WO2020188880A1 - Backlash control device and backlash control method in electric motor drive system - Google Patents

Backlash control device and backlash control method in electric motor drive system Download PDF

Info

Publication number
WO2020188880A1
WO2020188880A1 PCT/JP2019/045022 JP2019045022W WO2020188880A1 WO 2020188880 A1 WO2020188880 A1 WO 2020188880A1 JP 2019045022 W JP2019045022 W JP 2019045022W WO 2020188880 A1 WO2020188880 A1 WO 2020188880A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
backlash
estimated
drive system
acceleration
Prior art date
Application number
PCT/JP2019/045022
Other languages
French (fr)
Japanese (ja)
Inventor
隆一 小川
野村 昌克
山本 康弘
淳也 矢野
Original Assignee
株式会社明電舎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社明電舎 filed Critical 株式会社明電舎
Publication of WO2020188880A1 publication Critical patent/WO2020188880A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/18Electric propulsion with power supply external to the vehicle using ac induction motors fed from dc supply lines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to responsiveness and impact suppression in a system in which an electric motor drives a load via gears.
  • a drive system consisting of a motor that rotates a load via a motor, and the like.
  • the inverter generates an AC voltage having an amplitude and frequency that allows the motor to operate with an appropriate torque based on a torque command generated by operating the accelerator or the operation panel, and applies the AC voltage to the motor.
  • Systems having such a drive system include, for example, elevators and machine tools.
  • backlash exists in the drive system having gears, and the torque on the motor side is not transmitted to the load side of the drive system in the backlash section, which has an influence such as deterioration of control responsiveness and instability.
  • the impact will increase depending on the relative speed between the gears at the end of the backlash, that is, when the gears hit, and the sound will be heard. May occur.
  • Such an impact sound may cause discomfort and anxiety to the user of the system, which is not preferable.
  • the machine tool of Patent Document 5 is operated to absorb an unstable torque component in the backlash section to improve control stability.
  • control within the backlash section is determined in advance. It is also known to take measures for both control response and impact mitigation.
  • the method of lowering the gain as in Patent Document 1 and Patent Document 2 requires a speed sensor. Further, in the backlash section, for example, an operation method in which acceleration is good at the beginning and then moderately decelerated in order to suppress the impact of the gears is excellent from the viewpoint of both responsiveness and impact suppression. In the control of, the stability is emphasized, and the operation that adjusts the fine responsiveness and impact in the backlash section is not considered.
  • Patent Document 3 and Patent Document 4 require structural ingenuity in the drive system, resulting in an increase in design cost.
  • Patent Document 6 Patent Document 7
  • Patent Document 8 suppresses the impact of accelerating well at the beginning and then appropriately decelerating as described above.
  • a table creation cost is incurred.
  • it is a table there is a problem that it is difficult to deal with parameter errors and disturbances for each individual.
  • the present invention solves the above problems, and an object of the present invention is to improve the operating performance of an electric motor drive system that drives a load via gears by outputting an appropriate torque in a backlash section.
  • the purpose of the present invention is to provide a backlash control device and a control method in a drive system.
  • the backlash control device in the electric motor drive system according to claim 1 for solving the above problems is A backlash control device in an electric motor drive system that drives a load via gears by an electric motor connected to an inverter. It has a means to determine the backlash section, a torque command corresponding to the set speed command is input, a process to generate acceleration torque for accelerating the torque in the backlash section, or a direction to exit the backlash section. It is equipped with a backlash control unit that calculates the backlash-considered torque command by performing at least one of the friction compensation torque addition processing for canceling the torque component in the opposite direction. It is characterized in that the inverter is controlled based on the calculated backlash-considered torque command.
  • the backlash control device in the electric motor drive system according to claim 2 is claimed in claim 1.
  • the backlash control unit An acceleration torque generator that generates acceleration torque when it is decided to perform the process of generating acceleration torque.
  • the relationship between the load torque with respect to the twist angle between the motor shaft between the motor and the gear and the load shaft between the gear and the load in the back crash section is defined by the back crash block set with a dead zone, and the motor side block and back crash block. , It has an internal model that expresses the motor drive system by dividing it into load side blocks, and the estimated motor angular speed is calculated from the output torque of the acceleration torque generator by the internal model, and is estimated for the load shaft of the motor shaft.
  • a calculation unit that calculates and outputs the torsion angle speed and the estimated torsion angle or estimated load torque of the motor shaft with respect to the load shaft.
  • the friction compensation torque addition unit that adds the friction compensation torque to the output torque of the acceleration torque generation unit, and the friction compensation torque addition unit.
  • the estimated torsion angle or estimated load torque of the motor shaft with respect to the load shaft calculated by the calculation unit, the estimated torsional angle speed of the load shaft of the motor shaft, and the torque command corresponding to the speed command are input, and in the backlash section.
  • the process of generating the acceleration torque in the acceleration torque generating unit is executed, the decision not to be performed, and the friction compensation torque addition process in the friction compensation torque adding unit is performed. It is characterized by being provided with a determination unit for determining non-implementation.
  • the backlash control device in the electric motor drive system according to claim 3 is claimed in claim 2.
  • the acceleration torque generating unit is characterized by having a limiter that limits the upper limit and the lower limit of the input torque command.
  • the backlash control device in the electric motor drive system according to claim 4 is claimed in claim 2.
  • the acceleration torque generation unit is characterized by having a backlash speed control unit that controls the speed so that the estimated torsion angular velocity calculated by the internal model becomes a set speed command.
  • the backlash control device in the electric motor drive system according to claim 5 is according to any one of claims 2 to 4.
  • the internal model has a disturbance compensation system that takes a deviation between the detected motor angular velocity that detects the angular velocity of the electric motor and the calculated estimated motor angular velocity, and feeds back the deviation to the internal model so that the deviation becomes zero. It is characterized by being.
  • the backlash control device in the electric motor drive system according to claim 6 is according to any one of claims 2 to 5.
  • the determination unit When the estimated torsion angle of the motor shaft with respect to the load shaft is within the backlash phase range of the gear, or when the estimated load torque is near zero, it is determined to be a backlash section, and other than that, it is not a backlash section.
  • the first determination process to determine that When the backlash section is determined by the first determination process, the second determination process for determining whether or not the torque command corresponding to the speed command is within the set dead zone, When it is determined by the second determination process that it is not within the dead zone, a third determination process for determining whether or not the estimated torsional angular velocity is within the set dead zone is performed.
  • the process of generating the acceleration torque is not performed and friction Decided not to implement the compensation torque addition process
  • the process of generating the acceleration torque is not performed and friction Decided not to implement the compensation torque addition process
  • it is determined by the third determination process that the estimated torsional angular velocity is within the dead zone it is determined to perform the process of generating the acceleration torque, and it is determined not to perform the friction compensation torque addition process.
  • the backlash control method in the electric motor drive system according to claim 7 is It is characterized in that the backlash control device in the electric motor drive system according to any one of claims 1 to 6 is executed.
  • the operating performance of the electric motor drive system that drives the load via the gear can be improved by outputting an appropriate torque in the backlash section.
  • the second aspect of the present invention it is possible to prevent a decrease in responsiveness while suppressing the generation of a gear collision sound when exiting the backlash.
  • control can be performed based on a backlash-considered torque command that does not exceed the upper limit of torque.
  • the configuration of the motor drive system in the embodiment of the present invention is shown, (a) is a connection configuration diagram of a motor and a load, and (b) is a configuration diagram of a control.
  • the system block diagram of the backlash control in Example 1 of this invention The system block diagram of the internal model in Example 1 of this invention.
  • the effect of friction compensation in the backlash section is shown, (a) is a graph of torsion angle ⁇ BL , and (b) is a graph of torsion angular velocity ⁇ BL .
  • the effect of acceleration torque in the backlash section is shown, (a) is a graph of torsion angle ⁇ BL , and (b) is a graph of torsion angular velocity ⁇ BL .
  • the effect of disturbance compensation in the backlash section is shown, (a) is a graph of torsion angle ⁇ BL , (b) is a graph of torsion angular velocity ⁇ BL , (c) is a graph of torsion angle comparison without disturbance compensation, (d).
  • the effect of backlash velocity control in the backlash section is shown, (a) is a graph of torsional velocity ⁇ BL , and (b) is a graph of torsional angular velocity ⁇ BL .
  • FIG. 1 shows a system configuration diagram of the drive system according to the first embodiment.
  • the connection configuration diagram of FIG. 1A represents a drive system in which a motor (motor) 1 rotates a load 5 via a gear 3, 2 is a motor shaft between motor 1-gear 3, and 4 is gear 3-load. The load axis between 5 is shown.
  • the relative angular velocity (torsion angular velocity) of the motor shaft 2 with respect to the load shaft 4 is ⁇ BL (at this time, the gear ratio is taken into consideration in the angular velocity of the two shafts), and the torsion angle of the two shafts is ⁇ BL .
  • ⁇ BL is the angular velocity at which the gear (gear 3) passes through the backlash.
  • FIG. 1A is hereinafter sometimes referred to as a “plant”.
  • a speed command ⁇ * that is generated and adjusted according to the form of the drive system such as the accelerator depression amount and the operation panel operation amount is input.
  • the speed command ⁇ * is input to the speed control unit 11, and the speed control unit 11 outputs a torque command T * for appropriately reaching the target speed.
  • the speed sensor is not provided in FIG. 1 (b), it is not essential that the speed sensor is not provided, and the torque is based on the motor phase detected by the sensor and the motor speed calculated using the phase.
  • Command T * may be determined.
  • the torque command T * output from the speed control unit 11 is input to the backlash control unit 12, and the backlash control unit 12 calculates the BL-considered torque command T ** in consideration of the presence of the backlash.
  • the BL-considered torque command T ** output from the backlash control unit 12 is input to the current control unit 13.
  • the current control unit 13 calculates a voltage command for outputting a target torque based on the detected current that detects the current of the motor 1, outputs a gate signal for realizing the voltage, and appropriately controls the inverter 14. To do. Inverter 14 applies a three-phase AC voltage to the motor 1, the motor torque T M is caused by electromagnetic induction in the motor 1.
  • FIG. 2 shows a system configuration diagram of the backlash control unit 12 in the first embodiment.
  • the torque command T * from the speed control unit 11 is input to the backlash control unit 12.
  • the input torque command T * branches into three, one of which does not perform any particular calculation, and the other of which becomes the limit torque command Trim via the limiter 21, and the remaining one is the acceleration shown in FIG. 4 described later.
  • a switch flowchart for determining ON / OFF of the torque switch and the friction compensation switch is provided, a backlash section is determined, and a determination is made to determine whether to perform a process of generating acceleration torque or a process of adding friction compensation torque. It is input to the unit 22.
  • Reference numeral 23 denotes an acceleration torque switch controlled by an ON / OFF control signal determined by the determination unit 22, and the limit torque command Slim is selected during ON control and the torque command T * is selected during OFF control.
  • the output is used as the in-control motor torque T Mc in the subsequent processing.
  • the limiter 21 and the acceleration torque switch 23 constitute the acceleration torque generator of the present invention.
  • Reference numeral 24 denotes a calculation unit having an internal model of FIG. 3 described later, which expresses the drive system of FIG. 1A, and receives an in-control motor torque T Mc which is an output of the acceleration torque switch 23 as an input, and an estimated torsion angle.
  • T Mc which is an output of the acceleration torque switch 23 as an input
  • ⁇ BL ⁇ and the estimated torsional angular velocity ⁇ BL ⁇ are calculated and output to the determination unit 22.
  • the in-control motor torque T Mc is also branched and input to the adder 25 and the friction compensation switch 26, and the adder 25 adds the friction compensation torque of the friction compensation torque setting unit 27 and the in-control motor torque T Mc.
  • the friction-considered torque command T f is output.
  • the friction compensation switch 26 is controlled by an ON / OFF control signal determined by the determination unit 22, and the friction consideration torque command T f is selected during ON control, and the in-control motor torque T Mc is selected during OFF control.
  • the output is the BL-considered torque command T ** , which is the output of the backlash control unit 12.
  • the adder 25, the friction compensation switch 26, and the friction compensation torque setting unit 27 constitute the friction compensation torque adding unit of the present invention.
  • FIG. 3 shows a system configuration diagram of an internal model of the arithmetic unit 24 in the first embodiment. Each block is arranged based on the equation of motion, rigidity, friction, etc. of the drive system shown in FIG. 1 (a).
  • the subtractor 31 subtracts the torque obtained by dividing the estimated load torque T L ⁇ described later by the gear ratio gr of the divider 33b from the input in-control motor torque T Mc .
  • the subtraction output of the subtractor 31, a function multiplier 32 the motor torque to the motor angular velocity transfer function G .omega.M (s) is the estimated motor angular velocity omega M ⁇ is multiplied is calculated.
  • the estimated motor angular velocity ⁇ M ⁇ is divided by the gear ratio gr of the divider 33a and input to the subtractor 34.
  • Subtractor 34 the divider output of 33a from (angular velocity component of the motor side), the estimated load torque T L ⁇ multiplied by multiplying a transfer function G .omega.L from the load torque of the function multiplier 35 to the load angular velocity (s) to the output Subtract (angular velocity component on the load side).
  • Output estimated torsional angular velocity omega BL ⁇ is obtained in the subtractor 34, the estimated torsion angle theta BL ⁇ is obtained by integrating the integral term 1 / s integrator 36 the omega BL ⁇ .
  • Reference numeral 37 denotes a backlash block in which the relationship of the load torque with respect to the estimated torsion angle ⁇ BL ⁇ is set with a dead zone.
  • the output torque of the back crush block 37 is multiplied by the transfer function G TL (s) from the output of the back crush block of the function multiplier 38 to the load torque, and the multiplied output is the estimated load torque TL ⁇ . It is input to 33b and the function multiplier 35.
  • the obtained estimated torsional velocity ⁇ BL ⁇ and the estimated torsional angle ⁇ BL ⁇ are output to the determination unit 22 in FIG.
  • the load torque is normally determined based on the torsion angle of the motor shaft 2 with respect to the load shaft 4, but is the load torque 0 in the phase in which the gears (gears 3) do not mesh? , A value close to 0 (considering mechanical friction, etc.).
  • the backlash block 37 modifies the estimated torsion angle ⁇ BL ⁇ so that the relationship between the torsion angle and the load torque can be expressed, and generates an input to the transfer function G TL (s) of the function multiplier 38.
  • the transfer functions G ⁇ M (s), G ⁇ L (s), and G TL (s) have a significant effect on the estimated torsion angle ⁇ BL ⁇ not only for a single equation of motion of the motor and load but also for the entire drive system. All equations of motion, friction and stiffness shall be considered within the range.
  • the backlash may be regarded as equivalent to the dead zone processing, but the upper and lower limits of the dead zone do not have to be constant. That is, the upper and lower limits of the dead zone may be changed in consideration of changing the connection with the load, heat, wear, and the like. Further, it is not always necessary to output 0 in the dead zone, and a continuous output may be provided inside and outside the dead zone in consideration of an actual physical phenomenon.
  • each estimator is obtained on the assumption that the input in-control motor torque T Mc is directly applied to the drive system.
  • FIG. 2 which shows the configuration of the backlash control unit 12, there are two switches, an acceleration torque switch 23 and a friction compensation switch 26. If both of these switches are always OFF, the backlash control unit in FIG. 2 has an input torque.
  • the command T * is output as it is as the torque command T ** .
  • the ON / OFF determination of the acceleration torque switch 23 and the friction compensation switch 26 performed by the determination unit 22 is executed according to the flow chart for the switch, and will be described in detail later together with FIG.
  • the torque output in the backlash will be explained by dividing it into two types, friction compensation torque and acceleration torque, according to their role.
  • the friction compensation torque of the friction compensation torque setting unit 27 is added at the final stage of the BL control calculation as shown in FIG.
  • the final stage is because if the input torque command T * is added in the first process, the friction compensation torque will be added to the internal model of the calculation unit 24, and the internal model does not consider friction. This is because the friction compensation torque has an unintended effect on the estimator of the internal model. Therefore, the friction compensation torque may be generated by using a model that considers friction in the internal model instead of the form of direct addition.
  • the positive and negative of the friction compensation torque which is the compensation, is determined by the internal model. Make it the same as the positive and negative of the calculated estimated torsional velocity ⁇ BL ⁇ .
  • the absolute value of friction compensation torque shall be set to an appropriate value according to the load.
  • FIG. 10 shows a simulation of friction compensation.
  • the input torque command T * to the BL control unit 12 was given at a rate of change of 200 Nm per second from ⁇ 50 Nm to 50 Nm.
  • FIG. 10 (a) shows the transition of the torsion angle ⁇ BL in the gear 3 of the plant of FIG. 1 (a), the line 101 shows the simulation result when BL control is not performed, and the line 102 suppresses the torque in the BL section to zero.
  • the line 103 shows the simulation results when only the friction compensation torque is present and the acceleration torque is not considered.
  • FIG. 10B shows the transition of the torsional angular velocity ⁇ BL of the plant of FIG. 1A
  • line 104 shows the simulation result when BL control is not performed
  • line 105 shows the case where the torque in the BL section is suppressed to zero.
  • the line 106 shows the simulation results when only the friction compensation torque is present and the acceleration torque is not considered.
  • the backlash interval in this simulation is the interval of -1 ⁇ BL ⁇ 1.
  • the above-mentioned friction compensation torque is compensation for canceling the torque component in the direction opposite to the direction of exiting the backlash, and it is compensation for preventing deceleration of the meshing speed.
  • the torque for further acceleration is considered.
  • the first is about the appropriate addition position. Since the internal model does not consider friction, the friction compensation torque is not input to the internal model, but the acceleration torque is a component that the internal model considers, so it must be input to the internal model.
  • the second is the upper limit of the torque command. If the motor torque is large when exiting the backlash, that is, when the gear hits, a noise is generated and comfortable driving is hindered. Therefore, the torque in the backlash section needs to be adjusted so as not to generate noise by combining the friction compensation torque and the acceleration torque.
  • the third is the handling of input torque commands. For example, if the method of adding the acceleration torque to the input torque command T * from the upper level is adopted, T * is added to the torque command adjusted to the extent that no sound is generated, and the torque upper limit described in the second item cannot be observed. As another example of the method, if the torque is simply set to a fixed value in the backlash section, the backlash will always be released with a constant torque after the backlash enters, which causes inconvenience in the operation at extremely low speed or when stopped.
  • the torque command T * is limited as shown in FIG. 2 to realize the acceleration torque.
  • the limiter is set before the internal model (corresponding to the first caution), and the torque value that does not generate sound when the gears are engaged is set as the upper and lower limits (corresponding to the second caution). ), Limit processing (corresponding to the third point of caution).
  • the torque command T * is configured to pass through the limiter 21 only when the acceleration torque switch 23 is ON-controlled.
  • FIG. 11 shows the difference between the case where the acceleration torque is provided and the case where the acceleration torque is not provided.
  • FIG. 11A shows the transition of the torsion angle ⁇ BL of the plant of FIG. 1A
  • line 101 shows the simulation result when BL control is not performed
  • line 103 shows only the friction compensation torque and does not consider the acceleration torque.
  • the line 107 shows the simulation result when the friction compensation torque and the acceleration torque are present.
  • FIG. 11B shows the transition of the torsional angular velocity ⁇ BL of the plant of FIG. 1A
  • line 104 shows the simulation result when BL control is not performed
  • line 106 shows only friction compensation torque
  • acceleration torque is not considered.
  • the line 108 shows the simulation result when the friction compensation torque and the acceleration torque are present.
  • the ⁇ BL of line 108 “with friction compensation and with acceleration” is lower than that of line 104 “without BL control”, and is limited to an appropriate value in consideration of sound generation. You can also see that it has been done. Therefore, when the lines 107 and 108 are provided with "with friction compensation and with acceleration", that is, when the friction compensation torque and the acceleration torque are provided, the generation of the collision noise of the gears is suppressed and the responsiveness is reduced as much as possible. It can be prevented.
  • FIG. 4 shows an example of the process (flow chart for the switch) performed by the determination unit 22 of FIG. 2, and in step S1, the torque command T * from the speed control unit 11 and the estimated torsion angle ⁇ calculated by the internal model of FIG. 3 Enter BL ⁇ , estimated torsional velocity ⁇ BL ⁇ .
  • step S2 it is determined whether or not the estimated torsion angle ⁇ BL ⁇ , which is basically the output of the internal model, is within the backlash phase range of the gear (gear 3), and if it is within the range, backlash It is determined as an interval (first determination process). Further, the backlash determination criterion is not limited to ⁇ BL ⁇ , and for example, the estimated load torque T L ⁇ in FIG. 3 may be used.
  • TL ⁇ is the output of the backlash block 37 passed through the transfer function G TL (s), and when the internal model is within the backlash interval, TL ⁇ is near 0 (otherwise, backlash is near 0). The operation cannot be expressed).
  • step S2 it is determined whether or not it is within the backlash section, and if it is outside the backlash section, both the acceleration torque switch 23 and the friction compensation switch 26 are turned off (acceleration torque). (Determine the non-execution of the process to generate and the non-execution of the friction compensation torque addition process) (processing during normal driving).
  • step S2 If the judgment result of step S2 is within the backlash section, the process proceeds to the next branch (step S3). Subsequent branches (steps S3 and S4) are processes for chattering countermeasures.
  • the input torque command T * is a torque command calculated at the upper level based on the amount of operation of the accelerator and the operation panel, and is considered to be close to 0 when stopped. At this time, it is possible that the torque moves up and down near the zero cross, and the polarity of the torque for exiting the backlash may change at high speed.
  • the BL control output (BL-considered torque command T ** ) causes chattering.
  • a dead zone is set in T * , and if it is outside the dead zone, backlash torque is generated ( ON of the acceleration torque switch 23 is confirmed).
  • the appropriate compensation direction that is, the direction in which the backlash is desired to be exited is unknown, and compensation is not performed. That is, the acceleration torque switch 23 and the friction compensation switch 26 are turned off (determined not to perform the process of generating the acceleration torque and not to perform the friction compensation torque addition process).
  • step S4 Since there is another chattering factor in the friction compensation torque, when the torque command T * is out of the dead zone, the vehicle goes to the next branch (step S4).
  • the positive and negative of the friction compensation torque should be the same as the positive and negative of the estimated torsional angular velocity ⁇ BL ⁇ .
  • the estimated friction generation direction may switch at high speed.
  • the polarity of the friction compensation torque changes at high speed, and the BL control output (T ** ) causes chattering.
  • a dead zone is set for the estimated torsional angular velocity ⁇ BL ⁇ , and if the determination result in step S4 is outside the dead zone, friction compensation torque is generated (friction compensation switch 26 is confirmed to be ON) (acceleration torque is generated). Determine the implementation of the process and the friction compensation torque addition process).
  • the direction of friction compensation is unknown within the dead zone of the estimated torsional angular velocity ⁇ BL ⁇ , but it is considered that the direction in which the backlash is desired to be exited is known by the dead zone determination (step S3) of T * in the previous stage, and only the acceleration torque switch 23 is turned ON ( Decide whether to perform the process to generate acceleration torque and not to perform the friction compensation torque addition process).
  • a dead zone when estimating the direction of friction by another method, a dead zone shall be provided according to the method and chattering processing shall be performed.
  • step S3 It is necessary to determine the dead band width for each dead band of the torque command T * in step S3 and the estimated torsional angular velocity ⁇ BL ⁇ in step S4, but this is a detected value such as the resolution and error of the number of effective digits of digital calculation and adaptive correction. Usually, it is set to 1% or less of the rating in consideration of the indirect effect on. It may be set to about 0.1% while checking in an actual plant.
  • the backlash section by determining the backlash section and outputting an appropriate torque, it is possible to suppress the collision noise of the gear when the backlash is passed, and the responsiveness is not lowered more than necessary. It is possible to perform control within the backlash section that chattering of the control output does not occur, and it is possible to improve the operating performance of the electric motor drive system that drives the load via gears.
  • Example 2 In the first embodiment, a method of predicting the backlash section and instructing an appropriate motor torque without using a speed sensor was considered.
  • a large amount of disturbance may occur, which causes an error between the internal model and the actual drive system, resulting in a misprediction of the timing of entering backlash.
  • Such a drive system includes, for example, an automobile. When driving a car, its own weight acts as a disturbance on a slope.
  • Example 2 made it possible to compensate for disturbance by using a speed sensor.
  • FIG. 5 shows the system configuration of the backlash control unit 12 of FIG. 1 (b) in the second embodiment.
  • the difference from FIG. 2 of the first embodiment is that, for example, the detected motor angular velocity ⁇ det from the speed sensor attached to the motor 1 is input to the internal model configured in the calculation unit 54, and the detected motor angular velocity ⁇ det and the internal model are input. It is to feed back to the internal model by, for example, PI control so that the difference becomes zero by comparing with the estimated angular velocity ⁇ BL ⁇ calculated in, and the other parts are configured in the same manner as in FIG.
  • the operation of determining ON / OFF of the acceleration torque switch 23 and the friction compensation switch 26 is the same as the operation of the first embodiment in consideration of whether or not it is a backlash section according to the switch flowchart (flow of FIG. Will be done.
  • the internal model in the calculation unit 54 of the second embodiment is configured as shown in FIG. 6, and the same parts as those in FIG. 3 are indicated by the same reference numerals.
  • Reference numeral 41 denotes a subtractor that takes a deviation between the estimated motor angular velocity ⁇ M ⁇ calculated by the function multiplier 32 and the input detection motor angular velocity ⁇ det, and the deviation output is a positive proportional gain of the gain multiplier 42.
  • the KP and the positive integrated gain KI of the gain multiplier 43 are each multiplied.
  • the output of the gain multiplier 43 is integrated by the integrator 44.
  • the output of the gain multiplier 42 (P control component) and the output of the integrator 44 (I control component) are added by the adder 45, and the added output is fed back to the front of the function multiplier 35.
  • Reference numeral 46 denotes a subtractor for subtracting the output of the adder 45 from the estimated load torque T L ⁇ which is the output of the function multiplier 38, and the subtracted output is input to the function multiplier 35.
  • the internal model of FIG. 6 is provided with a disturbance compensation system that performs PI control on the deviation of the subtractor 41 and feeds back the output of the adder 45 to the subtractor 46, and the other parts are the same as those of FIG. It is configured in.
  • the feedback position of the PI control although the front of the transfer function G .omega.L function multiplier 35 in FIG. 6 (s), the estimated motor angular velocity omega M ⁇ and detection of the motor angular velocity ⁇ det difference another be zero Since it can be achieved by feeding back to the position, it may be fed back to another position, for example, before the transfer function G ⁇ M (s) of the function multiplier 32.
  • the estimated torsion angle ⁇ BL ⁇ and the estimated torsional angular velocity ⁇ BL ⁇ used for determining the backlash section change sensitively to disturbance depending on the feedback position.
  • the control of the backlash section may be affected.
  • the compensation method in that case, first, the output of PI control or only the I term is multiplied by the gain (gear ratio, etc.) according to the feedback position, and the estimated disturbance is converted into the motor shaft to obtain the motor torque disturbance. Then, compensation is performed by increasing or decreasing the vertical limit value of the acceleration torque (limit value of the limiter 21) and the friction compensation torque value of the friction compensation torque setting unit 27 by the amount of the motor torque disturbance.
  • FIG. 12 shows the effect of disturbance compensation in the backlash section.
  • the simulation conditions are basically the same as in the first embodiment, except that a constant steady disturbance is always applied to the load side during the simulation period.
  • FIG. 12A shows the transition of the torsion angle ⁇ BL of the plant of FIG. 1A
  • line 111 is a simulation result in the case of no disturbance compensation (Example 1)
  • line 112 is with disturbance compensation (Example 2).
  • the simulation results in the case of) are shown.
  • FIG. 12 (b) shows the transition of the torsion angular velocity ⁇ BL of the plant of FIG. 1 (a), line 113 is a simulation result in the case of no disturbance compensation (Example 1), and line 114 is with disturbance compensation (Example 2). The simulation results in the case of) are shown.
  • FIG. 12 (c) shows the transition of the torsion angle ⁇ BL when there is no disturbance compensation (Example 1)
  • line 115 is the simulation result of the torsion angle estimated and calculated by the internal model
  • line 116 is FIG. 1 (a). The simulation results of the torsion angle of the plant are shown.
  • FIG. 12 (d) shows the transition of the torsion angle ⁇ BL when there is disturbance compensation (Example 2)
  • line 117 is the simulation result of the torsion angle estimated by the internal model
  • line 118 is the simulation result of the torsion angle in FIG. 1 (a). The simulation results of the torsion angle of the plant are shown.
  • FIGS. 12 (c) and 12 (d) the torsion angles of the plant and the internal model are compared in order to see the influence of the disturbance on the backlash interval estimation in more detail, and FIGS. 12 (a) and 12 (b) show. The area around the backlash is enlarged.
  • FIGS. 12A and 12B it can be seen that the second embodiment (lines 112 and 114) in which the disturbance compensation is performed passes through the backlash faster, and the responsiveness is improved by the disturbance compensation. Recognize.
  • Example 3 In Example 1, it was decided to set a torque value that is compatible with both responsiveness and impact in the backlash section. However, the speed becomes a problem with respect to the time until the gear (gear 3) meshes and the momentum contributing to the impact. Further, in the case of the first embodiment, since the vehicle continues to accelerate with a constant torque within the backlash section, if the backlash of the plant is large with respect to the model data regarding the backlash angle, the acceleration will be too large and noise will be generated. There are also problems due to parameter errors. As these measures, in Example 3, the control performance of the backlash section was improved by performing control based on the speed.
  • the important point is that the friction compensation torque needs to be compensated in the same manner as in Example 1 in order to compensate for the torque component generated as friction. Therefore, the acceleration torque is controlled based on the speed.
  • FIG. 7 shows the system configuration of the backlash control unit 12 of FIG. 1B in the third embodiment.
  • the difference from FIG. 2 of the first embodiment is that the backlash speed control unit 80 is provided as the acceleration torque generation unit instead of the limiter 21, and the estimated torsional angular velocity ⁇ calculated by the internal model of the calculation unit 24 is provided.
  • BL ⁇ is input to the backlash speed control unit 80, and the torque command T s is output from the backlash speed control unit 80, and the other parts are configured in the same manner as in FIG.
  • the operation of determining ON / OFF of the acceleration torque switch 23 and the friction compensation switch 26 in consideration of whether or not it is a backlash section according to the switch flowchart (flow of FIG. 4) of the determination unit 22 is the operation of the first embodiment. It is done in the same way.
  • the backlash speed control unit 80 takes in the estimated torsional velocity ⁇ BL ⁇ calculated by the internal model of the arithmetic unit 24, and controls the speed so that the estimated torsional velocity ⁇ BL ⁇ becomes the set speed command ⁇ BL * ( For example, PI control), and is configured as shown in FIG. 8, for example.
  • 81 is a speed command setting unit which is the speed command omega BL * is set, in the speed instruction omega BL * subtractor 82, the estimated torsional angular velocity calculated by the internal model of the arithmetic unit 24 omega BL ⁇ The deviation from is taken.
  • the deviation output of the subtractor 82 is multiplied by the positive proportional gain KP BL of the gain multiplier 83 and the positive integral gain KI BL of the gain multiplier 84, respectively.
  • the output of the gain multiplier 84 is integrated by the integrator 85.
  • the output of the output of the gain multiplier 83 and (P control component) integrator 85 (I control component) are added by the adder 86, the addition output as the torque command T s, the torque command T s selection of acceleration torque switch 23 Input to the side contact.
  • the acceleration torque is determined by controlling the torsional angular velocity ⁇ BL of the motor shaft 2 with respect to the load shaft 4.
  • the speed command ⁇ BL * for the estimated torsional velocity ⁇ BL ⁇ is set considering the positive and negative of the direction in which the backlash is to be exited.
  • the KI BL may be set to 0, that is, it may be simplified to only proportional control, in consideration of the fact that a mechanism for appropriately resetting the values does not have a value is required for mounting and the control system is complicated.
  • the output torque command T s may be output through the limiter because the PI control may calculate a large torque command, but at that time, the absolute value of the upper and lower limits of the limiter is set to the limiter 21 installed in the first embodiment. If the value is less than the absolute value of, the acceleration performance will be inferior to that of the first embodiment. Therefore, it is necessary to carefully determine the upper and lower limits of the limiter.
  • FIG. 13 shows the effect of BL speed control in the backlash section.
  • Example 1 using only the limiter and Example 3 using BL speed control are compared.
  • the speed command ⁇ BL * of the backlash speed control unit 80 was kept constant in consideration of the generation of sound due to acceleration exceeding the responsiveness. Further, PI control is simplified to P control only for the above-mentioned reason.
  • 13 (a) shows the transition of the torsion angle ⁇ BL of the plant of FIG. 1 (a)
  • line 121 is a simulation result in the case of only the limiter (Example 1)
  • line 122 is an example using BL speed control. The simulation results in the case of 3 are shown respectively.
  • 13 (b) shows the transition of the torsional angular velocity ⁇ BL of the plant of FIG. 1 (a)
  • line 123 is a simulation result in the case of only the limiter (Example 1)
  • line 124 is an example using BL speed control. The simulation results in the case of 3 are shown respectively.
  • Example 1 In the graph of the torsion angle ⁇ BL in FIG. 13 (a), Example 1 (line 121) passed through the backlash slightly earlier, but no significant difference was observed. Then, I would like to confirm the speed control performance by looking at the graph of FIG. 13 (b).
  • the torsion angular velocity ⁇ BL In the first embodiment (line 123), since the torque is constant, the torsion angular velocity ⁇ BL is accelerated at a constant acceleration.
  • Example 3 in Example 3 (line 124), the torsion angular velocity ⁇ BL is maintained at a constant velocity by speed control.
  • Example 3 BL control that is more resistant to parameter errors than in Example 1 is possible.
  • BL speed control is controlled at high speed at the beginning of the backlash section and then decelerated so that the impact of the gear (gear 3) does not generate sound, it will replace the robustness to parameter error. It is also possible to improve the responsiveness.
  • the collision noise of the gear when the backlash is exited is suppressed. It is possible to perform control within the backlash section, such as being able to do so, not lowering the responsiveness more than necessary, not causing chattering of the control output, and being less susceptible to parameter errors than in Example 1, and the load is applied via gears.
  • the operating performance of the driving motor drive system can be improved.
  • Example 4 The disturbance compensation of Example 2 and the BL speed control of Example 3 can be used in combination without adversely affecting each other due to the difference in the change position. Therefore, in the fourth embodiment, the backlash control unit 12 of FIG. 1 (b) is configured as shown in FIG. 9 by combining the second embodiment and the third embodiment.
  • the backlash section is determined, the torque for appropriately controlling the torsional angular velocity of the motor shaft with respect to the load shaft is output, and the backlash is compensated by comparing the detection and estimation of the motor angular velocity. It is possible to suppress the collision noise of the gear when it comes off, do not lower the responsiveness more than necessary, do not cause chattering of the control output, prevent the deterioration of control performance caused by the estimation error due to disturbance, the influence of the parameter error compared to Example 1. It is possible to control the backlash section so that it is less susceptible to damage, and it is possible to improve the operating performance of the motor drive system that drives the load via gears.

