration damping torque command value T mfin * is calculated.
 フィードバック制御器1207においては、まず、減算器1205において、モータ角速度推定値ωm^から実モータ角速度ωmが減算される。そして、フィードバック補償器1203は、減算器1205から出力されるモータ角速度推定値ωm^と実モータ角速度ωmとの差分に対して、H(s)/Gp(s)からなるフィルタ処理を行い、第3のトルク指令値Tm3 *を演算する。 In the feedback controller 1207, first, in the subtractor 1205, the actual motor angular velocity ω m is subtracted from the motor angular velocity estimated value ω m ^. Then, the feedback compensator 1203 performs a filter process consisting of H (s) / Gp (s) on the difference between the motor angular velocity estimated value ω m ^ output from the subtractor 1205 and the actual motor angular velocity ω m. , Calculate the third torque command value T m3 * .
 なお、Gr(s)、Gp(s)、及び、H(s)については、後述の図13を用いて説明する。また、H(s)は、分母次数と分子次数との差分が、Gp(s)の分母次数と分子次数との差分よりも大きくなるように構成されている。H(s)/Gp(s)により制御系を安定させることができる。 Note that Gr (s), Gp (s), and H (s) will be described with reference to FIG. 13 described later. Further, H (s) is configured such that the difference between the denominator order and the numerator order is larger than the difference between the denominator order and the numerator order of Gp (s). The control system can be stabilized by H (s) / Gp (s).
 まず、フィードワード制御に用いられるフィルタであって、車両の駆動軸トルク伝達系の固有振動周波数成分を除去するフィルタ(伝達関数)Ginv(s)の導出について説明する。まず、図13を参照して、車両の運動方程式について説明する。 First, the derivation of the filter (transfer function) Ginv (s) that removes the natural vibration frequency component of the drive shaft torque transmission system of the vehicle, which is a filter used for feed word control, will be described. First, the equation of motion of the vehicle will be described with reference to FIG.
 図13は、車両の駆動力伝達系を制御ブロック601化した図であり、同図における各パラメータは以下に示す通りである。
m:モータイナーシャ
w:駆動輪イナーシャ(1軸分)
M:車両の質量
d:駆動軸(ドライブシャフト)のねじり剛性
t:タイヤと路面の摩擦に関する係数
al:オーバーオールギヤ比
r:タイヤ荷重半径
ωm:モータ角速度
ωw:駆動輪角速度
m:モータトルク
d:駆動軸トルク
F:駆動力(2軸分)
V:車体速度
FIG. 13 is a diagram in which the driving force transmission system of the vehicle is converted into a control block 601. Each parameter in the figure is as shown below.
J m : Motor inertia J w : Drive wheel inertia (for one axis)
M: Vehicle mass K d : Torsional rigidity of drive shaft (drive shaft) K t : Factor related to friction between tire and road surface N al : Overall gear ratio r: Tire load radius ω m : Motor angular velocity ω w : Drive wheel angular velocity T m : Motor torque T d : Drive shaft torque F: Driving force (for 2 shafts)
V: Body speed
 図13より以下の運動方程式(18)~(22)を導くことができる。 The following equations of motion (18) to (22) can be derived from FIG.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 上記式(20)~(22)をラプラス変換して、モータトルクTmからモータ角速度ωmまでの伝達特性を求めると、次式(23)、(24)で表せる。 The Laplace transform of the above equations (20) to (22) to obtain the transmission characteristics from the motor torque T m to the motor angular velocity ω m can be expressed by the following equations (23) and (24).
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 ただし、式(23)、(24)中のa3、a2、a1、a0、b3、b2、b1、b0はそれぞれ次式(25)で表される。 However, a 3 , a 2 , a 1 , a 0 , b 3 , b 2 , b 1 , b 0 in the equations (23) and (24) are represented by the following equations (25), respectively.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 式(24)を整理すると、Gp(s)は、次式(26)のように表すことができる。ただし、式(26)中のζpとωpはそれぞれ、駆動軸ねじり振動系の減衰係数と固有振動周波数である。 By rearranging the equation (24), Gp (s) can be expressed as the following equation (26). However, ζ p and ω p in Eq. (26) are the damping coefficient and the natural vibration frequency of the drive shaft torsional vibration system, respectively.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
 そして、車両へのトルク入力に対するモータ回転速度の応答目標を示す理想的な規範モデルGr(s)を以下式(27)とすると、線形近似した車両の伝達特性Gp(s)の逆特性と、規範モデルGr(s)とからなる、Gr(s)/Gp(s)の特性を持つ伝達関数Ginv(s)は、以下式(28)で表すことができる。ただし、式(27)、(28)中のζmとωmはそれぞれ、駆動軸ねじり振動系の減衰係数と固有振動周波数である。 Then, assuming that the ideal normative model Gr (s) indicating the response target of the motor rotation speed to the torque input to the vehicle is the following equation (27), the inverse characteristic of the linearly approximated vehicle transfer characteristic Gp (s) and The transfer function Ginv (s) having the characteristics of Gr (s) / Gp (s), which is composed of the normative model Gr (s), can be expressed by the following equation (28). However, ζ m and ω m in the equations (27) and (28) are the damping coefficient and the natural vibration frequency of the drive shaft torsional vibration system, respectively.
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000027
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 なお、車両がコーストや原則から加速するような場面において、ギヤのバックラッシュの影響を加味して車両の駆動軸トルク伝達系の固有振動周波数成分を除去する方法として、第2実施形態のように、ギヤバックラッシュを模擬した不感帯モデルにより構成される車両モデルを利用することも可能である。 In addition, as a method of removing the natural vibration frequency component of the drive shaft torque transmission system of the vehicle in consideration of the influence of the backlash of the gear in the scene where the vehicle accelerates from the coast or the principle, as in the second embodiment. It is also possible to use a vehicle model composed of a dead zone model simulating gear backlash.
 次に、伝達関数H(s)について説明する。H(s)はバンドパスフィルタとした場合に振動のみを低減するフィードバック要素となる。この際、図14に示すようにフィルタの特性を設定すると、最も大きな効果を得ることができる。即ち、伝達関数H(s)は、周波数の低いローパス側、及び、周波数の高いハイパス側の双方で減衰特性が略一致し、かつ、駆動系のねじり共振周波数が、対数軸(logスケール)上で、通過帯域の中央部近傍となるように設定されている。そして、例えばH(s)を1次のハイパスフィルタと1次のローパスフィルタで構成する場合、周波数fpを駆動系のねじり共振周波数とし、kを任意の値として次式(29)のように構成する。なお、式(29)中のパラメータは、式(30)のように示される。 Next, the transfer function H (s) will be described. H (s) is a feedback element that reduces only vibration when a bandpass filter is used. At this time, if the characteristics of the filter are set as shown in FIG. 14, the greatest effect can be obtained. That is, the transfer function H (s) has substantially the same damping characteristics on both the low-pass side with a low frequency and the high-pass side with a high frequency, and the torsional resonance frequency of the drive system is on the logarithmic axis (log scale). It is set to be near the center of the pass band. Then, for example, when configuring H (s) is a first-order high-pass filter and a first-order low-pass filter, the frequency f p and torsional resonance frequency of the drive system, the k as an arbitrary value by the following equation (29) Constitute. The parameters in the equation (29) are shown as in the equation (30).
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
 そして、図8で示す第2のq軸電流指令値演算器805は、制振トルク指令値演算器804から出力される制振トルク指令値Tmfin *と、磁束推定器802から出力される磁束推定値φ^とを入力とし、以下式(31)を用いてq軸電流指令値(第2のq軸電流指令値)iq2 *を算出する。算出されたq軸電流指令値iq2 *は、図4で示す電流制御演算処理部2aのq軸電流制御部406に入力される。なお、上述した通り、磁束推定値φ^は、車両情報に基づいて設定されるモータトルク指令値Tm *に応じて設定されたd軸電流指令値id1 *とf軸電流指令値if1 *とに基づいて算出される。すなわち、本実施形態のq軸電流指令値iq2 *は、d軸電流指令値id1 *およびf軸電流指令値if1 *を考慮して、モータトルク指令値Tm *に応じて設定されたq軸電流指令値iq1 *を補正することにより算出される。これにより、制振制御演算部2bは、d軸電流指令値id1 *によって発生するリラクタンストルクと、f軸電流指令値if1 *によって発生する界磁磁束との影響を考慮して、駆動軸トルク伝達系のねじり振動が発生することを抑制することができる。 The second q-axis current command value calculator 805 shown in FIG. 8 has a vibration damping torque command value T mfin * output from the vibration damping torque command value calculator 804 and a magnetic flux output from the magnetic flux estimator 802. Using the estimated value φ ^ as an input, the q-axis current command value (second q-axis current command value) i q2 * is calculated using the following equation (31). The calculated q-axis current command value i q2 * is input to the q-axis current control unit 406 of the current control calculation processing unit 2a shown in FIG. As described above, the magnetic flux estimated value φ ^ is the d-axis current command value i d1 * and the f-axis current command value i f1 set according to the motor torque command value T m * set based on the vehicle information. Calculated based on * and. That is, the q-axis current command value i q2 * of the present embodiment is set according to the motor torque command value T m * in consideration of the d-axis current command value i d1 * and the f-axis current command value i f1 *. It is calculated by correcting the q-axis current command value i q1 * . As a result, the vibration damping control calculation unit 2b considers the influence of the reluctance torque generated by the d-axis current command value i d1 * and the field magnetic flux generated by the f-axis current command value i f1 * , and drives the drive shaft. It is possible to suppress the occurrence of torsional vibration of the torque transmission system.
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 以下では、図15を参照して、上述した第1実施形態の電動車両の制御方法(制振制御処理)による作用効果について説明する。 In the following, with reference to FIG. 15, the action and effect of the electric vehicle control method (vibration control control process) of the first embodiment described above will be described.
 図15は、本実施形態及び比較例の制御結果を示すタイムチャートである。比較例においては、ステップS203における制振制御演算が行なわれていないものとする。横軸は時間を表し、縦軸は、左側において上から下の順に、モータトルク指令値[Nm]、車両前後加速度[m/s2]、及びf軸電圧[V]を表し、右側において上から下の順に、q軸電流指令値[A]、d軸電流指令値[A]、及びf軸電流指令値[A]を表している。図中の実線は本実施形態を示し、点線は比較例を示している。なお、本タイムチャートにおける制御においては、f軸電流規範応答時定数τfをf軸電圧飽和が発生しない値に設定している。 FIG. 15 is a time chart showing the control results of the present embodiment and the comparative example. In the comparative example, it is assumed that the vibration damping control calculation in step S203 is not performed. The horizontal axis represents time, the vertical axis represents the motor torque command value [Nm], the vehicle front-rear acceleration [m / s2], and the f-axis voltage [V] in order from top to bottom on the left side, and from the top on the right side. In the order of the bottom, the q-axis current command value [A], the d-axis current command value [A], and the f-axis current command value [A] are shown. The solid line in the figure shows the present embodiment, and the dotted line shows a comparative example. In the control in this time chart, the f-axis current norm response time constant τ f is set to a value at which f-axis voltage saturation does not occur.
 図左上部に示されるように、車両が停止した状態から、時刻t1のタイミングでモータトルク指令値をステップ状に変化させて(立ち上げて)加速している。このような場合には、時刻t1において、ロータ磁束を変化させるために、図右下部に示されるようにf電流指令値をステップ状に増加させると、図左下部に示されるようにf軸電圧は立ち上がった後、所定値に収束する。このタイミングにおいて、図右中部に示されているように、磁界成分を制御するd電流指令値は立ち下がる。 As shown in the upper left part of the figure, the motor torque command value is changed (started up) in steps at the timing of time t1 from the state where the vehicle is stopped to accelerate. In such a case, when the f-current command value is increased stepwise as shown in the lower right part of the figure in order to change the rotor magnetic flux at time t1, the f-axis voltage is increased as shown in the lower left part of the figure. After rising, converges to a predetermined value. At this timing, as shown in the middle right of the figure, the d current command value for controlling the magnetic field component falls.
 破線で示される比較例においては、q軸電流指令値を算出する際にf軸電流が考慮されず、さらに、f軸電流によって発生する界磁磁束とd軸電流によって発生するリラクタンストルクの影響が考慮されていない。そのため、図右上部に示されるように、トルク成分を制御するq軸電流指令値は、ステップ状に増加してしまい、図左中部に示されるように、車両前後加速度が振動してしまう。 In the comparative example shown by the broken line, the f-axis current is not taken into consideration when calculating the q-axis current command value, and the influence of the field magnetic flux generated by the f-axis current and the reluctance torque generated by the d-axis current is further affected. Not considered. Therefore, as shown in the upper right part of the figure, the q-axis current command value for controlling the torque component increases in a stepwise manner, and as shown in the middle left part of the figure, the vehicle front-rear acceleration vibrates.
 一方、実線で示される本実施形態においては、図8に示されるようにf軸電流if1 *、及び、d軸電流id1 *が考慮されて、q軸電流iq2 *が算出される。そのため、q軸電流は、時刻t1における立ち上がり後に減少し、その後、所定値に収束するように制御される。その結果、d軸電流idとf軸電流ifを考慮して算出されるq軸電流指令値iq2 *によって駆動軸ねじり振動を抑制するモータトルクが実現されるので、図左中部に示されるとおり車両前後加速度の振動が抑制される。 On the other hand, in the present embodiment shown by the solid line, the q-axis current i q2 * is calculated in consideration of the f-axis current i f1 * and the d-axis current i d1 * as shown in FIG. Therefore, the q-axis current is controlled so as to decrease after the rise at time t1 and then converge to a predetermined value. As a result, the motor torque that suppresses the drive shaft torsional vibration is realized by the q-axis current command value i q2 * calculated in consideration of the d-axis current id and the f-axis current if, which is shown in the middle left of the figure. As shown, the vibration of the vehicle front-rear acceleration is suppressed.
 第1実施形態の電動車両の制御方法によれば、以下の効果を得ることができる。 According to the electric vehicle control method of the first embodiment, the following effects can be obtained.
