WO2020228282A1 - 一种光场显示装置及其显示方法 - Google Patents

一种光场显示装置及其显示方法 Download PDF

Info

Publication number
WO2020228282A1
WO2020228282A1 PCT/CN2019/117841 CN2019117841W WO2020228282A1 WO 2020228282 A1 WO2020228282 A1 WO 2020228282A1 CN 2019117841 W CN2019117841 W CN 2019117841W WO 2020228282 A1 WO2020228282 A1 WO 2020228282A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
control
backlight
field display
Prior art date
Application number
PCT/CN2019/117841
Other languages
English (en)
French (fr)
Inventor
吕国强
诸黎明
吴磊
盛杰超
冯奇斌
王梓
Original Assignee
合肥工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥工业大学 filed Critical 合肥工业大学
Priority to US17/295,443 priority Critical patent/US11988852B2/en
Publication of WO2020228282A1 publication Critical patent/WO2020228282A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0012Optical design, e.g. procedures, algorithms, optimisation routines
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/10Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images using integral imaging methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/52Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels the 3D volume being constructed from a stack or sequence of 2D planes, e.g. depth sampling systems
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices

Definitions

  • This application relates to the field of three-dimensional display technology, and in particular to a light field display device and a display method thereof.
  • Three-dimensional display technology is one of the important development directions of display technology. It is deeply loved by the people because of its realistic three-dimensional display effect. Three-dimensional display technology has always been one of the hot spots of academic research.
  • Existing mature commercial 3D display solutions are usually based on the principle of binocular parallax. Due to the conflict of convergence adjustment, it will cause visual fatigue when viewing, and it is necessary to study the true 3D display technology that ignores visual fatigue.
  • the light field 3D display technology as a kind of true 3D display technology without visual fatigue, is one of the current research hotspots.
  • Light field three-dimensional display usually uses multi-layer display screen stacking. According to the principle of light field superposition, the light field information in space is reproduced by adjusting the pixel information on each layer of the screen, so as to achieve the goal of true three-dimensional display. According to the ray field theory, after a ray of light in space passes through multiple layers of planes stacked in sequence, it will correspondingly leave multiple intersections. Therefore, by controlling the pixel information of these intersections, the ray can be reproduced.
  • light field displays mainly include integrated imaging and multi-projection arrays, but they all have various defects, such as low resolution, low display brightness, and poor three-dimensional display effects.
  • this application proposes a light field display device and a display method thereof, through which the light field display device solves the problems of low brightness of traditional light field display and poor three-dimensional display effect.
  • this application proposes a light field display device, which includes:
  • control layer, the backlight layer, the light control array layer and the control layer are arranged side by side, and the images on the backlight layer, the light control array layer and the control layer are superimposed to form a three-dimensional image.
  • the central axes of the backlight layer, the light control array layer and the control layer are on the same straight line.
  • the backlight layer includes a plurality of light emitting units, which are independent of each other, and the light emitting units are used for emitting light.
  • an optical element is provided on each of the light-emitting units.
  • the light rays sequentially pass through the light control array layer and the control layer.
  • the intensity of the light gradually attenuates.
  • the light field display device further includes a processing unit connected to the backlight layer, the light control array layer and the control layer
  • control layer includes a plurality of pixel units, and each of the pixel units includes a plurality of sub-pixels.
  • a plurality of sub-pixel points under each pixel unit have the same coordinates.
  • the light control array layer is used to control the intensity of light.
  • control layer is used to control the color of light.
  • the light control array layer includes at least one grayscale modulator or black and white screen.
  • control layer includes a color liquid crystal screen.
  • the light emitting unit includes any one of LED, miniLED or micro LED.
  • This application also proposes a light field display method, including:
  • the light field display device includes:
  • control layer, the backlight layer, the light control array layer and the control layer are arranged side by side, and the images on the backlight layer, the light control array layer and the control layer are superimposed to form a three-dimensional image.
  • processing unit passes
  • the processing unit regulates the luminous intensity of the backlight layer, the attenuation rate of the light control array layer, and the attenuation rate of the control layer, so that the backlight layer, the light control array layer, and the A corresponding image is formed on the control layer.
  • the present application proposes a light field display device and a display method thereof.
  • the light intensity is precisely controlled by the light control array layer, and the color of the light is accurately reproduced through the control layer, thereby achieving independent control of light intensity and color, which is effective
  • the brightness of the three-dimensional image is improved, the contrast of the three-dimensional image is improved, and the quality and depth of field of the three-dimensional image can also be improved.
  • Fig. 1 A schematic diagram of the structure of the light field display device proposed in this embodiment.
  • Figure 2 A schematic diagram of the backlight layer in this embodiment.
  • Figure 3 A schematic diagram of the pixel unit in the control layer in this embodiment.
  • Fig. 4 A flow chart of the method of the light field display device in this embodiment.
  • Figure 5 Schematic diagram of light rays of the light field display device in this embodiment.
  • Fig. 6 A schematic structural diagram of another light field display device proposed in this embodiment.
  • Fig. 7 A schematic diagram of light rays of the light field display device in this embodiment.
  • Fig. 8 A schematic diagram of reconstructing light rays in this embodiment.
  • the light field display device 100 includes a backlight layer 110, a light control array layer 120 and a control layer 130.
  • the backlight layer 110, the light control array layer 120 and the control layer 130 are arranged side by side in sequence, and the central axes of the backlight layer 110, the light control array layer 120 and the control layer 130 are on the same straight line.
  • the light field display device 100 includes a backlight layer 110 for emitting light.
  • the backlight layer 110 emits light with a certain divergence angle to the light control array layer 120 and the control layer 130.
  • the angle range of the light can be between 0-60°, such as 30-40°.
  • the backlight layer 110 includes a back plate 111, a light-emitting unit 112 and an optical element 113.
  • the back plate 111 includes a base plate 1111 and a plurality of back plate frames 1112.
  • the base plate 1111 and the back plate frame 1112 can be formed separately.
  • the material of the base plate 1111 and the back plate frame 1112 can be, for example, metal or plastic.
