WO2020234630A1 - Procede d'optimisation de la conduction electrique a travers une interface metal/oxyde natif/metal - Google Patents

Procede d'optimisation de la conduction electrique a travers une interface metal/oxyde natif/metal Download PDF

Info

Publication number
WO2020234630A1
WO2020234630A1 PCT/IB2019/054225 IB2019054225W WO2020234630A1 WO 2020234630 A1 WO2020234630 A1 WO 2020234630A1 IB 2019054225 W IB2019054225 W IB 2019054225W WO 2020234630 A1 WO2020234630 A1 WO 2020234630A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic module
voltage
metal
module
electrical performance
Prior art date
Application number
PCT/IB2019/054225
Other languages
English (en)
Inventor
Sylvain DE VECCHI
Brice Arrazat
Original Assignee
Garmin Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Garmin Switzerland filed Critical Garmin Switzerland
Priority to PCT/IB2019/054225 priority Critical patent/WO2020234630A1/fr
Publication of WO2020234630A1 publication Critical patent/WO2020234630A1/fr
Priority to US17/456,052 priority patent/US20220085233A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • H02S50/15Testing of PV devices, e.g. of PV modules or single PV cells using optical means, e.g. using electroluminescence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for optimizing electrical conduction through a metal / native oxide / metal interface, in particular in a photovoltaic module. It relates more specifically, in the case of photovoltaic modules, to a method of pooling the step of the current / potential measurement (I (V)) and the step of breakdown of the native oxide in order to eliminate the electrical contacts. failing.
  • photovoltaic devices can be distinguished in the literature, such as solid crystalline materials, organic materials (polymers or small molecules) or even inorganic thin films (amorphous or polycrystalline).
  • a metallic layer is used to collect the electrical charges generated by these devices under illumination. These metal layers generally form an electrode, collection buses or the interconnections between the different cells making up the photovoltaic module. In the remainder of the document, only photovoltaic devices having metallic layers are considered.
  • the stack consisting of the metal electrode A, its oxide and the conductor B does not exhibit an increased conductivity as expected by the a posteriori thickening of the metal electrode because the electrical contact resistance between the two metals is very important.
  • the same phenomenon is observed when one seeks to put several photovoltaic cells in series or in parallel a posteriori in order to control the voltage and current levels at the output of the photovoltaic modules.
  • metal A denotes the native metal present on the base structure, which is at the origin of the formation of the native oxide.
  • Metal B designates the metal additionally added to the basic structure to modify its performance and / or architecture.
  • a first solution consists in carrying out a plasma treatment of the device containing the metal A in order to remove the native oxide therefrom.
  • This surface treatment is commonly called “etch back” in Anglo-Saxon terminology. It is carried out under vacuum and is immediately followed by the deposition of the metal B under vacuum so that the native oxide cannot reform on contact with air.
  • the gases used to carry out this step are often fluorinated or brominated compounds. These compounds are not only expensive but are also dangerous. The implementation of such a solution therefore requires investments in specific equipment which add an additional manufacturing cost.
  • a second solution consists in adding immediately after the deposition of the metal A a very thin layer of a stainless compound, such as gold.
  • the deposit of the gold layer can be carried out under vacuum or by means of an ENIG process (acronym for the English term “Electrode Nickel Immersion Gold”).
  • ENIG process an ENIG process
  • This solution has the drawback of adding an additional step to the initial process for manufacturing the device containing said metal A. It is described for example by the team of S. Gupta in the article entitled “Contact resistivity reduction through interfacial layer doping in metal interfacial layer semiconductor contacts ”and published in the journal“ Journal of Applied Physics ”in 2013.
  • the invention aims to solve this problem not by adding a manufacturing step but by diverting the step of characterizing the curve I (V) of the final device so that this measurement step is at the same time the optimization step. electrical conduction through a metal / native oxide / metal interface.
  • the object of the invention is to propose a method and a device capable of increasing the electrical conduction through a metal / native oxide / metal interface by using the step of characterizing the curve I (V).
  • the invention consists of a pooling of the measurement step I (V) of the photovoltaic device with a breakdown step of the resistive electrical contact (s) by applying a bias voltage to said photovoltaic module under illumination.
  • the subject of the invention is a method for optimizing the electrical conduction at the interface between two metals A, B when the first metal A has been exposed to air, and its surface is covered with a native oxide electrically insulating before the deposition of the second metal B.
  • a photovoltaic module consists of at least one photovoltaic cell.
  • said photovoltaic cells can be connected all in series, all in parallel, or be connected according to a parallel / series or series / parallel architecture.
  • the chosen architecture depends essentially on the current I and the operating voltage V required by the targeted application.
  • a perfect module is defined as being a module exhibiting no interface oxide.
  • the perfect module is characterized by its optimum short-circuit current density J sc_opt , its area, the number (NB) of cells constituting it and the architecture of said cells.
  • J sc_opt the theoretical threshold current of the perfect modulus I s_th .
  • part of a photovoltaic module denotes a zone of said module constituted by only a part of the cells composing it.
  • this part consists only of whole cells in order to be able to optimize the method for optimizing the electrical performance according to the invention.
  • photovoltaic module All or part of the photovoltaic module is defined by:
  • the architecture of said cells make it possible to calculate the theoretical threshold current of the equivalent perfect modulus I s_th which depends in particular on the optimum short-circuit current density J sc_opt .
  • the perfect module equivalent to the photovoltaic module is a module having the same characteristics in terms of number of cells, architecture, surface area, active photovoltaic surface rate and materials, but not having interface oxide.
  • I s_th (S x J sc_opt / NB).
  • V sweep is defined as being a succession of voltages (suitably chosen) applied to all or part of the photovoltaic module.
  • k represents the kth iteration of the application of the voltage during the voltage sweep .
  • it can also be carried out with a pitch which is not constant in order for example to reduce the interval between two successive voltages during the scanning.
  • V oc (according to the English acronym meaning "open circuit voltage")
  • the method of optimizing electrical performance according to the invention applies to all or part of a photovoltaic module.
  • This optimization process results in breakdown at the metal / oxide / metal interfaces.
  • Said optimization method is characterized in that it comprises the following steps:
  • Step 1 Illuminate all or part of said photovoltaic module with a light flux regulated by a control module;
  • Step A calculate the theoretical threshold current I s_th of all or part of the photovoltaic module, the value of which depends on the area S and the short-circuit current density J sc_opt of all or part of the photovoltaic module, as well as the number (NB) of cells making up all or part of said photovoltaic module;
  • Step B set the maximum current value that the bias module can deliver to the value of the theoretical threshold current I s_th ;
  • Step C check that the threshold current has been reached for at least three reverse bias voltages during the voltage sweep; otherwise repeat steps 1 and 2 described above.
  • the photovoltaic module is composed of a single cell or of a plurality of cells all connected in parallel:
