WO2020232630A1 - 一种可调节接触力型超声导波损伤检测系统 - Google Patents

一种可调节接触力型超声导波损伤检测系统 Download PDF

Info

Publication number
WO2020232630A1
WO2020232630A1 PCT/CN2019/087794 CN2019087794W WO2020232630A1 WO 2020232630 A1 WO2020232630 A1 WO 2020232630A1 CN 2019087794 W CN2019087794 W CN 2019087794W WO 2020232630 A1 WO2020232630 A1 WO 2020232630A1
Authority
WO
WIPO (PCT)
Prior art keywords
guided wave
ultrasonic guided
damage detection
module
detection device
Prior art date
Application number
PCT/CN2019/087794
Other languages
English (en)
French (fr)
Inventor
洪晓斌
周建熹
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to ZA2020/05455A priority Critical patent/ZA202005455B/en
Publication of WO2020232630A1 publication Critical patent/WO2020232630A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/223Supports, positioning or alignment in fixed situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/262Linear objects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to the technical field of non-destructive testing, in particular to an adjustable contact force type ultrasonic guided wave damage detection system.
  • the current stranded wire structure damage detection technology can be divided into non-stress wave detection. Method and stress wave detection method.
  • the stress wave detection method has a long detection distance and is sensitive to damage. It has gradually become a research hotspot.
  • it mainly includes the acoustic emission method and the ultrasonic guided wave method.
  • Ultrasonic guided waves have the characteristics of small attenuation, long propagation distance, and high detection efficiency. Its propagation characteristics overcome the complex medium penetration problems faced by non-guided wave methods. It is suitable for long-distance in-service detection and has gradually become the field of structural damage detection in recent years.
  • One of the main research directions are possible to detect the long structure and mechanical strength of the stranded wire.
  • the ultrasonic guided wave detection of such structural damage generally uses adhesive to bond the piezoelectric ceramic to the surface of the tested structure. Because the adhesive requires a certain time to harden, the piezoelectric ceramic sheet cannot be moved after bonding, so this method is used for a large number of inspections The goal is inefficient. It is worth noting that many scientific researchers and inspectors use the received signal amplitude as an important basis for judging damage, and the contact conditions between the probe and the structure under test have a great influence on the signal amplitude. Therefore, the device of the present invention can control the contact force between the probe and the surface of the structure to be measured, and can move to different positions, so that more data can be obtained quickly and conveniently, and each data can be more referenced.
  • the purpose of the present invention is to provide an adjustable contact force type ultrasonic guided wave damage detection system, which makes the ultrasonic guided wave probe fit the long structure to be measured and can be moved to different positions to solve the traditional The problem of low detection efficiency caused by piezoelectric wafers, and can accurately adjust the contact force between the probe and the surface of the tested structure, thereby greatly improving the accuracy and reliability of the detection signal.
  • An adjustable contact force type ultrasonic guided wave damage detection system including: a host computer, a control interface, and an ultrasonic guided wave damage detection device.
  • the ultrasonic guided wave damage detection device includes a base module, an ultrasonic guided wave probe module, and a pressure measurement module; Said
  • the upper computer is respectively connected with the pressure measurement module and the ultrasonic guided wave probe module in the ultrasonic guided wave damage detection device, and is used to control the ultrasonic guided wave damage detection device through the control interface;
  • the base module as the supporting structure of the detection device, is connected to the pressure measurement module, and is used for the load bearing of the ultrasonic guided wave damage detection device and the initial positioning of the probe;
  • the ultrasonic guided wave probe module is composed of a wedge (4) and a voltage ceramic sheet (5).
  • the piezoelectric ceramic sheet (5) is attached to the inner bottom edge of the wedge (4) to excite and receive ultrasonic guided waves;
  • the pressure measurement module is composed of a pressure sensor (3) and an intelligent display instrument, and the pressure sensor (3) is connected with the intelligent display instrument, and the pressure of the pressure sensor (3) is displayed through the intelligent display instrument, and the pressure data is transmitted to the upper computer .
  • one or more embodiments of the present invention may have the following advantages:
