WO2020228172A1 - 基于径向基函数的连续型图像放大方法、装置及存储介质 - Google Patents
基于径向基函数的连续型图像放大方法、装置及存储介质 Download PDFInfo
- Publication number
- WO2020228172A1 WO2020228172A1 PCT/CN2019/102197 CN2019102197W WO2020228172A1 WO 2020228172 A1 WO2020228172 A1 WO 2020228172A1 CN 2019102197 W CN2019102197 W CN 2019102197W WO 2020228172 A1 WO2020228172 A1 WO 2020228172A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- radial basis
- point
- magnification
- domain
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 61
- 230000003321 amplification Effects 0.000 title abstract 5
- 238000003199 nucleic acid amplification method Methods 0.000 title abstract 5
- 238000012545 processing Methods 0.000 claims abstract description 54
- 230000006870 function Effects 0.000 claims description 159
- 230000008569 process Effects 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 9
- 230000000694 effects Effects 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000005315 distribution function Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012886 linear function Methods 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 238000004590 computer program Methods 0.000 description 1
- 238000003706 image smoothing Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T3/00—Geometric image transformations in the plane of the image
- G06T3/40—Scaling of whole images or parts thereof, e.g. expanding or contracting
- G06T3/4007—Scaling of whole images or parts thereof, e.g. expanding or contracting based on interpolation, e.g. bilinear interpolation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/90—Dynamic range modification of images or parts thereof
Definitions
- This application relates to the technical field of digital image processing, and in particular to a continuous image magnification method, device and computer-readable storage medium based on radial basis functions.
- Image magnification processing technology plays an important role in practical applications, such as medical systems, public security systems, aerospace systems, and some image processing software. In order to apply to special occasions and obtain better visual effects, an effective method is often needed. To change the size of the existing image and ensure that the changed image has better quality.
- Image interpolation is the main method of image enlargement.
- Traditional image interpolation algorithms focus on image smoothing, so as to achieve better visual effects, but this kind of method will also degrade the high frequency part of the image while maintaining the smoothness of the image, making the interpolation effect poor and leading to the edge of the image.
- Phenomena such as blur, sawtooth, and steps appear, and the details are not clear enough to meet the expectations of image processing.
- the present application provides a continuous image magnification method and device based on a radial basis function, and a computer-readable storage medium, the main purpose of which is to provide an image magnification solution with higher operating efficiency and support for high-dimensional image magnification.
- a continuous image magnification method based on radial basis functions includes: selecting an image that needs to be magnified as the original image, and converting the original image into discrete values. Representing and storing; performing interpolation processing on the original image based on a radial basis function to obtain an interpolated image of the original image; performing spatial expansion processing on the interpolated image based on the radial basis function to obtain a magnification, and The interpolated image is discretized to form an enlarged image.
- the present application also provides a continuous image magnification device based on a radial basis function.
- the device includes a memory and a processor.
- the memory stores a radial basis function that can run on the processor.
- a continuous image magnification program based on a basis function.
- an image that needs magnification is selected as the original image, and the The original image is converted into discrete values for representation and storage; the original image is interpolated based on the radial basis function Multi-Quadric to obtain an interpolated image of the original image; the original image is interpolated based on the radial basis function Multi-Quadric; The interpolation image is subjected to spatial extension processing to obtain a magnification ratio, and the interpolation image is subjected to discretization processing to form an enlarged image.
- the present application also provides a computer-readable storage medium storing a continuous image magnification program based on a radial basis function, and the continuous image magnification program based on a radial basis function
- the image enlargement program may be executed by one or more processors to implement the steps of the continuous image enlargement method based on the radial basis function as described above.
- the continuous image magnification method, device and computer readable storage medium based on radial basis function proposed in this application use the radial basis function to magnify the image, transform it into a surface reconstruction problem, construct an interpolation format for the lost information, and then The computer automatically selects the interpolation node and solves the interpolation equation, so that the processed image can be obtained.
- the function prototype based on Multi-Quadric is relatively simple, so it runs efficiently and supports high-dimensional image enlargement.