  • V L the limit voltage
  • V oc the theoretical threshold current
  • the photovoltaic module is composed of a plurality of cells all connected in series:
  • V L the limit voltage V L is equal to - V oc x NB
  • the method for optimizing the electrical performance has been carried out by scanning comprising at least 10 bias voltages, this means that 10 reverse bias voltages have been applied to the photovoltaic module.
  • the optimization method is completed by a step of characterizing the electrical performance of all or part of said photovoltaic module in order in particular to verify that the desired electrical performance has been achieved.
  • a device making it possible to carry out the method for optimizing the electrical performance of a photovoltaic module comprises at least:
  • the polarization module polarizes the photovoltaic module according to a succession of reverse polarization voltages imposed by the control module.
  • the invention relates to the optimization of electrical conduction through the interface between two metals by electrical measurement.
  • a metal B (4) is deposited on a metal A (2).
  • the metal A (2) is initially deposited on a substrate (1).
  • Figure 1A is shown a diagram of a structure composed of the substrate (1) and the two metal layers (2 and 4).
  • metal A (2) It is common to dissociate the stages of depositing metal A (2) from that of metal B (2). This is particularly the case when it is desired to thicken the electrodes of a photovoltaic module in order to reduce the Joule losses and thus increase the efficiency of said module.
  • a second step of metal deposition is also used to connect cells in series or in parallel in order to control the voltage and current levels at the output of the photovoltaic modules. In these two cases, it is therefore necessary to contact a metal A (2) which has been exposed to the open air, with another conductor, the metal (B). However, some metals oxidize on the surface in the open. A thin layer of native oxide (3) a few nanometers thick is then formed on the metal A (2).
  • FIG. 1B is a simplified diagram of the structure composed of the substrate (1) of a metal A (2), its native oxide (3) and a metal B (4).
  • the native oxide layer (3) is in most cases electrically insulating. This is the case for example of a contact between a metal B (4) of aluminum deposited on a metal A (2) of aluminum to achieve the parallel interconnection of photovoltaic cells between them.
  • the FIG. 2A is a diagram showing a sectional view of a portion of a photovoltaic module before depositing the metal B. More precisely, it shows a sectional view of a portion of a photovoltaic cell (9) and of a portion of 'a rear contact collection bus (8).
  • the photovoltaic cell (9) is composed of a glass substrate (1) on which are successively arranged:
  • a transparent conductive oxide (5) for example a zinc oxide doped with aluminum
  • a photovoltaic active layer (6) for example a junction based on amorphous silicon
  • the entire module shown schematically in FIG. 2A is then exposed to the ambient air (10).
  • Native aluminum oxide (3) then forms at the air (10) / metal A (2) interface. Its thickness is of the order of 4 to 5 nanometers. This layer has a particularly high resistivity of 1 x 10 14 W.cm.
  • FIG. 2B is a diagram showing a sectional view of a portion of a photovoltaic module after depositing the metal B (4).
  • the metal A (2) and the metal B (4) are therefore separated by a thin layer of aluminum oxide (3).
  • the electrical contact between the metal A (2) and the metal B (4) is therefore particularly resistive, which causes a reduction in the electrical performance of the photovoltaic module.
  • the objective of the invention is to guarantee that the stack of figure IB, present for example in figure 2B, has at least a metal A (2) / native oxide (3) / metal B (4) interface resistive or the least resistive possible without adding manufacturing processes or additional equipment, and without modification of raw material. Thanks to the invention, it is not necessary to operate under an inert or controlled atmosphere, or to treat the metal A (2) before the deposition of the metal B (4).
  • the invention is based on a pooling of the measurement step I (V) of a photovoltaic module making it possible to evaluate the electrical performance of said module under illumination with a breakdown step of the faulty electrical contact (s) containing a native oxide ( 3) at the interface between two metals, as shown for example in FIG. 2B.
  • the I (V) measurement consists of the application of a bias voltage between the two terminals of the photovoltaic module under illumination. Usually, illumination is equivalent to 1 sun.
  • the measurement is carried out by means of a voltage sweep.
  • the current is measured for each of the applied voltages, the set of recorded points constituting the curve I (V).
  • the minimum and maximum voltage applied depend on the characteristics of the module. This curve makes it possible to deduce the main parameters enabling the electrical performance of the photovoltaic module to be evaluated. It is therefore a step systematically carried out at the end of the photovoltaic module manufacturing process.
  • FIG. 3 is a diagram of the system making it possible to carry out I (V) measurements and therefore in the case of the invention the breakdown of the metal A / native oxide / metal B interfaces.
  • the system is composed of a light source (12 ) emitting a light beam (13) homogeneous and calibrated, a first control module (14) and a second polarization module (15).
  • the control module (14) makes it possible to control the light source (12) and the polarization module (15), as well as to process the information received by the polarization module (15).
  • the polarization module (15) allows for its part to polarize the photovoltaic module (11) according to a polarization voltage imposed by the command of the control module (14).
  • the bias module For each bias voltage, the bias module (15) measures the current generated by the photovoltaic module (11) and sends the value to the control module (14). The control module (14) then processes all the information received by the polarization module (15) and deduces therefrom the curve I (V) and the main parameters making it possible to assess the performance of the photovoltaic module.
  • the metal oxides are broken down. Metal bridges are thus created through the native oxide layer, which increases the associated conductivity until the expected I (V) characteristics are obtained which correspond to the characteristics that a person skilled in the art could simulate.
  • the short-circuit current density (J sc ) of the photovoltaic module must be equivalent to the current density (J sc ) of the photovoltaic module that a person skilled in the art would simulate, that is, the optimal short-circuit current density J sc-opt .
  • the polarization of the photovoltaic module must take into account the characteristics of the latter so as not to snap the semiconductor junctions of the solar cells, otherwise the photovoltaic module would no longer function.
  • Curve A in figure 4 is curve I (V) obtained before the process for optimizing electrical performance by breakdown at the metal / oxide / metal interfaces according to the invention.
  • Curve B of FIG. 4 represents the current and voltage measurements obtained by reverse biasing of said module according to the method of the invention, while curve C is curve I (V) obtained after the optimization method.
  • the comparison of curves A and C shows that the performance of said module has been very markedly improved because the method of the invention has broken down the native oxides between metal A and metal B and therefore it has improved the metal / metal electrical contacts within the device.
  • the invention therefore allows the optimization of the electrical conduction at the interface between two metals when the first metal A has been exposed to air and its surface is covered with a native electrically insulating oxide before the deposition of the second. metal B.
  • the invention makes it possible to obtain a non-resistive metal A / metal B interface without adding additional manufacturing steps and without modifying raw materials. It therefore makes it possible to get rid of any native oxides formed on the surface of the metal which can hinder electrical conduction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

