WO2016152650A1 - Slewing device - Google Patents

Slewing device Download PDF

Info

Publication number
WO2016152650A1
WO2016152650A1 PCT/JP2016/058130 JP2016058130W WO2016152650A1 WO 2016152650 A1 WO2016152650 A1 WO 2016152650A1 JP 2016058130 W JP2016058130 W JP 2016058130W WO 2016152650 A1 WO2016152650 A1 WO 2016152650A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
turning
rotation
swing
controller
Prior art date
Application number
PCT/JP2016/058130
Other languages
French (fr)
Japanese (ja)
Inventor
弘明 長井
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to CN201680006953.6A priority Critical patent/CN107251409B/en
Priority to JP2017508257A priority patent/JP6487529B2/en
Publication of WO2016152650A1 publication Critical patent/WO2016152650A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present invention relates to a turning device.
  • Recent construction machines such as power shovels and cranes are equipped with a turning device that turns the upper turning body.
  • the turning device includes a turning motor for driving the turning body and a power transmission mechanism for transmitting the output of the turning motor to the turning body, and a hydraulic motor or an electric motor (electric motor) is used for the turning motor.
  • a reduction gear is used for the turning motor.
  • the rotation angle or rotation speed of the swing body is ideally determined uniquely by the rotation angle and rotation speed of the swing motor and the reduction gear ratio of the speed reducer. For this reason, it is rare to use a rotation angle sensor that directly acquires rotation information (rotation angle, rotation speed, rotation angular velocity, etc.) of the revolving body as a means for measuring the angle of the revolving body in an excavator.
  • a rotation angle sensor that directly acquires rotation information (rotation angle, rotation speed, rotation angular velocity, etc.) of the revolving body as a means for measuring the angle of the revolving body in an excavator.
  • an indirect measurement method is employed in which an angle sensor is provided, and the angle of the turning body is calculated by using the output value of the angle sensor of the turning motor and the reduction ratio.
  • This indirect swivel angle measurement method has the merit that a sensor that directly measures the swivel body angle is not necessary, but the angle transmission error and backlash of the speed reducer cause errors, which makes it possible to measure the swivel angle. There is a demerit that the accuracy of. Furthermore, when the backlash reverses the rotation direction of the motor, a section (dead zone) in which the rotation of the swing motor is not transmitted to the swing body is generated. Will collide with the gear on the revolving unit in a stopped state, causing uncomfortable vibrations in the revolving unit.
  • an AC electric motor (electric motor) is used as a turning motor.
  • the steep rise in the rotational speed due to the high response of the electric motor and the increase in the backlash amount in terms of the motor shaft associated with the use of the high reduction ratio reducer to cope with high rotation and low torque.
  • the effects of backlash can become a problem.
  • Patent Document 1 discloses a technique for limiting the rotational speed and torque of the swing motor in the backlash section.
  • Patent Document 1 has the effect of reducing the energy transmitted from the swing motor to the swing body during escape of the backlash section and reducing the collision.
  • the rotation speed of the swing motor is reduced in the backlash section, the time from the start or rotation direction switching of the swing motor to the escape of the backlash section is increased, and there is a demerit that the operation performance of the swing body is lowered.
  • Such a problem may also occur when a hydraulic motor is used as the swing motor.
  • the present invention has been made in view of such problems, and one of the exemplary purposes of an aspect thereof is to provide a turning device capable of suppressing vibration while maintaining the motion performance of the turning body.
  • An aspect of the present invention relates to a traveling mechanism and a swing device that is mounted on an excavator including an upper swing body that is rotatably mounted on the travel mechanism, and that swings the upper swing body based on an operation command value.
  • the swing device includes a swing motor, a speed reducer that transmits the rotation of the swing motor to the upper swing body, a first rotation detection unit that acquires rotation information of the swing motor, and a second that acquires the rotation information of the upper swing body.
  • a rotation detecting means, a turning motor driver for driving the turning motor, and a controller for controlling the turning motor driver are provided.
  • the controller and the swing motor driver control the swing motor based on the rotation information of the swing motor and the rotation information of the upper swing body. According to this aspect, by providing the second rotation detecting means, it is possible to directly obtain the rotation information such as the actual position, speed, acceleration and the like of the upper swing body, and to reflect it in the control of the swing motor. it can.
  • a swing device includes a swing motor, a speed reducer that transmits rotation of the swing motor to the upper swing body, a swing motor driver that drives the swing motor, and (i) when the swing motor is rotated, the upper swing body rotates.
  • the swing motor driver is controlled according to the operation command value, and (ii) in the idle section where the upper swing body does not rotate even if the turning motor is rotated, the swing motor is operated until reaching the non-spinning section.
  • a controller that controls the turning motor driver so as to rotate quickly and to reduce the rotational speed or torque when reaching the non-idling section.
  • the swing motor in the backlash section where the swing motor does not contact the speed reducer, the swing motor is quickly rotated, and immediately before the collision, the rotation speed or torque is reduced to a level that can sufficiently suppress vibration.
  • the vibration can be suppressed while maintaining the motion performance of the revolving structure.
  • the turning device may further include a first rotation detection unit that acquires rotation information of the turning motor and a second rotation detection unit that acquires rotation information of the upper swing body.
  • the controller may determine the non-slipping section and the idling section based on the outputs of the first rotation detecting means and the second rotation detecting means, and may acquire the position of the turning motor in the idling section.
  • the controller based on the difference between the first angle information indicating the rotation angle of the motor coordinate system (converted into the motor shaft) of the swing motor and the second angle information indicating the rotation angle of the motor coordinate system of the upper swing body, You may acquire the position of the turning motor in the inside.
  • the difference between the first angle information and the second angle information represents the relative position of the swing motor and the upper swing body. Specifically, the difference maintains a constant value of the maximum value or the minimum value in the non-free running section, and the free running section. , The difference transitions between a minimum value and a maximum value. Therefore, by monitoring the difference, the position of the turning motor in the idling section can be acquired.
  • the controller rotates the swing motor in the first direction across the idling section and then rotates in the second direction across the idling section; and first angle information indicating the rotation angle of the motor coordinate system of the swing motor; You may perform the step which acquires the difference with the 2nd angle information which shows the rotation angle of the motor coordinate system of an upper revolving body, and the step which acquires the maximum value and minimum value of a difference. By measuring the maximum value and the minimum value of the difference, high-precision control is possible regardless of secular changes due to gear wear or the like.
  • the controller may further execute a step of setting a difference between the maximum value and the minimum value as a backlash amount corresponding to the idling section. Thereby, the length of the backlash section can be measured.
  • the controller may further execute a step of holding an average value of the maximum value and the minimum value of the difference or one of the maximum value and the minimum value as an offset amount. Thereby, the offset amount of 1st angle information and 2nd angle information can be updated based on a measured value.
  • the controller In the non-idling section, the controller generates a speed command value corresponding to the operation command value, and the swing motor driver drives the swing motor so that the detected value of the rotation speed of the swing motor matches the speed command value. May be.
  • the idling section includes a first section and a second section, and the controller generates a torque command value instructing a predetermined maximum acceleration torque in the first section, and instructs a predetermined maximum deceleration torque in the second section. A torque command value to be generated may be generated.
  • the swing motor driver may drive the swing motor with a torque corresponding to the torque command value.
  • the swing device includes a swing motor, a speed reducer that transmits the rotation of the swing motor to the upper swing body, a swing motor driver that drives the swing motor, a first rotation detection unit that acquires rotation information of the swing motor, and an upper swing Second rotation detection means for acquiring body rotation information, rotation angle of the motor coordinate system of the swing motor obtained by the first rotation detection means, and rotation of the motor coordinate system of the upper swing body obtained by the second rotation detection means Based on the difference from the corner, when the difference is a predetermined maximum or minimum value, it is determined that the upper revolving body rotates when the turning motor is rotated, and the difference is between the maximum value and the minimum value.
  • a controller for determining an idling section where the upper swing body does not rotate even when the swing motor is rotated.
  • the second rotation detection means for acquiring the rotation information of the upper swing body is provided, and the difference between the rotation angle of the upper swing body and the rotation angle of the swing motor is monitored, so that the idling section and the non-spinning section are detected. Can be judged.
  • the controller may detect the rotation angle (position) of the turning motor in the idling section based on the distance between the difference and the maximum value or the distance between the difference and the minimum value. If the position of the swing motor in the idling section can be detected, the position (that is, the angle) from the idling section to the non-idling section can be estimated, or the timing of the collision between the swiveling motor gear and the reduction gear can be predicted. Appropriate control for suppressing vibration can be performed.
  • vibration can be suppressed while maintaining the motion performance of the revolving structure.
  • FIGS. 8A to 8G are views showing the teeth of the turning motor and the teeth of the speed reducer.
  • FIG. 1 is a perspective view showing an appearance of an excavator 1 that is an example of a construction machine according to an embodiment.
  • the excavator 1 mainly includes a traveling mechanism 2 and an upper revolving body (hereinafter also simply referred to as a revolving body) 4 that is rotatably mounted on the upper portion of the traveling mechanism 2 via a revolving mechanism 3.
  • a traveling mechanism 2 and an upper revolving body 4 that is rotatably mounted on the upper portion of the traveling mechanism 2 via a revolving mechanism 3.
  • the swing body 4 is attached with a boom 5, an arm 6 linked to the tip of the boom 5, and a bucket 10 linked to the tip of the arm 6.
  • the bucket 10 is a facility for capturing suspended loads such as earth and sand and steel materials.
  • the boom 5, the arm 6, and the bucket 10 are hydraulically driven by a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9, respectively.
  • the revolving body 4 is provided with a power source such as a driver's cab 4a for accommodating an operator who operates the position of the bucket 10, excitation operation and release operation, and an engine 11 for generating hydraulic pressure.
  • the engine 11 is composed of, for example, a diesel engine.
  • FIG. 2 is a block diagram of the electric system and hydraulic system of the excavator 1 according to the embodiment.
  • the mechanical power transmission system is indicated by a double line
  • the hydraulic system is indicated by a thick solid line
  • the steering system is indicated by a broken line
  • the electrical system is indicated by a thin solid line.
  • the excavator 1 includes a motor generator 12 and a speed reducer 13, and the rotation shafts of the engine 11 and the motor generator 12 are connected to each other by being connected to the input shaft of the speed reducer 13.
  • the motor generator 12 assists (assists) the driving force of the engine 11 with its own driving force, and the driving force of the motor generator 12 passes through the output shaft of the speed reducer 13 to the main pump 14. Communicated.
  • the driving force of the engine 11 is transmitted to the motor generator 12 via the speed reducer 13, so that the motor generator 12 generates power.
  • the motor generator 12 is configured by, for example, an IPM (Interior / Permanent / Magnetic) motor in which a magnet is embedded in a rotor. Switching between driving of the motor generator 12 and power generation is performed by the controller 30 that controls driving of the electric system in the excavator 1 according to the load of the engine 11 and the like.
  • IPM Interior / Permanent / Magnetic
  • a main pump 14 and a pilot pump 15 are connected to the output shaft of the speed reducer 13, and a control valve 17 is connected to the main pump 14 via a high pressure hydraulic line 16.
  • the control valve 17 is a device that controls the hydraulic system in the excavator 1.
  • a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9 are connected to the control valve 17 via a high pressure hydraulic line.
  • the control valve 17 controls the hydraulic pressure supplied to them according to the operation input of the driver.
  • An operating device 26 (operating means) is connected to the pilot pump 15 via a pilot line 25.
  • the operating device 26 is an operating device for operating the turning electric motor 21, the traveling mechanism 2, the boom 5, the arm 6, and the bucket 10, and is operated by an operator.
  • a control valve 17 is connected to the operating device 26 via a hydraulic line 27, and a pressure sensor 29 is connected via a hydraulic line 28.
  • the operating device 26 converts the hydraulic pressure (primary hydraulic pressure) supplied through the pilot line 25 into a hydraulic pressure (secondary hydraulic pressure) corresponding to the operation amount of the operator and outputs the hydraulic pressure.
  • the secondary hydraulic pressure output from the operating device 26 is supplied to the control valve 17 through the hydraulic line 27 and detected by the pressure sensor 29.
  • the pressure sensor 29 detects this operation amount as a change in the hydraulic pressure in the hydraulic line 28.
  • the pressure sensor 29 outputs an electrical signal indicating the hydraulic pressure in the hydraulic line 28. This electric signal is input to the controller 30 and used for driving control of the turning electric motor 21.
  • the controller 30 is configured by a processing unit including a CPU (Central Processing Unit) and an internal memory, and is realized by the CPU executing a drive control program stored in the internal memory.
  • the controller 30 receives operation inputs from various sensors and the operation device 26 and the like, and performs drive control of the inverters 18A and 18C, the power storage means 20, and the like.
  • the hydraulic motor 40 is configured to be rotated by oil discharged from the boom cylinder 7 when the boom 5 is lowered, and is provided for converting energy when the boom 5 is lowered according to gravity into rotational force. It has been.
  • the hydraulic motor 40 is provided in the hydraulic pipe 7 ⁇ / b> A between the control valve 17 and the boom cylinder 7.
  • the turning electric motor 21 is provided in the turning mechanism 3 in FIG. 1 and rotates the upper turning body 4.
  • the turning electric motor 21 is an AC electric motor and is a power source of the turning mechanism 3 for turning the turning body 4.
  • a resolver 22, a mechanical brake 23, and a turning speed reducer 24 are connected to the rotating shaft 21 ⁇ / b> A of the turning electric motor 21.
  • the turning inverter 18 ⁇ / b> C receives electric power from the power storage means 20 and drives the turning electric motor 21. Further, during the regenerative operation of the turning electric motor 21, the electric power from the turning electric motor 21 is collected in the power storage means 20.
  • the rotational force of the rotational driving force of the turning electric motor 21 is amplified by the turning speed reducer 24, and the turning body 4 is subjected to acceleration / deceleration control to perform rotational movement. Further, due to the inertial rotation of the swing body 4, the rotation speed is increased by the swing speed reducer 24 and transmitted to the swing electric motor 21 to generate regenerative power.
  • the resolver 22 is a sensor that detects the rotation position and rotation angle of the rotation shaft 21A of the turning electric motor 21, and mechanically connected to the turning electric motor 21 to detect the rotation angle and rotation direction of the rotation shaft 21A.
  • the mechanical brake 23 is a braking device that generates a mechanical braking force, and mechanically stops the rotating shaft 21 ⁇ / b> A of the turning electric motor 21 according to a command from the controller 30.
  • the turning speed reducer 24 is a speed reducer that reduces the rotational speed of the rotating shaft 21 ⁇ / b> A of the turning electric motor 21 and mechanically transmits it to the turning mechanism 3.
  • the electric system mainly includes a controller 30, power storage means 20, and inverters 18A to 18C.
  • the motor generator 12 is connected to the secondary side (output) end of the assist inverter 18A.
  • the inverter 18A controls the operation of the motor generator 12 based on a command from the assist inverter controller 30A that is a part of the controller 30.
  • the turning electric motor 21, the resolver 22, the mechanical brake 23, the turning speed reducer 24, the turning inverter 18 ⁇ / b> C and the turning inverter controller 30 ⁇ / b> C that is a part of the controller 30 constitute an electric turning device 500.
  • the turning electric motor 21 is AC driven by the turning inverter 18C in accordance with a PWM (Pulse Width Modulation) control command.
  • PWM Pulse Width Modulation
  • a magnet-embedded IPM motor is suitable.
  • the turning inverter controller 30C receives a rotational speed command corresponding to the operation input, and controls the turning inverter 18C so that the turning speed of the turning electric motor 21 detected by the resolver 22 matches the rotational speed command.
  • the power storage means 20 includes, for example, a battery that is a storage battery, a step-up / down converter (bidirectional DC / DC converter) that controls charging / discharging of the battery, and a DC bus including positive and negative DC wirings (not shown).
  • a rechargeable secondary battery such as a lithium ion battery, a capacitor, or any other form of power source capable of transferring power may be used.
  • the primary side (DC input) of each of the inverters 18A and 18C is connected to the DC bus.
  • the converter controller which is a part of the controller 30, boosts the bidirectional DC / DC converter when the motor generator 12 or the like is in a power running operation, and bidirectional when the motor generator 12 or the like is in a regenerative operation.
  • the DC / DC converter is stepped down, and the electric power generated by the motor generator 12 is collected in the battery. As a result, the voltage of the DC bus (DC link voltage) is kept at a constant value.
  • FIG. 3 is a block diagram showing a configuration of the electric swivel device 500 according to the embodiment.
  • the electric turning device 500 mainly includes a turning motor 502, a speed reducer 504, a turning motor driver 506, and a controller 520.
  • the turning motor 502 corresponds to the turning electric motor 21 of FIG.
  • the speed reducer 504 corresponds to the turning speed reducer 24 of FIG. 2 and transmits the rotation of the turning motor 502 to the upper turning body 4.
  • Reducer 504 has a non-zero backlash.
  • the controller 520 corresponds to an inverter controller 30C that is a part of the controller 30 in FIG.
  • an operation amount (operation angle) of the lever is a control command for the upper turning body 4.
  • the operation amount of the lever is an operation command value S1 for instructing the rotation speed of the revolving structure 4.
