WO2020230193A1 - Parking form determination device - Google Patents

Parking form determination device Download PDF

Info

Publication number
WO2020230193A1
WO2020230193A1 PCT/JP2019/018765 JP2019018765W WO2020230193A1 WO 2020230193 A1 WO2020230193 A1 WO 2020230193A1 JP 2019018765 W JP2019018765 W JP 2019018765W WO 2020230193 A1 WO2020230193 A1 WO 2020230193A1
Authority
WO
WIPO (PCT)
Prior art keywords
parking
angle
parking form
distribution
line segment
Prior art date
Application number
PCT/JP2019/018765
Other languages
French (fr)
Japanese (ja)
Inventor
聡史 上田
井上 悟
侑己 浦川
真一 原瀬
崇博 関
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2021514451A priority Critical patent/JP6890744B2/en
Priority to PCT/JP2019/018765 priority patent/WO2020230193A1/en
Publication of WO2020230193A1 publication Critical patent/WO2020230193A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/06Automatic manoeuvring for parking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions

Definitions

  • the present invention relates to a parking form determination device.
  • Patent Document 1 discloses a parking form determining device that determines whether the parking form of another vehicle is so-called “parallel parking”, “parallel parking”, or “diagonal parking”.
  • the parking form determination device described in Patent Document 1 has a problem that the determination accuracy of the parking form is lowered when the traveling speed of the vehicle is high. Further, when the parking form of another vehicle is diagonal parking, there is a problem that the determination accuracy of the parking form is lowered.
  • the present invention has been made to solve the above problems, and an object of the present invention is to improve the accuracy of determining the parking form.
  • the parking form determination device of the present invention includes a grouping unit that sets a group corresponding to an obstacle by grouping a plurality of reflection points obtained by a distance sensor, and a plurality of reflection points included in the group.
  • An angle calculation unit that calculates the line segment angle or normal angle for each line segment connecting the reflection points adjacent to each other, and a length calculation unit that calculates the line segment length for each line segment. Based on the distribution of the line segment length with respect to the line segment angle or the normal angle, the parking form determination unit that determines whether the parking form of the other vehicle corresponding to the group is vertical parking, parallel parking, or diagonal parking. , Is provided.
  • the accuracy of determining the parking form can be improved.
  • FIG. It is a block diagram which shows the main part of the parking support system including the parking form determination device which concerns on Embodiment 1.
  • FIG. It is explanatory drawing which shows the example of the calculation method of the position of a reflection point. It is explanatory drawing which shows the example of the line segment angle and the line segment length. It is explanatory drawing which shows the example of the normal angle and the line segment length. It is explanatory drawing which shows the example of the group when the parking form is parallel parking. It is explanatory drawing which shows the example of the normal angle and the line segment length when the parking form is parallel parking. It is explanatory drawing which shows the example of the distribution when the parking form is parallel parking. It is explanatory drawing which shows the example of the group when the parking form is parallel parking.
  • FIG. 1 shows the operation of the 1st control device in the parking support system including the parking form determination device which concerns on Embodiment 1.
  • FIG. 2nd control device shows the operation of the 1st control device and the 2nd control device in the parking support system including the parking form determination device which concerns on Embodiment 1.
  • FIG. It is a flowchart which shows the detailed operation of the 1st control device in the parking support system including the parking form determination device which concerns on Embodiment 1.
  • FIG. is explanatory drawing which shows another example of a line segment angle. It is explanatory drawing which shows another example of a normal angle.
  • It is a block diagram which shows the main part of the parking support system including the parking form determination device which concerns on Embodiment 2.
  • FIG. 1 is a block diagram showing a main part of a parking support system including a parking form determining device according to the first embodiment.
  • a parking support system including the parking form determining device according to the first embodiment will be described with reference to FIG.
  • the vehicle 1 is provided with the distance sensor 2.
  • the distance sensor 2 is capable of transmitting ultrasonic waves, radio waves, light, and the like (hereinafter collectively referred to as "exploration waves”).
  • exploration waves When the exploration wave is reflected by an object such as an obstacle (hereinafter collectively referred to as “obstacle”) around the vehicle 1, the distance sensor 2 refers to the reflected exploration wave (hereinafter referred to as "reflected wave”). There is.) Can be received freely.
  • Obstacles include other parked vehicles V.
  • the distance sensor 2 is provided on the left side surface of the vehicle 1.
  • the distance sensor 2 is provided on the right side surface of the vehicle 1.
  • the distance sensor 2 is provided on each of the left side surface portion and the right side surface portion of the vehicle 1.
  • the distance sensor 2 provided on the left side surface of the vehicle 1 is capable of transmitting an exploration wave to the left side of the vehicle 1. Further, the distance sensor 2 is capable of receiving the reflected wave due to the obstacle when the exploration wave is reflected by the obstacle on the left side of the vehicle 1.
  • the distance sensor 2 provided on the right side surface of the vehicle 1 can freely transmit the exploration wave to the right side of the vehicle 1. Further, the distance sensor 2 is capable of receiving the reflected wave due to the obstacle when the exploration wave is reflected by the obstacle on the right side of the vehicle 1.
  • the vehicle 1 is provided with the first sensors 3.
  • the first sensors 3 include, for example, a wheel speed sensor and a shift position sensor.
  • the vehicle 1 is provided with the second sensors 4.
  • the second sensors 4 include, for example, a GPS (Global Positioning System) receiver, a yaw rate sensor, and a gyro sensor.
  • GPS Global Positioning System
  • the first control device 5 is provided in the vehicle 1.
  • the first control device 5 is composed of, for example, an ECU (Electronic Control Unit).
  • the first control device 5 includes a speed determination unit 11, a distance measurement unit 12, a position calculation unit 13, a grouping unit 14, an angle calculation unit 15, a length calculation unit 16, and a parking form determination unit 17.
  • the main part of the parking form determination device 100 is composed of the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking form determination unit 17.
  • the second control device 6 is provided in the vehicle 1.
  • the second control device 6 is composed of, for example, an ECU.
  • the main part of the parking support system 200 is configured.
  • the speed determination unit 11 acquires the output signal from the first sensors 3.
  • the speed determination unit 11 uses the acquired signal to determine whether or not the vehicle 1 is traveling at a speed less than a predetermined speed (for example, 30 km / h).
  • a predetermined speed for example, 30 km / h.
  • speed determination processing the processes executed by the speed determination unit 11 are collectively referred to as "speed determination processing".
  • the distance measuring unit 12 supplies an electric signal (hereinafter referred to as “transmission signal”) to the distance sensor 2 at a predetermined time interval when the vehicle 1 is traveling at a speed lower than a predetermined speed. As a result, the distance sensor 2 transmits the exploration wave at a predetermined time interval. When the distance sensor 2 receives the reflected wave due to an obstacle, the distance sensor 2 outputs an electric signal (hereinafter, referred to as “received signal”) corresponding to the received reflected wave. The distance measuring unit 12 acquires the output received signal.
  • transmission signal an electric signal
  • the distance measuring unit 12 calculates the round-trip propagation time RPT of the exploration wave based on the transmission time of the exploration wave and the reception time of the reflected wave.
  • the distance measuring unit 12 stores in advance the propagation speed PV of the exploration wave in the air.
  • the distance measuring unit 12 calculates the distance D by the following formula (1) using these values. That is, the distance D corresponds to the distance between the vehicle 1 and the obstacle at the transmission timing of the exploration wave.
  • distance measurement process the processes executed by the distance measurement unit 12 are collectively referred to as "distance measurement process”.
  • the position calculation unit 13 acquires the output signal from the second sensors 4.
  • the position calculation unit 13 calculates the position of the vehicle 1 (hereinafter referred to as “own vehicle position”) at the transmission timing of the exploration wave by using the acquired signal.
  • the own vehicle position has, for example, an X-axis along the left-right direction of the vehicle 1 at the reference time (for example, the start time of the distance measurement process), and the traveling direction of the vehicle 1 at the reference time (that is, the front-rear direction of the vehicle 1). It is represented by the coordinate values in the coordinate system CS having the Y axis along.
  • the position calculation unit 13 calculates the position (hereinafter referred to as “sensor position”) Ps of the distance sensor 2 at the transmission timing of the exploration wave based on the calculated own vehicle position.
  • the sensor position Ps is represented by, for example, a coordinate value in the coordinate system CS.
  • Information indicating the installation position of the distance sensor 2 in the vehicle 1 is stored in advance in the position calculation unit 13. The stored information is used to calculate the sensor position Ps.
  • the position calculation unit 13 calculates the position of the point where the exploration wave is reflected (hereinafter referred to as “reflection point”) P based on the calculated sensor position Ps and the distance D measured by the distance measurement unit 12.
  • the position of the reflection point P is represented by, for example, a coordinate value in the coordinate system CS.
  • the position calculation unit 13 calculates the position of the reflection point P by executing the so-called "two-circle intersection processing" or "synthetic opening processing".
  • FIG. 2 shows an example of two-circle intersection processing or synthetic opening processing.
  • RP indicates the traveling locus of the vehicle 1.
  • the position calculation unit 13 calculates the position of the reflection point P by calculating the position of the intersection of the circles C_1 and C_2. That is, the circle C_1 has a center corresponding to the sensor position Ps_1 at the transmission timing of the first exploration wave, and has a radius corresponding to the distance D_1 measured by the transmission of the first exploration wave. Is. Further, the circle C_2 has a center corresponding to the sensor position Ps_2 at the transmission timing of the second exploration wave, and has a radius corresponding to the distance D_2 measured by the transmission of the second exploration wave. Is.
  • FIG. 5A shows an example of the position of the reflection point P calculated by the position calculation unit 13 when the obstacle is another vehicle V parked and the parking form is parallel parking. .. In the example shown in FIG. 5A, the positions of the nine reflection points P are calculated.
  • FIG. 6A shows an example of the position of the reflection point P calculated by the position calculation unit 13 when the obstacle is another vehicle V that is parked and the parking form is parallel parking.
  • the positions of the seven reflection points P are calculated.
  • each of FIGS. 7A and 8A is an example of the position of the reflection point P calculated by the position calculation unit 13 when the obstacle is another vehicle V parked and the parking mode is diagonal parking. Is shown. In the example shown in FIG. 7A, the positions of the 10 reflection points P are calculated. In the example shown in FIG. 8A, the positions of the seven reflection points P are calculated.
  • ⁇ s indicates the angle of the left side surface portion or the right side surface portion (hereinafter collectively referred to as “side surface portion”) of the other vehicle V with respect to the direction along the Y axis.
  • ⁇ n indicates the angle of the front surface portion or the rear surface portion (hereinafter, collectively referred to as “nose surface portion”) of the other vehicle V with respect to the direction along the Y axis.
  • the surface portion corresponding to the smaller angle of the angles ⁇ s and ⁇ n may be referred to as a “reference surface portion”.
  • the side surface portion is the reference surface portion.
  • the nose surface portion is the reference surface portion.
  • the total value of angles ⁇ s and ⁇ n is 90 degrees. Therefore, when the angle ⁇ s is smaller than 45 degrees, the angle ⁇ n is larger than 45 degrees (see FIG. 7A). Therefore, it becomes difficult to receive the reflected wave by the nose surface portion as compared with the reflected wave by the side surface portion. As a result, the number of reflection points P corresponding to the nose surface portion is smaller than the number of reflection points P corresponding to the side surface portion (see FIG. 7A).
  • the angle ⁇ n is smaller than 45 degrees
  • the angle ⁇ s is larger than 45 degrees (see FIG. 8A). Therefore, it becomes difficult to receive the reflected wave by the side surface portion as compared with the reflected wave by the nose surface portion. As a result, the number of reflection points P corresponding to the surface portion is reduced again as compared with the number of reflection points P corresponding to the nose surface portion (see FIG. 8A).
  • position calculation process the processes executed by the position calculation unit 13 are collectively referred to as "position calculation process”.
  • the grouping unit 14 sets one or a plurality of groups G by grouping the plurality of reflection points P. .. Specifically, for example, in the grouping unit 14, the distance between the two reflection points P is less than a predetermined distance for each of the two reflection points P adjacent to each other among the plurality of reflection points P. If so, the two reflection points P are included in the same group G as each other. On the other hand, when the distance between the two reflection points P is equal to or greater than a predetermined distance, the grouping unit 14 includes the two reflection points P in different groups G. As a result, in principle, one or more groups G corresponding to one or more obstacles on a one-to-one basis are set.
  • FIG. 5A shows an example of the group G corresponding to the other vehicle V when the obstacle is another vehicle V parked and the parking form is parallel parking.
  • a group G including nine reflection points P is set.
  • FIG. 6A shows an example of the group G corresponding to the other vehicle V when the obstacle is the other vehicle V parked and the parking mode is parallel parking.
  • a group G including seven reflection points P is set.
  • FIG. 7A shows an example of the group G corresponding to the other vehicle V when the obstacle is the other vehicle V that is parked, the parking mode is diagonal parking, and the reference surface portion is the side surface portion. ing.
  • a group G including 10 reflection points P is set.
  • FIG. 8A shows an example of Group G corresponding to the other vehicle V when the obstacle is the other vehicle V that is parked, the parking mode is diagonal parking, and the reference surface portion is the nose surface portion. ing.
  • a group G including seven reflection points P is set.
  • grouping processes executed by the grouping unit 14 are collectively referred to as "grouping processes”.
  • the angle calculation unit 15 refers to the line segment SL connecting the two adjacent reflection points P of the plurality of reflection points P included in the individual group G, of the individual line segment SLs in the coordinate system CS. Calculate the tilt angle (hereinafter referred to as "line segment angle") ⁇ .
  • the line segment angle ⁇ is, for example, the inclination angle of the line segment SL with respect to the direction along the Y axis (see FIG. 3).
  • the angle calculation unit 15 calculates the normal vector NV for each line segment SL.
  • the angle calculation unit 15 calculates the inclination angle (hereinafter referred to as “normal angle”) ⁇ of each normal vector NV in the coordinate system CS.
  • the normal angle ⁇ is, for example, the inclination angle of the normal vector NV with respect to the direction along the X axis (see FIG. 4).
  • each line segment angle ⁇ is the same as the value of the corresponding normal angle ⁇ .
  • the line segment angle ⁇ and the normal angle ⁇ may be collectively referred to as “angle”.
  • the length calculation unit 16 calculates the length L of each line segment SL (hereinafter referred to as “line segment length”) L.
  • FIG. 5B shows an example of the calculation result of the normal angle ⁇ and the line segment length L in the group G shown in FIG. 5A.
  • eight normal angles ⁇ _1 to ⁇ _8 and eight line segment lengths L_1 to L_8 are calculated.
  • FIG. 6B shows an example of the calculation result of the normal angle ⁇ and the line segment length L in the group G shown in FIG. 6A.
  • six normal angles ⁇ _1 to ⁇ _6 and six line segment lengths L_1 to L_6 are calculated.
  • FIG. 7B shows an example of the calculation result of the normal angle ⁇ and the line segment length L in the group G shown in FIG. 7A.
  • nine normal angles ⁇ _1 to ⁇ _9 and nine line segment lengths L_1 to L_9 are calculated.
  • FIG. 8B shows an example of the calculation result of the normal angle ⁇ and the line segment length L in the group G shown in FIG. 8A.
  • six normal angles ⁇ _1 to ⁇ _6 and six line segment lengths L_1 to L_6 are calculated.
  • angle calculation processing the processes executed by the angle calculation unit 15 are collectively referred to as "angle calculation processing”. Further, the processes executed by the length calculation unit 16 are collectively referred to as “length calculation processing”.
  • the parking form determination unit 17 determines the parking form of the other vehicle V based on the calculation result of the angle calculation unit 15 and the calculation result of the length calculation unit 16. Specifically, for example, the parking form determination unit 17 determines the parking form of the other vehicle V as follows.
  • the parking form determination unit 17 calculates the sum ⁇ L of the line segment length L for each angle bin B in each group G based on the calculation result by the angle calculation unit 15 and the calculation result by the length calculation unit 16. As a result, the parking form determination unit 17 calculates the distribution D1 indicating the sum ⁇ L for each angle bin B in each group G.
  • FIG. 5C shows an example of the distribution D1 based on the calculation result shown in FIG. 5B.
  • the sum ⁇ L_3 in the angle bin B_3, the sum ⁇ L_4 in the angle bin B_4, and the sum ⁇ L_5 in the angle bin B_5 are calculated by the following equations (2) to (4), respectively.
  • L_1 to L_1 are shown in FIG. 5B.
  • FIG. 6C shows an example of the distribution D1 based on the calculation result shown in FIG. 6B.
  • the sum ⁇ L_3 in the angle bin B_3, the sum ⁇ L_4 in the angle bin B_4, and the sum ⁇ L_5 in the angle bin B_5 are calculated by the following equations (5) to (7), respectively.
  • L_1 to L_1 are as shown in FIG. 6B.
  • FIG. 7C shows an example of the distribution D1 based on the calculation result shown in FIG. 7B.
  • the sum ⁇ L_3 in the angle bin B_3, the sum ⁇ L_4 in the angle bin B_4, and the sum ⁇ L_5 in the angle bin B_5 are calculated by the following equations (8) to (10), respectively.
  • L_1 to L_1 are those shown in FIG. 7B.
  • FIG. 8C shows an example of the distribution D1 based on the calculation result shown in FIG. 8B.
  • the sum ⁇ L_3 in the angle bin B_3, the sum ⁇ L_4 in the angle bin B_4, and the sum ⁇ L_5 in the angle bin B_5 are calculated by the following equations (11) to (13), respectively.
  • L_1 to L_1 are as shown in FIG. 8B.
  • the parking form determination unit 17 calculates the sum ⁇ L value (hereinafter referred to as “peak value”) ⁇ Lp at the peak top PT of the distribution D1.
  • the value of the sum ⁇ L_4 in the angle bin B_4 is calculated to be the peak value ⁇ Lp.
  • the value of the sum ⁇ L_5 in the angle bin B_5 is calculated to be the peak value ⁇ Lp.
  • the parking form determination unit 17 calculates the average value, the median value, or the weighted average value (hereinafter collectively referred to as “peak angle”) ⁇ p of the angle ⁇ in the peak top PT of the distribution D1.
  • the parking form determination unit 17 calculates the average value of the normal angles ⁇ _2 to ⁇ _7 by the following equation (14). Alternatively, the parking form determination unit 17 calculates the median value of the normal angles ⁇ _2 to ⁇ _7 by the following equation (15). Alternatively, the parking form determination unit 17 calculates the weighted average value of the normal angles ⁇ _2 to ⁇ _7 by the following equation (16).
  • ⁇ _2 to ⁇ _7 are shown in FIG. 5B.
  • L_1 to L_7 are shown in FIG. 5B.
  • median () is a function that calculates the median value in parentheses.
  • ⁇ p ( ⁇ _2 + ⁇ _3 + ⁇ _4 + ⁇ _5 + L ⁇ _6 + ⁇ _7) / 6 (14)
  • ⁇ p median ( ⁇ _2, ⁇ _3, ⁇ _4, ⁇ _5, ⁇ _6, ⁇ _7) (15)
  • ⁇ p ( ⁇ _2 ⁇ L_2 + ⁇ _3 ⁇ L_3 + ⁇ _4 ⁇ L_4 + ⁇ _5 ⁇ L_5 + ⁇ _6 ⁇ L_6 + ⁇ _7 x L_7) / (L_2 + L_3 + L_4 + L_5 + L_6 + L_7) (16)
  • the parking form determination unit 17 calculates the average value of the normal angles ⁇ _2 to ⁇ _5 by the following equation (17). Alternatively, the parking form determination unit 17 calculates the median value of the normal angles ⁇ _2 to ⁇ _5 by the following equation (18). Alternatively, the parking form determination unit 17 calculates the weighted average value of the normal angles ⁇ _2 to ⁇ _5 by the following equation (19).
  • ⁇ _2 to ⁇ _5 are shown in FIG. 6B.
  • L_1 to L_5 are shown in FIG. 6B.
  • ⁇ p ( ⁇ _2 + ⁇ _3 + ⁇ _4 + ⁇ _5) / 4 (17)
  • ⁇ p median ( ⁇ _2, ⁇ _3, ⁇ _4, ⁇ _5) (18)
  • ⁇ p ( ⁇ _1 ⁇ L_2 + ⁇ _3 ⁇ L_3 + ⁇ _4 ⁇ L_4 + ⁇ _5 ⁇ L_5) / (L_2 + L_3 + L_4 + L_5) (19)
  • the parking form determination unit 17 calculates the average value of the normal angles ⁇ _1 to ⁇ _6 by the following equation (20). Alternatively, the parking form determination unit 17 calculates the median value of the normal angles ⁇ _1 to ⁇ _6 by the following equation (21). Alternatively, the parking form determination unit 17 calculates the weighted average value of the normal angles ⁇ _1 to ⁇ _6 by the following equation (22).
  • ⁇ _1 to ⁇ _6 are shown in FIG. 7B.
  • L_1 to L_1 are shown in FIG. 7B.
  • ⁇ p ( ⁇ _1 + ⁇ _2 + ⁇ _3 + ⁇ _4 + ⁇ _5 + L ⁇ _6) / 6 (20)
  • ⁇ p median ( ⁇ _1, ⁇ _2, ⁇ _3, ⁇ _4, ⁇ _5, ⁇ _6) (21)
  • ⁇ p ( ⁇ _1 ⁇ L_1 + ⁇ _2 ⁇ L_2 + ⁇ _3 ⁇ L_3 + ⁇ _4 ⁇ L_4 + ⁇ _5 ⁇ L_5 + ⁇ _6 x L_6) / (L_1 + L_2 + L_3) + L_4 + L_5 + L_6) (22)
  • the parking form determination unit 17 calculates the average value of the normal angles ⁇ _1 to ⁇ _3 by the following equation (23). Alternatively, the parking form determination unit 17 calculates the median value of the normal angles ⁇ _1 to ⁇ _3 by the following equation (24). Alternatively, the parking form determination unit 17 calculates the weighted average value of the normal angles ⁇ _1 to ⁇ _3 by the following equation (25).
  • ⁇ _1 to ⁇ _3 are shown in FIG. 8B.
  • L_1 to L_3 are shown in FIG. 8B.
  • ⁇ p ( ⁇ _1 + ⁇ _2 + ⁇ _3) / 3 (23)
  • ⁇ p median ( ⁇ _1, ⁇ _2, ⁇ _3) (24)
  • ⁇ p ( ⁇ _1 ⁇ L_1 + ⁇ _2 ⁇ L_2 + ⁇ _3 ⁇ L_3) / (L_1 + L_2 + L_3) (25)
  • the parking form determination unit 17 calculates the deviation amount ⁇ of the peak angle ⁇ p with respect to the reference angle ⁇ ref.
  • the reference angle ⁇ ref is set to, for example, 0 degrees.
  • the parking form determination unit 17 compares the deviation amount ⁇ with the predetermined amount ⁇ th.
  • the parking form determination unit 17 compares the peak value ⁇ Lp with a predetermined threshold value (hereinafter, may be referred to as “first threshold value”) ⁇ Lth1.
  • first threshold value a predetermined threshold value
  • second threshold value the parking form determination unit 17 compares the peak value ⁇ Lp with the predetermined threshold value
  • FIG. 9 shows an example of the parking form determination table T1 in the parking form determination unit 17.
  • the parking form determining unit 17 determines that the parking form is parallel parking. Further, in this case, when the peak value ⁇ Lp is equal to or less than the first threshold value ⁇ Lth1, the parking form determination unit 17 determines that the parking form is parallel parking.
  • the parking form determination unit 17 determines whether the parking form is parallel parking or parallel parking based on the magnitude relationship between the peak value ⁇ Lp and the first threshold value ⁇ Lth1.
  • the first threshold value ⁇ Lth1 is set to a value that can identify whether the parking form is parallel parking or parallel parking.
  • the parking form determining unit 17 has a parking form of diagonal parking. , It is determined that the reference surface portion is the side surface portion. Further, in this case, when the peak value ⁇ Lp is equal to or less than the second threshold value ⁇ Lth2, the parking form determination unit 17 determines that the parking form is oblique parking and the reference surface portion is the nose surface portion.
  • the parking form is diagonal parking
  • ⁇ s ⁇ 0 and ⁇ n ⁇ 0. Therefore, when the parking form is diagonal parking, there is a high possibility that the deviation amount ⁇ will be larger than when the parking form is parallel parking or parallel parking.
  • ⁇ > ⁇ th the area of the side surface portion is usually larger than the area of the nose surface portion. Therefore, when the reference surface portion is the side surface portion, it is highly probable that the peak value ⁇ Lp becomes larger than when the reference surface portion is the nose surface portion.
  • the parking form determination unit 17 determines whether the reference surface portion is the side surface portion or the nose surface portion based on the magnitude relationship between the peak value ⁇ Lp and the second threshold value ⁇ Lth2.
  • the second threshold value ⁇ Lth2 is set to a value that can identify whether the reference surface portion is the side surface portion or the nose surface portion.
  • the parking mode determination unit 17 determines the parking angle ⁇ of the other vehicle V based on the peak angle ⁇ p.
  • the parking form determination unit 17 determines that the reference surface portion is the side surface portion, the angle (that is, the angle corresponding to ⁇ s) ⁇ of the side surface portion with respect to the direction along the Y axis is equivalent to ⁇ p. It is determined that the value is.
  • the parking form determination unit 17 determines that the angle (that is, the angle corresponding to ⁇ n) ⁇ of the nose surface portion with respect to the direction along the Y axis is a value equivalent to ⁇ p. judge. That is, the parking form determination unit 17 determines that the other vehicle V is parked at the parking angle ⁇ corresponding to the peak angle ⁇ p.
  • parking form determination process the processes executed by the parking form determination unit 17 are collectively referred to as "parking form determination process”.
  • the first control device 5 includes information indicating the result of the position calculation process, information indicating the result of the grouping process, information indicating the result of the parking form determination process, and the like (hereinafter collectively referred to as "parking support information"). Is output.
  • the second control device 6 acquires the output parking support information.
  • the second control device 6 executes control for realizing so-called “automatic parking” by using the acquired parking support information.
  • the second control device 6 calculates the position and width of the parking lot for the vehicle 1 based on the result of the position calculation process and the result of the grouping process.
  • the second control device 6 guides the vehicle 1 to the parking section by controlling the accelerator, brake, steering, etc. of the vehicle 1 based on the result of the parking form determination process or the like. As a result, automatic parking is realized.