L'invention concerne un procédé d'optimisation des performances électriques de tout ou partie d'un module photovoitaïque (11) par claquage aux interfaces métai/oxyde/métai caractérisé en ce qui comprend tes étapes suivantes : - Etape 1 : Illuminer tout ou partie dudit module photovoitaïque par un flux lumineux régulé par un module de contrôle (14); - Etape 2 : Polariser ledit module photovoltaïque en polarisation inverse: en le soumettant à un balayage en tension allant de - Voc/2, Voc étant la tension en circuit ouvert, à une tension de polarisation Imite VL dont la valeur dépend du mode d'interconnexion et du nombre (NB) de cellules composant tout ou partie dudit module photovoitaïque.

Description

PROCEDE D'OPTIMISATION DE LA CONDUCTION ELECTRIQUE A TRAVERS UNE INTERFACE METAL/ OXYDE NATIF/ METAL
La présente invention se rapporte à un procédé d'optimisation de la conduction électrique à travers une interface métal/oxyde natif/métal, notamment dans un module photovoltaïque. Elle vise plus spécialement, dans le cas des modules photovoltaïques, un procédé de mutualisation de l'étape de la mesure intensité/potentiel (I(V)) et de l'étape de claquage de l'oxyde natif afin de supprimer les contacts électriques défaillants.
ETAT DE LA TECHNIQUE
On distingue dans la littérature plusieurs types de matériaux semi-conducteurs employés dans les dispositifs photovoltaïques, tels que les matériaux solides cristallisés, les matériaux organiques (polymères ou petites molécules) ou encore les couches minces inorganiques (amorphes ou polycristallines). Dans la plupart des cas, une couche métallique est employée pour collecter les charges électriques générées par ces dispositifs sous illumination. Ces couches métalliques forment généralement une électrode, des bus de collecte ou les interconnexions entre les différentes cellules composant le module photovoltaïque. Dans la suite du document, on ne considère que les dispositifs photovoltaïques possédant des couches métalliques.
Afin d'améliorer les performances des modules photovoltaïques, il est connu de l'homme du métier qu'augmenter par exemple l'épaisseur des électrodes métalliques permet de diminuer les pertes par effet Joule. Dans ce cas, il faut donc contacter un métal A ayant été à l'air libre (l'électrode métallique de la cellule initiale) avec un autre conducteur B pour épaissir ladite électrode, et donc augmenter sa conductivité globale. Cependant, certains métaux, dont l'aluminium (Al) et le cuivre (Cu), couramment utilisés pour former par exemple l'électrode métallique des dispositifs photovoltaïques en couches minces, s'oxydent en surface à l'air libre, voire même sous atmosphères dont les taux d'oxygène sont contrôlés. Il y a formation d'un oxyde appelé couramment oxyde natif. Cette fine couche d'oxyde natif de quelques nanomètres d'épaisseur est le plus souvent isolante électriquement. C'est le cas notamment des oxydes d'aluminium et de cuivre. Dans ce cas, l'empilement constitué de l'électrode métallique A, de son oxyde et du conducteur B ne présente pas une conductivité augmentée telle qu'espérée par l'épaississement a posteriori de l'électrode métallique car la résistance électrique de contact entre les deux métaux est très importante. Le même phénomène est observé lorsque l'on cherche à mettre en série ou en parallèle a posteriori plusieurs cellules photovoltaïques afin de contrôler les niveaux de tension et de courant en sortie des modules photovoltaïques. De même que précédemment, il est nécessaire d'optimiser la conductivité de l'empilement métal A/oxyde natif/métal B afin de maximiser les performances desdits modules. Dans la suite du document, on désigne par métal A le métal natif présent sur la structure de base, qui est à l'origine de la formation de l'oxyde natif. Le métal B désigne le métal ajouté additionnellement à la structure de base pour en modifier les performances et/ou l'architecture.
Pour pallier cette problématique, plusieurs solutions sont connues de l'homme du métier et sont utilisées dans le milieu industriel. Par exemple, une première solution consiste à réaliser un traitement sous plasma du dispositif contenant le métal A pour en supprimer l'oxyde natif. Ce traitement de la surface est appelé communément « etch back » en terminologie anglo-saxonne. Il est réalisé sous vide et est suivi immédiatement du dépôt du métal B sous vide afin que l'oxyde natif ne puisse pas se reformer au contact de l'air. Les gaz utilisés pour réaliser cette étape sont souvent des composés fluorés ou bromés. Ces composés sont non seulement chers mais sont aussi dangereux. La mise en œuvre d'une telle solution nécessite donc des investissements en équipements spécifiques qui ajoutent un coût supplémentaire de fabrication.
Une deuxième solution consiste à ajouter immédiatement après le dépôt du métal A une très fine couche d'un composé inoxydable, tel que de l'or. Le dépôt de la couche d'or peut être réalisé sous vide ou au moyen d'un procédé ENIG (acronyme du terme anglais « Electrode Nickel Immersion Gold »). Cette solution présente l'inconvénient d'ajouter une étape supplémentaire au procédé initial de fabrication du dispositif contenant ledit métal A. Elle est décrite par exemple par l'équipe de S. Gupta dans l'article intitulé « Contact resistivity réduction through interfacial layer doping in metal interfacial layer semi-conductor contacts » et publié dans la revue « Journal of Applied Physics » en 2013.
Les deux méthodes précitées nécessitent toutes les deux d'ajouter une étape contraignante afin d'éviter l'oxydation du métal A avant le dépôt du métal B. Cependant, pour des raisons de coût et de fabrication, il n'est pas toujours possible de travailler sous vide ou de déposer une fine couche d'or sélectivement sur une partie du dispositif. Pour pallier cette problématique, une autre solution consiste à prendre en considération la formation de la couche d'oxyde natif et de la casser mécaniquement. Par exemple, il est possible d'ajouter de la fritte de verre dans le matériau à déposer (métal B). Cette fritte de verre permet de casser mécaniquement l'oxyde natif au moyen d'un recuit thermique. Le contact électrique entre le métal A et le métal B est alors nettement amélioré. Cette solution a notamment été mentionnée dans l'article de l'équipe de S. Olweya, intitulé « fine-line Si I ver Pastes for Seed Layer Screen Printing with Varied Glass Content », publié dans la revue « Energy Procedia » en 2013.