  • the base plate 1111 and the back plate frame 1112 are vertically fixed.
  • the base plate 1111 and the back plate frame 1112 can be fixed by other methods such as screws, clamping or welding.
  • a layer of heat dissipation paint may be coated on the outer surface of the back plate 111, and the heat dissipation paint coated on the outer surface of the back plate 111 is used to improve the heat dissipation efficiency of the surface of the back plate 111.
  • the heat dissipation paint may be, for example, It is boron nitride ceramic paint, aluminum nitride ceramic paint or alumina ceramic paint.
  • the backlight can be directly dissipated through the back plate 111, so there is no need to use a heat sink, thereby reducing the cost and simplifying the assembly process of the backlight layer 110.
  • the backlight layer 110 includes, for example, a light emitting unit 112, which is disposed on a substrate 1111, and the substrate 1111 includes a printed circuit board (not shown in the figure), and the light emitting unit 112 is encapsulated on a printed circuit on the substrate 1111.
  • the light emitting unit 112 is used as a backlight light source, and the light emitting unit 112 is used for emitting light.
  • the light-emitting unit 112 is disposed on a base, the base is mounted on the substrate 1111, and the base is used to connect a circuit board on the substrate 1111.
  • the light-emitting unit 112 is, for example, any one of an LED, a microLED, or a miniLED or other light-emitting elements. In some embodiments, the light-emitting unit 112 may also be, for example, a laser diode or other light-emitting elements.
  • a light-emitting unit 112 is provided on the backlight layer 110.
  • M ⁇ N light-emitting units 112 may be provided on the backlight layer 110, where M and N are integers greater than 1.
  • the M ⁇ N light-emitting units 112 are mounted on the substrate 1111 in a M ⁇ N matrix, for example, the M ⁇ N light-emitting units 112 work independently of each other, and the processing unit 140 can control the light-emitting intensity of each light-emitting unit 112.
  • the backlight layer 110 includes, for example, an optical element 113.
  • the optical element 113 is located above the light-emitting unit 112, and the center lines of the light-emitting unit 112 and the optical element 113 are on the same line.
  • the optical element 113 can improve the backlight layer. 110 luminous brightness.
  • the number of optical elements 113 and the number of light-emitting units 112 are equal, for example, including M ⁇ N optical elements 113, where M and N are both integers greater than one.
  • the arrangement of the optical elements 113 is consistent with the arrangement of the light-emitting units 112, and the M ⁇ N optical elements 113 are arranged in an M ⁇ N matrix, for example.
  • the optical element 113 is, for example, a double free-form surface lens.
  • an optical film may also be provided on the optical element 113 to further improve the luminous brightness of the backlight layer 110.
  • the backlight layer 110 may include an illuminating light source and a beam shaping beam combiner.
  • the illumination light source can be a laser light source or an LED light source.
  • the illumination light source can be a monochromatic light source or a multi-color light source.
  • the illumination light source includes, for example, a red LED light source, a green LED light source, or a blue LED light source.
  • the color of each LED in the LED light source can also be set according to actual needs to meet actual needs.
  • the beam shaping beam combiner is arranged on the light path of the illuminating light source, and is used for collimating and shaping the light beam emitted by the illuminating light source, and beam combining processing.
  • the light field display device 100 further includes a light control array layer 120, which is used to control the luminous intensity of light without changing the color of the light.
  • the light control array layer 120 includes, for example, at least one grayscale modulator.
  • it includes three grayscale modulators, namely, a first grayscale modulator 121, a second grayscale modulator 122, and a second grayscale modulator.
  • Three gray modulator 123 Three gray modulator 123.
  • the first grayscale modulator 121, the second grayscale modulator 122, and the third grayscale modulator 123 are arranged in parallel and equidistantly along the axial direction, and the first grayscale modulator 121 and the second grayscale modulator 122 And the third grayscale modulator 123 are parallel to each other.
  • the three gray-scale modulators have the same structure, and the third gray-scale modulator 123 is close to the viewer 150.
  • the light control array layer 120 includes, for example, one or two or four or five or more grayscale modulators. In some embodiments, the light control array layer 120 includes, for example, at least one black and white screen, for example, includes one or two or three or more black and white screens.
  • the light field display device 100 includes a regulating layer 130, and the regulating layer 130 is used to regulate the color of light and restore the color of light.
  • the control layer 130 includes a plurality of pixel units 131, and each pixel unit 131 includes three sub-pixels, such as a first pixel 131a, a second pixel 131b, and a third pixel 131c.
  • the first pixel point 131a, the second pixel point 131b, and the third pixel point 131c have a small pitch. Therefore, in this embodiment, it is considered that the coordinates of the three sub-pixel points in the same pixel unit 131 are the same.
  • the first pixel 131a is, for example, a red pixel
  • the second pixel 131b is, for example, a green pixel
  • the third pixel 131c is, for example, a blue pixel.
  • the intensity of the light attenuates. Since the control layer 130 includes red pixels, green pixels and blue pixels, the attenuation value function of the light at each pixel can be obtained by calculation.
  • the control layer 130 is close to the viewer 150, and the control layer 130 is, for example, a color liquid crystal screen.
  • the light field display device 100 further includes a processing unit 140 which is connected to the backlight layer 110, the light control array layer 120 and the control layer 130 in sequence.
  • a processing unit 140 which is connected to the backlight layer 110, the light control array layer 120 and the control layer 130 in sequence.
  • the processing unit 140 decomposes the light field raw data according to the corresponding algorithm to obtain the luminous intensity of the backlight layer 110 and control The attenuation rate of the light array layer 120 and the attenuation rate of the control layer 130.
  • the processing unit 140 is, for example, a computer.
  • the processing unit 140 continuously adjusts the luminous intensity of the backlight layer 110, the attenuation rate of the light control array layer 120, and the attenuation rate of the control layer 130 to match the luminous intensity and the attenuation rate of the light, so as to A backlight pattern is formed on the backlight layer 110, a dimming pattern is formed on the light control array layer 120, and a color pattern is formed on the control layer 130.
  • the backlight pattern, the dimming pattern and the color pattern are superimposed to form a three-dimensional image.
  • this embodiment also proposes a light field display method, including:
  • S2 Collect the original data of the light field, and send the original data of the light field to the processing unit to obtain the coordinates of the light on the backlight layer, the light control array layer, and the control layer;
  • S3 Decompose the original light field data to obtain the luminous intensity of the backlight layer, the attenuation rate of the light control array layer, and the attenuation rate of the control layer;