 第1実施形態の電動車両の制御方法は、回転子巻線を有する回転子と、固定子巻線を有する固定子とを備える巻線界磁型同期モータ4を駆動源とする電動車両において、固定子巻線に流れる固定子電流と回転子巻線に流れる回転子電流とを制御する電動車両の制御方法である。 The method for controlling an electric vehicle according to the first embodiment is in an electric vehicle using a winding field type synchronous motor 4 as a drive source, which includes a rotor having a rotor winding and a stator having a stator winding. This is a control method for an electric vehicle that controls a stator current flowing through a stator winding and a rotor current flowing through a rotor winding.
 当該制御方法は、運転情報に基づいてモータトルク指令値Tm *を設定し、モータトルク指令値Tm *と車両情報であるモータ角速度ωmとに基づいて、固定子電流に対するd軸電流指令値id1 *および第1のq軸電流指令値iq1 *と、回転子電流に対するf軸電流指令値if1 *とを算出し、d軸電流指令値id1 *とf軸電流指令値if1 *とに基づいて回転子に生じる磁束の推定値である磁束推定値φ^を算出し、第1のq軸電流指令値iq1 *と磁束推定値φ^とに基づいて第1トルク指令値Tm1 *を算出し、第1のトルク指令値Tm1 *に対して、車両情報ωmに基づいて、電動車両の駆動軸トルク伝達系の振動を抑制する演算を行うことにより、制振トルク指令値Tmfin *を算出し、磁束推定値φ^と制振トルク指令値Tmfin *とに基づいて第2のq軸電流指令値iq2 *を算出する。そして、第2のq軸電流指令値iq2 *とd軸電流指令値id1 *とf軸電流指令値if1 *とに基づいて、固定子電流と回転子電流とを制御する。 In the control method, the motor torque command value T m * is set based on the operation information, and the d-axis current command for the stator current is based on the motor torque command value T m * and the motor angular speed ω m which is the vehicle information. The values i d1 *, the first q-axis current command value i q1 *, and the f-axis current command value i f1 * for the rotor current are calculated, and the d-axis current command value i d1 * and the f-axis current command value i are calculated. The magnetic flux estimated value φ ^, which is an estimated value of the magnetic flux generated in the rotor, is calculated based on f1 *, and the first torque command is calculated based on the first q-axis current command value i q1 * and the magnetic flux estimated value φ ^. calculates the value T m1 *, with respect to the first torque command value T m1 *, based on the vehicle information omega m, by performing the suppressing operation of the vibration of the drive shaft torque transmitting system of the electric vehicle, damping The torque command value T mfin * is calculated, and the second q-axis current command value i q2 * is calculated based on the magnetic flux estimated value φ ^ and the vibration damping torque command value T mfin * . Then, the stator current and the rotor current are controlled based on the second q-axis current command value i q2 * , the d-axis current command value i d1 *, and the f-axis current command value i f1 * .
 これにより、d軸電流指令値id1 *およびf軸電流指令値if1 *を考慮して第2のq軸電流指令値iq2 *を算出することができるので、d軸電流指令値id1 *によって発生するリラクタンストルクと、f軸電流指令値if1 *によって発生する界磁磁束との影響を考慮して、巻線界磁型同期モータ4を駆動源とする電動車両の駆動軸トルク伝達系のねじり振動を抑制する制振制御を適用することができる。 As a result, the second q-axis current command value i q2 * can be calculated in consideration of the d-axis current command value i d1 * and the f-axis current command value i f1 *. Therefore, the d-axis current command value i d1 and the reluctance torque generated by the *, taking into account the influence of the field magnetic flux generated by the f-axis current command value i f1 *, the electric vehicle as a driving source for winding field synchronous motor 4 driving shaft torque transmission Vibration suppression control that suppresses the torsional vibration of the system can be applied.
 また、第1実施形態の電動車両の制御方法によれば、制振トルク指令値演算器804において行われる駆動軸トルク伝達系の振動を抑制する演算においては、フィードフォワード補償器1201によって、第1のトルク指令値Tm1 *に対してフィードフォワード制御を行うことにより、第2のトルク指令値Tm2 *が算出される。 Further, according to the control method of the electric vehicle of the first embodiment, in the calculation for suppressing the vibration of the drive shaft torque transmission system performed by the vibration damping torque command value calculator 804, the feed forward compensator 1201 is used for the first calculation. The second torque command value T m2 * is calculated by performing feed forward control with respect to the torque command value T m1 * of.
 さらに、フィードバック制御器1207においては、第2のトルク指令値Tm2 *に応じて推定される車両情報であるモータ角速度推定値ωm^に対して、実際の車両情報ωmに基づいたフィードバック制御を行うことで、第3のトルク指令値Tm3 *を算出する。 Further, in the feedback controller 1207, feedback control based on the actual vehicle information ω m is performed with respect to the motor angular velocity estimated value ω m ^ which is the vehicle information estimated according to the second torque command value T m2 *. To calculate the third torque command value T m3 * .
 そして、加算器1204において、第2のトルク指令値Tm2 *と、第3のトルク指令値Tm3 *とを加算することにより、制振トルク指令値Tmfin *を算出する。 Then, in the adder 1204, the vibration damping torque command value T mfin * is calculated by adding the second torque command value T m2 * and the third torque command value T m3 * .
 このように、制振トルク指令値演算器804において行われる駆動軸トルク伝達系の振動を抑制する演算において、フィードフォワード制御により算出される第2のトルク指令値Tm2 *と、フィードバック制御により算出される第3のトルク指令値Tm3 *とが加算されることで、制振トルク指令値Tmfin *が算出されるので、車両において発生しうる振動を精度よく抑制することができる。 In this way, in the calculation for suppressing the vibration of the drive shaft torque transmission system performed in the vibration damping torque command value calculator 804, the second torque command value T m2 * calculated by the feed forward control and the calculation by the feedback control are performed. By adding the third torque command value T m3 * to be performed, the vibration damping torque command value T mfin * is calculated, so that the vibration that may occur in the vehicle can be suppressed accurately.
 また、第1実施形態の電動車両の制御方法によれば、フィードフォワード補償器1201において、第1のトルク指令値Tm1 *に対して、電動車両における線形近似モデルの伝達特性Gp(s)及び規範モデルの伝達特性Gr(s)に基づいた、Gr(s)/Gp(s)のフィルタ処理を行うことにより、第2のトルク指令値Tm2 *を演算する。 Further, according to the electric vehicle control method of the first embodiment, in the feed forward compensator 1201, the transmission characteristic Gp (s) of the linear approximation model in the electric vehicle and the transmission characteristic Gp (s) of the linear approximation model with respect to the first torque command value T m1 * The second torque command value T m2 * is calculated by performing Gr (s) / Gp (s) filtering based on the transmission characteristic Gr (s) of the normative model.
 そして、フィードバック制御器1207においては、制御ブロック1202によって、第2のトルク指令値Tm2 *を含む制振トルク指令値Tmfin *に対して線形近似モデルの伝達特性Gp(s)に基づいたフィルタ処理を行うことにより、規範モータ角速度ωm^を求める。フィードバック補償器1203においては、減算器1205において算出される規範モータ角速度ωm^と測定されるモータ角速度ωmとの差分に対して、線形近似モデルGp(s)、及び、バンドパスフィルタH(s)に基づいた、H(s)/Gp(s)のフィルタ処理を行うことで、第3のトルク指令値Tm3 *を演算する。 Then, in the feedback controller 1207, the control block 1202 filters the vibration damping torque command value T mfin * including the second torque command value T m2 * based on the transmission characteristic Gp (s) of the linear approximation model. By performing the processing, the standard motor angular velocity ω m ^ is obtained. In the feedback compensator 1203, the linear approximation model Gp (s) and the bandpass filter H (for the difference between the reference motor angular velocity ω m ^ calculated by the subtractor 1205 and the measured motor angular velocity ω m By performing the H (s) / Gp (s) filtering process based on s), the third torque command value T m3 * is calculated.
 このように構成されたシステムにおいて、フィードフォワード制御により算出される第2のトルク指令値Tm2 *と、フィードバック制御により算出される第3のトルク指令値Tm3 *とが加算されることで、制振トルク指令値Tmfin *が算出される。そのため、外乱やモデル誤差が生じている場合であっても、複数の伝達関数により構成されるフィードフォワード制御及びフィードバック制御が行なわれるので車両の駆動軸トルク伝達系の振動を抑制することができる。 In the system configured in this way, the second torque command value T m2 * calculated by feedforward control and the third torque command value T m3 * calculated by feedback control are added to each other. The vibration damping torque command value T mfin * is calculated. Therefore, even when a disturbance or a model error occurs, the feedforward control and the feedback control composed of a plurality of transfer functions are performed, so that the vibration of the drive shaft torque transmission system of the vehicle can be suppressed.
 また、第1実施形態の電動車両の制御方法によれば、第2のq軸電流指令値iq2 *は、制振トルク指令値Tmfin *を磁束推定値φ^で除算することにより算出される。これにより、制振制御が施された制振トルク指令値Tmfin *を実現するq軸電流指令値iq2 *を算出することができる。 Further, according to the control method of the electric vehicle of the first embodiment, the second q-axis current command value i q2 * is calculated by dividing the vibration damping torque command value T mfin * by the magnetic flux estimated value φ ^. To. As a result, it is possible to calculate the q-axis current command value i q2 * that realizes the vibration control torque command value T mfin * with vibration control control.
 また、第1実施形態の電動車両の制御方法によれば、f軸電流指令値if1 *に基づいて回転子の界磁磁束の推定値である界磁磁束推定値φf^を算出し、d軸電流指令値id1 *に基づいて、回転子に生じるリラクタンストルクの等価磁束推定値φr^を算出し、磁束推定値φ^は、界磁磁束推定値φf^と等価磁束推定値φr^とを加算することにより算出される。これにより、d軸電流idおよびf軸電流ifの影響を考慮しつつ、制振制御が施された制振トルク指令値Tmfin *を実現するq軸電流指令値iq2 *を算出することができる。 According to the control method of an electric vehicle of the first embodiment, to calculate the estimated value is the field flux estimate of the magnetic field flux of the rotor .phi.f ^ based on the f-axis current command value i f1 *, d based on the axis current value i d1 *, and calculates the equivalent flux estimation value of the reluctance torque generated in the rotor [phi] r ^, the magnetic flux estimation value phi ^ is the field flux estimate .phi.f ^ equivalent flux estimation value [phi] r ^ and Is calculated by adding. Thus, taking into account the influence of the d-axis current i d and f-axis current i f, damping control calculates the q-axis current command value i q2 * for realizing the damping torque command value T MFIN * subjected be able to.
 また、第1実施形態の電動車両の制御方法によれば、界磁磁束推定値φ^は、回転子電流を構成するf軸電流ifのf軸電流指令値if1 *に対する応答遅れを模擬したf軸電流伝達特性に対してq軸電流応答を位相進み補償するように構成された伝達特性(位相進み補償器1101)を用いて算出される。これにより、d軸電流idに対するq軸電流応答遅れが考慮されたq軸電流指令値iq2 *を算出することができる。 Further, according to the control method of the electric vehicle of the first embodiment, the field magnetic flux estimated value φ ^ simulates the response delay of the f-axis current if constituting the rotor current with respect to the f-axis current command value i f1 *. It is calculated using a transmission characteristic (phase advance compensator 1101) configured to compensate the q-axis current response with respect to the f-axis current transfer characteristic. Thus, it is possible to calculate the d-axis current i q-axis current command value q-axis current response delay is considered for d i q2 *.
 また、第1実施形態の電動車両の制御方法によれば、f軸電流伝達特性は、一次遅れの伝達関数である。これにより、f軸電圧飽和が発生しない場合のf軸電流応答を適切に模擬することができる。 Further, according to the control method of the electric vehicle of the first embodiment, the f-axis current transfer characteristic is a transfer function of the first-order lag. Thereby, the f-axis current response when the f-axis voltage saturation does not occur can be appropriately simulated.
 また、第1実施形態の電動車両の制御方法によれば、等価磁束推定値φr^は、固定子電流を構成するd軸電流idのd軸電流指令値id1 *に対する応答遅れを模擬したd軸電流伝達特性に対してq軸電流応答を位相進み補償するように構成された伝達特性(位相進み補償器1001)を用いて算出される。これにより、f軸電流ifに対するq軸電流応答遅れが考慮されたq軸電流指令値iq2 *を算出することができる。 Further, according to the control method of the electric vehicle of the first embodiment, the equivalent magnetic flux estimated value φr ^ simulates the response delay of the d-axis current id constituting the stator current to the d-axis current command value i d1 * . It is calculated using a transmission characteristic (phase advance compensator 1001) configured to compensate the q-axis current response with respect to the shaft current transmission characteristic. As a result, the q-axis current command value i q2 * can be calculated in consideration of the q-axis current response delay with respect to the f-axis current if .
 <第2実施形態>
 以下では、第2実施形態の電動車両の制御方法について説明する。第1実施形態では、非干渉制御部405による非干渉制御が理想的に機能した場合には、d軸、q軸、及びf軸の電圧から電流までの特性がそれぞれ上記式(4)、(5)、及び(6)に示すとおりの一次遅れとなることを説明した。しかしながら、f軸電圧が飽和する場合には、f軸電流応答が一次遅れの規範応答に一致しなくなる。本実施形態の電動車両の制御方法は、f軸電圧飽和を考慮してf軸電流ifを制御することを前提に適用される制御方法であって、特に、制振制御演算部2bが備える磁束推定器802のフィードフォワードに関する構成、及び、フィードバックに関する構成が第1実施形態と相違する。
<Second Embodiment>
Hereinafter, the control method of the electric vehicle of the second embodiment will be described. In the first embodiment, when the non-interference control by the non-interference control unit 405 functions ideally, the characteristics from the voltage to the current of the d-axis, q-axis, and f-axis are described in the above equations (4) and (4), respectively. It was explained that the primary delay is as shown in 5) and (6). However, when the f-axis voltage is saturated, the f-axis current response does not match the normative response of the first-order lag. The control method of the electric vehicle of the present embodiment is a control method applied on the premise that the f-axis current if is controlled in consideration of the f-axis voltage saturation, and is particularly provided by the vibration damping control calculation unit 2b. The configuration related to feedforward and the configuration related to feedback of the magnetic flux estimator 802 are different from those of the first embodiment.