Abstract

The present invention improves the operation performance of an electric motor drive system for driving a load via a gear by outputting an appropriate torque in a backlash zone. This backlash control device of an electric motor drive system for driving a load via a gear by an electric motor connected to an inverter is provided with: an acceleration torque switch 23 for adding, to a torque command T*, an acceleration torque for accelerating a torque within a backlash zone; and a friction compensation switch 26 for adding a friction compensation torque for canceling a torque component in a direction opposite to a direction of exiting from the backlash zone. The backlash control device determines the backlash zone according to a switch flowchart in a determination unit 22 on the basis of an estimated twisting angle θBL^, an estimated twisting angular speed ωBL^, and the torque command T* which are estimated and calculated using an internal model in a calculation unit 24, said internal model describing the electric motor drive system, and determines the ON/OFF of the switches 23, 26 and outputs a torque command T** considering backlash.

Description

電動機駆動系におけるバックラッシュ制御装置およびバックラッシュ制御方法Backlash control device and backlash control method in the motor drive system
 本発明は、電動機がギアを介して負荷を駆動するシステムにおける、応答性及び衝撃抑制に関する。 The present invention relates to responsiveness and impact suppression in a system in which an electric motor drives a load via gears.
 バッテリもしくは交流電源とレクティファイア(ダイオード整流器、PWMコンバータ、120°通流コンバータなど)の組み合わせからなる直流電圧を生じる機構、直流電圧を交流電圧に変換しモータ(電動機)に印加するインバータ、ギアを介して負荷を回転させるモータ、などから構成される駆動系を考える。ここでインバータは、アクセルや操作盤の操作によって生成されるトルク指令に基づいて、モータが適正なトルクで運転できるような振幅・周波数の交流電圧を生成してモータへ印加するものとする。このような駆動系をもつシステムには例えばエレベータ、工作機械といったものがある。 A mechanism that generates a DC voltage consisting of a combination of a battery or AC power supply and a rectifier (diode rectifier, PWM converter, 120 ° flow converter, etc.), an inverter that converts the DC voltage into an AC voltage and applies it to the motor (motor), and gears. Consider a drive system consisting of a motor that rotates a load via a motor, and the like. Here, the inverter generates an AC voltage having an amplitude and frequency that allows the motor to operate with an appropriate torque based on a torque command generated by operating the accelerator or the operation panel, and applies the AC voltage to the motor. Systems having such a drive system include, for example, elevators and machine tools.
 ところで、ギアをもつ駆動系にはバックラッシュが存在し、バックラッシュ区間内では駆動系の負荷側にモータ側のトルクが伝達されないため、制御の応答性低下や不安定化などの影響を及ぼすことがある。またその影響を避けるためにバックラッシュ区間で高速に歯車を回しバックラッシュ区間を短く終えようとすると、バックラッシュ終了時、つまり歯車が当たるときに歯車同士の相対速度によっては衝撃が大きくなり、音を生じる恐れがある。このような衝撃音は、システムの使用者に不快感、不安感を与える恐れがあり、好ましくない。 By the way, backlash exists in the drive system having gears, and the torque on the motor side is not transmitted to the load side of the drive system in the backlash section, which has an influence such as deterioration of control responsiveness and instability. There is. Also, if you try to finish the backlash section short by turning the gears at high speed in the backlash section to avoid the influence, the impact will increase depending on the relative speed between the gears at the end of the backlash, that is, when the gears hit, and the sound will be heard. May occur. Such an impact sound may cause discomfort and anxiety to the user of the system, which is not preferable.
 これらのようなバックラッシュのもたらす影響に関して、従来、例えば特許文献1の舵取装置、特許文献2の作業機械では、バックラッシュ区間のみフィードバック制御のゲインを下げることでバックラッシュ区間の制御安定性に関して対策している。 Regarding the effects of backlash such as these, conventionally, for example, in the steering device of Patent Document 1 and the work machine of Patent Document 2, the control stability of the backlash section is related by lowering the gain of the feedback control only in the backlash section. We are taking measures.
 他にも、特許文献3のエレベータにおける歯が接触しない歯車、特許文献4の車両における複数の加速度センサのように特別な構造を用いて衝撃や制御応答性の対策をする場合もある。 In addition, there are cases where a special structure is used such as a gear that does not contact teeth in the elevator of Patent Document 3 and a plurality of acceleration sensors in a vehicle of Patent Document 4 to take measures against impact and control responsiveness.
 また、特許文献5の工作機械ではバックラッシュ区間における不安定なトルク成分を吸収する運転を行い、制御安定性を向上している。 Further, the machine tool of Patent Document 5 is operated to absorb an unstable torque component in the backlash section to improve control stability.
 さらに、特許文献6の車両、特許文献7の成形機、特許文献8のエレベータ、の制御のように、バックラッシュに入ることが既知の運転について、バックラッシュ区間内の制御をあらかじめ決められたパターンに沿って行い、制御応答性と衝撃の緩和の両者への対策を行う方法も知られている。 Further, for operations known to enter backlash, such as the control of the vehicle of Patent Document 6, the molding machine of Patent Document 7, and the elevator of Patent Document 8, the control within the backlash section is determined in advance. It is also known to take measures for both control response and impact mitigation.
特開2004-358985号公報Japanese Unexamined Patent Publication No. 2004-358985 特開2012-10462号公報Japanese Unexamined Patent Publication No. 2012-10462 特開平1-120457号公報Japanese Unexamined Patent Publication No. 1-120457 特開2012-30745号公報Japanese Unexamined Patent Publication No. 2012-30745 特開平10-254548号公報Japanese Unexamined Patent Publication No. 10-254548 特開2013-183504号公報Japanese Unexamined Patent Publication No. 2013-183504 特開2003-71895号公報Japanese Unexamined Patent Publication No. 2003-71895 特開平11-11688号公報Japanese Unexamined Patent Publication No. 11-11688
 特許文献1、特許文献2のようにゲインを下げる方法では、速度センサを必要としている。また、バックラッシュ区間内では、例えば始めのうちはよく加速し、そののちに歯車の当たる衝撃を抑制するために適度に減速する運転法が応答性と衝撃抑制の両立の観点から優れるが、これらの制御では安定性を重視しており、バックラッシュ区間内の細かな応答性、衝撃を調整するような運転は考慮していない。 The method of lowering the gain as in Patent Document 1 and Patent Document 2 requires a speed sensor. Further, in the backlash section, for example, an operation method in which acceleration is good at the beginning and then moderately decelerated in order to suppress the impact of the gears is excellent from the viewpoint of both responsiveness and impact suppression. In the control of, the stability is emphasized, and the operation that adjusts the fine responsiveness and impact in the backlash section is not considered.
 また、特許文献3、特許文献4のように特別な構造を用いる方法は駆動系に構造上の工夫をなす必要があり、設計コストの上昇をもたらす。 Further, the method using a special structure as in Patent Document 3 and Patent Document 4 requires structural ingenuity in the drive system, resulting in an increase in design cost.
 また、特許文献5のように振動成分を考慮する方式は振動成分を得るための繰り返しのテスト運転を必要とし、応答性、歯車が当たる衝撃の議論もなされていない。 Further, the method of considering the vibration component as in Patent Document 5 requires repeated test operation to obtain the vibration component, and the responsiveness and the impact of the gear hitting are not discussed.
 また、特許文献6、特許文献7、特許文献8のようにあらかじめ決められた制御を行う方式は、上記のように始めのうちによく加速し、のちに適切に減速するという衝撃を抑制しつつ応答性も高い運転を表現可能であるが、テーブルの作成コストが生じるという問題をもつ。また、テーブルであるがゆえに個体ごとのパラメータ誤差、及び外乱への対応が難しいという問題を持つ。 Further, the method of performing predetermined control as in Patent Document 6, Patent Document 7, and Patent Document 8 suppresses the impact of accelerating well at the beginning and then appropriately decelerating as described above. Although it is possible to express driving with high responsiveness, there is a problem that a table creation cost is incurred. In addition, since it is a table, there is a problem that it is difficult to deal with parameter errors and disturbances for each individual.
 本発明は上記課題を解決するものであり、その目的は、バックラッシュ区間において適切なトルクを出力することにより、ギアを介して負荷を駆動する電動機駆動系の運転性能を改善することができる電動機駆動系におけるバックラッシュ制御装置、制御方法を提供することにある。 The present invention solves the above problems, and an object of the present invention is to improve the operating performance of an electric motor drive system that drives a load via gears by outputting an appropriate torque in a backlash section. The purpose of the present invention is to provide a backlash control device and a control method in a drive system.
 上記課題を解決するための請求項1に記載の電動機駆動系におけるバックラッシュ制御装置は、
 インバータに接続された電動機によって、ギアを介して負荷を駆動する電動機駆動系におけるバックラッシュ制御装置であって、
 バックラッシュ区間を判定する手段を有し、設定された速度指令に対応するトルク指令が入力され、バックラッシュ区間内でトルクを加速させるための加速トルクを生成する処理、又はバックラッシュ区間を抜ける方向と逆方向のトルク成分を打ち消すための摩擦補償トルク加算処理の、少なくともいずれか一方を実施してバックラッシュ考慮トルク指令を演算するバックラッシュ制御部を備え、
 前記演算されたバックラッシュ考慮トルク指令に基づいて前記インバータを制御することを特徴としている。
The backlash control device in the electric motor drive system according to claim 1 for solving the above problems is
A backlash control device in an electric motor drive system that drives a load via gears by an electric motor connected to an inverter.
It has a means to determine the backlash section, a torque command corresponding to the set speed command is input, a process to generate acceleration torque for accelerating the torque in the backlash section, or a direction to exit the backlash section. It is equipped with a backlash control unit that calculates the backlash-considered torque command by performing at least one of the friction compensation torque addition processing for canceling the torque component in the opposite direction.
It is characterized in that the inverter is controlled based on the calculated backlash-considered torque command.
 請求項2に記載の電動機駆動系におけるバックラッシュ制御装置は、請求項1において、
 前記バックラッシュ制御部は、
 前記加速トルクを生成する処理の実施が決定されたときに加速トルクを生成する加速トルク生成部と、
 バックラッシュ区間における電動機-ギア間のモータ軸とギア-負荷間の負荷軸とのねじり角に対する負荷トルクの関係を、不感帯を備えて設定したバックラッシュブロックを境とし、電動機側ブロック、バックラッシュブロック、負荷側ブロックに分けて前記電動機駆動系を表現した内部モデルを有し、前記内部モデルによって、前記加速トルク生成部の出力トルクから、推定モータ角速度を演算し、前記モータ軸の負荷軸に対する推定ねじり角速度と、前記モータ軸の負荷軸に対する推定ねじり角又は推定負荷トルクを演算して出力する演算部と、
 前記摩擦補償トルク加算処理の実施が決定されたときに、前記加速トルク生成部の出力トルクに対して摩擦補償トルクを加算する摩擦補償トルク加算部と、
 前記演算部で演算されたモータ軸の負荷軸に対する推定ねじり角または推定負荷トルクと、モータ軸の負荷軸に対する推定ねじり角速度と、前記速度指令に対応するトルク指令とを入力とし、バックラッシュ区間であるか否かの判定を行い、その判定結果に基づいて、前記加速トルク生成部における加速トルクを生成する処理の実施、不実施の決定、前記摩擦補償トルク加算部における摩擦補償トルク加算処理の実施、不実施の決定を行う判定部と、を備えたことを特徴とする。
The backlash control device in the electric motor drive system according to claim 2 is claimed in claim 1.
The backlash control unit
An acceleration torque generator that generates acceleration torque when it is decided to perform the process of generating acceleration torque.
The relationship between the load torque with respect to the twist angle between the motor shaft between the motor and the gear and the load shaft between the gear and the load in the back crash section is defined by the back crash block set with a dead zone, and the motor side block and back crash block. , It has an internal model that expresses the motor drive system by dividing it into load side blocks, and the estimated motor angular speed is calculated from the output torque of the acceleration torque generator by the internal model, and is estimated for the load shaft of the motor shaft. A calculation unit that calculates and outputs the torsion angle speed and the estimated torsion angle or estimated load torque of the motor shaft with respect to the load shaft.
When the execution of the friction compensation torque addition process is decided, the friction compensation torque addition unit that adds the friction compensation torque to the output torque of the acceleration torque generation unit, and the friction compensation torque addition unit.
The estimated torsion angle or estimated load torque of the motor shaft with respect to the load shaft calculated by the calculation unit, the estimated torsional angle speed of the load shaft of the motor shaft, and the torque command corresponding to the speed command are input, and in the backlash section. It is determined whether or not there is, and based on the determination result, the process of generating the acceleration torque in the acceleration torque generating unit is executed, the decision not to be performed, and the friction compensation torque addition process in the friction compensation torque adding unit is performed. It is characterized by being provided with a determination unit for determining non-implementation.
 請求項3に記載の電動機駆動系におけるバックラッシュ制御装置は、請求項2において、
 前記加速トルク生成部は、入力されたトルク指令に対して上限、下限の制限をかけるリミッタを有していることを特徴とする。
The backlash control device in the electric motor drive system according to claim 3 is claimed in claim 2.
The acceleration torque generating unit is characterized by having a limiter that limits the upper limit and the lower limit of the input torque command.
 請求項4に記載の電動機駆動系におけるバックラッシュ制御装置は、請求項2において、
 前記加速トルク生成部は、前記内部モデルで演算された推定ねじり角速度が、設定した速度指令となるように速度制御するバックラッシュ速度制御部を有していることを特徴とする。
The backlash control device in the electric motor drive system according to claim 4 is claimed in claim 2.
The acceleration torque generation unit is characterized by having a backlash speed control unit that controls the speed so that the estimated torsion angular velocity calculated by the internal model becomes a set speed command.
 請求項5に記載の電動機駆動系におけるバックラッシュ制御装置は、請求項2から4のいずれか1項において、
 前記内部モデルは、前記電動機の角速度を検出した検出モータ角速度と前記演算された推定モータ角速度との偏差をとり、その偏差分が零となるように内部モデルにフィードバックする外乱補償系を有していることを特徴とする。
The backlash control device in the electric motor drive system according to claim 5 is according to any one of claims 2 to 4.
The internal model has a disturbance compensation system that takes a deviation between the detected motor angular velocity that detects the angular velocity of the electric motor and the calculated estimated motor angular velocity, and feeds back the deviation to the internal model so that the deviation becomes zero. It is characterized by being.
 請求項6に記載の電動機駆動系におけるバックラッシュ制御装置は、請求項2から5のいずれか1項において、
 前記判定部は、
 前記モータ軸の負荷軸に対する推定ねじり角が前記ギアのバックラッシュ位相範囲内であるか、又は推定負荷トルクが零付近であるとき、バックラッシュ区間であると判定し、それ以外はバックラッシュ区間でないと判定する第1の判定処理と、
 前記第1の判定処理によりバックラッシュ区間であると判定された場合に、前記速度指令に対応するトルク指令が、設定した不感帯内であるか否かを判定する第2の判定処理と、
 前記第2の判定処理により不感帯内でないと判定された場合に、推定ねじり角速度が、設定した不感帯内であるか否かを判定する第3の判定処理とを行い、
 前記第1の判定処理によりバックラッシュ区間でないと判定された場合と、第2の判定処理によりトルク指令が不感帯内であると判定された場合に、前記加速トルクを生成する処理の不実施および摩擦補償トルク加算処理の不実施を決定し、
 前記第3の判定処理により推定ねじり角速度が不感帯内であると判定された場合に、前記加速トルクを生成する処理の実施を決定し、摩擦補償トルク加算処理の不実施を決定し、
 前記第3の判定処理により推定ねじり角速度が不感帯内でないと判定された場合に、前記加速トルクを生成する処理の実施および摩擦補償トルク加算処理の実施を決定することを特徴としている。
The backlash control device in the electric motor drive system according to claim 6 is according to any one of claims 2 to 5.
The determination unit
When the estimated torsion angle of the motor shaft with respect to the load shaft is within the backlash phase range of the gear, or when the estimated load torque is near zero, it is determined to be a backlash section, and other than that, it is not a backlash section. The first determination process to determine that
When the backlash section is determined by the first determination process, the second determination process for determining whether or not the torque command corresponding to the speed command is within the set dead zone,
When it is determined by the second determination process that it is not within the dead zone, a third determination process for determining whether or not the estimated torsional angular velocity is within the set dead zone is performed.
When it is determined by the first determination process that it is not a backlash section and when it is determined by the second determination process that the torque command is within the dead zone, the process of generating the acceleration torque is not performed and friction Decided not to implement the compensation torque addition process,
When it is determined by the third determination process that the estimated torsional angular velocity is within the dead zone, it is determined to perform the process of generating the acceleration torque, and it is determined not to perform the friction compensation torque addition process.
When it is determined by the third determination process that the estimated torsional angular velocity is not within the dead zone, it is characterized in that the execution of the process of generating the acceleration torque and the execution of the friction compensation torque addition process are determined.
 請求項7に記載の電動機駆動系におけるバックラッシュ制御方法は、
 請求項1から6のいずれか1項に記載の電動機駆動系におけるバックラッシュ制御装置を実行することを特徴としている。
(1)請求項1~7に記載の発明によれば、バックラッシュ区間において適切なトルクを出力することにより、ギアを介して負荷を駆動する電動機駆動系の運転性能を改善することができる。