  • the light field display device 100 includes a backlight layer 110, a light control array layer 120, a modulation layer 130, and a processing unit 140.
  • the backlight layer 110 may, for example, include multiple light emitting units, which are independent of each other, and the multiple light emitting units are used to emit light.
  • the modulation layer 130 may be, for example, a color liquid crystal screen.
  • step S2 first obtain the original light field data through the light field camera or camera array. Specifically, according to the relative position relationship between the three-dimensional object 160 and the viewer 150, the three-dimensional object 160 is processed from multiple angles. Shoot, obtain multiple different photos to obtain the original light field data, and send the original light field data to the processing unit 140. The processing unit 140 performs reverse ray tracing on the three-dimensional object 160 to obtain the coordinates of the light L on the backlight layer 110, the light control array layer 120, and the control layer 130.
  • the light can be reproduced.
  • the coordinate of the intersection of the light L and the backlight layer 110 is B
  • the coordinate of the intersection of the light L and the first gray-scale modulator 121 is C
  • the light L modulates the second gray
  • the coordinate of the intersection of the light ray L and the third gray-scale modulator 123 is E
  • the coordinate of the intersection of the light L and the control layer 130 is F.
  • step S3 the processing unit 140 decomposes the raw data of the light field into the luminous intensity of the backlight layer 110, the attenuation rate of the light control array layer 120, and the attenuation rate of the control layer 130 through the light field decomposition algorithm.
  • the processing unit 140 obtains the luminous intensity of the backlight layer 110, the attenuation rate of the light control array layer 120, and the attenuation rate of the control layer 130 according to the following formula,
  • L 1 , L 2 , and L 3 respectively represent the red, green, and blue intensity components of the light L
  • step S4 after obtaining the luminous intensity of the backlight layer 110, the attenuation rate of the light control array layer 120 and the control layer 130, the processing unit 140 continuously controls the luminous intensity of the backlight layer 110, and the light control array layer
  • the attenuation rate of 120 and the attenuation rate of the control layer 130 are used to form a backlight image on the backlight layer 110, three dimming images are formed on the light control array layer 120, and a color image is formed on the control layer 130.
  • the processing unit 140 can control the attenuation rate of the display unit (pixel unit) on the light control array layer 120 through the coordinates of the light on the light control array layer 120, and then display the modulation on the light control array layer 120.
  • the processing unit 140 can control the attenuation rate of the pixel units on the control layer 130 through the coordinates of the light on the control layer 130, and then display the color pattern on the control layer 130.
  • the attenuation rate of the light control array layer 120 is Is a ternary data structure, for each fixed N value (the serial number of the gray modulator), the attenuation rate It is the image displayed on the corresponding grayscale modulator.
  • step S5 when the backlight layer 110, the light control array layer 120 and the control layer 130 work together, the backlight image on the backlight layer 110, the light control array layer 120 forms three dimming images and control The color image formed on the layer 130 is superimposed to form a three-dimensional image.
  • the light field display device 100 includes, for example, a backlight layer 110 and a modulation array layer 170.
  • the backlight layer 110 and the modulation array layer 170 are sequentially arranged in parallel, and the backlight layer 110 and the modulation array layer 170 are respectively connected Processing unit 140.
  • the backlight layer 110 is used to emit light
  • the modulation array layer 170 is used to adjust the transmittance of light.
  • the modulation array layer 170 includes a plurality of liquid crystal layers, for example, includes three liquid crystal layers, which are a first liquid crystal layer 171, a second liquid crystal layer 172, and a third liquid crystal layer 173, respectively.
  • the first liquid crystal layer 171, the second liquid crystal layer 172, and the third liquid crystal layer 173 are arranged in parallel and equidistant in sequence.
  • the first liquid crystal layer 171 is far away from the viewer 150, and the third liquid crystal layer 173 is close to the viewer 150.
  • the first liquid crystal layer 171, the second liquid crystal layer 172 and the third liquid crystal layer 173 are respectively connected to the processing unit 140.
  • Each liquid crystal layer includes a plurality of pixel units, and the number of pixel units on each liquid crystal layer is equal to the number of light emitting units on the backlight layer 110.
  • the processing unit 140 solves the transmittance of each liquid crystal layer and the luminous intensity of the backlight layer 110 through a three-dimensional light field algorithm, so as to realize light field reconstruction and image source output.
  • the modulation array layer 170 may also include four or more liquid crystal layers, for example.
  • the processing unit 140 calculates the position of each light L passing through the backlight layer 110 and each liquid crystal layer. It is assumed that the position where the light L passes through the backlight layer 110 is M, and the light L passes through the first liquid crystal layer. 171.
  • the positions of the second liquid crystal layer 172 and the third liquid crystal layer 173 are N, O, and P respectively.
  • the coordinates of M are (x 0 , y 0 )
  • the coordinates of N are (x 1 , y 1 )
  • the coordinates of O are (x 2 , y 2 )
  • the coordinates of P are (x 3 , y 3 ).
  • the light L is the light that can reach the viewer in the propagation direction.
  • the ray L' is reconstructed from the ray L.
  • I (x0, y0) represents the luminous intensity on the backlight layer 110 with coordinates (x 0 , y 0 )
  • f 1 (x1, y1) represents the pixels on the first liquid crystal layer 171 with coordinates (x 1 , y 1 )
  • the transmittance of the cell, f 2 (x2, y2) is expressed as the transmittance of the pixel unit on the second liquid crystal layer 172 with coordinates (x 2 , y 2 )
  • f 3 (x3, y3) is expressed as the third liquid crystal layer
  • the coordinates on 173 are the transmittance of (x 3 , y 3 ) pixel unit.
  • the processing unit 140 can transmit the two-dimensional image representing the luminous intensity distribution of the backlight module and the two-dimensional image representing the attenuation rate of each layer of the liquid crystal layer to the backlight layer. And the corresponding liquid crystal layer.
  • the backlight layer and the liquid crystal layer work together, the viewer can feel the three-dimensional image.
  • this embodiment proposes a light field display device and a display method thereof.
  • the light intensity is precisely regulated through the light control array layer, and the color of the light is accurately reproduced through the control layer, thereby achieving independent control of light intensity and color.
  • the brightness of the three-dimensional image is effectively improved, the contrast of the three-dimensional image is improved, and the quality and depth of field of the three-dimensional image can also be improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