- FIG. 1 is a schematic flowchart of a continuous image enlargement method based on a radial basis function according to an embodiment of the application;
- FIG. 2 is a schematic diagram of the internal structure of a continuous image magnifying device based on a radial basis function provided by an embodiment of the application;
- FIG. 3 is a schematic block diagram of a continuous image magnification program based on a radial basis function in a continuous image magnification device based on a radial basis function provided by an embodiment of the application.
- This application provides a continuous image magnification method based on radial basis functions.
- FIG. 1 it is a schematic flowchart of a continuous image magnification method based on a radial basis function provided by an embodiment of this application.
- the method can be executed by a device, and the device can be implemented by software and/or hardware.
- the continuous image enlargement method based on radial basis functions includes:
- the coordinates of the original image are (x, y)
- the original image can be enlarged.
- the enlarged image The coordinates of is (u, v), then realizing the enlargement of the original image is the realization:
- a is the magnification in the x direction
- b is the magnification in the y direction
- A>1 is used to zoom in in the x direction
- b>1 is used to zoom in in the y direction.
- the preferred embodiment of the present application represents the original image as follows: Set the width of each pixel to 1, then f(x, y) means that the lower left in the original image is the origin The value of the pixel (x, y) in the upper right two-dimensional coordinate system, where x, y are positive integers or 0. In this way, the original image is represented by digital text with discrete values.
- ), or it can be the distance to any point c, which is called The center point, that is, ⁇ (x,c) ⁇ (
- Any function ⁇ satisfying the characteristics of ⁇ (x) ⁇ (
- ) can be called a radial basis function.
- Commonly used radial basis functions are: Gauss distribution function of Kriging method, Multi-Quadric function of Hardy and thin plate spline of Duchon. This application selects the Multi-Quadric function as the radial basis function.
- MQ The Multi-Quadric function
- Using the radial basis function Multi-Quadric to perform interpolation processing on the original image includes:
- M and N represent the original image with M rows and N columns
- R is the domain interval of the data point set
- R 3 represents the domain data dimension
- ⁇ j is the interpolation condition weight
- g*(u,v) can be obtained, and all the integer points of g*(u,v) in the domain are taken to form the enlarged image g(u,v). Since this image is [aM] row and [bN] column, the value range of u and v can be calculated as: 0 ⁇ u ⁇ [aM]-1, 0 ⁇ v ⁇ [bN]-1.
- An M*N image is regarded as a point in the M*N-dimensional European image space.
- the measurement coefficient matrix G (g ij ) MN ⁇ MN determines the distance between two images in the image space:
- a threshold is set by calculating the Euclidean distance between the two images, and it is determined in step S5 whether the calculated Euclidean distance is greater than or equal to the set threshold.
- the Euclidean distance is greater than the set threshold, it indicates that the image has been continuously enlarged. The larger the value, the better the image enlargement effect and the clearer the visual effect, and the enlarged image may be output in step S6.
- the embodiment of the application provides a continuous image enlargement method based on the radial basis function Multi-Quadric. Based on the radial basis function Multi-Quadric function, the original image is calculated by interpolation, spatially extended, and discretized to obtain an enlarged image Finally, the Euclidean distance of the gray matrix is used to calculate the similarity between the original image and the enlarged image to determine the image enlargement effect.
- the preferred embodiment of the present application has the following advantages:
- the prototype of the Radial Basis Function Multi-Quadric function is relatively simple, and the univariate function can be used to describe the multivariate function more powerfully. For processing large-scale scattered data, it has high operating efficiency and can support high-dimensional image enlargement;
- the gray-scale Euclidean distance is used to compare the original image and the enlarged image to test the image enlargement effect and verify the feasibility of the method.
- the application also provides a continuous image magnification device based on radial basis functions.
- FIG. 2 it is a schematic diagram of the internal structure of a continuous image magnifying device based on a radial basis function provided by an embodiment of this application.
- the continuous image magnifying device 1 based on the radial basis function may be a PC (Personal Computer, personal computer), or a terminal device such as a smart phone, a tablet computer, or a portable computer.
- the continuous image magnifying device 1 based on radial basis functions at least includes a memory 11, a processor 12, a communication bus 13, and a network interface 14.
- the memory 11 includes at least one type of readable storage medium, and the readable storage medium includes flash memory, hard disk, multimedia card, card-type memory (for example, SD or DX memory, etc.), magnetic memory, magnetic disk, optical disk, etc.