Bien que ces méthodes résolvent la problématique adressée, elles induisent des étapes supplémentaires dans le procédé de fabrication de l'empilement métal A/Métal B et nécessitent des équipements particuliers ou des modifications physiques des matières premières. Elles génèrent donc un surcoût non négligeable et des contraintes logistiques importantes.
L'invention vise à résoudre cette problématique non pas en ajoutant une étape de fabrication mais en détournant l'étape de caractérisation de la courbe I(V) du dispositif final pour que cette étape de mesure soit en même temps l'étape d'optimisation de la conduction électrique à travers une interface métal/oxyde natif/métal.
BUT DE L'INVENTION
L'invention a pour but de proposer un procédé et un dispositif aptes à augmenter la conduction électrique à travers une interface métal/oxyde natif/métal en utilisant l'étape de caractérisation de la courbe I(V). OBJETS DE L'INVENTION
Dans son principe de base, l'invention consiste en une mutualisation de l'étape de mesure I(V) du dispositif photovoltaïque avec une étape de claquage du ou des contacts électriques résistifs par l'application d'une tension de polarisation audit module photovoltaïque sous illumination.
Plus précisément, l'invention a pour objet un procédé d'optimisation de la conduction électrique à l'interface entre deux métaux A, B lorsque le premier métal A a été exposé à l'air, et que sa surface est recouverte d'un oxyde natif isolant électriquement avant le dépôt du second métal B.
Dans la suite du document, un module photovoltaïque est constitué par au moins une cellule photovoltaïque. Lorsque le module photovoltaïque est constitué de plusieurs cellules photovoltaïques, lesdites cellules photovoltaïques peuvent être connectées toutes en série, toutes en parallèle, ou être connectées selon une architecture parallèle/série ou série/parallèle. L'architecture retenue dépend essentiellement du courant I et de la tension V de fonctionnement requise par l'application visée.
On définit un module parfait comme étant un module ne présentant pas d'oxyde d'interface. Le module parfait est caractérisé par sa densité optimale de courant en court-circuit Jsc_opt , sa surface, le nombre (NB) de cellules le constituant et l'architecture desdites cellules. On associe à Jsc_opt le courant de seuil théorique du module parfait Is_th.
On désigne par partie d'un module photovoltaïque une zone dudit module constituée par seulement une partie des cellules le composant. Avantageusement, cette partie n'est constituée que de cellules entières afin de pourvoir optimiser le procédé d'optimisation des performances électriques selon l'invention.
Tout ou partie du module photovoltaïque est défini par :
- Sa surface S
- Sa densité de courant en court-circuit Jsc_
- Sa densité optimale de courant en court-circuit Jsc_opt
- Le nombre (NB) de cellules le constituant
- L'architecture desdites cellules Ces caractéristiques permettent de calculer le courant de seuil théorique du module parfait équivalent Is_th qui dépend notamment de la densité optimale de courant en court-circuit Jsc_opt. Le module parfait équivalent au module photovoltaïque est un module présentant les mêmes caractéristiques en termes de nombre de cellules, d'architecture, de surface, de taux de surface photovoltaïque active et de matériaux mais ne présentant pas d'oxyde d'interface.
Par exemple, lorsqu'on considère un module photovoltaïque composé de cellules photovoltaïques toutes connectées en parallèles, le courant en court-circuit est calculé selon : Is = (S x Jsc x NB). Lorsqu'il est composé de cellules photovoltaïques toutes connectées en série, le courant en court-circuit est calculé selon : Is = (S x Jsc / NB). On cherche alors, grâce au procédé d'optimisation selon l'invention, à minimiser la différence entre la valeur du courant en court-circuit vis-à-vis de la valeur du courant en court-circuit théorique Is_th. Dans l'idéal, le courant en court-circuit théorique correspond au courant en court-circuit que l'on souhaite atteindre après le procédé d'optimisation.
Par exemple, lorsqu'on considère un module photovoltaïque composé de cellules photovoltaïques toutes connectées en parallèle, le courant en court-circuit théorique est calculé selon : Is th = (S x Jsc opt x NB). Lorsqu'il est composé de cellules photovoltaïques toutes connectées en série, le courant en court-circuit théorique est calculé selon : Is_th = (S x Jsc_opt / NB).
On définit la notion de balayage en tension comme étant une succession de tensions (convenablement choisies) appliquées à tout ou partie du module photovoltaïque. Ce balayage en tension débute avec une tension initiale VI et s'achève avec une tension limite VL préétablies. Il peut s'effectuer avec un pas en tension constant de telle sorte que la tension appliquée s'écrive Vk = VI + pas*k, où k représente la kième itération de l'application de la tension au cours du balayage en tension. Cependant, il peut aussi s'effectuer avec un pas qui n'est pas constant afin par exemple de diminuer l'intervalle entre deux tensions successives au cours du balayage. Dans la suite du document, on notera :
- la tension en circuit ouvert : Voc (selon l'acronyme anglais signifiant « open circuit voltage »),
Le procédé d'optimisation des performances électriques selon l'invention s'applique à tout ou partie d'un module photovoltaïque. Il résulte de ce procédé d'optimisation un claquage aux interfaces métal/oxyde/métal. Ledit procédé d'optimisation est caractérisé en ce qu'il comprend les étapes suivantes :
- Etape 1 : Illuminer tout ou partie dudit module photovoltaïque par un flux lumineux régulé par un module de contrôle ;