  • the controller 520 receives the operation command value S1 and generates a control command value S2 for controlling the rotation of the swing motor 502 based on the operation command value S1.
  • the operation command value S1 may be generated by a computer.
  • the turning motor driver 506 corresponds to the inverter controller 30C and the turning inverter 18C in FIG.
  • the swing motor driver 506 performs feedback control of the swing motor 502 based on the control command value S2.
  • the control command value S2 may be the speed command value ⁇ REF of the turning motor 502.
  • the first rotation detection means 508 acquires rotation information (first rotation information) S3 of the turning motor 502.
  • the first rotation detecting means 508 is a rotary encoder and corresponds to the resolver 22 in FIG.
  • the first rotation detection means 508 may be a hall sensor.
  • the swing motor 502 may be sensorlessly driven, and in this case, the first rotation detection unit 508 may detect rotation information based on the output of the counter electromotive force detection comparator used in the sensorless drive.
  • the first rotation information S3 includes a speed detection value ⁇ RES indicating the rotation speed of the turning motor 502.
  • the swing motor driver 506 feedback-controls the current of the swing motor 502, that is, the torque ⁇ so that the speed detection value ⁇ RES matches the speed command value ⁇ REF .
  • non-slip section T A A section swing body 4 and is rotated to rotate the swing motor 502, is defined as "non-slip section T A ', a section be rotated is turning body 4 does not rotate the swing motor 502," slip section T B " It is defined as The controller 520, in (i) non-slip section T A, controls the turning motor driver 506 in accordance with an operation command value S1. Specifically, a speed command value S2 corresponding to the operation command value S1 is output.
  • the controller 520 (ii) in the slip section T B, such that the turning motor 502 until reaching the non-slip section T A is rotated at high speed, the rotational speed or torque is reduced when reaching the non-slip section T A
  • the turning motor driver 506 is controlled.
  • the controller 520 determines that slip section T B, rotates rapidly the swing motor 502 in the slip section T B.
  • slip section T B includes a second section T B2 followed by the first interval T B1.
  • the controller 520 generates a torque command value S4 instructing a predetermined maximum acceleration torque ⁇ ACC in the first interval T B1 , and generates a torque command value S4 instructing a predetermined maximum deceleration torque ⁇ BRK in the second interval T B2 .
  • Turning motor driver 506 the slip section T B, drives the turning motor 502 by a torque ⁇ in accordance with the torque command value S4.
  • FIG. 4 is a block diagram illustrating a configuration example of the turning motor driver 506.
  • the swing motor driver 506 includes a subtracter 540, a PI (proportional / integral) controller 542, and an inverter 548.
  • the subtractor 540 generates an error ⁇ between the speed command value ⁇ REF that is the control command value S 2 and the speed detection value ⁇ RES from the first rotation detection unit 508.
  • the PI controller 542 receives the error ⁇ and performs a PI calculation to generate a torque command value ⁇ REF .
  • P control or PID control may be used.
  • the inverter 548 supplies a drive current corresponding to the torque command value ⁇ REF to the swing motor 502 and controls the rotation of the swing motor 502.
  • the swing motor driver 506 further includes a selector 544. Further to the swing motor driver 506 from the controller 520, interval control signal S5 indicating which slip section T B which is unsubstituted slip section T A is input.
  • the selector 544 when the interval control signal S5 indicates a non slip section T A, selects the output of the PI controller 542, when the interval control signal S5 indicates a slip section T B, selects the torque command value S4.
  • the proportional gain, integral gain of PI controller 542, interval control signal S5 while showing a slip section T B, is set to zero.
  • the subtractor 540, the PI controller 542, and the selector 544 may have a function realized by a combination of hardware such as a microcomputer and a processor and a software program, and need not be provided as individual hardware.
  • FIG. 5 is an operation waveform diagram in the idling section of the electric swivel device 500 according to the embodiment.
  • FIG. 6 is an operation waveform diagram in the idling section of the electric swivel device according to the comparative technique.
  • the advantages of the electric swivel device 500 according to the embodiment will become clear by comparison with the electric swivel device according to the comparative technique.
  • FIG. 6 shows the control. Prior to time t0, the swing motor and the swing body are stopped.
  • the motor torque is output according to the speed command during the idling section from the time t0 to the time t2 of the rotation start of the swivel motor.
  • This speed command slowly rises from 0 rpm to about 150 rpm in order to reduce the impact caused by the collision.
  • the turning motor rotates slowly, and it takes about 0.07 s until the idling section ends.
  • the rotation speed of the swing motor quickly rises to near its peak value of 450 rmp within a short time (about 0.01 seconds in FIG. 5) after the rotation start time t0 of the swing motor.
  • the maximum acceleration torque tau ACC is applied in the first period T B1 of slip section T B, the rotational speed of the swing motor rises sharply in a short time.
  • the time t1 into the second section T B2 given the maximum deceleration torque tau BRK, rotational speed of the swing motor, the vibration is reduced to a sufficient suppressible range (20 rpm in this case).
  • the idling section ends, but the motor torque at this time is substantially zero, the turning motor is merely rotating (idling) with inertia, and the number of revolutions is sufficiently low. Therefore, the vibration generated at the collision time t2 is significantly suppressed as compared with the comparative technique.
  • the above is the operation of the electric swivel device 500.
  • the electric turning apparatus 500 it is possible to suppress vibration while maintaining the motion performance of the turning body. Since vibration can be suppressed, the load on the operator can be reduced and work efficiency can be increased, or noise and the like on the surroundings of the workplace can be reduced.
  • the electric turning device 500 acquires the rotation information (second rotation information) S5 of the turning body 4 in addition to the first rotation detection means 508 that acquires the rotation information S3 of the turning motor 502.
  • Two rotation detection means 510 is further provided.
  • Controller 520 outputs theta 1 between the first speed detecting means 508 second rotation detecting unit 510, based on the theta 2, with determining the non-slip section T A and slip section T B, turning the slip section T in B motor
  • the position of 502 is acquired.
  • the output ⁇ 1 indicates the position (rotation angle) of the swing motor 502
  • ⁇ 2 indicates the position (rotation angle) of the swing body 4.
  • the angle ⁇ 2 of the swing body 4 is dependent on the position ⁇ 1 of the swing motor 502.
  • the teeth are touched when turning, decelerating, and stopping.
  • the angle theta 2 of the swing body 4 is not dependent on the angle theta 1 of the turning motor 502.
  • the electric swivel device 500 of FIG. 3 detects the angle ⁇ 2 of the swivel body 4 when the tooth is not in contact by providing the second rotation detecting means 510, and is relative to the angle ⁇ 1 of the swivel motor 502. Based on this, the positional relationship between them is estimated by calculation.
  • FIG. 7 is a block diagram of the controller 520 related to position estimation.
  • the controller 520 includes a non-slipping section command value generation unit 532, an idling section command value generation unit 534, and a position estimation unit 536.
  • the non-slipping section command value generation unit 532 generates a control command value S2 that is the rotation command value ⁇ REF in the non-slipping section.
  • the idling section command value generation unit 534 generates a torque command value S4 ( ⁇ REF ) for sudden acceleration and sudden braking in the idling section.
  • Position estimating unit 536 receives the angle theta 2 of the angle theta 1 with the swing body 4 of the swing motor 502, it is determined which of the non-slip section T A slip section T B, also in the slip section T B The position of the turning motor 502 in the backlash is estimated.
  • the position estimation unit 536 includes first angle information ⁇ m1 indicating the rotation angle of the motor coordinate system of the swing motor 502 and second angle information ⁇ m2 indicating the rotation angle of the motor coordinate system of the swing body 4. difference, i.e. based on their relative positions, acquires the position of the swing motor 502 in slip section T in B.
  • the position estimation unit 536 includes a converter 522, a subtracter 524, a position calculation unit 526, a backlash acquisition unit 528, and an offset acquisition unit 530.
  • Convert 522 the angle theta 1 of the turning motor 502, receives the angle theta 2 of the rotary body 4, the first angle information of their common motor coordinate system theta m1, into a second angle information theta m @ 2.
  • the reduction ratio of the reduction gear 504 is used for the conversion.
  • the subtractor 524 calculates a difference ⁇ m between the first angle information ⁇ m1 and the second angle information ⁇ m2 .
  • the difference ⁇ m indicates the relative position of the swing motor 502 and the swing body 4.
  • Position calculating unit 526 calculates the position of the swing motor 502 in the backlash in slip section T B.
  • FIGS. 8A to 8G are views showing the tooth T1 on the turning motor shaft side of the reduction gear 504 and the tooth T2 on the turning shaft side.
  • the position of the tooth T1 on the motor shaft side is the rotation angle ⁇ m1 of the turning motor 502, and the position of the tooth T2 on the turning shaft side is nothing but the rotation angle ⁇ m2 of the turning body 4.
  • the gear is shown as a straight line.
  • the origins of ⁇ m1 and ⁇ m2 are aligned.
  • the left edges E1 and E2 of each gear give coordinates.
  • FIG. 8 (a) the tooth T1 of the motor shaft side is moved to the right within the backlash in slip section T B. At this time, the tooth T2 on the turning shaft side is stationary. During this time, the difference [Delta] [theta] m of theta m1 and theta m @ 2 is changed in the first direction.
  • Figure 8 (b) is a boundary of the slip section T B and the non-slip section T A, indicating when the tooth T1 of the motor shaft side is brought into contact with the tooth T2 of the turning shaft side.
  • FIG. 8 (e) is a boundary of the slip section T B and the non-slip section T A, indicating when the tooth T1 of the motor shaft side is brought into contact with the tooth T2 of the turning shaft side.
  • FIG. 8F when the tooth T1 on the motor shaft side further moves to the left, the angle ⁇ m2 of the swing body 4 changes depending on the angle ⁇ m1 of the swing motor shaft. That is, the difference ⁇ m1 ⁇ m2 takes a predetermined constant value ⁇ MIN .
  • the turning motor 502 is rotated in the right direction as shown in FIG. 8G, the turning motor 502 is idled in the backlash, and the difference ⁇ m changes in the first direction.
  • FIG. 9 is a diagram illustrating the angle ⁇ m1 of the swing motor 502 and the angle ⁇ m2 of the swing body 4. 9A to 9G correspond to the respective states of FIGS. 8A to 8G.
  • Position calculating unit 526 when the difference [Delta] [theta] m is the maximum value theta MAX, or when the minimum value theta MIN, determines that non-slip section T A, the minimum value difference [Delta] [theta] m is theta MIN and the maximum value theta MAX when it is between, it can be determined that the slip section T B.
  • the distance between ⁇ m and the minimum value ⁇ MIN or the distance between ⁇ m and the maximum value ⁇ MAX represents the position (angle) of the turning motor 502 in the backlash. Therefore, when the turning motor 502 is rotating in the first direction, the first section T B1 is when the distance between ⁇ m and the maximum value ⁇ MAX is greater than the predetermined value W, and the second section T B2 is when the distance is smaller. Also good. On the other hand, when the turning motor 502 rotates in the second direction, the first section T B1 is when the distance between ⁇ m and the minimum value ⁇ MIN is greater than the predetermined value W, and the second section T B2 is when the distance is smaller. Also good.
  • the non-slip section T A determines the idle period T B, also turning in backlash
  • the position of the motor 502 can be calculated.
  • Design values may be used for the minimum value ⁇ MIN and the maximum value ⁇ MAX, but they may be actually measured in an actual machine as described below. The following technique is particularly effective when the backlash amount due to gear wear cannot be ignored over time.
  • the controller 520 executes calibration including the following steps. Step 1) The turning motor 502 is rotated in the first direction and subsequently rotated in the second direction. Step 2) In the process of Step 1, the difference between the first angle information ⁇ m1 indicating the rotation angle of the motor coordinate system of the swing motor 502 and the second angle information ⁇ m1 indicating the rotation angle of the motor coordinate system of the swing body 4 Obtain ⁇ m . Step 3) Obtain the maximum value ⁇ MAX and the minimum value ⁇ MIN of the difference ⁇ m . Through the above processing, parameters required by the position calculation unit 526 are calibrated. Controller 520, steps 1-3 repeated multiple times, may obtain the maximum value theta MAX and the minimum value theta MIN using statistical processing such as averaging. Calibration may be performed at an appropriate time.
  • the controller 520 may further execute the following processing.
  • Step 4 the difference between the maximum value theta MAX and the minimum value theta MIN, the backlash amount corresponding to the slip section T B.
  • Step 4 is executed by the backlash acquisition unit 528, and the backlash amount S7 is held.
  • the amount of backlash increases over time due to gear wear. If this process is performed, the rotation control of the idling section can be performed based on the measured accurate backlash amount, and therefore, the performance degradation with time can be suppressed.
  • the backlash amount increases to a degree exceeding a certain threshold, it is possible to diagnose wear or failure.
  • Step 5 An average value of the maximum value ⁇ MAX and the minimum value ⁇ MIN is acquired as an offset amount. Step 5 is executed by the offset acquisition unit 530, and the offset amount S8 is held.
  • the controller 520 includes a backlash acquisition unit 528 and an offset acquisition unit 530.
  • FIG. 10 is a block diagram of the backlash acquisition unit 528 and the offset acquisition unit 530.
  • the peak acquisition unit 550 acquires the maximum value ⁇ MAX of the difference ⁇ m .
  • the bottom acquisition unit 552 acquires the minimum value ⁇ MIN of the difference ⁇ m .
  • the subtractor 554 calculates the backlash amount S7.
  • Adder 556 adds maximum value ⁇ MAX and minimum value ⁇ MIN , and multiplier 558 multiplies the addition result by 1/2 to calculate offset amount S8.
  • ⁇ MAX S8 + S7 / 2
  • ⁇ MIN S8-S7 / 2
  • the position calculation unit 526 can calculate the maximum value ⁇ MAX and the minimum value ⁇ MIN based on the backlash amount S7 and the offset amount S8.
  • the offset amount S8 may be defined by the maximum value ⁇ MAX .
  • ⁇ MAX S8
  • ⁇ MIN S8-S7
  • the offset amount S8 may be defined by the minimum value ⁇ MIN .
  • FIG. 11 is a block diagram of the controller 520a according to the first modification.
  • the selector 535, interval control signal S5 selects the control command value S2 when referring to non-slip section T A, interval control signal S5 selects the speed command value S9 when indicating the idle interval T B.
  • the swing motor driver 506 controls the swing motor 502 based on the speed command value ⁇ REF output from the controller 520.
  • the slip section T B using the position control, the turning motor 502 to accelerate rapidly, may be decelerated before colliding with the gear.
  • non-slip section T A and slip section T B are not limited to that described in the embodiment.
  • the load inertia moment amount may be estimated from the relationship between the drive current of the swing motor and the acceleration of the swing motor, and a section in which the estimated load inertia moment amount does not include the rotor equivalent may be estimated as the idling section.
  • the position estimation unit 536 may store the minimum value ⁇ MIN and the maximum value ⁇ MAX of the difference ⁇ m and obtain the backlash amount S7 and the offset amount S8 by calculation.
  • the position estimation unit 536 may store at least two of the backlash amount S7, the offset amount S8, the minimum value ⁇ MIN , and the maximum value ⁇ MAX and obtain the rest by calculation.
  • FIG. 12 is a block diagram showing a configuration of an electric swivel device 500a according to the fifth modification.
  • the basic configuration of the electric swivel device 500a is the same as that of FIG.
  • the controller 520 receives an operation command value S1 that indicates the position of the revolving structure 4.
  • angle information ⁇ 2 indicating the actual position of the revolving structure 4 generated by the second rotation detection unit 510 is input to the controller 520.
  • Angle information theta 2 corresponds to the position feedback value theta FB.
  • the operation command value S1 may correspond to the amount of operation of the turning lever by the operator. Alternatively, the operation command value S1 may be generated by a computer in information construction.
  • the controller 520 includes a so-called position controller, the position feedback value theta FB indicating the angle information theta 2 is, to match the position command value theta REF indicated by the operation command S1, the control command value S2 for turning motor driver 506 Generate.
  • Control command value S2 may be the speed command value omega REF.
  • the swing motor driver 506 performs feedback control of the swing motor 502 based on the speed command value ⁇ REF from the controller 520.
  • the first rotation detection means 508 acquires rotation information (first rotation information) S3 of the turning motor 502.
  • the first rotation information S3 includes a speed detection value ⁇ RES indicating the rotation speed of the turning motor 502.
  • the swing motor driver 506 may include a speed controller that feedback-controls the current of the swing motor 502, that is, the torque ⁇ , so that the speed detection value ⁇ RES matches the speed command value ⁇ REF .
  • the position ⁇ of the swing body 4 is directly controlled. And its position can be accurately controlled.
  • FIG. 13 is a block diagram showing a configuration of an electric swivel device 500b according to a sixth modification.
  • the basic configuration of the electric swivel device 500b is the same as that of FIG.
  • the controller 520 includes a position controller, and controls the control command value S2 (speed command value ⁇ REF so that the position command indicated by the operation command value S1 coincides with the position feedback signal ⁇ 1 detected by the first rotation detecting means 508. ) Is generated.
  • the rotation information S6 of the revolving structure 4 generated by the second rotation detection unit 510 is input to the controller 520.
  • the rotation information S6 includes at least one of the position ⁇ 2 , the speed ⁇ 2 , and the acceleration ⁇ 2 of the revolving structure 4.
  • Controller 520, the rotation information S6 in the swing body 4, S1, S2, is reflected in the at least one theta 1.
  • the controller 520 utilizes the rotation information S6, S1, S2, correcting at least one theta 1.
  • correction S1, S2 may be multiplied by a factor in at least one theta 1, may be performed by table lookup.
  • rotation information S6 generated by the second rotation detection unit 510 is input to the turning motor driver 506 in addition to or instead of the controller 520.
  • the turning motor driver 506 corrects or corrects S2, ⁇ RES , and a torque command (current command) as an output based on the rotation information S6 of the turning body 4. For example, when the torque information of the swing motor 502 is detected from the rotation information S6, the output value or the input value of the position controller may be changed so that the torque increases (decreases).
  • Offset acquisition unit 532 ... Non-slipping section command value generation unit, 534 ... Idle section command value generation unit 536 ... Position estimation unit, 540 ... Subtractor, 542 ... PI controller, 544 ... Selector, 548 ... Inverter, 550 ..., S1 ... Operation command value, S2 ... Control command value, S3 ... First rotation information, S4 ... Torque Command value, S5: Section control signal, S7: Backlash amount, S8: Offset amount.
  • the present invention can be used for construction machines and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Power Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