- the memory 11 may be an internal storage unit of the continuous image magnifying device 1 based on the radial basis function, for example, the hard disk of the continuous image magnifying device 1 based on the radial basis function.
- the memory 11 may also be an external storage device of the continuous image magnifying device 1 based on the radial basis function, such as a plug-in hard disk equipped on the continuous image magnifying device 1 based on the radial basis function, Memory card (Smart Media Card, SMC), Secure Digital (SD) card, Flash Card (Flash Card), etc. Further, the memory 11 may also include both an internal storage unit of the continuous image magnifying device 1 based on a radial basis function and an external storage device.
- the memory 11 can be used not only to store application software and various data installed in the continuous image enlargement device 1 based on the radial basis function, such as the code of the continuous image enlargement program 01 based on the radial basis function, etc., but also Temporarily store data that has been output or will be output.
- the processor 12 may be a central processing unit (CPU), controller, microcontroller, microprocessor or other data processing chip in some embodiments, and is used to run the program code or processing stored in the memory 11
- the data for example, executes the continuous image enlargement program 01 based on the radial basis function.
- the communication bus 13 is used to realize the connection and communication between these components.
- the network interface 14 may optionally include a standard wired interface and a wireless interface (such as a WI-FI interface), and is usually used to establish a communication connection between the device 1 and other electronic devices.
- the device 1 may also include a user interface.
- the user interface may include a display (Display) and an input unit such as a keyboard (Keyboard).
- the optional user interface may also include a standard wired interface and a wireless interface.
- the display may be an LED display, a liquid crystal display, a touch-sensitive liquid crystal display, an OLED (Organic Light-Emitting Diode, organic light emitting diode) touch device, etc.
- the display can also be appropriately called a display screen or a display unit, which is used to display the information processed in the continuous image magnifying device 1 based on the radial basis function and to display a visualized user interface.
- Figure 2 only shows the radial basis function-based continuous image magnifying device 1 with components 11-14 and the radial basis function-based continuous image magnifying program 01.
- Figure 1 shows The structure presented does not constitute a limitation on the continuous image magnifying device 1 based on the radial basis function, and may include fewer or more components than shown, or a combination of certain components, or a different component arrangement.
- the continuous image enlargement program 01 based on the radial basis function is stored in the memory 11; the processor 12 executes the continuous image enlargement program based on the radial basis function stored in the memory 11 Implement the following steps at 01:
- Step 1 Select an image to be enlarged as the original image.
- the coordinates of the original image are (x, y), and there are M rows and N columns.
- the original image is denoted as f(x, y)
- the original image can be enlarged, and the coordinates of the enlarged image are (u, v), then the original image is enlarged to achieve:
- a is the magnification in the x direction
- b is the magnification in the y direction
- A>1 is used to zoom in in the x direction
- b>1 is used to zoom in in the y direction.
- Step 2 Perform interpolation processing on the original image based on the radial basis function Multi-Quadric to obtain an interpolated image of the original image.
- ), or it can be the distance to any point c, which is called The center point, that is, ⁇ (x,c) ⁇ (
- Any function ⁇ satisfying the characteristics of ⁇ (x) ⁇ (
- ) can be called a radial basis function.
- Commonly used radial basis functions are: Gauss distribution function of Kriging method, Multi-Quadric function of Hardy and thin plate spline of Duchon. This application selects the Multi-Quadric function as the radial basis function.
- MQ The Multi-Quadric function
- c is the above-mentioned taking different values.
- Using the radial basis function Multi-Quadric to perform interpolation processing on the original image includes:
- M and N represent the original image with M rows and N columns
- R is the domain interval of the data point set
- R 3 represents the domain data dimension
- ⁇ j is the interpolation condition weight
- Step 3 Perform spatial extension processing on the interpolated image based on the radial basis function Multi-Quadric to obtain a magnification, and perform discretization processing on the interpolated image to form an enlarged image.
- g*(u,v) can be obtained, and all the integer points of g*(u,v) in the domain are taken to form the enlarged image g(u,v). Since this image is [aM] row and [bN] column, the value range of u and v can be calculated as: 0 ⁇ u ⁇ [aM]-1, 0 ⁇ v ⁇ [bN]-1.