- Etape 2 : Polariser le module en polarisation inverse en le soumettant à un balayage en tension allant d'une tension initiale VI = - Voc/2 à une tension de polarisation limite VL dont la valeur dépend du mode d'interconnexion et du nombre (NB) de cellules composant tout ou partie dudit module photovoltaïque.
Le procédé d'optimisation peut être complété par les étapes complémentaires suivantes :
- Etape A : calculer le courant de seuil théorique Is_th de tout ou partie du module photovoltaïque dont la valeur dépend de la surface S et de la densité de courant en court-circuit Jsc_opt de tout ou partie du module photovoltaïque, ainsi que du nombre (NB) de cellules composant tout ou partie dudit module photovoltaïque ;
- Etape B : fixer la valeur maximale en courant que peut délivrer le module de polarisation à la valeur du courant de seuil théorique Is_th;
- Etape C : vérifier que le courant de seuil a été atteint pour au moins trois tensions de polarisation inverse lors du balayage en tension ; sinon réitérer les étapes 1 et 2 décrites ci-dessus.
Avantageusement, lorsque le module photovoltaïque est composé d'une unique cellule ou d'une pluralité de cellules toutes connectées en parallèle :
- la tension limite VL est égale à - Voc, - le courant de seuil théorique est égal à S x Jsc_opt x NB.
Avantageusement, lorsque le module photovoltaïque est composé d'une pluralité de cellules toutes connectées en série :
- la tension limite VL est égale à - Voc x NB,
- le courant de seuil théorique est égal à S x Jsc opt / NB.
Avantageusement, le procédé d'optimisation des performances électriques a été effectué par un balayage comprenant au moins 10 tensions de polarisation, cela signifie que 10 tensions de polarisation inverse ont été appliquées au module photovoltaïque.
Avantageusement, le procédé d'optimisation est complété par une étape de caractérisation des performances électriques de tout ou partie dudit module photovoltaïque afin notamment de vérifier que les performances électriques souhaitées ont été atteintes.
Un dispositif permettant de réaliser le procédé d'optimisation des performances électriques d'un module photovoltaïque comprend au moins :
- une source lumineuse émettant un faisceau lumineux homogène et calibré ;
- un premier module de contrôle;
- un second module de polarisation;
caractérisé en ce que le module de polarisation polarise le module photovoltaïque selon une succession de tensions de polarisation inverse imposées par le module de contrôle.
Il peut être avantageux d'appliquer le procédé d'optimisation seulement à une partie du module photovoltaïque. En effet, certains modules photovoltaïques ont des tensions de fonctionnement supérieures à 50 V. Dans ce cas, il serait nécessaire de mettre à disposition un dispositif comprenant un module de polarisation dont la tension de sortie maximale est supérieure à 50V. Or ces générateurs de tensions sont non seulement onéreux mais nécessitent aussi des précautions particulières pour leur utilisation. Il est donc recommandé d'utiliser des générateurs à plus faible tension de sortie maximale et de procéder à l'optimisation du module photovoltaïque par parties, convenablement choisies.
Concernant l'optimisation des modules photovoltaïques dédiés à la réception de lumière modulée contenant une information, il peut être avantageux de n'optimiser qu'une partie du module photovoltaïque afin d'atteindre la tension de fonctionnement optimale dudit module tout en préservant les caractéristiques intrinsèques du module optimisé pour la réception de la lumière modulée.
DESCRIPTION DETAILLEE
L'invention est maintenant décrite plus en détail à l'aide de la description des figures 1 à 3.
L'invention concerne l'optimisation de la conduction électrique à travers l'interface entre deux métaux par la mesure électrique. Un métal B (4) est déposé sur un métal A (2). En général, le métal A (2) est initialement déposé sur un substrat (1). En figure 1A on a représenté un schéma d'une structure composée du substrat (1) et des deux couches métalliques (2 et 4).
Il est fréquent de dissocier les étapes de dépôt du métal A (2) de celle du métal B (2). C'est notamment le cas lorsque l'on souhaite épaissir des électrodes d'un module photovoltaïque pour diminuer les pertes Joule et augmenter ainsi le rendement dudit module. Une deuxième étape de dépôt métallique est également utilisée pour connecter des cellules en série ou en parallèle dans le but de contrôler les niveaux de tension et de courant en sortie des modules photovoltaïques. Dans ces deux cas, il faut donc contacter un métal A (2) ayant été exposé à l'air libre, avec un autre conducteur, le métal (B). Cependant, certains métaux s'oxydent en surface à l'air libre. Une fine couche d'oxyde natif (3) de quelques nanomètres d'épaisseur se forme alors sur le métal A (2).
La figure IB est un schéma simplifié de la structure composée du substrat (1) d'un métal A (2), de son oxyde natif (3) et d'un métal B (4). La couche d'oxyde natif (3) est dans la majorité des cas isolante électriquement. C'est le cas par exemple d'un contact entre un métal B (4) d'aluminium déposé sur un métal A (2) d'aluminium pour réaliser l'interconnexion en parallèle de cellules photovoltaïques entre elles. La figure 2A est un schéma représentant une vue en coupe d'une portion de module photovoltaïque avant dépôt du métal B. Plus précisément, elle représente une vue en coupe d'une portion d'une cellule photovoltaïque (9) et d'une portion d'un bus de collecte (8) de contact arrière. La cellule photovoltaïque (9) est composée d'un substrat (1) de verre sur lequel sont disposés successivement :
- un oxyde transparent conducteur (5) par exemple un oxyde de zinc dopé à l'aluminium ;
- une couche active photovoltaïque (6) par exemple une jonction à base de silicium amorphe ;
- une électrode métallique constituée par un premier métal A (2) d'aluminium ;
- de deux couches isolantes (71,72) séparées par un espace vacant (73).