A speed reducer 504 transmits rotation of a slewing motor 502 to a slewing body 4. A slewing motor driver 506 drives the slewing motor 502. A controller 520 (i) controls the slewing motor driver 506 in accordance with an operation command value S1 during a non-idle period TA during which the slewing body 4 slews when the slewing motor 502 is rotated. In addition, the controller 520 (ii) controls the slewing motor driver 506 during an idle period TB, during which the slewing body 4 does not slew even when the slewing motor 502 is rotated, such that the slewing motor 502 rotates at a high speed until just before the non-idle period TA and the rotation speed or the torque thereof drops when the non-idle period TA is reached.

Description

旋回装置Swivel device
 本発明は、旋回装置に関する。 The present invention relates to a turning device.
 近年のパワーショベルやクレーンをはじめとする建設機械は、上部旋回体を旋回させる旋回装置を備える。旋回装置は、旋回体を駆動するための旋回モータと、旋回モータの出力を旋回体に伝達する動力伝達機構を備え、旋回モータには油圧モータや電動モータ(電動機)が使用され、動力伝達機構には減速機が用いられるのが一般的である。 Recent construction machines such as power shovels and cranes are equipped with a turning device that turns the upper turning body. The turning device includes a turning motor for driving the turning body and a power transmission mechanism for transmitting the output of the turning motor to the turning body, and a hydraulic motor or an electric motor (electric motor) is used for the turning motor. In general, a reduction gear is used.
 旋回体の回転角度あるいは回転速度は、理想的には旋回モータの回転角度、回転速度と減速機の減速比によって一意に定まる。そのためショベルにおける旋回体の角度計測の手段として、旋回体の回転情報(回転角、回転速度、回転角速度など)を直接取得する回転角度センサを用いるのはまれであり、旋回モータの回転情報を取得する角度センサを設け、旋回モータの角度センサの出力値と減速比を用いて、旋回体の角度を計算により求める間接的な計測方式が採られるのが一般的である。 The rotation angle or rotation speed of the swing body is ideally determined uniquely by the rotation angle and rotation speed of the swing motor and the reduction gear ratio of the speed reducer. For this reason, it is rare to use a rotation angle sensor that directly acquires rotation information (rotation angle, rotation speed, rotation angular velocity, etc.) of the revolving body as a means for measuring the angle of the revolving body in an excavator. In general, an indirect measurement method is employed in which an angle sensor is provided, and the angle of the turning body is calculated by using the output value of the angle sensor of the turning motor and the reduction ratio.
 この間接的な旋回体角度計測方式は、旋回体角度を直接測定するセンサが不要であるというメリットがある一方、減速機の持つ角度伝達誤差やバックラッシュなどが誤差要因となり、旋回体の角度計測の精度が悪化するというデメリットがある。さらにバックラッシュはモータの回転方向を反転させる際に、旋回モータの回転が旋回体に伝わらない区間(不感帯)を生じさせ、バックラッシュの存在を無視した制御を行えば、回転状態にある旋回モータが停止状態にある旋回体側の歯車と衝突することになり、旋回体に不快な振動を生じさせる原因となる。 This indirect swivel angle measurement method has the merit that a sensor that directly measures the swivel body angle is not necessary, but the angle transmission error and backlash of the speed reducer cause errors, which makes it possible to measure the swivel angle. There is a demerit that the accuracy of. Furthermore, when the backlash reverses the rotation direction of the motor, a section (dead zone) in which the rotation of the swing motor is not transmitted to the swing body is generated. Will collide with the gear on the revolving unit in a stopped state, causing uncomfortable vibrations in the revolving unit.
 旋回モータとして油圧モータが使用されるショベルでは、油圧モータの低応答性、低回転高トルクであるが故の減速比の小ささにより、バックラッシュによる影響は実用上、無視可能であった。 In the excavator in which a hydraulic motor is used as the swing motor, the influence of backlash was practically negligible due to the small reduction ratio due to the low response and low rotation and high torque of the hydraulic motor.
 一方、ハイブリッド型ショベルに利用される旋回装置では、旋回モータとして交流電動機(電動モータ)が使用される。この場合、電動モータの応答性の高さによる急峻な回転数の立ち上がりや、高回転低トルクに対応するための高減速比減速機の使用に伴うモータ軸換算のバックラッシュ量の増大から、これらのバックラッシュによる影響が問題として顕在化しうる。 On the other hand, in a turning device used for a hybrid excavator, an AC electric motor (electric motor) is used as a turning motor. In this case, the steep rise in the rotational speed due to the high response of the electric motor and the increase in the backlash amount in terms of the motor shaft associated with the use of the high reduction ratio reducer to cope with high rotation and low torque. The effects of backlash can become a problem.
 バックラッシュの影響のうち、旋回モータの回転方向を切り替える際に生ずる振動が大きな問題となっている。これを低減するための技術として、たとえば特許文献1には、バックラッシュ区間内では、旋回モータのモータ回転数やトルクに制限を設ける技術が開示されている。 Among the effects of backlash, the vibration that occurs when switching the rotation direction of the swing motor is a major problem. As a technique for reducing this, for example, Patent Document 1 discloses a technique for limiting the rotational speed and torque of the swing motor in the backlash section.
国際公開第06/033401号パンフレットInternational Publication No. 06/033401 Pamphlet
 特許文献1に記載の技術では、バックラッシュ区間の脱出時において旋回モータから旋回体に伝わるエネルギーを低減し、衝突を小さくする効果はある。しかしながらバックラッシュ区間において旋回モータの回転数が低くなることから、旋回モータの始動もしくは回転方向切り替えからバックラッシュ区間の脱出までの時間が長くなり、旋回体の動作性能が低下するというデメリットをともなう。かかる問題は、旋回モータとして油圧モータを用いた場合にも生じうる。 The technique described in Patent Document 1 has the effect of reducing the energy transmitted from the swing motor to the swing body during escape of the backlash section and reducing the collision. However, since the rotation speed of the swing motor is reduced in the backlash section, the time from the start or rotation direction switching of the swing motor to the escape of the backlash section is increased, and there is a demerit that the operation performance of the swing body is lowered. Such a problem may also occur when a hydraulic motor is used as the swing motor.
 本発明は係る課題に鑑みてなされたものであり、そのある態様の例示的な目的のひとつは、旋回体の運動性能を維持しつつ、振動を抑制可能な旋回装置の提供にある。 The present invention has been made in view of such problems, and one of the exemplary purposes of an aspect thereof is to provide a turning device capable of suppressing vibration while maintaining the motion performance of the turning body.
 本発明のある態様は、走行機構および走行機構に旋回自在に搭載された上部旋回体を備えるショベルに搭載され、操作指令値にもとづいて上部旋回体を旋回させる旋回装置に関する。旋回装置は、旋回モータと、旋回モータの回転を前記上部旋回体に伝達する減速機と、旋回モータの回転情報を取得する第1回転検出手段と、上部旋回体の回転情報を取得する第2回転検出手段と、旋回モータを駆動する旋回モータドライバと、旋回モータドライバを制御するコントローラと、を備える。コントローラおよび旋回モータドライバは、旋回モータの回転情報および上部旋回体の回転情報にもとづいて、旋回モータを制御する。
 この態様によれば、第2回転検出手段を設けたことにより、上部旋回体の実際の位置、速度、加速度などの回転情報を直接得ることができ、それを旋回モータの制御に反映させることができる。
An aspect of the present invention relates to a traveling mechanism and a swing device that is mounted on an excavator including an upper swing body that is rotatably mounted on the travel mechanism, and that swings the upper swing body based on an operation command value. The swing device includes a swing motor, a speed reducer that transmits the rotation of the swing motor to the upper swing body, a first rotation detection unit that acquires rotation information of the swing motor, and a second that acquires the rotation information of the upper swing body. A rotation detecting means, a turning motor driver for driving the turning motor, and a controller for controlling the turning motor driver are provided. The controller and the swing motor driver control the swing motor based on the rotation information of the swing motor and the rotation information of the upper swing body.
According to this aspect, by providing the second rotation detecting means, it is possible to directly obtain the rotation information such as the actual position, speed, acceleration and the like of the upper swing body, and to reflect it in the control of the swing motor. it can.
 ある態様の旋回装置は、旋回モータと、旋回モータの回転を上部旋回体に伝達する減速機と、旋回モータを駆動する旋回モータドライバと、(i)旋回モータを回転させると上部旋回体が回転する非空転区間において、操作指令値に応じて旋回モータドライバを制御し、(ii)旋回モータを回転させても上部旋回体が回転しない空転区間において、非空転区間への到達前まで旋回モータが速やかに回転し、非空転区間への到達時に回転数またはトルクが低下するように旋回モータドライバを制御するコントローラと、を備える。 A swing device according to an aspect includes a swing motor, a speed reducer that transmits rotation of the swing motor to the upper swing body, a swing motor driver that drives the swing motor, and (i) when the swing motor is rotated, the upper swing body rotates. In the non-slipping section, the swing motor driver is controlled according to the operation command value, and (ii) in the idle section where the upper swing body does not rotate even if the turning motor is rotated, the swing motor is operated until reaching the non-spinning section. And a controller that controls the turning motor driver so as to rotate quickly and to reduce the rotational speed or torque when reaching the non-idling section.
 この態様によると、旋回モータが減速機と接触しないバックラッシュ区間においては、旋回モータを速やかに回転させ、衝突する直前に、振動を十分に抑制可能な程度まで回転数あるいはトルクを低下させることで、旋回体の運動性能を維持しつつ、振動を抑制できる。 According to this aspect, in the backlash section where the swing motor does not contact the speed reducer, the swing motor is quickly rotated, and immediately before the collision, the rotation speed or torque is reduced to a level that can sufficiently suppress vibration. The vibration can be suppressed while maintaining the motion performance of the revolving structure.
 旋回装置は、旋回モータの回転情報を取得する第1回転検出手段と、上部旋回体の回転情報を取得する第2回転検出手段と、をさらに備えてもよい。コントローラは、第1回転検出手段と第2回転検出手段の出力にもとづき、非空転区間と空転区間を判定するとともに、空転区間内における旋回モータの位置を取得してもよい。
 旋回モータの回転情報に加えて上部旋回体の回転情報を監視することにより、非空転区間と空転区間を判別でき、また旋回モータと上部旋回体の相対位置を検出できる。
The turning device may further include a first rotation detection unit that acquires rotation information of the turning motor and a second rotation detection unit that acquires rotation information of the upper swing body. The controller may determine the non-slipping section and the idling section based on the outputs of the first rotation detecting means and the second rotation detecting means, and may acquire the position of the turning motor in the idling section.
By monitoring the rotation information of the upper swing body in addition to the rotation information of the swing motor, it is possible to discriminate between the non-slipping section and the idling section, and it is possible to detect the relative positions of the swing motor and the upper swing body.
 コントローラは、旋回モータのモータ座標系(モータ軸換算)の回転角を示す第1角度情報と、上部旋回体のモータ座標系の回転角を示す第2角度情報との差分にもとづいて、空転区間内における旋回モータの位置を取得してもよい。
 第1角度情報と第2角度情報の差分は、旋回モータと上部旋回体の相対位置を表し、具体的には、非空転区間において差分は最大値もしくは最小値の一定値を維持し、空転区間において、差分は最小値と最大値の間を遷移する。したがって差分を監視することで、空転区間内における旋回モータの位置を取得できる。
The controller, based on the difference between the first angle information indicating the rotation angle of the motor coordinate system (converted into the motor shaft) of the swing motor and the second angle information indicating the rotation angle of the motor coordinate system of the upper swing body, You may acquire the position of the turning motor in the inside.
The difference between the first angle information and the second angle information represents the relative position of the swing motor and the upper swing body. Specifically, the difference maintains a constant value of the maximum value or the minimum value in the non-free running section, and the free running section. , The difference transitions between a minimum value and a maximum value. Therefore, by monitoring the difference, the position of the turning motor in the idling section can be acquired.
 コントローラは、旋回モータを空転区間を跨いで第1方向に回転させ、続いて空転区間を跨いで第2方向に回転させるステップと、旋回モータのモータ座標系の回転角を示す第1角度情報と上部旋回体のモータ座標系の回転角を示す第2角度情報との差分を取得するステップと、差分の最大値および最小値を取得するステップと、を実行してもよい。
 差分の最大値、最小値を実測することで、ギアの摩耗等による経年変化にかかわらず高精度な制御が可能となる。
The controller rotates the swing motor in the first direction across the idling section and then rotates in the second direction across the idling section; and first angle information indicating the rotation angle of the motor coordinate system of the swing motor; You may perform the step which acquires the difference with the 2nd angle information which shows the rotation angle of the motor coordinate system of an upper revolving body, and the step which acquires the maximum value and minimum value of a difference.
By measuring the maximum value and the minimum value of the difference, high-precision control is possible regardless of secular changes due to gear wear or the like.
 コントローラは、最大値および最小値の差分を、空転区間に対応するバックラッシュ量とするステップをさらに実行してもよい。
 これにより、バックラッシュ区間の長さを実測することができる。
The controller may further execute a step of setting a difference between the maximum value and the minimum value as a backlash amount corresponding to the idling section.
Thereby, the length of the backlash section can be measured.
 コントローラは、差分の最大値と最小値の平均値、もしくは最大値、最小値のいずれかを、オフセット量として保持するステップをさらに実行してもよい。
 これにより、第1角度情報と第2角度情報のオフセット量を実測値にもとづいて更新できる。
The controller may further execute a step of holding an average value of the maximum value and the minimum value of the difference or one of the maximum value and the minimum value as an offset amount.
Thereby, the offset amount of 1st angle information and 2nd angle information can be updated based on a measured value.
 (i)非空転区間において、コントローラは、操作指令値に応じた速度指令値を生成し、旋回モータドライバは、旋回モータの回転数の検出値が速度指令値と一致するように旋回モータを駆動してもよい。(ii)空転区間は、第1区間および第2区間を含み、コントローラは、第1区間において所定の最大加速トルクを指示するトルク指令値を生成し、第2区間において所定の最大減速トルクを指示するトルク指令値を生成してもよい。空転区間において旋回モータドライバは、トルク指令値に応じたトルクで旋回モータを駆動してもよい。 (I) In the non-idling section, the controller generates a speed command value corresponding to the operation command value, and the swing motor driver drives the swing motor so that the detected value of the rotation speed of the swing motor matches the speed command value. May be. (Ii) The idling section includes a first section and a second section, and the controller generates a torque command value instructing a predetermined maximum acceleration torque in the first section, and instructs a predetermined maximum deceleration torque in the second section. A torque command value to be generated may be generated. In the idling section, the swing motor driver may drive the swing motor with a torque corresponding to the torque command value.
 本発明の別の態様も旋回装置に関する。旋回装置は、旋回モータと、旋回モータの回転を上部旋回体に伝達する減速機と、旋回モータを駆動する旋回モータドライバと、旋回モータの回転情報を取得する第1回転検出手段と、上部旋回体の回転情報を取得する第2回転検出手段と、第1回転検出手段により得られる旋回モータのモータ座標系の回転角と、第2回転検出手段により得られる上部旋回体のモータ座標系の回転角との差分にもとづき、差分が所定の最大値または最小値であるときに、旋回モータを回転させると上部旋回体が回転する非空転区間と判定し、差分が最大値と最小値の間であるときに、旋回モータを回転させても上部旋回体が回転しない空転区間と、を判定するコントローラと、を備える。 Another aspect of the present invention also relates to a turning device. The swing device includes a swing motor, a speed reducer that transmits the rotation of the swing motor to the upper swing body, a swing motor driver that drives the swing motor, a first rotation detection unit that acquires rotation information of the swing motor, and an upper swing Second rotation detection means for acquiring body rotation information, rotation angle of the motor coordinate system of the swing motor obtained by the first rotation detection means, and rotation of the motor coordinate system of the upper swing body obtained by the second rotation detection means Based on the difference from the corner, when the difference is a predetermined maximum or minimum value, it is determined that the upper revolving body rotates when the turning motor is rotated, and the difference is between the maximum value and the minimum value. There is provided a controller for determining an idling section where the upper swing body does not rotate even when the swing motor is rotated.
 この態様によれば、上部旋回体の回転情報を取得する第2回転検出手段を設け、上部旋回体の回転角と旋回モータの回転角の差分を監視することで、空転区間と非空転区間を判定できる。 According to this aspect, the second rotation detection means for acquiring the rotation information of the upper swing body is provided, and the difference between the rotation angle of the upper swing body and the rotation angle of the swing motor is monitored, so that the idling section and the non-spinning section are detected. Can be judged.
 コントローラは、差分と最大値の距離もしくは差分と最小値の距離にもとづいて、空転区間における旋回モータの回転角(位置)を検出してもよい。
 空転区間における旋回モータの位置が検出できれば、空転区間から非空転区間に移行するまでの位置(すなわち角度)を推定し、あるいは旋回モータの歯車と減速機の歯車の衝突のタイミングを予測できるため、振動を抑制するための適切な制御を行うことができる。
The controller may detect the rotation angle (position) of the turning motor in the idling section based on the distance between the difference and the maximum value or the distance between the difference and the minimum value.
If the position of the swing motor in the idling section can be detected, the position (that is, the angle) from the idling section to the non-idling section can be estimated, or the timing of the collision between the swiveling motor gear and the reduction gear can be predicted. Appropriate control for suppressing vibration can be performed.
 なお、以上の構成要素の任意の組み合わせや本発明の構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明の態様として有効である。 It should be noted that any combination of the above-described constituent elements and the constituent elements and expressions of the present invention that are mutually replaced between methods, apparatuses, systems, etc. are also effective as an aspect of the present invention.
 本発明によれば、旋回体の運動性能を維持しつつ、振動を抑制できる。 According to the present invention, vibration can be suppressed while maintaining the motion performance of the revolving structure.