- Step 4 Calculate the Euclidean distance of the gray matrix of the original image and the enlarged image, and determine the similarity between the original image and the enlarged image.
- An M*N image is regarded as a point in the M*N-dimensional European image space.
- the measurement coefficient matrix G (g ij ) MN ⁇ MN determines the distance between two images in the image space:
- the continuous image magnification program based on the radial basis function may also be divided into one or more modules, and the one or more modules are stored in the memory 11 and composed of one or more modules.
- the processor (the processor 12 in this embodiment) is executed to complete this application.
- the module referred to in this application refers to a series of computer program instruction segments that can complete specific functions, and is used to describe continuous images based on radial basis functions. The execution process of the enlargement program in the continuous image enlargement device based on the radial basis function.
- FIG. 3 a schematic diagram of the program module of the continuous image magnification program based on the radial basis function in an embodiment of the continuous image magnification device based on the radial basis function of the present application.
- the continuous image enlargement program to the basis function can be divided into an image conversion module 10, an image interpolation module 20, an image enlargement module 30, a similarity judgment module 40, and a continuous image enlargement module 50 based on a radial basis function, exemplarily :
- the image conversion module 10 is used to select an image that needs to be magnified as an original image, and convert the original image into discrete values for representation and storage.
- the image interpolation module 20 is configured to perform interpolation processing on the original image based on a radial basis function to obtain an interpolated image of the original image.
- the radial basis function is a Multi-Quadric function.
- using the radial basis function Multi-Quadric to perform interpolation processing on the original image includes:
- M and N represent the original image with M rows and N columns
- R is the domain interval of the data point set
- R 3 represents the domain data dimension
- ⁇ j is the interpolation condition weight
- the image enlargement module 30 is configured to: perform spatial extension processing on the interpolation image based on the radial basis function Multi-Quadric to obtain a magnification ratio, and perform discretization processing on the interpolation image to form an enlarged image.