(2)請求項2に記載の発明によれば、バックラッシュを抜けた際のギアの衝突音の発生を抑制しつつ、応答性の低下を防ぐことができる。
(3)請求項3に記載の発明によれば、トルク上限を超えることのないバックラッシュ考慮トルク指令に基いて制御を行うことができる。
(4)請求項4に記載の発明によれば、モータ軸の負荷軸に対するねじり角速度を適切に制御するトルクを加速トルクとしたので、パラメータ誤差の影響を受けにくく、バックラッシュ区間の制御性能が向上する。
(5)請求項5に記載の発明によれば、外乱により、電動機駆動系を表現した内部モデルと実際の電動機駆動系との間で誤差が生じても、その誤差による影響を抑制することができる。
(6)請求項6に記載の発明によれば、バックラッシュ制御部の出力(バックラッシュ考慮トルク指令)のチャタリング発生を防ぐことができる。
The backlash control method in the electric motor drive system according to claim 7 is
It is characterized in that the backlash control device in the electric motor drive system according to any one of claims 1 to 6 is executed.
(1) According to the inventions of claims 1 to 7, the operating performance of the electric motor drive system that drives the load via the gear can be improved by outputting an appropriate torque in the backlash section.
(2) According to the second aspect of the present invention, it is possible to prevent a decrease in responsiveness while suppressing the generation of a gear collision sound when exiting the backlash.
(3) According to the invention of claim 3, control can be performed based on a backlash-considered torque command that does not exceed the upper limit of torque.
(4) According to the invention of claim 4, since the torque for appropriately controlling the torsional angular velocity of the motor shaft with respect to the load shaft is set as the acceleration torque, it is not easily affected by the parameter error and the control performance of the backlash section is improved. improves.
(5) According to the invention of claim 5, even if an error occurs between the internal model expressing the electric motor drive system and the actual electric motor drive system due to the disturbance, the influence of the error can be suppressed. it can.
(6) According to the invention of claim 6, it is possible to prevent chattering of the output of the backlash control unit (backlash consideration torque command).
本発明の実施形態例における電動機駆動系の構成を表し、(a)はモータと負荷の接続構成図、(b)は制御の構成図。The configuration of the motor drive system in the embodiment of the present invention is shown, (a) is a connection configuration diagram of a motor and a load, and (b) is a configuration diagram of a control. 本発明の実施例1におけるバックラッシュ制御のシステム構成図。The system block diagram of the backlash control in Example 1 of this invention. 本発明の実施例1における内部モデルのシステム構成図。The system block diagram of the internal model in Example 1 of this invention. 本発明の実施形態例における要部のフローチャート。The flowchart of the main part in the Example of Embodiment of this invention. 本発明の実施例2におけるバックラッシュ制御のシステム構成図。The system block diagram of the backlash control in Example 2 of this invention. 本発明の実施例2における内部モデルのシステム構成図。The system block diagram of the internal model in Example 2 of this invention. 本発明の実施例3におけるバックラッシュ制御のシステム構成図。The system block diagram of the backlash control in Example 3 of this invention. 本発明の実施例3におけるバックラッシュ速度制御のシステム構成図。The system block diagram of the backlash speed control in Example 3 of this invention. 本発明の実施例4におけるバックラッシュ制御のシステム構成図。The system block diagram of the backlash control in Example 4 of this invention. バックラッシュ区間における摩擦補償の効果を表し、(a)はねじり角θBLのグラフ、(b)はねじり角速度ωBLのグラフ。The effect of friction compensation in the backlash section is shown, (a) is a graph of torsion angle θ BL , and (b) is a graph of torsion angular velocity ω BL . バックラッシュ区間における加速トルクの効果を表し、(a)はねじり角θBLのグラフ、(b)はねじり角速度ωBLのグラフ。The effect of acceleration torque in the backlash section is shown, (a) is a graph of torsion angle θ BL , and (b) is a graph of torsion angular velocity ω BL . バックラッシュ区間における外乱補償の効果を表し、(a)はねじり角θBLのグラフ、(b)はねじり角速度ωBLのグラフ、(c)は外乱補償無しのねじり角比較のグラフ、(d)は外乱補償有りのねじり角比較のグラフ。The effect of disturbance compensation in the backlash section is shown, (a) is a graph of torsion angle θ BL , (b) is a graph of torsion angular velocity ω BL , (c) is a graph of torsion angle comparison without disturbance compensation, (d). Is a graph of torsion angle comparison with disturbance compensation. バックラッシュ区間におけるバックラッシュ速度制御の効果を表し、(a)はねじり角θBLのグラフ、(b)はねじり角速度ωBLのグラフ。The effect of backlash velocity control in the backlash section is shown, (a) is a graph of torsional velocity θ BL , and (b) is a graph of torsional angular velocity ω BL .
 以下、図面を参照しながら本発明の実施の形態を説明するが、本発明は下記の実施形態例に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the present invention is not limited to the following examples of embodiments.
 以下では、「バックラッシュ」を「BL」と略記することがある。 In the following, "backlash" may be abbreviated as "BL".
 (実施例1)
 図1に実施例1における駆動系のシステム構成図を示す。図1(a)の接続構成図は、モータ(電動機)1がギア3を介して負荷5を回転させる駆動系を表し、2はモータ1-ギア3間のモータ軸、4はギア3-負荷5間の負荷軸を示している。負荷軸4に対するモータ軸2の相対的な角速度(ねじり角速度)をωBL(この際2軸の角速度にギア比を考慮する)とし、2つの軸のねじり角をθBLとしている。バックラッシュ区間内ではωBLはバックラッシュを歯車(ギア3)が通過する角速度である。図1(a)を以降では「プラント」と称することもある。
(Example 1)
FIG. 1 shows a system configuration diagram of the drive system according to the first embodiment. The connection configuration diagram of FIG. 1A represents a drive system in which a motor (motor) 1 rotates a load 5 via a gear 3, 2 is a motor shaft between motor 1- gear 3, and 4 is gear 3-load. The load axis between 5 is shown. The relative angular velocity (torsion angular velocity) of the motor shaft 2 with respect to the load shaft 4 is ω BL (at this time, the gear ratio is taken into consideration in the angular velocity of the two shafts), and the torsion angle of the two shafts is θ BL . Within the backlash section, ω BL is the angular velocity at which the gear (gear 3) passes through the backlash. FIG. 1A is hereinafter sometimes referred to as a “plant”.
 図1(b)の制御システムではアクセル踏込量や操作盤操作量など駆動系の形態に応じて発生、調節される速度指令ω*が入力される。速度指令ω*は速度制御部11へと入力され、速度制御部11からは適切に目標の速度へ到達するためのトルク指令T*が出力される。速度制御について、図1(b)では速度に関するセンサを設けていないが速度センサレスであることは必須事項ではなく、センサで検出したモータ位相、ひいては位相を用いて計算されるモータ速度に基づいてトルク指令T*を決めてもよい。 In the control system of FIG. 1B, a speed command ω * that is generated and adjusted according to the form of the drive system such as the accelerator depression amount and the operation panel operation amount is input. The speed command ω * is input to the speed control unit 11, and the speed control unit 11 outputs a torque command T * for appropriately reaching the target speed. Regarding speed control, although the speed sensor is not provided in FIG. 1 (b), it is not essential that the speed sensor is not provided, and the torque is based on the motor phase detected by the sensor and the motor speed calculated using the phase. Command T * may be determined.
 速度制御部11から出力されたトルク指令T*はバックラッシュ制御部12に入力され、バックラッシュ制御部12ではバックラッシュの存在を考慮したBL考慮トルク指令T**を演算する。バックラッシュ制御部12から出力されたBL考慮トルク指令T**は、電流制御部13に入力される。電流制御部13はモータ1の電流を検出した検出電流に基づいて目標のトルクを出力するための電圧指令を演算し、その電圧を実現するためのゲート信号を出力してインバータ14を適切に制御する。インバータ14は三相交流電圧をモータ1に印加し、モータ1では電磁誘導によってモータトルクTMが生じる。 The torque command T * output from the speed control unit 11 is input to the backlash control unit 12, and the backlash control unit 12 calculates the BL-considered torque command T ** in consideration of the presence of the backlash. The BL-considered torque command T ** output from the backlash control unit 12 is input to the current control unit 13. The current control unit 13 calculates a voltage command for outputting a target torque based on the detected current that detects the current of the motor 1, outputs a gate signal for realizing the voltage, and appropriately controls the inverter 14. To do. Inverter 14 applies a three-phase AC voltage to the motor 1, the motor torque T M is caused by electromagnetic induction in the motor 1.
 図2に実施例1におけるバックラッシュ制御部12のシステム構成図を示す。バックラッシュ制御部12には速度制御部11からのトルク指令T*が入力される。入力されたトルク指令T*は3つに分岐し、一方では特に演算はせず、もう一方ではリミッタ21を経てリミットトルク指令Tlimとなり、残りの一つは、後述の図4に示す、加速トルクスイッチと摩擦補償スイッチのON/OFFを決めるためのスイッチ用フローチャートを備え、バックラッシュ区間の判定を行い、加速トルクを生成する処理又は摩擦補償トルク加算処理のいずれを実施するかを決定する判定部22へ入力される。 FIG. 2 shows a system configuration diagram of the backlash control unit 12 in the first embodiment. The torque command T * from the speed control unit 11 is input to the backlash control unit 12. The input torque command T * branches into three, one of which does not perform any particular calculation, and the other of which becomes the limit torque command Trim via the limiter 21, and the remaining one is the acceleration shown in FIG. 4 described later. A switch flowchart for determining ON / OFF of the torque switch and the friction compensation switch is provided, a backlash section is determined, and a determination is made to determine whether to perform a process of generating acceleration torque or a process of adding friction compensation torque. It is input to the unit 22.
 23は、判定部22で決定されたON/OFF制御信号により制御される加速トルクスイッチであり、ON制御時はリミットトルク指令Tlimが、OFF制御時はトルク指令T*が各々選択され、その出力は制御内モータトルクTMcとして以降の処理に用いられる。これらリミッタ21および加速トルクスイッチ23によって本発明の加速トルク生成部を構成している。 Reference numeral 23 denotes an acceleration torque switch controlled by an ON / OFF control signal determined by the determination unit 22, and the limit torque command Slim is selected during ON control and the torque command T * is selected during OFF control. The output is used as the in-control motor torque T Mc in the subsequent processing. The limiter 21 and the acceleration torque switch 23 constitute the acceleration torque generator of the present invention.
 24は、図1(a)の駆動系を表現した後述の図3の内部モデルを有した演算部であり、加速トルクスイッチ23の出力である制御内モータトルクTMcを入力とし、推定ねじり角θBL^、推定ねじり角速度ωBL^を演算して判定部22に出力する。 Reference numeral 24 denotes a calculation unit having an internal model of FIG. 3 described later, which expresses the drive system of FIG. 1A, and receives an in-control motor torque T Mc which is an output of the acceleration torque switch 23 as an input, and an estimated torsion angle. θ BL ^ and the estimated torsional angular velocity ω BL ^ are calculated and output to the determination unit 22.
 前記制御内モータトルクTMcは加算器25および摩擦補償スイッチ26にも分岐して入力され、加算器25は、摩擦補償トルク設定部27の摩擦補償トルクと制御内モータトルクTMcを加算して摩擦考慮トルク指令Tfを出力する。 The in-control motor torque T Mc is also branched and input to the adder 25 and the friction compensation switch 26, and the adder 25 adds the friction compensation torque of the friction compensation torque setting unit 27 and the in-control motor torque T Mc. The friction-considered torque command T f is output.
 摩擦補償スイッチ26は、判定部22で決定されたON/OFF制御信号により制御され、ON制御時は摩擦考慮トルク指令Tfが選択され、OFF制御時は制御内モータトルクTMcが選択され、その出力はバックラッシュ制御部12の出力であるBL考慮トルク指令T**となる。これら加算器25、摩擦補償スイッチ26、摩擦補償トルク設定部27によって、本発明の摩擦補償トルク加算部を構成している。 The friction compensation switch 26 is controlled by an ON / OFF control signal determined by the determination unit 22, and the friction consideration torque command T f is selected during ON control, and the in-control motor torque T Mc is selected during OFF control. The output is the BL-considered torque command T ** , which is the output of the backlash control unit 12. The adder 25, the friction compensation switch 26, and the friction compensation torque setting unit 27 constitute the friction compensation torque adding unit of the present invention.
 尚、図2、図4、図5、図7、図9では、「加速トルクスイッチ」を「加速スイッチ」に、「摩擦補償スイッチ」を「摩擦スイッチ」に各々略して表記している。 In FIGS. 2, 4, 5, 7, and 9, the "acceleration torque switch" is abbreviated as "acceleration switch" and the "friction compensation switch" is abbreviated as "friction switch".
 図3に実施例1における演算部24が有する内部モデルのシステム構成図を示す。各ブロックは図1(a)の駆動系の運動方程式、剛性、摩擦等に基づいて配置されている。 FIG. 3 shows a system configuration diagram of an internal model of the arithmetic unit 24 in the first embodiment. Each block is arranged based on the equation of motion, rigidity, friction, etc. of the drive system shown in FIG. 1 (a).
 図3において減算器31は、入力された制御内モータトルクTMcから、後述の推定負荷トルクTL^を除算器33bのギア比grで除算したトルクを減算する。 In FIG. 3, the subtractor 31 subtracts the torque obtained by dividing the estimated load torque T L ^ described later by the gear ratio gr of the divider 33b from the input in-control motor torque T Mc .
 減算器31の減算出力には、関数乗算器32のモータトルクからモータ角速度までの伝達関数GωM(s)が乗算されて推定モータ角速度ωM^が演算される。 The subtraction output of the subtractor 31, a function multiplier 32 the motor torque to the motor angular velocity transfer function G .omega.M (s) is the estimated motor angular velocity omega M ^ is multiplied is calculated.
 推定モータ角速度ωM^は除算器33aのギア比grで除算されて減算器34に入力される。減算器34は、除算器33aの出力(モータ側の角速度成分)から、推定負荷トルクTL^に関数乗算器35の負荷トルクから負荷角速度までの伝達関数GωL(s)を乗算した乗算出力(負荷側の角速度成分)を減算する。 The estimated motor angular velocity ω M ^ is divided by the gear ratio gr of the divider 33a and input to the subtractor 34. Subtractor 34, the divider output of 33a from (angular velocity component of the motor side), the estimated load torque T L ^ multiplied by multiplying a transfer function G .omega.L from the load torque of the function multiplier 35 to the load angular velocity (s) to the output Subtract (angular velocity component on the load side).
 減算器34の出力には推定ねじり角速度ωBL^が得られ、該ωBL^を積分器36の積分項1/sにより積分することで推定ねじり角θBL^が得られる。 Output estimated torsional angular velocity omega BL ^ is obtained in the subtractor 34, the estimated torsion angle theta BL ^ is obtained by integrating the integral term 1 / s integrator 36 the omega BL ^.
 37は、推定ねじり角θBL^に対する負荷トルクの関係を、不感帯を備えて設定したバックラッシュブロックである。 Reference numeral 37 denotes a backlash block in which the relationship of the load torque with respect to the estimated torsion angle θ BL ^ is set with a dead zone.
 バックラッシュブロック37の出力トルクには、関数乗算器38のバックラッシュブロックの出力から負荷トルクまでの伝達関数GTL(s)が乗算され、その乗算出力は推定負荷トルクTL^として前記除算器33bおよび関数乗算器35に入力される。 The output torque of the back crush block 37 is multiplied by the transfer function G TL (s) from the output of the back crush block of the function multiplier 38 to the load torque, and the multiplied output is the estimated load torque TL ^. It is input to 33b and the function multiplier 35.
 前記得られた推定ねじり角速度ωBL^と推定ねじり角θBL^は、図2の判定部22に出力される。 The obtained estimated torsional velocity ω BL ^ and the estimated torsional angle θ BL ^ are output to the determination unit 22 in FIG.
 図3のように構成された内部モデルにおいて、通常はモータ軸2の負荷軸4に対するねじり角にもとづいて負荷トルクが決まるのであるが、歯車(ギア3)がかみ合わない位相では負荷トルクは0か、(機械的な摩擦等考慮した)0に近い値となる。バックラッシュブロック37ではこのねじり角と負荷トルクの関係が表現できるように推定ねじり角θBL^に変更を加えて関数乗算器38の伝達関数GTL(s)への入力を生成する。 In the internal model configured as shown in FIG. 3, the load torque is normally determined based on the torsion angle of the motor shaft 2 with respect to the load shaft 4, but is the load torque 0 in the phase in which the gears (gears 3) do not mesh? , A value close to 0 (considering mechanical friction, etc.). The backlash block 37 modifies the estimated torsion angle θ BL ^ so that the relationship between the torsion angle and the load torque can be expressed, and generates an input to the transfer function G TL (s) of the function multiplier 38.
 図3の内部モデルでは駆動系をモータ側、バックラッシュ、負荷側に分け、負荷側からモータ側に相互作用をフィードバックしている。このバックラッシュを境に分けた駆動系が表現されれば必ずしも図3の形にこだわらずともよい。 In the internal model of FIG. 3, the drive system is divided into the motor side, backlash, and load side, and the interaction is fed back from the load side to the motor side. As long as the drive system separated by this backlash is expressed, it is not always necessary to stick to the shape shown in FIG.
 伝達関数GωM(s)、GωL(s)、GTL(s)についてはモータ、負荷の単一の運動方程式に限らず駆動系全体について、推定ねじり角θBL^に有意な影響を与える範囲内で全ての運動方程式、摩擦、剛性を考慮するものとする。 The transfer functions G ωM (s), G ωL (s), and G TL (s) have a significant effect on the estimated torsion angle θ BL ^ not only for a single equation of motion of the motor and load but also for the entire drive system. All equations of motion, friction and stiffness shall be considered within the range.
 バックラッシュブロック37に関して、バックラッシュは不感帯処理と等価とみなしてもよいが不感帯の上限下限が常に一定である必要はない。つまり、負荷との接続変更や熱、摩耗などの考慮で不感帯の上限下限を可変にしてもよい。さらに、必ずしも不感帯で0を出力しなくともよく、実際の物理現象を考慮して不感帯内外で連続的な出力を持つようにしてもよい。 Regarding the backlash block 37, the backlash may be regarded as equivalent to the dead zone processing, but the upper and lower limits of the dead zone do not have to be constant. That is, the upper and lower limits of the dead zone may be changed in consideration of changing the connection with the load, heat, wear, and the like. Further, it is not always necessary to output 0 in the dead zone, and a continuous output may be provided inside and outside the dead zone in consideration of an actual physical phenomenon.
