WO2020228720A1 - 平面光栅标定系统 - Google Patents

平面光栅标定系统 Download PDF

Info

Publication number
WO2020228720A1
WO2020228720A1 PCT/CN2020/089949 CN2020089949W WO2020228720A1 WO 2020228720 A1 WO2020228720 A1 WO 2020228720A1 CN 2020089949 W CN2020089949 W CN 2020089949W WO 2020228720 A1 WO2020228720 A1 WO 2020228720A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
plane grating
phase
beam splitter
interferometer
Prior art date
Application number
PCT/CN2020/089949
Other languages
English (en)
French (fr)
Inventor
王磊杰
张鸣
朱煜
郝建坤
李鑫
成荣
杨开明
胡金春
Original Assignee
清华大学
北京华卓精科科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 北京华卓精科科技股份有限公司 filed Critical 清华大学
Priority to US17/610,730 priority Critical patent/US11940349B2/en
Publication of WO2020228720A1 publication Critical patent/WO2020228720A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0207Details of measuring devices
    • G01M11/0214Details of devices holding the object to be tested
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/04Optical benches therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1847Manufacturing methods
    • G02B5/1857Manufacturing methods using exposure or etching means, e.g. holography, photolithography, exposure to electron or ion beams
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/11Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on acousto-optical elements, e.g. using variable diffraction by sound or like mechanical waves