  • the invention has simple structure and easy operation, solves the problem of low efficiency caused by the need to paste PZT piezoelectric ceramics when ultrasonic guided wave detection is currently used, thereby realizing rapid detection of metal strands, pipes and other cylindrical objects to be detected, and greatly improving detection efficiency .
  • the present invention can select base modules of various sizes and polygon numbers, and wedge blocks corresponding to the curvature of the lower bottom. Therefore, the detection system can monitor multiple diameters and multiple types of stranded wires. It is versatile; the bottom edge of the wedge of the ultrasonic guided wave probe coincides with the surface of the structure under test to increase the contact area with the structure under test, and different types of piezoelectric ceramic sheets can be selected to excite the required mode and frequency Ultrasonic guided waves improve the applicability and detection accuracy of the detection device; the device of the invention can control the contact force between the probe and the surface of the structure being tested, and can move to different positions, so that more data can be quickly and conveniently obtained, and each data There is more reference between them.
  • a stable and reliable adjustable contact force ultrasonic guided wave damage detection device can be provided, which overcomes the inconvenience, low efficiency, and cumbersome detection of the existing slender structure ultrasonic guided wave detection technology. Insufficient, it provides effective and practical inspection tools for different sizes, different types of pipes, strands and other cylindrical workpieces to be inspected.
  • Figure 1 is a schematic diagram of the structure of an adjustable contact force ultrasonic guided wave damage detection system
  • Figure 2 is the operation interface of the host computer to control the ultrasonic guided wave excitation
  • Figure 3 is the upper computer control ultrasonic guided wave acquisition operation interface
  • Figure 4 is a front view of an assembly diagram of an adjustable contact force ultrasonic guided wave damage detection device
  • Figure 5 is a three-dimensional isometric bearing diagram of the assembly drawing of the adjustable contact force ultrasonic guided wave damage detection device
  • Figure 6 is the first semi-annular base
  • Figure 7 is the second semi-annular base
  • Figure 8 is a structural diagram of the wedge of the ultrasonic guided wave probe module
  • Figure 9 is a structural diagram of a pressure sensor
  • Figure 10 is a structural diagram of the baffle.
  • the ultrasonic guided wave damage detection device includes a base module and an ultrasonic guided wave probe module. And pressure measurement module; the
  • the upper computer is respectively connected with the pressure measurement module and the ultrasonic guided wave probe module in the ultrasonic guided wave damage detection device, and is used to control the ultrasonic guided wave damage detection device through the control interface;
  • the base module as the supporting structure of the detection device, is connected with the pressure measurement module, and is used for the load bearing of the detection device and the initial positioning of the probe;
  • the ultrasonic guided wave probe module is composed of a wedge and a voltage ceramic sheet.
  • the piezoelectric ceramic sheet is attached to the bottom of the wedge to excite and receive ultrasonic guided waves;
  • the pressure measuring module is composed of a pressure sensor and an intelligent display instrument, and the pressure sensor is connected with the intelligent display instrument.
  • the intelligent display instrument displays the pressure of the pressure sensor and transmits the pressure data to the upper computer.
  • the detection device is installed on the structure under test and used to excite and collect ultrasonic guided wave signals; the ultrasonic guided wave probe module is connected to the signal generator and the data acquisition card, the pressure sensor is connected to the intelligent display, and then the sensor degree is transmitted to the upper computer , The host computer controls the detection device through the operation interface.
  • the upper computer controls the waveform generator through the operation interface, and controls the working status of the waveform generator through the switch button; click the "read” button to read the excitation signal and display the waveform and the center frequency of the signal on the screen; in the drop-down box Select the preset base type, select the device pattern and the corresponding serial number of the probe; select the probe to be activated through the check box, and read the contact force between the probe and the measured surface after activation; click the "Excite” button to control The waveform generator outputs the read waveform.