一种光场显示装置(100),包括:背光层(110);控光阵列层(120);以及调控层(130)。背光层(110)、控光阵列层(120)和调控层(130)并列设置,背光层(110)、控光阵列层(120)和调控层(130)上的图像叠加形成三维图像。

Description

一种光场显示装置及其显示方法 技术领域
本申请涉及三维显示技术领域,特别涉及一种光场显示装置及其显示方法。
背景技术
三维显示技术是显示技术的重要发展方向之一,因其逼真的立体显示效果而深受人民群众的喜爱,三维显示技术也一直是学术研究热点之一。现有成熟的商业化三维显示解决方案通常基于双目视差原理,由于存在辐辏调节冲突,会导致观看时引发视疲劳,需要研究无视疲劳的真三维显示技术。
光场三维显示技术作为无视疲劳的真三维显示技术的一种,是当今的研究热点之一。光场三维显示通常利用多层显示屏幕堆叠,根据光场叠加原理,通过调节每层屏上的像素信息,来复现空间中的光场信息,从而达到真三维显示的目标。根据光线场理论,空间中一条光线在经过顺序堆叠的多层平面后,会相对应地留下多个交点,因此,通过控制这些交点的像素信息,可以复现该条光线。再通过综合计算和控制多层屏上的所有像素信息,便可以复现空间中的光线场,实现三维显示。目前光场显示主要有集成成像和多投影阵列,然而它们都存在各种缺陷,例如分辨率低,显示亮度低及三维显示效果不佳等问题。
发明内容
鉴于上述现有技术的缺陷,本申请提出一种光场显示装置及其显示方法,通过该光场显示装置以解决传统光场显示亮度低,三维显示效果不佳的问题。
为实现上述目的及其他目的,本申请提出一种光场显示装置,该光场显示装置包括:
背光层;
控光阵列层;以及
调控层,所述背光层,所述控光阵列层和所述调控层并列设置,所述背光层,所述控光阵列层和所述调控层上的图像叠加形成三维图像。
进一步地,所述背光层,所述控光阵列层及所述调控层的中心轴在同一直线上。
进一步地,所述背光层包括多个发光单元,所述多个发光单元相互独立,所述发光单元用于发射光线。
进一步地,每一所述发光单元上设置有光学元件。
进一步地,所述光线依次穿过所述控光阵列层和所述调控层。
进一步地,当所述光线依次穿过所述控光阵列层及所述调控层时,所述光线的强度逐渐衰减。
进一步地,所述光场显示装置还包括处理单元,所述处理单元与所述背光层,所述控光阵列层及所述调控层连接
进一步地,所述调控层包括多个像素单元,每一所述像素单元包括多个子像素点。
进一步地,每一所述像素单元下的多个子像素点具有相同的坐标。
进一步地,所述控光阵列层用于调控光线的强度。
进一步地,所述调控层用于调控光线的色彩。
进一步地,所述控光阵列层包括至少一灰度调制器或黑白屏。
进一步地,所述调控层包括彩色液晶屏。
进一步地,所述发光单元包括LED,miniLED或micro LED中的任一种。
本申请还提出一种光场显示方法,包括:
提供一光场显示装置;
采集光场原始数据,并将所述光场原始数据发送至处理单元,以获得光线在背光层,控光阵列层及调控层上的坐标;
分解所述光场原始数据,以获得所述背光层的发光强度,所述控光阵列层的衰减率及所述调控层的衰减率;
通过所述处理单元在所述背光层,控光阵列层及调控层上形成相应的图像;
通过叠加所述背光层,控光阵列层及调控层上的图像,以形成三维图像;
其中,所述光场显示装置包括:
背光层,
控光阵列层;以及
调控层,所述背光层,所述控光阵列层及所述调控层并列设置,所述背光层,所述控光阵列层及所述调控层上的图像叠加形成三维图像。
进一步地,所述处理单元通过
Figure PCTCN2019117841-appb-000001
获得所述背光层的发光强度,所述控光阵列层的衰减率及所述调控层的衰减率,其中,i=1,2或3,分别表示红色,绿色或蓝色,L(o j,s j)表示所述观看者接收到所述三维物体上任意一个物点的光线,
Figure PCTCN2019117841-appb-000002
表示所述背光层的发光强度,
Figure PCTCN2019117841-appb-000003
表示所述控光阵列层的衰减率,
Figure PCTCN2019117841-appb-000004
表示所述调控层对应像素单元颜色为i的子像素点的衰减率。
进一步地,所述处理单元通过调控所述背光层的发光强度,所述控光阵列层的衰减率以及所述调控层的衰减率,以在所述背光层,所述控光阵列层及所述调控层上形成相应的图像。
综上所述,本申请提出一种光场显示装置及其显示方法,通过控光阵列层精确调控光线的强度,通过调控层精确再现光线的颜色,从而实现光线强度及颜色的独立调控,有效提高了三维图像的亮度,提升了三维图像的对比度,同时还可以提升三维图像的质量和景深。
附图说明
图1:本实施例提出的光场显示装置结构示意图。
图2:本实施例中背光层的简要示意图。
图3:本实施例中调控层中像素单元的简要示意图。
图4:本实施例中光场显示装置的方法流程图。
图5:本实施例中光场显示装置的光线示意图。
图6:本实施例提出的另一光场显示装置的结构示意图。
图7:本实施例中光场显示装置的光线示意图。
图8:本实施例中重建光线的示意图。
具体实施方式
以下通过特定的具体实例说明本申请的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本申请的其他优点与功效。本申请还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本申请的精神下进行各种修饰或改变。
需要说明的是,本实施例中所提供的图示仅以示意方式说明本申请的基本构想,遂图式中仅显示与本申请中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
请参阅图1,本实施例提出一种光场显示装置100,该光场显示装置100包括背光层110,控光阵列层120及调控层130。背光层110,控光阵列层120及调控层130依次并列设置,背光层110,控光阵列层120及调控层130的中心轴处于同一直线上。