 また、この内部モデル全体に関して、各推定量は、入力の制御内モータトルクTMcがそのまま駆動系に与えられたと仮定して求めているものである。 Further, for the entire internal model, each estimator is obtained on the assumption that the input in-control motor torque T Mc is directly applied to the drive system.
 バックラッシュ制御部12の構成を示す図2には、加速トルクスイッチ23、摩擦補償スイッチ26という2つのスイッチが存在するが、これら両スイッチが常にOFFならば図2のバックラッシュ制御部は入力トルク指令T*をそのままトルク指令T**として出力することになる。これはバックラッシュに関係のない通常走行時の動作を示している。つまりバックラッシュ制御部12は、バックラッシュ区間外ではスイッチ23,26を共にOFFにして通常走行に対応し、バックラッシュ区間内では前記スイッチ23,26をそれぞれ適切なタイミングでONにすることでバックラッシュ区間内の特別な制御を可能にしている。 In FIG. 2, which shows the configuration of the backlash control unit 12, there are two switches, an acceleration torque switch 23 and a friction compensation switch 26. If both of these switches are always OFF, the backlash control unit in FIG. 2 has an input torque. The command T * is output as it is as the torque command T ** . This shows the operation during normal driving, which is not related to backlash. That is, the backlash control unit 12 turns off both the switches 23 and 26 outside the backlash section to support normal driving, and turns on the switches 23 and 26 at appropriate timings inside the backlash section to backlash. It enables special control within the rush section.
 判定部22が行う、加速トルクスイッチ23および摩擦補償スイッチ26のON、OFF判定についてはスイッチ用フローチャートに沿って実行されるものであり、後で図4とともに詳述する。 The ON / OFF determination of the acceleration torque switch 23 and the friction compensation switch 26 performed by the determination unit 22 is executed according to the flow chart for the switch, and will be described in detail later together with FIG.
 ここではバックラッシュ内で出力するトルクについて、その役割に応じて摩擦補償トルクと加速トルクの2種類に分けて説明する。 Here, the torque output in the backlash will be explained by dividing it into two types, friction compensation torque and acceleration torque, according to their role.
 まず、摩擦補償トルクについて説明する。バックラッシュ内では歯車がかみ合うまでの間にギア内に摩擦が発生するが、この分を考慮して補償トルクを出力することでバックラッシュを抜けるまでの時間が長くなるのを防ぐことができる。 First, the friction compensation torque will be explained. In the backlash, friction is generated in the gear until the gears mesh, but by outputting the compensation torque in consideration of this amount, it is possible to prevent the time until the backlash is removed from becoming long.
 摩擦補償スイッチ26がONになったとき、図2に示したようにBL制御の演算における最終段にて摩擦補償トルク設定部27の摩擦補償トルクを加算する。最終段としたのは、仮に入力トルク指令T*に対して初めの処理で加算すると、摩擦補償トルクが演算部24の内部モデルに加算されてしまい、内部モデルが摩擦を考慮していないため、摩擦補償トルクが内部モデルの推定量に意図しない影響をもたらしてしまうためである。それゆえ、直接加算の形ではなく内部モデルで摩擦を考慮したモデルを用いて摩擦補償トルクを生じてもよい。 When the friction compensation switch 26 is turned on, the friction compensation torque of the friction compensation torque setting unit 27 is added at the final stage of the BL control calculation as shown in FIG. The final stage is because if the input torque command T * is added in the first process, the friction compensation torque will be added to the internal model of the calculation unit 24, and the internal model does not consider friction. This is because the friction compensation torque has an unintended effect on the estimator of the internal model. Therefore, the friction compensation torque may be generated by using a model that considers friction in the internal model instead of the form of direct addition.
 図1(a)のギア3内の摩擦はモータ軸2と負荷軸4の相対角速度であるねじり角速度ωBLと逆方向に発生するため、その補償である摩擦補償トルクの正負は、内部モデルで演算した推定ねじり角速度ωBL^の正負と同じにする。また、摩擦補償トルクの絶対値については負荷に応じて適切な値を定めることとする。 Since the friction in the gear 3 of FIG. 1A is generated in the direction opposite to the torsional angular velocity ω BL , which is the relative angular velocity of the motor shaft 2 and the load shaft 4, the positive and negative of the friction compensation torque, which is the compensation, is determined by the internal model. Make it the same as the positive and negative of the calculated estimated torsional velocity ω BL ^. In addition, the absolute value of friction compensation torque shall be set to an appropriate value according to the load.
 図10に摩擦補償に関するシミュレーションを示す。ここではモータでギアを介して負荷を回転させる駆動系を考えている。また、各シミュレーションでモータ定数、負荷定数は同一のものを用いている。BL制御部12への入力トルク指令T*は-50Nmから50Nmに向かって毎秒200Nmの変化率で与えた。図10(a)は図1(a)のプラントのギア3におけるねじり角θBLの推移を表し、線101はBL制御無しの場合のシミュレーション結果、線102はBL区間でのトルクを零に抑えた場合のシミュレーション結果、線103は摩擦補償トルクだけ有りとし加速トルクは考慮無しとした場合のシミュレーション結果を各々示している。 FIG. 10 shows a simulation of friction compensation. Here, we are considering a drive system in which a motor rotates a load via gears. In addition, the same motor constant and load constant are used in each simulation. The input torque command T * to the BL control unit 12 was given at a rate of change of 200 Nm per second from −50 Nm to 50 Nm. FIG. 10 (a) shows the transition of the torsion angle θ BL in the gear 3 of the plant of FIG. 1 (a), the line 101 shows the simulation result when BL control is not performed, and the line 102 suppresses the torque in the BL section to zero. As a result of the simulation, the line 103 shows the simulation results when only the friction compensation torque is present and the acceleration torque is not considered.
 図10(b)は図1(a)のプラントのねじり角速度ωBLの推移を表し、線104はBL制御無しの場合のシミュレーション結果、線105はBL区間でのトルクを零に抑えた場合のシミュレーション結果、線106は摩擦補償トルクだけ有りとし加速トルクは考慮無しとした場合のシミュレーション結果を各々示している。 FIG. 10B shows the transition of the torsional angular velocity ω BL of the plant of FIG. 1A, line 104 shows the simulation result when BL control is not performed, and line 105 shows the case where the torque in the BL section is suppressed to zero. As a result of the simulation, the line 106 shows the simulation results when only the friction compensation torque is present and the acceleration torque is not considered.
 このシミュレーションにおけるバックラッシュ区間は-1<θBL<1の区間である。 The backlash interval in this simulation is the interval of -1 <θ BL <1.
 図10(a)を見ると、線101で示す「BL(バックラッシュ)制御なし」では3つの結果のうち最も早くバックラッシュを抜けているが、その時間における図10(b)を見ると、線104のようにねじり角速度ωBLが大きく、実際の運転では歯車(ギア3)の衝突時に音を生じてしまう。これを防ぐためにバックラッシュ区間でトルクを0に抑えると図10(a)の線102のようにバックラッシュにいる期間が長くなる。これが応答性の低下を招く恐れがある。 Looking at FIG. 10 (a), “without BL (backlash) control” shown by line 101 is the earliest of the three results to exit the backlash, but looking at FIG. 10 (b) at that time, Like the wire 104, the torsional angular velocity ω BL is large, and in actual operation, a sound is generated when the gear (gear 3) collides. If the torque is suppressed to 0 in the backlash section in order to prevent this, the period of being in the backlash becomes longer as shown by the line 102 in FIG. 10 (a). This can lead to reduced responsiveness.
 それに対して、図10(a)の線103に示す「摩擦補償有 加速無」では、BLで摩擦分の補償だけ追加し(後述の加速トルクは考慮無し)、線102の「BLでトルク0」よりも速くバックラッシュを抜けており、応答性を改善していることがわかる。バックラッシュを抜けた後、急峻にωBLが変化しているが、これは上位の速度制御が働くためであり、BL制御によるものではない。そして、以降のシミュレーションでもバックラッシュを抜けた後の急峻なωBLの解釈は同様とする。 On the other hand, in the case of "with friction compensation and without acceleration" shown in line 103 of FIG. 10A, only the compensation for friction is added in BL (acceleration torque described later is not considered), and the line 102 "BL torque 0". It can be seen that the backlash is exited faster than "" and the responsiveness is improved. After exiting the backlash, the ω BL changes sharply, but this is because the higher speed control works, not the BL control. Then, in the subsequent simulations, the interpretation of the steep ω BL after exiting the backlash is the same.
 次に、加速トルクについて説明する。前述の摩擦補償トルクはバックラッシュを抜ける方向と逆方向のトルク成分を打ち消す補償であり、それはとりもなおさず、かみ合っていく速度の減速を防ぐための補償である。ここでは摩擦分が正確に打ち消されたと仮定して、さらに加速するためのトルクを考える。 Next, the acceleration torque will be described. The above-mentioned friction compensation torque is compensation for canceling the torque component in the direction opposite to the direction of exiting the backlash, and it is compensation for preventing deceleration of the meshing speed. Here, assuming that the friction content is accurately canceled, the torque for further acceleration is considered.
 加速トルクを設けるにあたって注意すべき点は大きく分けて3つある。  There are three main points to note when setting the acceleration torque.
 1つ目は、適切な加算位置についてである。内部モデルは摩擦を考慮していないため、摩擦補償トルクについては内部モデルに入力されないようにしたが、加速トルクは内部モデルが考慮している成分であるため、内部モデルに入力されなければならない。 The first is about the appropriate addition position. Since the internal model does not consider friction, the friction compensation torque is not input to the internal model, but the acceleration torque is a component that the internal model considers, so it must be input to the internal model.
 2つ目は、トルク指令の上限についてである。バックラッシュを抜ける際、つまり歯車が当たる際にモータトルクが大きいと音を生じて快適なドライビングを阻害する。そのため、バックラッシュ区間内でのトルクは摩擦補償トルクと加速トルクを合わせて音を生じない程度に調節する必要がある。 The second is the upper limit of the torque command. If the motor torque is large when exiting the backlash, that is, when the gear hits, a noise is generated and comfortable driving is hindered. Therefore, the torque in the backlash section needs to be adjusted so as not to generate noise by combining the friction compensation torque and the acceleration torque.
 3つ目は、入力トルク指令の扱いである。例えば上位からの入力トルク指令T*に加速トルクを加算する方式にすると、音を生じない程度に調節したトルク指令にT*が加算され、2つ目で述べたトルク上限を守れない。また他の方法例として、バックラッシュ区間内で単に固定値のトルクにするとバックラッシュ進入後は必ず一定トルクでバックラッシュを抜けてしまい、極低速や停止時の動作に不都合を生じる。 The third is the handling of input torque commands. For example, if the method of adding the acceleration torque to the input torque command T * from the upper level is adopted, T * is added to the torque command adjusted to the extent that no sound is generated, and the torque upper limit described in the second item cannot be observed. As another example of the method, if the torque is simply set to a fixed value in the backlash section, the backlash will always be released with a constant torque after the backlash enters, which causes inconvenience in the operation at extremely low speed or when stopped.
 以上3つの注意点を踏まえて、図2のようにトルク指令T*をリミットして、加速トルクを実現する。このとき、リミッタを内部モデルより前とし(1つ目の注意点への対応)、歯車(ギア)の噛み合わせ時に音を生じないトルク値を上下限として(2つ目の注意点への対応)、リミット処理する(3つ目の注意点への対応)ことで対応する。 Based on the above three points, the torque command T * is limited as shown in FIG. 2 to realize the acceleration torque. At this time, the limiter is set before the internal model (corresponding to the first caution), and the torque value that does not generate sound when the gears are engaged is set as the upper and lower limits (corresponding to the second caution). ), Limit processing (corresponding to the third point of caution).
 加速トルク用のリミッタ21はバックラッシュ区間内でのみ有効にしたいため、加速トルクスイッチ23がON制御されたときのみトルク指令T*がリミッタ21を通るように構成している。 Since the limiter 21 for acceleration torque is desired to be effective only in the backlash section, the torque command T * is configured to pass through the limiter 21 only when the acceleration torque switch 23 is ON-controlled.
 図11に加速トルクを設けた場合と設けなかった場合の違いを示す。図11(a)は図1(a)のプラントのねじり角θBLの推移を表し、線101はBL制御無しの場合のシミュレーション結果、線103は摩擦補償トルクだけ有りとし加速トルクは考慮無しとした場合のシミュレーション結果、線107は摩擦補償トルクおよび加速トルクを有りとした場合のシミュレーション結果を各々示している。 FIG. 11 shows the difference between the case where the acceleration torque is provided and the case where the acceleration torque is not provided. FIG. 11A shows the transition of the torsion angle θ BL of the plant of FIG. 1A, line 101 shows the simulation result when BL control is not performed, and line 103 shows only the friction compensation torque and does not consider the acceleration torque. As a result of the simulation, the line 107 shows the simulation result when the friction compensation torque and the acceleration torque are present.
 図11(b)は図1(a)のプラントのねじり角速度ωBLの推移を表し、線104はBL制御無しの場合のシミュレーション結果、線106は摩擦補償トルクだけ有りとし加速トルクは考慮無しとした場合のシミュレーション結果、線108は摩擦補償トルクおよび加速トルクを有りとした場合のシミュレーション結果を各々示している。 FIG. 11B shows the transition of the torsional angular velocity ω BL of the plant of FIG. 1A, line 104 shows the simulation result when BL control is not performed, line 106 shows only friction compensation torque, and acceleration torque is not considered. As a result of the simulation, the line 108 shows the simulation result when the friction compensation torque and the acceleration torque are present.
 図11では、「BL制御なし」の場合を除いた2つの場合で、共に摩擦補償を適切に行っている。 In FIG. 11, friction compensation is appropriately performed in both cases except for the case of "no BL control".
 図11(a)からわかるように、加速トルクによりバックラッシュにいる期間(-1<θBL<1にいる期間)に違いが出ており、線103の「摩擦補償有 加速無」よりも線107の「摩擦補償有 加速有」の方が速くバックラッシュを抜けている。 As can be seen from FIG. 11A, there is a difference in the period of backlash (period of -1 <θ BL <1) due to the acceleration torque, which is more than the line 103 "with friction compensation and without acceleration". 107 "with friction compensation and with acceleration" is faster than the backlash.
 また、図11(b)に示されるとおり、線108の「摩擦補償有 加速有」のωBLは線104の「BL制御なし」に比べて低く、音の発生を考慮した適切な値にリミットされていることもわかる。したがって線107、線108の「摩擦補償有 加速有」、つまり摩擦補償トルクと加速トルクの2つを設けた場合では歯車(ギア)の衝突音の発生を抑制しつつ、応答性の低下をできるだけ防ぐことができている。 Further, as shown in FIG. 11B, the ω BL of line 108 “with friction compensation and with acceleration” is lower than that of line 104 “without BL control”, and is limited to an appropriate value in consideration of sound generation. You can also see that it has been done. Therefore, when the lines 107 and 108 are provided with "with friction compensation and with acceleration", that is, when the friction compensation torque and the acceleration torque are provided, the generation of the collision noise of the gears is suppressed and the responsiveness is reduced as much as possible. It can be prevented.
 以上がバックラッシュ内での補償トルクについての説明である。 The above is the explanation of the compensation torque in the backlash.
 次に、加速トルクスイッチ23、摩擦補償スイッチ26のON、OFFの判定方法を図4とともに説明する。 Next, a method of determining ON / OFF of the acceleration torque switch 23 and the friction compensation switch 26 will be described with reference to FIG.
 図4は、図2の判定部22が行う処理(スイッチ用フローチャート)の一例を示し、ステップS1では速度制御部11からのトルク指令T*、図3の内部モデルで演算された推定ねじり角θBL^、推定ねじり角速度ωBL^を入力する。 FIG. 4 shows an example of the process (flow chart for the switch) performed by the determination unit 22 of FIG. 2, and in step S1, the torque command T * from the speed control unit 11 and the estimated torsion angle θ calculated by the internal model of FIG. 3 Enter BL ^, estimated torsional velocity ω BL ^.
 次にステップS2において、基本的には内部モデルの出力である推定ねじり角θBL^が歯車(ギア3)のバックラッシュ位相範囲内であるか否かを判定し、範囲内であればバックラッシュ区間と判定する(第1の判定処理)。また、バックラッシュ判定基準はθBL^に限らず、例えば図3の推定負荷トルクTL^を用いてもよい。TL^はバックラッシュブロック37の出力を伝達関数GTL(s)に通したものであり、内部モデルがバックラッシュ区間内にあるときにはTL^は0付近となる(そうでないと、バックラッシュ動作が表現できていないことになってしまう)。 Next, in step S2, it is determined whether or not the estimated torsion angle θ BL ^, which is basically the output of the internal model, is within the backlash phase range of the gear (gear 3), and if it is within the range, backlash It is determined as an interval (first determination process). Further, the backlash determination criterion is not limited to θ BL ^, and for example, the estimated load torque T L ^ in FIG. 3 may be used. TL ^ is the output of the backlash block 37 passed through the transfer function G TL (s), and when the internal model is within the backlash interval, TL ^ is near 0 (otherwise, backlash is near 0). The operation cannot be expressed).
 以上のように、バックラッシュ判定の最初の分岐(ステップS2)ではバックラッシュ区間内かどうかを判定し、バックラッシュ区間外ならば加速トルクスイッチ23、摩擦補償スイッチ26は共にOFFとなる(加速トルクを生成する処理の不実施および摩擦補償トルク加算処理の不実施を決定する)(通常走行時の処理)。 As described above, in the first branch of the backlash determination (step S2), it is determined whether or not it is within the backlash section, and if it is outside the backlash section, both the acceleration torque switch 23 and the friction compensation switch 26 are turned off (acceleration torque). (Determine the non-execution of the process to generate and the non-execution of the friction compensation torque addition process) (processing during normal driving).
 ステップS2の判定結果がバックラッシュ区間内であるならば次の分岐(ステップS3)へ向かう。以降の分岐(ステップS3、S4)はチャタリング対策のための処理である。 If the judgment result of step S2 is within the backlash section, the process proceeds to the next branch (step S3). Subsequent branches (steps S3 and S4) are processes for chattering countermeasures.