  • the host computer controls the data acquisition card through the operation interface, and controls the working status of the data acquisition card through the switch button; select the preset base type in the drop-down box, select the device pattern and the corresponding serial number of the probe; Select the probe that needs to be activated, and read the contact force between the probe and the measured surface after activation; click the "Acquisition” button to control the data acquisition card to receive the ultrasonic guided wave signal, and display the received signal waveform on the upper computer operation interface; click "Export” outputs the collected signal.
  • the semi-annular base 1 and the semi-annular base 2 are combined into a regular polygonal ring through the second bolt 7.
  • Each side of the polygonal base has three holes , The holes on both sides are threaded holes.
  • the first bolt 6 passes through the threaded hole from the inside and is locked by the first nut 8.
  • the remaining part of the first bolt serves as a guide rail for the baffle 10 to move up and down.
  • the ultrasonic guided wave probe module is composed of a wedge 4 and a voltage ceramic sheet 5.
  • the front of the wedge is a trapezoid with a large top and a small bottom, and the bottom of the wedge is curved to match the surface of the structure to be tested.
  • the ultrasonic guided wave probe module can be adapted to a series of wedges.
  • the lower sides of various wedges can correspond to a variety of arcs of the structure to be tested.
  • the upper center of the wedge has a threaded hole through which the wedge can be installed under pressure.
  • Sensor 3 The inside of the wedge has a hollow structure, and the piezoelectric ceramic sheet is attached to the bottom edge of the inside.
  • the pressure measurement module is composed of a pressure sensor and an intelligent display.
  • the two ends of the pressure sensor are respectively provided with screw rods, one end of the screw passes through the baffle and is fixed to the baffle by the second nut 12, and the other end of the screw is equipped with a guided wave probe
  • the module is connected to an intelligent display instrument through a wire drawn from the middle; the intelligent display instrument is used to display the pressure of the pressure sensor.
  • the plate drives the pressure sensor 3 so that the wedge 4 is tightly attached or loosened to the surface of the structure to be measured.
  • the first semi-annular base 1 and the second semi-annular base 2 are combined into a regular polygonal ring by the second bolt 7.
  • Each side of the base has three holes, and the middle hole is used to pass through
  • the studs connected to the guided wave probe module have holes on both sides for installing the first bolt 6 and the first nut 8 as a guide rail for the baffle 10 to move up and down.
  • the second semi-annular base 2 and the first semi-annular base 1 are combined into a regular polygonal ring by the second bolt 7.
  • Each side of the base has three holes, and the middle hole is used to pass through
  • the studs connected to the guided wave probe module have holes on both sides for installing the first bolt 6 and the first nut 8 as a guide rail for the baffle 10 to move up and down.
  • the above-mentioned base module is a series of two-half asymmetric structures, which can be locked by the second bolt to form a regular polygonal ring.
  • the base modules of various sizes and polygon numbers can be selected according to the dimensions of the tested structure and the detection method.
  • the front of the wedge is a trapezoid with a large upper and a smaller one, and the lower bottom edge is curved to match the surface of the tested structure.
  • the type of detection structure and the detection method it corresponds to a variety of arcs; It can be installed on the pressure sensor 3, the left side of the wedge is a mouth shape, and the piezoelectric ceramic sheet is attached to the bottom edge of the mouth shape.
  • One end of the screw passes through the baffle and is fixed to the baffle by a second nut 12, the other end of the screw is installed with a guided wave probe module, and the middle lead wire is connected to the smart display.
  • the pressure sensor is coaxial with the ultrasonic guided wave probe, and the force is equal to that of the ultrasonic guided wave probe, and can indirectly measure the contact force between the ultrasonic guided wave probe and the surface of the measured structure.
  • the baffle 10 structure is used to install the pressure sensor, and combined with the disc nut 11 to apply pressure to the pressure sensor, and finally transmitted to the ultrasonic guided wave probe to make it come into close contact with the surface of the measured structure, and the butterfly nut is reversed,
  • the pressure sensor is driven by the spring 9 to separate the ultrasonic guided wave probe from the surface of the structure under test.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种可调节接触力型超声导波损伤检测系统,包括上位机、控制界面及超声导波损伤检测装置,超声导波损伤检测装置包括基座模块、超声导波探头模块与测压力模块;上位机分别与超声导波损伤检测装置中的测压力模块和超声导波探头模块相连,用于通过控制界面对超声导波损伤检测装置进行控制;基座模块,作为检测装置的支撑结构,与测压力模块相连,用于检测装置的承重及探头的初始定位;超声导波探头模块,由楔块(4)和压电陶瓷片(5)构成,压电陶瓷片(5)贴于楔块(4)内部下底边,用于激励和接收超声导波;测压力模块,由压力传感器(3)和智能显示仪构成,且压力传感器与智能显示仪相连,通过智能显示仪显示压力传感器(3)所受压力,并将压力数据传入上位机。