请参阅图1-2,该光场显示装置100包括一背光层110,该背光层110用于发射光线,该背光层110向控光阵列层120及调控层130发射具有一定发散角度的光线,光线的角度范围可在0-60°之间,例如在30-40°。该背光层110包括背板111,发光单元112及光学元件113。背板111包括一基板1111和多个背板框架1112,基板1111与背板框架1112可分别单 独成型,基板1111及背板框架1112的材质可例如为金属或者塑胶。基板1111与背板框架1112垂直固定,本实施例中,基板1111与背板框架1112可通过螺丝,卡合或焊接等其他方法固定。在其他实施例中,可在背板111的外表面上涂覆一层散热涂料,背板111的外侧表面涂覆的散热涂料用于提高背板111表面的散热效率,所述散热涂料可例如为氮化硼陶瓷漆、氮化铝陶瓷漆或者氧化铝陶瓷漆。由于在背板111外表面涂覆散热涂料,可以使背光源直接通过背板111散热,因此无需使用散热器,从而降低了成本,且简化了背光层110的组装工序。
请参阅图2,该背光层110例如包括一发光单元112,发光单元112设置在基板1111上,基板1111上包括印刷电路板(图中未显示),发光单元112封装于基板1111上的印刷电路板上,发光单元112当作背光光源,发光单元112用于发射光线。在一些实施例中,发光单元112设置在一底座上,所述底座安装在基板1111上,所述底座用于连接基板1111上的电路板。在本实施例中,发光单元112例如为LED,microLED或miniLED中的任一种或其他发光元件,在一些实施例中,发光单元112还可例如为激光二极管或其他发光元件。
在本实施例中,该背光层110上设置一个发光单元112,在一些实施例中,该背光层110上可例如设置M×N个发光单元112,其中M,N均为大于1的整数,M×N个发光单元112例如按照M×N矩阵的方式安装在基板1111上,M×N个发光单元112相互独立工作,且处理单元140可控制每一个发光单元112的发光强度。
请参阅图2,该背光层110例如包括一光学元件113,光学元件113位于发光单元112的上方,且发光单元112与光学元件113的中心线位于同一直线上,该光学元件113可提高背光层110的发光亮度。在本实施例中,光学元件113的数量和发光单元112的数量相等,例如包括M×N个光学元件113,其中M,N均为大于1的整数。光学元件113的排列方式与发光单元112的排列方式一致,M×N个光学元件113例如按照M×N矩阵的方式设置。该光学元件113例如为双自由曲面透镜。
在一些实施例中,还可以在光学元件113上设置一光学膜片,以进一步提高背光层110的发光亮度。
在一些实施例中,该背光层110可以包括照明光源和光束整形合束器。其中,照明光源可以采用激光光源或LED光源。照明光源可以是单色光源也可以是多色光源。照明光源例如包括红色LED光源或绿色LED光源或蓝色LED光源。其中,LED光源中各个LED的颜色还可以根据实际需要进行设置,以满足实际情况的需要。光束整形合束器设置于照明光源的光路上,用于对照明光源发出的光束进行准直整形,合束处理。
请参阅图1,该光场显示装置100还包括一控光阵列层120,该控光阵列层120用于调控 光线的发光强度,且不改变光线的颜色。本实施例中该控光阵列层120例如包括至少一灰度调制器,本实施例中例如包括三个灰度调制器,即第一灰度调制器121,第二灰度调制器122及第三灰度调制器123。第一灰度调制器121,第二灰度调制器122及第三灰度调制器123沿着轴向方向依次等距并列设置,且第一灰度调制器121,第二灰度调制器122及第三灰度调制器123相互平行。在本实施例中,三个灰度调制器的结构相同,且第三灰度调制器123靠近观看者150。当背光层110发射的光线依次穿过第一灰度调制器121,第二灰度调制器122及第三灰度调制器123时,该光线的强度逐渐衰减。在一些实施例中,控光阵列层120例如包括一个或两个或四个或五个或更多的灰度调制器。在一些实施例中,该控光阵列层120例如包括至少一个黑白屏,例如包括一个或两个或三个或更多的黑白屏。
请参阅图1和图3,该光场显示装置100包括一调控层130,该调控层130用于调控光线的色彩,还原光线的颜色。在本实施例中,该调控层130上包括多个像素单元131,每个像素单元131内包括三个子像素点,例如包括第一像素点131a,第二像素点131b及第三像素点131c。其中第一像素点131a,第二像素点131b及第三像素点131c的间距较小,因此,本实施例认为同一像素单元131内的三个子像素点的坐标相同。在本实施例中,通过第一像素点131a,第二像素点131b及第三像素点131c之间的开度配比,可实现任意颜色的光线。第一像素点131a例如红色像素点,第二像素点131b例如为绿色像素点,第三像素点131c例如为蓝色像素点。在本实施例中,当光线穿过该调控层130时,该光线的强度衰减。由于该调控层130上包括红色像素点,绿色像素点及蓝色像素点,由此可通过计算得出光线在每个像素点的衰减值函数。该调控层130靠近观看者150,该调控层130例如为彩色液晶屏。
请参阅图1,该光场显示装置100还包括一处理单元140,该处理单元140依次连接背光层110,控光阵列层120及调控层130。首先通过光场相机或相机阵列获取光场原始数据,并把光场原始数据发送给处理单元140,处理单元140根据相应的算法来分解光场原始数据,以获得背光层110的发光强度,控光阵列层120的衰减率及调控层130的衰减率。本实施例中,处理单元140例如为计算机。
在本实施例中,该处理单元140通过不断调控背光层110的发光强度,控光阵列层120的衰减率及调控层130的衰减率,以配合光线的发光强度和光线的衰减率,以在背光层110上形成背光图案,在控光阵列层120上形成调光图案,在调控层130上形成色彩图案。当该光场显示装置100工作时,背光图案,调光图案及色彩图案通过叠加形成三维图像。
请参阅图4,本实施例还提出一种光场显示方法,包括:
S1:提供一光场显示装置;
S2:采集光场原始数据,并将所述光场原始数据发送至处理单元,以获得光线在所述背 光层,控光阵列层及调控层上的坐标;
S3:分解所述光场原始数据,以获得所述背光层的发光强度,所述控光阵列层的衰减率及所述调控层的衰减率;
S4:通过所述处理单元在所述背光层,控光阵列层及调控层上形成相应的图像;
S5:通过叠加所述背光层,控光阵列层及调控层上的图像,以形成三维图像。
请参阅图1和图4,在步骤S1中,该光场显示装置100包括背光层110,控光阵列层120,调制层130及处理单元140,其中背光层110,控光阵列层120及调制层130依次并列设置,控光阵列层120可例如包括三个灰度调制器,处理单元140依次连接背光层110,控光阵列层120及调制层130。在本实施例中,背光层110可例如包括多个发光单元,多个发光单元之间相互独立,多个发光单元用于发射光线,调制层130可例如为彩色液晶屏。