実施の形態に係る建設機械の一例であるショベルの外観を示す斜視図である。It is a perspective view which shows the external appearance of the shovel which is an example of the construction machine which concerns on embodiment. 実施の形態に係るショベルの電気系統や油圧系統などのブロック図である。It is a block diagram, such as an electric system and a hydraulic system, of the excavator according to the embodiment. 実施の形態に係る電動旋回装置の構成を示すブロック図である。It is a block diagram which shows the structure of the electric turning apparatus which concerns on embodiment. 実施の形態に係る電動旋回装置の構成を示すブロック図である。It is a block diagram which shows the structure of the electric turning apparatus which concerns on embodiment. 実施の形態に係る電動旋回装置の動作波形図である。It is an operation | movement waveform diagram of the electric turning apparatus which concerns on embodiment. 比較技術に係る電動旋回装置の動作波形図である。It is an operation | movement waveform diagram of the electric swivel device which concerns on a comparison technique. 位置推定に関するコントローラのブロック図である。It is a block diagram of the controller regarding position estimation. 図8(a)~(g)は、旋回モータの歯と、減速機の歯を示す図である。FIGS. 8A to 8G are views showing the teeth of the turning motor and the teeth of the speed reducer. 旋回モータの角度と旋回体の角度を示す図である。It is a figure which shows the angle of a turning motor, and the angle of a turning body. バックラッシュ取得部およびオフセット取得部のブロック図である。It is a block diagram of a backlash acquisition part and an offset acquisition part. 第1変形例に係るコントローラのブロック図である。It is a block diagram of a controller concerning the 1st modification. 第5変形例に係る電動旋回装置の構成を示すブロック図である。It is a block diagram which shows the structure of the electric turning apparatus which concerns on a 5th modification. 第6変形例あるいは第7変形例に係る電動旋回装置の構成を示すブロック図である。It is a block diagram which shows the structure of the electric turning apparatus which concerns on a 6th modification or a 7th modification.
 以下、本発明を好適な実施の形態をもとに図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, the present invention will be described based on preferred embodiments with reference to the drawings. The same or equivalent components, members, and processes shown in the drawings are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 図1は、実施の形態に係る建設機械の一例であるショベル1の外観を示す斜視図である。ショベル1は、主として走行機構2と、走行機構2の上部に旋回機構3を介して回動自在に搭載された上部旋回体(以下、単に旋回体ともいう)4とを備えている。 FIG. 1 is a perspective view showing an appearance of an excavator 1 that is an example of a construction machine according to an embodiment. The excavator 1 mainly includes a traveling mechanism 2 and an upper revolving body (hereinafter also simply referred to as a revolving body) 4 that is rotatably mounted on the upper portion of the traveling mechanism 2 via a revolving mechanism 3.
 旋回体4には、ブーム5と、ブーム5の先端にリンク接続されたアーム6と、アーム6の先端にリンク接続されたバケット10とが取り付けられている。バケット10は、土砂、鋼材などの吊荷を捕獲するための設備である。ブーム5、アーム6、及びバケット10は、それぞれブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によって油圧駆動される。また、旋回体4には、バケット10の位置や励磁動作および釈放動作を操作する操作者を収容するための運転室4aや、油圧を発生するためのエンジン11といった動力源が設けられている。エンジン11は、例えばディーゼルエンジンで構成される。 The swing body 4 is attached with a boom 5, an arm 6 linked to the tip of the boom 5, and a bucket 10 linked to the tip of the arm 6. The bucket 10 is a facility for capturing suspended loads such as earth and sand and steel materials. The boom 5, the arm 6, and the bucket 10 are hydraulically driven by a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9, respectively. Further, the revolving body 4 is provided with a power source such as a driver's cab 4a for accommodating an operator who operates the position of the bucket 10, excitation operation and release operation, and an engine 11 for generating hydraulic pressure. The engine 11 is composed of, for example, a diesel engine.
 図2は、実施の形態に係るショベル1の電気系統や油圧系統などのブロック図である。なお、図2では、機械的に動力を伝達する系統を二重線で、油圧系統を太い実線で、操縦系統を破線で、電気系統を細い実線でそれぞれ示している。 FIG. 2 is a block diagram of the electric system and hydraulic system of the excavator 1 according to the embodiment. In FIG. 2, the mechanical power transmission system is indicated by a double line, the hydraulic system is indicated by a thick solid line, the steering system is indicated by a broken line, and the electrical system is indicated by a thin solid line.
 ショベル1は電動発電機12および減速機13を備えており、エンジン11及び電動発電機12の回転軸は、共に減速機13の入力軸に接続されることにより互いに連結されている。エンジン11の負荷が大きいときには、電動発電機12が自身の駆動力によりエンジン11の駆動力を補助(アシスト)し、電動発電機12の駆動力が減速機13の出力軸を経てメインポンプ14に伝達される。一方、エンジン11の負荷が小さいときには、エンジン11の駆動力が減速機13を経て電動発電機12に伝達されることにより、電動発電機12が発電を行う。電動発電機12は、例えば、磁石がロータ内部に埋め込まれたIPM(Interior Permanent Magnetic)モータによって構成される。電動発電機12の駆動と発電との切りかえは、ショベル1における電気系統の駆動制御を行うコントローラ30により、エンジン11の負荷等に応じて行われる。 The excavator 1 includes a motor generator 12 and a speed reducer 13, and the rotation shafts of the engine 11 and the motor generator 12 are connected to each other by being connected to the input shaft of the speed reducer 13. When the load of the engine 11 is large, the motor generator 12 assists (assists) the driving force of the engine 11 with its own driving force, and the driving force of the motor generator 12 passes through the output shaft of the speed reducer 13 to the main pump 14. Communicated. On the other hand, when the load on the engine 11 is small, the driving force of the engine 11 is transmitted to the motor generator 12 via the speed reducer 13, so that the motor generator 12 generates power. The motor generator 12 is configured by, for example, an IPM (Interior / Permanent / Magnetic) motor in which a magnet is embedded in a rotor. Switching between driving of the motor generator 12 and power generation is performed by the controller 30 that controls driving of the electric system in the excavator 1 according to the load of the engine 11 and the like.
 減速機13の出力軸にはメインポンプ14及びパイロットポンプ15が接続されており、メインポンプ14には高圧油圧ライン16を介してコントロールバルブ17が接続されている。コントロールバルブ17は、ショベル1における油圧系の制御を行う装置である。コントロールバルブ17には、図1に示した走行機構2を駆動するための油圧モータ2A及び2Bの他、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9が高圧油圧ラインを介して接続されており、コントロールバルブ17は、これらに供給する油圧を運転者の操作入力に応じて制御する。 A main pump 14 and a pilot pump 15 are connected to the output shaft of the speed reducer 13, and a control valve 17 is connected to the main pump 14 via a high pressure hydraulic line 16. The control valve 17 is a device that controls the hydraulic system in the excavator 1. In addition to the hydraulic motors 2A and 2B for driving the traveling mechanism 2 shown in FIG. 1, a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9 are connected to the control valve 17 via a high pressure hydraulic line. The control valve 17 controls the hydraulic pressure supplied to them according to the operation input of the driver.
 パイロットポンプ15には、パイロットライン25を介して操作装置26(操作手段)が接続されている。操作装置26は、旋回用電動機21、走行機構2、ブーム5、アーム6、及びバケット10を操作するための操作装置であり、操作者によって操作される。操作装置26には、油圧ライン27を介してコントロールバルブ17が接続され、また、油圧ライン28を介して圧力センサ29が接続される。操作装置26は、パイロットライン25を通じて供給される油圧(1次側の油圧)を操作者の操作量に応じた油圧(2次側の油圧)に変換して出力する。操作装置26から出力される2次側の油圧は、油圧ライン27を通じてコントロールバルブ17に供給されるとともに、圧力センサ29によって検出される。 An operating device 26 (operating means) is connected to the pilot pump 15 via a pilot line 25. The operating device 26 is an operating device for operating the turning electric motor 21, the traveling mechanism 2, the boom 5, the arm 6, and the bucket 10, and is operated by an operator. A control valve 17 is connected to the operating device 26 via a hydraulic line 27, and a pressure sensor 29 is connected via a hydraulic line 28. The operating device 26 converts the hydraulic pressure (primary hydraulic pressure) supplied through the pilot line 25 into a hydraulic pressure (secondary hydraulic pressure) corresponding to the operation amount of the operator and outputs the hydraulic pressure. The secondary hydraulic pressure output from the operating device 26 is supplied to the control valve 17 through the hydraulic line 27 and detected by the pressure sensor 29.
 圧力センサ29は、操作装置26に対して旋回機構3を旋回させるための操作が入力されると、この操作量を油圧ライン28内の油圧の変化として検出する。圧力センサ29は、油圧ライン28内の油圧を表す電気信号を出力する。この電気信号は、コントローラ30に入力され、旋回用電動機21の駆動制御に用いられる。 When the operation for turning the turning mechanism 3 is input to the operation device 26, the pressure sensor 29 detects this operation amount as a change in the hydraulic pressure in the hydraulic line 28. The pressure sensor 29 outputs an electrical signal indicating the hydraulic pressure in the hydraulic line 28. This electric signal is input to the controller 30 and used for driving control of the turning electric motor 21.
 コントローラ30は、CPU(Central Processing Unit)及び内部メモリを含む演算処理装置によって構成され、内部メモリに格納された駆動制御用のプログラムをCPUが実行することにより実現される。コントローラ30は、各種センサ及び操作装置26等からの操作入力を受けて、インバータ18A、18C及び蓄電手段20等の駆動制御を行う。 The controller 30 is configured by a processing unit including a CPU (Central Processing Unit) and an internal memory, and is realized by the CPU executing a drive control program stored in the internal memory. The controller 30 receives operation inputs from various sensors and the operation device 26 and the like, and performs drive control of the inverters 18A and 18C, the power storage means 20, and the like.
 油圧モータ40は、ブーム5が下げられるときにブームシリンダ7から吐出される油によって回転されるように構成されており、ブーム5が重力に従って下げられるときのエネルギを回転力に変換するために設けられている。油圧モータ40は、コントロールバルブ17とブームシリンダ7の間の油圧管7Aに設けられている。 The hydraulic motor 40 is configured to be rotated by oil discharged from the boom cylinder 7 when the boom 5 is lowered, and is provided for converting energy when the boom 5 is lowered according to gravity into rotational force. It has been. The hydraulic motor 40 is provided in the hydraulic pipe 7 </ b> A between the control valve 17 and the boom cylinder 7.
 旋回用電動機21は、図1の旋回機構3に設けられ、上部旋回体4を回動させる。旋回用電動機21は交流電動機であり、旋回体4を旋回させる旋回機構3の動力源である。旋回用電動機21の回転軸21Aには、レゾルバ22、メカニカルブレーキ23、及び旋回減速機24が接続される。旋回用インバータ18Cは、蓄電手段20からの電力を受け、旋回用電動機21を駆動する。また旋回用電動機21の回生運転時には、旋回用電動機21からの電力を蓄電手段20に回収する。 The turning electric motor 21 is provided in the turning mechanism 3 in FIG. 1 and rotates the upper turning body 4. The turning electric motor 21 is an AC electric motor and is a power source of the turning mechanism 3 for turning the turning body 4. A resolver 22, a mechanical brake 23, and a turning speed reducer 24 are connected to the rotating shaft 21 </ b> A of the turning electric motor 21. The turning inverter 18 </ b> C receives electric power from the power storage means 20 and drives the turning electric motor 21. Further, during the regenerative operation of the turning electric motor 21, the electric power from the turning electric motor 21 is collected in the power storage means 20.
 旋回用電動機21が力行運転を行う際には、旋回用電動機21の回転駆動力の回転力が旋回減速機24にて増幅され、旋回体4が加減速制御され回転運動を行う。また、旋回体4の慣性回転により、旋回減速機24にて回転数が増加されて旋回用電動機21に伝達され、回生電力を発生させる。 When the turning electric motor 21 performs a power running operation, the rotational force of the rotational driving force of the turning electric motor 21 is amplified by the turning speed reducer 24, and the turning body 4 is subjected to acceleration / deceleration control to perform rotational movement. Further, due to the inertial rotation of the swing body 4, the rotation speed is increased by the swing speed reducer 24 and transmitted to the swing electric motor 21 to generate regenerative power.
 レゾルバ22は、旋回用電動機21の回転軸21Aの回転位置及び回転角度を検出するセンサであり、旋回用電動機21と機械的に連結することで回転軸21Aの回転角度及び回転方向を検出する。レゾルバ22が回転軸21Aの回転角度を検出することにより、旋回機構3の回転角度及び回転方向が導出される。メカニカルブレーキ23は、機械的な制動力を発生させる制動装置であり、コントローラ30からの指令によって、旋回用電動機21の回転軸21Aを機械的に停止させる。旋回減速機24は、旋回用電動機21の回転軸21Aの回転速度を減速して旋回機構3に機械的に伝達する減速機である。 The resolver 22 is a sensor that detects the rotation position and rotation angle of the rotation shaft 21A of the turning electric motor 21, and mechanically connected to the turning electric motor 21 to detect the rotation angle and rotation direction of the rotation shaft 21A. When the resolver 22 detects the rotation angle of the rotation shaft 21A, the rotation angle and the rotation direction of the turning mechanism 3 are derived. The mechanical brake 23 is a braking device that generates a mechanical braking force, and mechanically stops the rotating shaft 21 </ b> A of the turning electric motor 21 according to a command from the controller 30. The turning speed reducer 24 is a speed reducer that reduces the rotational speed of the rotating shaft 21 </ b> A of the turning electric motor 21 and mechanically transmits it to the turning mechanism 3.
 続いて電気系統について詳細に説明する。電気系統は主として、コントローラ30、蓄電手段20、インバータ18A~18Cを備える。 Next, the electrical system will be described in detail. The electric system mainly includes a controller 30, power storage means 20, and inverters 18A to 18C.
(アシスト)
 アシスト用のインバータ18Aの2次側(出力)端には、電動発電機12が接続される。インバータ18Aは、コントローラ30の一部であるアシスト用インバータコントローラ30Aからの指令にもとづき、電動発電機12の運転制御を行う。
(assist)
The motor generator 12 is connected to the secondary side (output) end of the assist inverter 18A. The inverter 18A controls the operation of the motor generator 12 based on a command from the assist inverter controller 30A that is a part of the controller 30.
(旋回)
 旋回用電動機21、レゾルバ22、メカニカルブレーキ23、旋回減速機24、旋回用インバータ18Cおよびコントローラ30の一部である旋回用のインバータコントローラ30Cは、電動旋回装置500を構成する。
 旋回用電動機21は、PWM(Pulse Width Modulation)制御指令により旋回用インバータ18Cによって交流駆動される。旋回用電動機21としては、例えば、磁石埋込型のIPMモータが好適である。
(Turning)
The turning electric motor 21, the resolver 22, the mechanical brake 23, the turning speed reducer 24, the turning inverter 18 </ b> C and the turning inverter controller 30 </ b> C that is a part of the controller 30 constitute an electric turning device 500.
The turning electric motor 21 is AC driven by the turning inverter 18C in accordance with a PWM (Pulse Width Modulation) control command. As the turning electric motor 21, for example, a magnet-embedded IPM motor is suitable.
 旋回用インバータコントローラ30Cは、操作入力に応じた回転速度指令を受け、レゾルバ22により検出される旋回用電動機21の旋回速度が、回転速度指令と一致するように、旋回用インバータ18Cを制御する。 The turning inverter controller 30C receives a rotational speed command corresponding to the operation input, and controls the turning inverter 18C so that the turning speed of the turning electric motor 21 detected by the resolver 22 matches the rotational speed command.
(電源)
 蓄電手段20は、例えば蓄電池であるバッテリと、バッテリの充放電を制御する昇降圧コンバータ(双方向DC/DCコンバータ)と、正極及び負極の直流配線からなるDCバスとを備えている(図示せず)。蓄電器としては、リチウムイオン電池等の充電可能な2次電池、キャパシタ、そのほか電力の授受が可能なその他の形態の電源を用いてもよい。DCバスには、インバータ18A、18Cそれぞれの1次側(直流入力)が接続されている。コントローラ30の一部であるコンバータコントローラは、電動発電機12等が力行運転する際には、双方向DC/DCコンバータを昇圧動作させ、電動発電機12等が回生運転する際には、双方向DC/DCコンバータを降圧動作させ、電動発電機12が発生した電力を蓄電器に回収する。これによりDCバスの電圧(DCリンク電圧)は、一定値に保たれる。
(Power supply)
The power storage means 20 includes, for example, a battery that is a storage battery, a step-up / down converter (bidirectional DC / DC converter) that controls charging / discharging of the battery, and a DC bus including positive and negative DC wirings (not shown). ) As the electric storage device, a rechargeable secondary battery such as a lithium ion battery, a capacitor, or any other form of power source capable of transferring power may be used. The primary side (DC input) of each of the inverters 18A and 18C is connected to the DC bus. The converter controller, which is a part of the controller 30, boosts the bidirectional DC / DC converter when the motor generator 12 or the like is in a power running operation, and bidirectional when the motor generator 12 or the like is in a regenerative operation. The DC / DC converter is stepped down, and the electric power generated by the motor generator 12 is collected in the battery. As a result, the voltage of the DC bus (DC link voltage) is kept at a constant value.
 以上がショベル1の全体構成である。続いて、実施の形態に係る電動旋回装置500について詳細に説明する。 The above is the overall configuration of the excavator 1. Next, the electric swing device 500 according to the embodiment will be described in detail.
 図3は、実施の形態に係る電動旋回装置500の構成を示すブロック図である。電動旋回装置500は、主として、旋回モータ502、減速機504、旋回モータドライバ506、コントローラ520、を備える。 FIG. 3 is a block diagram showing a configuration of the electric swivel device 500 according to the embodiment. The electric turning device 500 mainly includes a turning motor 502, a speed reducer 504, a turning motor driver 506, and a controller 520.
 旋回モータ502は、図2の旋回用電動機21に対応する。減速機504は、図2の旋回減速機24に対応し、旋回モータ502の回転を上部旋回体4に伝達する。減速機504は、非ゼロのバックラッシュを有する。 The turning motor 502 corresponds to the turning electric motor 21 of FIG. The speed reducer 504 corresponds to the turning speed reducer 24 of FIG. 2 and transmits the rotation of the turning motor 502 to the upper turning body 4. Reducer 504 has a non-zero backlash.
 コントローラ520は、図2のコントローラ30の一部であるインバータコントローラ30C等に相当する。 The controller 520 corresponds to an inverter controller 30C that is a part of the controller 30 in FIG.
 図2の操作装置26は、旋回用のレバーを有し、レバーの操作量(操作角)が上部旋回体4の制御指令となる。たとえばレバーの操作量は、旋回体4の回転速度を指示する操作指令値S1である。コントローラ520は、操作指令値S1を受け、操作指令値S1にもとづいて、旋回モータ502を回転制御するための制御指令値S2を生成する。情報化施工において操作指令値S1はコンピュータが生成してもよい。 2 has a lever for turning, and an operation amount (operation angle) of the lever is a control command for the upper turning body 4. For example, the operation amount of the lever is an operation command value S1 for instructing the rotation speed of the revolving structure 4. The controller 520 receives the operation command value S1 and generates a control command value S2 for controlling the rotation of the swing motor 502 based on the operation command value S1. In the computerized construction, the operation command value S1 may be generated by a computer.
 旋回モータドライバ506は、図2のインバータコントローラ30Cや旋回用インバータ18Cに相当する。旋回モータドライバ506は、制御指令値S2にもとづいて旋回モータ502をフィードバック制御する。たとえば制御指令値S2は、旋回モータ502の速度指令値ωREFであり得る。第1回転検出手段508は、旋回モータ502の回転情報(第1回転情報)S3を取得する。第1回転検出手段508は、ロータリエンコーダであり、図2のレゾルバ22に対応する。あるいは第1回転検出手段508は、ホールセンサであってもよい。あるいは旋回モータ502はセンサレス駆動されてもよく、その場合、第1回転検出手段508は、センサレス駆動で用いられる逆起電力検出用のコンパレータの出力にもとづいて、回転情報を検出してもよい。 The turning motor driver 506 corresponds to the inverter controller 30C and the turning inverter 18C in FIG. The swing motor driver 506 performs feedback control of the swing motor 502 based on the control command value S2. For example, the control command value S2 may be the speed command value ω REF of the turning motor 502. The first rotation detection means 508 acquires rotation information (first rotation information) S3 of the turning motor 502. The first rotation detecting means 508 is a rotary encoder and corresponds to the resolver 22 in FIG. Alternatively, the first rotation detection means 508 may be a hall sensor. Alternatively, the swing motor 502 may be sensorlessly driven, and in this case, the first rotation detection unit 508 may detect rotation information based on the output of the counter electromotive force detection comparator used in the sensorless drive.