Description

一种可调节接触力型超声导波损伤检测系统 技术领域
本发明涉及无损检测技术领域,尤其涉及一种可调节接触力型超声导波损伤检测系统。
背景技术
绞线及管道等长状结构,被广泛应用于桥梁、港口、铁路、建筑等大型环境中,这类结构的健康监测已成为国内外研究热点。
目前,国内外已经开展了缺陷检测研究,主要采用无损检测技术对绞线的长状结构及其机械强度进行检测,根据检测的原理可将目前的绞线结构损伤检测技术分为非应力波检测法和应力波检测法。其中,应力波检测方法检测距离远,对损伤敏感,逐渐成为研究的热点,目前主要包括声发射法和超声导波法。而超声导波具有衰减小、传播距离长、检测效率高等特点,其传播特性克服了非导波方法面临的复杂媒质穿透等问题,适合长距离在役探测,逐渐成为近年来结构损伤检测领域主要研究方向之一。
当前此类结构损伤超声导波检测,一般采用胶粘剂将压电陶瓷粘结于被测结构表面,由于胶粘剂硬化需要一定的时间,粘贴后的压电陶瓷片不能移动,因此该方法用于大量检测目标时效率低下。值得注意的是,不少科研工作者及检测人员,将接收信号幅值作为评判损伤的重要依据,而探头与被测结构的接触条件对信号幅值影响极大。因此,该发明装置能控制探头与被测结构表面的接触力,并能移动至不同位置,从而能快速便捷获取更多数据,且使得各个数据之间更具有参考性。
发明内容
为解决上述技术问题,本发明的目的是提供一种可调节接触力型超声导波损伤检测系统,该系统使超声导波探头与被测长状结构契合,且可移动至 不同位置,解决传统压电晶片而造成的检测效率低下的问题,并可准确调节探头与被测结构表面的接触力,从而大幅度提高检测信号准确度与可信度。
本发明的目的通过以下的技术方案来实现:
一种可调节接触力型超声导波损伤检测系统,包括:上位机、控制界面及超声导波损伤检测装置,超声导波损伤检测装置包括基座模块、超声导波探头模块与测压力模块;所述
上位机分别与超声导波损伤检测装置中的测压力模块和超声导波探头模块相连,用于通过控制界面对超声导波损伤检测装置进行控制;
基座模块,作为检测装置的支撑结构,与测压力模块相连,用于超声导波损伤检测装置的承重及探头的初始定位;
超声导波探头模块,由楔块(4)和电压陶瓷片(5)构成,压电陶瓷片(5)贴于楔块(4)内部下底边,用于激励和接收超声导波;
测压力模块,由压力传感器(3)和智能显示仪构成,且压力传感器(3)与智能显示仪相连,通过智能显示仪显示压力传感器(3)所受压力,并将压力数据传入上位机。
与现有技术相比,本发明的一个或多个实施例可以具有如下优点:
本发明结构简单易于操作,解决了当前采用超声导波检测时,需要粘贴PZT压电陶瓷而导致低效问题,从而实现快速检测金属绞线、管道等圆柱形被检测件,大幅度提高检测效率。
本发明可根据检测结构的类型及检测方法,选择多种尺寸及多边形数的基座模块、下底边对应弧度的楔块,因此该检测系统能监测多种直径、多种类型绞线,更具有多用途性;所述超声导波探头楔块下底边与被测结构表面吻合,以提高与被测结构的接触面积,并且可以选择不同类型压电陶瓷片,激励所需模态及频率的超声导波,提高检测装置的适用性及检测精度;该发明装置能控制探头与被测结构表面的接触力,并能移动至不同位置,从而能快速便捷获取更多数据,且使得各个数据之间更具有参考性。通过以上对核心模块的设计,可以提供一种稳定可靠的可调节接触力型超声导波损伤检测装置,克服了现有细长结构超声导波检测技术存在的检测不方便、效率低、繁琐等不足,为不同尺寸、不同类型的管道和绞线等圆柱形等被检测工件提 供了有效实用的检测工具。
附图说明
图1是可调节接触力型超声导波损伤检测系统结构示意图;
图2是上位机控制超声导波激励操作界面;
图3是上位机控制超声导波采集操作界面;
图4是可调节接触力型超声导波损伤检测装置装配图主视图;
图5是可调节接触力型超声导波损伤检测装置装配图三维等轴承图;
图6是第一半环形基座;
图7是第二半环形基座;
图8是超声导波探头模块楔块结构图;
图9是压力传感器结构图;
图10是挡板结构图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合实施例及附图对本发明作进一步详细的描述。
如图1所示,为可调节接触力型超声导波损伤检测系统结构,包括上位机、控制界面及超声导波损伤检测装置,超声导波损伤检测装置包括基座模块、超声导波探头模块与测压力模块;所述
上位机分别与超声导波损伤检测装置中的测压力模块和超声导波探头模块相连,用于通过控制界面对超声导波损伤检测装置进行控制;