L'ensemble du module schématisé à la figure 2A est alors exposé à l'air (10) ambiant. Il se forme alors à l'interface air (10) /métal A (2) l'oxyde natif (3) d'aluminium. Son épaisseur est de l'ordre de 4 à 5 nanomètres. Cette couche présente une résistivité particulièrement élevée de 1 x 1014 W.cm.
La figure 2B est un schéma représentant une vue en coupe d'une portion de module photovoltaïque après dépôt du métal B (4). Le métal A (2) et le métal B (4) sont donc séparés d'une fine couche d'oxyde d'aluminium (3). Le contact électrique entre le métal A (2) et le métal B (4) est donc particulièrement résistif, ce qui engendre une diminution des performances électriques du module photovoltaïque.
L'objectif de l'invention est de garantir que l'empilement de la figure IB, présent par exemple à la figure 2B, ait a minima une interface métal A (2) / oxyde natif (3) / métal B (4) non résistive ou la moins résistive possible sans ajout de procédés de fabrication ni d'équipements supplémentaires, et sans modification de matière première. Grâce à l'invention, il n'est pas nécessaire d'évoluer sous atmosphère inerte ou contrôlée, ni de traiter le métal A (2) avant le dépôt du métal B (4).
L'invention se base sur une mutualisation de l'étape de mesure I(V) d'un module photovoltaïque permettant d'évaluer les performances électriques dudit module sous éclairement avec une étape de claquage du ou des contacts électriques défaillants contenant un oxyde natif (3) à l'interface entre deux métaux, comme représenté par exemple à la figure 2B. La mesure I(V) consiste en l'application d'une tension de polarisation entre les deux bornes du module photovoltaïque sous illumination. Généralement, l'illumination équivaut à 1 soleil. La mesure est réalisée grâce à un balayage en tension. On mesure le courant pour chacune des tensions appliquées, l'ensemble des points enregistrés constituant la courbe I(V). La tension minimale et la tension maximale appliquées dépendent des caractéristiques du module. Cette courbe permet de déduire les principaux paramètres permettant d'évaluer les performances électriques du module photovoltaïque. C'est donc une étape systématiquement réalisée en fin de procédé de fabrication de modules photovoltaïques.
La figure 3 est un schéma du système permettant de réaliser des mesures I(V) et donc dans le cas de l'invention le claquage des interfaces métal A / oxyde natif / métal B. Le système est composé d'une source lumineuse (12) émettant un faisceau lumineux (13) homogène et calibré, d'un premier module de contrôle (14) et d'un second module de polarisation (15). Le module de contrôle (14) permet de contrôler la source lumineuse (12) et le module de polarisation (15), ainsi que de traiter l'information reçue par le module de polarisation (15). Le module de polarisation (15) permet quant à lui de polariser le module photovoltaïque (11) selon une tension de polarisation imposée par la commande du module de contrôle (14). Pour chaque tension de polarisation, le module de polarisation (15) mesure le courant généré par le module photovoltaïque (11) et envoie la valeur au module de contrôle (14). Le module de contrôle (14) traite alors l'ensemble des informations reçues par le module de polarisation (15) et en déduit la courbe I(V) et les principaux paramètres permettant d'évaluer les performances du module photovoltaïque.
Grâce à l'application de tensions de polarisation adéquates au module photovoltaïque présentant des contacts défaillants en présence d'oxydes natifs, les oxydes métalliques sont claqués. On crée ainsi des ponts métalliques au travers de la couche d'oxyde natif, ce qui augmente la conductivité associée jusqu'à obtenir les caractéristiques I(V) attendues qui correspondent aux caractéristiques que saurait simuler l'homme du métier. A titre d'exemple, pour des modules en série, la densité de courant de court-circuit (Jsc) du module photovoltaïque doit être équivalente à la densité de courant (Jsc) du module photovoltaïque que simulerait l'homme du métier, c'est-à-dire la densité optimale de courant en court-circuit Jsc-opt. Cependant, la polarisation du module photovoltaïque doit prendre en compte les caractéristiques de ce dernier pour ne pas venir claquer les jonctions semi-conductrices des cellules solaires, sans quoi le module photovoltaïque ne fonctionnerait plus.
Figure imgf000013_0001
EXEMPLE DE REALISATION
Un exemple concret d'optimisation de la conduction électrique selon le procédé de l'invention a été réalisé sur un module photovoltaïque semi-transparent possédant 11 cellules connectées en série, dont le taux de transparence est de 50%. La courbe A de la figure 4 est la courbe I(V) obtenue avant le procédé d'optimisation des performances électriques par claquage aux interfaces métal/oxyde/métal selon l'invention. L'homme du métier saura interpréter grâce à ces résultats que les performances électriques dudit module photovoltaïque sont mauvaises, le facteur de forme (par exemple, inférieur à 50%) et le courant de court-circuit étant très impactés par de fortes résistances au sein dudit dispositif. La courbe B de la figure 4 représente les mesures en courant et tension obtenues par polarisation inverse dudit module selon le procédé de l'invention, tandis que la courbe C est la courbe I(V) obtenue après le procédé d'optimisation. La comparaison des courbes A et C montre que les performances dudit module ont été très nettement améliorées car le procédé de l'invention a claqué les oxydes natifs entre métal A et métal B et donc il a amélioré les contacts électriques métal/métal au sein du dispositif.
L'invention permet donc bien l'optimisation de la conduction électrique à l'interface entre deux métaux quand le premier métal A a été exposé à l'air et que sa surface est recouverte d'un oxyde natif isolant électriquement avant le dépôt du second métal B. L'invention permet d'obtenir une interface métal A / métal B non résistive sans ajouter des étapes de fabrication supplémentaires et sans modification de matières premières. Elle permet donc de s'affranchir des oxydes natifs éventuels formés à la surface du métal qui peuvent gêner la conduction électrique.