Definitions

  • This application belongs to the technical field of optical metrology, and particularly relates to a plane grating calibration system.
  • plane gratings have become more and more widely used, such as grating rulers, plane grating spectrographs, grating monochromators, and large-scale lithography equipment All other scientific instruments must be used.
  • high-precision plane gratings have important applications in "large optical systems” and “inertial confinement nuclear fusion laser drive devices”. The manufacturing error of the plane grating will affect the measurement accuracy of these precision equipment, so the calibration of the plane grating is of great significance to improve the measurement accuracy of the optical instrument with the plane grating as the core.
  • a planar grating reading mode system is disclosed to realize grating calibration.
  • the light source of the optical subsystem and the light source of the displacement subsystem are not the same light source, and the coherence and wavelength stability of the light source of the optical subsystem are far lower than the light source of the displacement measurement subsystem, which affects the accuracy of plane grating calibration.
  • the optical subsystem and the workpiece stage in the system adopt vibration isolation measures.
  • the integrated vibration isolation method is adopted to make the movement Part of the vibration generated by the workpiece stage will inevitably be transmitted and act on the optical subsystem, which will cause errors and affect the accuracy of the plane grating calibration.
  • this application provides a plane grating calibration system, which includes an optical subsystem, a frame, a first vibration isolator, a vacuum chuck, a workpiece table, a second vibration isolator, a substrate, and a control system.
  • the optical subsystem is installed on the frame, and the frame is vibration-isolated by the first vibration isolator; the vacuum suction cup is rotatably installed on the workpiece table, the workpiece table is located on the base, and the base uses the second vibration isolator to isolate vibration ,
  • the controller contains a phase card
  • the optical subsystem includes a dual-frequency laser, a first beam splitter, a first mirror, a first right-angle mirror, a second right-angle mirror, a first polarization beam splitter, a phase modulator, a first phase meter, and a second polarizer.
  • the transmitted p light sequentially passes through the second reflector, the first collimating lens and the first beam sampler.
  • the p light reflected by the first beam sampler is transmitted through the second polarization beam splitter, and the first beam sampler
  • the transmitted p light passes through the plane grating to produce 0-order diffracted light, and the 0-order diffracted light is reflected by the second beam sampler;
  • the s light reflected by the first polarization beam splitter is sequentially passed through the phase modulator, the third mirror, and the second collimator
  • the lens and the second beam sampler, the s light reflected by the second beam sampler is reflected by the second polarizing beam splitter and combined with the p light transmitted by the second polarizing beam splitter to form the first measuring light, and the first measuring light is input to the first Phase meter;
  • the s light transmitted by the second beam sampler is diffracted by the plane grating to produce -1 order diffracted light, the -1 order diffracted light is
  • the first measuring light of the first phase meter, the second measuring light of the second phase meter, and the workpiece table movement information of the displacement interferometer assembly are fed back to the controller, and the dual-frequency laser sends out reference light to the phase card of the controller.
  • the arithmetic processing generates a control command and transmits it to the phase modulator, and the phase modulator modulates the laser beam according to the control command to correct errors in plane grating calibration.
  • phase modulator adopts an electro-optical modulator.
  • the phase modulator includes a first acousto-optic modulator and a second acousto-optic modulator; the first acousto-optic modulator is arranged on the p light transmitted by the first polarization beam splitter, and the first polarization beam splitter decomposes The transmitted p light is modulated by the first acousto-optic modulator and then to the second mirror; the second acousto-optic modulator is set on the s light reflected by the first polarization beam splitter, and the s light reflected by the first polarization beam splitter passes through the second mirror. The second acousto-optic modulator is modulated to the third mirror.
  • the displacement interferometer assembly includes an X-direction interferometer, a Y-direction interferometer, a third right-angle mirror, and a second beam splitter, and the laser input into the displacement interferometer assembly is reflected to the second beam splitter by the third right-angle mirror
  • the transmitted light decomposed by the second beam splitter is scanned by the X-direction interferometer, and the reflected light broken by the second beam splitter is scanned by the Y-direction interferometer.
  • the plane grating is a one-dimensional plane grating, and the workpiece table can perform a stepping movement in the X direction and a scanning movement in the Y direction.
  • the plane grating is a two-dimensional plane grating; the workpiece stage first performs a step movement along the X direction and a scanning movement along the Y direction to complete the first dimension calibration of the plane grating; then the vacuum chuck drives the plane grating to rotate around the Z axis At 90 degrees, the workpiece table continues to perform stepping movement along the X direction and scanning movement along the Y direction to complete the second-dimensional plane raster calibration.
  • the controller performs the following calculation processing on the information of the first measurement light and the information of the reference light fed back by the first phase meter:
  • ⁇ 1 represents the radian value of the phase change of the first measuring light, which reflects the phase change of the first measuring light caused by vibration and air disturbance;
  • PM 1 represents the value obtained by comparing the first measurement light with the reference light by the phase card
  • F represents the resolution of the phase card in the controller
  • the controller performs the following calculation processing on the information of the second measurement light and the information of the reference light fed back by the second phase meter:
  • ⁇ 2 represents the phase change radian value of the second measurement light, which reflects the phase change of the second measurement light caused by vibration and air disturbance;
  • PM 2 represents the value obtained by comparing the second measurement light with the reference light by the phase card
  • x m represents the value of the phase shift produced by the beam diffracted by the plane grating under the influence of vibration and air disturbance
  • represents the period of the plane grating
  • the controller generates a control command according to the above-mentioned arithmetic processing result and transmits it to the phase modulator.
  • the phase modulator modulates the laser beam according to the control command to correct errors in the calibration of the plane grating caused by factors such as vibration and air disturbance.
  • the X-direction interferometer and the Y-direction interferometer respectively collect the X-direction and Y-direction displacements of the workpiece stage in real time, and feed them back to the controller, which will perform the following calculation processing:
  • x e represents the phase shift of the beam after diffraction by the plane grating caused by the movement error of the workpiece stage
  • represents the deflection angle of the grating grid line in the workpiece table coordinate system
  • x r represents the ideal displacement of the workpiece table referenced in the x-axis direction in the coordinate system
  • y r represents the ideal displacement of the workpiece table referenced in the y-axis direction in the coordinate system
  • x represents the actual measured displacement in the x-axis direction of the interferometer
  • y represents the actual measured displacement in the y-axis direction of the interferometer
  • the comprehensive phase shift produced by the beam after the plane grating is diffracted is:
  • x fle represents the comprehensive phase shift produced by the beam after diffraction by the plane grating
  • the controller generates a control command according to the above-mentioned arithmetic processing result and transmits it to the phase modulator.
  • the phase modulator modulates the laser beam according to the control command to correct errors in the calibration of the flat grating caused by factors such as vibration, air disturbance, and workpiece table movement errors. .
  • the X-direction interferometer and Y-direction interferometer respectively collect the displacements of the workpiece table in the X direction and Y direction in real time, and feed them back to the controller.
  • the phase shift x e produced by the beam after diffraction by the plane grating caused by the motion error of the ideal position
  • the controller generates a control command according to the calculation result of x e and transmits it to the phase modulator, and the phase modulator modulates the laser beam according to the control command to Correct the errors that occur in the calibration of the flat grating due to the influence of the movement error of the workpiece table.
  • the light source of the displacement interferometer component (corresponding to the displacement subsystem in the background art) of the plane grating calibration system described in this application is a dual-frequency positive reflected by the first beam splitter, the first right-angle mirror and the second right-angle mirror.
  • Cross-polarized laser that is, the entire optical subsystem of this application uses a shared light source. Therefore, the displacement interferometer component of this application can be incorporated into the optical subsystem, while the light source and displacement of the optical subsystem in the background art
  • the light source of the system is not the same light source, therefore, it must be two separate parts.
  • the optical subsystem adopting the shared light source of this application avoids the problems of low wavelength accuracy and poor coherence of the separate light source of the optical subsystem of the background art; Apply for a separate and independent vibration isolation method for the optical subsystem and the workpiece stage to prevent the vibration generated when the workpiece stage is moving from being transmitted to the optical subsystem, and eliminate the error caused by the vibration of the optical subsystem; thus, the accuracy of plane grating calibration is improved.