 第1回転情報S3は、旋回モータ502の回転速度を示す速度検出値ωRESを含む。旋回モータドライバ506は、速度検出値ωRESが速度指令値ωREFと一致するように、旋回モータ502の電流、すなわちトルクτをフィードバック制御する。 The first rotation information S3 includes a speed detection value ω RES indicating the rotation speed of the turning motor 502. The swing motor driver 506 feedback-controls the current of the swing motor 502, that is, the torque τ so that the speed detection value ω RES matches the speed command value ω REF .
 旋回モータ502を回転させると旋回体4が回転する区間を、「非空転区間T」と定義し、旋回モータ502を回転させても旋回体4が回転しない区間を、「空転区間T」と定義する。コントローラ520は、(i)非空転区間Tにおいて、操作指令値S1に応じて旋回モータドライバ506を制御する。具体的には、操作指令値S1に応じた速度指令値S2を出力する。 A section swing body 4 and is rotated to rotate the swing motor 502, is defined as "non-slip section T A ', a section be rotated is turning body 4 does not rotate the swing motor 502," slip section T B " It is defined as The controller 520, in (i) non-slip section T A, controls the turning motor driver 506 in accordance with an operation command value S1. Specifically, a speed command value S2 corresponding to the operation command value S1 is output.
 またコントローラ520は、(ii)空転区間Tにおいて、非空転区間Tへの到達前まで旋回モータ502が高速に回転し、非空転区間Tへの到達時に回転数またはトルクが低下するように旋回モータドライバ506を制御する。 The controller 520, (ii) in the slip section T B, such that the turning motor 502 until reaching the non-slip section T A is rotated at high speed, the rotational speed or torque is reduced when reaching the non-slip section T A The turning motor driver 506 is controlled.
 本実施の形態において、コントローラ520は空転区間Tと判断すると、旋回モータ502を空転区間T内で速やかに回転させる。(ii)空転区間Tは、第1区間TB1とそれに続く第2区間TB2を含む。コントローラ520は、第1区間TB1において所定の最大加速トルクτACCを指示するトルク指令値S4を生成し、第2区間TB2において所定の最大減速トルクτBRKを指示するトルク指令値S4を生成する。旋回モータドライバ506は、空転区間Tにおいて、トルク指令値S4に応じたトルクτで旋回モータ502を駆動する。 In this embodiment, the controller 520 determines that slip section T B, rotates rapidly the swing motor 502 in the slip section T B. (Ii) slip section T B includes a second section T B2 followed by the first interval T B1. The controller 520 generates a torque command value S4 instructing a predetermined maximum acceleration torque τ ACC in the first interval T B1 , and generates a torque command value S4 instructing a predetermined maximum deceleration torque τ BRK in the second interval T B2 . To do. Turning motor driver 506, the slip section T B, drives the turning motor 502 by a torque τ in accordance with the torque command value S4.
 図4は、旋回モータドライバ506の構成例を示すブロック図である。旋回モータドライバ506は、減算器540、PI(比例・積分)コントローラ542、インバータ548を含む。減算器540は、制御指令値S2である速度指令値ωREFと、第1回転検出手段508からの速度検出値ωRESの誤差Δωを生成する。PIコントローラ542は、誤差Δωを受けPI演算することにより、トルク指令値τREFを生成する。PI制御に代えて、P制御あるいはPID制御を用いてもよい。 FIG. 4 is a block diagram illustrating a configuration example of the turning motor driver 506. The swing motor driver 506 includes a subtracter 540, a PI (proportional / integral) controller 542, and an inverter 548. The subtractor 540 generates an error Δω between the speed command value ω REF that is the control command value S 2 and the speed detection value ω RES from the first rotation detection unit 508. The PI controller 542 receives the error Δω and performs a PI calculation to generate a torque command value τ REF . Instead of PI control, P control or PID control may be used.
 インバータ548は、トルク指令値τREFに応じた駆動電流を旋回モータ502に供給し、旋回モータ502を回転制御する。 The inverter 548 supplies a drive current corresponding to the torque command value τ REF to the swing motor 502 and controls the rotation of the swing motor 502.
 旋回モータドライバ506はさらにセレクタ544を備えている。また旋回モータドライバ506には、コントローラ520から、非空転区間Tであるか空転区間Tであるかを示す区間制御信号S5が入力される。セレクタ544は、区間制御信号S5が非空転区間Tを示すとき、PIコントローラ542の出力を選択し、区間制御信号S5が空転区間Tを示すとき、トルク指令値S4を選択する。またPIコントローラ542の比例ゲイン、積分ゲインは、区間制御信号S5が空転区間Tを示す間、ゼロに設定される。 The swing motor driver 506 further includes a selector 544. Further to the swing motor driver 506 from the controller 520, interval control signal S5 indicating which slip section T B which is unsubstituted slip section T A is input. The selector 544, when the interval control signal S5 indicates a non slip section T A, selects the output of the PI controller 542, when the interval control signal S5 indicates a slip section T B, selects the torque command value S4. The proportional gain, integral gain of PI controller 542, interval control signal S5 while showing a slip section T B, is set to zero.
 以上が旋回モータドライバ506の構成である。なお、減算器540、PIコントローラ542、セレクタ544は、マイコンやプロセッサなどのハードウェアとソフトウェアプログラムの組み合わせにより実現される機能であってもよく、個別のハードウェアとして設けられることを要しない。 The above is the configuration of the turning motor driver 506. Note that the subtractor 540, the PI controller 542, and the selector 544 may have a function realized by a combination of hardware such as a microcomputer and a processor and a software program, and need not be provided as individual hardware.
 続いて電動旋回装置500の動作を説明する。図5は、実施の形態に係る電動旋回装置500の空転区間における動作波形図である。図6は、比較技術に係る電動旋回装置の空転区間における動作波形図である。実施の形態に係る電動旋回装置500の利点は、比較技術に係る電動旋回装置との対比によって明確となる。 Next, the operation of the electric turning device 500 will be described. FIG. 5 is an operation waveform diagram in the idling section of the electric swivel device 500 according to the embodiment. FIG. 6 is an operation waveform diagram in the idling section of the electric swivel device according to the comparative technique. The advantages of the electric swivel device 500 according to the embodiment will become clear by comparison with the electric swivel device according to the comparative technique.
 そこでまず図6を参照し、比較技術に係る電動旋回装置の動作を説明する。図6には、制御が示されている。時刻t0より前において、旋回モータおよび旋回体は停止している。比較技術に係る電動旋回装置では、旋回モータの回転開始の時刻t0からt2の空転区間の間、速度指令にしたがいモータトルクを出力する。この速度指令は、衝突による衝撃を低減するために、0rpmから150rpm程度までゆっくりと立ち上がる。その結果、旋回モータはゆっくりと回転し、空転区間が終わるまでに0.07s程度の時間を要する。 Therefore, referring to FIG. 6, the operation of the electric swivel device according to the comparative technique will be described first. FIG. 6 shows the control. Prior to time t0, the swing motor and the swing body are stopped. In the electric swivel device according to the comparative technique, the motor torque is output according to the speed command during the idling section from the time t0 to the time t2 of the rotation start of the swivel motor. This speed command slowly rises from 0 rpm to about 150 rpm in order to reduce the impact caused by the collision. As a result, the turning motor rotates slowly, and it takes about 0.07 s until the idling section ends.
 続いて図5を参照し、実施の形態に係る電動旋回装置500の動作を説明する。電動旋回装置500では、旋回モータの回転開始の時刻t0の後、短時間(図5では、0.01秒程度)の間で旋回モータの回転数が速やかにそのピーク値450rmp付近まで上昇する。具体的には、空転区間Tの第1区間TB1において最大加速トルクτACCが与えられ、旋回モータの回転数が短時間で急上昇する。そして時刻t1に第2区間TB2に入ると、最大減速トルクτBRKが与えられ、旋回モータの回転数は、振動が十分抑制可能な範囲(ここでは20rpm)まで低下する。時刻t2に、空転区間が終了するが、このときのモータトルクは実質的にゼロであって、旋回モータは慣性で回転(空転)しているに過ぎず、またその回転数は十分に低い。したがって衝突時刻t2において発生する振動は、比較技術に比べて格段に抑制される。 Next, with reference to FIG. 5, the operation of the electric swivel device 500 according to the embodiment will be described. In the electric swing device 500, the rotation speed of the swing motor quickly rises to near its peak value of 450 rmp within a short time (about 0.01 seconds in FIG. 5) after the rotation start time t0 of the swing motor. Specifically, the maximum acceleration torque tau ACC is applied in the first period T B1 of slip section T B, the rotational speed of the swing motor rises sharply in a short time. When the time t1 into the second section T B2, given the maximum deceleration torque tau BRK, rotational speed of the swing motor, the vibration is reduced to a sufficient suppressible range (20 rpm in this case). At time t2, the idling section ends, but the motor torque at this time is substantially zero, the turning motor is merely rotating (idling) with inertia, and the number of revolutions is sufficiently low. Therefore, the vibration generated at the collision time t2 is significantly suppressed as compared with the comparative technique.
 また空転区間の終了時刻t2は、0.03秒程度であり、図6の終了時刻t2=0.07秒よりも短く、すなわち比較技術に比べても応答性は犠牲となっておらず、むしろ改善されている。これは起動時刻t0直後において、速やかに回転数を高めていることに起因している。 The end time t2 of the idling section is about 0.03 seconds, which is shorter than the end time t2 = 0.07 seconds in FIG. 6, that is, the responsiveness is not sacrificed as compared with the comparative technique, rather It has been improved. This is because the rotational speed is rapidly increased immediately after the activation time t0.
 以上が電動旋回装置500の動作である。このように電動旋回装置500によれば、旋回体の運動性能を維持しつつ、振動を抑制することができる。そして振動を抑制できることで、操作者に与える負荷を軽減して作業効率を高めることができ、あるいは作業場の周囲に及ぼす騒音等を軽減することができる。 The above is the operation of the electric swivel device 500. Thus, according to the electric turning apparatus 500, it is possible to suppress vibration while maintaining the motion performance of the turning body. Since vibration can be suppressed, the load on the operator can be reduced and work efficiency can be increased, or noise and the like on the surroundings of the workplace can be reduced.
 続いて、コントローラ520における非空転区間Tと空転区間Tの判定、ならびに空転区間T内における旋回モータ502の位置の推定について説明する。 Subsequently, the determination of the non-slip section T A and slip section T B in the controller 520, as well as the estimation of the position of the swing motor 502 in slip section T in B will be described.
 図3に示すように、電動旋回装置500は、旋回モータ502の回転情報S3を取得する第1回転検出手段508に加えて、旋回体4の回転情報(第2回転情報)S5を取得する第2回転検出手段510をさらに備える。 As shown in FIG. 3, the electric turning device 500 acquires the rotation information (second rotation information) S5 of the turning body 4 in addition to the first rotation detection means 508 that acquires the rotation information S3 of the turning motor 502. Two rotation detection means 510 is further provided.
 コントローラ520は、第1回転検出手段508と第2回転検出手段510の出力θ、θにもとづき、非空転区間Tと空転区間Tを判定するとともに、空転区間T内における旋回モータ502の位置を取得する。出力θは、旋回モータ502の位置(回転角)を、θは旋回体4の位置(回転角)を示す。 Controller 520 outputs theta 1 between the first speed detecting means 508 second rotation detecting unit 510, based on the theta 2, with determining the non-slip section T A and slip section T B, turning the slip section T in B motor The position of 502 is acquired. The output θ 1 indicates the position (rotation angle) of the swing motor 502, and θ 2 indicates the position (rotation angle) of the swing body 4.
 旋回モータ502が、減速機504と歯当たりしているときには、旋回体4の角度θは旋回モータ502の位置θに従属している。旋回の加速時、減速時、停止時には、歯当たりしている。一方、歯当たりしていないときには、旋回体4の角度θは旋回モータ502の角度θに従属していない。図3の電動旋回装置500は、第2回転検出手段510を設けたことにより、歯当たりしていないときの旋回体4の角度θを検出し、旋回モータ502の角度θとの相対関係にもとづいて、それらの位置関係を演算により推定する。 When the swing motor 502 is in contact with the reduction gear 504, the angle θ 2 of the swing body 4 is dependent on the position θ 1 of the swing motor 502. The teeth are touched when turning, decelerating, and stopping. On the other hand, when no tooth contact, the angle theta 2 of the swing body 4 is not dependent on the angle theta 1 of the turning motor 502. The electric swivel device 500 of FIG. 3 detects the angle θ 2 of the swivel body 4 when the tooth is not in contact by providing the second rotation detecting means 510, and is relative to the angle θ 1 of the swivel motor 502. Based on this, the positional relationship between them is estimated by calculation.
 図7は、位置推定に関するコントローラ520のブロック図である。コントローラ520は、非空転区間指令値生成部532、空転区間指令値生成部534、位置推定部536を含む。 FIG. 7 is a block diagram of the controller 520 related to position estimation. The controller 520 includes a non-slipping section command value generation unit 532, an idling section command value generation unit 534, and a position estimation unit 536.
 非空転区間指令値生成部532は、非空転区間において、回転指令値ωREFである制御指令値S2を生成する。空転区間指令値生成部534は、空転区間において、急加速、急ブレーキ用のトルク指令値S4(τREF)を生成する。位置推定部536は、旋回モータ502の角度θと旋回体4の角度θを受け、非空転区間Tと空転区間Tのいずれであるかを判定し、また空転区間Tにおいては、バックラッシュ内の旋回モータ502の位置を推定する。具体的には位置推定部536は、旋回モータ502のモータ座標系の回転角を示す第1角度情報θm1と、旋回体4のモータ座標系の回転角を示す第2角度情報θm2との差分、すなわちそれらの相対位置にもとづいて、空転区間T内における旋回モータ502の位置を取得する。 The non-slipping section command value generation unit 532 generates a control command value S2 that is the rotation command value ω REF in the non-slipping section. The idling section command value generation unit 534 generates a torque command value S4 (τ REF ) for sudden acceleration and sudden braking in the idling section. Position estimating unit 536 receives the angle theta 2 of the angle theta 1 with the swing body 4 of the swing motor 502, it is determined which of the non-slip section T A slip section T B, also in the slip section T B The position of the turning motor 502 in the backlash is estimated. Specifically, the position estimation unit 536 includes first angle information θ m1 indicating the rotation angle of the motor coordinate system of the swing motor 502 and second angle information θ m2 indicating the rotation angle of the motor coordinate system of the swing body 4. difference, i.e. based on their relative positions, acquires the position of the swing motor 502 in slip section T in B.
 位置推定部536は、換算器522、減算器524、位置演算部526、バックラッシュ取得部528、オフセット取得部530を含む。 The position estimation unit 536 includes a converter 522, a subtracter 524, a position calculation unit 526, a backlash acquisition unit 528, and an offset acquisition unit 530.
 換算器522は、旋回モータ502の角度θ、旋回体4の角度θを受け、それらを共通のモータ座標系の第1角度情報θm1、第2角度情報θm2に変換する。変換には減速機504の減速比が用いられる。減算器524は、第1角度情報θm1と第2角度情報θm2の差分Δθを演算する。差分Δθは、旋回モータ502と旋回体4の相対位置を示す。 Convert 522, the angle theta 1 of the turning motor 502, receives the angle theta 2 of the rotary body 4, the first angle information of their common motor coordinate system theta m1, into a second angle information theta m @ 2. The reduction ratio of the reduction gear 504 is used for the conversion. The subtractor 524 calculates a difference Δθ m between the first angle information θ m1 and the second angle information θ m2 . The difference Δθ m indicates the relative position of the swing motor 502 and the swing body 4.
 位置演算部526は、差分Δθにもとづいて、非空転区間Tであるか空転区間Tを判定するとともに、空転区間Tにおいてはバックラッシュ内の旋回モータ502の位置を演算する。 Position calculating unit 526, based on the difference [Delta] [theta] m, as well as determining the non-slip section T A and is either idle interval T B, calculates the position of the swing motor 502 in the backlash in slip section T B.
 図8(a)~(g)は、減速機504の旋回モータ軸側の歯T1と、旋回軸側の歯T2を示す図である。モータ軸側の歯T1の位置は、旋回モータ502の回転角θm1であり、旋回軸側の歯T2の位置は、旋回体4の回転角θm2に他ならない。ここでは理解の容易のため、歯車を直線として示している。ここでは、θm1とθm2の原点は揃っているものとする。また、各歯車の左側のエッジE1,E2が座標を与えるものとする。 FIGS. 8A to 8G are views showing the tooth T1 on the turning motor shaft side of the reduction gear 504 and the tooth T2 on the turning shaft side. The position of the tooth T1 on the motor shaft side is the rotation angle θ m1 of the turning motor 502, and the position of the tooth T2 on the turning shaft side is nothing but the rotation angle θ m2 of the turning body 4. Here, for easy understanding, the gear is shown as a straight line. Here, it is assumed that the origins of θ m1 and θ m2 are aligned. Also, the left edges E1 and E2 of each gear give coordinates.
 図8(a)では、空転区間Tにおいてバックラッシュ内をモータ軸側の歯T1が右方向に移動している。このとき旋回軸側の歯T2は静止している。この間、θm1とθm2の差分Δθは、第1方向に変化する。図8(b)は、空転区間Tと非空転区間Tの境界であり、モータ軸側の歯T1が旋回軸側の歯T2に接触したときを示す。図8(c)に示すように、さらにモータ軸側の歯T1が右方向に移動すると、旋回軸の角度θm2が旋回モータ502の角度θm1に従属して変化する。つまりそれらの差分Δθ=θm1-θm2は所定の一定値θMAXをとる。 In FIG. 8 (a), the tooth T1 of the motor shaft side is moved to the right within the backlash in slip section T B. At this time, the tooth T2 on the turning shaft side is stationary. During this time, the difference [Delta] [theta] m of theta m1 and theta m @ 2 is changed in the first direction. Figure 8 (b) is a boundary of the slip section T B and the non-slip section T A, indicating when the tooth T1 of the motor shaft side is brought into contact with the tooth T2 of the turning shaft side. As shown in FIG. 8C, when the motor shaft side tooth T1 further moves in the right direction, the angle θ m2 of the turning shaft changes depending on the angle θ m1 of the turning motor 502. That is, the difference Δθ m = θ m1 −θ m2 takes a predetermined constant value θ MAX .
 図8(d)では、空転区間Tにおいてバックラッシュ内をモータ軸側の歯T1が左方向に移動している。このとき旋回軸側の歯T2は静止している。この間、θm1とθm2の差分Δθは、第2方向に変化する。 In FIG. 8 (d), the teeth T1 of the motor shaft side is moved to the left direction within the backlash in slip section T B. At this time, the tooth T2 on the turning shaft side is stationary. During this time, the difference Δθ m between θ m1 and θ m2 changes in the second direction.
 図8(e)は、空転区間Tと非空転区間Tの境界であり、モータ軸側の歯T1が旋回軸側の歯T2に接触したときを示す。図8(f)に示すように、さらにモータ軸側の歯T1が左方向に移動すると、旋回体4の角度θm2が旋回モータ軸の角度θm1に従属して変化する。つまりそれらの差分θm1-θm2は所定の一定値θMINをとる。図8(g)に示すように旋回モータ502を右方向に回転させると、バックラッシュ内で旋回モータ502が空転し、差分Δθは第1方向に変化する。 FIG. 8 (e) is a boundary of the slip section T B and the non-slip section T A, indicating when the tooth T1 of the motor shaft side is brought into contact with the tooth T2 of the turning shaft side. As shown in FIG. 8F, when the tooth T1 on the motor shaft side further moves to the left, the angle θ m2 of the swing body 4 changes depending on the angle θ m1 of the swing motor shaft. That is, the difference θ m1 −θ m2 takes a predetermined constant value θ MIN . When the turning motor 502 is rotated in the right direction as shown in FIG. 8G, the turning motor 502 is idled in the backlash, and the difference Δθ m changes in the first direction.
 図9は、旋回モータ502の角度θm1と旋回体4の角度θm2を示す図である。図9の(a)~(g)は、図8(a)~(g)それぞれの状態に対応する。 FIG. 9 is a diagram illustrating the angle θ m1 of the swing motor 502 and the angle θ m2 of the swing body 4. 9A to 9G correspond to the respective states of FIGS. 8A to 8G.
 位置演算部526は、差分Δθが最大値θMAXをとるとき、または最小値θMINをとるときに、非空転区間Tと判定し、差分Δθが最小値θMINと最大値θMAXの間であるとき、空転区間Tと判定することができる。 Position calculating unit 526, when the difference [Delta] [theta] m is the maximum value theta MAX, or when the minimum value theta MIN, determines that non-slip section T A, the minimum value difference [Delta] [theta] m is theta MIN and the maximum value theta MAX when it is between, it can be determined that the slip section T B.