 本実施形態の磁束推定器802の説明に先立って、f軸電圧飽和を考慮してf軸電流ifを制御する方法について説明する。なお、d軸、q軸における制御についてはf軸と同様であるため、説明を割愛し、以下ではf軸に関しての制御のみ説明する。 Prior to the description of the flux estimator 802 of the present embodiment, in consideration of the f-axis voltage saturation describes a method of controlling the f-axis current i f. Since the control on the d-axis and the q-axis is the same as that on the f-axis, the description thereof will be omitted, and only the control on the f-axis will be described below.
 図16は、第2実施形態のモータ制御システム200の構成例を示す図である。本実施形態のモータ制御システム200は、f軸電流制御部408に、バッテリ1の電源電圧Vdcと、非干渉制御部405の出力である非干渉電圧vf_dcplが入力されている点が、第1実施形態と相違する。 FIG. 16 is a diagram showing a configuration example of the motor control system 200 of the second embodiment. In the motor control system 200 of the present embodiment, the power supply voltage V dc of the battery 1 and the non-interference voltage v f_dcpl which is the output of the non-interference control unit 405 are input to the f-axis current control unit 408. 1 Different from the embodiment.
 f軸電流制御部408の詳細について図17を用いて説明する。図17は、f軸電流制御部408の制御ブロック図である。 The details of the f-axis current control unit 408 will be described with reference to FIG. FIG. 17 is a control block diagram of the f-axis current control unit 408.
 f軸電流制御部408においては、A/D変換部411から入力されるf軸電流ifがf軸電流指令値if1 *に定常偏差なく所望の応答性で追従するように第1のf軸電圧指令値vf_dshを算出する。さらに、f軸電流制御部408は、後の処理にて用いられる、f軸電流規範応答if_ref、及び、f軸電流規範応答の微分値s・if_refを算出する。f軸電流制御部408は、f軸F/F(フィードフォワード)補償器1701、f軸F/B補償器1702、f軸ロバスト補償器1703、及び、f軸リミット処理部1704により構成されており、以下ではそれぞれの詳細について説明する。 In the f-axis current control unit 408, the first f is such that the f-axis current if input from the A / D conversion unit 411 follows the f-axis current command value if f1 * with a desired response without steady deviation. Calculate the shaft voltage command value v f_dsh . Further, the f-axis current control unit 408 calculates the f-axis current normative response if_ref and the differential values s · if_ref of the f-axis current normative response to be used in the subsequent processing. The f-axis current control unit 408 is composed of an f-axis F / F (feed forward) compensator 1701, an f-axis F / B compensator 1702, an f-axis robust compensator 1703, and an f-axis limit processing unit 1704. , The details of each will be described below.
 f軸F/F補償器1701は、f軸電流指令値if1 *を入力として、f軸F/F補償電圧vf_ffに加えて、f軸電流規範応答if_ref、及び、その微分値であるf軸電流規範応答の微分値s・if_refを算出する。f軸F/F補償器1701は、f軸電流規範応答if_ref、及び、その微分値であるf軸電流規範応答の微分値s・if_refを非干渉制御部405へと出力するとともに、f軸電流規範応答if_refをf軸F/B補償器1702へと出力する。f軸F/F補償器1701の詳細については、図18を用いて後述する。なお、図示されていないが、f軸F/F補償器1701には、バッテリ1から出力される電源電圧Vdc、及び、非干渉制御部405から出力される非干渉電圧vf_dcplが入力される。 The f-axis F / F compensator 1701 takes the f-axis current command value i f1 * as an input, and in addition to the f-axis F / F compensation voltage v f_ff , the f-axis current normative response if_ref and its differential value. Calculate the differential value s · if_ref of the f-axis current normative response. The f-axis F / F compensator 1701 outputs the f-axis current normative response if_ref and the differential value s · if_ref of the f-axis current normative response, which is the differential value thereof, to the non-interference control unit 405, and f. The shaft current norm response if_ref is output to the f-axis F / B compensator 1702. Details of the f-axis F / F compensator 1701 will be described later with reference to FIG. Although not shown, the power supply voltage V dc output from the battery 1 and the non-interference voltage v f_dcpl output from the non-interference control unit 405 are input to the f-axis F / F compensator 1701. ..
 f軸F/B補償器1702は、一般的なフィードバック補償を行う補償器である。f軸F/B補償器1702は、f軸F/F補償器1701において算出されるf軸電流規範応答if_refに対して、電流センサ7によって測定されたf軸電流ifを負帰還させるF/B処理を行うことで、f軸電流ifがf軸電流規範応答if_refに追従するように、f軸F/B補償電圧vf_fbを算出する。f軸F/B補償器1702は、f軸F/B補償電圧vf_fbを加算器1705へと出力する。f軸F/B補償器1702の詳細については、図23を用いて後述する。なお、f軸F/B補償器1702は、F/B補償ステップを実行するブロックの一例である。 The f-axis F / B compensator 1702 is a compensator that performs general feedback compensation. f-axis F / B compensator 1702, with respect to the f-axis current nominal response i F_REF calculated in the f-axis F / F compensator 1701, is negatively fed back to the f-axis current i f that is measured by the current sensor 7 F By performing the / B processing, the f-axis F / B compensation voltage v f_fb is calculated so that the f-axis current if follows the f-axis current normative response if_ref . The f-axis F / B compensator 1702 outputs the f-axis F / B compensation voltage v f_fb to the adder 1705. Details of the f-axis F / B compensator 1702 will be described later with reference to FIG. The f-axis F / B compensator 1702 is an example of a block that executes the F / B compensation step.
 f軸ロバスト補償器1703は、後述のf軸リミット処理部1704において算出され最終的にf軸電流制御部408から出力される第1のf軸電圧指令値vf_dshと、f軸電流ifとに基づいて、システムの堅牢性を確保するためのf軸ロバスト補償電圧vf_rbstを算出する。f軸ロバスト補償器1703は、f軸ロバスト補償電圧vf_rbstを加算器1706へと出力する。f軸ロバスト補償器1703の詳細については、図24を用いて後述する。 The f-axis robust compensator 1703 includes a first f-axis voltage command value v f_dsh calculated by the f-axis limit processing unit 1704 described later and finally output from the f-axis current control unit 408, and an f-axis current if . Based on, the f-axis robust compensation voltage v f_rbst for ensuring the robustness of the system is calculated. The f-axis robust compensator 1703 outputs the f-axis robust compensation voltage v f_rbst to the adder 1706. Details of the f-axis robust compensator 1703 will be described later with reference to FIG. 24.
 f軸リミット処理部1704の前段には2つの加算器1705、1706が設けられている。f軸F/F補償器1701において算出されたf軸F/F補償電圧vf_ffに対して、加算器1705によりf軸F/B補償電圧vf_fbが加算され、さらに、加算器1706によりf軸ロバスト補償電圧vf_rbstが加算される。そして、最終的な加算値が、f軸リミット処理部1704へと入力される。従って、f軸リミット処理部1704には、F/F指令値であるf軸F/F補償電圧vf_ffに対して、F/B補償値であるf軸F/B補償電圧vf_fb、及び、f軸ロバスト補償値であるf軸ロバスト補償電圧vf_rbstが加算されたものが入力される。 Two adders 1705 and 1706 are provided in front of the f-axis limit processing unit 1704. The f-axis F / B compensation voltage v f_fb is added by the adder 1705 to the f-axis F / F compensation voltage v f_ff calculated by the f-axis F / F compensator 1701, and further, the f-axis by the adder 1706. The robust compensation voltage v f_rbst is added. Then, the final addition value is input to the f-axis limit processing unit 1704. Therefore, the f-axis limiting processor 1704, with respect to the f-axis F / F compensation voltage v F_ff a F / F command value, F / B is a compensation value f-axis F / B compensation voltage v F_fb and, The sum of the f-axis robust compensation voltage v f_rbst, which is the f-axis robust compensation value, is input.
 そして、f軸リミット処理部1704は、入力される電圧指令値を制限して第1のf軸電圧指令値vf_dshを算出する。f軸リミット処理部1704は、f軸電圧指令値vf_dshを電圧指令値演算部409、及び、f軸ロバスト補償器1703へと出力する。なお、f軸リミット処理部1704においては、図22及び23を用いて説明される後述のf軸リミット処理部303と同じ処理が行われる。 Then, the f-axis limit processing unit 1704 limits the input voltage command value and calculates the first f-axis voltage command value v f_dsh . The f-axis limit processing unit 1704 outputs the f-axis voltage command value v f_dsh to the voltage command value calculation unit 409 and the f-axis robust compensator 1703. The f-axis limit processing unit 1704 performs the same processing as the f-axis limit processing unit 303 described later with reference to FIGS. 22 and 23.
 次に、f軸F/F補償器1701の詳細な構成について図18を用いて説明する。図18は、f軸F/F補償器1701の詳細なブロック図である。f軸F/F補償器1701は、f軸電流モデル1801と、f軸電流擬似F/Bモデル1802と、f軸リミット処理部1803とを有する。 Next, the detailed configuration of the f-axis F / F compensator 1701 will be described with reference to FIG. FIG. 18 is a detailed block diagram of the f-axis F / F compensator 1701. The f-axis F / F compensator 1701 has an f-axis current model 1801, an f-axis current pseudo F / B model 1802, and an f-axis limit processing unit 1803.
 f軸電流モデル1801は、f軸電圧からf軸電流までの規範応答特性をモデル化したフィルタである。f軸電流モデル1801は、後述のf軸リミット処理部1803から出力されるf軸F/F補償電圧vf_ffに対して、f軸における電圧から電流までの規範応答モデルを用いたフィルタリング処理することで、規範応答であるf軸電流規範応答if_refを算出し、非干渉制御部405、及び、f軸F/B補償器202へと出力する。また、f軸電流モデル1801は、後の処理で用いるために、f軸電流規範応答if_refの微分値であるf軸電流規範応答の微分値s・if_refを非干渉制御部405へと出力する。f軸電流モデル1801の詳細については、図19を用いて後述する。 The f-axis current model 1801 is a filter that models the normative response characteristics from the f-axis voltage to the f-axis current. The f-axis current model 1801 performs filtering processing on the f-axis F / F compensation voltage v f_ff output from the f-axis limit processing unit 1803 described later using a normative response model from voltage to current on the f-axis. The f-axis current normative response if_ref , which is the normative response, is calculated and output to the non-interference control unit 405 and the f-axis F / B compensator 202. Further, the f-axis current model 1801 outputs the differential value s · if_ref of the f-axis current normative response, which is the differential value of the f-axis current normative response if_ref, to the non-interference control unit 405 for use in the subsequent processing. To do. Details of the f-axis current model 1801 will be described later with reference to FIG.
 f軸電流擬似F/Bモデル1802においては、制振制御演算部2bにて算出されるf軸電流指令値if1 *に対して、f軸電流モデル1801から出力されるf軸電流規範応答if_refが負帰還される。f軸電流擬似F/Bモデル1802は、f軸電流指令値if1 *に対してf軸電流規範応答if_refを定常偏差なく所望の応答性で追従させるために、疑似FB電圧指令値vf_pse_fbを算出し、f軸リミット処理部1803へと出力する。f軸電流擬似F/Bモデル1802の詳細については、図20を用いて後述する。 In the f-axis current pseudo F / B model 1802, the f-axis current normative response i output from the f-axis current model 1801 to the f-axis current command value i f1 * calculated by the vibration damping control calculation unit 2b. f_ref is negatively fed back. The f-axis current pseudo F / B model 1802 has a pseudo FB voltage command value v f_pse_fb in order to make the f-axis current normative response if_ref follow the f-axis current command value if f1 * with a desired response without steady deviation. Is calculated and output to the f-axis limit processing unit 1803. Details of the f-axis current pseudo F / B model 1802 will be described later with reference to FIG.
 f軸リミット処理部1803は、f軸電流疑似F/Bモデル1802から出力される疑似FB電圧指令値vf_fb_psuに対して制限を行い、f軸F/F補償電圧vf_ffを算出し、加算器205、及び、f軸電流モデル1801へと出力する。f軸リミット処理部1803の詳細については、図21及び22を用いて後述する。 The f-axis limit processing unit 1803 limits the pseudo FB voltage command value v f_fb_psu output from the f-axis current pseudo F / B model 1802, calculates the f-axis F / F compensation voltage v f_ff, and addser . Output to 205 and f-axis current model 1801. Details of the f-axis limit processing unit 1803 will be described later with reference to FIGS. 21 and 22.
 なお、図示されていないが、f軸リミット処理部1803には、バッテリ1から出力される電源電圧Vdc、及び、非干渉制御部405から出力される非干渉電圧vf_dcplが入力される。図17に示されるように、f軸F/F補償器1701から出力されるf軸F/F補償電圧vf_ffは、加算器1705、加算器1706、及び、f軸リミット処理部1704を経て、第1のf軸電圧指令値vf_dshが算出される。 Although not shown, the power supply voltage V dc output from the battery 1 and the non-interference voltage v f_dcpl output from the non-interference control unit 405 are input to the f-axis limit processing unit 1803. As shown in FIG. 17, the f-axis F / F compensation voltage v f_ff output from the f-axis F / F compensator 1701 passes through the adder 1705, the adder 1706, and the f-axis limit processing unit 1704. The first f-axis voltage command value v f_dsh is calculated.
 このようにf軸F/F補償器1701において、f軸電流擬似F/Bモデル1802に対して、測定されたf軸電流ifが負帰還されるF/B系ではなく、f軸電流モデル1801にて算出されるf軸電流規範応答if_refが負帰還される疑似的なF/B系が構成される。このように擬似的なF/B系を実現することにより、応答性が悪いF/B制御を回避できるため、応答性の向上を図ることができる。 In this way, in the f-axis F / F compensator 1701, the f-axis current model is not the F / B system in which the measured f-axis current if is negatively fed back to the f-axis current pseudo F / B model 1802. A pseudo F / B system is constructed in which the f-axis current normative response if_ref calculated in 1801 is negatively fed back. By realizing a pseudo F / B system in this way, it is possible to avoid F / B control having poor responsiveness, so that responsiveness can be improved.