Claims

REVENDICATIONS
1 - Procédé d'optimisation des performances électriques de tout ou partie d'un module photovoltaïque (11) par claquage aux interfaces métal/oxyde/métal caractérisé en ce qu'il comprend les étapes suivantes :
- Etape 1 : Illuminer tout ou partie dudit module photovoltaïque par un flux lumineux régulé par un module de contrôle (14) ;
- Etape 2 : Polariser ledit module photovoltaïque en polarisation inverse en le soumettant à un balayage en tension allant de - Voc/2, Voc étant la tension en circuit ouvert, à une tension de polarisation limite VL dont la valeur dépend du mode d'interconnexion et du nombre (NB) de cellules composant tout ou partie dudit module photovoltaïque.
2 - Procédé d'optimisation selon la revendication 1, caractérisé en ce qu'il contient les étapes complémentaires suivantes :
- Etape A : calculer le courant de seuil théorique Is_th de tout ou partie du module photovoltaïque dont la valeur dépend de la surface S et de la densité optimale de courant en court-circuit Jsc_opt de tout ou partie du module photovoltaïque, ainsi que du nombre (NB) de cellules composant tout ou partie dudit module photovoltaïque ;
- Etape B : fixer la valeur maximale du courant que peut délivrer le module de polarisation à la valeur du courant de seuil théorique Is_th;
- Etape C : vérifier que le courant de seuil théorique a été atteint pour au moins trois tensions de polarisation inverse lors du balayage en tension ; sinon réitérer les étapes décrites dans la revendication 1.
3 Procédé d'optimisation des performances électriques selon l'une des revendications 1 ou 2, caractérisé en ce que tout ou partie dudit module photovoltaïque (11) est composé d'une unique cellule photovoltaïque ou d'une pluralité de cellules toutes connectées en parallèle. 4 - Procédé d'optimisation des performances électriques selon la revendication 3, caractérisé en ce que la tension de polarisation limite VL de tout ou partie du module photovoltaïque est égale à - Voc.
5 Procédé d'optimisation des performances électriques selon l'une des revendications 3 ou 4, caractérisé en ce que le courant de seuil théorique Is th de tout ou partie du module photovoltaïque est égal à (S x Jsc_opt x NB).
6 Procédé d'optimisation des performances électriques selon l'une des revendications 1 ou 2, caractérisé en ce que tout ou partie du module photovoltaïque (11) est composé d'une pluralité de cellules toutes connectées en série.
7 - Procédé d'optimisation des performances électriques selon la revendication 6, caractérisé en ce que la tension de polarisation limite VL de tout ou partie du module photo voltaïque est égale à (-Voc × NB).
8 Procédé d'optimisation des performances électriques selon l'une des revendications 6 ou 7, caractérisé en ce que le courant de seuil théorique Is_th du module photovoltaïque est égal à (S x Jsc_opt / NB).
9 - Procédé d'optimisation des performances électriques selon la revendication précédente, caractérisé en ce qu'au moins 10 tensions de polarisation inverse sont appliquées au module lors du balayage en tension.
10 - Procédé d'optimisation des performances électriques selon l'une quelconque des revendications précédentes, caractérisé en ce que le balayage s'effectue selon un pas en tension constant de telle sorte que la tension appliquée s'écrive VK = VI + pas*k, où k représente la kième itération de l'application de la tension au cours du balayage en tension.
11 - Procédé d'optimisation des performances électriques selon l'une quelconque des revendications précédentes, caractérisé en ce que le balayage s'effectue selon un pas en tension qui diminue lorsque la tension de polarisation inverse augmente afin d'atteindre plus facilement au moins 3 tensions de polarisations générant un courant au moins égal à un courant de seuil.
12 - Procédé d'optimisation des performances électriques selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit procédé est complété par une étape de vérification des performances électriques de tout ou partie dudit module photovoltaïque (11).
13 - Dispositif permettant de réaliser le procédé d'optimisation des performances électriques d'un module photovoltaïque (11) selon l'une quelconque des revendications précédentes, comprenant au moins :
- une source lumineuse (12) émettant un faisceau lumineux (13) homogène et calibré ;
- un premier module de contrôle (14) ;
- un second module de polarisation (15) ;
caractérisé en ce que le module de polarisation (15) polarise le module photovoltaïque (11) selon une succession de tensions de polarisation inverse imposées par le module de contrôle (14).
PCT/IB2019/054225 2019-05-22 2019-05-22 Procede d'optimisation de la conduction electrique a travers une interface metal/oxyde natif/metal WO2020234630A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/IB2019/054225 WO2020234630A1 (fr) 2019-05-22 2019-05-22 Procede d'optimisation de la conduction electrique a travers une interface metal/oxyde natif/metal
US17/456,052 US20220085233A1 (en) 2019-05-22 2021-11-22 Method for optimizing the electric conduction through a metal/oxide/metal interface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/054225 WO2020234630A1 (fr) 2019-05-22 2019-05-22 Procede d'optimisation de la conduction electrique a travers une interface metal/oxyde natif/metal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/456,052 Continuation US20220085233A1 (en) 2019-05-22 2021-11-22 Method for optimizing the electric conduction through a metal/oxide/metal interface