基座模块,作为检测装置的支撑结构,与测压力模块相连,用于检测装置的承重及探头的初始定位;
超声导波探头模块,由楔块和电压陶瓷片构成,压电陶瓷片贴于楔块内部下底边,用于激励和接收超声导波;
测压力模块,由压力传感器和智能显示仪构成,且压力传感器与智能显示仪相连,通过智能显示仪显示压力传感器所受压力,并将压力数据传入上位机。
检测装置安装于被测结构,分别用于激励和采集超声导波信号;超声导波探头模块分别与信号发生器、数据采集卡相连,压力传感器连接智能显示仪,再将传感器度数传入上位机,上位机通过操作界面对检测装置进行控制。
参见图2,上位机通过操作界面控制波形发生器,通过开关按钮控制波形发生器工作状态;点击“读取”按钮能读取激励信号并在屏幕上显示波形及信号的中心频率;在下拉框中选择预设的基座类型,选取后生成装置图样及探头对应序号;通过复选框选择需要激活使用的探头,激活后读入探头与被测表面间的接触力;点击“激励”按钮控制波形发生器输出所读取的波形。
参见图3,上位机通过操作界面控制数据采集卡,通过开关按钮控制数据采集卡工作状态;在下拉框中选择预设的基座类型,选取后生成装置图样及探头对应序号;通过复选框选择需要激活使用的探头,激活后读入探头与被测表面间的接触力;点击“采集”按钮控制数据采集卡接收超声导波信号,并将接收的信号波形显示于上位机操作界面;点击“导出”输出所采集到的信号。
参见图4,以正十二边形基座为例,由半环形基座1和半环形基座2通过第二螺栓7合成一个正多边形环状,多边形基座每个侧面均开有三个孔,两侧的孔为螺纹孔,第一螺栓6从内测穿过该螺纹孔,并通过第一螺母8锁紧,第一螺栓剩余部分作为挡板10上下移动的导轨。超声导波探头模块由楔块4和电压陶瓷片5组成,楔块的正面为上大下小的梯形,下底边呈弧形以吻合被测结构表面,根据检测结构的类型及检测方法,超声导波探头模块可适配一系列楔块,各种楔块的下底边可对应被测结构的多种弧度,楔块的上底中心有螺纹孔,通过螺纹孔使楔块安装于压力传感器3;楔块内部为中空结构,压电陶瓷片贴于内部下底边。测压力模块由压力传感器和智能显示仪组成,所述压力传感器的两端分别设置有螺杆,其中一端螺杆穿过挡板,并通过第二螺母12固定于挡板,另一端螺杆安装导波探头模块,并且通过中部引出的导线与智能显示仪相连;所述智能显示仪用于显示压力传感器所受压力。基座两侧的导轨上装有弹簧9和蝶形螺母11,调节接触力是基于弹簧9对挡板10向外的推力,通过旋转蝶形螺母11,使挡板向内或向外运动,挡板带动压力传感器3从而使楔块4与被测结构表面贴紧或松开。
参见图5,显示了压电陶瓷片5和第二螺母12在装配图中的位置。
参见图6,为第一半环形基座1与第二半环形基座2通过第二螺栓7合成一个正多边形环状,基座每个侧面均开有三个孔,中间的孔用于穿过连接导波探头模块的螺柱,两侧的孔为用于安装第一螺栓6及第一螺母8作为挡板10上下移动的导轨。
参见图7,为第二半环形基座2和第一半环形基座1通过第二螺栓7合成一个正多边形环状,基座每个侧面均开有三个孔,中间的孔用于穿过连接导波探头模块的螺柱,两侧的孔为用于安装第一螺栓6及第一螺母8作为挡板10上下移动的导轨。
上述基座模块为一系列两半非对称结构,通过第二螺栓锁紧可合成一个正多边形环状,可根据被测结构外形尺寸及检测方法选择各种尺寸、多边形数的基座模块。
参见图8,楔块正面为上大下小的梯形,下底边呈弧形以吻合被测结构表面,根据检测结构的类型及检测方法,对应多种弧度;上底中心有螺纹孔,使其能安装于压力传感器3,楔块左侧为口字型,压电陶瓷片贴于口型内部下底边。
参见图9,为压力传感器,一端螺杆穿过挡板,通过第二螺母12固定于挡板,另一端螺杆安装导波探头模块,中部引出导线与智能显示仪相连。该压力传感器与超声导波探头同轴线,受力与超声导波探头相等,能间接测量超声导波探头与被测结构表面接触力。
参见图10,挡板10结构用于安装压力传感器,并结合碟形螺母11向压力传感器施加压力,最终传递至超声导波探头使之与被测结构表面紧密接触,而反转蝶形螺母,在弹簧9的作用下带动压力传感器,使超声导波探头与被测结构表面脱离。
虽然本发明所揭露的实施方式如上,但所述的内容只是为了便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属技术领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式上及细节上作任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (6)