 入力されたトルク指令T*は上位にてアクセルや操作盤の操作量に基づいて演算されたトルク指令であり、停止時などは0に近くなると考えられる。このときゼロクロス付近で上下することが考えられ、バックラッシュを抜けるためのトルクの極性が高速で変わる可能性がある。 The input torque command T * is a torque command calculated at the upper level based on the amount of operation of the accelerator and the operation panel, and is considered to be close to 0 when stopped. At this time, it is possible that the torque moves up and down near the zero cross, and the polarity of the torque for exiting the backlash may change at high speed.
 このような場合BL制御出力(BL考慮トルク指令T**)がチャタリングを起こすので、これを防ぐためT*に不感帯を設定しておき、不感帯外であればバックラッシュ用のトルクを発生させる(加速トルクスイッチ23のONが確定)。前記不感帯内では適切な補償方向、つまりバックラッシュを抜けたい方向が不明とみなし補償は行わない。すなわち加速トルクスイッチ23、摩擦補償スイッチ26をOFFする(加速トルクを生成する処理の不実施および摩擦補償トルク加算処理の不実施を決定する)。 In such a case, the BL control output (BL-considered torque command T ** ) causes chattering. To prevent this, a dead zone is set in T * , and if it is outside the dead zone, backlash torque is generated ( ON of the acceleration torque switch 23 is confirmed). Within the dead zone, it is considered that the appropriate compensation direction, that is, the direction in which the backlash is desired to be exited is unknown, and compensation is not performed. That is, the acceleration torque switch 23 and the friction compensation switch 26 are turned off (determined not to perform the process of generating the acceleration torque and not to perform the friction compensation torque addition process).
 そして摩擦補償トルクにはもう一つのチャタリング要因があるためトルク指令T*が不感帯外のときには次の分岐(ステップS4)へ向かうことになる。 Since there is another chattering factor in the friction compensation torque, when the torque command T * is out of the dead zone, the vehicle goes to the next branch (step S4).
 摩擦補償トルクの正負は推定ねじり角速度ωBL^の正負と同じにすると前述した。この推定方法ではωBL^がゼロクロス付近の時、摩擦の推定発生方向が高速に切り替わる可能性がある。このとき、摩擦補償トルクの極性が高速で変わり、BL制御出力(T**)がチャタリングを起こす。この対策として推定ねじり角速度ωBL^に不感帯を設定しておき、ステップS4の判定結果が不感帯外であれば摩擦補償トルクを発生させる(摩擦補償スイッチ26のONが確定)(加速トルクを生成する処理の実施および摩擦補償トルク加算処理の実施を決定する)。 It was mentioned above that the positive and negative of the friction compensation torque should be the same as the positive and negative of the estimated torsional angular velocity ω BL ^. With this estimation method, when ω BL ^ is near the zero cross, the estimated friction generation direction may switch at high speed. At this time, the polarity of the friction compensation torque changes at high speed, and the BL control output (T ** ) causes chattering. As a countermeasure, a dead zone is set for the estimated torsional angular velocity ω BL ^, and if the determination result in step S4 is outside the dead zone, friction compensation torque is generated (friction compensation switch 26 is confirmed to be ON) (acceleration torque is generated). Determine the implementation of the process and the friction compensation torque addition process).
 推定ねじり角速度ωBL^の不感帯内では摩擦補償の方向は不明だが前段のT*の不感帯判定(ステップS3)でバックラッシュを抜けたい方向はわかったものとみなし加速トルクスイッチ23のみONとする(加速トルクを生成する処理の実施および摩擦補償トルク加算処理の不実施を決定する)。 The direction of friction compensation is unknown within the dead zone of the estimated torsional angular velocity ω BL ^, but it is considered that the direction in which the backlash is desired to be exited is known by the dead zone determination (step S3) of T * in the previous stage, and only the acceleration torque switch 23 is turned ON ( Decide whether to perform the process to generate acceleration torque and not to perform the friction compensation torque addition process).
 また、別の方法で摩擦の方向を推定する場合はその方法に応じて不感帯を設け、チャタリング処理を行うものとする。 In addition, when estimating the direction of friction by another method, a dead zone shall be provided according to the method and chattering processing shall be performed.
 ステップS3でのトルク指令T*とステップS4での推定ねじり角速度ωBL^の各不感帯について不感帯幅を定める必要があるが、これはディジタル演算の有効桁数の分解能や誤差、適応補正など検出値への間接的な影響を考慮して、通常は定格の1%以下に設定する。実際のプラントで確認しつつ0.1%程度に設定しても良い。 It is necessary to determine the dead band width for each dead band of the torque command T * in step S3 and the estimated torsional angular velocity ω BL ^ in step S4, but this is a detected value such as the resolution and error of the number of effective digits of digital calculation and adaptive correction. Usually, it is set to 1% or less of the rating in consideration of the indirect effect on. It may be set to about 0.1% while checking in an actual plant.
 以上が加速トルクスイッチ23、摩擦補償スイッチ26のON/OFF判定のフローチャートの説明であり、このフローチャートに基づいた制御を行うことによってチャタリングを起こさずにバックラッシュ区間の制御が可能となる。 The above is the explanation of the flow chart for ON / OFF determination of the acceleration torque switch 23 and the friction compensation switch 26. By performing the control based on this flowchart, the backlash section can be controlled without causing chattering.
 以上のように本実施例1によれば、バックラッシュ区間を判定し適切なトルクを出力することで、バックラッシュを抜けた際の歯車の衝突音を抑制できる、応答性を必要以上に下げない、制御出力のチャタリングを起こさない、というバックラッシュ区間内の制御を行うことが可能となり、ギアを介して負荷を駆動する電動機駆動系の運転性能を改善できる。 As described above, according to the first embodiment, by determining the backlash section and outputting an appropriate torque, it is possible to suppress the collision noise of the gear when the backlash is passed, and the responsiveness is not lowered more than necessary. It is possible to perform control within the backlash section that chattering of the control output does not occur, and it is possible to improve the operating performance of the electric motor drive system that drives the load via gears.
 また、先行技術文献に対しては、速度センサを用いる必要がない、応答性、及び衝撃について考慮している、特別な構造を要さず制御上の変更のみで実現できる、振動成分を得るための繰り返しのテスト運転を必要としない、テーブル作成の必要がない、等の利点を持つ。 In addition, for the prior art documents, in order to obtain a vibration component that does not require the use of a speed sensor, considers responsiveness and impact, can be realized only by changing the control without requiring a special structure. It has the advantages of not requiring repeated test runs and no need to create a table.
 (実施例2)
 実施例1では、速度センサを用いることなくバックラッシュ区間を予測し、適切なモータトルクを指令する方法を考えた。しかし駆動系によっては多大な外乱が生じる場合があり、これが内部モデルと実際の駆動系との誤差を生み、バックラッシュに入るタイミングの予測ミスをもたらす。このような駆動系には例えば自動車がある。自動車の運転時には坂道にて自重が外乱として作用する。
(Example 2)
In the first embodiment, a method of predicting the backlash section and instructing an appropriate motor torque without using a speed sensor was considered. However, depending on the drive system, a large amount of disturbance may occur, which causes an error between the internal model and the actual drive system, resulting in a misprediction of the timing of entering backlash. Such a drive system includes, for example, an automobile. When driving a car, its own weight acts as a disturbance on a slope.
 この対策として、速度センサを用いることで外乱を補償できるようにしたのが実施例2である。図5は、実施例2における、図1(b)のバックラッシュ制御部12のシステム構成を示している。 As a countermeasure for this, Example 2 made it possible to compensate for disturbance by using a speed sensor. FIG. 5 shows the system configuration of the backlash control unit 12 of FIG. 1 (b) in the second embodiment.
 図5において、実施例1の図2と異なる点は、例えばモータ1に取り付けた速度センサからの検出モータ角速度ωdetを演算部54に構成した内部モデルに入力し、該検出モータ角速度ωdetと内部モデルで演算された推定角速度ωBL^とを比較してその差分が零となるように、例えばPI制御によって内部モデルにフィードバックすることにあり、その他の部分は図2と同様に構成されている。 In FIG. 5, the difference from FIG. 2 of the first embodiment is that, for example, the detected motor angular velocity ωdet from the speed sensor attached to the motor 1 is input to the internal model configured in the calculation unit 54, and the detected motor angular velocity ωdet and the internal model are input. It is to feed back to the internal model by, for example, PI control so that the difference becomes zero by comparing with the estimated angular velocity ω BL ^ calculated in, and the other parts are configured in the same manner as in FIG.
 判定部22のスイッチ用フローチャート(図4のフロー)によってバックラッシュ区間か否かを考慮して、加速トルクスイッチ23および摩擦補償スイッチ26のON/OFFを決める動作は実施例1の動作と同様に行われる。 The operation of determining ON / OFF of the acceleration torque switch 23 and the friction compensation switch 26 is the same as the operation of the first embodiment in consideration of whether or not it is a backlash section according to the switch flowchart (flow of FIG. Will be done.
 本実施例2の演算部54における内部モデルは図6のように構成され、図3と同一部分は同一符号をもって示している。 The internal model in the calculation unit 54 of the second embodiment is configured as shown in FIG. 6, and the same parts as those in FIG. 3 are indicated by the same reference numerals.
 41は、関数乗算器32で演算された推定モータ角速度ωM^と、入力された検出モータ角速度ωdetの偏差をとる減算器であり、その偏差出力には、ゲイン乗算器42の正の比例ゲインKPおよびゲイン乗算器43の正の積分ゲインKIが各々乗算される。ゲイン乗算器43の出力は積分器44によって積分される。 Reference numeral 41 denotes a subtractor that takes a deviation between the estimated motor angular velocity ω M ^ calculated by the function multiplier 32 and the input detection motor angular velocity ωdet, and the deviation output is a positive proportional gain of the gain multiplier 42. The KP and the positive integrated gain KI of the gain multiplier 43 are each multiplied. The output of the gain multiplier 43 is integrated by the integrator 44.
 ゲイン乗算器42の出力(P制御成分)と積分器44の出力(I制御成分)は加算器45で加算され、その加算出力は関数乗算器35の手前にフィードバックされる。 The output of the gain multiplier 42 (P control component) and the output of the integrator 44 (I control component) are added by the adder 45, and the added output is fed back to the front of the function multiplier 35.
 46は、関数乗算器38の出力である推定負荷トルクTL^から加算器45の出力を減算する減算器であり、その減算出力は関数乗算器35に入力される。 Reference numeral 46 denotes a subtractor for subtracting the output of the adder 45 from the estimated load torque T L ^ which is the output of the function multiplier 38, and the subtracted output is input to the function multiplier 35.
 図6の内部モデルは、前記減算器41の偏差に対してPI制御を施して、加算器45の出力を減算器46にフィードバックする外乱補償系を備えており、その他の部分は図3と同様に構成されている。 The internal model of FIG. 6 is provided with a disturbance compensation system that performs PI control on the deviation of the subtractor 41 and feeds back the output of the adder 45 to the subtractor 46, and the other parts are the same as those of FIG. It is configured in.
 前記PI制御の正の比例ゲインKPと正の積分ゲインKIは、正常な制御の中で外乱補償が行えるよう適切に調整した値を用いるものとする。それ以外のシステム構成、変数名については図3と同じものとする。 For the positive proportional gain KP and positive integrated gain KI of the PI control, values appropriately adjusted so that disturbance compensation can be performed under normal control shall be used. Other system configurations and variable names are the same as in FIG.
 前記PI制御のフィードバック位置について、図6では関数乗算器35の伝達関数GωL(s)の手前としているが、推定モータ角速度ωM^と検出モータ角速度ωdetの差分を0にすることは別の位置へフィードバックしても達成出来るため、別の位置、例えば関数乗算器32の伝達関数GωM(s)の手前などにフィードバックしてもよい。その際、フィードバック位置によってはバックラッシュ区間の判定に用いる推定ねじり角θBL^や推定ねじり角速度ωBL^が外乱に対して敏感に変化するため注意する必要がある。そして、外乱が発生した分バックラッシュ区間での加速トルクに対して外乱が加わってしまうため、バックラッシュ区間の制御に影響が出る可能性がある。その場合の補償方法については、まずPI制御の出力、もしくはI項のみをフィードバック位置に応じたゲイン(ギア比等)とかけて推定外乱をモータ軸に換算し、モータトルク外乱とする。そして、モータトルク外乱の分だけ加速トルクの上下リミット値(リミッタ21のリミット値)や摩擦補償トルク設定部27の摩擦補償トルクの値を増減させるなどして補償を行う。 The feedback position of the PI control, although the front of the transfer function G .omega.L function multiplier 35 in FIG. 6 (s), the estimated motor angular velocity omega M ^ and detection of the motor angular velocity ωdet difference another be zero Since it can be achieved by feeding back to the position, it may be fed back to another position, for example, before the transfer function G ωM (s) of the function multiplier 32. At that time, it should be noted that the estimated torsion angle θ BL ^ and the estimated torsional angular velocity ω BL ^ used for determining the backlash section change sensitively to disturbance depending on the feedback position. Then, since the disturbance is added to the acceleration torque in the backlash section due to the occurrence of the disturbance, the control of the backlash section may be affected. Regarding the compensation method in that case, first, the output of PI control or only the I term is multiplied by the gain (gear ratio, etc.) according to the feedback position, and the estimated disturbance is converted into the motor shaft to obtain the motor torque disturbance. Then, compensation is performed by increasing or decreasing the vertical limit value of the acceleration torque (limit value of the limiter 21) and the friction compensation torque value of the friction compensation torque setting unit 27 by the amount of the motor torque disturbance.
 図12にバックラッシュ区間における外乱補償の効果を示す。実施例1とシミュレーション条件は基本的に同じだが、シミュレーション期間中は常に負荷側に一定の定常外乱が印加されているという点が違っている。 FIG. 12 shows the effect of disturbance compensation in the backlash section. The simulation conditions are basically the same as in the first embodiment, except that a constant steady disturbance is always applied to the load side during the simulation period.
 図12(a)は図1(a)のプラントのねじり角θBLの推移を表し、線111は外乱補償無し(実施例1)の場合のシミュレーション結果、線112は外乱補償有り(実施例2)の場合のシミュレーション結果を各々示している。 FIG. 12A shows the transition of the torsion angle θ BL of the plant of FIG. 1A, line 111 is a simulation result in the case of no disturbance compensation (Example 1), and line 112 is with disturbance compensation (Example 2). The simulation results in the case of) are shown.
 図12(b)は図1(a)のプラントのねじり角速度ωBLの推移を表し、線113は外乱補償無し(実施例1)の場合のシミュレーション結果、線114は外乱補償有り(実施例2)の場合のシミュレーション結果を各々示している。 FIG. 12 (b) shows the transition of the torsion angular velocity ω BL of the plant of FIG. 1 (a), line 113 is a simulation result in the case of no disturbance compensation (Example 1), and line 114 is with disturbance compensation (Example 2). The simulation results in the case of) are shown.
 図12(c)は外乱補償無し(実施例1)の場合のねじり角θBLの推移を表し、線115は内部モデルで推定演算したねじり角のシミュレーション結果、線116は図1(a)のプラントのねじり角のシミュレーション結果を各々示している。 FIG. 12 (c) shows the transition of the torsion angle θ BL when there is no disturbance compensation (Example 1), line 115 is the simulation result of the torsion angle estimated and calculated by the internal model, and line 116 is FIG. 1 (a). The simulation results of the torsion angle of the plant are shown.
 図12(d)は外乱補償有り(実施例2)の場合のねじり角θBLの推移を表し、線117は内部モデルで推定演算したねじり角のシミュレーション結果、線118は図1(a)のプラントのねじり角のシミュレーション結果を各々示している。 FIG. 12 (d) shows the transition of the torsion angle θ BL when there is disturbance compensation (Example 2), line 117 is the simulation result of the torsion angle estimated by the internal model, and line 118 is the simulation result of the torsion angle in FIG. 1 (a). The simulation results of the torsion angle of the plant are shown.
 尚、図12(c)、(d)では、外乱によるバックラッシュ区間推定への影響をより詳しく見るためにプラントと内部モデルのねじり角を比較しており、図12(a)、(b)よりもバックラッシュ付近を拡大している。 In addition, in FIGS. 12 (c) and 12 (d), the torsion angles of the plant and the internal model are compared in order to see the influence of the disturbance on the backlash interval estimation in more detail, and FIGS. 12 (a) and 12 (b) show. The area around the backlash is enlarged.
 図12(a)、(b)を見ると外乱補償を行っている実施例2(線112、114)の方がバックラッシュを速く抜けており、外乱補償によって応答性が改善していることがわかる。 Looking at FIGS. 12A and 12B, it can be seen that the second embodiment (lines 112 and 114) in which the disturbance compensation is performed passes through the backlash faster, and the responsiveness is improved by the disturbance compensation. Recognize.
 図12(c)の外乱補償無の場合では、プラントのθBL(線116)と内部モデルで推定したθBL^(線115)との誤差が大きく、プラントのθBLはバックラッシュを抜けているにもかかわらず推定したθBL^がバックラッシュ区間にいる(バックラッシュ区間外でバックラッシュ区間用のトルクを出してしまう)期間が、図12(d)の外乱補償有りの場合より長くなってしまっている。この推定誤差が応答性に影響して図12(a)、(b)における外乱補償有、無の結果の違いを生じている。 In the case of no disturbance compensation in FIG. 12 (c), the error between the plant θ BL (line 116) and the θ BL ^ (line 115) estimated by the internal model is large, and the plant θ BL passes through the backlash. Despite the fact that the estimated θ BL ^ is in the backlash section (the torque for the backlash section is output outside the backlash section), the period is longer than that with the disturbance compensation shown in FIG. 12 (d). It has been done. This estimation error affects the responsiveness and causes a difference between the results with and without disturbance compensation in FIGS. 12A and 12B.
 今回の外乱の極性では応答性の低下を補償により改善した形だが、逆の極性の場合を考えてみる。この場合推定誤差によって実際より早くバックラッシュを抜けたと判断するため応答性が低下することはないが、トルクが通常走行扱いとなりリミットされないため衝撃で音を生じてしまう。よって、外乱の極性が違ったとしても応答性以外の問題から外乱補償は必要となると言える。 In the polarity of the disturbance this time, the decrease in responsiveness was improved by compensation, but consider the case of the opposite polarity. In this case, since it is determined that the backlash has passed earlier than the actual value due to the estimation error, the responsiveness does not deteriorate, but the torque is treated as normal running and is not limited, so that a sound is generated by the impact. Therefore, even if the polarity of the disturbance is different, it can be said that the disturbance compensation is necessary due to problems other than responsiveness.