 またΔθと最小値θMINの距離、もしくはΔθと最大値θMAXの距離は、バックラッシュ内の旋回モータ502の位置(角度)を表すことになる。したがって、旋回モータ502が第1方向に回転しているときには、Δθと最大値θMAXの距離が所定値Wより大きいときを第1区間TB1、小さくなったときを第2区間TB2としてもよい。反対に旋回モータ502が第2方向に回転しているときには、Δθと最小値θMINの距離が所定値Wより大きいときを第1区間TB1、小さくなったときを第2区間TB2としてもよい。 The distance between Δθ m and the minimum value θ MIN or the distance between Δθ m and the maximum value θ MAX represents the position (angle) of the turning motor 502 in the backlash. Therefore, when the turning motor 502 is rotating in the first direction, the first section T B1 is when the distance between Δθ m and the maximum value θ MAX is greater than the predetermined value W, and the second section T B2 is when the distance is smaller. Also good. On the other hand, when the turning motor 502 rotates in the second direction, the first section T B1 is when the distance between Δθ m and the minimum value θ MIN is greater than the predetermined value W, and the second section T B2 is when the distance is smaller. Also good.
 このように、差分Δθの最小値θMINおよび最大値θMAXが既知であれば、差分Δθにもとづいて、非空転区間T、空転区間Tを判定し、またバックラッシュ内の旋回モータ502の位置を計算することができる。 Thus, if the minimum value theta MIN and the maximum value theta MAX of the difference [Delta] [theta] m is known, based on the difference [Delta] [theta] m, the non-slip section T A, determines the idle period T B, also turning in backlash The position of the motor 502 can be calculated.
 最小値θMINおよび最大値θMAXは設計値を用いてもよいが、以下で説明するように、実機において実測してもよい。特にギアの摩耗によるバックラッシュ量は経時変化が無視できない場合、以下の技術は特に有効である。 Design values may be used for the minimum value θ MIN and the maximum value θ MAX, but they may be actually measured in an actual machine as described below. The following technique is particularly effective when the backlash amount due to gear wear cannot be ignored over time.
 コントローラ520は、以下のステップを含むキャリブレーションを実行する。
 ステップ1) 旋回モータ502を第1方向に回転させ、続いて第2方向に回転させる。
 ステップ2) ステップ1の過程において、旋回モータ502のモータ座標系の回転角を示す第1角度情報θm1と、旋回体4のモータ座標系の回転角を示す第2角度情報θm1との差分Δθを取得する。
 ステップ3) 差分Δθの最大値θMAXおよび最小値θMINを取得する。
 以上の処理により、位置演算部526が必要とするパラメータがキャリブレーションされる。コントローラ520は、ステップ1~3を複数回繰り返し、平均などの統計的処理を用いて最大値θMAXおよび最小値θMINを取得してもよい。キャリブレーションは適切な時期に行えばよい。
The controller 520 executes calibration including the following steps.
Step 1) The turning motor 502 is rotated in the first direction and subsequently rotated in the second direction.
Step 2) In the process of Step 1, the difference between the first angle information θ m1 indicating the rotation angle of the motor coordinate system of the swing motor 502 and the second angle information θ m1 indicating the rotation angle of the motor coordinate system of the swing body 4 Obtain Δθ m .
Step 3) Obtain the maximum value θ MAX and the minimum value θ MIN of the difference Δθ m .
Through the above processing, parameters required by the position calculation unit 526 are calibrated. Controller 520, steps 1-3 repeated multiple times, may obtain the maximum value theta MAX and the minimum value theta MIN using statistical processing such as averaging. Calibration may be performed at an appropriate time.
 コントローラ520はさらに以下の処理を実行してもよい。
 ステップ4) 最大値θMAXと最小値θMINの差分を、空転区間Tに対応するバックラッシュ量とする。ステップ4は、バックラッシュ取得部528により実行され、バックラッシュ量S7が保持される。ギアの摩耗により、バックラッシュ量は経時的に増大する。この処理を行えば、測定した正確なバックラッシュ量にもとづき、空転区間の回転制御が行えるため、経時的な性能低下を抑制できる。またあるしきい値を超える程度にバックラッシュ量が大きくなった場合には、摩耗あるいは故障と診断することも可能である。
The controller 520 may further execute the following processing.
Step 4) the difference between the maximum value theta MAX and the minimum value theta MIN, the backlash amount corresponding to the slip section T B. Step 4 is executed by the backlash acquisition unit 528, and the backlash amount S7 is held. The amount of backlash increases over time due to gear wear. If this process is performed, the rotation control of the idling section can be performed based on the measured accurate backlash amount, and therefore, the performance degradation with time can be suppressed. In addition, when the backlash amount increases to a degree exceeding a certain threshold, it is possible to diagnose wear or failure.
 ステップ5) 最大値θMAXと最小値θMINの平均値を、オフセット量として取得する。ステップ5は、オフセット取得部530により実行され、オフセット量S8が保持される。 Step 5) An average value of the maximum value θ MAX and the minimum value θ MIN is acquired as an offset amount. Step 5 is executed by the offset acquisition unit 530, and the offset amount S8 is held.
 最小値θMINおよび最大値θMAXを実測するために、コントローラ520は、バックラッシュ取得部528、オフセット取得部530を備える。図10は、バックラッシュ取得部528およびオフセット取得部530のブロック図である。ピーク取得部550は、ステップ3において、差分Δθの最大値θMAXを取得する。ボトム取得部552は、ステップ3において、差分Δθの最小値θMINを取得する。 In order to actually measure the minimum value θ MIN and the maximum value θ MAX , the controller 520 includes a backlash acquisition unit 528 and an offset acquisition unit 530. FIG. 10 is a block diagram of the backlash acquisition unit 528 and the offset acquisition unit 530. In step 3, the peak acquisition unit 550 acquires the maximum value θ MAX of the difference Δθ m . In step 3, the bottom acquisition unit 552 acquires the minimum value θ MIN of the difference Δθ m .
 減算器554は、バックラッシュ量S7を演算する。加算器556は、最大値θMAXと最小値θMINを加算し、乗算器558は加算結果に1/2を乗じて、オフセット量S8を算出する。 The subtractor 554 calculates the backlash amount S7. Adder 556 adds maximum value θ MAX and minimum value θ MIN , and multiplier 558 multiplies the addition result by 1/2 to calculate offset amount S8.
 こうして得られたバックラッシュ量S7およびオフセット量S8と、最大値θMAXおよび最小値θMINには、以下の関係式が成り立つ。
 θMAX=S8+S7/2
 θMIN=S8-S7/2
 位置演算部526は、バックラッシュ量S7およびオフセット量S8にもとづき、最大値θMAXと最小値θMINを算出できる。
The following relational expression holds for the backlash amount S7 and the offset amount S8 obtained in this way, and the maximum value θ MAX and the minimum value θ MIN .
θ MAX = S8 + S7 / 2
θ MIN = S8-S7 / 2
The position calculation unit 526 can calculate the maximum value θ MAX and the minimum value θ MIN based on the backlash amount S7 and the offset amount S8.
 なおオフセット量S8は、最大値θMAXで定義されてもよい。この場合、以下の関係式が成り立つ。
 θMAX=S8
 θMIN=S8-S7
The offset amount S8 may be defined by the maximum value θ MAX . In this case, the following relational expression holds.
θ MAX = S8
θ MIN = S8-S7
 あるいはオフセット量S8は、最小値θMINで定義されてもよい。この場合、以下の関係式が成り立つ。
 θMAX=S8+S7
 θMIN=S8
Alternatively, the offset amount S8 may be defined by the minimum value θ MIN . In this case, the following relational expression holds.
θ MAX = S8 + S7
θ MIN = S8
 以上、本発明を実施例にもとづいて説明した。本発明は上記実施の形態に限定されず、種々の設計変更が可能であり、様々な変形例が可能であること、またそうした変形例も本発明の範囲にあることは、当業者に理解されるところである。以下、こうした変形例を説明する。 The present invention has been described above based on the embodiments. It is understood by those skilled in the art that the present invention is not limited to the above-described embodiment, and various design changes are possible, and various modifications are possible, and such modifications are within the scope of the present invention. It is a place. Hereinafter, such modifications will be described.
(第1変形例)
 実施の形態では、空転区間Tにおいて、旋回モータ502を速やかに加速し、ギアとの衝突前に減速させるために、トルク制御を行ったが本発明はそれには限定されない。図11は、第1変形例に係るコントローラ520aのブロック図である。
 空転区間指令値生成部534は、空転区間Tにおいて、図5に示すようなモータ速度変化を指示する速度指令値S9を生成する。セレクタ535は、区間制御信号S5が非空転区間Tを示すとき制御指令値S2を選択し、区間制御信号S5が空転区間Tを示すとき速度指令値S9を選択する。旋回モータドライバ506は、コントローラ520から出力される速度指令値ωREFにもとづき、旋回モータ502を制御する。
(First modification)
In the embodiment, the slip section T B, the swing motor 502 to accelerate rapidly, in order to decelerate before collision with the gear has been subjected to torque control present invention is not limited thereto. FIG. 11 is a block diagram of the controller 520a according to the first modification.
Slip section command value generating unit 534, the slip section T B, and generates a speed command value S9 to instruct the motor speed changes as shown in FIG. The selector 535, interval control signal S5 selects the control command value S2 when referring to non-slip section T A, interval control signal S5 selects the speed command value S9 when indicating the idle interval T B. The swing motor driver 506 controls the swing motor 502 based on the speed command value ω REF output from the controller 520.
(第2変形例)
 あるいは別の変形例として、空転区間Tにおいて、位置制御を用いて、旋回モータ502を速やかに加速し、ギアとの衝突前に減速させてもよい。
(Second modification)
Or as another variation, the slip section T B, using the position control, the turning motor 502 to accelerate rapidly, may be decelerated before colliding with the gear.
(第3変形例)
 非空転区間Tと空転区間Tの判定方法は、実施の形態で説明したそれには限定されない。たとえば旋回モータの駆動電流と、旋回モータの加速度の関係から、負荷慣性モーメント量を推定し、推定された負荷慣性モーメント量が回転体相当を含まない区間を、空転区間と推定してもよい。
(Third Modification)
Method of determining non-slip section T A and slip section T B is not limited to that described in the embodiment. For example, the load inertia moment amount may be estimated from the relationship between the drive current of the swing motor and the acceleration of the swing motor, and a section in which the estimated load inertia moment amount does not include the rotor equivalent may be estimated as the idling section.
(第4変形例)
 実施の形態では、位置推定部536が、バックラッシュ量S7とオフセット量S8を保持しておく場合を説明したが本発明はそれには限定されない。たとえば位置推定部536は、差分Δθの最小値θMINと最大値θMAXを保持しておき、演算によりバックラッシュ量S7とオフセット量S8を取得してもよい。位置推定部536は、バックラッシュ量S7、オフセット量S8、最小値θMIN、最大値θMAXのうち、少なくとも2個を保持しておき、残りを演算により取得してもよい。
(Fourth modification)
In the embodiment, the case where the position estimation unit 536 holds the backlash amount S7 and the offset amount S8 has been described, but the present invention is not limited to this. For example, the position estimation unit 536 may store the minimum value θ MIN and the maximum value θ MAX of the difference Δθ m and obtain the backlash amount S7 and the offset amount S8 by calculation. The position estimation unit 536 may store at least two of the backlash amount S7, the offset amount S8, the minimum value θ MIN , and the maximum value θ MAX and obtain the rest by calculation.
(第5変形例)
 図12は、第5変形例に係る電動旋回装置500aの構成を示すブロック図である。電動旋回装置500aの基本構成は、図3のそれと同様である。
(5th modification)
FIG. 12 is a block diagram showing a configuration of an electric swivel device 500a according to the fifth modification. The basic configuration of the electric swivel device 500a is the same as that of FIG.
 コントローラ520には、旋回体4の位置を指示する操作指令値S1が入力される。またコントローラ520には、第2回転検出手段510が生成する旋回体4の実際の位置を示す角度情報θが入力される。角度情報θは、位置フィードバック値θFBに相当する。操作指令値S1は、オペレータによる旋回レバーの操作量に応じていてもよい。あるいは操作指令値S1は、情報化施工においてコンピュータが生成してもよい。 The controller 520 receives an operation command value S1 that indicates the position of the revolving structure 4. In addition, angle information θ 2 indicating the actual position of the revolving structure 4 generated by the second rotation detection unit 510 is input to the controller 520. Angle information theta 2 corresponds to the position feedback value theta FB. The operation command value S1 may correspond to the amount of operation of the turning lever by the operator. Alternatively, the operation command value S1 may be generated by a computer in information construction.
 コントローラ520は、いわゆる位置制御器を含み、角度情報θが示す位置フィードバック値θFBが、操作指令S1が示す位置指令値θREFと一致するように、旋回モータドライバ506に対する制御指令値S2を生成する。制御指令値S2は、速度指令値ωREFであってもよい。 The controller 520 includes a so-called position controller, the position feedback value theta FB indicating the angle information theta 2 is, to match the position command value theta REF indicated by the operation command S1, the control command value S2 for turning motor driver 506 Generate. Control command value S2 may be the speed command value omega REF.
 旋回モータドライバ506は、コントローラ520からの速度指令値ωREFにもとづいて旋回モータ502をフィードバック制御する。第1回転検出手段508は、旋回モータ502の回転情報(第1回転情報)S3を取得する。第1回転情報S3は、旋回モータ502の回転速度を示す速度検出値ωRESを含む。旋回モータドライバ506は、速度検出値ωRESが速度指令値ωREFと一致するように、旋回モータ502の電流、すなわちトルクτをフィードバック制御する速度制御器を含んでもよい。 The swing motor driver 506 performs feedback control of the swing motor 502 based on the speed command value ω REF from the controller 520. The first rotation detection means 508 acquires rotation information (first rotation information) S3 of the turning motor 502. The first rotation information S3 includes a speed detection value ω RES indicating the rotation speed of the turning motor 502. The swing motor driver 506 may include a speed controller that feedback-controls the current of the swing motor 502, that is, the torque τ, so that the speed detection value ω RES matches the speed command value ω REF .
 第5変形例によれば、空転区間や非空転区間を検出せずに、第2回転検出手段510からの第2回転情報を利用することで、旋回体4の位置θを直接の制御対象とすることができ、その位置を正確に制御できる。 According to the fifth modification, by using the second rotation information from the second rotation detecting unit 510 without detecting the idling section and the non-idling section, the position θ of the swing body 4 is directly controlled. And its position can be accurately controlled.
(第6変形例)
 図13は、第6変形例に係る電動旋回装置500bの構成を示すブロック図である。電動旋回装置500bの基本構成は、図3のそれと同様である。コントローラ520は、位置制御器を含み、操作指令値S1が示す位置指令が、第1回転検出手段508が検出する位置フィードバック信号θと一致するように、制御指令値S2(速度指令値ωREF)を生成する。
(Sixth Modification)
FIG. 13 is a block diagram showing a configuration of an electric swivel device 500b according to a sixth modification. The basic configuration of the electric swivel device 500b is the same as that of FIG. The controller 520 includes a position controller, and controls the control command value S2 (speed command value ω REF so that the position command indicated by the operation command value S1 coincides with the position feedback signal θ 1 detected by the first rotation detecting means 508. ) Is generated.
 コントローラ520には、第2回転検出手段510が生成する旋回体4の回転情報S6が入力されている。回転情報S6は、旋回体4の位置θ、速度ω、加速度αの少なくともひとつを含む。コントローラ520は、旋回体4の回転情報S6を、S1、S2、θの少なくともひとつに反映させる。たとえばコントローラ520は、回転情報S6を利用して、S1、S2、θの少なくともひとつを補正する。 The rotation information S6 of the revolving structure 4 generated by the second rotation detection unit 510 is input to the controller 520. The rotation information S6 includes at least one of the position θ 2 , the speed ω 2 , and the acceleration α 2 of the revolving structure 4. Controller 520, the rotation information S6 in the swing body 4, S1, S2, is reflected in the at least one theta 1. For example, the controller 520 utilizes the rotation information S6, S1, S2, correcting at least one theta 1.
 たとえば回転情報S6によって、旋回モータ502の回転遅れが検出された場合、回転数が高まるように、位置制御器の出力値あるいは入力値を変化させてもよい。補正はS1、S2、θの少なくともひとつに係数を乗算してもよいし、テーブル参照によって行ってもよい。 For example, when the rotation information S6 detects a rotation delay of the turning motor 502, the output value or the input value of the position controller may be changed so that the number of rotations increases. Correction S1, S2, may be multiplied by a factor in at least one theta 1, may be performed by table lookup.
(第7変形例)
 引き続き図13を参照して、第7変形例を説明する。第7変形例では、コントローラ520に加えて、あるいはそれに代えて、旋回モータドライバ506に対して、第2回転検出手段510が生成する回転情報S6が入力される。旋回モータドライバ506は、旋回体4の回転情報S6にもとづいて、S2、ωRES、その出力であるトルク指令(電流指令)を修正あるいは補正する。たとえば回転情報S6によって、旋回モータ502のトルク不足(過剰)が検出された場合、トルクが増加する(低下する)ように、位置制御器の出力値あるいは入力値を変化させてもよい。
(Seventh Modification)
With continued reference to FIG. 13, a seventh modification will be described. In the seventh modification, rotation information S6 generated by the second rotation detection unit 510 is input to the turning motor driver 506 in addition to or instead of the controller 520. The turning motor driver 506 corrects or corrects S2, ω RES , and a torque command (current command) as an output based on the rotation information S6 of the turning body 4. For example, when the torque information of the swing motor 502 is detected from the rotation information S6, the output value or the input value of the position controller may be changed so that the torque increases (decreases).
1…ショベル、2…走行機構、2A…油圧モータ、3…旋回機構、4…旋回体、4a…運転室、5…ブーム、6…アーム、7…ブームシリンダ、7A…油圧管、8…アームシリンダ、9…バケットシリンダ、10…バケット、11…エンジン、12…電動発電機、13…減速機、14…メインポンプ、15…パイロットポンプ、16…高圧油圧ライン、17…コントロールバルブ、18,18A,18B…インバータ、18C…旋回用インバータ、20…蓄電手段、21…旋回用電動機、21A…回転軸、22…レゾルバ、23…メカニカルブレーキ、24…旋回減速機、25…パイロットライン、26…操作装置、27,28…油圧ライン、29…圧力センサ、30…コントローラ、30A,30C…インバータコントローラ、40…油圧モータ、42…ブーム回生用発電機、500…電動旋回装置、502…旋回モータ、504…減速機、506…旋回モータドライバ、508…第1回転検出手段、510…第2回転検出手段、520…コントローラ、522…換算器、524…減算器、526…位置演算部、528…バックラッシュ取得部、530…オフセット取得部、532…非空転区間指令値生成部、534…空転区間指令値生成部、536…位置推定部、540…減算器、542…PIコントローラ、544…セレクタ、548…インバータ、550…、S1…操作指令値、S2…制御指令値、S3…第1回転情報、S4…トルク指令値、S5…区間制御信号、S7…バックラッシュ量、S8…オフセット量。 DESCRIPTION OF SYMBOLS 1 ... Excavator, 2 ... Traveling mechanism, 2A ... Hydraulic motor, 3 ... Turning mechanism, 4 ... Turning body, 4a ... Driver's cab, 5 ... Boom, 6 ... Arm, 7 ... Boom cylinder, 7A ... Hydraulic pipe, 8 ... Arm Cylinder, 9 ... Bucket cylinder, 10 ... Bucket, 11 ... Engine, 12 ... Motor generator, 13 ... Reduction gear, 14 ... Main pump, 15 ... Pilot pump, 16 ... High pressure hydraulic line, 17 ... Control valve, 18, 18A , 18B ... inverter, 18C ... inverter for turning, 20 ... power storage means, 21 ... electric motor for turning, 21A ... rotating shaft, 22 ... resolver, 23 ... mechanical brake, 24 ... turning speed reducer, 25 ... pilot line, 26 ... operation Apparatus, 27, 28 ... Hydraulic line, 29 ... Pressure sensor, 30 ... Controller, 30A, 30C ... Inverter controller, 40 ... Hydraulic pressure , 42 ... Boom regeneration generator, 500 ... Electric turning device, 502 ... Turning motor, 504 ... Reduction gear, 506 ... Turning motor driver, 508 ... First rotation detection means, 510 ... Second rotation detection means, 520 ... Controller, 522 ... Converter, 524 ... Subtractor, 526 ... Position calculation unit, 528 ... Backlash acquisition unit, 530 ... Offset acquisition unit, 532 ... Non-slipping section command value generation unit, 534 ... Idle section command value generation unit 536 ... Position estimation unit, 540 ... Subtractor, 542 ... PI controller, 544 ... Selector, 548 ... Inverter, 550 ..., S1 ... Operation command value, S2 ... Control command value, S3 ... First rotation information, S4 ... Torque Command value, S5: Section control signal, S7: Backlash amount, S8: Offset amount.
 本発明は、建設機械などに利用できる。 The present invention can be used for construction machines and the like.