 さらに、図16に示されるように、f軸電圧vfはバッテリ1により生成されるので、そのf軸電圧vfの上限はバッテリ1の電源電圧Vdcにより制限されて飽和する。そこで、図18に示されるf軸F/F補償器1701において、電源電圧Vdcでの飽和をモデル化したf軸リミット処理部1803を設けて、第1のf軸電圧指令値vf_dshを制限してf軸F/F補償電圧vf_ffを算出する。電圧飽和が考慮されたf軸F/F補償電圧vf_ffがf軸電流疑似F/Bモデル1802に帰還されることにより、回転制御の精度の向上を図ることができる。 Further, as shown in FIG. 16, since the f-axis voltage v f is generated by the battery 1, the upper limit of the f-axis voltage v f is limited by the power supply voltage V dc of the battery 1 and saturated. Therefore, in the f-axis F / F compensator 1701 shown in FIG. 18, an f-axis limit processing unit 1803 that models saturation at the power supply voltage V dc is provided to limit the first f-axis voltage command value v f_dsh . Then, the f-axis F / F compensation voltage v f_ff is calculated. By feeding back the f-axis F / F compensation voltage v f_ff in consideration of voltage saturation to the f-axis current pseudo F / B model 1802, the accuracy of rotation control can be improved.
 次に、f軸電流モデル1801の詳細な構成について図19を用いて説明する。図197は、f軸電流モデル1801の詳細なブロック図である。f軸電流モデル1801は、乗算器1901、減算器1902、除算器1903、及び、積分器1904を有する。 Next, the detailed configuration of the f-axis current model 1801 will be described with reference to FIG. FIG. 197 is a detailed block diagram of the f-axis current model 1801. The f-axis current model 1801 has a multiplier 1901, a subtractor 1902, a divider 1903, and an integrator 1904.
 乗算器1901は、f軸電流モデル1801の最終的な出力の1つであり後述の積分器1904から出力されるf軸電流規範応答if_refに対して、回転子巻線抵抗Rfを乗算し、乗算結果を減算器1902へと出力する。この乗算結果は、規範応答の電圧値に相当する。 The multiplier 1901 is one of the final outputs of the f-axis current model 1801, and the rotor winding resistance R f is multiplied by the f-axis current normative response if_ref output from the integrator 1904 described later. , The multiplication result is output to the subtractor 1902. The result of this multiplication corresponds to the voltage value of the normative response.
 減算器1902は、f軸リミット処理部1803から出力されるf軸F/F補償電圧vf_ffから、乗算器1901から出力される規範応答の電圧値を差し引き、その減算値を除算器1903に出力する。 The subtractor 1902 subtracts the voltage value of the normative response output from the multiplier 1901 from the f-axis F / F compensation voltage v f_ff output from the f-axis limit processing unit 1803, and outputs the subtracted value to the divider 1903. To do.
 除算器1903は、減算器1902にて算出される差分に対してf軸動的インダクタンスLf 'で除算し、除算結果を非干渉制御部405、及び、積分器1904へと出力する。このようにして、f軸電流規範応答の微分値s・if_refが算出される。 The divider 1903 divides the difference calculated by the subtractor 1902 with the f-axis dynamic inductance L f ' , and outputs the division result to the non-interference control unit 405 and the integrator 1904. In this way, the differential value s · if_ref of the f-axis current normative response is calculated.
 積分器1904は、除算器1903から出力されるf軸電流規範応答の微分値s・if_refを積分処理してf軸電流規範応答if_refを算出し、f軸電流規範応答if_refを非干渉制御部405、f軸F/B補償器1702、及び、乗算器1901へと出力する。 Integrator 1904, the differential value s · i F_REF of f-axis current norms response outputted from the divider 1903 integration processing to calculate the f-axis current nominal response i F_REF, non-interference of the f-axis current nominal response i F_REF It outputs to the control unit 405, the f-axis F / B compensator 1702, and the multiplier 1901.
 このように、f軸電流モデル301においては、最終的な出力の1つであるf軸電流規範応答if_refが乗算器1901により回転子巻線抵抗Rfが乗算されて、入力であるf軸F/F補償電圧vf_ffに対して負帰還させる。この負帰還の結果値を除算器1903によりf軸動的インダクタンスLf 'で除算することで、f軸F/F補償電圧vf_ffに基づくf軸電流規範応答if_ref、及び、その微分値s・if_refを求めることができる。 Thus, in the f-axis current model 301, the f-axis current normative response if_ref, which is one of the final outputs, is multiplied by the rotor winding resistance R f by the multiplier 1901, and the f-axis is the input. Negative feedback is given to the F / F compensation voltage v f_ff . By this negative feedback divider 1903 the result value of is divided by the f-axis dynamic inductance L f ', f axis current nominal response i F_REF based on the f-axis F / F compensation voltage v F_ff, and its differential value s・If_ref can be obtained.
 次に、f軸電流疑似F/Bモデル1802の詳細な構成について図20を用いて説明する。図20は、f軸電流疑似F/Bモデル1802の詳細なブロック図である。f軸電流疑似F/Bモデル1802は、フィルタ2001、フィルタ2002、及び、減算器2003を有する。 Next, the detailed configuration of the f-axis current pseudo F / B model 1802 will be described with reference to FIG. FIG. 20 is a detailed block diagram of the f-axis current pseudo F / B model 1802. The f-axis current pseudo-F / B model 1802 has a filter 2001, a filter 2002, and a subtractor 2003.
 フィルタ2001は、制振制御演算部2bから出力されるf軸電流指令値if1 *にゲインGafを乗算し、そのフィルタ処理後の値を減算器2003へと出力する。 Filter 2001, the gain G af multiplied to the vibration control operation f-axis current command value output from unit 2b i f1 *, and outputs a value after the filtering process to the subtractor 2003.
 フィルタ2002は、f軸電流モデル301から出力されるf軸電流規範応答if_refにゲインGbfを乗算し、そのフィルタ処理後の値を減算器2003へと出力する。 The filter 2002 multiplies the f-axis current norm response if_ref output from the f-axis current model 301 by the gain G bf , and outputs the filtered value to the subtractor 2003.
 そして、減算器2003は、フィルタ2001の出力値からフィルタ2002の出力値を差し引くことで疑似F/B電圧指令値vf_fb_psuを算出し、疑似FB電圧指令値vf_fb_psuをf軸リミット処理部1803へと出力する。すなわち、測定値ではないf軸電流規範応答if_refが負帰還されることにより、擬似的なF/B制御が構成されることになる。 Then, the subtractor 2003 calculates the pseudo F / B voltage command value v f_fb_psu by subtracting the output value of the filter 2002 from the output value of the filter 2001, and sends the pseudo FB voltage command value v f_fb_psu to the f-axis limit processing unit 1803. Is output. That is, a pseudo F / B control is configured by negatively feeding back the f-axis current norm response if_ref, which is not a measured value.
 ただし、ゲインGaf及びゲインGbfは、次式(32)のように示すことができる。ただし、τfは、f軸の電流制御規範応答時定数(f軸電流規範応答時定数)である。 However, the gain G af and the gain G bf can be expressed by the following equation (32). However, τ f is an f-axis current control norm response time constant (f-axis current norm response time constant).
Figure JPOXMLDOC01-appb-M000032
Figure JPOXMLDOC01-appb-M000032
 このように構成されることで、f軸電流疑似F/Bモデル1802においては、f軸電流指令値if1 *に対して、実際に測定されるf軸電流ifでなくf軸電流規範応答if_refをF/B成分として用いて疑似的なF/B制御を実現することができる。 By such a configuration, in the f-axis current pseudo F / B model 1802, with respect to the f-axis current command value i f1 *, rather than the actual measured f-axis current i f f axis current nominal response Pseudo-F / B control can be realized by using if_ref as an F / B component.
 次に、f軸リミット処理部1803の詳細な構成について図21を用いて説明する。図21は、f軸リミット処理部1803の詳細なブロック図である。f軸リミット処理部1803は、比較器2101、反転器2102、比較器2103、及び、減算器2104、2105を有する。 Next, the detailed configuration of the f-axis limit processing unit 1803 will be described with reference to FIG. FIG. 21 is a detailed block diagram of the f-axis limit processing unit 1803. The f-axis limit processing unit 1803 includes a comparator 2101, a reversing device 2102, a comparator 2103, and a subtractor 2104, 2105.
 比較器2101の前段に設けられる減算器2104においては、バッテリ1の電源電圧Vdcから非干渉制御部405から出力されるf軸非干渉電圧vf_dcplを差し引いた減算値が求められる。そして、比較器2101は、f軸電流疑似F/Bモデル1802からの出力値である疑似FB電圧指令値vf_pse_fbと、減算器2104における減算値とを比較し、より小さな値を比較器2103へと出力する。 In the subtractor 2104 provided in front of the comparator 2101, a subtraction value obtained by subtracting the f-axis non-interference voltage v f_dcpl output from the non-interference control unit 405 from the power supply voltage V dc of the battery 1 is obtained. Then, the comparator 2101 compares the pseudo FB voltage command value v f_pse_fb , which is the output value from the f-axis current pseudo F / B model 1802, with the subtracted value in the subtractor 2104, and transfers a smaller value to the comparator 2103. Is output.
 反転器2102は、電源電圧Vdcの符号を反転させる。 The inverting device 2102 inverts the sign of the power supply voltage V dc .
 比較器2103の前段には減算器2105が設けられており、減算器2105においては、反転器2102の出力から、非干渉制御部405から出力されるf軸非干渉電圧vf_dcplを差し引いた減算値が求められる。そして、比較器2103は、比較器2101の出力値と、減算器2105における減算値とを比較し、より大きな値をf軸電流モデル1801、及び、加算器1705へと出力する。 A subtractor 2105 is provided in front of the comparator 2103. In the subtractor 2105 , a subtraction value obtained by subtracting the f-axis non-interference voltage v f_dcpl output from the non-interference control unit 405 from the output of the reversing device 2102. Is required. Then, the comparator 2103 compares the output value of the comparator 2101 with the subtracted value of the subtractor 2105, and outputs a larger value to the f-axis current model 1801 and the adder 1705.
 このような構成により、f軸リミット処理部1803においては、f軸電流疑似F/Bモデル1802の出力値である疑似FB電圧指令値vf_pse_fbに対して、f軸非干渉電圧vf_dcplを加算するだけの余裕を得るために、f軸非干渉電圧vf_dcplだけマイナスにオフセットされた電源電圧Vdcに基づく制限処理、具体的には、上限値が「Vdc-vf_dcpl」、下限値が「-Vdc-vf_dcpl」となる制限処理が行われる。 With such a configuration, the f-axis limit processing unit 1803 adds the f-axis non-interference voltage v f_dcpl to the pseudo FB voltage command value v f_pse_fb , which is the output value of the f-axis current pseudo F / B model 1802. Limit processing based on the power supply voltage V dc offset to the minus by the f-axis non-interference voltage v f_dcpl , specifically, the upper limit is "V dc -v f_dcpl " and the lower limit is " -V dc -v f_dcpl "is performed.
 また、f軸リミット処理部1803を図22に示されるように構成してもよい。図22は、f軸リミット処理部1803の詳細なブロック図の他の一例である。この一例においては、f軸リミット処理部1803は、比較器2201、反転器2202、比較器2203、減算器2204、及び、加算器2205を有する。 Further, the f-axis limit processing unit 1803 may be configured as shown in FIG. FIG. 22 is another example of a detailed block diagram of the f-axis limit processing unit 1803. In this example, the f-axis limit processing unit 1803 has a comparator 2201, a reversing device 2202, a comparator 2203, a subtractor 2204, and an adder 2205.
 比較器2201の前段には加算器2205が設けられており、加算器2205において、非干渉制御部405から出力されるf軸非干渉電圧vf_dcplと、f軸電流疑似F/Bモデル1802から出力される疑似FB電圧指令値vf_pse_fbとが加算される。そして、比較器2201は、バッテリ1の電源電圧Vdcと、加算器2205における加算結果とを比較し、より小さな値を比較器2203へと出力する。 An adder 2205 is provided in front of the comparer 2201. In the adder 2205, the f-axis non-interference voltage v f_dcpl output from the non-interference control unit 405 and the f-axis current pseudo F / B model 1802 output. The pseudo FB voltage command value vf_pse_fb to be added is added. Then, the comparator 2201 compares the power supply voltage V dc of the battery 1 with the addition result in the adder 2205, and outputs a smaller value to the comparator 2203.
 反転器2202は、電源電圧Vdcの符号を反転させる。 The inverting device 2202 inverts the sign of the power supply voltage V dc .
 比較器2203は、比較器2201からの出力と、反転器2202からの出力とを比較して、大きな値を減算器2204へと出力する。 The comparator 2203 compares the output from the comparator 2201 with the output from the inverting device 2202 and outputs a large value to the subtractor 2204.
 減算器2204は、比較器2203の出力値から非干渉制御部405から出力されるf軸非干渉電圧vf_dcplを差し引くことによりf軸F/F補償電圧vf_ffを算出する。減算器2204は、f軸F/F補償電圧vf_ffを、f軸電流モデル1801、及び、f軸電流制御部408を構成する加算器1706へ出力する。 The subtractor 2204 calculates the f-axis F / F compensation voltage v f_ff by subtracting the f-axis non-interference voltage v f_dcpl output from the non-interference control unit 405 from the output value of the comparator 2203. The subtractor 2204 outputs the f-axis F / F compensation voltage v f_ff to the f-axis current model 1801 and the adder 1706 constituting the f-axis current control unit 408.
 このような構成としても、f軸リミット処理部1803においては、f軸電流疑似F/Bモデル1802の出力値である疑似FB電圧指令値vf_pse_fbに対して、f軸非干渉電圧vf_dcplを加算する余裕を得るために、f軸非干渉電圧vf_dcplだけマイナスにオフセットされた電源電圧Vdcに基づく制限処理、具体的には、上限値が「Vdc-vf_dcpl」、下限値が「-Vdc-vf_dcpl」となる制限処理が行われる。 Even with such a configuration, in the f-axis limit processing unit 1803, the f-axis non-interference voltage v f_dcpl is added to the pseudo FB voltage command value v f_pse_fb which is the output value of the f-axis current pseudo F / B model 1802. Limit processing based on the power supply voltage V dc offset negatively by the f-axis non-interference voltage v f_dcpl in order to obtain a margin, specifically, the upper limit is "V dc -v f_dcpl " and the lower limit is "-". Restriction processing such as "V dc -v f_dcpl " is performed.