请参阅图5,在步骤S2中,首先通过光场相机或相机阵列获得光场原始数据,具体地,据三维物体160与观看者150的相对位置关系,对该三维物体160从多个角度进行拍摄,获得多个不同的照片,以获得光场原始数据,并将该光场原始数据发送至处理单元140。该处理单元140对三维物体160进行逆向光线追踪,获得光线L在背光层110,控光阵列层120及调控层130的坐标。因为光线可逆原理,当任意一条光线经过相同交点坐标,通过改变背光层110的发光强度,控光阵列层120的衰减率及调控层130的衰减率,则可以再现该光线,在本实施例中,假定光线L从三维物体160上的A点发出,光线L与背光层110的交点坐标为B,光线L与第一灰度调制器121的交点坐标为C,光线L与第二灰度调制器122的交点坐标为D,光线L与第三灰度调制器123的交坐标为E,光线L与调控层130的交点坐标为F。
请参阅图5,在步骤S3中,处理单元140通过光场分解算法将光场原始数据分解成背光层110的发光强度,控光阵列层120的衰减率及调控层130的衰减率。在本实施例中,处理单元140根据下式获得背光层110的发光强度,控光阵列层120的衰减率及调控层130的衰减率,
Figure PCTCN2019117841-appb-000005
L 1,L 2,L 3分别代表该光线L的红光,绿光,蓝光强度分量,
Figure PCTCN2019117841-appb-000006
代表背光层110的发光强度,
Figure PCTCN2019117841-appb-000007
分别代表第一灰度调制器121,第二灰度调制器122,第三灰度调制器123的衰减率,
Figure PCTCN2019117841-appb-000008
分别代表调控层130上第一像素 点131a,第二像素点131b及第三像素点131c的衰减率。
请参阅图5,在步骤S4中,当获得背光层110的发光强度,控光阵列层120及调控层130的衰减率后,该处理单元140不断调控背光层110的发光强度,控光阵列层120的衰减率及调控层130的衰减率,以在背光层110上形成背光图像,在控光阵列层120上形成三个调光图像,在调控层130上形成色彩图像。在本实施例中,处理单元140可通过光线在控光阵列层120上的坐标控制控光阵列层120上的显示单元(像素单元)的衰减率,进而在控光阵列层120上显示出调光图案,处理单元140可通过光线在调控层130上的坐标控制调控层130上的像素单元的衰减率,进而在调控层130上显示出色彩图案。
在本实施例中,控光阵列层120的衰减率
Figure PCTCN2019117841-appb-000009
是一个三元数据结构,对于每个固定的N值(灰度调制器的序号),衰减率
Figure PCTCN2019117841-appb-000010
是显示在相应灰度调制器上的图像。
请参阅图5,在步骤S5中,当背光层110,控光阵列层120及调控层130协同工作时,背光层110上的背光图像,控光阵列层120上形成三个调光图像及调控层130上形成色彩图像通过叠加形成三维图像。
请参阅图6,在一些实施例中,光场显示装置100例如包括一背光层110和调制阵列层170,背光层110与调制阵列层170依次平行排列,背光层110与调制阵列层170分别连接处理单元140。
请参阅图6,在本实施中,该背光层110用于发射光线,该调制阵列层170用于调整光线的透过率。该调制阵列层170包括多个液晶层,例如包括三个液晶层,分别为第一液晶层171,第二液晶层172和第三液晶层173。第一液晶层171,第二液晶层172和第三液晶层173依次等距平行排列。第一液晶层171远离观看者150,第三液晶层173靠近观看者150。第一液晶层171,第二液晶层172和第三液晶层173分别连接处理单元140。每一液晶层包括多个像素单元,每一液晶层上的像素单元的数量等于背光层110上的发光单元的数量。处理单元140通过三维光场算法,求解每一液晶层的透过率以及背光层110的发光强度,实现光场重建和图像源输出。在一些实施例中,该调制阵列层170还可例如包括四个或更多个液晶层。
请参阅图7,在本实施例中,处理单元140计算每条光线L经过背光层110及每一液晶层的位置,假设光线L经过背光层110的位置为M,光线L经过第一液晶层171,第二液晶层172及第三液晶层173的位置分别为N,O,P。其中M的坐标为(x 0,y 0),N的坐标为(x 1,y 1),O的坐标为(x 2,y 2),P的坐标为(x 3,y 3)。在本实施例中,光线L为传播方向能够到达观看者的光线。
请参阅图7-8,在本实施例中,根据光线L重建光线L’,光线L与光线L’的传播方向相同,则光线L’经过(x 0,y 0),(x 1,y 1),(x 2,y 2),(x 3,y 3)的发光强度可以表示为 L’=I (x0,y0)×f 1(x1,y1)×f 2(x2,y2)×f 3(x3,y3)。其中I (x0,y0)表示背光层110上坐标为(x 0,y 0)的发光强度,f 1(x1,y1)表示为第一液晶层171上坐标为(x 1,y 1)像素单元的透过率,f 2(x2,y2)表示为第二液晶层172上坐标为(x 2,y 2)像素单元的透过率,f 3(x3,y3)表示为第三液晶层173上坐标为(x 3,y 3)像素单元的透过率。
在本实施例中,通过该光场显示装置形成三维图像时,可通过处理单元140将代表背光模块发光强度分布的二维图像和代表每层液晶层衰减率的二维图像分别传送到背光层和对应的液晶层。当背光层和液晶层协同工作时,观看者就能感受到三维图像。
综上所述,本实施例提出一种光场显示装置及其显示方法,通过控光阵列层精确调控光线的强度,通过调控层精确再现光线的颜色,从而实现光线强度及颜色的独立调控,有效提高了三维图像的亮度,提升了三维图像的对比度,同时还可以提升三维图像的质量和景深。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明,本领域技术人员应当理解,本申请中所涉及的申请范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述申请构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案,例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。
除说明书所述的技术特征外,其余技术特征为本领域技术人员的已知技术,为突出本申请的创新特点,其余技术特征在此不再赘述。