 以上のように実施例2では実施例1の内容に加えて、検出モータ角速度に基づいてフィードバックを行うことで外乱を補償することができる。 As described above, in the second embodiment, in addition to the contents of the first embodiment, it is possible to compensate for the disturbance by giving feedback based on the detected motor angular velocity.
 これによって、バックラッシュを抜けた際の歯車の衝突音を抑制できる、応答性を必要以上に下げない、制御出力のチャタリングを起こさない、外乱による推定誤差がもたらす制御性能低下を防げる、というバックラッシュ区間内の制御を行うことができ、ギアを介して負荷を駆動する電動機駆動系の運転性能を改善できる。 As a result, the collision noise of the gears when exiting the backlash can be suppressed, the responsiveness is not lowered more than necessary, the control output is not chattered, and the control performance deterioration caused by the estimation error due to the disturbance can be prevented. Control within the section can be performed, and the operating performance of the electric motor drive system that drives the load via gears can be improved.
 また、先行技術文献に対しては、応答性、及び衝撃について考慮している、特別な構造を要さず制御上の変更のみで実現できる、振動成分を得るための繰り返しのテスト運転を必要としない、テーブル作成の必要がない、外乱の影響を考慮している、等の利点を持つ。 In addition, for the prior art documents, it is necessary to repeat test operation to obtain the vibration component, which considers responsiveness and impact, can be realized only by changing the control without requiring a special structure. It has advantages such as no need to create a table, consideration of the influence of disturbance, and so on.
 (実施例3)
 実施例1ではバックラッシュ区間内の応答性、衝撃について両立できるトルク値を設定することにしていた。しかし、歯車(ギア3)がかみ合うまでの時間、そして衝撃に寄与する運動量については速度が問題となる。また、実施例1の場合はバックラッシュ区間内にて一定トルクで加速し続けるためバックラッシュの角度に関するモデルデータに対してプラントのバックラッシュが大きいと加速しすぎてしまい、音を生じてしまうというパラメータ誤差に起因する問題も存在する。これらの対策として、実施例3では速度を基準に制御を行うことでバックラッシュ区間の制御性能を向上させた。
(Example 3)
In Example 1, it was decided to set a torque value that is compatible with both responsiveness and impact in the backlash section. However, the speed becomes a problem with respect to the time until the gear (gear 3) meshes and the momentum contributing to the impact. Further, in the case of the first embodiment, since the vehicle continues to accelerate with a constant torque within the backlash section, if the backlash of the plant is large with respect to the model data regarding the backlash angle, the acceleration will be too large and noise will be generated. There are also problems due to parameter errors. As these measures, in Example 3, the control performance of the backlash section was improved by performing control based on the speed.
 このとき重要な点は、摩擦補償トルクについては摩擦として発生しているトルク成分への補償のため、これについては実施例1と同様に補償を行う必要があるという点である。よって、加速トルクについて速度を基準にした制御を行う。 At this time, the important point is that the friction compensation torque needs to be compensated in the same manner as in Example 1 in order to compensate for the torque component generated as friction. Therefore, the acceleration torque is controlled based on the speed.
 図7は、実施例3における図1(b)のバックラッシュ制御部12のシステム構成を示している。図7において、実施例1の図2と異なる点は、加速トルク生成部として前記リミッタ21に代えて、バックラッシュ速度制御部80を設け、演算部24の内部モデルで演算された推定ねじり角速度ωBL^をバックラッシュ速度制御部80に入力し、バックラッシュ速度制御部80からトルク指令Tsを出力することにあり、その他の部分は図2と同様に構成されている。 FIG. 7 shows the system configuration of the backlash control unit 12 of FIG. 1B in the third embodiment. In FIG. 7, the difference from FIG. 2 of the first embodiment is that the backlash speed control unit 80 is provided as the acceleration torque generation unit instead of the limiter 21, and the estimated torsional angular velocity ω calculated by the internal model of the calculation unit 24 is provided. BL ^ is input to the backlash speed control unit 80, and the torque command T s is output from the backlash speed control unit 80, and the other parts are configured in the same manner as in FIG.
 また、判定部22のスイッチ用フローチャート(図4のフロー)によってバックラッシュ区間か否かを考慮して、加速トルクスイッチ23および摩擦補償スイッチ26のON/OFFを決める動作は実施例1の動作と同様に行われる。 Further, the operation of determining ON / OFF of the acceleration torque switch 23 and the friction compensation switch 26 in consideration of whether or not it is a backlash section according to the switch flowchart (flow of FIG. 4) of the determination unit 22 is the operation of the first embodiment. It is done in the same way.
 バックラッシュ速度制御部80は、演算部24の内部モデルで演算された推定ねじり角速度ωBL^を取り込み、該推定ねじり角速度ωBL^が、設定した速度指令ωBL *となるように速度制御(例えばPI制御)するものであり、例えば図8のように構成されている。 The backlash speed control unit 80 takes in the estimated torsional velocity ω BL ^ calculated by the internal model of the arithmetic unit 24, and controls the speed so that the estimated torsional velocity ω BL ^ becomes the set speed command ω BL * ( For example, PI control), and is configured as shown in FIG. 8, for example.
 図8において、81は速度指令ωBL *が設定される速度指令設定部であり、この速度指令ωBL *は減算器82において、演算部24の内部モデルで演算された推定ねじり角速度ωBL^との偏差がとられる。 8, 81 is a speed command setting unit which is the speed command omega BL * is set, in the speed instruction omega BL * subtractor 82, the estimated torsional angular velocity calculated by the internal model of the arithmetic unit 24 omega BL ^ The deviation from is taken.
 減算器82の偏差出力には、ゲイン乗算器83の正の比例ゲインKPBLおよびゲイン乗算器84の正の積分ゲインKIBLが各々乗算される。ゲイン乗算器84の出力は積分器85によって積分される。 The deviation output of the subtractor 82 is multiplied by the positive proportional gain KP BL of the gain multiplier 83 and the positive integral gain KI BL of the gain multiplier 84, respectively. The output of the gain multiplier 84 is integrated by the integrator 85.
 ゲイン乗算器83の出力(P制御成分)と積分器85の出力(I制御成分)は加算器86で加算され、その加算出力はトルク指令Tsとして、加速トルクスイッチ23のトルク指令Ts選択側接点に入力される。 The output of the output of the gain multiplier 83 and (P control component) integrator 85 (I control component) are added by the adder 86, the addition output as the torque command T s, the torque command T s selection of acceleration torque switch 23 Input to the side contact.
 上記のように実施例3では、負荷軸4に対するモータ軸2のねじり角速度ωBLについて速度制御を行うことで加速トルクを決めている。推定ねじり角速度ωBL^に対する速度指令ωBL *はバックラッシュを抜けようとする方向の正負を考えて設定する。 As described above, in the third embodiment, the acceleration torque is determined by controlling the torsional angular velocity ω BL of the motor shaft 2 with respect to the load shaft 4. The speed command ω BL * for the estimated torsional velocity ω BL ^ is set considering the positive and negative of the direction in which the backlash is to be exited.
 ここで、バックラッシュ速度制御の注意点について述べる。速度指令ωBL *に関して、バックラッシュ区間内の始めのうちは高速に制御し、のちに歯車(ギア3)の当たる衝撃が音を発生しないよう減速するようなωBL *が望ましいが、バックラッシュの角度に関するモデルデータとプラントの誤差などが原因で高速のまま歯車をぶつけてしまう危険もあるため、バックラッシュ区間内では衝撃が音を発生しないωBL *で一定にしてもよい。 Here, notes on backlash speed control will be described. Terms of speed command omega BL *, backlash is controlled at a high speed at first in the interval, but later gear omega BL * is desirable so as to decelerate to shock exposed to (gear 3) does not generate sound, backlash Since there is a risk of hitting the gears at high speed due to the model data related to the angle of and the plant error, the impact may be constant with ω BL *, which does not generate sound within the backlash section.
 PI制御の積分ゲインKIBLについて、バックラッシュ区間内にいる期間は一般に1s以下であることから積分項による十分な速度追従は望みにくいこと、及びバックラッシュ区間に入ったときに積分器85が異常な値を持っていないよう適切にリセットする機構が実装上必要となり制御システムが複雑化することを考慮し、KIBLを0に設定、つまり比例制御のみの形に簡略化してもよい。 Regarding the integrated gain KI BL of PI control, it is difficult to expect sufficient speed tracking by the integral term because the period of stay in the backlash section is generally 1 s or less, and the integrator 85 is abnormal when entering the backlash section. The KI BL may be set to 0, that is, it may be simplified to only proportional control, in consideration of the fact that a mechanism for appropriately resetting the values does not have a value is required for mounting and the control system is complicated.
 出力トルク指令Tsについて、PI制御が大きなトルク指令を演算する可能性があるためリミッタを通して出力してもよいが、その際リミッタの上限下限の絶対値を実施例1で設置されていたリミッタ21の絶対値以下にすると実施例1より加速性能が劣ってしまうため、リミッタの上限下限は注意して定める必要がある。 The output torque command T s may be output through the limiter because the PI control may calculate a large torque command, but at that time, the absolute value of the upper and lower limits of the limiter is set to the limiter 21 installed in the first embodiment. If the value is less than the absolute value of, the acceleration performance will be inferior to that of the first embodiment. Therefore, it is necessary to carefully determine the upper and lower limits of the limiter.
 図13にバックラッシュ区間におけるBL速度制御の効果を示す。図13では、リミッタのみの実施例1とBL速度制御を用いた実施例3を比較している。シミュレーションでは応答性よりも過大な加速による音の発生を考慮してバックラッシュ速度制御部80の速度指令ωBL *は一定に保った。また、PI制御は前述の理由からP制御のみに簡略化している。 FIG. 13 shows the effect of BL speed control in the backlash section. In FIG. 13, Example 1 using only the limiter and Example 3 using BL speed control are compared. In the simulation, the speed command ω BL * of the backlash speed control unit 80 was kept constant in consideration of the generation of sound due to acceleration exceeding the responsiveness. Further, PI control is simplified to P control only for the above-mentioned reason.
 図13(a)は図1(a)のプラントのねじり角θBLの推移を表し、線121はリミッタのみ(実施例1)の場合のシミュレーション結果、線122はBL速度制御を用いた実施例3の場合のシミュレーション結果を各々示している。 13 (a) shows the transition of the torsion angle θ BL of the plant of FIG. 1 (a), line 121 is a simulation result in the case of only the limiter (Example 1), and line 122 is an example using BL speed control. The simulation results in the case of 3 are shown respectively.
 図13(b)は図1(a)のプラントのねじり角速度ωBLの推移を表し、線123はリミッタのみ(実施例1)の場合のシミュレーション結果、線124はBL速度制御を用いた実施例3の場合のシミュレーション結果を各々示している。 13 (b) shows the transition of the torsional angular velocity ω BL of the plant of FIG. 1 (a), line 123 is a simulation result in the case of only the limiter (Example 1), and line 124 is an example using BL speed control. The simulation results in the case of 3 are shown respectively.
 図13(a)のねじり角θBLのグラフでは実施例1(線121)の方がわずかに早くバックラッシュを抜けているが、あまり大きな違いは見られない。そして、図13(b)のグラフを見て速度制御性能を確認したい。実施例1(線123)ではトルクが一定のためねじり角速度ωBLは一定の加速度で加速している。それに対し実施例3(線124)では速度制御によってねじり角速度ωBLは一定速に保たれている。 In the graph of the torsion angle θ BL in FIG. 13 (a), Example 1 (line 121) passed through the backlash slightly earlier, but no significant difference was observed. Then, I would like to confirm the speed control performance by looking at the graph of FIG. 13 (b). In the first embodiment (line 123), since the torque is constant, the torsion angular velocity ω BL is accelerated at a constant acceleration. On the other hand, in Example 3 (line 124), the torsion angular velocity ω BL is maintained at a constant velocity by speed control.
 このことから、仮に実際のプラントのバックラッシュ角度θBLがモデルデータよりも大きかった際、実施例1では過大な加速で音を生じてしまうのに対し、実施例3では速度を保っているためその問題が生じないことが言える。 From this, if the backlash angle θ BL of the actual plant is larger than the model data, the sound is generated by excessive acceleration in the first embodiment, whereas the speed is maintained in the third embodiment. It can be said that the problem does not occur.
 このため、実施例3では実施例1よりもパラメータ誤差に強いBL制御が可能となる。また、BL速度制御についてバックラッシュ区間内の始めのうちは高速に制御し、のちに歯車(ギア3)の当たる衝撃が音を発生しないよう減速する方式にすればパラメータ誤差へのロバスト性の代わりに応答性を改善することも可能である。 Therefore, in Example 3, BL control that is more resistant to parameter errors than in Example 1 is possible. In addition, if BL speed control is controlled at high speed at the beginning of the backlash section and then decelerated so that the impact of the gear (gear 3) does not generate sound, it will replace the robustness to parameter error. It is also possible to improve the responsiveness.
 以上のように実施例3によれば、バックラッシュ区間を判定し負荷軸に対するモータ軸のねじり角速度を適切に制御するトルクを出力することで、バックラッシュを抜けた際の歯車の衝突音を抑制できる、応答性を必要以上に下げない、制御出力のチャタリングを起こさない、実施例1よりパラメータ誤差の影響を受けにくい、というバックラッシュ区間内の制御を行うことができ、ギアを介して負荷を駆動する電動機駆動系の運転性能を改善できる。 As described above, according to the third embodiment, by determining the backlash section and outputting the torque for appropriately controlling the torsional angle speed of the motor shaft with respect to the load shaft, the collision noise of the gear when the backlash is exited is suppressed. It is possible to perform control within the backlash section, such as being able to do so, not lowering the responsiveness more than necessary, not causing chattering of the control output, and being less susceptible to parameter errors than in Example 1, and the load is applied via gears. The operating performance of the driving motor drive system can be improved.
 また、先行技術文献に対しては、速度センサを用いる必要がない、応答性、及び衝撃について考慮している、特別な構造を要さず制御上の変更のみで実現できる、振動成分を得るための繰り返しのテスト運転を必要としない、テーブル作成の必要がない、テーブルに比べパラメータ誤差にロバストな制御にできる、等の利点を持つ。 In addition, for the prior art documents, in order to obtain a vibration component that does not require the use of a speed sensor, considers responsiveness and impact, can be realized only by changing the control without requiring a special structure. It has the advantages of not requiring repeated test runs, no need to create a table, and robust control of parameter errors compared to tables.
 (実施例4)
 実施例2の外乱補償と実施例3のBL速度制御は、変更位置の違いから相互に悪影響を及ぼすことなく組み合わせて用いることができる。そこで実施例4では、図1(b)のバックラッシュ制御部12を、実施例2と実施例3を組み合わせて図9の構成とした。
(Example 4)
The disturbance compensation of Example 2 and the BL speed control of Example 3 can be used in combination without adversely affecting each other due to the difference in the change position. Therefore, in the fourth embodiment, the backlash control unit 12 of FIG. 1 (b) is configured as shown in FIG. 9 by combining the second embodiment and the third embodiment.
 図9において図5と異なる点は、リミッタ21がバックラッシュ速度制御部80に置き換わっていること、演算部54の内部モデルから出力された推定ねじり角速度ωBL^がバックラッシュ速度制御部80に入力されていること、リミッタ出力のリミットトルク指令Tlimがバックラッシュ速度制御部80の出力のトルク指令Tsに置き換わっていること、の3点である。それ以外のシステム構成、変数名については図5と同じものである。 The difference from FIG. 5 in FIG. 9 is that the limiter 21 is replaced by the backlash speed control unit 80, and the estimated torsional angular velocity ω BL ^ output from the internal model of the calculation unit 54 is input to the backlash speed control unit 80. The three points are that the limit torque command T lim of the limiter output is replaced with the torque command T s of the output of the backlash speed control unit 80. Other system configurations and variable names are the same as in FIG.
 また、バックラッシュ制御以外のシステム構成、変数および動作については図1、図4、図6、図7、図8に基くものとする。 The system configuration, variables, and operations other than backlash control shall be based on FIGS. 1, 4, 6, 7, and 8.
 実施例4によれば、バックラッシュ区間を判定し負荷軸に対するモータ軸のねじり角速度を適切に制御するトルクを出力し、モータ角速度の検出と推定の比較から外乱補償を行うことで、バックラッシュを抜けた際の歯車の衝突音を抑制できる、応答性を必要以上に下げない、制御出力のチャタリングを起こさない、外乱による推定誤差がもたらす制御性能低下を防げる、実施例1よりもパラメータ誤差の影響を受けにくい、というバックラッシュ区間内の制御を行うことができ、ギアを介して負荷を駆動する電動機駆動系の運転性能を改善できる。 According to the fourth embodiment, the backlash section is determined, the torque for appropriately controlling the torsional angular velocity of the motor shaft with respect to the load shaft is output, and the backlash is compensated by comparing the detection and estimation of the motor angular velocity. It is possible to suppress the collision noise of the gear when it comes off, do not lower the responsiveness more than necessary, do not cause chattering of the control output, prevent the deterioration of control performance caused by the estimation error due to disturbance, the influence of the parameter error compared to Example 1. It is possible to control the backlash section so that it is less susceptible to damage, and it is possible to improve the operating performance of the motor drive system that drives the load via gears.
 また、先行技術文献に対しては、応答性、及び衝撃について考慮している、特別な構造を要さず制御上の変更のみで実現できる、振動成分を得るための繰り返しのテスト運転を必要としない、テーブル作成の必要がない、外乱の影響を考慮している、テーブルに比べパラメータ誤差にロバストな制御にできる、等の利点を持つ。 In addition, for the prior art documents, it is necessary to repeat test operation to obtain the vibration component, which considers responsiveness and impact, can be realized only by changing the control without requiring a special structure. It has advantages such as no need to create a table, consideration of the influence of disturbance, and robust control of parameter error compared to a table.