- the performing spatial extension processing on the interpolation image to obtain a magnification ratio, and performing discretization processing on the interpolation image to form a magnified image includes:
- the similarity judgment module 40 is configured to calculate the Euclidean distance of the gray matrix of the original image and the enlarged image, and judge the similarity of the original image and the enlarged image.
- the embodiment of the present application also proposes a computer-readable storage medium, the computer-readable storage medium stores a continuous image magnification program based on a radial basis function, and the continuous image magnification based on a radial basis function
- the program can be executed by one or more processors to achieve the following operations:
- the interpolation image is spatially extended to obtain a magnification ratio, and the interpolation image is discretized to form an enlarged image.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Image Processing (AREA)
- Editing Of Facsimile Originals (AREA)
Abstract
Description
Claims (20)
- 一种基于径向基函数的连续型图像放大方法,其特征在于,所述方法包括:选定一个需要放大处理的图像作为原图像,并将所述原图像转换为离散值的方式进行表示和存储;基于径向基函数对所述原图像进行插值处理,得到原图像的插值图像;基于所述径向基函数对所述插值图像进行空间延展处理,得到放大倍率,并对所述插值图像进行离散化处理,构成放大图像。
- 如权利要求1所述的基于径向基函数的连续型图像放大方法,其特征在于,所述径向基函数为Multi-Quadric函数。
- 如权利要求1所述的基于径向基函数的连续型图像放大方法,其特征在于,所述对所述插值图像进行空间延展处理,得到放大倍率,并对所述插值图像进行离散化处理,构成放大图像,包括:设定所述插值图像在x方向的放大率为a,在y方向的放大率为b,将曲面z=f *(x,y)沿x方向等比例延展a倍,沿y方向等比例延展b倍,得到曲面w=g*(u,v),其中,a>1,b>1,g*(u,v)的定义域为 R 2为定义域维度,具体求解过程为:曲面z=f *(x,y)上的任意一点(x 0,y 0,z 0)在曲面w=g*(u,v)上的对应点为(u 0,v 0,w 0),对应关系如下式表示:设定放大后的图像g(u,v)上的任意一个像素(u1,v1),则曲面w=g*(u,v)上的点(u1,v1,w1)在曲面z=f *(x,y)上的对应点(x 1,y 1,z 1)的对应关系如下所示:利用所述f *(x,y),求出g*(u,v),取g*(u,v)在定义域中的所有整数点构成放大后图像g(u,v),其中图像g(u,v)为[aM]行,[bN]列,则u,v的取值范围为:0≤u≤[aM]-1,0≤v≤[bN]-1。
- 如权利要求2所述的基于径向基函数的连续型图像放大方法,其特征在于,所述对所述插值图像进行空间延展处理,得到放大倍率,并对所述插值图像进行离散化处理,构成放大图像,包括:设定所述插值图像在x方向的放大率为a,在y方向的放大率为b,将曲面z=f *(x,y)沿x方向等比例延展a倍,沿y方向等比例延展b倍,得到曲面w=g*(u,v),其中,a>1,b>1,g*(u,v)的定义域为 R 2为定义域维度,具体求解过程为:曲面z=f *(x,y)上的任意一点(x 0,y 0,z 0)在曲面w=g*(u,v)上的对应点为(u 0,v 0,w 0),对应关系如下式表示:设定放大后的图像g(u,v)上的任意一个像素(u1,v1),则曲面w=g*(u,v)上的点(u1,v1,w1)在曲面z=f *(x,y)上的对应点(x 1,y 1,z 1)的对应关系如下所示:利用所述f *(x,y),求出g*(u,v),取g*(u,v)在定义域中的所有整数点构成放大后图像g(u,v),其中图像g(u,v)为[aM]行,[bN]列,则u,v的取值范围为:0≤u≤[aM]-1,0≤v≤[bN]-1。
- 如权利要求3所述的基于径向基函数的连续型图像放大方法,其特征在于,所述对所述插值图像进行空间延展处理,得到放大倍率,并对所述插值图像进行离散化处理,构成放大图像,包括:设定所述插值图像在x方向的放大率为a,在y方向的放大率为b,将曲面z=f *(x,y)沿x方向等比例延展a倍,沿y方向等比例延展b倍,得到曲面w=g*(u,v),其中,a>1,b>1,g*(u,v)的定义域为 R 2为定义域维度,具体求解过程为:曲面z=f *(x,y)上的任意一点(x 0,y 0,z 0)在曲面w=g*(u,v)上的对应点为(u 0,v 0,w 0),对应关系如下式表示:设定放大后的图像g(u,v)上的任意一个像素(u1,v1),则曲面w=g*(u,v)上的点(u1,v1,w1)在曲面z=f *(x,y)上的对应点(x 1,y 1,z 1)的对应关系如下所示:利用所述f *(x,y),求出g*(u,v),取g*(u,v)在定义域中的所有整数点构成放大后图像g(u,v),其中图像g(u,v)为[aM]行,[bN]列,则u,v的取值范围为:0≤u≤[aM]-1,0≤v≤[bN]-1。