Claims (11)

  1.  走行機構および前記走行機構に旋回自在に搭載された上部旋回体を備えるショベルに搭載され、操作指令値にもとづいて前記上部旋回体を旋回させる旋回装置であって、
     旋回モータと、
     前記旋回モータの回転を前記上部旋回体に伝達する減速機と、
     前記旋回モータの回転情報を取得する第1回転検出手段と、
     前記上部旋回体の回転情報を取得する第2回転検出手段と、
     前記旋回モータを駆動する旋回モータドライバと、
     前記旋回モータドライバを制御するコントローラと、
     を備え、
     前記コントローラおよび前記旋回モータドライバは、前記旋回モータの回転情報および前記上部旋回体の回転情報にもとづいて、前記旋回モータを制御することを特徴とする旋回装置。
    A swiveling device that is mounted on a shovel including a traveling mechanism and an upper swinging body that is swingably mounted on the traveling mechanism, and that swings the upper swinging body based on an operation command value,
    A swing motor;
    A speed reducer that transmits the rotation of the swing motor to the upper swing body;
    First rotation detecting means for acquiring rotation information of the turning motor;
    Second rotation detection means for acquiring rotation information of the upper swing body;
    A turning motor driver for driving the turning motor;
    A controller for controlling the turning motor driver;
    With
    The turning device characterized in that the controller and the turning motor driver control the turning motor based on rotation information of the turning motor and rotation information of the upper turning body.
  2.  前記コントローラは、
     (i)前記旋回モータを回転させると前記上部旋回体が回転する非空転区間において、前記操作指令値に応じて前記旋回モータドライバを制御し、(ii)前記旋回モータを回転させても前記上部旋回体が回転しない空転区間において、前記非空転区間への到達前まで前記旋回モータが高速に回転し、前記非空転区間への到達時に回転数またはトルクが低下するように前記旋回モータドライバを制御することを特徴とする請求項1に記載の旋回装置。
    The controller is
    (I) controlling the swing motor driver in accordance with the operation command value in a non-slipping section in which the upper swing body rotates when the swing motor rotates, and (ii) the upper portion even if the swing motor is rotated In the idling section where the turning body does not rotate, the swiveling motor driver is controlled so that the swiveling motor rotates at a high speed before reaching the non-idling section, and the rotation speed or torque decreases when reaching the non-idling section. The swivel device according to claim 1.
  3.  前記コントローラは、前記第1回転検出手段と前記第2回転検出手段の出力にもとづき、前記非空転区間と前記空転区間を判定するとともに、前記空転区間内における前記旋回モータの位置を取得することを特徴とする請求項1または2に記載の旋回装置。 The controller determines the non-idling section and the idling section based on the outputs of the first rotation detecting means and the second rotation detecting means, and acquires the position of the swing motor in the idling section. The swivel device according to claim 1 or 2, characterized in that
  4.  前記コントローラは、前記旋回モータのモータ座標系の回転角を示す第1角度情報と、前記上部旋回体のモータ座標系の回転角を示す第2角度情報との差分にもとづいて、前記空転区間内における前記旋回モータの位置を取得することを特徴とする請求項3に記載の旋回装置。 The controller is configured to determine the difference between the first angle information indicating the rotation angle of the motor coordinate system of the swing motor and the second angle information indicating the rotation angle of the motor coordinate system of the upper swing body. The turning device according to claim 3, wherein the position of the turning motor is acquired.
  5.  前記コントローラは、
     前記旋回モータを第1方向に回転させ、続いて第2方向に回転させるステップと、
     前記旋回モータのモータ座標系の回転角を示す第1角度情報と、前記上部旋回体のモータ座標系の回転角を示す第2角度情報との差分を取得するステップと、
     前記差分の最大値および最小値を取得するステップと、
     を実行することを特徴とする請求項1から4のいずれかに記載の旋回装置。
    The controller is
    Rotating the swivel motor in a first direction and subsequently rotating in a second direction;
    Obtaining a difference between first angle information indicating a rotation angle of the motor coordinate system of the swing motor and second angle information indicating a rotation angle of the motor coordinate system of the upper swing body;
    Obtaining a maximum value and a minimum value of the difference;
    The swiveling device according to any one of claims 1 to 4, wherein:
  6.  前記コントローラは、前記最大値および前記最小値の差分を、前記空転区間に対応するバックラッシュ量とするステップをさらに実行することを特徴とする請求項5に記載の旋回装置。 The turning device according to claim 5, wherein the controller further executes a step of setting a difference between the maximum value and the minimum value as a backlash amount corresponding to the idling section.
  7.  前記コントローラは、前記差分の最大値と最小値の平均値、もしくは前記最大値、前記最小値のいずれかを、オフセット量として保持するステップをさらに実行することを特徴とする請求項5または6に記載の旋回装置。 7. The controller according to claim 5, wherein the controller further executes a step of holding an average value of the maximum value and the minimum value of the difference or one of the maximum value and the minimum value as an offset amount. The swivel device described.
  8.  (i)前記非空転区間において、前記コントローラは、前記操作指令値に応じた速度指令値を生成し、前記旋回モータドライバは、前記旋回モータの回転数の検出値が前記速度指令値と一致するように前記旋回モータを駆動し、
     (ii)前記空転区間は、第1区間および第2区間を含み、前記コントローラは、前記第1区間において所定の最大加速トルクを指示するトルク指令値を生成し、前記第2区間において所定の最大減速トルクを指示する前記トルク指令値を生成し、前記旋回モータドライバは、前記トルク指令値に応じたトルクで前記旋回モータを駆動することを特徴とする請求項1から7のいずれかに記載の旋回装置。
    (I) In the non-idling section, the controller generates a speed command value corresponding to the operation command value, and the swing motor driver has a detected value of the rotation speed of the swing motor that matches the speed command value. Drive the swivel motor as
    (Ii) The idling section includes a first section and a second section, and the controller generates a torque command value indicating a predetermined maximum acceleration torque in the first section, and a predetermined maximum in the second section. 8. The torque command value for instructing a deceleration torque is generated, and the swing motor driver drives the swing motor with a torque corresponding to the torque command value. Swivel device.
  9.  走行機構および前記走行機構に旋回自在に搭載された上部旋回体を備えるショベルに搭載され、操作指令値にもとづいて前記上部旋回体を旋回させる旋回装置であって、
     旋回モータと、
     前記旋回モータの回転を前記上部旋回体に伝達する減速機と、
     前記旋回モータを駆動する旋回モータドライバと、
     前記旋回モータの回転情報を取得する第1回転検出手段と、
     前記上部旋回体の回転情報を取得する第2回転検出手段と、
     前記第1回転検出手段により得られる旋回モータのモータ座標系の回転角と、前記第2回転検出手段により得られる前記上部旋回体のモータ座標系の回転角との差分にもとづき、差分が所定の最大値または最小値であるときに、前記旋回モータを回転させると前記上部旋回体が回転する非空転区間と判定し、差分が前記最大値と前記最小値の間であるときに、前記旋回モータを回転させても前記上部旋回体が回転しない空転区間と、を判定するコントローラと、
     を備えることを特徴とする旋回装置。
    A swiveling device that is mounted on a shovel including a traveling mechanism and an upper swinging body that is swingably mounted on the traveling mechanism, and that swings the upper swinging body based on an operation command value,
    A swing motor;
    A speed reducer that transmits the rotation of the swing motor to the upper swing body;
    A turning motor driver for driving the turning motor;
    First rotation detecting means for acquiring rotation information of the turning motor;
    Second rotation detection means for acquiring rotation information of the upper swing body;
    Based on the difference between the rotation angle of the motor coordinate system of the swing motor obtained by the first rotation detection means and the rotation angle of the motor coordinate system of the upper swing body obtained by the second rotation detection means, the difference is a predetermined value. When the swing motor is rotated when it is the maximum value or the minimum value, the upper swing body is determined to be a non-free running section, and when the difference is between the maximum value and the minimum value, the swing motor A controller that determines an idle section in which the upper swing body does not rotate even if the upper rotating body is rotated.
    A swivel device comprising:
  10.  前記コントローラは、前記差分と前記最大値の距離もしくは前記差分と前記最小値の距離にもとづいて、前記空転区間における前記旋回モータの回転角を検出することを特徴とする請求項9に記載の旋回装置。 The turning according to claim 9, wherein the controller detects a rotation angle of the turning motor in the idling section based on the distance between the difference and the maximum value or the distance between the difference and the minimum value. apparatus.
  11.  前記コントローラは、
     前記旋回モータを第1方向に回転させ、続いて第2方向に回転させるステップと、
     前記旋回モータのモータ座標系の回転角を示す第1角度情報と、前記上部旋回体のモータ座標系の回転角を示す第2角度情報との差分を取得するステップと、
     前記差分の最大値および最小値の差を、バックラッシュ量として保持するステップと、
     を実行することを特徴とする請求項9または10に記載の旋回装置。
    The controller is
    Rotating the swivel motor in a first direction and subsequently rotating in a second direction;
    Obtaining a difference between first angle information indicating a rotation angle of the motor coordinate system of the swing motor and second angle information indicating a rotation angle of the motor coordinate system of the upper swing body;
    Holding the difference between the maximum value and the minimum value of the difference as a backlash amount;
    The swiveling device according to claim 9 or 10, wherein:
PCT/JP2016/058130 2015-03-24 2016-03-15 Slewing device WO2016152650A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680006953.6A CN107251409B (en) 2015-03-24 2016-03-15 Turning device
JP2017508257A JP6487529B2 (en) 2015-03-24 2016-03-15 Swivel device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-061366 2015-03-24
JP2015061366 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016152650A1 true WO2016152650A1 (en) 2016-09-29