Claims (7)

  1.  インバータに接続された電動機によって、ギアを介して負荷を駆動する電動機駆動系におけるバックラッシュ制御装置であって、
     バックラッシュ区間を判定する手段を有し、設定された速度指令に対応するトルク指令が入力され、バックラッシュ区間内でトルクを加速させるための加速トルクを生成する処理、又はバックラッシュ区間を抜ける方向と逆方向のトルク成分を打ち消すための摩擦補償トルク加算処理の、少なくともいずれか一方を実施してバックラッシュ考慮トルク指令を演算するバックラッシュ制御部を備え、
     前記演算されたバックラッシュ考慮トルク指令に基づいて前記インバータを制御することを特徴とする電動機駆動系におけるバックラッシュ制御装置。
    A backlash control device in an electric motor drive system that drives a load via gears by an electric motor connected to an inverter.
    It has a means to determine the backlash section, a torque command corresponding to the set speed command is input, a process to generate acceleration torque for accelerating the torque in the backlash section, or a direction to exit the backlash section. It is equipped with a backlash control unit that calculates the backlash-considered torque command by performing at least one of the friction compensation torque addition processing for canceling the torque component in the opposite direction.
    A backlash control device in an electric motor drive system, which controls the inverter based on the calculated backlash-considered torque command.
  2.  前記バックラッシュ制御部は、
     前記加速トルクを生成する処理の実施が決定されたときに加速トルクを生成する加速トルク生成部と、
     バックラッシュ区間における電動機-ギア間のモータ軸とギア-負荷間の負荷軸とのねじり角に対する負荷トルクの関係を、不感帯を備えて設定したバックラッシュブロックを境とし、電動機側ブロック、バックラッシュブロック、負荷側ブロックに分けて前記電動機駆動系を表現した内部モデルを有し、前記内部モデルによって、前記加速トルク生成部の出力トルクから、推定モータ角速度を演算し、前記モータ軸の負荷軸に対する推定ねじり角速度と、前記モータ軸の負荷軸に対する推定ねじり角又は推定負荷トルクを演算して出力する演算部と、
     前記摩擦補償トルク加算処理の実施が決定されたときに、前記加速トルク生成部の出力トルクに対して摩擦補償トルクを加算する摩擦補償トルク加算部と、
     前記演算部で演算されたモータ軸の負荷軸に対する推定ねじり角または推定負荷トルクと、モータ軸の負荷軸に対する推定ねじり角速度と、前記速度指令に対応するトルク指令とを入力とし、バックラッシュ区間であるか否かの判定を行い、その判定結果に基づいて、前記加速トルク生成部における加速トルクを生成する処理の実施、不実施の決定、前記摩擦補償トルク加算部における摩擦補償トルク加算処理の実施、不実施の決定を行う判定部と、を備えたことを特徴とする請求項1に記載の電動機駆動系におけるバックラッシュ制御装置。
    The backlash control unit
    An acceleration torque generator that generates acceleration torque when it is decided to perform the process of generating acceleration torque.
    The relationship between the load torque with respect to the twist angle between the motor shaft between the motor and the gear and the load shaft between the gear and the load in the back crash section is defined by the back crash block set with a dead zone, and the motor side block and back crash block. , It has an internal model that expresses the motor drive system by dividing it into load side blocks, and the estimated motor angular speed is calculated from the output torque of the acceleration torque generator by the internal model, and is estimated for the load shaft of the motor shaft. A calculation unit that calculates and outputs the torsion angle speed and the estimated torsion angle or estimated load torque of the motor shaft with respect to the load shaft.
    When the execution of the friction compensation torque addition process is decided, the friction compensation torque addition unit that adds the friction compensation torque to the output torque of the acceleration torque generation unit, and the friction compensation torque addition unit.
    The estimated torsion angle or estimated load torque of the motor shaft with respect to the load shaft calculated by the calculation unit, the estimated torsional angle speed of the load shaft of the motor shaft, and the torque command corresponding to the speed command are input, and in the backlash section. It is determined whether or not there is, and based on the determination result, the processing for generating the acceleration torque in the acceleration torque generating unit is executed, the decision not to be performed, and the friction compensation torque adding processing in the friction compensation torque adding unit are performed. The backlash control device in the motor drive system according to claim 1, further comprising a determination unit for determining non-implementation.
  3.  前記加速トルク生成部は、入力されたトルク指令に対して上限、下限の制限をかけるリミッタを有していることを特徴とする請求項2に記載の電動機駆動系におけるバックラッシュ制御装置。 The backlash control device in an electric motor drive system according to claim 2, wherein the acceleration torque generating unit has a limiter that limits an upper limit and a lower limit on an input torque command.
  4.  前記加速トルク生成部は、前記内部モデルで演算された推定ねじり角速度が、設定した速度指令となるように速度制御するバックラッシュ速度制御部を有していることを特徴とする請求項2に記載の電動機駆動系におけるバックラッシュ制御装置。 The second aspect of the present invention is characterized in that the acceleration torque generating unit has a backlash speed control unit that controls the speed so that the estimated torsional angular velocity calculated by the internal model becomes a set speed command. Backlash control device in the motor drive system of.
  5.  前記内部モデルは、前記電動機の角速度を検出した検出モータ角速度と前記演算された推定モータ角速度との偏差をとり、その偏差分が零となるように内部モデルにフィードバックする外乱補償系を有していることを特徴とする請求項2から4のいずれか1項に記載の電動機駆動系におけるバックラッシュ制御装置。 The internal model has a disturbance compensation system that takes a deviation between the detected motor angular velocity that detects the angular velocity of the motor and the calculated estimated motor angular velocity, and feeds back the deviation to the internal model so that the deviation becomes zero. The backlash control device in the electric motor drive system according to any one of claims 2 to 4, wherein the back crash control device is provided.
  6.  前記判定部は、
     前記モータ軸の負荷軸に対する推定ねじり角が前記ギアのバックラッシュ位相範囲内であるか、又は推定負荷トルクが零付近であるとき、バックラッシュ区間であると判定し、それ以外はバックラッシュ区間でないと判定する第1の判定処理と、
     前記第1の判定処理によりバックラッシュ区間であると判定された場合に、前記速度指令に対応するトルク指令が、設定した不感帯内であるか否かを判定する第2の判定処理と、
     前記第2の判定処理により不感帯内でないと判定された場合に、推定ねじり角速度が、設定した不感帯内であるか否かを判定する第3の判定処理とを行い、
     前記第1の判定処理によりバックラッシュ区間でないと判定された場合と、第2の判定処理によりトルク指令が不感帯内であると判定された場合に、前記加速トルクを生成する処理の不実施および摩擦補償トルク加算処理の不実施を決定し、
     前記第3の判定処理により推定ねじり角速度が不感帯内であると判定された場合に、前記加速トルクを生成する処理の実施を決定し、摩擦補償トルク加算処理の不実施を決定し、
     前記第3の判定処理により推定ねじり角速度が不感帯内でないと判定された場合に、前記加速トルクを生成する処理の実施および摩擦補償トルク加算処理の実施を決定することを特徴とする請求項2から5のいずれか1項に記載の電動機駆動系におけるバックラッシュ制御装置。
    The determination unit
    When the estimated torsion angle of the motor shaft with respect to the load shaft is within the backlash phase range of the gear, or when the estimated load torque is near zero, it is determined to be a backlash section, and other than that, it is not a backlash section. The first determination process to determine that
    When the backlash section is determined by the first determination process, the second determination process for determining whether or not the torque command corresponding to the speed command is within the set dead zone,
    When it is determined by the second determination process that it is not within the dead zone, a third determination process for determining whether or not the estimated torsional angular velocity is within the set dead zone is performed.
    When it is determined by the first determination process that it is not a backlash section and when it is determined by the second determination process that the torque command is within the dead zone, the process of generating the acceleration torque is not performed and friction Decided not to implement the compensation torque addition process,
    When it is determined by the third determination process that the estimated torsional angular velocity is within the dead zone, it is determined to perform the process of generating the acceleration torque, and it is determined not to perform the friction compensation torque addition process.
    According to claim 2, when it is determined by the third determination process that the estimated torsional angular velocity is not within the dead zone, it is determined to carry out the process of generating the acceleration torque and the friction compensation torque addition process. 5. The backlash control device in the electric motor drive system according to any one of 5.
  7.  請求項1から6のいずれか1項に記載の電動機駆動系におけるバックラッシュ制御装置を実行することを特徴とする電動機駆動系におけるバックラッシュ制御方法。 A backlash control method in an electric motor drive system, which comprises executing the backlash control device in the electric motor drive system according to any one of claims 1 to 6.
PCT/JP2019/045022 2019-03-19 2019-11-18 Backlash control device and backlash control method in electric motor drive system WO2020188880A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019050591A JP6717399B1 (en) 2019-03-19 2019-03-19 Backlash control device and backlash control method in motor drive system
JP2019-050591 2019-03-19