- 如权利要求4-6任一项所述的基于径向基函数的连续型图像放大方法,其特征在于,该方法还包括:计算所述原图像以及所述放大图像的灰度矩阵欧式距离,判断所述原图像以及放大图像的相似度。
- 一种基于径向基函数的连续型图像放大装置,其特征在于,所述装置包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的基于径向基函数的连续型图像放大程序,所述基于径向基函数的连续型图像放大程序被所述处理器执行时实现如下步骤:选定一个需要放大处理的图像作为原图像,并将所述原图像转换为离散值的方式进行表示和存储;基于径向基函数Multi-Quadric对所述原图像进行插值处理,得到原图像的插值图像;基于所述径向基函数Multi-Quadric对所述插值图像进行空间延展处理,得到放大倍率,并对所述插值图像进行离散化处理,构成放大图像。
- 如权利要求8所述的基于径向基函数的连续型图像放大装置,其特征在于,所述径向基函数为Multi-Quadric函数。
- 如权利要求8所述的基于径向基函数的连续型图像放大装置,其特征在于,所述对所述插值图像进行空间延展处理,得到放大倍率,并对所述插值图像进行离散化处理,构成放大图像,包括:设定所述插值图像在x方向的放大率为a,在y方向的放大率为b,将曲面z=f *(x,y)沿x方向等比例延展a倍,沿y方向等比例延展b倍,得到曲面w=g*(u,v),其中,a>1,b>1,g*(u,v)的定义域为 R 2为定义域维度,具体求解过程为:曲面z=f *(x,y)上的任意一点(x 0,y 0,z 0)在曲面w=g*(u,v)上的对应点为(u 0,v 0,w 0),对应关系如下式表示:设定放大后的图像g(u,v)上的任意一个像素(u1,v1),则曲面w=g*(u,v)上的点(u1,v1,w1)在曲面z=f *(x,y)上的对应点(x 1,y 1,z 1)的对应关系如下所示:利用所述f *(x,y),求出g*(u,v),取g*(u,v)在定义域中的所有整数点构成放大后图像g(u,v),其中图像g(u,v)为[aM]行,[bN]列,则u,v的取值范围为:0≤u≤[aM]-1,0≤v≤[bN]-1。
- 如权利要求9所述的基于径向基函数的连续型图像放大装置,其特征在于,所述对所述插值图像进行空间延展处理,得到放大倍率,并对所述插值图像进行离散化处理,构成放大图像,包括:设定所述插值图像在x方向的放大率为a,在y方向的放大率为b,将曲面z=f *(x,y)沿x方向等比例延展a倍,沿y方向等比例延展b倍,得到曲面w=g*(u,v),其中,a>1,b>1,g*(u,v)的定义域为 R 2为定义域维度,具体求解过程为:曲面z=f *(x,y)上的任意一点(x 0,y 0,z 0)在曲面w=g*(u,v)上的对应点为(u 0,v 0,w 0),对应关系如下式表示:设定放大后的图像g(u,v)上的任意一个像素(u1,v1),则曲面w=g*(u,v)上的点(u1,v1,w1)在曲面z=f *(x,y)上的对应点(x 1,y 1,z 1)的对应关系如下所示:利用所述f *(x,y),求出g*(u,v),取g*(u,v)在定义域中的所有整数点构成放大后图像g(u,v),其中图像g(u,v)为[aM]行,[bN]列,则u,v的取值范围为:0≤u≤[aM]-1,0≤v≤[bN]-1。
- 如权利要求10所述的基于径向基函数的连续型图像放大装置,其特征在于,所述对所述插值图像进行空间延展处理,得到放大倍率,并对所述插值图像进行离散化处理,构成放大图像,包括:设定所述插值图像在x方向的放大率为a,在y方向的放大率为b,将曲面z=f *(x,y)沿x方向等比例延展a倍,沿y方向等比例延展b倍,得到曲面w=g*(u,v),其中,a>1,b>1,g*(u,v)的定义域为 R 2为定义域维度,具体求解过程为:曲面z=f *(x,y)上的任意一点(x 0,y 0,z 0)在曲面w=g*(u,v)上的对应点为(u 0,v 0,w 0),对应关系如下式表示:设定放大后的图像g(u,v)上的任意一个像素(u1,v1),则曲面w=g*(u,v)上的点(u1,v1,w1)在曲面z=f *(x,y)上的对应点(x 1,y 1,z 1)的对应关系如下所示:利用所述f *(x,y),求出g*(u,v),取g*(u,v)在定义域中的所有整数点构成放大后图像g(u,v),其中图像g(u,v)为[aM]行,[bN]列,则u,v的取值范围为:0≤u≤[aM]-1,0≤v≤[bN]-1。
- 如权利要求11-13任一项所述的基于径向基函数的连续型图像放大装置,其特征在于,所述基于径向基函数的连续型图像放大程序被所述处理器执行时还实现如下步骤:计算所述原图像以及所述放大图像的灰度矩阵欧式距离,判断所述原图像以及放大图像的相似度。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有基于径向基函数的连续型图像放大程序,所述基于径向基函数的连续型图像放大程序可被一个或者多个处理器执行,以实现如下步骤:选定一个需要放大处理的图像作为原图像,并将所述原图像转换为离散值的方式进行表示和存储;基于径向基函数Multi-Quadric对所述原图像进行插值处理,得到原图像的插值图像;基于所述径向基函数Multi-Quadric对所述插值图像进行空间延展处理,得到放大倍率,并对所述插值图像进行离散化处理,构成放大图像。
- 如权利要求15所述的计算机可读存储介质,其特征在于,所述径向基函数为Multi-Quadric函数。