  • FIG. 1 is a schematic diagram of an embodiment of a flat grating calibration system of this application
  • Figure 2 is a schematic plan view of the displacement interferometer assembly scanning the workpiece stage
  • Figure 3 is a schematic diagram of the optical path of the displacement interferometer assembly
  • Figure 4 is a schematic diagram of a one-dimensional plane grating
  • Figure 5 is a schematic diagram of a two-dimensional plane grating
  • Fig. 6 is a schematic diagram of another embodiment of a plane grating calibration system.
  • the system includes an optical subsystem, a frame 24, a first vibration isolator 22, a vacuum chuck 19, a workpiece table 18, a second vibration isolator 21, and a substrate 20 And the controller 23; wherein, the optical subsystem includes a dual-frequency laser 1, a first beam splitter 2, a first mirror 3, a first right-angle mirror 4, a second right-angle mirror 5, a first polarization beam splitter 6, a phase Modulator 7, first phase meter 8, second polarization beam splitter 9, second mirror 10, third mirror 11, first collimating lens 12, second collimating lens 13, first beam sampler 14, The second beam sampler 15, the second phase meter 16, and the displacement interferometer assembly 17; the optical subsystem is mounted on the frame 24, and the frame 24 is mounted on the first vibration isolator 22; the vacuum chuck 19 is rotatable Installed on the workpiece table 18, the workpiece table 18 is located on the base 20, the base 20 is installed on the second vibration isolator
  • the plane grating 25 to be calibrated is installed on the vacuum chuck 19, and the dual-frequency orthogonally polarized laser light emitted by the dual-frequency laser 1 passes through the first beam splitter 2, and is divided into two beams of transmission and reflection. Polarized laser.
  • the transmitted dual-frequency orthogonally polarized laser is reflected by the first mirror 3, it is split into transmitted p light and reflected s light by the first polarization beam splitter 6, and the transmitted p light sequentially passes through the second mirror 10 ,
  • the first collimating lens 12 and the first beam sampler 14 the p light reflected by the first beam sampler 14 is transmitted through the second polarization beam splitter 9, and the p light transmitted by the first beam sampler 14 is transmitted through the plane grating 25
  • the 0-order diffracted light is generated, and the 0-order diffracted light is reflected by the second beam sampler 15;
  • the phase modulator 7 in this embodiment adopts an electro-optical modulator, and the s light reflected by the first polarization beam splitter 6 passes through the phase modulator 7,
  • the s light reflected by the second beam sampler 15 is reflected by the second polarizing beam splitter 9 and the p beam transmitted by the second polarizing beam splitter 9
  • the photosynthetic light becomes the first measuring light, and the first measuring light is input to the first phase meter 8.
  • the s light transmitted by the second beam sampler 15 is diffracted by the plane grating 25 to produce -1 order diffracted light, and the -1 order diffracted light passes through the first
  • the p-light reflected by the two-beam sampler 15 and the 0-order diffracted light reflected by the second beam sampler 15 is combined into the second measurement light, and the second measurement light is input to the second phase meter 16;
  • the cross-polarized laser light is reflected by the first beam splitter 2, and the reflected orthogonally polarized laser light is sequentially reflected by the first right-angle mirror 4 and the second right-angle mirror 5, and then input the displacement interferometer assembly 17 to perform displacement scanning on the workpiece table 18;
  • the first measuring light of the first phase meter 8, the second measuring light of the second phase meter 16 and the movement information of the workpiece stage of the displacement interferometer assembly 17 are fed back to the controller 23, and the dual-frequency laser 1 emits reference light to the controller 23
  • the controller 23 performs the following arithmetic processing:
  • the controller performs the following calculation processing on the information of the first measurement light and the information of the reference light fed back by the first phase meter:
  • ⁇ 1 represents the radian value of the phase change of the first measuring light, which reflects the phase change of the first measuring light caused by vibration and air disturbance;
  • PM 1 represents the value obtained by comparing the first measurement light with the reference light by the phase card
  • F represents the resolution of the phase card in the controller
  • the controller performs the following calculation processing on the information of the second measurement light and the information of the reference light fed back by the second phase meter:
  • ⁇ 2 represents the phase change radian value of the second measurement light, which reflects the phase change of the second measurement light caused by vibration and air disturbance;
  • PM 2 represents the value obtained by comparing the second measurement light with the reference light by the phase card.
  • x m represents the value of the phase shift caused by the beam diffracted by the plane grating under the influence of vibration, air disturbance, etc.
  • represents the period of the plane grating
  • the X-direction interferometer and Y-direction interferometer respectively collect the displacements of the workpiece stage in the X direction and Y direction in real time, and feed them back to the controller, which performs the following calculation processing:
  • x e represents the phase shift of the beam after diffraction by the plane grating caused by the movement error of the workpiece stage
  • represents the deflection angle of the grating grid line in the workpiece table coordinate system
  • x r represents the ideal displacement of the workpiece table referenced in the x-axis direction in the coordinate system
  • y r represents the ideal displacement of the workpiece table referenced in the y-axis direction in the coordinate system
  • x represents the actual measured displacement in the x-axis direction of the interferometer
  • y represents the actual measured displacement in the y-axis direction of the interferometer
  • the comprehensive phase shift produced by the beam after the plane grating is diffracted during plane grating calibration is:
  • x fle represents the comprehensive phase shift produced by the beam after diffraction by the plane grating
  • the controller 23 generates a control command according to the above-mentioned calculation processing result and transmits it to the phase modulator 7, and the phase modulator 7 modulates the laser beam according to the control command to correct the plane grating 25 caused by vibration, air disturbance, and movement error of the workpiece. Error in calibration.
  • the beneficial effect of this embodiment is that the movement error of the workpiece table can be measured by the displacement interferometer assembly, the laser is vibrated, such as the air flow, and the refractive index change is calculated by the first phase meter measurement signal, and the laser itself is unstable
  • the measurement signal of the second phase meter can be obtained by calculation.
  • the measurement information of the displacement interferometer assembly, the first phase meter and the second phase meter are fed back to the controller, which is then processed by the controller to control the phase modulator to control the laser
  • the light beam is modulated to weaken the resulting errors; the calibration light source and the workpiece stage displacement measurement interferometer light source are all from the dual-frequency laser light source, which avoids the error caused by the difference of the light source; further improves the calibration accuracy of the plane grating.
  • the system uses a phase modulator to shorten the optical path, reduce the complexity of the optical subsystem, reduce the size of the system, and also reduce the power requirement of the optical subsystem for the dual-frequency laser.
  • the plane grating calibration system of the present application relatively separates the optical subsystem and the workpiece stage, and configures relatively independent vibration isolators for the two parts to prevent the vibration generated by the movement of the workpiece stage from being transmitted to the optical subsystem for measurement, and improve The stability of the optical subsystem is improved. Therefore, the plane grating calibration system of the present application eliminates the adverse effects of vibration caused by the movement of the workpiece stage on the optical subsystem by relatively independent vibration isolation measures for the optical subsystem and the workpiece stage, and improves the plane Raster calibration accuracy.
  • the displacement interferometer assembly shown in Fig. 2 scans the workpiece stage.
  • the displacement interferometer assembly includes the X-direction interferometer 26 and the Y-direction interferometer 27.
  • the plane grating 25 is placed on the vacuum chuck 19, and the vacuum chuck 19 is installed on the work stage.
  • the X-direction interferometer 26 measures the movement of the workpiece table in the X direction
  • the Y-direction interferometer 27 measures the movement of the workpiece table in the Y direction to realize the one-dimensional plane grating calibration as shown in FIG. 4.
  • Figure 3 is a schematic diagram of the optical path of the displacement interferometer assembly; the displacement interferometer assembly includes an X-direction interferometer 26, a Y-direction interferometer 27, a third right-angle mirror 28, and a second beam splitter 29.
  • the laser input into the displacement interferometer assembly passes through the third
  • the right-angle mirror 28 is reflected to the second beam splitter 29, the transmitted light split by the second beam splitter 29 is displaced and scanned by the X-direction interferometer 26, and the reflected light split by the second beam splitter 29 interferes in the Y direction
  • the meter 27 performs displacement scanning on the workpiece table 18.
  • phase modulator 7 is not an electro-optic modulator, but two acousto-optic modulators, namely The first acousto-optic modulator 71 and the second acousto-optic modulator 72; the first acousto-optic modulator 71 is arranged on the transmitted p-ray path of the first polarizing beam splitter 6, and the transmitted p ray decomposed by the first polarizing beam splitter 6 The light is modulated by the first acousto-optic modulator 71 and then to the second mirror 10; the second acousto-optic modulator 72 is arranged on the s-ray path reflected by the first polarization beam splitter 6, and the first polarization beam splitter 6 decomposes The reflected s light is modulated by the second acousto-optic modulator 72 to the third mirror 11.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)