Publications (1)

Publication Number Publication Date
WO2020188880A1 true WO2020188880A1 (en) 2020-09-24

Family

ID=71131640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045022 WO2020188880A1 (en) 2019-03-19 2019-11-18 Backlash control device and backlash control method in electric motor drive system

Country Status (2)

Country Link
JP (1) JP6717399B1 (en)
WO (1) WO2020188880A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110717A (en) * 1993-08-19 1995-04-25 Fanuc Ltd Motor control system
JP2015156194A (en) * 2014-02-21 2015-08-27 三菱重工業株式会社 Mechanical device control device and friction compensation gain determination method
WO2016152650A1 (en) * 2015-03-24 2016-09-29 住友重機械工業株式会社 Slewing device
JP2017221045A (en) * 2016-06-08 2017-12-14 日産自動車株式会社 Electric-vehicular control method and electric-vehicular control apparatus
WO2018020679A1 (en) * 2016-07-29 2018-02-01 日産自動車株式会社 Vehicle control method and control device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110717A (en) * 1993-08-19 1995-04-25 Fanuc Ltd Motor control system
JP2015156194A (en) * 2014-02-21 2015-08-27 三菱重工業株式会社 Mechanical device control device and friction compensation gain determination method
WO2016152650A1 (en) * 2015-03-24 2016-09-29 住友重機械工業株式会社 Slewing device
JP2017221045A (en) * 2016-06-08 2017-12-14 日産自動車株式会社 Electric-vehicular control method and electric-vehicular control apparatus
WO2018020679A1 (en) * 2016-07-29 2018-02-01 日産自動車株式会社 Vehicle control method and control device

Also Published As

Publication number Publication date
JP6717399B1 (en) 2020-07-01
JP2020156160A (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP3420146B2 (en) Leveling control device for elevator system
JP3892823B2 (en) Motor speed control device
JP3228342B2 (en) Elevator speed control
JP6614357B2 (en) Vehicle control method and control device
KR101490664B1 (en) Servo control device
JP7109602B2 (en) Distance control device
JP2012104047A (en) Servo controller
WO2019186788A1 (en) Electric motor control device and elevator control device
JP2009155086A (en) Door controller of elevator
JP5659727B2 (en) Crane swing angle detection method and apparatus, and crane steadying control method and apparatus
WO2020188880A1 (en) Backlash control device and backlash control method in electric motor drive system
JP5194660B2 (en) Crane steady rest control apparatus and crane steady rest control method
JP5845433B2 (en) Motor drive device
JP7178561B2 (en) electric motor controller
JPWO2018179043A1 (en) Electric power steering device
KR102084917B1 (en) Control device of elevator
JP7384025B2 (en) Control equipment and inverter equipment for suspended cranes
JP6728632B2 (en) Electric vehicle control method and control device
JP7271266B2 (en) Control device
JP5263143B2 (en) Electric motor control device
JP6331237B1 (en) Motor control device and motor control method
JP5171582B2 (en) Elevator door control device
JP6750707B1 (en) Motor drive device and method of controlling motor drive device
JP5544885B2 (en) Elevator door device and its control device
JP2023136976A (en) Device and method for controlling vibration suppression in vehicle system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19919581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19919581

Country of ref document: EP

Kind code of ref document: A1