- 如权利要求15所述的计算机可读存储介质,其特征在于,所述对所述插值图像进行空间延展处理,得到放大倍率,并对所述插值图像进行离散化处理,构成放大图像,包括:设定所述插值图像在x方向的放大率为a,在y方向的放大率为b,将曲面z=f *(x,y)沿x方向等比例延展a倍,沿y方向等比例延展b倍,得到曲面w=g*(u,v),其中,a>1,b>1,g*(u,v)的定义域为 R 2为定义域维度,具体求解过程为:曲面z=f *(x,y)上的任意一点(x 0,y 0,z 0)在曲面w=g*(u,v)上的对应点为(u 0,v 0,w 0),对应关系如下式表示:设定放大后的图像g(u,v)上的任意一个像素(u1,v1),则曲面w=g*(u,v)上的点(u1,v1,w1)在曲面z=f *(x,y)上的对应点(x 1,y 1,z 1)的对应关系如下所示:利用所述f *(x,y),求出g*(u,v),取g*(u,v)在定义域中的所有整数点构成放大后图像g(u,v),其中图像g(u,v)为[aM]行,[bN]列,则u,v的取值范围为:0≤u≤[aM]-1,0≤v≤[bN]-1。
- 如权利要求16或17所述的计算机可读存储介质,其特征在于,所述对所述插值图像进行空间延展处理,得到放大倍率,并对所述插值图像进行离散化处理,构成放大图像,包括:设定所述插值图像在x方向的放大率为a,在y方向的放大率为b,将曲面z=f *(x,y)沿x方向等比例延展a倍,沿y方向等比例延展b倍,得到曲面w=g*(u,v),其中,a>1,b>1,g*(u,v)的定义域为 R 2为定义域维度,具体求解过程为:曲面z=f *(x,y)上的任意一点(x 0,y 0,z 0)在曲面w=g*(u,v)上的对应点为(u 0,v 0,w 0),对应关系如下式表示:设定放大后的图像g(u,v)上的任意一个像素(u1,v1),则曲面w=g*(u,v)上的点(u1,v1,w1)在曲面z=f *(x,y)上的对应点(x 1,y 1,z 1)的对应关系如下所示:利用所述f *(x,y),求出g*(u,v),取g*(u,v)在定义域中的所有整数点构成放大后图像g(u,v),其中图像g(u,v)为[aM]行,[bN]列,则u,v的取值范围为:0≤u≤[aM]-1,0≤v≤[bN]-1。
- 如权利要求19所述的计算机可读存储介质,其特征在于,所述基于径向基函数的连续型图像放大程序被所述处理器执行时还实现如下步骤:计算所述原图像以及所述放大图像的灰度矩阵欧式距离,判断所述原图像以及放大图像的相似度。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910409186.9A CN110264401A (zh) | 2019-05-16 | 2019-05-16 | 基于径向基函数的连续型图像放大方法、装置及存储介质 |
CN201910409186.9 | 2019-05-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020228172A1 true WO2020228172A1 (zh) | 2020-11-19 |
Family
ID=67913236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/102197 WO2020228172A1 (zh) | 2019-05-16 | 2019-08-23 | 基于径向基函数的连续型图像放大方法、装置及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110264401A (zh) |
WO (1) | WO2020228172A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111159622B (zh) * | 2019-12-10 | 2023-06-30 | 北京蛙鸣信息科技发展有限公司 | 面向缺失数据的多参数融合空气质量空间插值方法和系统 |
CN111489295B (zh) * | 2020-06-29 | 2020-11-17 | 平安国际智慧城市科技股份有限公司 | 图像处理方法、电子装置及存储介质 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101059867A (zh) * | 2006-12-20 | 2007-10-24 | 哈尔滨工业大学(威海) | 基于支持向量机的图像插值算法 |
CN101477684A (zh) * | 2008-12-11 | 2009-07-08 | 西安交通大学 | 一种利用位置图像块重建的人脸图像超分辨率方法 |
CN102982520A (zh) * | 2012-12-05 | 2013-03-20 | 武汉大学 | 一种基于轮廓先验的鲁棒性人脸超分辨率处理方法 |
US20150146940A1 (en) * | 2013-11-27 | 2015-05-28 | Electronics And Telecommunications Research Institute | Implicit terrain data generation method and electronic apparatus for performing the method |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4129097B2 (ja) * | 1999-04-13 | 2008-07-30 | 松下電器産業株式会社 | 画像処理装置及び画像処理方法 |
US7551806B2 (en) * | 2005-07-28 | 2009-06-23 | Etron Technology, Inc. | Two stage interpolation apparatus and method for up-scaling an image on display device |
CN102521794B (zh) * | 2011-11-10 | 2015-01-21 | 广东威创视讯科技股份有限公司 | 基于样条曲面的图像插值方法及装置 |
-
2019
- 2019-05-16 CN CN201910409186.9A patent/CN110264401A/zh active Pending