  • parking support control the control executed by the second control device 6 is collectively referred to as "parking support control".
  • Various known techniques can be used for parking support control. Detailed description of these techniques will be omitted.
  • the first control device 5 has a processor 21 and a memory 22.
  • the memory 22 contains a program for realizing the functions of the speed determination unit 11, the distance measurement unit 12, the position calculation unit 13, the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking form determination unit 17. It is remembered.
  • the processor 21 reads out and executes the stored program, the speed determination unit 11, the distance measurement unit 12, the position calculation unit 13, the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking mode The function of the determination unit 17 is realized.
  • the first control device 5 has a processing circuit 23.
  • the functions of the speed determination unit 11, the distance measurement unit 12, the position calculation unit 13, the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking form determination unit 17 are realized by the dedicated processing circuit 23.
  • the first control device 5 has a processor 21, a memory 22, and a processing circuit 23 (not shown).
  • some of the functions of the speed determination unit 11, the distance measurement unit 12, the position calculation unit 13, the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking form determination unit 17 are processors.
  • the remaining functions are realized by the dedicated processing circuit 23.
  • the processor 21 is composed of one or a plurality of processors.
  • a CPU Central Processing Unit
  • a GPU Graphics Processing Unit
  • a microprocessor a microcontroller
  • DSP Digital Signal Processor
  • the memory 22 is composed of one or a plurality of non-volatile memories. Alternatively, the memory 22 is composed of one or more non-volatile memories and one or more volatile memories. Each volatile memory uses, for example, a RAM (Random Access Memory).
  • the individual non-volatile memories include, for example, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Advanced Storage), a Small DriveSlide (Erasable Memory), and an EEPROM. Drive) is used.
  • the processing circuit 23 is composed of one or a plurality of digital circuits. Alternatively, the processing circuit 23 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 23 is composed of one or a plurality of processing circuits.
  • the individual processing circuits include, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), an FPGA (Field-Programmable Gate Array), and a System-System (System) System. ) Is used.
  • the operation of the first control device 5 will be described focusing on the operations of the speed determination unit 11, the distance measurement unit 12, and the position calculation unit 13.
  • step ST1 the speed determination unit 11 executes the speed determination process.
  • step ST3 the distance measuring unit 12 starts the distance measuring process.
  • step ST4 the position calculation unit 13 starts the position calculation process. Since specific examples of the speed determination process, the distance calculation process, and the position calculation process have already been described, the description thereof will be omitted again.
  • step ST5 the speed determination unit 11 executes the speed determination process.
  • step ST6 "NO" the speed determination unit 11 executes the speed determination process.
  • step ST7 the distance measuring unit 12 ends the distance measuring process.
  • step ST8 the position calculation unit 13 ends the position calculation process.
  • the operation of the first control device 5 will be described focusing on the operations of the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking form determination unit 17. Further, the operation of the second control device 6 will be described.
  • step ST11 By measuring the distance D one or more times between steps ST3 and ST7, one or more distances D are measured. Further, the positions of one or more reflection points P are calculated by calculating the positions of the reflection points P one or more times between steps ST4 and ST8. When the positions of the plurality of reflection points P are calculated, the process of step ST11 is started.
  • step ST11 the grouping unit 14 executes the grouping process.
  • step ST12 the angle calculation unit 15 executes the angle calculation process.
  • step ST13 the length calculation unit 16 executes the length calculation process.
  • step ST14 the parking form determination unit 17 executes the parking form determination process. Since the specific examples of the grouping process, the angle calculation process, the length calculation process, and the parking form determination process have already been described, the description thereof will be omitted again.
  • step ST15 the first control device 5 outputs parking support information.
  • step ST16 the second control device 6 executes parking support control. Since the specific example of parking support control has already been described, the description thereof will be omitted again.
  • step ST14 the detailed operation of the parking form determination unit 17 will be described with reference to the flowchart of FIG. That is, the detailed processing contents of step ST14 will be described.
  • step ST21 the parking form determination unit 17 calculates the sum ⁇ L of the line segment length L for each angle bin B.
  • the parking form determination unit 17 calculates the distribution D1 indicating the sum ⁇ L for each angle bin B.
  • step ST23 the parking form determination unit 17 calculates the peak value ⁇ Lp in the distribution D1. Further, the parking form determination unit 17 calculates the peak angle ⁇ p in the distribution D1. Further, the parking form determination unit 17 calculates the deviation amount ⁇ of the peak angle ⁇ p with respect to the reference angle ⁇ ref. Since the methods for calculating the peak value ⁇ Lp, the peak angle ⁇ p, and the deviation amount ⁇ have already been described, the description thereof will be omitted again.
  • step ST24 the parking form determination unit 17 determines the parking form of the other vehicle V based on the deviation amount ⁇ and the peak value ⁇ Lp. Since the method of determining the parking mode has already been described, the description will be omitted again.
  • step ST26 the parking mode determination unit 17 determines the parking angle ⁇ of the other vehicle V based on the peak angle ⁇ p. .. Since the method for determining the parking angle ⁇ has already been described, the description will be omitted again.
  • the distance measurement process and the position calculation process are executed when the vehicle 1 is traveling at a speed less than the reference speed (for example, 30 km / h).
  • the reference speed for example, 30 km / h.
  • the traveling speed of the vehicle 1 is high, the number of reflection points P included in each group G is reduced as compared with the case where the traveling speed of the vehicle 1 is low. As a result, the number of calculated values of the angle ⁇ in each group G also decreases.
  • the traveling speed of the vehicle 1 is high, the value of each line segment length L tends to be larger than when the traveling speed of the vehicle 1 is low.
  • the conventional parking form determination device determines the parking form by using a distribution indicating the number of calculated values of the line segment angle or the normal angle for each angle bin, that is, a distribution indicating the degree for each angle bin (). See FIGS. 9 to 11 of Patent Document 1). Therefore, when the traveling speed of the vehicle 1 is high, the distribution value in each angle bin becomes small, so that the difference value of the distribution value between the angle bins also becomes small. As a result, there is a problem that the accuracy of determining the parking form using the threshold value is lowered.
  • the parking form determination device 100 uses the distribution D1 showing the sum ⁇ L for each angle bin B. That is, the parking form determination device 100 uses the distribution D1 of the line segment length L with respect to the line segment angle ⁇ or the normal angle ⁇ . Therefore, even when the traveling speed of the vehicle 1 is high, it is possible to prevent the distribution value in each angle bin B from becoming small. As a result, it is possible to avoid a decrease in the determination accuracy of the parking mode using the threshold values ⁇ Lth1 and ⁇ Lth2. In other words, the accuracy of determining the parking mode can be improved.
  • the exploration wave is reflected in the direction corresponding to the angle ⁇ s on the side surface portion. Further, on the nose surface portion, the exploration wave is reflected in the direction corresponding to the angle ⁇ n.
  • the exploration waves are reflected in various directions regardless of the angles ⁇ s and ⁇ n (hereinafter referred to as “diffuse reflection”). Due to diffused reflection, a large number of reflection points P may be detected so as to be densely packed at positions corresponding to the corners.
  • the line segment angle ⁇ or the normal angle ⁇ is calculated and the line segment length L is calculated for each of the two reflection points P adjacent to each other among the large number of reflection points P.
  • a large number of line segment angles ⁇ or normal angles ⁇ having various values are calculated, and a large number of line segment lengths L having small values are calculated.
  • the conventional parking form determining device determines the parking form using a distribution indicating the degree for each angle bin. Therefore, when the parking mode is oblique parking, the shape of the distribution becomes unstable due to the influence of the value of the line segment angle or the normal angle related to the diffused reflection. As a result, there is a problem that the determination accuracy of the parking form is lowered.
  • the parking form determination device 100 uses the distribution D1 showing the sum ⁇ L for each angle bin B. Therefore, since the value of each line segment length L related to diffused reflection is small, the influence of the value of the line segment angle ⁇ or normal angle ⁇ related to diffused reflection can be reduced. Therefore, the shape of the distribution D1 can be stabilized even when the parking mode is diagonal parking. As a result, it is possible to avoid a decrease in the accuracy of determining the parking mode. In other words, the accuracy of determining the parking mode can be improved.
  • the line segment angle ⁇ may indicate the inclination angle of the line segment SL with respect to the direction along the X axis.
  • the normal angle ⁇ may indicate the inclination angle of the normal vector NV with respect to the direction along the Y axis.
  • the reference angle ⁇ ref may be set to, for example, 90 degrees.
  • the parking form determination device 100 includes the grouping unit 14 that sets the group G corresponding to the obstacle by grouping the plurality of reflection points P obtained by the distance sensor 2, and the group G.
  • the angle calculation unit 15 for calculating the line segment angle ⁇ or the normal angle ⁇ , and the individual line segment SL.
  • the parking mode of the other vehicle V corresponding to the group G is based on the length calculation unit 16 for calculating the line segment length L and the distribution D1 of the line segment length L with respect to the line segment angle ⁇ or the normal angle ⁇ . It is provided with a parking form determining unit 17 for determining which of column parking, parallel parking, and diagonal parking.
  • the parking form of the other vehicle V can be determined.
  • the accuracy of determining the parking form can be improved as compared with the conventional parking form determining device.
  • the parking form determination device 100 is used in the parking support system 200, the number of occurrences of so-called "turning back" can be reduced when the vehicle 1 parks.
  • the distribution D1 indicates the sum ⁇ L of the line segment length L for each angle range (angle bin B).
  • the distribution D1 shown in FIGS. 5C, 6C, 7C and 8C can be realized.
  • the parking form determination unit 17 parks when the peak value ⁇ Lp in the distribution D1 is larger than the first threshold value ⁇ Lth1 when the deviation amount ⁇ of the peak angle ⁇ p in the distribution D1 with respect to the reference angle ⁇ ref is equal to or less than the predetermined amount ⁇ th. It is determined that the form is parallel parking. This makes it possible to determine parallel parking.
  • the parking form determination unit 17 parks when the peak value ⁇ Lp in the distribution D1 is equal to or less than the first threshold value ⁇ Lth1 when the deviation amount ⁇ of the peak angle ⁇ p in the distribution D1 with respect to the reference angle ⁇ ref is equal to or less than a predetermined amount ⁇ th. It is determined that the form is parallel parking. This makes it possible to determine parallel parking.
  • the parking form determination unit 17 determines that the parking form is diagonal parking when the deviation amount ⁇ of the peak angle ⁇ p in the distribution D1 with respect to the reference angle ⁇ ref is larger than the predetermined amount ⁇ th. This makes it possible to determine diagonal parking.
  • the parking form determining unit 17 determines that the parking form is diagonal parking with reference to the left side surface portion or the right side surface portion of the other vehicle V.
  • the peak value ⁇ Lp is equal to or less than the second threshold value ⁇ Lth2
  • it is determined that the parking mode is diagonal parking with reference to the front surface portion or the rear surface portion of the other vehicle V. This makes it possible to determine the reference surface portion in diagonal parking.
  • the parking form determination unit 17 determines that the other vehicle V is parked at the parking angle ⁇ corresponding to the peak angle ⁇ p. Thereby, the parking angle ⁇ can be determined.
  • FIG. 16 is a block diagram showing a main part of the parking support system including the parking form determining device according to the second embodiment.
  • a parking support system including the parking form determining device according to the second embodiment will be described with reference to FIG.
  • the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
  • the first control device 5a includes a speed determination unit 11, a distance measurement unit 12, a position calculation unit 13, a grouping unit 14, an angle calculation unit 15, a length calculation unit 16, and a parking form determination unit 17a.
  • the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking form determination unit 17a constitute a main part of the parking form determination device 100a.
  • the main part of the parking support system 200a is configured.
  • the parking form determination unit 17a determines the parking form of the other vehicle V based on the calculation result of the angle calculation unit 15 and the calculation result of the length calculation unit 16. Specifically, for example, the parking form determination unit 17a determines the parking form of the other vehicle V as follows.
  • the parking form determination unit 17a calculates the total sum ⁇ La of the line segment length L in each group G based on the calculation result by the length calculation unit 16. Next, the parking form determination unit 17a calculates the sum ⁇ L of the line segment length L for each angle bin B in each group G based on the calculation result by the angle calculation unit 15 and the calculation result by the length calculation unit 16. Next, the parking form determination unit 17a calculates the ratio R of the sum ⁇ L for each angle bin B to the sum ⁇ La in each group G. As a result, the parking form determination unit 17a calculates the distribution D2 indicating the ratio R for each angle bin B in each group G.
  • FIG. 17 shows an example of the distribution D2 based on the calculation result shown in FIG. 5B.
  • the sum ⁇ La is calculated from the following equation (26).
  • the ratio R_3 in the angle bin B_3, the ratio R_4 in the angle bin B_4, and the ratio R_5 in the angle bin B_5 are calculated by the following equations (27) to (29), respectively.
  • L_1 to L_1 are shown in FIG. 5B.
  • ⁇ La L_1 + L_2 + L_3 + L_4 + L_5 + L_6 + L_7 + L_8 (26)
  • R_4 (L_2 + L_3 + L_4 + L_5 + L_6 + L_7) / ⁇ La (28)
  • FIG. 18 shows an example of the distribution D2 based on the calculation result shown in FIG. 6B.
  • the sum ⁇ La is calculated from the following equation (30).
  • the ratio R_3 in the angle bin B_3, the ratio R_4 in the angle bin B_4, and the ratio R_5 in the angle bin B_5 are calculated by the following equations (31) to (33), respectively.
  • L_1 to L_1 are as shown in FIG. 6B.
  • R_4 (L_2 + L_3 + L_4 + L_5) / ⁇ La (32)
  • R_5 L_1 / ⁇ La (33)
  • FIG. 19 shows an example of the distribution D2 based on the calculation result shown in FIG. 7B.
  • the sum ⁇ La is calculated from the following equation (34).
  • the ratio R_3 in the angle bin B_3, the ratio R_4 in the angle bin B_4, and the ratio R_5 in the angle bin B_5 are calculated by the following equations (35) to (37), respectively.
  • L_1 to L_1 are those shown in FIG. 7B.
  • ⁇ La L_1 + L_2 + L_3 + L_4 + L_5 + L_6 + L_7 + L_8 + L_9 (34)
  • R_3 (L_8 + L_9) / ⁇ La (35)
  • R_5 (L_1 + L_2 + L_3 + L_4 + L_5 + L_6) / ⁇ La (37)
  • FIG. 20 shows an example of the distribution D2 based on the calculation result shown in FIG. 8B.
  • the sum ⁇ La is calculated from the following equation (38).
  • the ratio R_3 in the angle bin B_3, the ratio R_4 in the angle bin B_4, and the ratio R_5 in the angle bin B_5 are calculated by the following equations (39) to (41), respectively.
  • L_1 to L_1 are as shown in FIG. 8B.
  • R_3 (L_5 + L_6) / ⁇ La (39)
  • R_4 L_4 / ⁇ La (40)
  • R_5 (L_1 + L_2 + L_3) / ⁇ La (41)
  • the parking form determination unit 17a calculates the value (hereinafter referred to as “peak value”) Rp of the ratio R at the peak top PT of the distribution D2.
  • the value of the ratio R_4 in the angle bin B_4 is the peak value Rp.
  • the value of the ratio R_5 in the angle bin B_5 is calculated to be the peak value Rp.
  • the parking form determination unit 17a calculates the peak angle ⁇ p in the distribution D2.
  • the method of calculating the peak angle ⁇ p in the distribution D2 is the same as the method of calculating the peak angle ⁇ p in the distribution D1. Therefore, detailed description thereof will be omitted.
  • the parking form determination unit 17a calculates the deviation amount ⁇ of the peak angle ⁇ p with respect to the reference angle ⁇ ref.
  • the reference angle ⁇ ref is set to, for example, 0 degrees.
  • the parking form determination unit 17a compares the deviation amount ⁇ with the predetermined amount ⁇ th.
  • the parking form determination unit 17 compares the peak value Rp with a predetermined threshold value (hereinafter, may be referred to as “first threshold value”) Rth1.
  • first threshold value a predetermined threshold value
  • second threshold value the parking form determination unit 17a compares the peak value Rp with the predetermined threshold value
  • FIG. 21 shows an example of the parking form determination table T2 in the parking form determination unit 17a.
  • the parking form determining unit 17a determines that the parking form is parallel parking. Further, in this case, when the peak value Rp is equal to or less than the first threshold value Rth1, the parking form determination unit 17a determines that the parking form is parallel parking. That is, the first threshold value Rth1 is set to a value that can identify whether the parking mode is parallel parking or parallel parking.
  • the parking form determining unit 17a has a parking form of diagonal parking. , It is determined that the reference surface portion is the side surface portion. Further, in this case, when the peak value Rp is equal to or less than the second threshold value Rth2, the parking form determining unit 17a determines that the parking form is oblique parking and the reference surface portion is the nose surface portion. That is, the second threshold value Rth2 is set to a value that can identify whether the reference surface portion is the side surface portion or the nose surface portion.
  • the parking mode determination unit 17a determines the parking angle ⁇ of the other vehicle V based on the peak angle ⁇ p.
  • the method for determining the parking angle ⁇ is the same as that described in the first embodiment. Therefore, detailed description thereof will be omitted.
  • parking form determination process the processes executed by the parking form determination unit 17a are collectively referred to as "parking form determination process”.
  • the hardware configuration of the main part of the first control device 5a is the same as that described with reference to FIG. 10 in the first embodiment. Therefore, illustration and description will be omitted. That is, the functions of the speed determination unit 11, the distance measurement unit 12, the position calculation unit 13, the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking form determination unit 17a are realized by the processor 21 and the memory 22. It may be one, or it may be realized by a dedicated processing circuit 23.
  • steps ST1 to ST8 are executed in the first control device 5a.
  • the processing contents of steps ST1 to ST8 are the same as those described with reference to FIG. 11 in the first embodiment. Therefore, illustration and description will be omitted.
  • the operation of the first control device 5a will be described focusing on the operations of the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking form determination unit 17a. Further, the operation of the second control device 6 will be described.
  • the same steps as those shown in FIG. 12 are designated by the same reference numerals, and the description thereof will be omitted.
  • step ST11 By measuring the distance D one or more times between steps ST3 and ST7, one or more distances D are measured. Further, the positions of one or more reflection points P are calculated by calculating the positions of the reflection points P one or more times between steps ST4 and ST8. When the positions of the plurality of reflection points P are calculated, the process of step ST11 is started.
  • step ST14a the parking form determination unit 17a executes the parking form determination process. Since the specific example of the parking form determination process has already been described, the description thereof will be omitted again. Next, the processes of steps ST15 and ST16 are executed.
  • step ST14a the detailed operation of the parking form determination unit 17a will be described with reference to the flowchart of FIG. 23. That is, the detailed processing contents of step ST14a will be described.
  • step ST31 the parking form determination unit 17a calculates the total sum ⁇ La of the line segment length L.
  • step ST32 the parking form determination unit 17a calculates the sum ⁇ L of the line segment length L for each angle bin B.
  • step ST33 the parking form determination unit 17a calculates the ratio R of the line segment length L for each angle bin B with respect to the total sum ⁇ La.
  • step ST34 the parking form determination unit 17a calculates the distribution D2 indicating the ratio R for each angle bin B.
  • step ST35 the parking form determination unit 17a calculates the peak value Rp in the distribution D2. Further, the parking form determination unit 17a calculates the peak angle ⁇ p in the distribution D2. Further, the parking form determination unit 17a calculates the deviation amount ⁇ of the peak angle ⁇ p with respect to the reference angle ⁇ ref. Since the methods for calculating the peak value Rp, the peak angle ⁇ p, and the deviation amount ⁇ have already been described, the description thereof will be omitted again.
  • step ST36 the parking form determination unit 17a determines the parking form of the other vehicle V based on the deviation amount ⁇ and the peak value Rp. Since the method of determining the parking mode has already been described, the description will be omitted again.
  • step ST37 “YES” the parking mode determination unit 17a determines the parking angle ⁇ of the other vehicle V based on the peak angle ⁇ p. .. Since the method for determining the parking angle ⁇ has already been described, the description will be omitted again.
  • the parking form determination device 100a uses the distribution D2 showing the ratio R for each angle bin B. That is, the parking form determination device 100a uses the distribution D2 of the line segment length L with respect to the line segment angle ⁇ or the normal angle ⁇ . Therefore, similarly to the parking form determination device 100, the accuracy of determining the parking form can be improved as compared with the conventional parking form determination device.
  • the parking form determination device 100a when a plurality of other vehicles V are parked and the distance between each of the two other vehicles V adjacent to each other among the plurality of other vehicles V is small. The accuracy of determining the parking form can be further improved as compared with the parking form determining device 100.
  • the grouping unit 14 in principle, one or a plurality of group Gs corresponding to one or a plurality of obstacles one-to-one are set.
  • the plurality of other vehicles V Reflection points P corresponding to two or more of the other vehicles V may be included in one group G.
  • the sum ⁇ L in each angle bin B is compared with the case where only the reflection point P corresponding to one other vehicle V among the plurality of other vehicles V is included in the one group G. The value of becomes large.
  • the threshold values ⁇ Lth1 and ⁇ Lth2 for the sum ⁇ L are used, the accuracy of determining the parking mode may decrease.
  • the determination accuracy of the parking mode is correct. Can be avoided from decreasing. In other words, the accuracy of determining the parking mode can be further improved.
  • the parking form determination device 100a can employ various modifications similar to those described in the first embodiment.
  • the parking form determination device 100a includes the grouping unit 14 that sets the group G corresponding to the obstacle by grouping the plurality of reflection points P obtained by the distance sensor 2, and the group G.
  • the parking mode of the other vehicle V corresponding to the group G is based on the length calculation unit 16 for calculating the line segment length L and the distribution D2 of the line segment length L with respect to the line segment angle ⁇ or the normal angle ⁇ .
  • a parking form determining unit 17a for determining whether it is a column parking, a parallel parking, or an oblique parking. Thereby, the parking form of the other vehicle V can be determined. In particular, the accuracy of determining the parking form can be improved as compared with the conventional parking form determining device.
  • the distribution D2 indicates the ratio R of the sum ⁇ L of the line segment length L for each angle range (angle bin B) with respect to the total ⁇ La of the line segment length L.
  • the distribution D2 shown in FIGS. 17 to 20 can be realized.
  • the accuracy of determining the parking form can be further improved as compared with the parking form determining device 100.
  • the parking form determination unit 17a parks when the peak value Rp in the distribution D2 is larger than the first threshold value Rth1 when the deviation amount ⁇ of the peak angle ⁇ p in the distribution D2 with respect to the reference angle ⁇ ref is equal to or less than the predetermined amount ⁇ th. It is determined that the form is parallel parking. This makes it possible to determine parallel parking.
  • the parking form determination unit 17a determines that the peak value Rp in the distribution D2 is equal to or less than the first threshold value Rth1. It is determined that the parking form is parallel parking. This makes it possible to determine parallel parking.
  • the parking form determination unit 17a determines that the parking form is diagonal parking. This makes it possible to determine diagonal parking.
  • the parking form determining unit 17a determines that the parking form is diagonal parking with reference to the left side surface portion or the right side surface portion of the other vehicle V.
  • the peak value Rp is equal to or less than the second threshold value Rth2
  • it is determined that the parking mode is diagonal parking with reference to the front surface portion or the rear surface portion of the other vehicle V. From this, it is possible to determine the reference surface portion in diagonal parking.
  • the parking form determination unit 17a determines that the other vehicle V is parked at the parking angle ⁇ corresponding to the peak angle ⁇ p. Thereby, the parking angle ⁇ can be determined.
  • the parking form determination device of the present invention can be used, for example, in a parking support system.