 次に、f軸F/B補償器1702の詳細について説明する。図23は、f軸F/B補償器1702の詳細なブロック図である。f軸F/B補償器1702は、ブロック2301、乗算器2302、及び、減算器2303を有する。 Next, the details of the f-axis F / B compensator 1702 will be described. FIG. 23 is a detailed block diagram of the f-axis F / B compensator 1702. The f-axis F / B compensator 1702 has a block 2301, a multiplier 2302, and a subtractor 2303.
 ブロック2301は、遅延フィルタであって、制御系が持つむだ時間Lだけの遅延処理を行う。ブロック2301は、f軸F/F補償器1701から出力されるf軸電流規範応答if_refの入力に対してf軸電流規範応答if_refを遅延させ、f軸電流規範応答if_refとf軸電流ifの位相を合わせるためにむだ時間処理後f軸電流規範応答if_ref 'を算出し、乗算器2302の前段に設けられる減算器2303へ出力する。ここで、制御系が持つむだ時間Lとは制御演算遅れに相当するものとする。ブロック2301は、遅延ステップを実行するブロックの一例である。 The block 2301 is a delay filter, and performs delay processing for the dead time L of the control system. The block 2301 delays the f-axis current normative response if_ref with respect to the input of the f-axis current normative response if_ref output from the f-axis F / F compensator 1701, and the f-axis current normative response if_ref and the f-axis current. calculating a dead time after treatment f axis current nominal response i F_REF 'in order to match the phase of the i f, and outputs to the subtractor 2303 provided upstream of the multiplier 2302. Here, it is assumed that the waste time L of the control system corresponds to the control calculation delay. Block 2301 is an example of a block that executes a delay step.
 減算器2303は、ブロック2301から出力されるむだ時間処理後f軸電流規範応答if_ref 'から、A/D変換部411から出力されるf軸電流ifを差し引いて減算結果を算出する。 Subtractor 2303, a dead time after treatment f axis current nominal response i F_REF 'output from block 2301 subtracts the f axis current i f which is output from the A / D conversion unit 411 calculates the subtraction result.
 乗算器2302は、減算器2303における減算結果を入力として、f軸F/BゲインKfを乗算することによりf軸F/B補償電圧vf_fbを算出し、f軸F/B補償電圧vf_fbを加算器1705へ出力する。なお、f軸F/BゲインKfは、ゲイン余裕や位相余裕などの安定性が所定の基準を満足するように実験にて調整して値を決定する。 The multiplier 2302 is input with the subtraction result in the subtracter 2303 calculates the f-axis F / B compensation voltage v F_fb by multiplying the f-axis F / B gain K f, the f-axis F / B compensation voltage v F_fb Is output to the adder 1705. The value of the f-axis F / B gain K f is determined by adjusting it experimentally so that the stability such as the gain margin and the phase margin satisfies a predetermined standard.
 このように構成されることで、f軸F/B補償器1702において、f軸電流ifに基づくf軸F/B補償電圧vf_fbが算出される。 With this configuration, the f-axis F / B compensator 1702 calculates the f-axis F / B compensation voltage v f_fb based on the f-axis current if .
 図24は、f軸ロバスト補償器1703の詳細なブロック図である。f軸ロバスト補償器1703は、ブロック2401、ブロック2402、ブロック2403、及び、減算器2404により構成される。 FIG. 24 is a detailed block diagram of the f-axis robust compensator 1703. The f-axis robust compensator 1703 is composed of a block 2401, a block 2402, a block 2403, and a subtractor 2404.
 ブロック2401は、A/D変換部411から出力されるf軸電流ifを入力に対してフィルタリング処理して第1のf軸電圧推定値vf_est1を算出し、f軸電圧推定値vf_est1を減算器2404へ出力する。ブロック2401は、後述のブロック2403のローパスフィルタ1/(τh_f・s+1)を含む、(Lf '・s+Rf)/(τh_f・s+1)の特性を有する遅延フィルタである。 Block 2401 calculates the first f-axis voltage estimated value v F_est1 filtering process on the input of the f-axis current i f which is output from the A / D conversion unit 411, the f-axis voltage estimated value v F_est1 Output to the subtractor 2404. The block 2401 is a delay filter having the characteristics of (L f '・ s + R f ) / (τ h_f・ s + 1) including the low-pass filter 1 / (τ h_f・ s + 1) of the block 2403 described later.
 ブロック2402は、ブロック1801と同じ遅延フィルタである。ブロック2402は、f軸リミット処理部204から出力される第1のf軸電圧指令値vf_dshに対して、制御系が持つむだ時間Lだけ遅延させて、第2のf軸電圧推定値vf_est2を算出する。そして、ブロック2402は、第2のf軸電圧推定値vf_est2をブロック2403へと出力する。 Block 2402 is the same delay filter as block 1801. The block 2402 delays the first f-axis voltage command value v f_dsh output from the f-axis limit processing unit 204 by the dead time L of the control system, and delays the second f-axis voltage estimated value v f_est2. Is calculated. Then, the block 2402 outputs the second f-axis voltage estimated value v f_est2 to the block 2403.
 ブロック2403は、1/(τh_f・s+1)の特性を有するローパスフィルタである。ブロック2403は、ブロック2402から出力される第2のf軸電圧推定値vf_est2に対して、ローパスフィルタ処理を行い、第3のf軸電圧推定値vf_est3を算出する。そして、ブロック2403は、第3のf軸電圧推定値vf_est3を減算器2404へと出力する。 Block 2403 is a low-pass filter having a characteristic of 1 / (τ h_f · s + 1). The block 2403 performs a low-pass filter process on the second f-axis voltage estimated value v f_est2 output from the block 2402, and calculates the third f-axis voltage estimated value v f_est3 . Then, the block 2403 outputs the third f-axis voltage estimated value v f_est3 to the subtractor 2404.
 減算器2404は、第3のf軸電圧推定値vf_est3から第1のf軸電圧推定値vf_est1を差し引くことにより、f軸ロバスト補償電圧vf_rbstを加算器1706へと算出する。 The subtractor 2404 calculates the f-axis robust compensation voltage v f_rbst into the adder 1706 by subtracting the first f-axis voltage estimate v f_est1 from the third f-axis voltage estimate v f_est3 .
 このように、第1のf軸電圧指令値vf_dshに対して、遅延フィルタであるブロック2401、及び、ローパスフィルタであるブロック2403の処理を行う処理を行い、測定値に基づく第1のf軸電圧推定値vf_est1を減じることで、安定性をさらに向上させるためのf軸ロバスト補償電圧vf_rbstが算出される。 In this way, the first f-axis voltage command value v f_dsh is processed to process the delay filter block 2401 and the low-pass filter block 2403, and the first f-axis based on the measured value is processed. By subtracting the voltage estimate v f_est1 , the f-axis low- pass compensation voltage v f_rbst for further improving stability is calculated.
 図25は、上述の図16乃至24を用いて説明したモータ4の制御処理を示すフローチャートである。これらの制御は、コントローラ2が予め定められたプログラムを実行することにより、行われる。 FIG. 25 is a flowchart showing the control process of the motor 4 described with reference to FIGS. 16 to 24 described above. These controls are performed by the controller 2 executing a predetermined program.
 ステップS1において、A/D変換部411によって電流値(u相電流ius、v相電流ivs、及び、f軸電流if)、及びモータ4の電気角θreが取得される。 In step S1, the A / D conversion unit 411 acquires the current values (u-phase current i us , v-phase current i vs , and f-axis current if ) and the electric angle θ re of the motor 4.
 ステップS2において、ステップS1で取得された電気角θreに基づいて、機械角速度であるモータ回転数ωrm、及び、電気角速度ωreを算出する。 In step S2, the motor rotation speed ω rm , which is the mechanical angular velocity, and the electric angular velocity ω re are calculated based on the electric angle θ re acquired in step S1.
 ステップS3において、先読み補償部403は、ステップS2にて算出される電気角度θreに基づいて、先読み補償後電気角θre 'を算出する。 In step S3, the prefetch compensator 403 based on the electric angle theta re calculated at step S2, and calculates the post-prefetch compensation electrical angle theta re '.
 ステップS4において、座標変換部404は、ステップS1において算出されるu相電流iu、v相電流ivに基づいてd軸電流id、及び、q軸電流iqを算出する。 In step S4, the coordinate conversion unit 404 calculates the d-axis current i d and the q-axis current i q based on the u-phase current i u and v-phase current i v calculated in step S1.
 ステップS5において、モータ回転数ωrm、トルク指令値T*、及び、電源電圧Vdcに基づいて、d軸電流指令値id *、q軸電流指令値iq *、及び、f軸電流指令値if *が算出される。 In step S5, the d-axis current command value id * , the q-axis current command value i q * , and the f-axis current command are based on the motor rotation speed ω rm , the torque command value T * , and the power supply voltage V dc. The value if * is calculated.
 ステップS6において、q軸電流制御部406、d軸電流制御部407、及び、f軸電流制御部408によって、第1のd軸電圧指令値vd_dsh、d軸電流規範応答id_ref、d軸電流規範応答の微分値s・id_ref、第1のq軸電圧指令値vq_dsh、q軸電流規範応答iq_ref、第1のf軸電圧指令値vf_dsh、f軸電流規範応答if_ref、及び、f軸電流規範応答の微分値s・if_refが算出される。 In step S6, the q-axis current control unit 406, the d-axis current control unit 407, and the f-axis current control unit 408 perform the first d-axis voltage command value v d_dsh , the d-axis current normative response id_ref , and the d-axis current. Differential value of normative response s · i d_ref , first q-axis voltage command value v q_dsh , q-axis current normative response i q_ref , first f-axis voltage command value v f_dsh , f-axis current normative response i f_ref , and The differential value s · if_ref of the f-axis current normative response is calculated.
 ステップS7において、非干渉制御部405は、ステップS2で算出される電気角速度ωreと、ステップS6で算出されるd軸電流規範応答id_ref、d軸電流規範応答の微分値s・id_ref、q軸電流規範応答iq_ref、f軸電流規範応答if_ref、及び、f軸電流規範応答の微分値s・if_refに応じて、非干渉電圧vd_dcpl、vq_dcpl、vf_dcplを算出する。 In step S7, the non-interference control section 405, and the electrical angular velocity omega re calculated in step S2, the d-axis current nominal response i d_ref, the differential value s · i d_ref the d-axis current nominal response calculated in step S6, The non-interference voltages v d_dcpl , v q_dcpl , and v f_dcpl are calculated according to the q-axis current normative response i q_ref , the f-axis current normative response if_ref , and the differential values s · if_ref of the f-axis current normative response.
 ステップS8において、電圧指令値演算部409は、ステップS6にて算出される第1のd軸電圧指令値vd_dsh、第1のq軸電圧指令値vq_dsh、及び、第1のf軸電圧指令値vf_dshのそれぞれに対して、ステップS7算出される非干渉電圧vd_dcpl、vq_dcpl、及び、vf_dcplを加算することで、第2のd軸電圧指令値vd *、第2のq軸電圧指令値vq *、及び、第2のf軸電圧指令値vf *を算出する。 In step S8, the voltage command value calculation unit 409 uses the first d-axis voltage command value v d_dsh , the first q-axis voltage command value v q_dsh , and the first f-axis voltage command calculated in step S6. for each value v F_dsh, step S7 incoherent voltage v D_dcpl calculated, v Q_dcpl, and, v F_dcpl by adding the second d-axis voltage command value v d *, a second q-axis The voltage command value v q * and the second f-axis voltage command value v f * are calculated.
 ステップS9において、座標変換部410は、ステップS8にて算出される第2のd軸電圧指令値vd *、第2のq軸電圧指令値vq *、及び、第2のf軸電圧指令値vf *に対して座標変化処理を行うことにより、uvw各相の電圧指令値vu *、vv *、vw *を算出する。 In step S9, the coordinate conversion unit 410 sets the second d-axis voltage command value v d * , the second q-axis voltage command value v q * , and the second f-axis voltage command calculated in step S8. By performing the coordinate change processing on the value v f * , the voltage command values v u * , v v * , and v w * of each phase of uvw are calculated.
 このようにして、コントローラ2はステップS1~S9の処理を実行することにより、モータ4を制御するための指令値が生成される。生成される指令値のうち、ステップS9にて算出される電圧指令値vu *、vv *、vw *は、固定子PWM変換部401、及び、インバータ3を介して、モータ4の固定子側の巻線に印加される。ステップS8にて算出される第2のf軸電圧指令値vf *は、回転子PWM変換部402を介して、モータ4の回転子側の巻線に印加される。このようにして、モータ4の回転制御が行われる。 In this way, the controller 2 executes the processes of steps S1 to S9 to generate a command value for controlling the motor 4. Of the generated command values, the voltage command values v u * , v v * , and v w * calculated in step S9 are fixed to the motor 4 via the stator PWM converter 401 and the inverter 3. It is applied to the winding on the child side. The second f-axis voltage command value v f * calculated in step S8 is applied to the winding on the rotor side of the motor 4 via the rotor PWM conversion unit 402. In this way, the rotation control of the motor 4 is performed.
 以上がf軸電圧飽和を考慮してf軸電流ifを制御するモータ制御方法である。このようなモータ制御に制振制御処理を施す場合には、制振制御演算部2bが備える磁束推定器802を構成するリラクタンストルク等価磁束推定器901及び界磁磁束推定器902に対して、f軸電圧飽和を考慮した処理を施す必要がある。 Or a motor control method for controlling the f-axis current i f in consideration of the f-axis voltage saturation. When vibration damping control processing is applied to such motor control, the reluctance torque equivalent magnetic flux estimator 901 and the field reluctance estimator 902 constituting the magnetic flux estimator 802 included in the vibration damping control calculation unit 2b are f. It is necessary to perform processing in consideration of shaft voltage saturation.
 図26は、本実施形態の磁束推定器802における、リラクタンストルク等価磁束推定器901の制御ブロック図を示す。本実施形態のリラクタンストルク等価磁束推定器901は、乗算器2601により構成される。 FIG. 26 shows a control block diagram of the reluctance torque equivalent magnetic flux estimator 901 in the magnetic flux estimator 802 of the present embodiment. The relaxation torque equivalent magnetic flux estimator 901 of the present embodiment is composed of a multiplier 2601.