Claims (20)

  1. 一种光场显示装置,包括:
    背光层;
    控光阵列层;以及
    调控层,所述背光层,所述控光阵列层和所述调控层并列设置,所述背光层,所述控光阵列层和所述调控层上的图像叠加形成三维图像。
  2. 根据权利要求1所述的光场显示装置,其中所述背光层,所述控光阵列层及所述调控层的中心轴在同一直线上。
  3. 根据权利要求1所述的光场显示装置,其中所述背光层包括多个发光单元,所述多个发光单元相互独立,所述发光单元用于发射光线。
  4. 根据权利要求3所述的光场显示装置,其中每一所述发光单元上设置有光学元件。
  5. 根据权利要求2所述的光场显示装置,其中所述光线依次穿过所述控光阵列层和所述调控层。
  6. 根据权利要求3所述的光场显示装置,其中,当所述光线依次穿过所述控光阵列层及所述调控层时,所述光线的强度逐渐衰减。
  7. 根据权利要求1所述的光场显示装置,其中所述调控层包括多个像素单元,每一所述像素单元包括多个子像素点。
  8. 根据权利要求7所述的光场显示装置,其中每一所述像素单元下的多个子像素点具有相同的坐标。
  9. 根据权利要求1所述的光场显示装置,其中所述光场显示装置还包括处理单元,所述处理单元与所述背光层,所述控光阵列层及所述调控层连接。
  10. 根据权利要求1所述的光场显示装置,其中所述控光阵列层用于调控光线的强度。
  11. 根据权利要求1所述的光场显示装置,其中所述调控层用于调控光线的色彩。
  12. 根据权利要求1所述的光场显示装置,其中所述控光阵列层包括至少一灰度调制器或黑白屏。
  13. 根据权利要求1所述的光场显示装置,其中所述调控层包括彩色液晶屏。
  14. 根据权利要求3所述的光场显示装置,其中所述发光单元包括LED,miniLED或micro LED中的任一种。
  15. 一种光场显示方法,包括:
    提供一光场显示装置;
    采集光场原始数据,并将所述光场原始数据发送至处理单元,以获得光线在背光层,控光阵列层及调控层上的坐标;
    分解所述光场原始数据,以获得所述背光层的发光强度,所述控光阵列层的衰减率及所述调控层的衰减率;
    通过所述处理单元在所述背光层,控光阵列层及调控层上形成相应的图像;
    通过叠加所述背光层,控光阵列层及调控层上的图像,以形成三维图像;
    其中,所述光场显示装置包括:
    背光层;
    控光阵列层;以及
    调控层,所述背光层,所述控光阵列层及所述调控层并列设置,所述背光层,所述控光阵列层及所述调控层上的图像叠加形成三维图像。
  16. 根据权利要求15所述的光场显示方法,其中所述处理单元通过
    Figure PCTCN2019117841-appb-100001
    获得所述背光层的发光强度,所述控光阵列层的衰减率及所述调控层的衰减率,其中,i=1,2或3,分别表示红色,绿色或蓝色,
    Figure PCTCN2019117841-appb-100002
    表示所述观看者接收到所述三维物体上任意一个物点的光线,
    Figure PCTCN2019117841-appb-100003
    表示所述背光层的发光强度,
    Figure PCTCN2019117841-appb-100004
    表示所述控光阵列层的衰减率,
    Figure PCTCN2019117841-appb-100005
    表示所述调控层对应像素单元颜色为i的子像素点的衰减率。
  17. 根据权利要求15所述的光场显示方法,其中所述处理单元通过调控所述背光层的发光强度,所述控光阵列层的衰减率以及所述调控层的衰减率,以在所述背光层,所述控光阵列层及所述调控层上形成相应的图像。
  18. 根据权利要求15所述的光场显示方法,其中所述背光层包括多个发光单元,所述多个发光单元相互独立,所述多个发光单元用于发射光线。
  19. 根据权利要求15所述的光场显示方法,其中所述控光阵列层包括至少一灰度调制器或黑白屏。
  20. 根据权利要求15所述的光场显示方法,其中调控层包括彩色液晶屏。
PCT/CN2019/117841 2019-05-15 2019-11-13 一种光场显示装置及其显示方法 WO2020228282A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/295,443 US11988852B2 (en) 2019-05-15 2019-11-13 Light field display device and display method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910402664.3A CN110082960B (zh) 2019-05-15 2019-05-15 一种基于高亮分区背光的光场显示装置及其光场优化算法
CN201910402664.3 2019-05-15

Publications (1)

Publication Number Publication Date
WO2020228282A1 true WO2020228282A1 (zh) 2020-11-19

Family

ID=67420156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117841 WO2020228282A1 (zh) 2019-05-15 2019-11-13 一种光场显示装置及其显示方法

Country Status (3)