Publications (1)

Publication Number Publication Date
WO2020234630A1 true WO2020234630A1 (fr) 2020-11-26

Family

ID=67470433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/054225 WO2020234630A1 (fr) 2019-05-22 2019-05-22 Procede d'optimisation de la conduction electrique a travers une interface metal/oxyde natif/metal

Country Status (2)

Country Link
US (1) US20220085233A1 (fr)
WO (1) WO2020234630A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806496A (en) * 1986-01-29 1989-02-21 Semiconductor Energy Laboratory Co. Ltd. Method for manufacturing photoelectric conversion devices
JP2001085719A (ja) * 1999-09-16 2001-03-30 Kanegafuchi Chem Ind Co Ltd 薄膜光電変換モジュール及びその製造方法
WO2013112551A2 (fr) * 2012-01-23 2013-08-01 First Solar, Inc. Procédé et appareil de fabrication d'un dispositif photovoltaïque

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5878837B2 (ja) * 2012-07-06 2016-03-08 ルネサスエレクトロニクス株式会社 半導体装置
WO2016038501A2 (fr) * 2014-09-10 2016-03-17 Ecole Polytechnique Federale De Lausanne (Epfl) Photodétecteur

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4806496A (en) * 1986-01-29 1989-02-21 Semiconductor Energy Laboratory Co. Ltd. Method for manufacturing photoelectric conversion devices
JP2001085719A (ja) * 1999-09-16 2001-03-30 Kanegafuchi Chem Ind Co Ltd 薄膜光電変換モジュール及びその製造方法
WO2013112551A2 (fr) * 2012-01-23 2013-08-01 First Solar, Inc. Procédé et appareil de fabrication d'un dispositif photovoltaïque

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KEITHLEY INSTRUMENTS ET AL: ""Keithley Application Note Series, Number 2876: Making I-V and C-V Measurements on Solar/Photovoltaic Cells Using the Model 4200-SCS Semiconductor Characterization System"", 1 October 2007, 20071001, PAGE(S) 1 - 6, XP002662515 *
LASHWAY C: "PHOTOVOLTAIC SYSTEM TESTING TECHNIQUES AND RESULTS", 1 September 1988, IEEE TRANSACTIONS ON ENERGY CONVERSION, IEEE SERVICE CENTER, PISCATAWAY, NJ, US, PAGE(S) 503 - 506, ISSN: 0885-8969, XP000608892 *

Also Published As

Publication number Publication date
US20220085233A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
CN101313411B (zh) 太阳能电池及其制造方法
EP2803089A2 (fr) Procede pour realiser un module photovoltaïque avec deux etapes de gravure p2 et p3 et module photovoltaïque correspondant
FR2463978A1 (fr) Cellule solaire integree avec une diode de derivation et son procede de fabrication
FR3099294A1 (fr) Procédé de traitement d’un precurseur de cellule photovoltaïque a hétérojonction
Singh et al. Design issues in the fabrication of CdS–CdTe solar cells on molybdenum foil substrates
FR2464564A1 (fr) Batterie solaire au silicium amorphe
FR2945670A1 (fr) Dispositif photovoltaique et procede de fabrication
US9583660B2 (en) Method for manufacturing a photovoltaic module with annealing for forming a photovoltaic layer and electrically conducting region
EP1483793A2 (fr) Diode schottky de puissance a substrat sicoi, et procede de realisation d'une telle diode
US9818898B2 (en) Method for producing a photovoltaic module with an etching step P3 and an optional step P1
EP0448465B1 (fr) Procédé de détection optique à seuil de détection variable
WO2020234630A1 (fr) Procede d'optimisation de la conduction electrique a travers une interface metal/oxyde natif/metal
Bruhat et al. TCO contacts on poly-Si layers: High and low temperature approaches to maintain passivation and contact properties
FR3074357A1 (fr) Procede d'optimisation de la conduction electrique a travers une interface metal/oxyde natif/metal
EP3776665B1 (fr) Optimisation du contact électrique métal/métal dans un dispositif photovoltaïque semi-transparent en couches minces
FR2974450A1 (fr) Intégration d'une couche 2d d'oxyde métallique sur un substrat plastique conducteur
Golan et al. Properties investigation of thin films photovoltaic hetero-structures
WO2021130368A1 (fr) Diode comportant au moins deux couches de passivation, en particulier formées de diélectrique, localement superposées pour optimiser la passivation
EP3304603B1 (fr) Fabrication d'une cellule photovoltaïque en couches minces à contacts métalliques perfectionnés
EP3069386B1 (fr) Substrat de contact arrière pour cellule photovoltaïque
EP4199118A1 (fr) Procédé d'activation thermique d'une couche de passivation
EP3498892A1 (fr) Procédé d'extraction d'impuretés métalliques d'une plaquette de silicium cristallin
EP2834845A1 (fr) Procede pour realiser un module photovoltaïque avec une etape de gravure p3 et une eventuelle etape p2
EP3050093A1 (fr) Procédé d'obtention d'une couche mince de matériau à structure chalcopyrite pour cellule photovoltaïque
Trefny et al. Polycrystalline Thin-Film Cadmium Telluride Solar Cells Fabricated by Electrodeposition; Final Technical Report, 20 March 1995-15 June 1998

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19745745

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19745745

Country of ref document: EP

Kind code of ref document: A1