Abstract

This parking form determination device (100) comprises: a grouping unit (14) which sets a group (G) corresponding to an obstacle (O) by grouping a plurality of reflection points (P) obtained by a distance sensor (2); an angle calculation unit (15) which calculates line segment angles (θ) or normal line angles (θ) of individual line segments (SL) that connect adjacent reflection points (P) among the plurality of reflection points (P) included in the group (G); a length calculation unit (16) which calculates a line segment length (L) for each line segment (SL); and a parking form determination unit (17) which, on the basis of a distribution (D1) of the line segment lengths (L) with respect to the line segment angles (θ) or the normal line angles (θ), determines which one of vertical parking, parallel parking, or oblique parking the parking form of the other vehicle (V) corresponding to the group (G) is.

Description

駐車形態判定装置Parking type judgment device
 本発明は、駐車形態判定装置に関する。 The present invention relates to a parking form determination device.
 従来、車両に設けられたTOF(Time of Flight)方式の距離センサを用いて、他車両の駐車形態を判定する装置、すなわち駐車形態判定装置が開発されている。例えば、特許文献1には、他車両の駐車形態がいわゆる「縦列駐車」、「並列駐車」又は「斜め駐車」のうちのいずれであるかを判定する駐車形態判定装置が開示されている。 Conventionally, a device for determining the parking form of another vehicle, that is, a parking form determining device has been developed by using a TOF (Time of Flight) type distance sensor provided in the vehicle. For example, Patent Document 1 discloses a parking form determining device that determines whether the parking form of another vehicle is so-called "parallel parking", "parallel parking", or "diagonal parking".
国際公開第2017/060975号International Publication No. 2017/060975
 後述するように、特許文献1記載の駐車形態判定装置においては、車両の走行速度が高いとき、駐車形態の判定精度が低下する問題があった。また、他車両の駐車形態が斜め駐車であるとき、駐車形態の判定精度が低下する問題があった。 As will be described later, the parking form determination device described in Patent Document 1 has a problem that the determination accuracy of the parking form is lowered when the traveling speed of the vehicle is high. Further, when the parking form of another vehicle is diagonal parking, there is a problem that the determination accuracy of the parking form is lowered.
 本発明は、上記のような課題を解決するためになされたものであり、駐車形態の判定精度を向上することを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to improve the accuracy of determining the parking form.
 本発明の駐車形態判定装置は、距離センサにより得られた複数個の反射点をグループ化することにより、障害物に対応するグループを設定するグループ化部と、グループに含まれる複数個の反射点のうちの互いに隣接する反射点を結ぶ個々の線分について、線分角度又は法線角度を演算する角度演算部と、個々の線分について、線分長さを演算する長さ演算部と、線分角度又は法線角度に対する線分長さの分布に基づき、グループに対応する他車両の駐車形態が縦列駐車、並列駐車又は斜め駐車のうちのいずれであるかを判定する駐車形態判定部と、を備えるものである。 The parking form determination device of the present invention includes a grouping unit that sets a group corresponding to an obstacle by grouping a plurality of reflection points obtained by a distance sensor, and a plurality of reflection points included in the group. An angle calculation unit that calculates the line segment angle or normal angle for each line segment connecting the reflection points adjacent to each other, and a length calculation unit that calculates the line segment length for each line segment. Based on the distribution of the line segment length with respect to the line segment angle or the normal angle, the parking form determination unit that determines whether the parking form of the other vehicle corresponding to the group is vertical parking, parallel parking, or diagonal parking. , Is provided.
 本発明によれば、上記のように構成したので、駐車形態の判定精度を向上することができる。 According to the present invention, since it is configured as described above, the accuracy of determining the parking form can be improved.
実施の形態1に係る駐車形態判定装置を含む駐車支援システムの要部を示すブロック図である。It is a block diagram which shows the main part of the parking support system including the parking form determination device which concerns on Embodiment 1. FIG. 反射点の位置の算出方法の例を示す説明図である。It is explanatory drawing which shows the example of the calculation method of the position of a reflection point. 線分角度及び線分長さの例を示す説明図である。It is explanatory drawing which shows the example of the line segment angle and the line segment length. 法線角度及び線分長さの例を示す説明図である。It is explanatory drawing which shows the example of the normal angle and the line segment length. 駐車形態が縦列駐車であるときのグループの例を示す説明図である。It is explanatory drawing which shows the example of the group when the parking form is parallel parking. 駐車形態が縦列駐車であるときの法線角度及び線分長さの例を示す説明図である。It is explanatory drawing which shows the example of the normal angle and the line segment length when the parking form is parallel parking. 駐車形態が縦列駐車であるときの分布の例を示す説明図である。It is explanatory drawing which shows the example of the distribution when the parking form is parallel parking. 駐車形態が並列駐車であるときのグループの例を示す説明図である。It is explanatory drawing which shows the example of the group when the parking form is parallel parking. 駐車形態が並列駐車であるときの法線角度及び線分長さの例を示す説明図である。It is explanatory drawing which shows the example of the normal angle and the line segment length when the parking form is parallel parking. 駐車形態が並列駐車であるときの分布の例を示す説明図である。It is explanatory drawing which shows the example of the distribution when the parking form is parallel parking. 駐車形態が斜め駐車であり、かつ、基準面部がサイド面部であるときのグループの例を示す説明図である。It is explanatory drawing which shows the example of the group when the parking form is diagonal parking, and the reference surface portion is a side surface portion. 駐車形態が斜め駐車であり、かつ、基準面部がサイド面部であるときの法線角度及び線分長さの例を示す説明図である。It is explanatory drawing which shows the example of the normal angle and the line segment length when the parking form is diagonal parking, and the reference surface portion is a side surface portion. 駐車形態が斜め駐車であり、かつ、基準面部がサイド面部であるときの分布の例を示す説明図である。It is explanatory drawing which shows the example of the distribution when the parking form is diagonal parking, and the reference surface portion is a side surface portion. 駐車形態が斜め駐車であり、かつ、基準面部がノーズ面部であるときのグループの例を示す説明図である。It is explanatory drawing which shows the example of the group when the parking form is diagonal parking, and the reference surface portion is a nose surface portion. 駐車形態が斜め駐車であり、かつ、基準面部がノーズ面部であるときの法線角度及び線分長さの例を示す説明図である。It is explanatory drawing which shows the example of the normal angle and the line segment length when the parking form is diagonal parking, and the reference surface part is a nose surface part. 駐車形態が斜め駐車であり、かつ、基準面部がノーズ面部であるときの分布の例を示す説明図である。It is explanatory drawing which shows the example of the distribution when the parking form is diagonal parking, and the reference surface part is a nose surface part. 駐車形態判定用のテーブルの例を示す説明図である。It is explanatory drawing which shows the example of the table for the parking form determination. 実施の形態1に係る駐車形態判定装置を含む駐車支援システムにおける第1制御装置のハードウェア構成を示す説明図である。It is explanatory drawing which shows the hardware configuration of the 1st control device in the parking support system including the parking form determination device which concerns on Embodiment 1. FIG. 実施の形態1に係る駐車形態判定装置を含む駐車支援システムにおける第1制御装置の他のハードウェア構成を示す説明図である。It is explanatory drawing which shows the other hardware configuration of the 1st control device in the parking support system including the parking form determination device which concerns on Embodiment 1. FIG. 実施の形態1に係る駐車形態判定装置を含む駐車支援システムにおける第1制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the 1st control device in the parking support system including the parking form determination device which concerns on Embodiment 1. FIG. 実施の形態1に係る駐車形態判定装置を含む駐車支援システムにおける第1制御装置及び第2制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the 1st control device and the 2nd control device in the parking support system including the parking form determination device which concerns on Embodiment 1. FIG. 実施の形態1に係る駐車形態判定装置を含む駐車支援システムにおける第1制御装置の詳細な動作を示すフローチャートである。It is a flowchart which shows the detailed operation of the 1st control device in the parking support system including the parking form determination device which concerns on Embodiment 1. FIG. 線分角度の他の例を示す説明図である。It is explanatory drawing which shows another example of a line segment angle. 法線角度の他の例を示す説明図である。It is explanatory drawing which shows another example of a normal angle. 実施の形態2に係る駐車形態判定装置を含む駐車支援システムの要部を示すブロック図である。It is a block diagram which shows the main part of the parking support system including the parking form determination device which concerns on Embodiment 2. FIG. 駐車形態が縦列駐車であるときの他の分布の例を示す説明図である。It is explanatory drawing which shows the example of another distribution when the parking form is parallel parking. 駐車形態が並列駐車であるときの他の分布の例を示す説明図である。It is explanatory drawing which shows the example of another distribution when the parking form is parallel parking. 駐車形態が斜め駐車であり、かつ、基準面部がサイド面部であるときの他の分布の例を示す説明図である。It is explanatory drawing which shows the example of another distribution when the parking form is diagonal parking, and the reference surface portion is a side surface portion. 駐車形態が斜め駐車であり、かつ、基準面部がノーズ面部であるときの他の分布の例を示す説明図である。It is explanatory drawing which shows the example of another distribution when the parking form is diagonal parking, and the reference surface portion is a nose surface portion. 駐車形態判定用の他のテーブルの例を示す説明図である。It is explanatory drawing which shows the example of another table for the parking form determination. 実施の形態2に係る駐車形態判定装置を含む駐車支援システムにおける第1制御装置及び第2制御装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the 1st control device and the 2nd control device in the parking support system including the parking form determination device which concerns on Embodiment 2. FIG. 実施の形態2に係る駐車形態判定装置を含む駐車支援システムにおける第1制御装置の詳細な動作を示すフローチャートである。It is a flowchart which shows the detailed operation of the 1st control device in the parking support system including the parking form determination device which concerns on Embodiment 2. FIG.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。 Hereinafter, in order to explain the present invention in more detail, a mode for carrying out the present invention will be described with reference to the accompanying drawings.
実施の形態1.
 図1は、実施の形態1に係る駐車形態判定装置を含む駐車支援システムの要部を示すブロック図である。図1を参照して、実施の形態1に係る駐車形態判定装置を含む駐車支援システムについて説明する。
Embodiment 1.
FIG. 1 is a block diagram showing a main part of a parking support system including a parking form determining device according to the first embodiment. A parking support system including the parking form determining device according to the first embodiment will be described with reference to FIG.
 図1に示す如く、車両1に距離センサ2が設けられている。距離センサ2は、超音波、電波又は光など(以下総称して「探査波」という。)を送信自在なものである。距離センサ2は、車両1の周囲における障害物等の物体(以下総称して「障害物」という。)により探査波が反射されたとき、当該反射された探査波(以下「反射波」ということがある。)を受信自在なものである。障害物は、駐車中の他車両Vを含むものである。 As shown in FIG. 1, the vehicle 1 is provided with the distance sensor 2. The distance sensor 2 is capable of transmitting ultrasonic waves, radio waves, light, and the like (hereinafter collectively referred to as "exploration waves"). When the exploration wave is reflected by an object such as an obstacle (hereinafter collectively referred to as "obstacle") around the vehicle 1, the distance sensor 2 refers to the reflected exploration wave (hereinafter referred to as "reflected wave"). There is.) Can be received freely. Obstacles include other parked vehicles V.
 具体的には、例えば、距離センサ2は、車両1の左側面部に設けられている。または、例えば、距離センサ2は、車両1の右側面部に設けられている。または、例えば、距離センサ2は、車両1の左側面部及び右側面部の各々に設けられている。 Specifically, for example, the distance sensor 2 is provided on the left side surface of the vehicle 1. Alternatively, for example, the distance sensor 2 is provided on the right side surface of the vehicle 1. Alternatively, for example, the distance sensor 2 is provided on each of the left side surface portion and the right side surface portion of the vehicle 1.
 車両1の左側面部に設けられた距離センサ2は、車両1の左方に探査波を送信自在なものである。また、かかる距離センサ2は、車両1の左方における障害物により探査波が反射されたとき、かかる障害物による反射波を受信自在なものである。 The distance sensor 2 provided on the left side surface of the vehicle 1 is capable of transmitting an exploration wave to the left side of the vehicle 1. Further, the distance sensor 2 is capable of receiving the reflected wave due to the obstacle when the exploration wave is reflected by the obstacle on the left side of the vehicle 1.
 車両1の右側面部に設けられた距離センサ2は、車両1の右方に探査波を送信自在なものである。また、かかる距離センサ2は、車両1の右方における障害物により探査波が反射されたとき、かかる障害物による反射波を受信自在なものである。 The distance sensor 2 provided on the right side surface of the vehicle 1 can freely transmit the exploration wave to the right side of the vehicle 1. Further, the distance sensor 2 is capable of receiving the reflected wave due to the obstacle when the exploration wave is reflected by the obstacle on the right side of the vehicle 1.
 以下、車両1の左側面部に距離センサ2が設けられている例を中心に説明する。 Hereinafter, an example in which the distance sensor 2 is provided on the left side surface of the vehicle 1 will be mainly described.
 車両1に第1センサ類3が設けられている。第1センサ類3は、例えば、車輪速センサ及びシフトポジションセンサを含むものである。 The vehicle 1 is provided with the first sensors 3. The first sensors 3 include, for example, a wheel speed sensor and a shift position sensor.
 車両1に第2センサ類4が設けられている。第2センサ類4は、例えば、GPS(Global Positioning System)受信機、ヨーレートセンサ及びジャイロセンサを含むものである。 The vehicle 1 is provided with the second sensors 4. The second sensors 4 include, for example, a GPS (Global Positioning System) receiver, a yaw rate sensor, and a gyro sensor.
 車両1に第1制御装置5が設けられている。第1制御装置5は、例えば、ECU(Electronic Control Unit)により構成されている。第1制御装置5は、速度判定部11、距離測定部12、位置算出部13、グループ化部14、角度演算部15、長さ演算部16及び駐車形態判定部17を有している。グループ化部14、角度演算部15、長さ演算部16及び駐車形態判定部17により、駐車形態判定装置100の要部が構成されている。 The first control device 5 is provided in the vehicle 1. The first control device 5 is composed of, for example, an ECU (Electronic Control Unit). The first control device 5 includes a speed determination unit 11, a distance measurement unit 12, a position calculation unit 13, a grouping unit 14, an angle calculation unit 15, a length calculation unit 16, and a parking form determination unit 17. The main part of the parking form determination device 100 is composed of the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking form determination unit 17.
 車両1に第2制御装置6が設けられている。第2制御装置6は、例えば、ECUにより構成されている。 The second control device 6 is provided in the vehicle 1. The second control device 6 is composed of, for example, an ECU.
 このようにして、駐車支援システム200の要部が構成されている。 In this way, the main part of the parking support system 200 is configured.
 次に、図2~図9を参照して、第1制御装置5内の各部により実行される処理について説明する。また、第2制御装置6により実行される制御について説明する。 Next, with reference to FIGS. 2 to 9, the processes executed by each part in the first control device 5 will be described. Further, the control executed by the second control device 6 will be described.
 速度判定部11は、第1センサ類3による出力信号を取得する。速度判定部11は、当該取得された信号を用いて、車両1が所定速度(例えば30キロメートル毎時)未満の速度にて走行中であるか否かを判定する。以下、速度判定部11により実行される処理を総称して「速度判定処理」という。 The speed determination unit 11 acquires the output signal from the first sensors 3. The speed determination unit 11 uses the acquired signal to determine whether or not the vehicle 1 is traveling at a speed less than a predetermined speed (for example, 30 km / h). Hereinafter, the processes executed by the speed determination unit 11 are collectively referred to as "speed determination processing".
 距離測定部12は、車両1が所定速度未満の速度にて走行しているとき、所定の時間間隔にて距離センサ2に電気信号(以下「送信信号」という。)を供給する。これにより、距離センサ2は、所定の時間間隔にて探査波を送信する。距離センサ2は、障害物による反射波を受信したとき、当該受信された反射波に対応ずる電気信号(以下「受信信号」という。)を出力する。距離測定部12は、当該出力された受信信号を取得する。 The distance measuring unit 12 supplies an electric signal (hereinafter referred to as "transmission signal") to the distance sensor 2 at a predetermined time interval when the vehicle 1 is traveling at a speed lower than a predetermined speed. As a result, the distance sensor 2 transmits the exploration wave at a predetermined time interval. When the distance sensor 2 receives the reflected wave due to an obstacle, the distance sensor 2 outputs an electric signal (hereinafter, referred to as “received signal”) corresponding to the received reflected wave. The distance measuring unit 12 acquires the output received signal.
 距離測定部12は、探査波の送信時刻及び反射波の受信時刻に基づき、探査波の往復伝搬時間RPTを算出する。距離測定部12には、空気中の探査波の伝搬速度PVが予め記憶されている。距離測定部12は、これらの値を用いて、以下の式(1)により距離Dを算出する。すなわち、距離Dは、探査波の送信タイミングにおける車両1と障害物間の距離に対応するものである。 The distance measuring unit 12 calculates the round-trip propagation time RPT of the exploration wave based on the transmission time of the exploration wave and the reception time of the reflected wave. The distance measuring unit 12 stores in advance the propagation speed PV of the exploration wave in the air. The distance measuring unit 12 calculates the distance D by the following formula (1) using these values. That is, the distance D corresponds to the distance between the vehicle 1 and the obstacle at the transmission timing of the exploration wave.
 D=(PV×RPT)/2    (1) D = (PV x RPT) / 2 (1)
 以下、距離測定部12により実行される処理を総称して「距離測定処理」という。 Hereinafter, the processes executed by the distance measurement unit 12 are collectively referred to as "distance measurement process".
 位置算出部13は、第2センサ類4による出力信号を取得する。位置算出部13は、当該取得された信号を用いて、探査波の送信タイミングにおける車両1の位置(以下「自車位置」という。)を算出する。自車位置は、例えば、基準時刻(例えば距離測定処理の開始時刻)における車両1の左右方向に沿うX軸を有し、かつ、基準時刻における車両1の進行方向(すなわち車両1の前後方向)に沿うY軸を有する座標系CSにおける座標値により表される。 The position calculation unit 13 acquires the output signal from the second sensors 4. The position calculation unit 13 calculates the position of the vehicle 1 (hereinafter referred to as “own vehicle position”) at the transmission timing of the exploration wave by using the acquired signal. The own vehicle position has, for example, an X-axis along the left-right direction of the vehicle 1 at the reference time (for example, the start time of the distance measurement process), and the traveling direction of the vehicle 1 at the reference time (that is, the front-rear direction of the vehicle 1). It is represented by the coordinate values in the coordinate system CS having the Y axis along.
 位置算出部13は、当該算出された自車位置に基づき、探査波の送信タイミングにおける距離センサ2の位置(以下「センサ位置」という。)Psを算出する。センサ位置Psは、例えば、座標系CSにおける座標値により表される。なお、位置算出部13には、車両1における距離センサ2の設置位置を示す情報が予め記憶されている。センサ位置Psの算出には、当該記憶されている情報が用いられる。 The position calculation unit 13 calculates the position (hereinafter referred to as “sensor position”) Ps of the distance sensor 2 at the transmission timing of the exploration wave based on the calculated own vehicle position. The sensor position Ps is represented by, for example, a coordinate value in the coordinate system CS. Information indicating the installation position of the distance sensor 2 in the vehicle 1 is stored in advance in the position calculation unit 13. The stored information is used to calculate the sensor position Ps.
 位置算出部13は、当該算出されたセンサ位置Ps及び距離測定部12により測定された距離Dに基づき、探査波が反射された地点(以下「反射点」という。)Pの位置を算出する。反射点Pの位置は、例えば、座標系CSにおける座標値により表される。 The position calculation unit 13 calculates the position of the point where the exploration wave is reflected (hereinafter referred to as “reflection point”) P based on the calculated sensor position Ps and the distance D measured by the distance measurement unit 12. The position of the reflection point P is represented by, for example, a coordinate value in the coordinate system CS.
 具体的には、例えば、位置算出部13は、いわゆる「二円交点処理」又は「合成開口処理」を実行することにより、反射点Pの位置を算出する。図2は、二円交点処理又は合成開口処理の例を示している。図中、RPは、車両1の走行軌跡を示している。 Specifically, for example, the position calculation unit 13 calculates the position of the reflection point P by executing the so-called "two-circle intersection processing" or "synthetic opening processing". FIG. 2 shows an example of two-circle intersection processing or synthetic opening processing. In the figure, RP indicates the traveling locus of the vehicle 1.
 図2に示す如く、探査波が2回送信されることにより、距離D_1,D_2が測定されたものとする。このとき、位置算出部13は、円C_1,C_2の交点の位置を算出することにより、反射点Pの位置を算出する。すなわち、円C_1は、第1回目の探査波の送信タイミングにおけるセンサ位置Ps_1に対応する中心を有し、かつ、第1回目の探査波の送信により測定された距離D_1に対応する半径を有するものである。また、円C_2は、第2回目の探査波の送信タイミングにおけるセンサ位置Ps_2に対応する中心を有し、かつ、第2回目の探査波の送信により測定された距離D_2に対応する半径を有するものである。 As shown in FIG. 2, it is assumed that the distances D_1 and D_2 are measured by transmitting the exploration wave twice. At this time, the position calculation unit 13 calculates the position of the reflection point P by calculating the position of the intersection of the circles C_1 and C_2. That is, the circle C_1 has a center corresponding to the sensor position Ps_1 at the transmission timing of the first exploration wave, and has a radius corresponding to the distance D_1 measured by the transmission of the first exploration wave. Is. Further, the circle C_2 has a center corresponding to the sensor position Ps_2 at the transmission timing of the second exploration wave, and has a radius corresponding to the distance D_2 measured by the transmission of the second exploration wave. Is.
 ここで、図5Aは、障害物が駐車中の他車両Vであり、かつ、駐車形態が縦列駐車であるときの、位置算出部13により算出された反射点Pの位置の例を示している。図5Aに示す例においては、9個の反射点Pの位置が算出されている。 Here, FIG. 5A shows an example of the position of the reflection point P calculated by the position calculation unit 13 when the obstacle is another vehicle V parked and the parking form is parallel parking. .. In the example shown in FIG. 5A, the positions of the nine reflection points P are calculated.
 また、図6Aは、障害物が駐車中の他車両Vであり、かつ、駐車形態が並列駐車であるときの、位置算出部13により算出された反射点Pの位置の例を示している。図6Aに示す例においては、7個の反射点Pの位置が算出されている。 Further, FIG. 6A shows an example of the position of the reflection point P calculated by the position calculation unit 13 when the obstacle is another vehicle V that is parked and the parking form is parallel parking. In the example shown in FIG. 6A, the positions of the seven reflection points P are calculated.
 また、図7A及び図8Aの各々は、障害物が駐車中の他車両Vであり、かつ、駐車形態が斜め駐車であるときの、位置算出部13により算出された反射点Pの位置の例を示している。図7Aに示す例においては、10個の反射点Pの位置が算出されている。図8Aに示す例においては、7個の反射点Pの位置が算出されている。 Further, each of FIGS. 7A and 8A is an example of the position of the reflection point P calculated by the position calculation unit 13 when the obstacle is another vehicle V parked and the parking mode is diagonal parking. Is shown. In the example shown in FIG. 7A, the positions of the 10 reflection points P are calculated. In the example shown in FIG. 8A, the positions of the seven reflection points P are calculated.
 図中、φsは、Y軸に沿う方向に対する他車両Vの左側面部又は右側面部(以下総称して「サイド面部」ということがある。)の角度を示している。また、φnは、Y軸に沿う方向に対する他車両Vの前面部又は後面部(以下総称して「ノーズ面部」ということがある。)の角度を示している。 In the figure, φs indicates the angle of the left side surface portion or the right side surface portion (hereinafter collectively referred to as “side surface portion”) of the other vehicle V with respect to the direction along the Y axis. Further, φn indicates the angle of the front surface portion or the rear surface portion (hereinafter, collectively referred to as “nose surface portion”) of the other vehicle V with respect to the direction along the Y axis.
 以下、角度φs,φnのうちのより小さい角度に対応する面部を「基準面部」ということがある。例えば、図7Aに示す例においては、φs<φnであるため、サイド面部が基準面部である。他方、図8Aに示す例においては、φs>φnであるため、ノーズ面部が基準面部である。 Hereinafter, the surface portion corresponding to the smaller angle of the angles φs and φn may be referred to as a “reference surface portion”. For example, in the example shown in FIG. 7A, since φs <φn, the side surface portion is the reference surface portion. On the other hand, in the example shown in FIG. 8A, since φs> φn, the nose surface portion is the reference surface portion.
 通常、角度φs,φnの合計値は90度である。したがって、角度φsが45度よりも小さいときは、角度φnが45度よりも大きい(図7A参照)。このため、サイド面部による反射波に比して、ノーズ面部による反射波が受信され難くなる。この結果、サイド面部に対応する反射点Pの個数に比して、ノーズ面部に対応する反射点Pの個数が少なくなる(図7A参照)。 Normally, the total value of angles φs and φn is 90 degrees. Therefore, when the angle φs is smaller than 45 degrees, the angle φn is larger than 45 degrees (see FIG. 7A). Therefore, it becomes difficult to receive the reflected wave by the nose surface portion as compared with the reflected wave by the side surface portion. As a result, the number of reflection points P corresponding to the nose surface portion is smaller than the number of reflection points P corresponding to the side surface portion (see FIG. 7A).
 他方、角度φnが45度よりも小さいときは、角度φsが45度よりも大きい(図8A参照)。このため、ノーズ面部による反射波に比して、サイド面部による反射波が受信され難くなる。この結果、ノーズ面部に対応する反射点Pの個数に比して、再度面部に対応する反射点Pの個数が少なくなる(図8A参照)。 On the other hand, when the angle φn is smaller than 45 degrees, the angle φs is larger than 45 degrees (see FIG. 8A). Therefore, it becomes difficult to receive the reflected wave by the side surface portion as compared with the reflected wave by the nose surface portion. As a result, the number of reflection points P corresponding to the surface portion is reduced again as compared with the number of reflection points P corresponding to the nose surface portion (see FIG. 8A).