 乗算器2601は、第2実施形態の第1の電流指令値演算器801から出力されるd軸電流指令値id1 *に対して、d軸インダクタンスLdとq軸インダクタンスLqとの差分Ld-Lqを乗算して、リラクタンストルク等価磁束推定値φr^を算出する。d軸インダクタンスLdとq軸インダクタンスLqとは、モータ4の任意の動作点(代表動作点)における値を使用しても良いし、予め記憶したマップデータを参照して求めてもよい。なお、d軸電流応答時定数とq軸電流応答時定数が一致するように電流を制御した場合には、d軸電流応答遅れを模擬した一次遅れの伝達特性に対してq軸電流応答を位相進み補償すると、当該伝達特性が1になる。このため、本実施形態で示すリラクタンストルク等価磁束推定器901の構成を第1実施形態で示した図10の構成に比べて簡素化することができる。 The multiplier 2601 has a difference L between the d-axis inductance L d and the q-axis inductance L q with respect to the d-axis current command value id1 * output from the first current command value calculator 801 of the second embodiment. Multiply d − L q to calculate the reluctance torque equivalent magnetic flux estimated value φr ^. As the d-axis inductance L d and the q-axis inductance L q , the values at arbitrary operating points (representative operating points) of the motor 4 may be used, or may be obtained by referring to the map data stored in advance. When the current is controlled so that the d-axis current response time constant and the q-axis current response time constant match, the q-axis current response is phased with respect to the transmission characteristic of the first-order delay simulating the d-axis current response delay. When the advance compensation is performed, the transmission characteristic becomes 1. Therefore, the configuration of the reluctance torque equivalent magnetic flux estimator 901 shown in the present embodiment can be simplified as compared with the configuration of FIG. 10 shown in the first embodiment.
 図27は、第2実施形態の界磁磁束推定器902の制御ブロック図である。本実施形態の界磁磁束推定器902は、制御ブロック2701、2704と、乗算器2702と、制御ブロック2703と、リミッタ2705と、加算器2706とを含んで構成される。 FIG. 27 is a control block diagram of the field magnetic flux estimator 902 of the second embodiment. The field magnetic flux estimator 902 of the present embodiment includes control blocks 2701 and 2704, a multiplier 2702, a control block 2703, a limiter 2705, and an adder 2706.
 制御ブロック2701は、f軸電圧vfからf軸電流ifまでの伝達特性をモデル化したf軸モデルである。当該f軸モデルは、(τqs+1)/(Lfs+Rf)なる特性を有する。制御ブロック2701は、リミッタ2705から出力されるf軸電圧飽和特性を考慮したf軸電流規範応答vfc_limを入力して、f軸電圧vfからf軸電流ifまでの伝達特性を加味したf軸電流規範応答if_refを算出し、乗算器2702と制御ブロック2704とに出力する。 The control block 2701 is an f-axis model that models the transmission characteristics from the f-axis voltage v f to the f-axis current if . The f-axis model has a characteristic of (τ q s + 1) / (L f s + R f ). Control block 2701, enter the f axis current nominal response v Fc_lim considering f-axis voltage saturation characteristic outputted from the limiter 2705, in consideration of the transfer characteristic from the f-axis voltage v f to f axis current i f f The shaft current reference response if_ref is calculated and output to the multiplier 2702 and the control block 2704.
 乗算器2702は、f軸電流規範応答if_refに対して、固定子と回転子との間の相互インダクタンスMfを乗算して、界磁磁束推定値φf^を算出する。相互インダクタンスMfは,モータ4の任意の動作点(代表動作点)における値を使用しても良いし、予め記憶したマップデータを参照して求めてもよい。 The multiplier 2702 calculates the field magnetic flux estimated value φf ^ by multiplying the f-axis current norm response if_ref by the mutual inductance M f between the stator and the rotor. The mutual inductance Mf may be a value at an arbitrary operating point (representative operating point) of the motor 4, or may be obtained by referring to map data stored in advance.
 制御ブロック2703は、ゲインGafで構成される。ゲインGafは、上記式(32)で示す。制御ブロック2703は、入力されるf軸電流指令値if1 *にゲインGafを乗算して得た値を加算器2706に出力する。 The control block 2703 is composed of a gain G af . The gain G af is represented by the above equation (32). Control block 2703 outputs obtained by multiplying the gain G af the f-axis current command value i f1 * input values to the adder 2706.
 制御ブロック2704は、ゲインGbfと、1/(τqs+1)とで構成されるフィルタである。ゲインGbfは、上記式(32)に示す。制御ブロック2704は、f軸電流規範応答if_refに対してフィルタリング処理して得た値を加算器2706に出力する。 The control block 2704 is a filter composed of a gain G bf and 1 / (τ qs +1). The gain G bf is shown in the above equation (32). The control block 2704 outputs the value obtained by filtering the f-axis current norm response if_ref to the adder 2706.
 加算器2706は、制御ブロック2703、2704の各出力値を足し合わせることによりf軸電圧指令値vfcを算出する。算出されたf軸電圧指令値vfcは、f軸リミッタ2705に出力される。 The adder 2706 calculates the f-axis voltage command value v fc by adding the output values of the control blocks 2703 and 2704. The calculated f-axis voltage command value v fc is output to the f-axis limiter 2705.
 このように、本実施形態の界磁磁束推定器902は制御ブロック2703と制御ブロック2704とを備えており、f軸電流指令値if1 *にゲインGafが乗算するとともにf軸電流規範応答if_refにゲインGbfを乗算して電流F/B系(f軸電流F/Bモデル)を構成する。これにより、f軸電圧飽和がない場合にf軸電流応答を一次遅れの伝達特性(式(6)参照)に一致させることができる。 As described above, the field magnetic flux estimator 902 of the present embodiment includes the control block 2703 and the control block 2704, and the gain G af is multiplied by the f-axis current command value i f1 * and the f-axis current normative response i. The current F / B system (f-axis current F / B model) is constructed by multiplying f_ref by the gain G bf . Thereby, in the absence of f-axis voltage saturation, the f-axis current response can be matched with the transmission characteristic of the first-order lag (see equation (6)).
 f軸リミッタ2705は、f軸電流指令値vfcを電源電圧Vdcに応じてリミット処理することによりf軸電圧飽和特性を模擬する。これにより、界磁磁束推定器902は、後段に配置された制御ブロック2701においてf軸電圧飽和特性を考慮したf軸電流規範応答if_refを算出することができる。 The f-axis limiter 2705 simulates the f-axis voltage saturation characteristic by limiting the f-axis current command value v fc according to the power supply voltage V dc . As a result, the field magnetic flux estimator 902 can calculate the f-axis current norm response if_ref in consideration of the f-axis voltage saturation characteristic in the control block 2701 arranged at the subsequent stage .
 また、本実施形態の制振制御演算部2bは、磁束推定器802が備える制御ブロック2701、2704にq軸電流応答の位相進み補償(τqs+1)が施されていることにより、q軸電流応答遅れを考慮したq軸電流指令値iq2 *を算出することができる。すなわち、本実施形態の界磁磁束推定値φf^は、f軸電圧vfから回転子電流を構成するf軸電流ifまでの特性をモデル化したf軸モデルと、f軸電流指令値if1 *とf軸モデルの出力とが入力されるf軸電流F/Bモデルと、f軸電流F/Bモデルの出力をリミット処理するf軸リミッタ2705と、により構成される疑似的なF/B系において、f軸モデルとf軸電流F/Bモデルとに対してq軸電流応答を位相進み補償することにより算出される。これにより、制振制御演算部2bにおいて、f軸電圧飽和が有る場合のf軸電流応答を適切に模擬することができる。 Further, in the vibration suppression control calculation unit 2b of the present embodiment, the q-axis current is provided by the phase lead compensation (τ qs +1) of the q-axis current response on the control blocks 2701 and 2704 included in the magnetic flux estimator 802. The q-axis current command value i q2 * can be calculated in consideration of the response delay. That is, the field magnetic flux estimated value φf ^ of the present embodiment is an f-axis model that models the characteristics from the f-axis voltage vf to the f-axis current if that constitutes the rotor current, and the f-axis current command value if f1 *. A pseudo F / B system composed of an f-axis current F / B model in which and the output of the f-axis model are input, and an f-axis limiter 2705 that limits the output of the f-axis current F / B model. In, the q-axis current response is phase-advanced and compensated for the f-axis model and the f-axis current F / B model. As a result, the vibration damping control calculation unit 2b can appropriately simulate the f-axis current response when there is f-axis voltage saturation.
 図28は、第2実施形態の制振制御演算部2bの制御ブロック図である。制振制御演算処理は、フィードフォワード補償器2801とフィードバック補償器2802で構成される。 FIG. 28 is a control block diagram of the vibration damping control calculation unit 2b of the second embodiment. The vibration damping control calculation process is composed of a feedforward compensator 2801 and a feedback compensator 2802.
 詳細には、フィードフォワード補償器2801は、車両パラメータとギヤバックラッシュを模擬した不感帯モデルにより構成される車両モデル2804と、トルク指令値から擬似ねじり角速度にF/Bゲインを積算した値を減算する駆動軸ねじり角速度F/Bモデル2805で構成され、第2のトルク指令値Tm2 *と第1のモータ角速度推定値ωm1^を算出する。 Specifically, the feed forward compensator 2801 subtracts the value obtained by integrating the F / B gain from the torque command value and the pseudo torsion angular velocity with the vehicle model 2804 composed of the vehicle parameter and the dead zone model simulating the gear back crash. It is composed of a drive shaft torsional velocity F / B model 2805, and calculates a second torque command value T m2 * and a first motor angular velocity estimated value ω m1 ^.
 車両モデル2804においては、ギヤバックラッシュを模擬した不感帯モデルにより構成されトルク伝達系をモデル化した車両モデルを用いて、モータトルクTmに応じて、第1のモータ角速度推定値ωm1^と、擬似駆動軸ねじり角速度ωd^とが求められる。擬似駆動軸ねじり角速度ωd^は、モータ4のトルクが伝達される駆動軸8において発生するねじり角速度を擬似的に求めたものである。 In the vehicle model 2804, a vehicle model composed of a dead zone model simulating a gear back crash and modeling a torque transmission system is used, and the first motor angular velocity estimated value ω m1 ^ is set according to the motor torque T m . The pseudo drive shaft torsional velocity ω d ^ is obtained. The pseudo drive shaft torsional velocity ω d ^ is obtained by simulating the torsional angular velocity generated in the drive shaft 8 to which the torque of the motor 4 is transmitted.
 駆動軸ねじり角速度F/Bモデル2805においては、制振制御前の第1のトルク指令値Tm1 *から、ゲインを乗じた擬似駆動軸ねじり角速度ωd^が減算されるフィードバック制御が行われて、第2のトルク指令値Tm2 *が求められる。なお、駆動軸ねじり角速度F/Bモデル2805においては、ねじり角速度FBモデルが用いられるが、このねじり角速度FBモデルは、車両モデルの一部を用いて求められる。 In the drive shaft torsion angle speed F / B model 2805, feedback control is performed in which the pseudo drive shaft torsion angle velocity ω d ^ multiplied by the gain is subtracted from the first torque command value T m1 * before the vibration suppression control. , The second torque command value T m2 * is obtained. In the drive shaft torsional velocity F / B model 2805, the torsional angular velocity FB model is used, and this torsional angular velocity FB model is obtained by using a part of the vehicle model.
 フィードバック補償器2802においては、第1のモータ角速度推定値ωm1^、及び、モータ角速度ωmが入力される。そして、フィードバック補償器2802は、これらの入力から第3のトルク指令値Tm3 *を出力する。 In the feedback compensator 2802, the first motor angular velocity estimated value ω m1 ^ and the motor angular velocity ω m are input. Then, the feedback compensator 2802 outputs a third torque command value T m3 * from these inputs.
 フィードバック補償器2802は、フィードバック制御を行うために、自身から出力される第3のトルク指令値Tm3 *に対して、ブロック2806に示された車両モデルの伝達特性Gp(s)を用いて、第2のトルク指令値Tm2 *に対応するモータ角速度推定値(第2のモータ角速度推定値)ωm2^を算出する。そして、加算器2807において、第1のモータ角速度推定値ωm1^と第2のモータ角速度推定値ωm2^とが加算されて、第3のモータ角速度推定値ωm3^が算出される。 The feedback compensator 2802 uses the transmission characteristic Gp (s) of the vehicle model shown in the block 2806 with respect to the third torque command value T m3 * output from itself in order to perform feedback control. The motor angular velocity estimated value (second motor angular velocity estimated value) ω m2 ^ corresponding to the second torque command value T m2 * is calculated. Then, in the adder 2807, the first motor angular velocity estimated value ω m1 ^ and the second motor angular velocity estimated value ω m2 ^ are added to calculate the third motor angular velocity estimated value ω m3 ^.
 減算器2808において、推定値である第3のモータ角速度推定値ωm3^と、検出値であるモータ角速度ωmの偏差を求められる。この偏差に対して、ブロック2809に示されたフィルタH(s)/Gp(s)の処理を行うことで、第3のトルク指令値Tm3 *を算出する。なお、フィルタH(s)/Gp(s)は、車両モデルの伝達特性Gp(s)の逆特性とバンドパスフィルタH(s)とにより構成されている。 In the subtractor 2808, the deviation between the estimated third motor angular velocity estimated value ω m3 ^ and the detected motor angular velocity ω m is obtained. The third torque command value T m3 * is calculated by processing the filter H (s) / Gp (s) shown in the block 2809 with respect to this deviation. The filter H (s) / Gp (s) is composed of an inverse characteristic of the transmission characteristic Gp (s) of the vehicle model and a bandpass filter H (s).
 最終的に、加算器2803において、フィードフォワード補償器2801から出力される第2のトルク指令値Tm2 *と、フィードバック補償器2802から出力される第3のトルク指令値Tm3 *とが加算されて、制振トルク指令値Tmfin *が算出される。 Finally, in the adder 2803, the second torque command value T m2 * output from the feedforward compensator 2801 and the third torque command value T m3 * output from the feedback compensator 2802 are added. Then, the vibration damping torque command value T mfin * is calculated.