  1. 一种可调节接触力型超声导波损伤检测系统,其特征在于,所述系统包括上位机、控制界面及超声导波损伤检测装置,超声导波损伤检测装置包括基座模块、超声导波探头模块与测压力模块;所述
    上位机分别与超声导波损伤检测装置中的测压力模块和超声导波探头模块相连,用于通过控制界面对超声导波损伤检测装置进行控制;
    基座模块,作为检测装置的支撑结构,与测压力模块相连,用于超声导波损伤检测装置的承重及探头的初始定位;
    超声导波探头模块,由楔块(4)和电压陶瓷片(5)构成,压电陶瓷片(5)贴于楔块(4)内部下底边,用于激励和接收超声导波;
    测压力模块,由压力传感器(3)和智能显示仪构成,且压力传感器(3)与智能显示仪相连,通过智能显示仪显示压力传感器(3)所受压力,并将压力数据传入上位机。
  2. 如权利要求1所述的可调节接触力型超声导波损伤检测系统,其特征在于,所述基座模块由第一半环形基座(1)和第二半环形基座(2)通过第二螺栓(7)合成一个正多边形状;且正多边形状基座的每个侧面均开有三个孔,两侧的孔为螺纹孔,第一螺栓(6)从内测穿过该螺纹孔,并通过第一螺母(8)锁紧,第一螺栓剩余部分作为挡板(10)上下移动的导轨。
  3. 如权利要求1所述的可调节接触力型超声导波损伤检测系统,其特征在于,所述超声导波探头模块中楔块为上大下小的梯形状,下底边呈弧形结构,与被测结构表面吻合。
  4. 如权利要求1所述的可调节接触力型超声导波损伤检测系统,其特征在于,根据检测结构类型及检测方法,所述超声导波探头模块可适配一系列楔块,各种楔块的下底边可对应被测结构的多种弧度,楔块的上底中心有螺纹孔,通过螺纹孔使楔块安装于压力传感器(3);楔块内部为中空结构,压电陶瓷片贴于内部下底边。
  5. 如权利要求1所述的可调节接触力型超声导波损伤检测系统,其特征在于,所述测压力模块中压力传感器的两端分别设置有螺杆,其中,一端螺杆穿过挡板中心孔,并通过第二螺母(12)固定于挡板,另一端螺杆安装于超声导波探头模块,并且通过中部引出的导线与智能显示仪相连;所述智能 显示仪用于显示压力传感器所受压力。
  6. 如权利要求2所述的可调节接触力型超声导波损伤检测系统,其特征在于,基座两侧的导轨上装有弹簧(9)和蝶形螺母(11),基于弹簧(9)对挡板(10)向外的推力,通过旋转蝶形螺母(11),使挡板向内或向外运动,挡板带动压力传感器(3)从而使楔块(4)与被测结构表面贴紧或松开来调节接触力。
PCT/CN2019/087794 2019-05-20 2019-05-21 一种可调节接触力型超声导波损伤检测系统 WO2020232630A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2020/05455A ZA202005455B (en) 2019-05-20 2020-09-01 An ultrasonic guided wave damage detection system capable of adjusting contact pressure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910417708.X 2019-05-20
CN201910417708.XA CN110108794B (zh) 2019-05-20 2019-05-20 一种可调节接触力型超声导波损伤检测系统