Family

ID=56978395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058130 WO2016152650A1 (en) 2015-03-24 2016-03-15 Slewing device

Country Status (3)

Country Link
JP (1) JP6487529B2 (en)
CN (1) CN107251409B (en)
WO (1) WO2016152650A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020188880A1 (en) * 2019-03-19 2020-09-24 株式会社明電舎 Backlash control device and backlash control method in electric motor drive system
CN112327213A (en) * 2020-10-19 2021-02-05 南京工程学院 Electric revolving body performance detection system and detection method
WO2022202117A1 (en) * 2021-03-24 2022-09-29 株式会社小松製作所 Hydraulic excavator, and control method for hydraulic excavator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110759004B (en) * 2019-12-25 2020-03-31 常州磐宇仪器有限公司 Motor boundary determination method and self-adaptive positioning application thereof on sampling needle push rod

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142604A (en) * 1990-10-04 1992-05-15 Fanuc Ltd Control method for servo motor
WO2006033401A1 (en) * 2004-09-24 2006-03-30 Komatsu Ltd. Gear drive controller, gear drive control method, turning operation controller, and construction machine
JP2010215369A (en) * 2009-03-17 2010-09-30 Sumitomo Heavy Ind Ltd Servo control system and working machine
JP2011176913A (en) * 2010-02-23 2011-09-08 Canon Inc Rotary drive device of robot arm
JP2012007334A (en) * 2010-06-23 2012-01-12 Caterpillar Sarl Motor torque control device of work machine
WO2014098218A1 (en) * 2012-12-22 2014-06-26 株式会社Schaft Rotational drive device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100470426B1 (en) * 1999-07-12 2005-02-05 미쓰비시덴키 가부시키가이샤 Electromagnetic contactor
US7577507B2 (en) * 2006-03-22 2009-08-18 Gm Global Technology Operations, Inc. Driveline lash estimation and clunk management using multivariable active driveline damping
JP5059565B2 (en) * 2007-11-19 2012-10-24 住友建機株式会社 Swivel drive control device and construction machine including the same
JP5596093B2 (en) * 2012-09-05 2014-09-24 ファナック株式会社 Motor controller for correcting backlash
WO2014057910A1 (en) * 2012-10-09 2014-04-17 日産自動車株式会社 Motor control device for electric vehicle and motor control method for electric vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04142604A (en) * 1990-10-04 1992-05-15 Fanuc Ltd Control method for servo motor
WO2006033401A1 (en) * 2004-09-24 2006-03-30 Komatsu Ltd. Gear drive controller, gear drive control method, turning operation controller, and construction machine
JP2010215369A (en) * 2009-03-17 2010-09-30 Sumitomo Heavy Ind Ltd Servo control system and working machine
JP2011176913A (en) * 2010-02-23 2011-09-08 Canon Inc Rotary drive device of robot arm
JP2012007334A (en) * 2010-06-23 2012-01-12 Caterpillar Sarl Motor torque control device of work machine
WO2014098218A1 (en) * 2012-12-22 2014-06-26 株式会社Schaft Rotational drive device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020188880A1 (en) * 2019-03-19 2020-09-24 株式会社明電舎 Backlash control device and backlash control method in electric motor drive system
JP2020156160A (en) * 2019-03-19 2020-09-24 株式会社明電舎 Backlash control device and backlash control method in electric motor driving system
CN112327213A (en) * 2020-10-19 2021-02-05 南京工程学院 Electric revolving body performance detection system and detection method
CN112327213B (en) * 2020-10-19 2024-04-19 南京工程学院 Electric revolving body performance detection system and detection method
WO2022202117A1 (en) * 2021-03-24 2022-09-29 株式会社小松製作所 Hydraulic excavator, and control method for hydraulic excavator

Also Published As

Publication number Publication date
CN107251409A (en) 2017-10-13
CN107251409B (en) 2021-01-29
JP6487529B2 (en) 2019-03-20
JPWO2016152650A1 (en) 2018-01-18

Similar Documents

Publication Publication Date Title
JP6487529B2 (en) Swivel device
JP5090527B2 (en) Swivel drive control device and construction machine including the same
US8543296B2 (en) Turning drive control unit and construction machine including same
JP5341005B2 (en) Construction machinery
EP2757202B1 (en) Electric turning control apparatus and control method for electric motor for turning
JP5274978B2 (en) Hybrid construction machine
JP5583901B2 (en) Hybrid construction machine
JP4611370B2 (en) Swivel drive control device and construction machine including the same
JP4745322B2 (en) Swivel drive control device and construction machine including the same
JP6679334B2 (en) Power generator and shovel using the same
JP5139257B2 (en) Swivel drive control device and construction machine including the same
JP4648938B2 (en) Swivel drive control device and construction machine using the same
JP5420267B2 (en) Hybrid type work machine and control method of hybrid type work machine
JP2010185257A (en) Hybrid working machine
JP6278793B2 (en) Electric swivel device
JP6676396B2 (en) Motor driving device and industrial machine using the same
JP5349998B2 (en) Work machine and control method of work machine
JP2015194007A (en) Electric swing device for shovel
JP2010150897A (en) Swivelling drive controller and construction machine including the same
JP7472761B2 (en) Swing control device and work machine
JP6571364B2 (en) Electric swivel device for work machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768553

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508257

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768553

Country of ref document: EP

Kind code of ref document: A1