Country Link
US (1) US11988852B2 (zh)
CN (1) CN110082960B (zh)
WO (1) WO2020228282A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655665A (zh) * 2021-08-27 2021-11-16 合肥工业大学 一种基于动态调光的显示装置及调光方法
CN114339191A (zh) * 2021-10-27 2022-04-12 东南大学 一种基于多视点重建的裸眼三维显示方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110082960B (zh) * 2019-05-15 2020-08-04 合肥工业大学 一种基于高亮分区背光的光场显示装置及其光场优化算法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130100124A1 (en) * 2011-10-25 2013-04-25 Lg Electronics Inc. Display module and mobile terminal having the same
CN103792668A (zh) * 2012-06-13 2014-05-14 群创光电股份有限公司 可切换式二维/三维显示装置及其制造方法
KR20140130940A (ko) * 2013-05-02 2014-11-12 주식회사 루멘스 3d 디스플레이 장치
CN104777621A (zh) * 2015-03-24 2015-07-15 中山大学 一种时空混合控制的裸眼立体显示系统及方法
CN105676473A (zh) * 2016-04-18 2016-06-15 苏州苏大维格光电科技股份有限公司 一种裸眼3d显示装置及实现裸眼3d显示的方法
CN105959672A (zh) * 2016-05-03 2016-09-21 苏州苏大维格光电科技股份有限公司 基于主动发光型显示技术的裸眼三维显示装置
CN109143602A (zh) * 2018-09-25 2019-01-04 张家港康得新光电材料有限公司 一种3d显示装置及电子设备
CN110082960A (zh) * 2019-05-15 2019-08-02 合肥工业大学 一种基于高亮分区背光的光场显示装置及其光场优化算法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273571B1 (en) * 1995-05-23 2001-08-14 Colorlink, Inc. Display architectures using an electronically controlled optical retarder stack
US6859240B1 (en) * 2000-01-27 2005-02-22 Mems Optical Inc. Autostereoscopic display
US7490941B2 (en) * 2004-08-30 2009-02-17 California Institute Of Technology Three-dimensional hologram display system
CN101907774B (zh) * 2010-07-05 2013-04-10 深圳超多维光电子有限公司 立体显示装置
US20130077154A1 (en) * 2011-09-23 2013-03-28 Milan Momcilo Popovich Autostereoscopic display
CN104049452B (zh) * 2013-03-12 2017-02-15 耿征 真三维显示装置、显示控制方法、装置及系统
KR102028987B1 (ko) * 2013-03-29 2019-10-07 엘지디스플레이 주식회사 홀로그램 영상 표시 장치
US10554962B2 (en) * 2014-02-07 2020-02-04 Samsung Electronics Co., Ltd. Multi-layer high transparency display for light field generation
CN104777615B (zh) * 2015-04-17 2017-05-10 浙江大学 基于人眼跟踪的自适应高分辨近眼光场显示装置和方法
GB201513333D0 (en) * 2015-07-29 2015-09-09 Khan Javid Volumetric display
US11070774B2 (en) * 2017-12-22 2021-07-20 Dolby Laboratories Licensing Corporation Temporal modeling of phase modulators in multi-modulation projection
JP2019135512A (ja) * 2018-02-05 2019-08-15 シャープ株式会社 立体表示装置、及び空中立体表示装置
WO2019221993A1 (en) * 2018-05-17 2019-11-21 Pcms Holdings, Inc. 3d display directional backlight based on diffractive elements

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130100124A1 (en) * 2011-10-25 2013-04-25 Lg Electronics Inc. Display module and mobile terminal having the same
CN103792668A (zh) * 2012-06-13 2014-05-14 群创光电股份有限公司 可切换式二维/三维显示装置及其制造方法
KR20140130940A (ko) * 2013-05-02 2014-11-12 주식회사 루멘스 3d 디스플레이 장치
CN104777621A (zh) * 2015-03-24 2015-07-15 中山大学 一种时空混合控制的裸眼立体显示系统及方法
CN105676473A (zh) * 2016-04-18 2016-06-15 苏州苏大维格光电科技股份有限公司 一种裸眼3d显示装置及实现裸眼3d显示的方法
CN105959672A (zh) * 2016-05-03 2016-09-21 苏州苏大维格光电科技股份有限公司 基于主动发光型显示技术的裸眼三维显示装置
CN109143602A (zh) * 2018-09-25 2019-01-04 张家港康得新光电材料有限公司 一种3d显示装置及电子设备
CN110082960A (zh) * 2019-05-15 2019-08-02 合肥工业大学 一种基于高亮分区背光的光场显示装置及其光场优化算法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113655665A (zh) * 2021-08-27 2021-11-16 合肥工业大学 一种基于动态调光的显示装置及调光方法
CN113655665B (zh) * 2021-08-27 2023-07-14 合肥工业大学 一种基于动态调光的显示装置及调光方法
CN114339191A (zh) * 2021-10-27 2022-04-12 东南大学 一种基于多视点重建的裸眼三维显示方法
CN114339191B (zh) * 2021-10-27 2024-02-02 东南大学 一种基于多视点重建的裸眼三维显示方法

Also Published As

Publication number Publication date
CN110082960A (zh) 2019-08-02
CN110082960B (zh) 2020-08-04
US11988852B2 (en) 2024-05-21
US20220075203A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
WO2020228282A1 (zh) 一种光场显示装置及其显示方法
KR101227068B1 (ko) 3차원 영상 생성 방법 및 장치
KR100864139B1 (ko) 3차원 영상 표시방법 및 장치
CN104321686B (zh) 控制定向背光源的光源
KR102662883B1 (ko) 무안경 입체 디스플레이 장치 및 디스플레이 방법
WO2017080089A1 (zh) 指向性彩色滤光片和裸眼3d显示装置
CN105223641A (zh) 一种量子点激光器指向型背光模组及裸眼3d显示装置
WO2016169211A1 (zh) 3d打印成像系统、3d打印成像方法及3d打印装置
CN110501818A (zh) 立体显示装置
TWI818092B (zh) 多視像顯示器和方法
CN103200411A (zh) 显示装置
CN110824725B (zh) 3d显示基板、3d显示装置及显示方法
WO2021184324A1 (zh) 显示装置及其显示方法
US20170263209A1 (en) Backlight unit, display panel and display device
US10726751B2 (en) Table-top volumetric display apparatus and method of displaying three-dimensional image
US20200209806A1 (en) Active Light-Field Holographic Elements, Light-Field Display Devices, and Methods
CN108169921A (zh) 显示器及其显示面板
CN114280812A (zh) 一种基于无机钙钛矿量子点led的三维立体光电显示器
US7649688B2 (en) Auto-stereo three-dimensional images
CN110262129B (zh) 一种背光模组及其应用的液晶显示器
JP6000161B2 (ja) 面光源装置および液晶表示装置
JP2020012990A (ja) 表示装置および表示方法
TWI596379B (zh) 顯示模組與應用其之頭戴式顯示裝置
CN108873442B (zh) 显示装置及其驱动方法
TWI723530B (zh) 顯示裝置及其驅動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928639

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19928639

Country of ref document: EP

Kind code of ref document: A1