- 2019-08-23 WO PCT/CN2019/102197 patent/WO2020228172A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101059867A (zh) * | 2006-12-20 | 2007-10-24 | 哈尔滨工业大学(威海) | 基于支持向量机的图像插值算法 |
CN101477684A (zh) * | 2008-12-11 | 2009-07-08 | 西安交通大学 | 一种利用位置图像块重建的人脸图像超分辨率方法 |
CN102982520A (zh) * | 2012-12-05 | 2013-03-20 | 武汉大学 | 一种基于轮廓先验的鲁棒性人脸超分辨率处理方法 |
US20150146940A1 (en) * | 2013-11-27 | 2015-05-28 | Electronics And Telecommunications Research Institute | Implicit terrain data generation method and electronic apparatus for performing the method |
Non-Patent Citations (1)
Title |
---|
LIANG XU: "Image Inpainting Algorithm Based on Local Structural Factor Coupled with Double Metric Rule", JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENTATION, vol. 32, no. 8, 31 August 2018 (2018-08-31), pages 89 - 95, XP055752665, DOI: 10.13382/j.jemi.2018.08.013 * |
Also Published As
Publication number | Publication date |
---|---|
CN110264401A (zh) | 2019-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108415978B (zh) | 用户标签存储方法、用户画像计算方法及计算设备 | |
US20160063672A1 (en) | Electronic device and method for generating thumbnail picture | |
US8139063B2 (en) | Rendering data visualization with minimal round-off error | |
CN109934773A (zh) | 一种图像处理方法、装置、电子设备和计算机可读介质 | |
WO2020228172A1 (zh) | 基于径向基函数的连续型图像放大方法、装置及存储介质 | |
WO2020156058A1 (zh) | 基于终端的图像拖拽变形实现方法和装置 | |
US10275911B2 (en) | Dynamically adjusted scale labels for displayed chart | |
CN101510421B (zh) | 一种调整点阵字符大小的方法、装置及一种嵌入式系统 | |
CN114298900A (zh) | 图像超分方法和电子设备 | |
CN114546206B (zh) | 异形屏显示方法、装置、计算机设备和存储介质 | |
CN111223155B (zh) | 图像数据处理方法、装置、计算机设备和存储介质 | |
CN109460496A (zh) | 一种实现数据显示的方法及装置 | |
WO2018223724A1 (zh) | 基于资源分布的地图缩放方法及系统、存储器和控制设备 | |
JP2012099098A (ja) | 表のセルの高さを決定する方法、コンピューター読取可能媒体及びシステム | |
CN109697722B (zh) | 用于生成三分图的方法及装置 | |
US10169734B2 (en) | Dynamic layout for organizational charts | |
CN110781378B (zh) | 数据图形化处理方法、装置、计算机设备及存储介质 | |
US20150084889A1 (en) | Stroke processing device, stroke processing method, and computer program product | |
US11423587B2 (en) | Freeform gradient style blending | |
Šiman | Multivariate process capability indices: a directional approach | |
CN109214266A (zh) | 用于图像处理的方法、计算机可读记录介质和系统 | |
CN111626938B (zh) | 图像插值方法、图像插值装置、终端设备及存储介质 | |
WO2019019534A1 (zh) | 公式的显示方法、装置、终端及计算机可读存储介质 | |
JP2015064761A (ja) | マッチング処理装置およびマッチング方法 | |
CN110764764B (zh) | 网页端图像固定拉伸方法、装置、计算机设备及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19928784 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19928784 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.05.2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19928784 Country of ref document: EP Kind code of ref document: A1 |