Publications (1)

Publication Number Publication Date
WO2020232630A1 true WO2020232630A1 (zh) 2020-11-26

Family

ID=67491042

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087794 WO2020232630A1 (zh) 2019-05-20 2019-05-21 一种可调节接触力型超声导波损伤检测系统

Country Status (3)

Country Link
CN (1) CN110108794B (zh)
WO (1) WO2020232630A1 (zh)
ZA (1) ZA202005455B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113029834A (zh) * 2021-03-12 2021-06-25 清华大学 纤维增强复合材料frp-混凝土结构界面的检测方法和系统
CN113533506A (zh) * 2021-06-25 2021-10-22 中国船舶重工集团公司第七一九研究所 外置的管道损伤检测装置及其检测方法
CN117840644A (zh) * 2023-12-26 2024-04-09 侏罗纪马克热威装备科技有限公司 一种微控轧焊接集成装置及控制系统

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108794B (zh) * 2019-05-20 2023-07-25 华南理工大学 一种可调节接触力型超声导波损伤检测系统
CN110568077A (zh) * 2019-08-22 2019-12-13 广州昱奕智能自动化设备有限公司 一种机械零部件缺陷的检测分析方法
CN110927247B (zh) * 2019-10-29 2022-02-25 广东工业大学 用于管道检测的阵元可调干耦合式导波阵列传感器及方法
CN113252776A (zh) * 2021-03-29 2021-08-13 东莞理工学院 一种建筑物接触界面监控方法
CN113406204A (zh) * 2021-06-25 2021-09-17 中国船舶重工集团公司第七一九研究所 外置的管道损伤检测系统及其检测方法
CN113804765A (zh) * 2021-10-08 2021-12-17 金陵科技学院 一种压力容器封头部位多损伤区域定位方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103364492A (zh) * 2013-07-17 2013-10-23 江苏省特种设备安全监督检验研究院镇江分院 可调节式焊缝探伤导波探头及使用方法
JP2015080600A (ja) * 2013-10-23 2015-04-27 セイコーエプソン株式会社 超音波プローブおよび超音波画像装置
US9398897B2 (en) * 2010-06-25 2016-07-26 Seiko Epson Corporation Ultrasonic sensor, measuring device, and measurement system
CN109085241A (zh) * 2018-08-10 2018-12-25 扬州市紫麓信息技术有限公司 特种车辆传动轴损伤检测装置及损伤检测方法
CN110108794A (zh) * 2019-05-20 2019-08-09 华南理工大学 一种可调节接触力型超声导波损伤检测系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0979833A (ja) * 1995-09-11 1997-03-28 Mitsubishi Heavy Ind Ltd 薄板重ね継手ののど厚計測装置
US7496456B2 (en) * 2004-04-26 2009-02-24 Kabushiki Kaisha Toshiba 3D ultrasonographic device
CN102175773B (zh) * 2010-12-24 2012-11-14 中国海洋石油总公司 一种用于海洋管道超声导波检测的探头系统及其设计方法
CN105445375B (zh) * 2015-12-31 2019-05-14 华南理工大学 一种手持式超声导波结构损伤检测装置及其检测方法
CN105699495B (zh) * 2016-03-24 2018-07-03 江苏科技大学 一种便携式的超声波探头压力调控装置和使用方法
CN105738474B (zh) * 2016-04-14 2018-10-30 华南理工大学 一种面向绞线结构损伤针状式超声导波检测装置及方法
CN106289616A (zh) * 2016-10-13 2017-01-04 西南交通大学 超声应力测量系统耦合压力可调的便携式探头固定装置
JP2018205091A (ja) * 2017-06-02 2018-12-27 日立Geニュークリア・エナジー株式会社 超音波探傷装置および超音波による検査方法
CN108375631B (zh) * 2018-02-28 2021-01-19 华南理工大学 一种面向绞线结构的液压紧式超声导波损伤检测装置
CN108956771A (zh) * 2018-07-07 2018-12-07 南京理工大学 基于超声导波的特种车辆传动轴损伤检测系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9398897B2 (en) * 2010-06-25 2016-07-26 Seiko Epson Corporation Ultrasonic sensor, measuring device, and measurement system
CN103364492A (zh) * 2013-07-17 2013-10-23 江苏省特种设备安全监督检验研究院镇江分院 可调节式焊缝探伤导波探头及使用方法
JP2015080600A (ja) * 2013-10-23 2015-04-27 セイコーエプソン株式会社 超音波プローブおよび超音波画像装置
CN109085241A (zh) * 2018-08-10 2018-12-25 扬州市紫麓信息技术有限公司 特种车辆传动轴损伤检测装置及损伤检测方法
CN110108794A (zh) * 2019-05-20 2019-08-09 华南理工大学 一种可调节接触力型超声导波损伤检测系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113029834A (zh) * 2021-03-12 2021-06-25 清华大学 纤维增强复合材料frp-混凝土结构界面的检测方法和系统
CN113533506A (zh) * 2021-06-25 2021-10-22 中国船舶重工集团公司第七一九研究所 外置的管道损伤检测装置及其检测方法
CN117840644A (zh) * 2023-12-26 2024-04-09 侏罗纪马克热威装备科技有限公司 一种微控轧焊接集成装置及控制系统

Also Published As

Publication number Publication date
CN110108794A (zh) 2019-08-09
ZA202005455B (en) 2021-10-27
CN110108794B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
WO2020232630A1 (zh) 一种可调节接触力型超声导波损伤检测系统
CN107748200B (zh) 一种基于特征导波的焊缝缺陷检测压电阵列式柔性传感器及检测方法
CN101539541B (zh) 基于导向波的厚梁结构损伤检测方法
US7474092B1 (en) Method and device for long-range guided-wave inspection of fire side of waterwall tubes in boilers
CN104965023B (zh) 多模态导波工业管道诊断方法
WO2018223940A1 (zh) 一种冲击应力波检测系统
CN104297346A (zh) 超声平板导波的金属板材无损检测系统及其检测方法
CN105259254A (zh) 钢轨轨底横向裂纹扫查装置
CN108088913B (zh) 用于钢轨轨底探伤的压电超声导波探头及其探伤方法
CN102507744A (zh) 一种检测碳纤维复合材料破坏失效的声发射装置及方法
CN105954356A (zh) 一种基于有限幅度法的金属块闭合裂纹检测定位方法
CN109612414A (zh) 一种基于超声波导的高温管道壁厚在线监测装置及其方法
CN108072699A (zh) 一种基于声振技术的声发射定位检测方法
CN207689438U (zh) 用于钢轨探伤的超声导波斜探头
CN111077030A (zh) 一种高应变率下混凝土动态力学性能试验装置及方法
CN107576384B (zh) 起重装备裂纹Lamb波在线监测系统与方法
CN104931167B (zh) 超声波应力测量系统中超声探头的固定走行装置
CN108008021B (zh) 用于钢轨探伤的超声导波斜探头及其探伤方法
CN110887898A (zh) 一种基于超声导波的方管检测方法及装置
CN105388210B (zh) 基于临时钢斜撑的斜拉索损伤检测装置及检测方法
CN117890472A (zh) 高温管道在线快速检测装置及检测方法
CN105004790A (zh) 一种压缩机叶轮缺陷相控阵超声检测方法
CN205175970U (zh) 钢轨轨底横向裂纹扫查装置
CN207689437U (zh) 用于钢轨轨底探伤的压电超声导波探头
CN109580720A (zh) 一种钢结构桥梁桥面板焊缝损伤的实时检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929815

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19929815

Country of ref document: EP

Kind code of ref document: A1