 以下では、図29を参照して、第2実施形態の電動車両の制御方法(制振制御処理)による作用効果について説明する。 In the following, with reference to FIG. 29, the action and effect of the control method (vibration control control process) of the electric vehicle of the second embodiment will be described.
 図29は、本実施形態及び比較例の制御結果を示すタイムチャートである。比較例においては、ステップS203における制振制御演算が行なわれていないものとする。横軸は時間を表し、縦軸は、左側において上から下の順に、モータトルク指令値[Nm]、車両前後加速度[m/s2]、及びf軸電圧[V]を表し、右側において上から下の順に、q軸電流指令値[A]、d軸電流指令値[A]、及びf軸電流指令値[A]を表している。図中の実線は本実施形態を示し、点線は比較例を示している。なお、本タイムチャートにおける制御においては、f軸電流規範応答時定数τfをf軸電圧飽和が発生する値に設定している。 FIG. 29 is a time chart showing the control results of the present embodiment and the comparative example. In the comparative example, it is assumed that the vibration damping control calculation in step S203 is not performed. The horizontal axis represents time, the vertical axis represents the motor torque command value [Nm], the vehicle front-rear acceleration [m / s2], and the f-axis voltage [V] in order from top to bottom on the left side, and from the top on the right side. In the order of the bottom, the q-axis current command value [A], the d-axis current command value [A], and the f-axis current command value [A] are shown. The solid line in the figure shows the present embodiment, and the dotted line shows a comparative example. In the control in this time chart, the f-axis current norm response time constant τ f is set to a value at which f-axis voltage saturation occurs.
 図29で表されるのは、車両がモータ4の回生トルクによって減速している際に、時刻t1のタイミングでモータトルク指令値をステップ状に変化させて(立ち上げて)加速した場面である。なお、本タイムチャートで表される制御(本実施形態及び比較例)では、ギヤのバックラッシュの影響を加味して駆動軸ねじり振動を抑制するモータトルク指令値(制振トルク指令値)を算出している。 FIG. 29 shows a scene in which the motor torque command value is changed (started up) in steps at the timing of time t1 while the vehicle is decelerating due to the regenerative torque of the motor 4. .. In the control represented by this time chart (the present embodiment and the comparative example), the motor torque command value (vibration damping torque command value) that suppresses the drive shaft torsional vibration is calculated in consideration of the influence of the backlash of the gear. are doing.
 図左上部に示されるように、車両が減速している状態から、時刻t1のタイミングでモータトルク指令値をステップ状に変化させて(立ち上げて)加速する。このような場合には、時刻t1において、図右下部に示されるようにf電流指令値をステップ状に増加させると、図左下部に示されるようにf軸電圧が立ち上がる。 As shown in the upper left part of the figure, from the state where the vehicle is decelerating, the motor torque command value is changed (started up) in steps at the timing of time t1 to accelerate. In such a case, at time t1, when the f current command value is increased stepwise as shown in the lower right part of the figure, the f-axis voltage rises as shown in the lower left part of the figure.
 ここで、f軸電流規範応答時定数τfがf軸電圧飽和が発生する値に設定されている。そのため、図左下部に示されるようにf軸電圧が飽和する。そして、図右中部に示されているようにd電流指令値は正値から負値へとステップ状に変化する。 Here, the f-axis current normative response time constant τ f is set to a value at which f-axis voltage saturation occurs. Therefore, the f-axis voltage is saturated as shown in the lower left part of the figure. Then, as shown in the middle right of the figure, the d current command value changes stepwise from a positive value to a negative value.
 破線で示される比較例においては、q軸電流指令値を算出する際にf軸電流が考慮されず、さらに、f軸電流によって発生する界磁磁束とd軸電流によって発生するリラクタンストルクの影響が考慮されていない。そのため、図右上部に示されるように、q軸電流指令値もステップ状に増加する。そして、図左中部に示されるように、車両前後加速度は、ギヤバックラッシュの影響で、増加後に振動してしまう。 In the comparative example shown by the broken line, the f-axis current is not taken into consideration when calculating the q-axis current command value, and the influence of the field magnetic flux generated by the f-axis current and the reluctance torque generated by the d-axis current is further affected. Not considered. Therefore, as shown in the upper right part of the figure, the q-axis current command value also increases stepwise. Then, as shown in the middle left of the figure, the vehicle front-rear acceleration vibrates after increasing due to the influence of gear back crash.
 一方で、実線で示される本実施形態においては、図8に示されるようにf軸電流if1 *、及び、d軸電流id1 *が考慮されて、q軸電流iq2 *が算出される。そのため、q軸電流は、時刻t1における立ち上がり後に減少し、その後、所定値に収束するように制御される。 On the other hand, in the present embodiment shown by the solid line, the q-axis current i q2 * is calculated in consideration of the f-axis current i f1 * and the d-axis current i d1 * as shown in FIG. .. Therefore, the q-axis current is controlled so as to decrease after the rise at time t1 and then converge to a predetermined value.
 その結果d軸電流idとf軸電流ifを考慮して算出されるq軸電流指令値iq2 *によって駆動軸ねじり振動を抑制するモータトルクが実現されることで、図左中部に示されるとおり、車両前後加速度振動が抑制される。 As a result, the motor torque that suppresses the drive shaft torsional vibration is realized by the q-axis current command value i q2 * calculated in consideration of the d-axis current id and the f-axis current if, which is shown in the middle left of the figure. As you can see, the vehicle front-rear acceleration vibration is suppressed.
 第2実施形態の電動車両の制御方法によれば、以下の効果を得ることができる。 According to the electric vehicle control method of the second embodiment, the following effects can be obtained.
 第2実施形態の電動車両の制御方法によれば、フィードフォワード補償器2801において、出力される第2のトルク指令値Tm2 *に対して、ギヤバックラッシュを模擬した不感帯モデルにより構成されトルク伝達系をモデル化した車両モデル2804を用いることで、モータトルクTmに応じて、第1のモータ角速度推定値ωm1^と、擬似駆動軸ねじり角速度ωd^とが求められる。そして、駆動軸ねじり角速度F/Bモデル2805においては、制振制御前の第1のトルク指令値Tm1 *から、ゲインを乗じた擬似駆動軸ねじり角速度ωd^が減算されるフィードバック制御が行われて、第2のトルク指令値Tm2 *が求められる。 According to the control method of the electric vehicle of the second embodiment, the feed forward compensator 2801 is configured by a dead zone model simulating a gear back crash with respect to the output second torque command value T m2 * , and torque is transmitted. By using the vehicle model 2804 that models the system, the first motor angular velocity estimated value ω m1 ^ and the pseudo drive shaft torsional velocity ω d ^ can be obtained according to the motor torque T m . Then, in the drive shaft torsional velocity F / B model 2805, feedback control is performed in which the pseudo drive shaft torsional velocity ω d ^ multiplied by the gain is subtracted from the first torque command value T m1 * before the vibration damping control. Therefore, the second torque command value T m2 * is obtained.
 そして、フィードバック補償器2802では、ブロック2806においては、出力される第3のトルク指令値Tm3 *に対して、電動車両における線形近似モデルに基づいたフィルタ処理Gp(s)を行うことにより、第2のモータ角速度推定値ωm2^を推定する。そして、加算器2807において、フィードフォワード制御において算出される第1のモータ角速度推定値ωm1^と、第2のモータ角速度推定値ωm2^とを加算することで、第3のモータ角速度推定値ωm3^を算出する。第3のモータ角速度推定値ωm3^と測定されるモータ角速度ωmとの差分に対して、線形近似モデルに基づいたフィルタ処理、及び、バンドパスフィルタに基づくフィルタ処理を行うことにより第3のトルク指令値Tm3 *を演算する。 Then, in the feedback compensator 2802, in the block 2806, the output third torque command value T m3 * is filtered by Gp (s) based on the linear approximation model in the electric vehicle. Estimate the motor angular velocity estimation value ω m2 ^ of 2. Then, in the adder 2807, the first motor angular velocity estimated value ω m1 ^ calculated in the feed forward control and the second motor angular velocity estimated value ω m2 ^ are added to obtain a third motor angular velocity estimated value. Calculate ω m3 ^. The difference between the third motor angular velocity estimated value ω m3 ^ and the measured motor angular velocity ω m is filtered based on a linear approximation model and a bandpass filter to perform a third filter process. Calculate the torque command value T m3 * .
 最終的に、第2のトルク指令値Tm2 *と、第3のトルク指令値Tm3 *とを加算することで、制振トルク指令値Tmfin *を算出する。 Finally, the vibration damping torque command value T mfin * is calculated by adding the second torque command value T m2 * and the third torque command value T m3 * .
 このように構成されたシステムにおいて、不感帯モデルを利用したフィードフォワード制御により算出される第2のトルク指令値Tm2 *と、フィードバック制御により算出される第3のトルク指令値Tm3 *とが加算されることで、制振トルク指令値Tmfin *が算出される。そのあめ、回生トルクによる減速中に再加速する場合において、ギヤバックラッシュなどが発生したとしても、車両の駆動軸トルク伝達系における振動を抑制することができる。 In the system configured in this way, the second torque command value T m2 * calculated by feedforward control using the dead zone model and the third torque command value T m3 * calculated by feedback control are added. By doing so, the vibration damping torque command value T mfin * is calculated. Therefore, in the case of re-acceleration during deceleration due to regenerative torque, vibration in the drive shaft torque transmission system of the vehicle can be suppressed even if gear backlash or the like occurs.
 また、第2実施形態の電動車両の制御方法によれば、振制制御演算部2bは、磁束推定器902が備える制御ブロック2701、2704にq軸電流応答の位相進み補償(τqs+1)が施されていることにより、q軸電流応答遅れを考慮したq軸電流指令値iq2 *を算出することができる。すなわち、本実施形態の界磁磁束推定値φf^は、f軸電圧vfから回転子電流を構成するf軸電流ifまでの特性をモデル化したf軸モデル2701と、f軸電流指令値if1 *とf軸モデルの出力とが入力されるf軸電流F/Bモデル2704と、f軸電流F/Bモデルの出力をリミット処理するf軸リミッタ2705と、により構成される疑似的なF/B系において、f軸モデルとf軸電流F/Bモデルとに対してq軸電流応答を位相進み補償することにより算出される。これにより、制振制御演算部2bにおいて、f軸電圧が飽和する場合のf軸電流応答を適切に模擬することができる。 Further, according to the control method of the electric vehicle of the second embodiment, the vibration control calculation unit 2b provides phase advance compensation (τ qs +1) for the q-axis current response to the control blocks 2701 and 2704 provided in the magnetic flux estimator 902. The q-axis current command value i q2 * can be calculated in consideration of the q-axis current response delay. That is, the magnetic field flux estimate φf of the present embodiment ^ includes a f-axis model 2701 models the characteristics of to f axis current i f that constitute the rotor current from the f-axis voltage vf, f-axis current command value i A pseudo F composed of an f-axis current F / B model 2704 in which f1 * and the output of the f-axis model are input, and an f-axis limiter 2705 that limits the output of the f-axis current F / B model. In the / B system, it is calculated by compensating the q-axis current response with respect to the f-axis model and the f-axis current F / B model. As a result, the vibration damping control calculation unit 2b can appropriately simulate the f-axis current response when the f-axis voltage is saturated.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments are only a part of the application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiments. Absent.

Claims (11)

  1.  回転子巻線を有する回転子と、固定子巻線を有する固定子とを備える巻線界磁型同期モータを駆動源とする電動車両において、前記固定子巻線に流れる固定子電流と前記回転子巻線に流れる回転子電流とを制御する電動車両の制御方法であって、
     運転状態に基づいて基本トルク指令値を設定し、
     前記基本トルク指令値と車両情報とに基づいて、前記固定子電流に対するd軸電流指令値および第1のq軸電流指令値と、前記回転子電流に対するf軸電流指令値とを算出し、
     前記d軸電流指令値と前記f軸電流指令値とに基づいて前記回転子に生じる磁束の推定値である磁束推定値を算出し、
     前記第1のq軸電流指令値と前記磁束推定値とに基づいて第1のトルク指令値を算出し、 前記第1のトルク指令値に対して、前記車両情報に基づいて、前記電動車両の駆動軸トルク伝達系の振動を抑制する演算を行うことにより、制振トルク指令値を算出し、
     前記磁束推定値と前記制振トルク指令値とに基づいて第2のq軸電流指令値を算出し、
     前記第2のq軸電流指令値と前記d軸電流指令値と前記f軸電流指令値とに基づいて、前記固定子電流と前記回転子電流とを制御する、電動車両の制御方法。
    In an electric vehicle driven by a winding field type synchronous motor including a rotor having a rotor winding and a stator having a stator winding, the stator current flowing through the stator winding and the rotation thereof. It is a control method of an electric vehicle that controls the rotor current flowing through the child winding.
    Set the basic torque command value based on the operating condition,
    Based on the basic torque command value and the vehicle information, the d-axis current command value and the first q-axis current command value for the stator current and the f-axis current command value for the rotor current are calculated.
    A magnetic flux estimated value, which is an estimated value of the magnetic flux generated in the rotor, is calculated based on the d-axis current command value and the f-axis current command value.
    The first torque command value is calculated based on the first q-axis current command value and the magnetic flux estimated value, and the electric vehicle of the electric vehicle is based on the vehicle information with respect to the first torque command value. The vibration damping torque command value is calculated by performing the calculation to suppress the vibration of the drive shaft torque transmission system.
    The second q-axis current command value is calculated based on the magnetic flux estimated value and the vibration damping torque command value.
    A method for controlling an electric vehicle, which controls the stator current and the rotor current based on the second q-axis current command value, the d-axis current command value, and the f-axis current command value.