 以下、位置算出部13により実行される処理を総称して「位置算出処理」という。 Hereinafter, the processes executed by the position calculation unit 13 are collectively referred to as "position calculation process".
 グループ化部14は、位置算出部13により複数個の反射点Pの位置が算出されたとき、当該複数個の反射点Pをグループ化することにより、1個又は複数個のグループGを設定する。具体的には、例えば、グループ化部14は、当該複数個の反射点Pのうちの互いに隣接する各2個の反射点Pについて、当該2個の反射点P間の距離が所定距離未満である場合、当該2個の反射点Pを互いに同一のグループGに含める。他方、当該2個の反射点P間の距離が所定距離以上である場合、グループ化部14は、当該2個の反射点Pを互いに異なるグループGに含める。これにより、原則、1個又は複数個の障害物と一対一に対応する1個又は複数個のグループGが設定される。 When the positions of the plurality of reflection points P are calculated by the position calculation unit 13, the grouping unit 14 sets one or a plurality of groups G by grouping the plurality of reflection points P. .. Specifically, for example, in the grouping unit 14, the distance between the two reflection points P is less than a predetermined distance for each of the two reflection points P adjacent to each other among the plurality of reflection points P. If so, the two reflection points P are included in the same group G as each other. On the other hand, when the distance between the two reflection points P is equal to or greater than a predetermined distance, the grouping unit 14 includes the two reflection points P in different groups G. As a result, in principle, one or more groups G corresponding to one or more obstacles on a one-to-one basis are set.
 図5Aは、障害物が駐車中の他車両Vであり、かつ、駐車形態が縦列駐車であるときの、他車両Vに対応するグループGの例を示している。図5Aに示す例においては、9個の反射点Pを含むグループGが設定されている。 FIG. 5A shows an example of the group G corresponding to the other vehicle V when the obstacle is another vehicle V parked and the parking form is parallel parking. In the example shown in FIG. 5A, a group G including nine reflection points P is set.
 図6Aは、障害物が駐車中の他車両Vであり、かつ、駐車形態が並列駐車であるときの、他車両Vに対応するグループGの例を示している。図6Aに示す例においては、7個の反射点Pを含むグループGが設定されている。 FIG. 6A shows an example of the group G corresponding to the other vehicle V when the obstacle is the other vehicle V parked and the parking mode is parallel parking. In the example shown in FIG. 6A, a group G including seven reflection points P is set.
 図7Aは、障害物が駐車中の他車両Vであり、かつ、駐車形態が斜め駐車であり、かつ、基準面部がサイド面部であるときの、他車両Vに対応するグループGの例を示している。図7A示す例においては、10個の反射点Pを含むグループGが設定されている。 FIG. 7A shows an example of the group G corresponding to the other vehicle V when the obstacle is the other vehicle V that is parked, the parking mode is diagonal parking, and the reference surface portion is the side surface portion. ing. In the example shown in FIG. 7A, a group G including 10 reflection points P is set.
 図8Aは、障害物が駐車中の他車両Vであり、かつ、駐車形態が斜め駐車であり、かつ、基準面部がノーズ面部であるときの、他車両Vに対応するグループGの例を示している。図8A示す例においては、7個の反射点Pを含むグループGが設定されている。 FIG. 8A shows an example of Group G corresponding to the other vehicle V when the obstacle is the other vehicle V that is parked, the parking mode is diagonal parking, and the reference surface portion is the nose surface portion. ing. In the example shown in FIG. 8A, a group G including seven reflection points P is set.
 以下、グループ化部14により実行される処理を総称して「グループ化処理」という。 Hereinafter, the processes executed by the grouping unit 14 are collectively referred to as "grouping processes".
 角度演算部15は、個々のグループGに含まれる複数個の反射点Pのうちの互いの隣接する各2個の反射点Pを結ぶ線分SLについて、座標系CSにおける個々の線分SLの傾き角度(以下「線分角度」という。)θを演算する。線分角度θは、例えば、Y軸に沿う方向に対する線分SLの傾き角度である(図3参照)。 The angle calculation unit 15 refers to the line segment SL connecting the two adjacent reflection points P of the plurality of reflection points P included in the individual group G, of the individual line segment SLs in the coordinate system CS. Calculate the tilt angle (hereinafter referred to as "line segment angle") θ. The line segment angle θ is, for example, the inclination angle of the line segment SL with respect to the direction along the Y axis (see FIG. 3).
 または、角度演算部15は、個々の線分SLに対する法線ベクトルNVを演算する。角度演算部15は、座標系CSにおける個々の法線ベクトルNVの傾き角度(以下「法線角度」という。)θを演算する。法線角度θは、例えば、X軸に沿う方向に対する法線ベクトルNVの傾き角度である(図4参照)。 Alternatively, the angle calculation unit 15 calculates the normal vector NV for each line segment SL. The angle calculation unit 15 calculates the inclination angle (hereinafter referred to as “normal angle”) θ of each normal vector NV in the coordinate system CS. The normal angle θ is, for example, the inclination angle of the normal vector NV with respect to the direction along the X axis (see FIG. 4).
 通常、個々の線分角度θの値は、対応する法線角度θの値と同一である。以下、線分角度θ及び法線角度θを総称して単に「角度」ということがある。 Normally, the value of each line segment angle θ is the same as the value of the corresponding normal angle θ. Hereinafter, the line segment angle θ and the normal angle θ may be collectively referred to as “angle”.
 長さ演算部16は、個々の線分SLの長さ(以下「線分長さ」という。)Lを算出する。 The length calculation unit 16 calculates the length L of each line segment SL (hereinafter referred to as “line segment length”) L.
 図5Bは、図5Aに示すグループGにおける法線角度θ及び線分長さLの演算結果の例を示している。図5Bに示す例においては、8個の法線角度θ_1~θ_8及び8個の線分長さL_1~L_8が演算されている。 FIG. 5B shows an example of the calculation result of the normal angle θ and the line segment length L in the group G shown in FIG. 5A. In the example shown in FIG. 5B, eight normal angles θ_1 to θ_8 and eight line segment lengths L_1 to L_8 are calculated.
 図6Bは、図6Aに示すグループGにおける法線角度θ及び線分長さLの演算結果の例を示している。図6Bに示す例においては、6個の法線角度θ_1~θ_6及び6個の線分長さL_1~L_6が演算されている。 FIG. 6B shows an example of the calculation result of the normal angle θ and the line segment length L in the group G shown in FIG. 6A. In the example shown in FIG. 6B, six normal angles θ_1 to θ_6 and six line segment lengths L_1 to L_6 are calculated.
 図7Bは、図7Aに示すグループGにおける法線角度θ及び線分長さLの演算結果の例を示している。図7Bに示す例においては、9個の法線角度θ_1~θ_9及び9個の線分長さL_1~L_9が演算されている。 FIG. 7B shows an example of the calculation result of the normal angle θ and the line segment length L in the group G shown in FIG. 7A. In the example shown in FIG. 7B, nine normal angles θ_1 to θ_9 and nine line segment lengths L_1 to L_9 are calculated.
 図8Bは、図8Aに示すグループGにおける法線角度θ及び線分長さLの演算結果の例を示している。図8Bに示す例においては、6個の法線角度θ_1~θ_6及び6個の線分長さL_1~L_6が演算されている。 FIG. 8B shows an example of the calculation result of the normal angle θ and the line segment length L in the group G shown in FIG. 8A. In the example shown in FIG. 8B, six normal angles θ_1 to θ_6 and six line segment lengths L_1 to L_6 are calculated.
 以下、角度演算部15により実行される処理を総称して「角度演算処理」という。また、長さ演算部16により実行される処理を総称して「長さ演算処理」という。 Hereinafter, the processes executed by the angle calculation unit 15 are collectively referred to as "angle calculation processing". Further, the processes executed by the length calculation unit 16 are collectively referred to as "length calculation processing".
 駐車形態判定部17は、角度演算部15による演算結果及び長さ演算部16による演算結果に基づき、他車両Vの駐車形態を判定する。具体的には、例えば、駐車形態判定部17は、以下のようにして他車両Vの駐車形態を判定する。 The parking form determination unit 17 determines the parking form of the other vehicle V based on the calculation result of the angle calculation unit 15 and the calculation result of the length calculation unit 16. Specifically, for example, the parking form determination unit 17 determines the parking form of the other vehicle V as follows.
 以下、線分角度θ又は法線角度θについて、所定幅を有する角度θの範囲を「角度範囲」又は「角度ビン」という。まず、駐車形態判定部17は、角度演算部15による演算結果及び長さ演算部16による演算結果に基づき、個々のグループGにおける角度ビンB毎の線分長さLの和ΣLを算出する。これにより、駐車形態判定部17は、個々のグループGにおける角度ビンB毎の和ΣLを示す分布D1を演算する。 Hereinafter, with respect to the line segment angle θ or the normal angle θ, the range of the angle θ having a predetermined width is referred to as an “angle range” or an “angle bin”. First, the parking form determination unit 17 calculates the sum ΣL of the line segment length L for each angle bin B in each group G based on the calculation result by the angle calculation unit 15 and the calculation result by the length calculation unit 16. As a result, the parking form determination unit 17 calculates the distribution D1 indicating the sum ΣL for each angle bin B in each group G.
 図5Cは、図5Bに示す演算結果に基づく分布D1の例を示している。図5Cに示す例において、角度ビンB_3における和ΣL_3、角度ビンB_4における和ΣL_4、及び角度ビンB_5における和ΣL_5は、以下の式(2)~式(4)によりそれぞれ算出されたものである。ここで、L_1~L_8は、図5Bに示すものである。 FIG. 5C shows an example of the distribution D1 based on the calculation result shown in FIG. 5B. In the example shown in FIG. 5C, the sum ΣL_3 in the angle bin B_3, the sum ΣL_4 in the angle bin B_4, and the sum ΣL_5 in the angle bin B_5 are calculated by the following equations (2) to (4), respectively. Here, L_1 to L_1 are shown in FIG. 5B.
 ΣL_3=L_8                (2) ΣL_3 = L_8 (2)
 ΣL_4=L_2+L_3+L_4+L_5+L_6
     +L_7                (3)
ΣL_4 = L_2 + L_3 + L_4 + L_5 + L_6
+ L_7 (3)
 ΣL_5=L_1                (4) ΣL_5 = L_1 (4)
 図6Cは、図6Bに示す演算結果に基づく分布D1の例を示している。図6Cに示す例において、角度ビンB_3における和ΣL_3、角度ビンB_4における和ΣL_4、及び角度ビンB_5における和ΣL_5は、以下の式(5)~式(7)によりそれぞれ算出されたものである。ここで、L_1~L_6は、図6Bに示すものである。 FIG. 6C shows an example of the distribution D1 based on the calculation result shown in FIG. 6B. In the example shown in FIG. 6C, the sum ΣL_3 in the angle bin B_3, the sum ΣL_4 in the angle bin B_4, and the sum ΣL_5 in the angle bin B_5 are calculated by the following equations (5) to (7), respectively. Here, L_1 to L_1 are as shown in FIG. 6B.
 ΣL_3=L_6              (5) ΣL_3 = L_6 (5)
 ΣL_4=L_2+L_3+L_4+L_5  (6) ΣL_4 = L_2 + L_3 + L_4 + L_5 (6)
 ΣL_5=L_1              (7) ΣL_5 = L_1 (7)
 図7Cは、図7Bに示す演算結果に基づく分布D1の例を示している。図7Cに示す例において、角度ビンB_3における和ΣL_3、角度ビンB_4における和ΣL_4、及び角度ビンB_5における和ΣL_5は、以下の式(8)~式(10)によりそれぞれ算出されたものである。ここで、L_1~L_9は、図7Bに示すものである。 FIG. 7C shows an example of the distribution D1 based on the calculation result shown in FIG. 7B. In the example shown in FIG. 7C, the sum ΣL_3 in the angle bin B_3, the sum ΣL_4 in the angle bin B_4, and the sum ΣL_5 in the angle bin B_5 are calculated by the following equations (8) to (10), respectively. Here, L_1 to L_1 are those shown in FIG. 7B.
 ΣL_3=L_8+L_9            (8) ΣL_3 = L_8 + L_9 (8)
 ΣL_4=L_7                (9) ΣL_4 = L_7 (9)
 ΣL_5=L_1+L_2+L_3+L_4+L_5
     +L_6                (10)
ΣL_5 = L_1 + L_2 + L_3 + L_4 + L_5
+ L_6 (10)
 図8Cは、図8Bに示す演算結果に基づく分布D1の例を示している。図8Cに示す例において、角度ビンB_3における和ΣL_3、角度ビンB_4における和ΣL_4、及び角度ビンB_5における和ΣL_5は、以下の式(11)~式(13)によりそれぞれ算出されたものである。ここで、L_1~L_6は、図8Bに示すものである。 FIG. 8C shows an example of the distribution D1 based on the calculation result shown in FIG. 8B. In the example shown in FIG. 8C, the sum ΣL_3 in the angle bin B_3, the sum ΣL_4 in the angle bin B_4, and the sum ΣL_5 in the angle bin B_5 are calculated by the following equations (11) to (13), respectively. Here, L_1 to L_1 are as shown in FIG. 8B.
 ΣL_3=L_5+L_6      (11) ΣL_3 = L_5 + L_6 (11)
 ΣL_4=L_4          (12) ΣL_4 = L_4 (12)
 ΣL_5=L_1+L_2+L_3  (13) ΣL_5 = L_1 + L_2 + L_3 (13)
 次いで、駐車形態判定部17は、分布D1のピークトップPTにおける和ΣLの値(以下「ピーク値」という。)ΣLpを算出する。 Next, the parking form determination unit 17 calculates the sum ΣL value (hereinafter referred to as “peak value”) ΣLp at the peak top PT of the distribution D1.
 例えば、図5C及び図6Cの各々に示す分布D1においては、角度ビンB_4における和ΣL_4の値がピーク値ΣLpであると算出される。他方、図7C及び図8Cの各々に示す分布D1においては、角度ビンB_5における和ΣL_5の値がピーク値ΣLpであると算出される。 For example, in the distribution D1 shown in each of FIGS. 5C and 6C, the value of the sum ΣL_4 in the angle bin B_4 is calculated to be the peak value ΣLp. On the other hand, in the distribution D1 shown in FIGS. 7C and 8C, the value of the sum ΣL_5 in the angle bin B_5 is calculated to be the peak value ΣLp.
 次いで、駐車形態判定部17は、分布D1のピークトップPTにおける角度θの平均値、中央値又は加重平均値(以下総称して「ピーク角度」という。)θpを算出する。 Next, the parking form determination unit 17 calculates the average value, the median value, or the weighted average value (hereinafter collectively referred to as “peak angle”) θp of the angle θ in the peak top PT of the distribution D1.
 例えば、図5Cに示す分布D1において、駐車形態判定部17は、以下の式(14)により、法線角度θ_2~θ_7の平均値を算出する。または、駐車形態判定部17は、以下の式(15)により、法線角度θ_2~θ_7の中央値を算出する。または、駐車形態判定部17は、以下の式(16)により、法線角度θ_2~θ_7の加重平均値を算出する。ここで、θ_2~θ_7は、図5Bに示すものである。また、L_2~L_7は、図5Bに示すものである。また、median()は、括弧内の中央値を算出する関数である。 For example, in the distribution D1 shown in FIG. 5C, the parking form determination unit 17 calculates the average value of the normal angles θ_2 to θ_7 by the following equation (14). Alternatively, the parking form determination unit 17 calculates the median value of the normal angles θ_2 to θ_7 by the following equation (15). Alternatively, the parking form determination unit 17 calculates the weighted average value of the normal angles θ_2 to θ_7 by the following equation (16). Here, θ_2 to θ_7 are shown in FIG. 5B. L_1 to L_7 are shown in FIG. 5B. Also, median () is a function that calculates the median value in parentheses.
 θp=(θ_2+θ_3+θ_4+θ_5+Lθ_6
   +θ_7)/6               (14)
θp = (θ_2 + θ_3 + θ_4 + θ_5 + Lθ_6
+ Θ_7) / 6 (14)
 θp=median(θ_2,θ_3,θ_4,
   θ_5,θ_6,θ_7)          (15)
θp = median (θ_2, θ_3, θ_4,
θ_5, θ_6, θ_7) (15)
 θp=(θ_2×L_2+θ_3×L_3+θ_4
   ×L_4+θ_5×L_5+θ_6×L_6
   +θ_7×L_7)/(L_2+L_3+L_4
   +L_5+L_6+L_7)         (16)
θp = (θ_2 × L_2 + θ_3 × L_3 + θ_4
× L_4 + θ_5 × L_5 + θ_6 × L_6
+ Θ_7 x L_7) / (L_2 + L_3 + L_4
+ L_5 + L_6 + L_7) (16)
 また、例えば、図6Cに示す分布D1において、駐車形態判定部17は、以下の式(17)により、法線角度θ_2~θ_5の平均値を算出する。または、駐車形態判定部17は、以下の式(18)により、法線角度θ_2~θ_5の中央値を算出する。または、駐車形態判定部17は、以下の式(19)により、法線角度θ_2~θ_5の加重平均値を算出する。ここで、θ_2~θ_5は、図6Bに示すものである。また、L_2~L_5は、図6Bに示すものである。 Further, for example, in the distribution D1 shown in FIG. 6C, the parking form determination unit 17 calculates the average value of the normal angles θ_2 to θ_5 by the following equation (17). Alternatively, the parking form determination unit 17 calculates the median value of the normal angles θ_2 to θ_5 by the following equation (18). Alternatively, the parking form determination unit 17 calculates the weighted average value of the normal angles θ_2 to θ_5 by the following equation (19). Here, θ_2 to θ_5 are shown in FIG. 6B. L_1 to L_5 are shown in FIG. 6B.
 θp=(θ_2+θ_3+θ_4+θ_5)/4  (17) Θp = (θ_2 + θ_3 + θ_4 + θ_5) / 4 (17)
 θp=median(θ_2,θ_3,θ_4,
   θ_5)                  (18)
θp = median (θ_2, θ_3, θ_4,
θ_5) (18)
 θp=(θ_2×L_2+θ_3×L_3+θ_4
   ×L_4+θ_5×L_5)/(L_2
   +L_3+L_4+L_5)         (19)
θp = (θ_1 × L_2 + θ_3 × L_3 + θ_4
× L_4 + θ_5 × L_5) / (L_2
+ L_3 + L_4 + L_5) (19)
 また、例えば、図7Cに示す分布D1において、駐車形態判定部17は、以下の式(20)により、法線角度θ_1~θ_6の平均値を算出する。または、駐車形態判定部17は、以下の式(21)により、法線角度θ_1~θ_6の中央値を算出する。または、駐車形態判定部17は、以下の式(22)により、法線角度θ_1~θ_6の加重平均値を算出する。ここで、θ_1~θ_6は、図7Bに示すものである。また、L_1~L_6は、図7Bに示すものである。 Further, for example, in the distribution D1 shown in FIG. 7C, the parking form determination unit 17 calculates the average value of the normal angles θ_1 to θ_6 by the following equation (20). Alternatively, the parking form determination unit 17 calculates the median value of the normal angles θ_1 to θ_6 by the following equation (21). Alternatively, the parking form determination unit 17 calculates the weighted average value of the normal angles θ_1 to θ_6 by the following equation (22). Here, θ_1 to θ_6 are shown in FIG. 7B. L_1 to L_1 are shown in FIG. 7B.
 θp=(θ_1+θ_2+θ_3+θ_4+θ_5
   +Lθ_6)/6              (20)
θp = (θ_1 + θ_2 + θ_3 + θ_4 + θ_5
+ Lθ_6) / 6 (20)
 θp=median(θ_1,θ_2,θ_3,
   θ_4,θ_5,θ_6)          (21)
θp = median (θ_1, θ_2, θ_3,
θ_4, θ_5, θ_6) (21)
 θp=(θ_1×L_1+θ_2×L_2+θ_3
   ×L_3+θ_4×L_4+θ_5×L_5
   +θ_6×L_6)/(L_1+L_2+L_3
   +L_4+L_5+L_6)         (22)
θp = (θ_1 × L_1 + θ_2 × L_2 + θ_3
× L_3 + θ_4 × L_4 + θ_5 × L_5
+ Θ_6 x L_6) / (L_1 + L_2 + L_3)
+ L_4 + L_5 + L_6) (22)
 また、例えば、図8Cに示す分布D1において、駐車形態判定部17は、以下の式(23)により、法線角度θ_1~θ_3の平均値を算出する。または、駐車形態判定部17は、以下の式(24)により、法線角度θ_1~θ_3の中央値を算出する。または、駐車形態判定部17は、以下の式(25)により、法線角度θ_1~θ_3の加重平均値を算出する。ここで、θ_1~θ_3は、図8Bに示すものである。また、L_1~L_3は、図8Bに示すものである。 Further, for example, in the distribution D1 shown in FIG. 8C, the parking form determination unit 17 calculates the average value of the normal angles θ_1 to θ_3 by the following equation (23). Alternatively, the parking form determination unit 17 calculates the median value of the normal angles θ_1 to θ_3 by the following equation (24). Alternatively, the parking form determination unit 17 calculates the weighted average value of the normal angles θ_1 to θ_3 by the following equation (25). Here, θ_1 to θ_3 are shown in FIG. 8B. L_1 to L_3 are shown in FIG. 8B.
 θp=(θ_1+θ_2+θ_3)/3      (23) Θp = (θ_1 + θ_2 + θ_3) / 3 (23)
 θp=median(θ_1,θ_2,θ_3)  (24) Θp = median (θ_1, θ_2, θ_3) (24)
 θp=(θ_1×L_1+θ_2×L_2+θ_3
   ×L_3)/(L_1+L_2+L_3)   (25)
θp = (θ_1 × L_1 + θ_2 × L_2 + θ_3
× L_3) / (L_1 + L_2 + L_3) (25)
 次いで、駐車形態判定部17は、基準角度θrefに対するピーク角度θpのずれ量Δθを算出する。基準角度θrefは、例えば、0度に設定されている。 Next, the parking form determination unit 17 calculates the deviation amount Δθ of the peak angle θp with respect to the reference angle θref. The reference angle θref is set to, for example, 0 degrees.
 次いで、駐車形態判定部17は、ずれ量Δθを所定量Δθthと比較する。ずれ量Δθが所定量Δθth以下である場合、駐車形態判定部17は、ピーク値ΣLpを所定の閾値(以下「第1閾値」ということがある。)ΣLth1と比較する。他方、ずれ量Δθが所定量Δθthよりも大きい場合、駐車形態判定部17は、ピーク値ΣLpを所定の閾値(以下「第2閾値」ということがある。)ΣLth2と比較する。 Next, the parking form determination unit 17 compares the deviation amount Δθ with the predetermined amount Δθth. When the deviation amount Δθ is equal to or less than a predetermined amount Δθth, the parking form determination unit 17 compares the peak value ΣLp with a predetermined threshold value (hereinafter, may be referred to as “first threshold value”) ΣLth1. On the other hand, when the deviation amount Δθ is larger than the predetermined amount Δθth, the parking form determination unit 17 compares the peak value ΣLp with the predetermined threshold value (hereinafter, may be referred to as “second threshold value”) ΣLth2.
 図9は、駐車形態判定部17における駐車形態判定用のテーブルT1の例を示している。図9に示す如く、ずれ量Δθが所定量Δθth以下である場合において、ピーク値ΣLpが第1閾値ΣLth1よりも大きいとき、駐車形態判定部17は、駐車形態が縦列駐車であると判定する。また、この場合において、ピーク値ΣLpが第1閾値ΣLth1以下であるとき、駐車形態判定部17は、駐車形態が並列駐車であると判定する。 FIG. 9 shows an example of the parking form determination table T1 in the parking form determination unit 17. As shown in FIG. 9, when the deviation amount Δθ is equal to or less than the predetermined amount Δθth and the peak value ΣLp is larger than the first threshold value ΣLth1, the parking form determining unit 17 determines that the parking form is parallel parking. Further, in this case, when the peak value ΣLp is equal to or less than the first threshold value ΣLth1, the parking form determination unit 17 determines that the parking form is parallel parking.
 すなわち、駐車形態が縦列駐車であるときはφs=0又はφs≒0であり、かつ、駐車形態が並列駐車であるときはφn=0又はφn≒0である。このため、駐車形態が縦列駐車又は並列駐車であるときは、駐車形態が斜め駐車であるときに比して、ずれ量Δθが小さくなる蓋然性が高い。この結果、Δθ≦Δθthとなる蓋然性が高い。ここで、通常、サイド面部の面積はノーズ面部の面積に比して大きい。このため、駐車形態が縦列駐車であるときは、駐車形態が並列駐車である場合に比して、ピーク値ΣLpが大きくなる蓋然性が高い。そこで、駐車形態判定部17は、ずれ量Δθが所定量Δθth以下であるとき、ピーク値ΣLpと第1閾値ΣLth1との大小関係に基づき、駐車形態が縦列駐車であるか並列駐車であるかを判定するのである。換言すれば、第1閾値ΣLth1は、駐車形態が縦列駐車であるか並列駐車であるかを識別可能な値に設定されている。 That is, when the parking form is parallel parking, φs = 0 or φs≈0, and when the parking form is parallel parking, φn = 0 or φn≈0. Therefore, when the parking form is parallel parking or parallel parking, there is a high possibility that the deviation amount Δθ will be smaller than when the parking form is diagonal parking. As a result, there is a high probability that Δθ ≦ Δθth. Here, the area of the side surface portion is usually larger than the area of the nose surface portion. Therefore, when the parking form is parallel parking, it is highly probable that the peak value ΣLp will be larger than when the parking form is parallel parking. Therefore, when the deviation amount Δθ is equal to or less than the predetermined amount Δθth, the parking form determination unit 17 determines whether the parking form is parallel parking or parallel parking based on the magnitude relationship between the peak value ΣLp and the first threshold value ΣLth1. Judge. In other words, the first threshold value ΣLth1 is set to a value that can identify whether the parking form is parallel parking or parallel parking.
 また、図9に示す如く、ずれ量Δθが所定量Δθthよりも大きい場合において、ピーク値ΣLpが第2閾値ΣLth2よりも大きいとき、駐車形態判定部17は、駐車形態が斜め駐車であり、かつ、基準面部がサイド面部であると判定する。また、この場合において、ピーク値ΣLpが第2閾値ΣLth2以下であるとき、駐車形態判定部17は、駐車形態が斜め駐車であり、かつ、基準面部がノーズ面部であると判定する。 Further, as shown in FIG. 9, when the deviation amount Δθ is larger than the predetermined amount Δθth and the peak value ΣLp is larger than the second threshold value ΣLth2, the parking form determining unit 17 has a parking form of diagonal parking. , It is determined that the reference surface portion is the side surface portion. Further, in this case, when the peak value ΣLp is equal to or less than the second threshold value ΣLth2, the parking form determination unit 17 determines that the parking form is oblique parking and the reference surface portion is the nose surface portion.
 すなわち、駐車形態が斜め駐車であるときはφs≠0かつφn≠0である。このため、駐車形態が斜め駐車であるときは、駐車形態が縦列駐車又は並列駐車であるときに比して、ずれ量Δθが大きくなる蓋然性が高い。この結果、Δθ>Δθthとなる蓋然性が高い。ここで、通常、サイド面部の面積はノーズ面部の面積に比して大きい。このため、基準面部がサイド面部であるときは、基準面部がノーズ面部であるときに比して、ピーク値ΣLpが大きくなる蓋然性が高い。そこで、駐車形態判定部17は、ずれ量Δθが所定量Δθthよりも大きいとき、ピーク値ΣLpと第2閾値ΣLth2との大小関係に基づき、基準面部がサイド面部であるかノーズ面部であるかを判定するのである。換言すれば、第2閾値ΣLth2は、基準面部がサイド面部であるかノーズ面部であるかを識別可能な値に設定されている。 That is, when the parking form is diagonal parking, φs ≠ 0 and φn ≠ 0. Therefore, when the parking form is diagonal parking, there is a high possibility that the deviation amount Δθ will be larger than when the parking form is parallel parking or parallel parking. As a result, there is a high probability that Δθ> Δθth. Here, the area of the side surface portion is usually larger than the area of the nose surface portion. Therefore, when the reference surface portion is the side surface portion, it is highly probable that the peak value ΣLp becomes larger than when the reference surface portion is the nose surface portion. Therefore, when the deviation amount Δθ is larger than the predetermined amount Δθth, the parking form determination unit 17 determines whether the reference surface portion is the side surface portion or the nose surface portion based on the magnitude relationship between the peak value ΣLp and the second threshold value ΣLth2. Judge. In other words, the second threshold value ΣLth2 is set to a value that can identify whether the reference surface portion is the side surface portion or the nose surface portion.
 次いで、駐車形態判定部17は、駐車形態が斜め駐車であると判定された場合、ピーク角度θpに基づき、他車両Vの駐車角度λを判定する。 Next, when it is determined that the parking mode is diagonal parking, the parking mode determination unit 17 determines the parking angle λ of the other vehicle V based on the peak angle θp.
 具体的には、例えば、駐車形態判定部17は、基準面部がサイド面部であると判定された場合、Y軸に沿う方向に対するサイド面部の角度(すなわちφsに対応する角度)λがθpと同等の値であると判定する。他方、基準面部がノーズ面部であると判定された場合、駐車形態判定部17は、Y軸に沿う方向に対するノーズ面部の角度(すなわちφnに対応する角度)λがθpと同等の値であると判定する。すなわち、駐車形態判定部17は、ピーク角度θpに対応する駐車角度λにて他車両Vが駐車中であると判定する。 Specifically, for example, when the parking form determination unit 17 determines that the reference surface portion is the side surface portion, the angle (that is, the angle corresponding to φs) λ of the side surface portion with respect to the direction along the Y axis is equivalent to θp. It is determined that the value is. On the other hand, when it is determined that the reference surface portion is the nose surface portion, the parking form determination unit 17 determines that the angle (that is, the angle corresponding to φn) λ of the nose surface portion with respect to the direction along the Y axis is a value equivalent to θp. judge. That is, the parking form determination unit 17 determines that the other vehicle V is parked at the parking angle λ corresponding to the peak angle θp.
 以下、実施の形態1において、駐車形態判定部17により実行される処理を総称して「駐車形態判定処理」という。 Hereinafter, in the first embodiment, the processes executed by the parking form determination unit 17 are collectively referred to as "parking form determination process".
 第1制御装置5は、位置算出処理の結果を示す情報、グループ化処理の結果を示す情報、及び駐車形態判定処理の結果を示す情報など(以下総称して「駐車支援用情報」という。)を出力する。第2制御装置6は、当該出力された駐車支援用情報を取得する。第2制御装置6は、当該取得された駐車支援用情報を用いて、いわゆる「自動駐車」を実現するための制御を実行する。 The first control device 5 includes information indicating the result of the position calculation process, information indicating the result of the grouping process, information indicating the result of the parking form determination process, and the like (hereinafter collectively referred to as "parking support information"). Is output. The second control device 6 acquires the output parking support information. The second control device 6 executes control for realizing so-called "automatic parking" by using the acquired parking support information.
 具体的には、例えば、第2制御装置6は、位置算出処理の結果及びグループ化処理の結果などに基づき、車両1用の駐車区画の位置及び幅などを算出する。第2制御装置6は、駐車形態判定処理の結果などに基づき、車両1のアクセル、ブレーキ及びステアリングなどを制御することにより、かかる駐車区画に車両1を誘導する。これにより、自動駐車が実現される。 Specifically, for example, the second control device 6 calculates the position and width of the parking lot for the vehicle 1 based on the result of the position calculation process and the result of the grouping process. The second control device 6 guides the vehicle 1 to the parking section by controlling the accelerator, brake, steering, etc. of the vehicle 1 based on the result of the parking form determination process or the like. As a result, automatic parking is realized.
 以下、第2制御装置6により実行される制御を総称して「駐車支援制御」という。駐車支援制御には、公知の種々の技術を用いることができる。これらの技術についての詳細な説明は省略する。 Hereinafter, the control executed by the second control device 6 is collectively referred to as "parking support control". Various known techniques can be used for parking support control. Detailed description of these techniques will be omitted.
 次に、図10を参照して、第1制御装置5の要部のハードウェア構成について説明する。 Next, with reference to FIG. 10, the hardware configuration of the main part of the first control device 5 will be described.
 図10Aに示す如く、第1制御装置5は、プロセッサ21及びメモリ22を有している。メモリ22には、速度判定部11、距離測定部12、位置算出部13、グループ化部14、角度演算部15、長さ演算部16及び駐車形態判定部17の機能を実現するためのプログラムが記憶されている。当該記憶されているプログラムをプロセッサ21が読み出して実行することにより、速度判定部11、距離測定部12、位置算出部13、グループ化部14、角度演算部15、長さ演算部16及び駐車形態判定部17の機能が実現される。 As shown in FIG. 10A, the first control device 5 has a processor 21 and a memory 22. The memory 22 contains a program for realizing the functions of the speed determination unit 11, the distance measurement unit 12, the position calculation unit 13, the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking form determination unit 17. It is remembered. When the processor 21 reads out and executes the stored program, the speed determination unit 11, the distance measurement unit 12, the position calculation unit 13, the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking mode The function of the determination unit 17 is realized.
 または、図10Bに示す如く、第1制御装置5は、処理回路23を有している。この場合、速度判定部11、距離測定部12、位置算出部13、グループ化部14、角度演算部15、長さ演算部16及び駐車形態判定部17の機能が専用の処理回路23により実現される。 Alternatively, as shown in FIG. 10B, the first control device 5 has a processing circuit 23. In this case, the functions of the speed determination unit 11, the distance measurement unit 12, the position calculation unit 13, the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking form determination unit 17 are realized by the dedicated processing circuit 23. To.
 または、第1制御装置5は、プロセッサ21、メモリ22及び処理回路23を有している(不図示)。この場合、速度判定部11、距離測定部12、位置算出部13、グループ化部14、角度演算部15、長さ演算部16及び駐車形態判定部17の機能のうちの一部の機能がプロセッサ21及びメモリ22により実現されるとともに、残余の機能が専用の処理回路23により実現される。 Alternatively, the first control device 5 has a processor 21, a memory 22, and a processing circuit 23 (not shown). In this case, some of the functions of the speed determination unit 11, the distance measurement unit 12, the position calculation unit 13, the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking form determination unit 17 are processors. In addition to being realized by the 21 and the memory 22, the remaining functions are realized by the dedicated processing circuit 23.
 プロセッサ21は、1個又は複数個のプロセッサにより構成されている。個々のプロセッサは、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)を用いたものである。 The processor 21 is composed of one or a plurality of processors. As the individual processor, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor) is used.
 メモリ22は、1個又は複数個の不揮発性メモリにより構成されている。または、メモリ22は、1個又は複数個の不揮発性メモリ及び1個又は複数個の揮発性メモリにより構成されている。個々の揮発性メモリは、例えば、RAM(Random Access Memory)を用いたものである。個々の不揮発性メモリは、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、SSD(Solid State Drive)又はHDD(Hard Disk Drive)を用いたものである。 The memory 22 is composed of one or a plurality of non-volatile memories. Alternatively, the memory 22 is composed of one or more non-volatile memories and one or more volatile memories. Each volatile memory uses, for example, a RAM (Random Access Memory). The individual non-volatile memories include, for example, a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Advanced Storage), a Small DriveSlide (Erasable Memory), and an EEPROM. Drive) is used.
 処理回路23は、1個又は複数個のデジタル回路により構成されている。または、処理回路23は、1個又は複数個のデジタル回路及び1個又は複数個のアナログ回路により構成されている。すなわち、処理回路23は、1個又は複数個の処理回路により構成されている。個々の処理回路は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)、SoC(System-on-a-Chip)又はシステムLSI(Large-Scale Integration)を用いたものである。 The processing circuit 23 is composed of one or a plurality of digital circuits. Alternatively, the processing circuit 23 is composed of one or more digital circuits and one or more analog circuits. That is, the processing circuit 23 is composed of one or a plurality of processing circuits. The individual processing circuits include, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), an FPGA (Field-Programmable Gate Array), and a System-System (System) System. ) Is used.
 次に、図11のフローチャートを参照して、第1制御装置5の動作について、速度判定部11、距離測定部12及び位置算出部13の動作を中心に説明する。 Next, with reference to the flowchart of FIG. 11, the operation of the first control device 5 will be described focusing on the operations of the speed determination unit 11, the distance measurement unit 12, and the position calculation unit 13.
 まず、ステップST1にて、速度判定部11が速度判定処理を実行する。車両1が所定速度未満の速度にて走行中であると判定された場合(ステップST2“YES”)、次いで、ステップST3にて、距離測定部12が距離測定処理を開始する。次いで、ステップST4にて、位置算出部13が位置算出処理を開始する。速度判定処理、距離算出処理及び位置算出処理の具体例については既に説明したとおりであるため、再度の説明は省略する。 First, in step ST1, the speed determination unit 11 executes the speed determination process. When it is determined that the vehicle 1 is traveling at a speed lower than the predetermined speed (step ST2 “YES”), then in step ST3, the distance measuring unit 12 starts the distance measuring process. Next, in step ST4, the position calculation unit 13 starts the position calculation process. Since specific examples of the speed determination process, the distance calculation process, and the position calculation process have already been described, the description thereof will be omitted again.
 次いで、ステップST5にて、速度判定部11が速度判定処理を実行する。車両1が基準速度以上の速度にて走行中であると判定された場合(ステップST6“NO”)、又は車両1が停止中であると判定された場合(ステップST6“NO”)、次いで、ステップST7にて、距離測定部12が距離測定処理を終了する。また、ステップST8にて、位置算出部13が位置算出処理を終了する。 Next, in step ST5, the speed determination unit 11 executes the speed determination process. When it is determined that the vehicle 1 is traveling at a speed equal to or higher than the reference speed (step ST6 "NO"), or when the vehicle 1 is determined to be stopped (step ST6 "NO"), then In step ST7, the distance measuring unit 12 ends the distance measuring process. Further, in step ST8, the position calculation unit 13 ends the position calculation process.
 次に、図12のフローチャートを参照して、第1制御装置5の動作について、グループ化部14、角度演算部15、長さ演算部16及び駐車形態判定部17の動作を中心に説明する。また、第2制御装置6の動作について説明する。 Next, with reference to the flowchart of FIG. 12, the operation of the first control device 5 will be described focusing on the operations of the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking form determination unit 17. Further, the operation of the second control device 6 will be described.
 ステップST3,ST7間にて、距離Dが1回以上測定されることにより、1個以上の距離Dが測定される。また、ステップST4,ST8間にて、反射点Pの位置が1回以上算出されることにより、1個以上の反射点Pの位置が算出される。複数個の反射点Pの位置が算出されたとき、ステップST11の処理が開始される。 By measuring the distance D one or more times between steps ST3 and ST7, one or more distances D are measured. Further, the positions of one or more reflection points P are calculated by calculating the positions of the reflection points P one or more times between steps ST4 and ST8. When the positions of the plurality of reflection points P are calculated, the process of step ST11 is started.
 まず、ステップST11にて、グループ化部14がグループ化処理を実行する。次いで、ステップST12にて角度演算部15が角度演算処理を実行する。次いで、ステップST13にて、長さ演算部16が長さ演算処理を実行する。次いで、ステップST14にて、駐車形態判定部17が駐車形態判定処理を実行する。グループ化処理、角度演算処理、長さ演算処理及び駐車形態判定処理の具体例については既に説明したとおりであるため、再度の説明は省略する。 First, in step ST11, the grouping unit 14 executes the grouping process. Next, in step ST12, the angle calculation unit 15 executes the angle calculation process. Next, in step ST13, the length calculation unit 16 executes the length calculation process. Next, in step ST14, the parking form determination unit 17 executes the parking form determination process. Since the specific examples of the grouping process, the angle calculation process, the length calculation process, and the parking form determination process have already been described, the description thereof will be omitted again.
 次いで、ステップST15にて、第1制御装置5が駐車支援用情報を出力する。次いで、ステップST16にて、第2制御装置6が駐車支援制御を実行する。駐車支援制御の具体例については既に説明したとおりであるため、再度の説明は省略する。 Next, in step ST15, the first control device 5 outputs parking support information. Next, in step ST16, the second control device 6 executes parking support control. Since the specific example of parking support control has already been described, the description thereof will be omitted again.
 次に、図13のフローチャートを参照して、駐車形態判定部17の詳細な動作について説明する。すなわち、ステップST14の詳細な処理内容について説明する。 Next, the detailed operation of the parking form determination unit 17 will be described with reference to the flowchart of FIG. That is, the detailed processing contents of step ST14 will be described.
 まず、ステップST21にて、駐車形態判定部17は、角度ビンB毎の線分長さLの和ΣLを算出する。これにより、ステップST22にて、駐車形態判定部17は、角度ビンB毎の和ΣLを示す分布D1を演算する。 First, in step ST21, the parking form determination unit 17 calculates the sum ΣL of the line segment length L for each angle bin B. As a result, in step ST22, the parking form determination unit 17 calculates the distribution D1 indicating the sum ΣL for each angle bin B.
 次いで、ステップST23にて、駐車形態判定部17は、分布D1におけるピーク値ΣLpを算出する。また、駐車形態判定部17は、分布D1におけるピーク角度θpを算出する。また、駐車形態判定部17は、基準角度θrefに対するピーク角度θpのずれ量Δθを算出する。ピーク値ΣLp、ピーク角度θp及びずれ量Δθの算出方法については既に説明したとおりであるため、再度の説明は省略する。 Next, in step ST23, the parking form determination unit 17 calculates the peak value ΣLp in the distribution D1. Further, the parking form determination unit 17 calculates the peak angle θp in the distribution D1. Further, the parking form determination unit 17 calculates the deviation amount Δθ of the peak angle θp with respect to the reference angle θref. Since the methods for calculating the peak value ΣLp, the peak angle θp, and the deviation amount Δθ have already been described, the description thereof will be omitted again.
 次いで、ステップST24にて、駐車形態判定部17は、ずれ量Δθ及びピーク値ΣLpに基づき、他車両Vの駐車形態を判定する。駐車形態の判定方法については既に説明したとおりであるため、再度の説明は省略する。 Next, in step ST24, the parking form determination unit 17 determines the parking form of the other vehicle V based on the deviation amount Δθ and the peak value ΣLp. Since the method of determining the parking mode has already been described, the description will be omitted again.
 駐車形態が斜め駐車であると判定された場合(ステップST25“YES”)、次いで、ステップST26にて、駐車形態判定部17は、ピーク角度θpに基づき、他車両Vの駐車角度λを判定する。駐車角度λの判定方法については既に説明したとおりであるため、再度の説明は省略する。 When it is determined that the parking mode is diagonal parking (step ST25 “YES”), then in step ST26, the parking mode determination unit 17 determines the parking angle λ of the other vehicle V based on the peak angle θp. .. Since the method for determining the parking angle λ has already been described, the description will be omitted again.
 次に、駐車形態判定装置100の効果について説明する。併せて、特許文献1記載の駐車形態判定装置(以下「従来の駐車形態判定装置」という。)の課題について説明する。 Next, the effect of the parking form determination device 100 will be described. At the same time, the problems of the parking form determination device described in Patent Document 1 (hereinafter referred to as “conventional parking form determination device”) will be described.
 距離測定処理及び位置算出処理は、車両1が基準速度(例えば30キロメートル毎時)未満の速度にて走行しているときに実行される。ここで、車両1の走行速度が高いときは、車両1の走行速度が低いときに比して、個々のグループGに含まれる反射点Pの個数が減少する。これにより、個々のグループGにおける角度θの演算値の個数も減少する。他方、車両1の走行速度が高いときは、車両1の走行速度が低いときに比して、個々の線分長さLの値が大きくなる傾向がある。 The distance measurement process and the position calculation process are executed when the vehicle 1 is traveling at a speed less than the reference speed (for example, 30 km / h). Here, when the traveling speed of the vehicle 1 is high, the number of reflection points P included in each group G is reduced as compared with the case where the traveling speed of the vehicle 1 is low. As a result, the number of calculated values of the angle θ in each group G also decreases. On the other hand, when the traveling speed of the vehicle 1 is high, the value of each line segment length L tends to be larger than when the traveling speed of the vehicle 1 is low.
 従来の駐車形態判定装置は、角度ビン毎の線分角度又は法線角度の演算値の個数を示す分布、すなわち角度ビン毎の度数を示す分布を用いて駐車形態を判定するものであった(特許文献1の図9~図11等参照。)。このため、車両1の走行速度が高いとき、個々の角度ビンにおける分布値が小さくなることにより、角度ビン間の分布値の差分値も小さくなる。この結果、閾値を用いた駐車形態の判定精度が低下する問題があった。 The conventional parking form determination device determines the parking form by using a distribution indicating the number of calculated values of the line segment angle or the normal angle for each angle bin, that is, a distribution indicating the degree for each angle bin (). See FIGS. 9 to 11 of Patent Document 1). Therefore, when the traveling speed of the vehicle 1 is high, the distribution value in each angle bin becomes small, so that the difference value of the distribution value between the angle bins also becomes small. As a result, there is a problem that the accuracy of determining the parking form using the threshold value is lowered.
 これに対して、駐車形態判定装置100は、角度ビンB毎の和ΣLを示す分布D1を用いるものである。すなわち、駐車形態判定装置100は、線分角度θ又は法線角度θに対する線分長さLの分布D1を用いるものである。このため、車両1の走行速度が高いときであっても、個々の角度ビンBにおける分布値が小さくなるのを回避することができる。この結果、閾値ΣLth1,ΣLth2を用いた駐車形態の判定精度が低下するのを回避することができる。換言すれば、駐車形態の判定精度を向上することができる。 On the other hand, the parking form determination device 100 uses the distribution D1 showing the sum ΣL for each angle bin B. That is, the parking form determination device 100 uses the distribution D1 of the line segment length L with respect to the line segment angle θ or the normal angle θ. Therefore, even when the traveling speed of the vehicle 1 is high, it is possible to prevent the distribution value in each angle bin B from becoming small. As a result, it is possible to avoid a decrease in the determination accuracy of the parking mode using the threshold values ΣLth1 and ΣLth2. In other words, the accuracy of determining the parking mode can be improved.
 また、通常、サイド面部においては、角度φsに応じた方向に探査波が反射される。また、ノーズ面部においては、角度φnに応じた方向に探査波が反射される。これに対して、他車両Vの角部においては、角度φs,φnにかかわらず、種々の方向に探査波が反射される(以下「乱反射」という。)。乱反射により、角部に対応する位置に密集するようにして、多数の反射点Pが検出されることがある。この場合、当該多数の反射点Pのうちの互いに隣接する各2個の反射点Pについて、線分角度θ又は法線角度θが演算されるとともに、線分長さLが演算される。この結果、種々の値を有する多数の線分角度θ又は法線角度θが演算されるとともに、小さい値を有する多数の線分長さLが演算される。 Also, normally, the exploration wave is reflected in the direction corresponding to the angle φs on the side surface portion. Further, on the nose surface portion, the exploration wave is reflected in the direction corresponding to the angle φn. On the other hand, at the corners of the other vehicle V, the exploration waves are reflected in various directions regardless of the angles φs and φn (hereinafter referred to as “diffuse reflection”). Due to diffused reflection, a large number of reflection points P may be detected so as to be densely packed at positions corresponding to the corners. In this case, the line segment angle θ or the normal angle θ is calculated and the line segment length L is calculated for each of the two reflection points P adjacent to each other among the large number of reflection points P. As a result, a large number of line segment angles θ or normal angles θ having various values are calculated, and a large number of line segment lengths L having small values are calculated.
 ここで、縦列駐車においてはサイド面部による反射が支配的であり、並列駐車においてはノーズ面部による反射が支配的である。これに対して、サイド面部を基準とする斜め駐車においては、サイド面部及び角部による反射が支配的である。また、ノーズ面部を基準とする斜め駐車においては、ノーズ面部及び角部による反射が支配的である。上記のとおり、従来の駐車形態判定装置は、角度ビン毎の度数を示す分布を用いて駐車形態を判定するものであった。このため、駐車形態が斜め駐車であるとき、乱反射に係る線分角度又は法線角度の値の影響により、当該分布の形状が不安定になる。この結果、駐車形態の判定精度が低下する問題があった。 Here, in parallel parking, the reflection by the side surface is dominant, and in parallel parking, the reflection by the nose surface is dominant. On the other hand, in oblique parking with reference to the side surface portion, reflection by the side surface portion and the corner portion is dominant. Further, in oblique parking with reference to the nose surface portion, reflection by the nose surface portion and the corner portion is dominant. As described above, the conventional parking form determining device determines the parking form using a distribution indicating the degree for each angle bin. Therefore, when the parking mode is oblique parking, the shape of the distribution becomes unstable due to the influence of the value of the line segment angle or the normal angle related to the diffused reflection. As a result, there is a problem that the determination accuracy of the parking form is lowered.
 これに対して、駐車形態判定装置100は、角度ビンB毎の和ΣLを示す分布D1を用いるものである。しがたって、乱反射に係る個々の線分長さLの値が小さいことにより、乱反射に係る線分角度θ又は法線角度θの値の影響を低減することができる。このため、駐車形態が斜め駐車であるときであっても、分布D1の形状を安定させることができる。この結果、駐車形態の判定精度が低下するのを回避することができる。換言すれば、駐車形態の判定精度を向上することができる。 On the other hand, the parking form determination device 100 uses the distribution D1 showing the sum ΣL for each angle bin B. Therefore, since the value of each line segment length L related to diffused reflection is small, the influence of the value of the line segment angle θ or normal angle θ related to diffused reflection can be reduced. Therefore, the shape of the distribution D1 can be stabilized even when the parking mode is diagonal parking. As a result, it is possible to avoid a decrease in the accuracy of determining the parking mode. In other words, the accuracy of determining the parking mode can be improved.
 次に、図14及び図15を参照して、駐車形態判定装置100の変形例について説明する。 Next, a modified example of the parking form determination device 100 will be described with reference to FIGS. 14 and 15.
 図14に示す如く、線分角度θは、X軸に沿う方向に対する線分SLの傾き角度を示すものであっても良い。図15に示す如く、法線角度θは、Y軸に沿う方向に対する法線ベクトルNVの傾き角度を示すものであっても良い。この場合、基準角度θrefは、例えば、90度に設定されたものであっても良い。 As shown in FIG. 14, the line segment angle θ may indicate the inclination angle of the line segment SL with respect to the direction along the X axis. As shown in FIG. 15, the normal angle θ may indicate the inclination angle of the normal vector NV with respect to the direction along the Y axis. In this case, the reference angle θref may be set to, for example, 90 degrees.
 以上のように、駐車形態判定装置100は、距離センサ2により得られた複数個の反射点Pをグループ化することにより、障害物に対応するグループGを設定するグループ化部14と、グループGに含まれる複数個の反射点Pのうちの互いに隣接する反射点Pを結ぶ個々の線分SLについて、線分角度θ又は法線角度θを演算する角度演算部15と、個々の線分SLについて、線分長さLを演算する長さ演算部16と、線分角度θ又は法線角度θに対する線分長さLの分布D1に基づき、グループGに対応する他車両Vの駐車形態が縦列駐車、並列駐車又は斜め駐車のうちのいずれであるかを判定する駐車形態判定部17と、を備える。これにより、他車両Vの駐車形態を判定することができる。特に、従来の駐車形態判定装置に比して駐車形態の判定精度を向上することができる。この結果、駐車形態判定装置100が駐車支援システム200に用いられる場合において、車両1が駐車をするとき、いわゆる「切り返し」の発生回数を低減することができる。 As described above, the parking form determination device 100 includes the grouping unit 14 that sets the group G corresponding to the obstacle by grouping the plurality of reflection points P obtained by the distance sensor 2, and the group G. For each line segment SL connecting the reflection points P adjacent to each other among the plurality of reflection points P included in the above, the angle calculation unit 15 for calculating the line segment angle θ or the normal angle θ, and the individual line segment SL. The parking mode of the other vehicle V corresponding to the group G is based on the length calculation unit 16 for calculating the line segment length L and the distribution D1 of the line segment length L with respect to the line segment angle θ or the normal angle θ. It is provided with a parking form determining unit 17 for determining which of column parking, parallel parking, and diagonal parking. Thereby, the parking form of the other vehicle V can be determined. In particular, the accuracy of determining the parking form can be improved as compared with the conventional parking form determining device. As a result, when the parking form determination device 100 is used in the parking support system 200, the number of occurrences of so-called "turning back" can be reduced when the vehicle 1 parks.
 また、分布D1は、角度範囲(角度ビンB)毎の線分長さLの和ΣLを示すものである。これにより、例えば、図5C、図6C、図7C及び図8Cに示す分布D1を実現することができる。 Further, the distribution D1 indicates the sum ΣL of the line segment length L for each angle range (angle bin B). Thereby, for example, the distribution D1 shown in FIGS. 5C, 6C, 7C and 8C can be realized.
 また、駐車形態判定部17は、基準角度θrefに対する分布D1におけるピーク角度θpのずれ量Δθが所定量Δθth以下である場合において、分布D1におけるピーク値ΣLpが第1閾値ΣLth1よりも大きいとき、駐車形態が縦列駐車であると判定する。これにより、縦列駐車の判定をすることができる。 Further, the parking form determination unit 17 parks when the peak value ΣLp in the distribution D1 is larger than the first threshold value ΣLth1 when the deviation amount Δθ of the peak angle θp in the distribution D1 with respect to the reference angle θref is equal to or less than the predetermined amount Δθth. It is determined that the form is parallel parking. This makes it possible to determine parallel parking.
 また、駐車形態判定部17は、基準角度θrefに対する分布D1におけるピーク角度θpのずれ量Δθが所定量Δθth以下である場合において、分布D1におけるピーク値ΣLpが第1閾値ΣLth1以下であるとき、駐車形態が並列駐車であると判定する。これにより、並列駐車の判定をすることができる。 Further, the parking form determination unit 17 parks when the peak value ΣLp in the distribution D1 is equal to or less than the first threshold value ΣLth1 when the deviation amount Δθ of the peak angle θp in the distribution D1 with respect to the reference angle θref is equal to or less than a predetermined amount Δθth. It is determined that the form is parallel parking. This makes it possible to determine parallel parking.
 また、駐車形態判定部17は、基準角度θrefに対する分布D1におけるピーク角度θpのずれ量Δθが所定量Δθthよりも大きい場合、駐車形態が斜め駐車であると判定する。これにより、斜め駐車の判定をすることができる。 Further, the parking form determination unit 17 determines that the parking form is diagonal parking when the deviation amount Δθ of the peak angle θp in the distribution D1 with respect to the reference angle θref is larger than the predetermined amount Δθth. This makes it possible to determine diagonal parking.
 また、駐車形態判定部17は、分布D1におけるピーク値ΣLpが第2閾値ΣLth2よりも大きいとき、駐車形態が他車両Vの左側面部又は右側面部を基準とする斜め駐車であると判定して、ピーク値ΣLpが第2閾値ΣLth2以下であるとき、駐車形態が他車両Vの前面部又は後面部を基準とする斜め駐車であると判定する。これにより、斜め駐車における基準面部の判定をすることができる。 Further, when the peak value ΣLp in the distribution D1 is larger than the second threshold value ΣLth2, the parking form determining unit 17 determines that the parking form is diagonal parking with reference to the left side surface portion or the right side surface portion of the other vehicle V. When the peak value ΣLp is equal to or less than the second threshold value ΣLth2, it is determined that the parking mode is diagonal parking with reference to the front surface portion or the rear surface portion of the other vehicle V. This makes it possible to determine the reference surface portion in diagonal parking.
 また、駐車形態判定部17は、ピーク角度θpに対応する駐車角度λにて他車両Vが駐車中であると判定する。これにより、駐車角度λの判定をすることができる。 Further, the parking form determination unit 17 determines that the other vehicle V is parked at the parking angle λ corresponding to the peak angle θp. Thereby, the parking angle λ can be determined.
実施の形態2.
 図16は、実施の形態2に係る駐車形態判定装置を含む駐車支援システムの要部を示すブロック図である。図16を参照して、実施の形態2に係る駐車形態判定装置を含む駐車支援システムについて説明する。なお、図16において、図1に示すブロックと同様のブロックには同一符号を付して説明を省略する。
Embodiment 2.
FIG. 16 is a block diagram showing a main part of the parking support system including the parking form determining device according to the second embodiment. A parking support system including the parking form determining device according to the second embodiment will be described with reference to FIG. In FIG. 16, the same blocks as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted.
 第1制御装置5aは、速度判定部11、距離測定部12、位置算出部13、グループ化部14、角度演算部15、長さ演算部16及び駐車形態判定部17aを有している。グループ化部14、角度演算部15、長さ演算部16及び駐車形態判定部17aにより、駐車形態判定装置100aの要部が構成されている。 The first control device 5a includes a speed determination unit 11, a distance measurement unit 12, a position calculation unit 13, a grouping unit 14, an angle calculation unit 15, a length calculation unit 16, and a parking form determination unit 17a. The grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking form determination unit 17a constitute a main part of the parking form determination device 100a.
 このようにして、駐車支援システム200aの要部が構成されている。 In this way, the main part of the parking support system 200a is configured.
 次に、図17~図21を参照して、駐車形態判定部17aにより実行される処理について説明する。 Next, the process executed by the parking form determination unit 17a will be described with reference to FIGS. 17 to 21.
 駐車形態判定部17aは、角度演算部15による演算結果及び長さ演算部16による演算結果に基づき、他車両Vの駐車形態を判定する。具体的には、例えば、駐車形態判定部17aは、以下のようにして他車両Vの駐車形態を判定する。 The parking form determination unit 17a determines the parking form of the other vehicle V based on the calculation result of the angle calculation unit 15 and the calculation result of the length calculation unit 16. Specifically, for example, the parking form determination unit 17a determines the parking form of the other vehicle V as follows.
 まず、駐車形態判定部17aは、長さ演算部16による演算結果に基づき、個々のグループGにおける線分長さLの総和ΣLaを算出する。次いで、駐車形態判定部17aは、角度演算部15による演算結果及び長さ演算部16による演算結果に基づき、個々のグループGにおける角度ビンB毎の線分長さLの和ΣLを算出する。次いで、駐車形態判定部17aは、個々のグループGにおける総和ΣLaに対する角度ビンB毎の和ΣLの比Rを算出する。これにより、駐車形態判定部17aは、個々のグループGにおける角度ビンB毎の比Rを示す分布D2を演算する。 First, the parking form determination unit 17a calculates the total sum ΣLa of the line segment length L in each group G based on the calculation result by the length calculation unit 16. Next, the parking form determination unit 17a calculates the sum ΣL of the line segment length L for each angle bin B in each group G based on the calculation result by the angle calculation unit 15 and the calculation result by the length calculation unit 16. Next, the parking form determination unit 17a calculates the ratio R of the sum ΣL for each angle bin B to the sum ΣLa in each group G. As a result, the parking form determination unit 17a calculates the distribution D2 indicating the ratio R for each angle bin B in each group G.
 図17は、図5Bに示す演算結果に基づく分布D2の例を示している。図17に示す例において、総和ΣLaは、以下の式(26)より算出されたものである。また、角度ビンB_3における比R_3、角度ビンB_4における比R_4、及び角度ビンB_5における比R_5は、以下の式(27)~式(29)によりそれぞれ算出されたものである。ここで、L_1~L_8は、図5Bに示すものである。 FIG. 17 shows an example of the distribution D2 based on the calculation result shown in FIG. 5B. In the example shown in FIG. 17, the sum ΣLa is calculated from the following equation (26). Further, the ratio R_3 in the angle bin B_3, the ratio R_4 in the angle bin B_4, and the ratio R_5 in the angle bin B_5 are calculated by the following equations (27) to (29), respectively. Here, L_1 to L_1 are shown in FIG. 5B.
 ΣLa=L_1+L_2+L_3+L_4+L_5
    +L_6+L_7+L_8          (26)
ΣLa = L_1 + L_2 + L_3 + L_4 + L_5
+ L_6 + L_7 + L_8 (26)
 R_3=L_8/ΣLa              (27) R_3 = L_8 / ΣLa (27)
 R_4=(L_2+L_3+L_4+L_5+L_6
    +L_7)/ΣLa             (28)
R_4 = (L_2 + L_3 + L_4 + L_5 + L_6
+ L_7) / ΣLa (28)
 R_5=L_1/ΣLa              (29) R_5 = L_1 / ΣLa (29)
 図18は、図6Bに示す演算結果に基づく分布D2の例を示している。図18に示す例において、総和ΣLaは、以下の式(30)より算出されたものである。また、角度ビンB_3における比R_3、角度ビンB_4における比R_4、及び角度ビンB_5における比R_5は、以下の式(31)~式(33)によりそれぞれ算出されたものである。ここで、L_1~L_6は、図6Bに示すものである。 FIG. 18 shows an example of the distribution D2 based on the calculation result shown in FIG. 6B. In the example shown in FIG. 18, the sum ΣLa is calculated from the following equation (30). Further, the ratio R_3 in the angle bin B_3, the ratio R_4 in the angle bin B_4, and the ratio R_5 in the angle bin B_5 are calculated by the following equations (31) to (33), respectively. Here, L_1 to L_1 are as shown in FIG. 6B.
 ΣLa=L_1+L_2+L_3+L_4+L_5
    +L_6                   (30)
ΣLa = L_1 + L_2 + L_3 + L_4 + L_5
+ L_6 (30)
 R_3=L_6/ΣLa               (31) R_3 = L_6 / ΣLa (31)
 R_4=(L_2+L_3+L_4+L_5)/ΣLa (32) R_4 = (L_2 + L_3 + L_4 + L_5) / ΣLa (32)
 R_5=L_1/ΣLa               (33) R_5 = L_1 / ΣLa (33)
 図19は、図7Bに示す演算結果に基づく分布D2の例を示している。図19に示す例において、総和ΣLaは、以下の式(34)より算出されたものである。また、角度ビンB_3における比R_3、角度ビンB_4における比R_4、及び角度ビンB_5における比R_5は、以下の式(35)~式(37)によりそれぞれ算出されたものである。ここで、L_1~L_9は、図7Bに示すものである。 FIG. 19 shows an example of the distribution D2 based on the calculation result shown in FIG. 7B. In the example shown in FIG. 19, the sum ΣLa is calculated from the following equation (34). The ratio R_3 in the angle bin B_3, the ratio R_4 in the angle bin B_4, and the ratio R_5 in the angle bin B_5 are calculated by the following equations (35) to (37), respectively. Here, L_1 to L_1 are those shown in FIG. 7B.
 ΣLa=L_1+L_2+L_3+L_4+L_5
    +L_6+L_7+L_8+L_9       (34)
ΣLa = L_1 + L_2 + L_3 + L_4 + L_5
+ L_6 + L_7 + L_8 + L_9 (34)
 R_3=(L_8+L_9)/ΣLa         (35) R_3 = (L_8 + L_9) / ΣLa (35)
 R_4=L_7/ΣLa               (36) R_4 = L_7 / ΣLa (36)
 R_5=(L_1+L_2+L_3+L_4+L_5
    +L_6)/ΣLa              (37)
R_5 = (L_1 + L_2 + L_3 + L_4 + L_5
+ L_6) / ΣLa (37)
 図20は、図8Bに示す演算結果に基づく分布D2の例を示している。図20に示す例において、総和ΣLaは、以下の式(38)より算出されたものである。また、角度ビンB_3における比R_3、角度ビンB_4における比R_4、及び角度ビンB_5における比R_5は、以下の式(39)~式(41)によりそれぞれ算出されたものである。ここで、L_1~L_6は、図8Bに示すものである。 FIG. 20 shows an example of the distribution D2 based on the calculation result shown in FIG. 8B. In the example shown in FIG. 20, the sum ΣLa is calculated from the following equation (38). Further, the ratio R_3 in the angle bin B_3, the ratio R_4 in the angle bin B_4, and the ratio R_5 in the angle bin B_5 are calculated by the following equations (39) to (41), respectively. Here, L_1 to L_1 are as shown in FIG. 8B.
 ΣLa=L_1+L_2+L_3+L_4+L_5
    +L_6                  (38)
ΣLa = L_1 + L_2 + L_3 + L_4 + L_5
+ L_6 (38)
 R_3=(L_5+L_6)/ΣLa        (39) R_3 = (L_5 + L_6) / ΣLa (39)
 R_4=L_4/ΣLa              (40) R_4 = L_4 / ΣLa (40)
 R_5=(L_1+L_2+L_3)/ΣLa    (41) R_5 = (L_1 + L_2 + L_3) / ΣLa (41)
 次いで、駐車形態判定部17aは、分布D2のピークトップPTにおける比Rの値(以下「ピーク値」という。)Rpを算出する。 Next, the parking form determination unit 17a calculates the value (hereinafter referred to as “peak value”) Rp of the ratio R at the peak top PT of the distribution D2.
 例えば、図17及び図18の各々に示す分布D2においては、角度ビンB_4における比R_4の値がピーク値Rpであると算出される。他方、図19及び図20の各々に示す分布D2においては、角度ビンB_5における比R_5の値がピーク値Rpであると算出される。 For example, in the distribution D2 shown in FIGS. 17 and 18, it is calculated that the value of the ratio R_4 in the angle bin B_4 is the peak value Rp. On the other hand, in the distribution D2 shown in FIGS. 19 and 20, the value of the ratio R_5 in the angle bin B_5 is calculated to be the peak value Rp.
 次いで、駐車形態判定部17aは、分布D2におけるピーク角度θpを算出する。分布D2におけるピーク角度θpの算出方法は、分布D1におけるピーク角度θpの算出方法と同様である。このため、詳細な説明は省略する。 Next, the parking form determination unit 17a calculates the peak angle θp in the distribution D2. The method of calculating the peak angle θp in the distribution D2 is the same as the method of calculating the peak angle θp in the distribution D1. Therefore, detailed description thereof will be omitted.
 次いで、駐車形態判定部17aは、基準角度θrefに対するピーク角度θpのずれ量Δθを算出する。基準角度θrefは、例えば、0度に設定されている。 Next, the parking form determination unit 17a calculates the deviation amount Δθ of the peak angle θp with respect to the reference angle θref. The reference angle θref is set to, for example, 0 degrees.
 次いで、駐車形態判定部17aは、ずれ量Δθを所定量Δθthと比較する。ずれ量Δθが所定量Δθth以下である場合、駐車形態判定部17は、ピーク値Rpを所定の閾値(以下「第1閾値」ということがある。)Rth1と比較する。他方、ずれ量Δθが所定量Δθthよりも大きい場合、駐車形態判定部17aは、ピーク値Rpを所定の閾値(以下「第2閾値」ということがある。)Rth2と比較する。 Next, the parking form determination unit 17a compares the deviation amount Δθ with the predetermined amount Δθth. When the deviation amount Δθ is equal to or less than a predetermined amount Δθth, the parking form determination unit 17 compares the peak value Rp with a predetermined threshold value (hereinafter, may be referred to as “first threshold value”) Rth1. On the other hand, when the deviation amount Δθ is larger than the predetermined amount Δθth, the parking form determination unit 17a compares the peak value Rp with the predetermined threshold value (hereinafter, may be referred to as “second threshold value”) Rth2.
 図21は、駐車形態判定部17aにおける駐車形態判定用のテーブルT2の例を示している。図21に示す如く、ずれ量Δθが所定量Δθth以下である場合において、ピーク値Rpが第1閾値Rth1よりも大きいとき、駐車形態判定部17aは、駐車形態が縦列駐車であると判定する。また、この場合において、ピーク値Rpが第1閾値Rth1以下であるとき、駐車形態判定部17aは、駐車形態が並列駐車であると判定する。すなわち、第1閾値Rth1は、駐車形態が縦列駐車であるか並列駐車であるかを識別可能な値に設定されている。 FIG. 21 shows an example of the parking form determination table T2 in the parking form determination unit 17a. As shown in FIG. 21, when the deviation amount Δθ is equal to or less than the predetermined amount Δθth and the peak value Rp is larger than the first threshold value Rth1, the parking form determining unit 17a determines that the parking form is parallel parking. Further, in this case, when the peak value Rp is equal to or less than the first threshold value Rth1, the parking form determination unit 17a determines that the parking form is parallel parking. That is, the first threshold value Rth1 is set to a value that can identify whether the parking mode is parallel parking or parallel parking.
 また、図21に示す如く、ずれ量Δθが所定量Δθthよりも大きい場合において、ピーク値Rpが第2閾値Rth2よりも大きいとき、駐車形態判定部17aは、駐車形態が斜め駐車であり、かつ、基準面部がサイド面部であると判定する。また、この場合において、ピーク値Rpが第2閾値Rth2以下であるとき、駐車形態判定部17aは、駐車形態が斜め駐車であり、かつ、基準面部がノーズ面部であると判定する。すなわち、第2閾値Rth2は、基準面部がサイド面部であるかノーズ面部であるかを識別可能な値に設定されている。 Further, as shown in FIG. 21, when the deviation amount Δθ is larger than the predetermined amount Δθth and the peak value Rp is larger than the second threshold value Rth2, the parking form determining unit 17a has a parking form of diagonal parking. , It is determined that the reference surface portion is the side surface portion. Further, in this case, when the peak value Rp is equal to or less than the second threshold value Rth2, the parking form determining unit 17a determines that the parking form is oblique parking and the reference surface portion is the nose surface portion. That is, the second threshold value Rth2 is set to a value that can identify whether the reference surface portion is the side surface portion or the nose surface portion.
 次いで、駐車形態判定部17aは、駐車形態が斜め駐車であると判定された場合、ピーク角度θpに基づき、他車両Vの駐車角度λを判定する。駐車角度λの判定方法は、実施の形態1にて説明したものと同様である。このため、詳細な説明は省略する。 Next, when it is determined that the parking mode is diagonal parking, the parking mode determination unit 17a determines the parking angle λ of the other vehicle V based on the peak angle θp. The method for determining the parking angle λ is the same as that described in the first embodiment. Therefore, detailed description thereof will be omitted.
 以下、実施の形態2において、駐車形態判定部17aにより実行される処理を総称して「駐車形態判定処理」という。 Hereinafter, in the second embodiment, the processes executed by the parking form determination unit 17a are collectively referred to as "parking form determination process".
 第1制御装置5aの要部のハードウェア構成は、実施の形態1にて図10を参照して説明したものと同様である。このため、図示及び説明を省略する。すなわち、速度判定部11、距離測定部12、位置算出部13、グループ化部14、角度演算部15、長さ演算部16及び駐車形態判定部17aの機能は、プロセッサ21及びメモリ22により実現されるものであっても良く、又は専用の処理回路23により実現されるものであっても良い。 The hardware configuration of the main part of the first control device 5a is the same as that described with reference to FIG. 10 in the first embodiment. Therefore, illustration and description will be omitted. That is, the functions of the speed determination unit 11, the distance measurement unit 12, the position calculation unit 13, the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking form determination unit 17a are realized by the processor 21 and the memory 22. It may be one, or it may be realized by a dedicated processing circuit 23.
 第1制御装置5aにおいて、ステップST1~ST8の処理が実行される。ステップST1~ST8の処理内容は、実施の形態1にて図11を参照して説明したものと同様である。このため、図示及び説明を省略する。 The processes of steps ST1 to ST8 are executed in the first control device 5a. The processing contents of steps ST1 to ST8 are the same as those described with reference to FIG. 11 in the first embodiment. Therefore, illustration and description will be omitted.
 次に、図22のフローチャートを参照して、第1制御装置5aの動作について、グループ化部14、角度演算部15、長さ演算部16及び駐車形態判定部17aの動作を中心に説明する。また、第2制御装置6の動作について説明する。なお、図22において、図12に示すステップと同様のステップには同一符号を付して説明を省略する。 Next, with reference to the flowchart of FIG. 22, the operation of the first control device 5a will be described focusing on the operations of the grouping unit 14, the angle calculation unit 15, the length calculation unit 16, and the parking form determination unit 17a. Further, the operation of the second control device 6 will be described. In FIG. 22, the same steps as those shown in FIG. 12 are designated by the same reference numerals, and the description thereof will be omitted.
 ステップST3,ST7間にて、距離Dが1回以上測定されることにより、1個以上の距離Dが測定される。また、ステップST4,ST8間にて、反射点Pの位置が1回以上算出されることにより、1個以上の反射点Pの位置が算出される。複数個の反射点Pの位置が算出されたとき、ステップST11の処理が開始される。 By measuring the distance D one or more times between steps ST3 and ST7, one or more distances D are measured. Further, the positions of one or more reflection points P are calculated by calculating the positions of the reflection points P one or more times between steps ST4 and ST8. When the positions of the plurality of reflection points P are calculated, the process of step ST11 is started.
 まず、ステップST11~ST13の処理が実行される。次いで、ステップST14aにて、駐車形態判定部17aが駐車形態判定処理を実行する。駐車形態判定処理の具体例については既に説明したとおりであるため、再度の説明は省略する。次いで、ステップST15,ST16の処理が実行される。 First, the processes of steps ST11 to ST13 are executed. Next, in step ST14a, the parking form determination unit 17a executes the parking form determination process. Since the specific example of the parking form determination process has already been described, the description thereof will be omitted again. Next, the processes of steps ST15 and ST16 are executed.
 次に、図23のフローチャートを参照して、駐車形態判定部17aの詳細な動作について説明する。すなわち、ステップST14aの詳細な処理内容について説明する。 Next, the detailed operation of the parking form determination unit 17a will be described with reference to the flowchart of FIG. 23. That is, the detailed processing contents of step ST14a will be described.
 まず、ステップST31にて、駐車形態判定部17aは、線分長さLの総和ΣLaを算出する。次いで、ステップST32にて、駐車形態判定部17aは、角度ビンB毎の線分長さLの和ΣLを算出する。次いで、ステップST33にて、駐車形態判定部17aは、総和ΣLaに対する角度ビンB毎の線分長さLの比Rを算出する。これにより、ステップST34にて、駐車形態判定部17aは、角度ビンB毎の比Rを示す分布D2を演算する。 First, in step ST31, the parking form determination unit 17a calculates the total sum ΣLa of the line segment length L. Next, in step ST32, the parking form determination unit 17a calculates the sum ΣL of the line segment length L for each angle bin B. Next, in step ST33, the parking form determination unit 17a calculates the ratio R of the line segment length L for each angle bin B with respect to the total sum ΣLa. As a result, in step ST34, the parking form determination unit 17a calculates the distribution D2 indicating the ratio R for each angle bin B.
 次いで、ステップST35にて、駐車形態判定部17aは、分布D2におけるピーク値Rpを算出する。また、駐車形態判定部17aは、分布D2におけるピーク角度θpを算出する。また、駐車形態判定部17aは、基準角度θrefに対するピーク角度θpのずれ量Δθを算出する。ピーク値Rp、ピーク角度θp及びずれ量Δθの算出方法については既に説明したとおりであるため、再度の説明は省略する。 Next, in step ST35, the parking form determination unit 17a calculates the peak value Rp in the distribution D2. Further, the parking form determination unit 17a calculates the peak angle θp in the distribution D2. Further, the parking form determination unit 17a calculates the deviation amount Δθ of the peak angle θp with respect to the reference angle θref. Since the methods for calculating the peak value Rp, the peak angle θp, and the deviation amount Δθ have already been described, the description thereof will be omitted again.
 次いで、ステップST36にて、駐車形態判定部17aは、ずれ量Δθ及びピーク値Rpに基づき、他車両Vの駐車形態を判定する。駐車形態の判定方法については既に説明したとおりであるため、再度の説明は省略する。 Next, in step ST36, the parking form determination unit 17a determines the parking form of the other vehicle V based on the deviation amount Δθ and the peak value Rp. Since the method of determining the parking mode has already been described, the description will be omitted again.
 駐車形態が斜め駐車であると判定された場合(ステップST37“YES”)、次いで、ステップST38にて、駐車形態判定部17aは、ピーク角度θpに基づき、他車両Vの駐車角度λを判定する。駐車角度λの判定方法については既に説明したとおりであるため、再度の説明は省略する。 When it is determined that the parking mode is diagonal parking (step ST37 “YES”), then in step ST38, the parking mode determination unit 17a determines the parking angle λ of the other vehicle V based on the peak angle θp. .. Since the method for determining the parking angle λ has already been described, the description will be omitted again.
 次に、駐車形態判定装置100aの効果について説明する。 Next, the effect of the parking form determination device 100a will be described.
 駐車形態判定装置100aは、角度ビンB毎の比Rを示す分布D2を用いるものである。すなわち、駐車形態判定装置100aは、線分角度θ又は法線角度θに対する線分長さLの分布D2を用いるものである。このため、駐車形態判定装置100と同様に、従来の駐車形態判定装置に比して駐車形態の判定精度を向上することができる。 The parking form determination device 100a uses the distribution D2 showing the ratio R for each angle bin B. That is, the parking form determination device 100a uses the distribution D2 of the line segment length L with respect to the line segment angle θ or the normal angle θ. Therefore, similarly to the parking form determination device 100, the accuracy of determining the parking form can be improved as compared with the conventional parking form determination device.
 また、駐車形態判定装置100aは、複数台の他車両Vが駐車中であり、かつ、当該複数台の他車両Vのうちの互いに隣接する各2台の他車両V間の間隔が小さいとき、駐車形態判定装置100に比して駐車形態の判定精度を更に向上することができる。 Further, in the parking form determination device 100a, when a plurality of other vehicles V are parked and the distance between each of the two other vehicles V adjacent to each other among the plurality of other vehicles V is small. The accuracy of determining the parking form can be further improved as compared with the parking form determining device 100.
 すなわち、グループ化部14において、原則、1個又は複数個の障害物と一対一に対応する1個又は複数個のグループGが設定される。しかしながら、複数台の他車両Vが駐車中であり、かつ、当該複数台の他車両Vのうちの互いに隣接する各2台の他車両V間の間隔が小さいとき、当該複数台の他車両Vのうちの2台以上の他車両Vに対応する反射点Pが1個のグループGに含まれることがある。これにより、当該複数台の他車両Vのうちの1台の他車両Vに対応する反射点Pのみが当該1個のグループGに含まれる場合に比して、個々の角度ビンBにおける和ΣLの値が大きくなる。この結果、和ΣLに対する閾値ΣLth1,ΣLth2を用いた場合、駐車形態の判定精度が低下する可能性がある。 That is, in the grouping unit 14, in principle, one or a plurality of group Gs corresponding to one or a plurality of obstacles one-to-one are set. However, when a plurality of other vehicles V are parked and the distance between each of the two other vehicles V adjacent to each other among the plurality of other vehicles V is small, the plurality of other vehicles V Reflection points P corresponding to two or more of the other vehicles V may be included in one group G. As a result, the sum ΣL in each angle bin B is compared with the case where only the reflection point P corresponding to one other vehicle V among the plurality of other vehicles V is included in the one group G. The value of becomes large. As a result, when the threshold values ΣLth1 and ΣLth2 for the sum ΣL are used, the accuracy of determining the parking mode may decrease.
 これに対して、比Rに対する閾値Rth1,Rth2を用いることにより、2台以上の他車両Vに対応する反射点Pが1個のグループGに含まれる場合であっても、駐車形態の判定精度が低下するのを回避することができる。換言すれば、駐車形態の判定精度を更に向上することができる。 On the other hand, by using the threshold values Rth1 and Rth2 for the ratio R, even when the reflection points P corresponding to two or more other vehicles V are included in one group G, the determination accuracy of the parking mode is correct. Can be avoided from decreasing. In other words, the accuracy of determining the parking mode can be further improved.
 なお、駐車形態判定装置100aは、実施の形態1にて説明したものと同様の種々の変形例を採用することができる。 Note that the parking form determination device 100a can employ various modifications similar to those described in the first embodiment.
 以上のように、駐車形態判定装置100aは、距離センサ2により得られた複数個の反射点Pをグループ化することにより、障害物に対応するグループGを設定するグループ化部14と、グループGに含まれる複数個の反射点Pのうちの互いに隣接する反射点Pを結ぶ個々の線分SLについて、線分角度θ又は法線角度θを演算する角度演算部15と、個々の線分SLについて、線分長さLを演算する長さ演算部16と、線分角度θ又は法線角度θに対する線分長さLの分布D2に基づき、グループGに対応する他車両Vの駐車形態が縦列駐車、並列駐車又は斜め駐車のうちのいずれであるかを判定する駐車形態判定部17aと、を備える。これにより、他車両Vの駐車形態を判定することができる。特に、従来の駐車形態判定装置に比して駐車形態の判定精度を向上することができる。 As described above, the parking form determination device 100a includes the grouping unit 14 that sets the group G corresponding to the obstacle by grouping the plurality of reflection points P obtained by the distance sensor 2, and the group G. For each line segment SL connecting the reflection points P adjacent to each other among the plurality of reflection points P included in the above, the angle calculation unit 15 for calculating the line segment angle θ or the normal angle θ, and the individual line segment SL. The parking mode of the other vehicle V corresponding to the group G is based on the length calculation unit 16 for calculating the line segment length L and the distribution D2 of the line segment length L with respect to the line segment angle θ or the normal angle θ. It is provided with a parking form determining unit 17a for determining whether it is a column parking, a parallel parking, or an oblique parking. Thereby, the parking form of the other vehicle V can be determined. In particular, the accuracy of determining the parking form can be improved as compared with the conventional parking form determining device.
 また、分布D2は、線分長さLの総和ΣLaに対する角度範囲(角度ビンB)毎の線分長さLの和ΣLの比Rを示すものである。これにより、例えば、図17~図20に示す分布D2を実現することができる。この結果、駐車形態判定装置100に比して駐車形態の判定精度を更に向上することができる。 Further, the distribution D2 indicates the ratio R of the sum ΣL of the line segment length L for each angle range (angle bin B) with respect to the total ΣLa of the line segment length L. Thereby, for example, the distribution D2 shown in FIGS. 17 to 20 can be realized. As a result, the accuracy of determining the parking form can be further improved as compared with the parking form determining device 100.
 また、駐車形態判定部17aは、基準角度θrefに対する分布D2におけるピーク角度θpのずれ量Δθが所定量Δθth以下である場合において、分布D2におけるピーク値Rpが第1閾値Rth1よりも大きいとき、駐車形態が縦列駐車であると判定する。これにより、縦列駐車の判定をすることができる。 Further, the parking form determination unit 17a parks when the peak value Rp in the distribution D2 is larger than the first threshold value Rth1 when the deviation amount Δθ of the peak angle θp in the distribution D2 with respect to the reference angle θref is equal to or less than the predetermined amount Δθth. It is determined that the form is parallel parking. This makes it possible to determine parallel parking.
 また、駐車形態判定部17aは、基準角度θrefに対する分布D2におけるピーク角θp度のずれ量Δθが所定量Δθth以下である場合において、分布D2におけるピーク値Rpが第1閾値Rth1以下であるとき、駐車形態が並列駐車であると判定する。これにより、並列駐車の判定をすることができる。 Further, when the deviation amount Δθ of the peak angle θp degree in the distribution D2 with respect to the reference angle θref is equal to or less than the predetermined amount Δθth, the parking form determination unit 17a determines that the peak value Rp in the distribution D2 is equal to or less than the first threshold value Rth1. It is determined that the parking form is parallel parking. This makes it possible to determine parallel parking.
 また、駐車形態判定部17aは、基準角度θrefに対する分布D2におけるピーク角度θpのずれ量Δθが所定量Δθthよりも大きい場合、駐車形態が斜め駐車であると判定する。これにより、斜め駐車の判定をすることができる。 Further, when the deviation amount Δθ of the peak angle θp in the distribution D2 with respect to the reference angle θref is larger than the predetermined amount Δθth, the parking form determination unit 17a determines that the parking form is diagonal parking. This makes it possible to determine diagonal parking.
 また、駐車形態判定部17aは、分布D2におけるピーク値Rpが第2閾値Rth2よりも大きいとき、駐車形態が他車両Vの左側面部又は右側面部を基準とする斜め駐車であると判定して、ピーク値Rpが第2閾値Rth2以下であるとき、駐車形態が他車両Vの前面部又は後面部を基準とする斜め駐車であると判定する。これより、斜め駐車における基準面部の判定をすることができる。 Further, when the peak value Rp in the distribution D2 is larger than the second threshold value Rth2, the parking form determining unit 17a determines that the parking form is diagonal parking with reference to the left side surface portion or the right side surface portion of the other vehicle V. When the peak value Rp is equal to or less than the second threshold value Rth2, it is determined that the parking mode is diagonal parking with reference to the front surface portion or the rear surface portion of the other vehicle V. From this, it is possible to determine the reference surface portion in diagonal parking.
 また、駐車形態判定部17aは、ピーク角度θpに対応する駐車角度λにて他車両Vが駐車中であると判定する。これにより、駐車角度λの判定をすることができる。 Further, the parking form determination unit 17a determines that the other vehicle V is parked at the parking angle λ corresponding to the peak angle θp. Thereby, the parking angle λ can be determined.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, it is possible to freely combine each embodiment, modify any component of each embodiment, or omit any component in each embodiment. ..
 本発明の駐車形態判定装置は、例えば、駐車支援システムに用いることができる。 The parking form determination device of the present invention can be used, for example, in a parking support system.
 1 車両、2 距離センサ、3 第1センサ類、4 第2センサ類、5,5a 第1制御装置、6 第2制御装置、11 速度判定部、12 距離測定部、13 位置算出部、14 グループ化部、15 角度演算部、16 長さ演算部、17,17a 駐車形態判定部、21 プロセッサ、22 メモリ、23 処理回路、100,100a 駐車形態判定装置、200,200a 駐車支援システム。 1 vehicle, 2 distance sensor, 3 1st sensor, 4 2nd sensor, 5, 5a 1st control device, 6 2nd control device, 11 speed determination unit, 12 distance measurement unit, 13 position calculation unit, 14 group Chemical unit, 15 angle calculation unit, 16 length calculation unit, 17, 17a parking form determination unit, 21 processor, 22 memory, 23 processing circuit, 100, 100a parking form determination device, 200, 200a parking support system.

Claims (8)

  1.  距離センサにより得られた複数個の反射点をグループ化することにより、障害物に対応するグループを設定するグループ化部と、
     前記グループに含まれる複数個の反射点のうちの互いに隣接する反射点を結ぶ個々の線分について、線分角度又は法線角度を演算する角度演算部と、
     個々の前記線分について、線分長さを演算する長さ演算部と、
     前記線分角度又は前記法線角度に対する前記線分長さの分布に基づき、前記グループに対応する他車両の駐車形態が縦列駐車、並列駐車又は斜め駐車のうちのいずれであるかを判定する駐車形態判定部と、
     を備える駐車形態判定装置。
    A grouping unit that sets a group corresponding to an obstacle by grouping a plurality of reflection points obtained by a distance sensor, and a grouping unit.
    An angle calculation unit that calculates a line segment angle or a normal angle for individual line segments connecting adjacent reflection points among a plurality of reflection points included in the group.
    For each of the line segments, a length calculation unit that calculates the line segment length and
    Parking to determine whether the parking form of another vehicle corresponding to the group is parallel parking, parallel parking, or diagonal parking based on the distribution of the line segment angle or the line segment length with respect to the normal line angle. Morphological determination unit and
    A parking form determination device including.
  2.  前記分布は、角度範囲毎の前記線分長さの和を示すものであることを特徴とする請求項1記載の駐車形態判定装置。 The parking form determination device according to claim 1, wherein the distribution indicates the sum of the lengths of the line segments for each angle range.
  3.  前記分布は、前記線分長さの総和に対する角度範囲毎の前記線分長さの和の比を示すものであることを特徴とする請求項1記載の駐車形態判定装置。 The parking form determination device according to claim 1, wherein the distribution indicates the ratio of the sum of the line segment lengths for each angle range to the total sum of the line segment lengths.
  4.  前記駐車形態判定部は、基準角度に対する前記分布におけるピーク角度のずれ量が所定量以下である場合において、前記分布におけるピーク値が第1閾値よりも大きいとき、前記駐車形態が前記縦列駐車であると判定することを特徴とする請求項2又は請求項3記載の駐車形態判定装置。 In the parking form determination unit, when the deviation amount of the peak angle in the distribution with respect to the reference angle is equal to or less than a predetermined amount and the peak value in the distribution is larger than the first threshold value, the parking form is parallel parking. The parking form determination device according to claim 2 or 3, wherein the parking form determination device is characterized in that.
  5.  前記駐車形態判定部は、基準角度に対する前記分布におけるピーク角度のずれ量が所定量以下である場合において、前記分布におけるピーク値が第1閾値以下であるとき、前記駐車形態が前記並列駐車であると判定することを特徴とする請求項2又は請求項3記載の駐車形態判定装置。 In the parking form determination unit, when the deviation amount of the peak angle in the distribution with respect to the reference angle is not more than a predetermined amount and the peak value in the distribution is not more than the first threshold value, the parking form is the parallel parking. The parking form determination device according to claim 2 or 3, wherein the parking form determination device is characterized in that.
  6.  前記駐車形態判定部は、基準角度に対する前記分布におけるピーク角度のずれ量が所定量よりも大きい場合、前記駐車形態が前記斜め駐車であると判定することを特徴とする請求項2又は請求項3記載の駐車形態判定装置。 Claim 2 or claim 3 is characterized in that the parking form determining unit determines that the parking form is the oblique parking when the deviation amount of the peak angle in the distribution with respect to the reference angle is larger than a predetermined amount. The described parking form determination device.
  7.  前記駐車形態判定部は、前記分布におけるピーク値が第2閾値よりも大きいとき、前記駐車形態が前記他車両の左側面部又は右側面部を基準とする前記斜め駐車であると判定して、前記ピーク値が前記第2閾値以下であるとき、前記駐車形態が前記他車両の前面部又は後面部を基準とする前記斜め駐車であると判定することを特徴とする請求項6記載の駐車形態判定装置。 When the peak value in the distribution is larger than the second threshold value, the parking form determining unit determines that the parking form is the oblique parking with reference to the left side surface portion or the right side surface portion of the other vehicle, and determines that the peak value. The parking form determining device according to claim 6, wherein when the value is equal to or less than the second threshold value, it is determined that the parking form is the oblique parking based on the front surface portion or the rear surface portion of the other vehicle. ..
  8.  前記駐車形態判定部は、前記ピーク角度に対応する駐車角度にて前記他車両が駐車中であると判定することを特徴とする請求項7記載の駐車形態判定装置。 The parking form determining device according to claim 7, wherein the parking form determining unit determines that the other vehicle is parked at a parking angle corresponding to the peak angle.
PCT/JP2019/018765 2019-05-10 2019-05-10 Parking form determination device WO2020230193A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021514451A JP6890744B2 (en) 2019-05-10 2019-05-10 Parking type judgment device
PCT/JP2019/018765 WO2020230193A1 (en) 2019-05-10 2019-05-10 Parking form determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/018765 WO2020230193A1 (en) 2019-05-10 2019-05-10 Parking form determination device

Publications (1)

Publication Number Publication Date
WO2020230193A1 true WO2020230193A1 (en) 2020-11-19

Family

ID=73289867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018765 WO2020230193A1 (en) 2019-05-10 2019-05-10 Parking form determination device

Country Status (2)

Country Link
JP (1) JP6890744B2 (en)
WO (1) WO2020230193A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030700A (en) * 2005-07-27 2007-02-08 Aisin Seiki Co Ltd Parking support device
WO2017060975A1 (en) * 2015-10-06 2017-04-13 三菱電機株式会社 Parking mode determination device
WO2017104164A1 (en) * 2015-12-17 2017-06-22 日産自動車株式会社 Parking support method and device
WO2018061893A1 (en) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 Parking control device, parking control method and parking control program
JP2019020769A (en) * 2017-07-11 2019-02-07 株式会社デンソー Obstacle detector

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3404793B2 (en) * 1993-03-24 2003-05-12 トヨタ自動車株式会社 Parking space detection device
RU2703478C1 (en) * 2015-10-22 2019-10-17 Ниссан Мотор Ко., Лтд. Parking assistance method and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030700A (en) * 2005-07-27 2007-02-08 Aisin Seiki Co Ltd Parking support device
WO2017060975A1 (en) * 2015-10-06 2017-04-13 三菱電機株式会社 Parking mode determination device
WO2017104164A1 (en) * 2015-12-17 2017-06-22 日産自動車株式会社 Parking support method and device
WO2018061893A1 (en) * 2016-09-30 2018-04-05 パナソニックIpマネジメント株式会社 Parking control device, parking control method and parking control program
JP2019020769A (en) * 2017-07-11 2019-02-07 株式会社デンソー Obstacle detector

Also Published As

Publication number Publication date
JPWO2020230193A1 (en) 2021-09-13
JP6890744B2 (en) 2021-06-18

Similar Documents

Publication Publication Date Title
JP6272582B2 (en) Parking type determination device
US10759422B2 (en) Device for controlling vehicle at intersection
US8195363B2 (en) Steering control device for vehicle
JP6625228B2 (en) Parking assistance device
CA2928073C (en) Automatic driving vehicle system
US9981691B2 (en) Vehicle steering control apparatus
US8130120B2 (en) Parking assistance device
US10884125B2 (en) Parking assistance device
US20090157314A1 (en) Method for measuring lateral movements in a driver assistance system
JP3324325B2 (en) Vehicle front monitoring device
US20230008630A1 (en) Radar device
JP5983276B2 (en) Parking assistance device
US11142187B2 (en) Parking assistance device
JP6890744B2 (en) Parking type judgment device
JP7312356B2 (en) Vehicle driving support system
WO2021229722A1 (en) Obstacle detection device, parking assistance device, collision avoidance device, and obstacle detection method
JP3376863B2 (en) Vehicle ahead detection device
US11192499B2 (en) System and method of avoiding rear-cross traffic collision
WO2020008536A1 (en) Obstacle detection device
JP7034271B2 (en) Parking support device
JP7237242B2 (en) parking assist device
US20240135824A1 (en) Vehicle object detection system and method for detecting a target object in a detection area located behind and lateral of a subject vehicle
US20230227025A1 (en) Vehicle drive assist apparatus
WO2020008535A1 (en) Obstacle detection device
JP7199436B2 (en) Obstacle detection device and driving support device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928414

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514451

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928414

Country of ref document: EP

Kind code of ref document: A1