Abstract

一种平面光栅(25)标定系统,该系统包括光学子系统、机架(24)、第一隔振器(22)、真空吸盘(19)、工件台(18)、第二隔振器(21)、基底(20)和控制器(23);该光学子系统安装在机架(24)上,机架(24)采用第一隔振器(22)隔振;真空吸盘(19)可转动地安装在工件台(18)上,工件台(18)位于基底(20)上,基底(20)采用第二隔振器(21)隔振。将位移干涉仪组件(17)并入光学子系统,整个光学子系统采用共用光源的方式,避免了单独光源波长精度低、相干性差的问题;此外,光学子系统与工件台(18)采用分别独立的隔振方式,避免了工件台(18)移动时产生的振动传递到光学子系统,消除了因光学子系统振动所产生的误差,从而提高了平面光栅(25)标定的精度。

Description

平面光栅标定系统
本申请要求于2019年5月16日提交中国专利局、申请号为201910405697.3,申请名称为“平面光栅标定系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于光学计量技术领域,特别涉及一种平面光栅标定系统。
背景技术
随着光学技术的不断发展与创新,平面光栅作为很多高精密光学仪器的重要部件,应用场景越来越广泛,如光栅尺测量仪、平面光栅摄谱仪、光栅单色仪,大型光刻设备等科学仪器都要使用。除以上应用外,高精度平面光栅在“大型光学系统”、“惯性约束核聚变激光驱动装置”等都具有重要的应用。平面光栅的制造误差会影响这些精密设备的测量精度,因此平面光栅的标定对提高以平面光栅为核心的光学仪器的测量精度具有重要意义。
在麻省理工学院的美国专利US6,882,477B1中,公开了一种平面光栅读模式系统以实现光栅标定。该系统中,光学子系统的光源和位移子系统的光源非同一光源,且光学子系统的光源的相干性和波长稳定性远低于位移测量子系统光源,从而影响平面光栅标定的精度。此外,该系统中的光学子系统和工件台一起采用隔振措施,在平面光栅的标定使用过程中,由于放置平面光栅的工件台是运动的,采用这样一体式的隔振方法,使得作为运动部分的工件台所产生的振动,不可避免地会传递并作用于光学子系统,从而引起误差,影响平面光栅标定的精度。
发明内容
为了提高平面光栅标定的精度,本申请提供了一种平面光栅标定系统,该系统包括光学子系统、机架、第一隔振器、真空吸盘、工件台、第二隔振器、基底和控制器;所述光学子系统安装在机架上,机架采用第一隔振器隔振;真空吸盘可转动地安装在工件台上,工件台位于基底上,基底采用第二 隔振器隔振,
其中,所述控制器内含相位卡;
所述光学子系统包括双频激光器、第一分光镜、第一反射镜、第一直角反射镜、第二直角反射镜、第一偏振分光镜、相位调制器、第一相位计、第二偏振分光镜、第二反射镜、第三反射镜、第一准直透镜、第二准直透镜、第一光束采样器、第二光束采样器、第二相位计和位移干涉仪组件;控制器分别与相位调制器、第一相位计、第二相位计和位移干涉仪组件连接;将待标定的平面光栅安装在真空吸盘上,所述双频激光器发射出的双频正交偏振激光经第一分光镜后,分为透射的和反射的两束双频正交偏振激光,透射的双频正交偏振激光经第一反射镜反射后,通过第一偏振分光镜分解为透射的p光和反射的s光,透射的p光顺序经第二反射镜、第一准直透镜和第一光束采样器,第一光束采样器反射的p光后经第二偏振分光镜透射,第一光束采样器透射的p光经平面光栅后产生0级衍射光,0级衍射光经第二光束采样器反射;第一偏振分光镜反射的s光顺序经相位调制器、第三反射镜、第二准直透镜和第二光束采样器,第二光束采样器反射的s光经第二偏振分光镜反射后与经第二偏振分光镜透射的p光合光成第一测量光,第一测量光输入第一相位计;经第二光束采样器透射的s光经过平面光栅衍射后产生-1级衍射光,-1级衍射光经第二光束采样器反射与0级衍射光经第二光束采样器反射的p光合光成第二测量光,第二测量光输入第二相位计;经第一分光镜反射的正交偏振激光依次经第一直角反射镜、第二直角反射镜反射后,输入位移干涉仪组件对工件台进行位移扫描;
第一相位计的第一测量光、第二相位计的第二测量光和位移干涉仪组件的工件台移动信息反馈至控制器,双频激光器发出参考光给控制器的相位卡,经控制器运算处理生成控制指令传递给相位调制器,相位调制器根据控制指令对激光光束进行调制,以校正平面光栅标定发生的误差。
进一步地,所述相位调制器采用电光调制器。
进一步地,所述相位调制器包括第一声光调制器和第二声光调制器;第一声光调制器设置在第一偏振分光镜透射的p光上,第一偏振分光镜分解出的透射的p光经第一声光调制器调制后再到第二反射镜;第二声光调制器设置在第一偏振分光镜反射的s光上,第一偏振分光镜反射的s光经第二声光调 制器调制后到第三反射镜。
进一步地,所述位移干涉仪组件包括X方向干涉仪、Y方向干涉仪、第三直角反射镜和第二分光镜,输入位移干涉仪组件的激光经第三直角反射镜反射到第二分光镜,第二分光镜分解出的透射光经X方向干涉仪对工件台进行位移扫描,第二分光镜分解出的反射光经Y方向干涉仪对工件台进行位移扫描。
进一步地,所述平面光栅为一维平面光栅,工件台能够沿X方向做步进运动和沿Y方向做扫描运动。
进一步地,所述平面光栅为二维平面光栅;工件台先沿X方向做步进运动和沿Y方向做扫描运动,完成平面光栅的第一维标定;然后真空吸盘带动平面光栅绕Z轴旋转90度,工件台再继续沿X方向做步进运动和沿Y方向做扫描运动,完成第二维平面光栅标定。
进一步地,所述控制器对第一相位计反馈的第一测量光的信息与参考光的信息做以下运算处理:
Figure PCTCN2020089949-appb-000001
式中:
φ 1代表第一测量光的相位变化弧度值,反映了第一测量光受到振动、空气扰动等引起的相位变化情况;
PM 1代表相位卡对第一测量光与参考光对比得到的数值;
F代表控制器中的相位卡分辨率;
控制器对第二相位计反馈的第二测量光的信息与参考光的信息做以下运算处理:
Figure PCTCN2020089949-appb-000002
式中:
φ 2代表第二测量光的相位变化弧度值,反映了第二测量光受到振动、空气扰动等引起的相位变化情况;
PM 2代表相位卡对第二测量光与参考光对比得到的数值;
结合第一测量光与第二测量光的相位变化弧度值,得到经平面光栅衍射 后光束所产生的相位漂移:
Figure PCTCN2020089949-appb-000003
式中:
x m代表在振动、空气扰动影响下经平面光栅衍射后光束所产生的相位漂移数值;
Λ代表平面光栅周期;
控制器根据上述运算处理结果生成控制指令传递给相位调制器,相位调制器根据控制指令对激光光束进行调制,以校正由于振动、空气扰动等因素影响导致平面光栅标定发生的误差。
更进一步地,在光栅标定过程中,X方向干涉仪和Y方向干涉仪分别实时采集工件台的X方向和Y方向的位移,并反馈给控制器,由控制器做以下运算处理:
x e=[cosα(x r-x)+sinα(y r-y)]
式中:
x e代表工件台的运动误差引起的平面光栅衍射后光束所产生的相位漂移;
α代表在工件台坐标系中光栅栅线的偏转角;
x r代表工件台在坐标系中x轴方向参考的理想位移;
y r代表工件台在坐标系中y轴方向参考的理想位移;
x代表干涉仪x轴方向实际测量的位移;
y代表干涉仪y轴方向实际测量的位移;
得到进行平面光栅标定时的平面光栅衍射后光束所产生的综合相位漂移为:
x fle=x m-x e
式中:
x fle代表平面光栅衍射后光束所产生的综合相位漂移;
控制器根据上述运算处理结果生成控制指令传递给相位调制器,相位调制器根据控制指令对激光光束进行调制,以校正由于振动、空气扰动和工件台运动误差等因素影响导致平面光栅标定发生的误差。
进一步地,在光栅标定过程中,X方向干涉仪和Y方向干涉仪分别实时采集工件台的X方向和Y方向的位移,并反馈给控制器,由控制器运算处理后,得到工件台相对于理想位置的运动误差引起的平面光栅衍射后光束所产生的相位漂移x e,控制器根据x e的运算结果生成控制指令传递给相位调制器,相位调制器根据控制指令对激光光束进行调制,以校正由于工件台运动误差影响导致平面光栅标定发生的误差。
本申请所述平面光栅标定系统的位移干涉仪组件(对应背景技术中的位移子系统)的光源是经第一分光镜反射、第一直角反射镜和第二直角反射镜反射后的双频正交偏振激光,也就是说,本申请的整个光学子系统采用共用光源的方式,因此,本申请的位移干涉仪组件可以并入光学子系统,而背景技术中的光学子系统的光源和位移子系统的光源非同一光源,因此,必须是两个单独的部分,本申请的采用共用光源的光学子系统避免了背景技术的光学子系统的单独光源波长精度低、相干性差的问题;此外,本申请光学子系统与工件台单独独立隔振方式,避免工件台移动时产生的振动传递到光学子系统,消除了因光学子系统振动所产生的误差;从而实现了平面光栅标定的精度的提高。
附图说明
图1为本申请的平面光栅标定系统实施例示意图;
图2为位移干涉仪组件对工件台扫描的平面示意图;
图3为位移干涉仪组件光路示意图;
图4为一维平面光栅示意图;
图5为二维平面光栅示意图;
图6为平面光栅标定系统另一实施例示意图。
图中:1-双频激光器,2-第一分光镜,3-第一反射镜,4-第一直角反射镜,5-第二直角反射镜,6-第一偏振分光镜,7-相位调制器,8-第一相位计,9-第二偏振分光镜,10-第二反射镜,11-第三反射镜,12-第一准直透镜,13-第二准直透镜,14-第一光束采样器,15-第二光束采样器,16-第二相位计,17-位移干涉仪组件,18-工件台,19-真空吸盘,20-基底,21-第二隔振器,22-第一隔振器,23-控制器,24-机架,25-平面光栅,26-X方向干涉仪,27-Y方 向干涉仪,28-第三直角反射镜,29-第二分光镜,71-第一声光调制器,72-第二声光调制器。
具体实施方式
为了更进一步阐述本申请为解决技术问题所采取的技术手段及功效,以下结合附图和具体实施例对本申请做进一步详细描述,需要说明的是所提供的附图是示意性的,相互间并没有完全按照尺寸或者比例绘制,因此附图和具体实施例并不作为本申请要求的保护范围限定。
如图1所示的平面光栅标定系统可选实施例,该系统包括光学子系统、机架24、第一隔振器22、真空吸盘19、工件台18、第二隔振器21、基底20和控制器23;其中,光学子系统包括双频激光器1、第一分光镜2、第一反射镜3、第一直角反射镜4、第二直角反射镜5、第一偏振分光镜6、相位调制器7、第一相位计8、第二偏振分光镜9、第二反射镜10、第三反射镜11、第一准直透镜12、第二准直透镜13、第一光束采样器14、第二光束采样器15、第二相位计16和位移干涉仪组件17;所述光学子系统安装在机架24上,机架24安装在第一隔振器22上;真空吸盘19可转动地安装在工件台18上,工件台18位于基底20上,基底20安装在第二隔振器21上,所述控制器23分别与相位调制器7、第一相位计8、第二相位计16和位移干涉仪组件17连接,控制器内含相位卡(图中未示出),相位卡可以对输入的光信号进行转换处理或对比;
将待标定的平面光栅25安装在真空吸盘19上,所述双频激光器1发射出的双频正交偏振激光经第一分光镜2后,分为透射的和反射的两束双频正交偏振激光,透射的双频正交偏振激光经第一反射镜3反射后,通过第一偏振分光镜6分解为透射的p光和反射的s光,透射的p光顺序经第二反射镜10、第一准直透镜12和第一光束采样器14,第一光束采样器14反射的p光后经第二偏振分光镜9透射,第一光束采样器14透射的p光经平面光栅25后产生0级衍射光,0级衍射光经第二光束采样器15反射;本实施例中的相位调制器7采用电光调制器,第一偏振分光镜6反射的s光顺序经相位调制器7、第三反射镜11、第二准直透镜13和第二光束采样器15,第二光束采样器15反射的s光经第二偏振分光镜9反射后与经第二偏振分光镜9透射的p光 合光成第一测量光,第一测量光输入第一相位计8;经第二光束采样器15透射的s光经过平面光栅25衍射后产生-1级衍射光,-1级衍射光经第二光束采样器15反射与0级衍射光经第二光束采样器15反射的p光合光成第二测量光,第二测量光输入第二相位计16;双频激光器1发射出的双频正交偏振激光经第一分光镜2反射,反射的正交偏振激光再依次经第一直角反射镜4、第二直角反射镜5反射后,输入位移干涉仪组件17对工件台18进行位移扫描;
第一相位计8的第一测量光、第二相位计16的第二测量光和位移干涉仪组件17的工件台移动信息反馈至控制器23,双频激光器1发出参考光给控制器23的相位卡,控制器23进行以下运算处理:
控制器对第一相位计反馈的第一测量光的信息与参考光的信息做以下运算处理:
Figure PCTCN2020089949-appb-000004
式中:
φ 1代表第一测量光的相位变化弧度值,反映了第一测量光受到振动、空气扰动等引起的相位变化情况;
PM 1代表相位卡对第一测量光与参考光对比得到的数值;
F代表控制器中的相位卡分辨率;
同时,控制器对第二相位计反馈的第二测量光的信息与参考光的信息做以下运算处理:
Figure PCTCN2020089949-appb-000005
式中:
φ 2代表第二测量光的相位变化弧度值,反映了第二测量光受到振动、空气扰动等引起的相位变化情况;
PM 2代表相位卡对第二测量光与参考光对比得到的数值。
结合第一测量光与第二测量光的相位变化弧度值,得到经平面光栅衍射后光束所产生的相位漂移:
Figure PCTCN2020089949-appb-000006
式中:
x m代表在振动、空气扰动等影响下经平面光栅衍射后光束所产生的相位漂移数值;
Λ代表平面光栅周期;
在光栅标定过程中,X方向干涉仪和Y方向干涉仪分别实时采集工件台的X方向和Y方向的位移,并反馈给控制器,由控制器做以下运算处理:
x e=[cosα(x r-x)+sinα(y r-y)]
式中:
x e代表工件台的运动误差引起的平面光栅衍射后光束所产生的相位漂移;
α代表在工件台坐标系中光栅栅线的偏转角;
x r代表工件台在坐标系中x轴方向参考的理想位移;
y r代表工件台在坐标系中y轴方向参考的理想位移;
x代表干涉仪x轴方向实际测量的位移;
y代表干涉仪y轴方向实际测量的位移;
得到进行平面光栅标定时的平面光栅衍射后光束所产生的综合相位漂移为:
x fle=x m-x e
式中:
x fle代表平面光栅衍射后光束所产生的综合相位漂移;
控制器23根据上述运算处理结果生成控制指令传递给相位调制器7,相位调制器7根据控制指令对激光光束进行调制,以校正由于振动、空气扰动和工件台运动误差等因素影响导致平面光栅25标定发生的误差。
本实施例的有益效果是:工件台的运动误差可由位移干涉仪组件测量得出,激光受振动,诸如气流攒动、折射率变化由第一相位计测量信号经运算得出,激光自身不稳定性可有第二相位计测量信号经运算得出,位移干涉仪组件、第一相位计和第二相位计这三部分测量信息反馈至控制器,再由控制器运算处理后控制相位调制器对激光光束进行调制,以削弱由此产生的误差;标定光源与工件台位移测量干涉仪光源都是来自双频激光器这个光源,避免了光源差异带来的误差;进一步提高了平面光栅标定精度。系统采用相位调 制器缩短光路,降低光学子系统复杂性,可缩小系统尺寸,并且也降低了光学子系统对双频激光器功率需求。
本申请的平面光栅标定系统把光学子系统和工件台进行相对分离,并给这两部分配置相对独立的隔振器,避免工件台的运动所产生的振动传递到测量用的光学子系统,提高了光学子系统稳定性,因此,本申请的平面光栅标定系统通过对光学子系统和工件台相对独立的隔振措施,消除了工件台的运动产生的振动对光学子系统不利影响,提高了平面光栅标定精度。
如图2所示的位移干涉仪组件对工件台扫描示例,位移干涉仪组件包括X方向干涉仪26和Y方向干涉仪27,平面光栅25放置在真空吸盘19上,真空吸盘19安装在工件台上,X方向干涉仪26测量工件台X方向的运动,Y方向干涉仪27测量工件台Y方向的运动,实现如图4所示的一维平面光栅标定。如果要进行二维平面光栅标定,那么在工件台沿X方向步进运动和沿Y方向扫描运动后,还需要把真空吸盘19绕Z轴方向旋转90度,即带动二维平面光栅旋转90度,再控制工件台继续沿X方向步进运动和沿Y方向扫描运动,才可以实现如图5所示的二维平面光栅标定。
图3为位移干涉仪组件光路示意图;位移干涉仪组件包括X方向干涉仪26、Y方向干涉仪27、第三直角反射镜28和第二分光镜29,输入位移干涉仪组件的激光经第三直角反射镜28反射到第二分光镜29,第二分光镜29分解出的透射光经X方向干涉仪26对工件台18进行位移扫描,第二分光镜29分解出的反射光经Y方向干涉仪27对工件台18进行位移扫描。
如图6所示的平面光栅标定系统可选实施例,该实施例与图1所示实施例的不同在于,相位调制器7不是采用的电光调制器,而是两个声光调制器,即第一声光调制器71和第二声光调制器72;第一声光调制器71设置在第一偏振分光镜6的透射的p光线路上,第一偏振分光镜6分解出的透射的p光经第一声光调制器71调制后再到第二反射镜10;第二声光调制器72设置在第一偏振分光镜6的反射的s光线路上,第一偏振分光镜6分解出的反射的s光经第二声光调制器72调制后到第三反射镜11。
需要说明的是,上述涉及的所有参数有单位的,都采用国际标准单位。
当然,本申请还可有其它多种实施例,在不背离本申请精神及其实质的情况下,本领域技术人员可根据本申请作出各种相应的改变和变形,但这些 相应的改变和变形都属于本申请的权利要求的保护范围。

Claims (9)

  1. 一种平面光栅标定系统,其特征在于:该系统包括光学子系统、机架、第一隔振器、真空吸盘、工件台、第二隔振器、基底和控制器;所述光学子系统安装在机架上,机架采用第一隔振器隔振;真空吸盘可转动地安装在工件台上,工件台位于基底上,基底采用第二隔振器隔振,
    其中,所述控制器内含相位卡;
    所述光学子系统包括双频激光器、第一分光镜、第一反射镜、第一直角反射镜、第二直角反射镜、第一偏振分光镜、相位调制器、第一相位计、第二偏振分光镜、第二反射镜、第三反射镜、第一准直透镜、第二准直透镜、第一光束采样器、第二光束采样器、第二相位计和位移干涉仪组件;控制器分别与相位调制器、第一相位计、第二相位计和位移干涉仪组件连接;将待标定的平面光栅安装在真空吸盘上,所述双频激光器发射出的双频正交偏振激光经第一分光镜后,分为透射的和反射的两束双频正交偏振激光,透射的双频正交偏振激光经第一反射镜反射后,通过第一偏振分光镜分解为透射的p光和反射的s光,透射的p光顺序经第二反射镜、第一准直透镜和第一光束采样器,第一光束采样器反射的p光后经第二偏振分光镜透射,第一光束采样器透射的p光经平面光栅后产生0级衍射光,0级衍射光经第二光束采样器反射;第一偏振分光镜反射的s光顺序经相位调制器、第三反射镜、第二准直透镜和第二光束采样器,第二光束采样器反射的s光经第二偏振分光镜反射后与经第二偏振分光镜透射的p光合光成第一测量光,第一测量光输入第一相位计;经第二光束采样器透射的s光经过平面光栅衍射后产生-1级衍射光,-1级衍射光经第二光束采样器反射与0级衍射光经第二光束采样器反射的p光合光成第二测量光,第二测量光输入第二相位计;经第一分光镜反射的正交偏振激光依次经第一直角反射镜、第二直角反射镜反射后,输入位移干涉仪组件对工件台进行位移扫描;
    第一相位计的第一测量光、第二相位计的第二测量光和位移干涉仪组件的工件台移动信息反馈至控制器,双频激光器发出参考光给控制器的相位卡,经控制器运算处理生成控制指令传递给相位调制器,相位调制器根据控制指令对激光光束进行调制,以校正平面光栅标定发生的误差。
  2. 根据权利要求1所述的平面光栅标定系统,其特征在于:所述相位调 制器采用电光调制器。
  3. 根据权利要求1所述的平面光栅标定系统,其特征在于:所述相位调制器包括第一声光调制器和第二声光调制器;第一声光调制器设置在第一偏振分光镜透射的p光上,第一偏振分光镜分解出的透射的p光经第一声光调制器调制后再到第二反射镜;第二声光调制器设置在第一偏振分光镜反射的s光上,第一偏振分光镜反射的s光经第二声光调制器调制后到第三反射镜。
  4. 根据权利要求1所述的平面光栅标定系统,其特征在于:所述位移干涉仪组件包括X方向干涉仪、Y方向干涉仪、第三直角反射镜和第二分光镜,输入位移干涉仪组件的激光经第三直角反射镜反射到第二分光镜,第二分光镜分解出的透射光经X方向干涉仪对工件台进行位移扫描,第二分光镜分解出的反射光经Y方向干涉仪对工件台进行位移扫描。
  5. 根据权利要求4所述的平面光栅标定系统,其特征在于:所述平面光栅为一维平面光栅,工件台能够沿X方向做步进运动和沿Y方向做扫描运动。
  6. 根据权利要求4所述的平面光栅标定系统,其特征在于:所述平面光栅为二维平面光栅;工件台先沿X方向做步进运动和沿Y方向做扫描运动,完成平面光栅的第一维标定;然后真空吸盘带动平面光栅绕Z轴旋转90度,工件台再继续沿X方向做步进运动和沿Y方向做扫描运动,完成第二维平面光栅标定。
  7. 根据权利要求4所述的平面光栅标定系统,其特征在于:所述控制器通过以下公式对第一相位计反馈的第一测量光的信息与参考光的信息进行处理:
    Figure PCTCN2020089949-appb-100001
    式中:
    φ 1代表第一测量光的相位变化弧度值;
    PM 1代表相位卡对第一测量光与参考光对比得到的数值;
    F代表控制器中的相位卡分辨率;
    控制器通过以下公式对第二相位计反馈的第二测量光的信息与参考光的信息进行处理:
    Figure PCTCN2020089949-appb-100002
    式中:
    φ 2代表第二测量光的相位变化弧度值;
    PM 2代表相位卡对第二测量光与参考光对比得到的数值;
    结合第一测量光与第二测量光的相位变化弧度值,得到经平面光栅衍射后光束所产生的相位漂移:
    Figure PCTCN2020089949-appb-100003
    式中:
    x m代表在振动、空气扰动影响下经平面光栅衍射后光束所产生的相位漂移数值;
    Λ代表平面光栅周期;
    控制器根据上述处理结果生成控制指令传递给相位调制器,相位调制器根据控制指令对激光光束进行调制,以校正平面光栅标定发生的误差。
  8. 根据权利要求4所述的平面光栅标定系统,其特征在于:在光栅标定过程中,X方向干涉仪和Y方向干涉仪分别实时采集工件台的X方向和Y方向的位移,并反馈给控制器,由控制器通过以下公式进行处理:
    x e=[cosα(x r-x)+sinα(y r-y)]
    式中:
    x e代表工件台的运动误差引起的平面光栅衍射后光束所产生的相位漂移;
    α代表在工件台坐标系中光栅栅线的偏转角;
    x r代表工件台在坐标系中x轴方向参考的理想位移;
    y r代表工件台在坐标系中y轴方向参考的理想位移;
    x代表干涉仪x轴方向实际测量的位移;
    y代表干涉仪y轴方向实际测量的位移;
    控制器根据上述处理结果生成控制指令传递给相位调制器,相位调制器根据控制指令对激光光束进行调制,以校正由于工件台运动误差影响导致平面光栅标定发生的误差。
  9. 根据权利要求7所述的平面光栅标定系统,其特征在于:在光栅标定过程中,X方向干涉仪和Y方向干涉仪分别实时采集工件台的X方向和Y方 向的位移,并反馈给控制器,由控制器通过以下公式进行处理:
    x e=[cosα(x r-x)+sinα(y r-y)]
    式中:
    x e代表工件台的运动误差引起的平面光栅衍射后光束所产生的相位漂移;
    α代表在工件台坐标系中光栅栅线的偏转角;
    x r代表工件台在坐标系中x轴方向参考的理想位移;
    y r代表工件台在坐标系中y轴方向参考的理想位移;
    x代表干涉仪x轴方向实际测量的位移;
    y代表干涉仪y轴方向实际测量的位移;
    得到进行平面光栅标定时的平面光栅衍射后光束所产生的综合相位漂移为:
    x fle=x m-x e
    式中:
    x fle代表平面光栅衍射后光束所产生的综合相位漂移;
    控制器根据上述处理结果生成控制指令传递给相位调制器,相位调制器根据控制指令对激光光束进行调制,以校正平面光栅标定发生的误差。
PCT/CN2020/089949 2019-05-16 2020-05-13 平面光栅标定系统 WO2020228720A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/610,730 US11940349B2 (en) 2019-05-16 2020-05-13 Plane grating calibration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910405697.3 2019-05-16
CN201910405697.3A CN110132550B (zh) 2019-05-16 2019-05-16 平面光栅标定系统

Publications (1)

Publication Number Publication Date
WO2020228720A1 true WO2020228720A1 (zh) 2020-11-19

Family

ID=67574349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089949 WO2020228720A1 (zh) 2019-05-16 2020-05-13 平面光栅标定系统

Country Status (3)

Country Link
US (1) US11940349B2 (zh)
CN (1) CN110132550B (zh)
WO (1) WO2020228720A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115753021A (zh) * 2022-11-18 2023-03-07 同济大学 一种基于自溯源光栅零差干涉法的光栅周期标定系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132550B (zh) * 2019-05-16 2020-08-18 清华大学 平面光栅标定系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0766068A2 (de) * 1995-09-28 1997-04-02 Robert Bosch Gmbh Optische Vorrichtung zum Messen physikalischer Grössen
WO2001035168A1 (en) * 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
CN103673891A (zh) * 2013-11-21 2014-03-26 清华大学 一种光栅外差干涉自准直测量装置
CN103968757A (zh) * 2014-04-30 2014-08-06 中国科学院长春光学精密机械与物理研究所 光栅尺在高速度条件下的可靠性的检测方法和装置
CN108801158A (zh) * 2018-08-17 2018-11-13 桂林电子科技大学 一种光栅尺标定装置及标定方法
CN110132550A (zh) * 2019-05-16 2019-08-16 清华大学 平面光栅标定系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0339605A (ja) * 1989-07-05 1991-02-20 Brother Ind Ltd 光学式表面形状測定装置
US6882477B1 (en) * 1999-11-10 2005-04-19 Massachusetts Institute Of Technology Method and system for interference lithography utilizing phase-locked scanning beams
US7483120B2 (en) * 2006-05-09 2009-01-27 Asml Netherlands B.V. Displacement measurement system, lithographic apparatus, displacement measurement method and device manufacturing method
JP5087528B2 (ja) * 2008-12-01 2012-12-05 理想科学工業株式会社 画像読取装置およびシェーディング補正方法
JP2011220890A (ja) * 2010-04-12 2011-11-04 Canon Inc ヘテロダイン干渉変位計測装置
TWI440833B (zh) * 2011-12-30 2014-06-11 Oto Photonics Inc 混合式繞射光柵、模具及繞射光柵及其模具的製造方法
CN103176372B (zh) * 2013-03-20 2015-04-29 南京理工大学 基于位相光栅分光的双焦波带片干涉显微检测装置
CN104345575B (zh) * 2013-08-02 2017-12-29 上海微电子装备(集团)股份有限公司 用于光刻设备的真空声噪隔离系统
CN103513254B (zh) * 2013-09-16 2015-06-03 中国科学院力学研究所 一种高精度双星激光干涉动态测距地面模拟装置
CN104634283B (zh) * 2015-02-06 2017-05-03 浙江理工大学 具有六自由度检测的激光外差干涉直线度测量装置及方法
CN209485272U (zh) 2018-08-17 2019-10-11 桂林电子科技大学 一种光栅尺标定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0766068A2 (de) * 1995-09-28 1997-04-02 Robert Bosch Gmbh Optische Vorrichtung zum Messen physikalischer Grössen
WO2001035168A1 (en) * 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
CN103673891A (zh) * 2013-11-21 2014-03-26 清华大学 一种光栅外差干涉自准直测量装置
CN103968757A (zh) * 2014-04-30 2014-08-06 中国科学院长春光学精密机械与物理研究所 光栅尺在高速度条件下的可靠性的检测方法和装置
CN108801158A (zh) * 2018-08-17 2018-11-13 桂林电子科技大学 一种光栅尺标定装置及标定方法
CN110132550A (zh) * 2019-05-16 2019-08-16 清华大学 平面光栅标定系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG LEI-JIE , ZHANG MING , ZHU YU , LU SEN , YANG KAI-MING: "A displacement measurement system for ultra-precision heterodyne Littrow grating interferometer", GUANGXUE JINGMI GONGCHENG-OPTICS AND PRECISION ENGINEERING, vol. 25, no. 12, 31 December 2017 (2017-12-31), pages 2975 - 2985, XP009524305, ISSN: 1004-924X, DOI: 10.3788/OPE.20172512.2975 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115753021A (zh) * 2022-11-18 2023-03-07 同济大学 一种基于自溯源光栅零差干涉法的光栅周期标定系统
CN115753021B (zh) * 2022-11-18 2024-05-31 同济大学 一种基于自溯源光栅零差干涉法的光栅周期标定系统

Also Published As

Publication number Publication date
CN110132550A (zh) 2019-08-16
CN110132550B (zh) 2020-08-18
US20220260452A1 (en) 2022-08-18
US11940349B2 (en) 2024-03-26

Similar Documents

Publication Publication Date Title
TWI457537B (zh) 干涉式外差光學編碼系統
CN108801158B (zh) 一种光栅尺标定装置及标定方法
TWI784265B (zh) 位移測量裝置、位移測量方法及光刻設備
TWI471535B (zh) 用來判斷關於沿著編碼器刻度之自由度改變的資訊的方法、編碼器系統、光刻系統、光刻方法
KR101521146B1 (ko) 이중 패스 간섭측정식 인코더 시스템
CN108519053B (zh) 一种用于测量运动台六自由度的装置及方法
CN108731601B (zh) 一种空间光路的光栅尺标定装置及标定方法
WO2020228720A1 (zh) 平面光栅标定系统
CN215296151U (zh) 双频激光干涉仪
JP4469604B2 (ja) 光学干渉分光法
KR102221482B1 (ko) 워크피스에 대하여 도구의 위치를 결정하는 장치
CN1503059A (zh) 光刻设备和制造器件的方法
Chen Beam alignment and image metrology for scanning beam interference lithography: fabricating gratings with nanometer phase accuracy
CN209485273U (zh) 一种空间光路的光栅尺标定装置
US10483107B2 (en) Encoder head with birefringent elements for forming imperfect retroreflection and exposure system utilizing the same
US10488228B2 (en) Transparent-block encoder head with isotropic wedged elements
CN209485272U (zh) 一种光栅尺标定装置
WO2023070757A1 (zh) 一种三轴高光学细分光栅尺
CN205642307U (zh) 一种长程面形测量仪
JP3307091B2 (ja) 真直度測定方法及びそれを用いた真直度測定装置
TWI479125B (zh) 干涉式編碼器系統的密接式編碼頭
CN110686620B (zh) 光栅集成精度的测量装置及方法、平面光栅尺测量系统
JP5188140B2 (ja) 寸法測定方法
JP5135183B2 (ja) 三次元形状測定装置
JPH063107A (ja) 干渉計システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20805279

Country of ref document: EP

Kind code of ref document: A1