  2.  請求項1に記載の電動車両の制御方法において、
     前記駆動軸トルク伝達系の振動を抑制する演算においては、
     前記第1のトルク指令値に対してフィードフォワード制御を行うことにより、第2のトルク指令値を算出し、
     前記第2のトルク指令値に応じて推定される前記車両情報に対して、実際の前記車両情報に基づいたフィードバック制御を行うことで、第3のトルク指令値を算出し、
     前記第2のトルク指令値と、前記第3のトルク指令値とを加算することにより、前記制振トルク指令値を算出する、電動車両の制御方法。
    In the method for controlling an electric vehicle according to claim 1,
    In the calculation for suppressing the vibration of the drive shaft torque transmission system,
    By performing feed forward control with respect to the first torque command value, the second torque command value is calculated.
    The third torque command value is calculated by performing feedback control based on the actual vehicle information with respect to the vehicle information estimated according to the second torque command value.
    A control method for an electric vehicle, which calculates the vibration damping torque command value by adding the second torque command value and the third torque command value.
  3.  請求項2に記載の電動車両の制御方法において、
     前記フィードフォワード制御において、
      前記第1のトルク指令値に対して、前記電動車両における線形近似モデル及び規範モデルの伝達特性に基づいたフィルタ処理を行うことにより、前記第2のトルク指令値を演算し、
     前記フィードバック制御において、
      前記第2のトルク指令値に対して前記線形近似モデル、
      前記規範モータ角速度と測定されるモータ角速度との差分に対して、前記線形近似モデル及びバンドパスフィルタに基づいたフィルタ処理を行うことにより、前記第3のトルク指令値を演算する、電動車両の制御方法。
    In the method for controlling an electric vehicle according to claim 2,
    In the feed forward control,
    The second torque command value is calculated by performing a filter process on the first torque command value based on the transmission characteristics of the linear approximation model and the normative model in the electric vehicle.
    In the feedback control
    The linear approximation model for the second torque command value,
    Control of an electric vehicle that calculates the third torque command value by performing a filter process based on the linear approximation model and a bandpass filter on the difference between the standard motor angular velocity and the measured motor angular velocity. Method.
  4.  請求項2に記載の電動車両の制御方法において、
     前記フィードフォワード制御において、
      出力される前記第2のトルク指令値に対して、前記電動車両におけるモータトルクから駆動軸ねじり角速度までの特性と、トルク伝達系における不感帯特性とをモデル化した車両モデルを用いて、第1のモータ角速度推定値、及び、擬似駆動軸ねじり角速度を推定し、
      前記第1のトルク指令値に対して、ゲインを乗じた前記擬似駆動軸ねじり角速度を減じることで、前記第2のトルク指令値を算出し、
     前記フィードバック制御において、
      出力される前記第3のトルク指令値に対して、前記電動車両における線形近似モデルに基づいたフィルタ処理を行うことにより、第2のモータ角速度推定値を推定し、
      前記フィードフォワード制御において算出される前記第1のモータ角速度推定値と、前記第2のモータ角速度推定値とを加算することで、第3のモータ角速度推定値を算出し、
      前記第3のモータ角速度推定値と測定されるモータ角速度との差分に対して、前記線形近似モデルに基づいたフィルタとバンドパスフィルタとからなるフィルタ処理を行うことにより、前記第3のトルク指令値を演算する、電動車両の制御方法。
    In the method for controlling an electric vehicle according to claim 2,
    In the feed forward control,
    With respect to the output second torque command value, the first is used by using a vehicle model that models the characteristics from the motor torque to the drive shaft torsional angular velocity in the electric vehicle and the dead zone characteristics in the torque transmission system. Estimate the motor angular velocity and the pseudo drive shaft torsional velocity,
    The second torque command value is calculated by subtracting the pseudo drive shaft torsion angle velocity obtained by multiplying the first torque command value by the gain.
    In the feedback control
    The second motor angular velocity estimated value is estimated by performing a filtering process based on the linear approximation model in the electric vehicle for the output third torque command value.
    The third motor angular velocity estimated value is calculated by adding the first motor angular velocity estimated value calculated in the feed forward control and the second motor angular velocity estimated value.
    The third torque command value is obtained by performing a filter process including a filter based on the linear approximation model and a bandpass filter on the difference between the third motor angular velocity estimated value and the measured motor angular velocity. A method of controlling an electric vehicle to calculate.
  5.  請求項1から4のいずれか1項に記載の電動車両の制御方法において、
     前記第2のq軸電流指令値は、前記制振トルク指令値を前記磁束推定値で除算することにより算出される、電動車両の制御方法。
    In the method for controlling an electric vehicle according to any one of claims 1 to 4,
    The second q-axis current command value is a control method for an electric vehicle, which is calculated by dividing the vibration damping torque command value by the estimated magnetic flux value.
  6.  請求項1から5のいずれか一項に記載の電動車両の制御方法において、
     前記f軸電流指令値に基づいて前記回転子の界磁磁束の推定値である界磁磁束推定値を算出し、
     前記d軸電流指令値に基づいて、前記回転子に生じるリラクタンストルクの等価磁束推定値を算出し、
     前記磁束推定値は、前記界磁磁束推定値と前記等価磁束推定値とを加算することにより算出される、電動車両の制御方法。
    In the method for controlling an electric vehicle according to any one of claims 1 to 5,
    Based on the f-axis current command value, the field magnetic flux estimated value, which is the estimated value of the field magnetic flux of the rotor, is calculated.
    Based on the d-axis current command value, the equivalent magnetic flux estimated value of the reluctance torque generated in the rotor is calculated.
    The magnetic flux estimated value is a control method for an electric vehicle, which is calculated by adding the field magnetic flux estimated value and the equivalent magnetic flux estimated value.
  7.  請求項6に記載の電動車両の制御方法において、
     前記界磁磁束推定値は、
     前記回転子電流を構成するf軸電流の前記f軸電流指令値に対する応答遅れを模擬したf軸電流伝達特性に対してq軸電流応答を位相進み補償するように構成された伝達特性を用いて算出される、電動車両の制御方法。
    In the method for controlling an electric vehicle according to claim 6,
    The field magnetic flux estimate is
    Using a transmission characteristic configured to phase-advance and compensate the q-axis current response to the f-axis current transmission characteristic that simulates the response delay of the f-axis current that constitutes the rotor current to the f-axis current command value. Calculated electric vehicle control method.
  8.  請求項7に記載の電動車両の制御方法において、
     前記f軸電流伝達特性は、一次遅れの伝達関数である、電動車両の制御方法。
    In the method for controlling an electric vehicle according to claim 7,
    The f-axis current transmission characteristic is a method for controlling an electric vehicle, which is a transmission function of a first-order lag.
  9.  請求項6に記載の電動車両の制御方法において、
     前記界磁磁束推定値は、
     f軸電圧から前記回転子電流を構成するf軸電流までの特性をモデル化したf軸モデルと、
     前記f軸電流指令値と前記f軸モデルの出力とが入力されるf軸電流フィードバック(F/B)モデルと、
     前記f軸電流F/Bモデルの出力をリミット処理するf軸リミッタと、により構成される疑似的なF/B系において、前記f軸モデルと前記f軸電流F/Bモデルとに対してq軸電流応答を位相進み補償することにより算出される、電動車両の制御方法。
    In the method for controlling an electric vehicle according to claim 6,
    The field magnetic flux estimated value is
    An f-axis model that models the characteristics from the f-axis voltage to the f-axis current that constitutes the rotor current, and an f-axis model.
    An f-axis current feedback (F / B) model in which the f-axis current command value and the output of the f-axis model are input, and
    In a pseudo F / B system composed of an f-axis limiter that limits the output of the f-axis current F / B model, q with respect to the f-axis model and the f-axis current F / B model. A control method for an electric vehicle, which is calculated by compensating for the phase lead of the shaft current response.
  10.  請求項6に記載の電動車両の制御方法において、
     前記等価磁束推定値は、
     前記固定子電流を構成するd軸電流の前記d軸電流指令値に対する応答遅れを模擬したd軸電流伝達特性に対してq軸電流応答を位相進み補償するように構成された伝達特性を用いて算出される、電動車両の制御方法。
    In the method for controlling an electric vehicle according to claim 6,
    The equivalent magnetic flux estimate is
    Using a transmission characteristic configured to phase-advance and compensate the q-axis current response to the d-axis current transmission characteristic that simulates the response delay of the d-axis current that constitutes the stator current to the d-axis current command value. Calculated electric vehicle control method.
  11.  回転子巻線を有する回転子と、固定子巻線を有する固定子とを備える巻線界磁型同期モータと、前記固定子巻線に流れる固定子電流と前記回転子巻線に流れる回転子電流とを制御するコントローラとを備える電動車両の制御装置であって、
     前記コントローラは、
     運転状態に基づいて基本トルク指令値を設定し、
     前記基本トルク指令値と前記車両情報とに基づいて、前記固定子電流に対するd軸電流指令値および第1のq軸電流指令値と、前記回転子電流に対するf軸電流指令値とを算出し、
     前記d軸電流指令値と前記f軸電流指令値とに基づいて前記回転子に生じる磁束の推定値である磁束推定値を算出し、
     前記第1のq軸電流指令値と前記磁束推定値とに基づいて第1のトルク指令値を算出し、
     前記第1のトルク指令値に対して、前記車両情報に基づいて、前記電動車両の駆動軸トルク伝達系の振動を抑制する演算を行うことにより、制振トルク指令値を算出し、
     前記磁束推定値と前記制振トルク指令値とに基づいて第2のq軸電流指令値を算出し、
     前記第2のq軸電流指令値と前記d軸電流指令値と前記f軸電流指令値とに基づいて、前記固定子電流と前記回転子電流とを制御する、電動車両の制御装置。
    A field field synchronous motor including a rotor having a rotor winding and a stator having a stator winding, a stator current flowing through the stator winding, and a rotor flowing through the rotor winding. A control device for an electric vehicle including a controller for controlling a current.
    The controller
    Set the basic torque command value based on the operating condition,
    Based on the basic torque command value and the vehicle information, the d-axis current command value and the first q-axis current command value for the stator current and the f-axis current command value for the rotor current are calculated.
    A magnetic flux estimated value, which is an estimated value of the magnetic flux generated in the rotor, is calculated based on the d-axis current command value and the f-axis current command value.
    The first torque command value is calculated based on the first q-axis current command value and the magnetic flux estimated value.
    The vibration damping torque command value is calculated by performing a calculation for suppressing the vibration of the drive shaft torque transmission system of the electric vehicle based on the vehicle information with respect to the first torque command value.
    The second q-axis current command value is calculated based on the magnetic flux estimated value and the vibration damping torque command value.
    An electric vehicle control device that controls the stator current and the rotor current based on the second q-axis current command value, the d-axis current command value, and the f-axis current command value.
PCT/JP2019/013468 2019-03-27 2019-03-27 Control method and control device for electric vehicle WO2020194637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013468 WO2020194637A1 (en) 2019-03-27 2019-03-27 Control method and control device for electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/013468 WO2020194637A1 (en) 2019-03-27 2019-03-27 Control method and control device for electric vehicle

Publications (1)

Publication Number Publication Date
WO2020194637A1 true WO2020194637A1 (en) 2020-10-01

Family

ID=72611177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/013468 WO2020194637A1 (en) 2019-03-27 2019-03-27 Control method and control device for electric vehicle

Country Status (1)

Country Link
WO (1) WO2020194637A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112977094A (en) * 2021-04-26 2021-06-18 比亚迪股份有限公司 Electric drive system control method, electric drive system and vehicle
CN116039398A (en) * 2023-03-08 2023-05-02 阿维塔科技(重庆)有限公司 Electric automobile charging control method and device and computer readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103586A1 (en) * 2012-12-28 2014-07-03 日産自動車株式会社 Motor control device and motor control method
WO2014104164A1 (en) * 2012-12-28 2014-07-03 日産自動車株式会社 Motor control device and motor control method
JP2015035885A (en) * 2013-08-08 2015-02-19 日産自動車株式会社 Motor controller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014103586A1 (en) * 2012-12-28 2014-07-03 日産自動車株式会社 Motor control device and motor control method
WO2014104164A1 (en) * 2012-12-28 2014-07-03 日産自動車株式会社 Motor control device and motor control method
JP2015035885A (en) * 2013-08-08 2015-02-19 日産自動車株式会社 Motor controller

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112977094A (en) * 2021-04-26 2021-06-18 比亚迪股份有限公司 Electric drive system control method, electric drive system and vehicle
CN116039398A (en) * 2023-03-08 2023-05-02 阿维塔科技(重庆)有限公司 Electric automobile charging control method and device and computer readable storage medium
CN116039398B (en) * 2023-03-08 2023-09-26 阿维塔科技(重庆)有限公司 Electric automobile charging control method and device and computer readable storage medium

Similar Documents

Publication Publication Date Title
JP5900609B2 (en) Electric vehicle control device and electric vehicle control method
JP5862436B2 (en) Control device for electric vehicle
JP6669249B2 (en) ELECTRIC VEHICLE CONTROL METHOD AND ELECTRIC VEHICLE CONTROL DEVICE
WO2018220805A1 (en) Control method for electric vehicle, and control device
JP5939316B2 (en) Induction motor control device and induction motor control method
JP4419625B2 (en) Vehicle damping control device and vehicle damping control method
JP7107385B2 (en) ELECTRIC VEHICLE CONTROL METHOD AND CONTROL DEVICE
JP5900656B2 (en) Motor control device and motor control method
JP6720714B2 (en) Electric vehicle control method and electric vehicle control device
WO2020194637A1 (en) Control method and control device for electric vehicle
JP6686658B2 (en) Electric vehicle control method and electric vehicle control device
JP6819081B2 (en) Electric vehicle control method and control device
JP6597174B2 (en) Electric vehicle control device and electric vehicle control method
JP2022083905A (en) Motor control method and motor control system
JP6728633B2 (en) Electric vehicle control method and control device
JP6753290B2 (en) Motor control method and motor control system
JP7035818B2 (en) Winding field type synchronous motor control method and control device
JP6728632B2 (en) Electric vehicle control method and control device
JP2023158899A (en) Control method for electric motor and control device for electric motor
WO2020152785A1 (en) Motor control method and motor control device
JP2024011931A (en) Electric-vehicular control method and electric-vehicular control apparatus
JP2023079921A (en) Control method for electric vehicle and control device for electric vehicle
JP2023128462A (en) Control method for electric vehicle and control device for electric vehicle
JP2016073161A (en) Electric vehicle control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19921172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19921172

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP