WO2020228094A1 - 基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统 - Google Patents

基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统 Download PDF

Info

Publication number
WO2020228094A1
WO2020228094A1 PCT/CN2019/091641 CN2019091641W WO2020228094A1 WO 2020228094 A1 WO2020228094 A1 WO 2020228094A1 CN 2019091641 W CN2019091641 W CN 2019091641W WO 2020228094 A1 WO2020228094 A1 WO 2020228094A1
Authority
WO
WIPO (PCT)
Prior art keywords
height
attribute information
crop attribute
real
stubble
Prior art date
Application number
PCT/CN2019/091641
Other languages
English (en)
French (fr)
Inventor
徐立章
张鹏鹏
李耀明
严玉奇
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Publication of WO2020228094A1 publication Critical patent/WO2020228094A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D41/00Combines, i.e. harvesters or mowers combined with threshing devices
    • A01D41/12Details of combines
    • A01D41/127Control or measuring arrangements specially adapted for combines
    • A01D41/1278Control or measuring arrangements specially adapted for combines for automatic steering

Definitions

  • the invention relates to the field of agricultural machinery, in particular to a system for stabilizing the feed quantity of a combine harvester based on real-time detection of mature crop attribute information.
  • the size of the feed is closely related to the performance and efficiency of the combine harvester.
  • the plant height, density, and ear layer of the crop Attribute parameters such as height directly affect the change of the feeding amount during the operation.
  • the operator usually judges the load of the machine based on visual observation experience and controls the operation speed to maintain the stability of the feeding amount.
  • the manual speed regulation method requires a high level of operation, labor intensity, and unstable operation performance and efficiency of the driver.
  • the prior art automatically adjusts the operating speed according to the load of the threshing drum of the combine harvester to keep the feed volume stable, but the change in the load of the threshing drum reflects the quality of the crop that has entered the combine harvester, which is the feed volume
  • Indirect measurement methods have problems such as information lag and low measurement accuracy; the prior art calculates the density of wheat through online image processing, and realizes real-time adjustment of the combine harvester operating speed according to the density, but the image processing method can only obtain the surface layer of the crop Information is easily affected by factors such as light and weather, and the detection accuracy fluctuates greatly, and it lacks the ability to penetrate. It is impossible to achieve accurate detection of plant height, ear layer and surface topography.
  • the invention provides a system for stabilizing the feed quantity of a combine harvester based on real-time detection of mature crop attribute information, which can obtain the attribute information of crop plant height, ear height and density online, and calculate the feed quantity before the crop enters the harvester , And under the condition of stable cutting and cutting width, by changing the working speed of the machine to maintain the stability of the feed rate of the whole machine, to obtain excellent working performance and high working efficiency.
  • the feed stabilization control system of the combine harvester based on the real-time detection of mature crop attribute information includes a stubble height control module, a crop attribute information detection module, and an operating speed control module.
  • the stubble height control module measures the height of the cutter from the ground and uses The hydraulic control system maintains a stable stubble height
  • the crop attribute information detection module obtains crop attribute information
  • the operation speed control module calculates the amount of crops fed into the combine through the crop attribute information, cutting width, stubble height and forward speed.
  • the operating speed controller adjusts the operating speed to ensure the stable feeding amount of the combine harvester.
  • the ground clearance of the cutter is measured by a combined sensor.
  • the combined sensor includes a mechanical contact sensor.
  • the mechanical contact sensor includes a profiling plate and an angle sensor. One end of the profiling plate is sleeved on the rotation axis of the angle sensor through the connecting plate, and the angle sensor is fixed on the connecting piece. One end of the connecting piece is installed on the shell through a bearing, and the other end is provided with a long rod.
  • the front and rear ends of the shell are respectively installed with fixed shafts, one of the fixed shafts is installed with a torsion spring, and the torsion spring is fixed on a cylinder on the shell.
  • the crop attribute information includes density, stalk quality and grain quality.
  • the stalk quality is obtained from the plant height of the crop and the crop attribute information database
  • the grain quality is obtained from the ear height of the crop and the crop attribute information database.
  • the plant height and ear layer height are obtained by point cloud data processing.
  • the feeding amount Where H is the width of the cutting width, ⁇ is the density of the crop, a 1 , a 2 , b 1 , and b 2 are constants, h 1 is the height of the plant, h 2 is the height of the ear layer, and ⁇ is the height of the stalk with the stubble removed As a percentage of total plant height, ⁇ is the quality coefficient of the stubble part removed, and V is the operating speed.
  • the height of the stalks of the removed stubble part accounts for the percentage of the total plant height Among them l 1 is the height of cutting stubble.
  • the present invention uses a variety of sensors to obtain the stubble height and forward speed during operation of the combine harvester, and then calculates and considers the height of the crops in the area to be harvested in front of the combine harvester, ear height and density in real time.
  • the quality of the stalk and grain of the crop after the cutting height is directly calculated according to the quality of the stalk and the quality of the grain, and the forward speed is adjusted to control the stability of the feed, so that the threshing device and cleaning device of the combine harvester are maintained Best performance.
  • the calculation method has no lag and the error is smaller.
  • Figure 1 is a flow chart of the stable control of the feed amount of the combine harvester based on the detection of crop attribute information
  • Figure 2 is a schematic diagram of the mechanical contact sensor structure
  • Figure 3 is a flow chart of stubble height control
  • Figure 4 is a structural diagram of the hydraulic control system of the header
  • Figure 5 is a flow chart of image processing to calculate crop density
  • Figure 6 is a flow chart for calculating plant height in point cloud data processing
  • Figure 7 is a flow chart of point cloud data processing for calculating the height of crop ears
  • Figure 8 is a schematic diagram of a speed regulating mechanism
  • a feed quantity stability control system for the combine harvester based on real-time detection of mature crop attribute information includes a stubble height control module and crop attribute information. Detection module and operating speed control module.
  • the stubble height control module measures the height of the cutting knife from the ground through a combined sensor, and uses a hydraulic control system to automatically adjust the stubble height to maintain a stable stubble height.
  • the crop attribute information detection module obtains the image and point cloud data of the crop to be harvested in front of the combine harvester through the vision sensor and the lidar sensor, calculates the density of the crop according to the image processing, and calculates the plant height and ear height of the crop according to the point cloud data processing , Combined with the crop attribute information database established in the crop attribute information detection module before harvest, the stalk quality and grain quality of the crop can be obtained.
  • the operating speed control module calculates the amount of crops fed into the combine by measuring the attribute information of the crops and the size of the cutting width, the height of the stubble and the forward speed (collected by the speed sensor) of the combine during operation.
  • the operating speed controller adjusts the forward and reverse angle of the stepper motor, drives the speed regulating mechanism to adjust the main operating lever, realizes the operating speed control without manual intervention, and feeds back to the operating speed controller in real time to form a closed loop, so that The feed rate of the combine harvester remains stable.
  • the invention is applied to the detection of the attribute information of the crops to be harvested in the front of the combine harvester. By real-time detection of the changes in the feeding amount, the operation speed is controlled, and the feeding amount is kept stable during the operation.
  • the mechanical contact sensor consists of a housing 301, a connecting piece 302, a first fixed shaft 303, a connecting plate 304, a profiled plate 305, an angle sensor 306, a second fixed shaft 307, a torsion spring 308, and a long rod. 309 composition.
  • the profiling plate 305 is always in contact with the ground.
  • the degree of curvature of the profiling plate 305 changes with the undulation of the ground.
  • the angle sensor 306 can measure the angle change value of the profile plate 305, and then calculate the change of the stubble height.
  • the angle sensor 306 is fixed on the connecting piece 302 with bolts.
  • One end of the connecting piece 302 is mounted on the housing 301 through a bearing, and the other end of the connecting piece 302 is provided with a long rod 309, which acts as a limiter when the combine harvester is working normally.
  • the front and rear ends of the housing 301 are equipped with a first fixed shaft 303 and a second fixed shaft 307 through bearings.
  • the fixed shaft installs the entire mechanical contact sensor on the bottom of the header.
  • the torsion spring 308 is mounted on the second fixed shaft 307, and the end of the torsion spring 308 is fixed on the protruding cylinder 310 of the housing 301.
  • the angle sensor 306 rotates around the axis on the connecting piece 302, and the contour plate 305 is lifted to ensure that the contour plate 305 does not It will be stuck and broken.
  • the angle sensor 306 and the housing 301 rotate around the first fixed shaft 303 and the second fixed shaft 307 to ensure that the profile plate 305 does not It will be stuck and broken.
  • the mechanical contact sensor is reset under the action of the torsion spring 308 and gravity.
  • the cutting height control includes the following steps:
  • the height of the stubble can be measured according to the position of the installed ultrasonic sensor and mechanical contact sensor and the relative position of the cutter.
  • the stubble height controller compares the ultrasonic sensor and the mechanical contact sensor. For the stubble height at the same moment, if the difference between the height values detected by the two sensors is small, the average value is used; if the height difference detected by the two sensors is large, the difference between the height value and the last one Small height value;
  • the adjusted stubble height continues to return.
  • the stubble height measurement is performed to form a closed loop control to realize the automatic control of the stubble height.
  • the hydraulic control system for adjusting the stubble height includes a hydraulic pump, an overflow valve, a proportional valve, a solid state relay, a hydraulic cylinder, and a stubble height controller.
  • the hydraulic cylinder is connected to the hydraulic oil pump through a proportional valve to form a circuit.
  • the overflow valve is connected in parallel in the circuit.
  • the proportional valve is connected to the stubble height controller through a solid state relay.
  • the stubble height controller is based on the stubble height value and set value measured by the sensor. Make a comparison to determine whether the header needs to rise or fall. Take the header as an example.
  • the stubble height control controller sends an electrical signal to the solid state relay to energize the left coil of the proportional valve and make it in the left working position. Enter the rodless cavity of the hydraulic cylinder to control the header to rise.
  • the proportional valve at the right working position can control the header to descend.
  • one frame of rice and wheat canopy images in the area to be harvested is acquired every second through a vision sensor, and the continuously obtained rice and wheat canopy images are processed, using the pixels of the crop ears, stems and leaves in the processed images
  • the value represents the feeding density, and the density is calculated in real time.
  • the image processing process includes:
  • Image grayscale extract the specific values of RGB of the rice and wheat canopy image respectively; use the maximum method to find the gray value gray, and use the maximum value of the three-component brightness of the color image in the rice and wheat canopy image as the gray image
  • Threshold segmentation Establish a 2R+G histogram of rice and wheat images, use the maximum between-class variance method to determine the appropriate threshold, and then take 1 for pixels above the threshold, and 0 for pixels below the threshold to realize the image Binarization treatment of, remove the background part of the soil, and separate the ear head and stem leaves;
  • the point cloud data of rice and wheat is obtained by lidar sensor, and the position and attitude information of rice and wheat are obtained by global navigation satellite system GNSS and inertial navigation system INS.
  • the points are solved
  • the coordinates of the cloud data in the global coordinate system are used to obtain the three-dimensional point cloud data of rice and wheat; the lidar sensor adjusts the scanning angle through the angle adjustment device, and the detection distance can be adjusted according to the data processing time.
  • the lidar sensor scans 6 meters in front of the header Range, to ensure that the height of rice and wheat and ear layer density information are obtained before entering the combine; to ensure the processing speed, the point cloud data selected in the data processing process is the data intercepted at a fixed time interval. According to the cutting width and operating speed during the actual operation of the combine harvester, the point cloud data of 2m ⁇ 0.5m is intercepted and processed every second to ensure that the height of the rice and wheat and the height of the ear layer are calculated before the crop enters the combine.
  • the point cloud data processing process is as follows:
  • the X direction of the three-dimensional coordinate system is perpendicular to the working speed direction of the harvester, and the Z direction points to the vertical direction.
  • set the window size move gradually from bottom to top, and set the threshold N the number of grid points N i cloud in cloud point is determined whether within the grid point belongs ear layer, moves upward when the spike end point is determined after the lowest layer, the grid is determined to continue to the next row, until the mobile data Boundary, classify all ear layer point clouds, and perform polynomial curve fitting to the upper and lower ear layer according to the maximum point of all ear layer point clouds in the grid and the lowest point of the ear layer to obtain the curve equation set of the upper and lower ear layer:
  • p n is the polynomial coefficient.
  • plant/m 2
  • the stalk mass m 3 (kg/plant) and the grain mass m 2 (kg/plant) after considering the cutting height, the cutting width H (m ), cutting stubble height l 1 (m) and current operating speed V (m/s) and other information, real-time calculation of feed Among them, a 1 , a 2 , b 1 , and b 2 are constants.
  • the speed regulating device includes a working speed controller, a speed sensor, a stepping motor 801 and a speed regulating mechanism.
  • the speed regulating mechanism includes a gear 802, a gear fan 803, and an HST (Hydraulic Transmission Continuously Variable Transmission) extending arm 804.
  • Limit switch 805, nested gear 802 on the shaft of stepping motor 801, gear 802 meshes with tooth fan 803, tooth fan 803 and HST extension arm 804 are welded together at a fixed angle, HST extension arm 804 Nested on the HST extension shaft, the limit switch 805 is located at the extreme positions on both sides of the tooth surface of the tooth sector 803.
  • the operating speed controller When entering the speed control state, the operating speed controller sends a designated pulse signal to control the stepping motor 801 to rotate the corresponding direction and angle.
  • the stepping motor 801 drives the HST to extend the arm 804 and the HST through the meshing structure of the gear 802 and the tooth fan 803
  • the shaft rotates through a corresponding angle to control the HST transmission ratio and output speed, so as to adjust the operating speed of the combine.
  • the button of the travel switch 805 When the gear 802 meshes with the tooth fan 803 at the limit position, the button of the travel switch 805 will be triggered and the signal It is transmitted to the operating speed controller, and the controller will issue an instruction after analysis to exit the stepper motor 801 from the limit position to protect the speed regulation mechanism from damage and deformation.
  • the operating speed controller sends out corresponding pulse signals to control the forward and reverse rotation of the stepping motor.
  • the speed regulation is connected with the stepping motor.
  • the mechanism controls the main joystick to adjust the operating speed of the combine. At the same time, it continues to calculate the amount of change in the feeding amount according to the adjusted speed to achieve the purpose of feeding amount feedback adjustment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Harvester Elements (AREA)

Abstract

一种基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统,包括割茬高度控制模块、作物属性信息探测模块和作业速度调控模块,通过组合式传感器测量割刀的离地高度,利用液压控制系统保持稳定的割茬高度,通过视觉传感器和激光雷达传感器获取待收获作物的密度、株高和穗层高度,再根据联合收获机作业时的割幅、作业速度和割茬高度计算进入联合收获机内作物的喂入量,当喂入量大小超出设定的范围时,作业速度调控模块激活,调节作业速度,并实时反馈至作业速度控制器形成闭环,使联合收获机的喂入量保持稳定。该控制系统在联合收获机作业时对前方待收获作物属性信息进行探测,通过控制作业速度保持作业过程中喂入量的稳定。

Description

基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统 技术领域
本发明涉及农业机械领域,特别涉及一种基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统。
背景技术
联合收获机在田间作业时,喂入量的大小与联合收获机的作业性能和效率密切相关,在作业速度、割幅和割茬信息不变的情况下,作物的株高、密度、穗层高度等属性参数直接影响作业过程中喂入量大小的变化,而在作业过程中,机手通常根据肉眼观察经验判断机器的负荷,操控作业速度,以保持喂入量的稳定。而人工调速方式对驾驶员的操作水平要求高、劳动强度大、作业性能和效率不稳定。
现有技术根据联合收获机的脱粒滚筒负荷大小对作业速度进行自动调控,保持喂入量的稳定,但脱粒滚筒负荷的变化反映的是已进入联合收获机内部的作物质量,是喂入量的间接测量方法,存在信息滞后性、测量精度不高等问题;现有技术通过在线图像处理方法计算小麦的密度,根据密度大小实现联合收获机作业速度的实时调节,但图像处理方法只能获取作物表层信息,容易受到光照和天气等因素的影响,探测精度波动较大,更缺少穿透能力,无法实现株高、穗层和地表形貌的精确探测。
发明内容
本发明提供了一种基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统,在线获得作物株高、穗层高度和密度等属性信息,在作物进入收割机之前计算出喂入量,并在割茬和割幅稳定的条件下,通过改变机器作业速度保持整机喂入量的稳定,获得优异的作业性能和较高的作业效率。
本发明的目的是这样实现的:
基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统,包括割茬高度控制模块、作物属性信息探测模块和作业速度调控模块,割茬高度控制模块测量割刀的离地高度,利用液压控制系统保持稳定的割茬高度,作物属性信息探测模块获取作物属性信息,作业速度调控模块通过作物属性信息、割幅、割茬高度和前进速度计算进入联合收获机内作物的喂入量,当喂入量大小超出设定范围时,作业速度控制器调节作业速度,保证联合收获机喂入量稳定。
上述方案中,所述割刀的离地高度是通过组合式传感器测量的。
上述方案中,所述组合式传感器包括机械接触式传感器,械接触式传感器包括仿形板、角度传感器,仿形板一端通过连接板套在角度传感器转动轴上,角度传感器固定于连接件上,连接件一端通过轴承安装于壳体上,另一端设有长杆,壳体前后两端分别安装有固定轴,其中一固定轴安装有扭簧,扭簧固定在壳体上的圆柱体上。
上述方案中,所述作物属性信息包括密度、茎秆质量和籽粒质量。
上述方案中,所述茎秆质量由作物的株高结合作物属性信息库得到,籽粒质量由作物的穗层高度结合作物属性信息库得到。
上述方案中,所述株高和穗层高度由点云数据处理获取的。
上述方案中,所述喂入量
Figure PCTCN2019091641-appb-000001
其中H为割幅宽度,ρ为作物的密度,a 1、a 2、b 1、b 2为常数,h 1为株高,h 2为穗层高度,μ为去除割茬部分的茎秆高度占总株高的百分比,λ为去除割茬部分茎秆的质量系数,V为作业速度。
上述方案中,所述去除割茬部分的茎秆高度占总株高的百分比
Figure PCTCN2019091641-appb-000002
其中l 1为割茬高度。
上述方案中,所述去除割茬部分茎秆的质量系数
Figure PCTCN2019091641-appb-000003
其中m 4为单位长度割茬的质量,m 5为单位长度茎秆的质量。
上述方案中,所述作业速度控制器调节作业速度是根据速度变化量△V的绝对值确定速度调节的大小,速度变化量
Figure PCTCN2019091641-appb-000004
其中△Q为喂入量大小变化量,△Q=Q-Q m,Q m为额定喂入量。
本发明的有益效果是:本发明通过利用多种传感器获取联合收获机作业时的割茬高度和前进速度,再根据联合收获机前方待收获区作物的株高、穗层高度和密度实时计算考虑割茬高度后的作物茎秆质量和籽粒质量,直接根据茎秆质量和籽粒质量计算喂入量大小,并调整前进速度控制喂入量的稳定,使联合收获机的脱粒装置和清选装置保持最佳性能。减轻了人工控制割茬高度和前进速度的劳动强度,并根据直接计算得到的作物茎秆质量和籽粒质量来计算喂入量,计算方式没有滞后性,误差更小。
附图说明
图1为基于作物属性信息探测的联合收获机喂入量稳定控制流程图;
图2为机械接触式传感器结构示意图;
图3为割茬高度控制流程图;
图4为割台液压控制系统结构图;
图5为图像处理计算作物密度流程图;
图6为点云数据处理株高计算流程图;
图7为点云数据处理作物穗层高度计算流程图;
图8为调速机构示意图;
图中:301-壳体、302-连接件、303-第一固定轴、304-连接板、305-仿形板、306-角度传感器、307-第二固定轴、308-扭簧、309-长杆、310-突出圆柱体、801-步进电机、802-齿轮、803-齿扇、804-HST伸出转臂、805-限位开关。
具体实施方式
下面结合附图和实施例对本发明作进一步详细说明。
本实施方案结合履带式稻麦联合收获机来阐述本发明,如图1所示,基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统,包括割茬高度控制模块、作物属性信息探测模块和作业速度调控模块。割茬高度控制模块通过组合式传感器测量割刀的离地高度,利用液压控制系统自动调节割茬高度以保持稳定的割茬高度。作物属性信息探测模块通过视觉传感器和激光雷达传感器获取联合收获机前方待收获作物的图像和点云数据,根据图像处理计算作物的密度大小,根据点云数据处理计算作物的株高和穗层高度,再结合收获前在作物属性信息探测模块中建立的作物属性信息库,可得到作物的茎秆质量和籽粒质量大小。作业速度调控模块通过测量得到的作物的属性信息和联合收获机作业时的割幅大小、割茬高度和前进速度(速度传感器采集)计算进入联合收获机内作物的喂入量,当喂入量大小超出设定范围时,作业速度控制器调节步进电机正反转角度,带动调速机构调节主操作杆,实现无人工干预的作业速度控制,并实时反馈至作业速度控制器形成闭环,使联合收获机的喂入量保持稳定。该发明应用于联合收获机作业时前方待收获作物属性信息的探测,通过实时探测喂入量的变化,进行作业速度控制,保持作业过程中喂入量的稳定。
如图2所示,机械接触式传感器由壳体301、连接件302、第一固定轴303、连接板304、仿形板305、角度传感器306、第二固定轴307、扭簧308、长杆309组成。联合收获机工作时仿形板305始终与地面接触,仿形板305弯曲程度随地面起伏而变化,仿形板305和连接板304一端由螺栓固定连接,连接板304另一端套在角度传感器306转动轴上,角度 传感器306便可测出仿形板305角度变化值,进而推算出割茬高度变化。角度传感器306用螺栓固定于连接件302上,连接件302一端通过轴承安装于壳体301上,连接件302另一端设有长杆309,在联合收获机正常工作时起限位作用。壳体301前后两端通过轴承安装第一固定轴303和第二固定轴307,固定轴将整个机械接触式传感器安装于割台底部。扭簧308安装于第二固定轴307上,扭簧308末端固定在壳体301突出圆柱体310上。在联合收获机倒退时,由于仿形板305受到沿着仿形板305方向上的力,角度传感器306绕连接件302上的轴旋转,仿形板305抬起,从而保证仿形板305不会卡死折断。在联合收获机转向时,由于仿形板305受到来自土壤或秸秆的侧向力,角度传感器306、壳体301绕着第一固定轴303和第二固定轴307旋转,保证仿形板305不会卡死折断。转向结束后,机械接触式传感器在扭簧308和重力作用下复位。
如图3所示,割茬高度控制包括如下步骤:
1)初始化,设定允许的割茬高度范围;
2)判断是否有人工进行干预,若存在人工干预,则结束割茬高度的自动调整,无人工干预则进入下一步;
3)割茬高度测量,根据安装的超声波传感器和机械接触式传感器的位置和割刀的相对位置关系可以测量得到割茬的高度,割茬高度控制器比较超声波传感器和机械接触式传感器检测出的同一时刻的割茬高度,若两种传感器检测出的高度值差异较小,则取用平均值;若两种传感器检测出的高度值差异较大,则取用与上一次高度值差值较小的高度值;
4)当测量的割茬高度在设定的范围内时,返回2),当割茬高度不在设定的范围内时,液压控制系统通过改变液压缸的伸缩量调节割台高度,达到调节割茬高度的目的;
5)调整后的割茬高度继续返回3)进行割茬高度测量,形成闭环控制,实现割茬高度的自动控制。
如图4所示,用于调节割茬高度的液压控制系统包括液压泵、溢流阀、比例阀、固态继电器、液压缸和割茬高度控制器。液压缸经过比例阀与液压油泵连接形成回路,溢流阀并联在回路中,比例阀通过固态继电器与割茬高度控制器相连,割茬高度控制器根据传感器测量的割茬高度值与设定值进行比较,确定割台需要上升还是下降,以割台需要上升为例,割茬高度控控制器通过向固态继电器发出电信号,使比例阀左线圈得电,使其处于左工作位,液压油进入液压缸无杆腔,控制割台上升,相反,比例阀处于右工作位可以控制割台下降,通过控制割台高度升降可以达到调节割茬高度的目的。
如图5所示,通过视觉传感器每秒获取一帧待收获区稻麦的冠层图像,对连续获得的 稻麦冠层图像进行处理,利用处理后的图像中作物穗头、茎叶的像素值来表示喂入密度,实时计算密度大小。
所述图像处理过程包括:
1)图像灰度化:分别提取稻麦冠层图像RGB的具体值;利用最大值法,求灰度值gray,将稻麦冠层图像中彩色图像的三分量亮度的最大值作为灰度图的灰度f(i,j)=max(R(i,j),G(i,j),B(i,j)),gray=f(i,j);令R=G=B=gray,实现图像的灰度化;
2)中值滤波处理:在灰度化处理的基础上,继续以中值滤波对图像进行进一步的处理:将图像分为不同的窗口,窗口里的所有像素进行大小排列,将中位灰度值作为该窗口的灰度值;
3)阈值分割:建立稻麦图像2R+G直方图,利用最大类间方差法确定合适的阈值,然后对高于该阈值的像素点取1,低于该阈值的像素点取0,实现图像的二值化处理,去除土壤背景部分,分离出穗头和茎叶;
4)像素值计算:计算阈值分割后的图像中穗头和茎叶的像素值,根据在作物属性信息库中提前建立的稻麦密度与穗头、茎叶图像像素值关系计算稻麦密度大小:ρ=kx+b,其中ρ(株/m 2)为密度大小,x为图像中穗头和茎叶的总像素值大小,k和b为常数。
如图6和图7,由激光雷达传感器获取稻麦点云数据,由全球导航卫星系统GNSS和惯性导航系统INS获取稻麦的位置与姿态信息,根据点云数据和位置与姿态信息,求解点云数据在全局坐标系中的坐标,获取稻麦的三维点云数据;激光雷达传感器通过角度调节装置调节扫描角度,可根据数据处理时间调整探测距离,激光雷达传感器扫描的是割台前方6米范围,以保证在进入联合收获机之前获取稻麦高度和穗层密度信息;为了保证处理速度,数据处理过程中选择的点云数据是固定时间间隔截取的数据。根据联合收获机实际作业过程中的割幅宽度和作业速度的大小,每秒截取2m×0.5m的点云数据进行处理,以保证作物进入联合收获机之前计算出稻麦高度和穗层高度。
点云数据处理过程如下:
(1)获得稻麦的三维点云数据后,根据作业速度和割幅截取部分点云数据。
(2)针对截取的点云数据,进行网格划分,遍历网格内所有点云,筛选出高程值最大和最小的点云数据,形成一组作物的表面高程数据Z={Z 1,Z 2,Z 3····Z n},Z=f(x,y)和地面高程数据z={z 1,z 2,z 3····z n},z=f(x,y),将高程值最大的点云作为作物表面点,高程值最小的点作为地面点;
将截取的点云数据向三维坐标系的平面XOZ投影,三维坐标系的X方向与收获机作 业速度方向垂直、Z方向指向竖直方向,然后设置窗口大小,由下向上逐步移动,设置阈值N,根据网格内点云的数量N i判断该网格内的点云是否属于穗层点,当穗层最低点被确定后即结束向上移动,继续下一列网格的判断,直到移动到数据边界,分类出所有穗层点云,分别根据网格内所有穗层点云的高程值最大点和穗层最低点进行多项式曲线拟合上下穗层面,得到上下穗层的曲线方程组:
上层穗层z 1=p 1*x 4+p 2*x 3+p 3*x 2+p 4*x+p 5
下层穗层z 2=p 6*x 4+p 7*x 3+p 8*x 2+p 9*x+p 10
其中:p n为多项式系数。
(3)高度和穗层计算,计算每个网格内表面点和地面点云之间的高程差,将该值作为该网格内的高度大小,然后计算平均高度作为被探测的株高h 1(m);求出上下穗层两条曲线方程之间的面积,再比上割幅宽度H(x 2-x 1,x 1、x 2为点云数据X方向的最值),作为被探测的穗层高度h 2
Figure PCTCN2019091641-appb-000005
在收获之前通过随机选择收获区一定数量的稻麦,通过人工测量的方法获得株高h 1、茎秆质量m 1、穗层高度h 2和籽粒质量m 2等数据,通过MATLAB拟合出株高h 1和茎秆质量m 1之间的数学模型:
Figure PCTCN2019091641-appb-000006
其中a 1、b 1为常数,拟合出穗层高度h 2和籽粒质量m 2之间的数学模型:m 2=a 2·ln(h 2)-b 2,其中a 2、b 2为常数,建立该作物属性信息库;由作物属性信息库得到作物属性信息,包括密度ρ(株/m 2)、茎秆质量m 1(kg/株)和籽粒质量m 2(kg/株);则去除割茬部分的茎秆高度占总株高的百分比
Figure PCTCN2019091641-appb-000007
去除割茬部分茎秆的质量系数
Figure PCTCN2019091641-appb-000008
其中m 4为单位长度割茬的质量,m 5为单位长度茎秆的质量,m 4和m 5均为人工测量值,则考虑割茬高度后的茎秆质量m 3=m 1·(1-μ)·λ。
根据上述待收获区稻麦的密度ρ(株/m 2)、考虑割茬高度后的茎秆质量m 3(kg/株)和籽粒质量m 2(kg/株)、割幅宽度H(m)、割茬高度l 1(m)和当前的作业速度V(m/s)等信息,实时计算喂入量
Figure PCTCN2019091641-appb-000009
Figure PCTCN2019091641-appb-000010
其中a 1、a 2、b 1、b 2为常数。
如图8所示,调速装置包括作业速度控制器、速度传感器、步进电机801和调速机构,调速机构包括齿轮802、齿扇803、HST(液压传动无级变速器)伸出转臂804、限位开关805,步进电机801轴上嵌套齿轮802,齿轮802与齿扇803啮合,齿扇803与HST伸出转 臂804以固定角度焊合在一起,HST伸出转臂804嵌套在HST伸出轴上,限位开关805位于齿扇803上齿面的两侧极限位置。当进入调速状态时,作业速度控制器发出指定的脉冲信号控制步进电机801转动相应方向和角度,步进电机801通过齿轮802、齿扇803啮合结构来带动HST伸出转臂804及HST轴转过相应角度,以控制HST传动比及输出速度,从而达到对联合收获机作业速度的调节,当齿轮802与齿扇803啮合在极限位置时,会触发行程开关805的按钮,并将信号传输至作业速度控制器,控制器经过分析会发出指令,将步进电机801退出极限位置,保护调速机构不会受损变形。
若实时计算的喂入量Q在设定的范围(Q m±Q c)内,Q m为额定喂入量,Q c为允许偏差,则保持当前速度不变,继续测量下一秒的作物属性信息和喂入量大小,若喂入量大小不在设定的范围内,作业速度调控模块激活,作业速度控制器根据设定好的额定喂入量Q m,计算喂入量大小变化量△Q=Q-Q m;根据前方待收获区作物的属性信息和设定的喂入量大小以及割幅割茬等收获机参数,计算速度变化量
Figure PCTCN2019091641-appb-000011
由△V的正负值确定加速或减速,根据△V的绝对值确定速度调节的大小,作业速度控制器发出相应的脉冲信号控制步进电机正反转,通过与步进电机相连的调速机构控制主操纵手柄,从而达到对联合收获机作业速度的调节,同时根据调节后的速度大小继续计算喂入量大小的变化量,达到喂入量反馈调节的目的。
所述实例为本发明的优选的实施方式,但本发明并不限于上述实施方式。在不背离本发明的实质内容的前提下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (10)

  1. 基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统,其特征在于,包括割茬高度控制模块、作物属性信息探测模块和作业速度调控模块;割茬高度控制模块测量割刀的离地高度,利用液压控制系统保持稳定的割茬高度,作物属性信息探测模块获取作物属性信息;作业速度调控模块通过作物属性信息、割幅、割茬高度和前进速度计算进入联合收获机内作物的喂入量,当喂入量大小超出设定范围时,作业速度控制器调节作业速度,保证联合收获机喂入量稳定。
  2. 根据权利要求1所述的基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统,其特征在于,所述割刀的离地高度是通过组合式传感器测量的。
  3. 根据权利要求2所述的基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统,其特征在于,所述组合式传感器包括机械接触式传感器;械接触式传感器包括仿形板(305)、角度传感器(306),仿形板(305)一端通过连接板(304)套在角度传感器(306)转动轴上,角度传感器(306)固定于连接件(302)上,连接件(302)一端通过轴承安装于壳体(301)上,另一端设有长杆(309),壳体(301)前后两端分别安装有固定轴,其中一固定轴安装有扭簧(308),扭簧(308)固定在壳体(301)上的圆柱体(310)上。
  4. 根据权利要求1所述的基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统,其特征在于,所述作物属性信息包括密度、茎秆质量和籽粒质量。
  5. 根据权利要求4所述的基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统,其特征在于,所述茎秆质量由作物的株高结合作物属性信息库得到,籽粒质量由作物的穗层高度结合作物属性信息库得到。
  6. 根据权利要求5所述的基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统,其特征在于,所述株高和穗层高度由点云数据处理获取的。
  7. 根据权利要求1所述的基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统,其特征在于,所述喂入量
    Figure PCTCN2019091641-appb-100001
    其中H为割幅宽度,ρ为作物的密度,a 1、a 2、b 1、b 2为常数,h 1为株高,h 2为穗层高度,μ为去除割茬部分的茎秆高度占总株高的百分比,λ为去除割茬部分茎秆的质量系数,V为作业速度。
  8. 根据权利要求7所述的基于成熟作物属性信息实时探测的联合收获机喂入量稳定控 制系统,其特征在于,所述去除割茬部分的茎秆高度占总株高的百分比
    Figure PCTCN2019091641-appb-100002
    其中l 1为割茬高度。
  9. 根据权利要求7所述的基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统,其特征在于,所述去除割茬部分茎秆的质量系数
    Figure PCTCN2019091641-appb-100003
    其中m 4为单位长度割茬的质量,m 5为单位长度茎秆的质量。
  10. 根据权利要求1或7所述的基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统,其特征在于,所述作业速度控制器调节作业速度是根据速度变化量△V的绝对值确定速度调节的大小,速度变化量
    Figure PCTCN2019091641-appb-100004
    其中△Q为喂入量大小变化量,△Q=Q-Q m,Q m为额定喂入量。
PCT/CN2019/091641 2019-05-10 2019-06-18 基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统 WO2020228094A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910388762.6 2019-05-10
CN201910388762.6A CN110235600B (zh) 2019-05-10 2019-05-10 基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统

Publications (1)

Publication Number Publication Date
WO2020228094A1 true WO2020228094A1 (zh) 2020-11-19

Family

ID=67884166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/091641 WO2020228094A1 (zh) 2019-05-10 2019-06-18 基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统

Country Status (2)

Country Link
CN (1) CN110235600B (zh)
WO (1) WO2020228094A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110547098A (zh) * 2019-10-08 2019-12-10 山东省农业机械科学研究院 一种谷物收获机割台自适应控制装置及方法
US11793111B2 (en) * 2019-11-27 2023-10-24 Cnh Industrial America Llc Harvesting head reel-mounted laser measurement
CN111903317A (zh) * 2020-08-20 2020-11-10 山东理工大学 一种联合收获机割台高度自动控制系统
CN112631279B (zh) * 2020-12-09 2023-03-14 甘肃省机械科学研究院有限责任公司 一种青贮收获机喂入量控制系统及方法
CN112772116B (zh) * 2021-02-01 2022-01-11 江苏大学 一种联合收割机喂入量调控系统和方法
CN113239715B (zh) * 2021-02-04 2024-05-28 南京大学 基于图像处理的油菜收获喂入量检测方法及装置
CN113287422A (zh) * 2021-04-07 2021-08-24 江苏大学 一种切割器高度自动调节装置和方法及再生稻联合收获机
CN115336468B (zh) * 2022-06-30 2023-06-20 九方泰禾国际重工(青岛)股份有限公司 一种用于穗茎兼收的新型五行立式玉米收获机割台
CN116893127B (zh) * 2023-09-11 2023-12-08 中储粮成都储藏研究院有限公司 粮食外观质量指标检测仪
CN117970361B (zh) * 2024-03-28 2024-07-02 北京市农林科学院智能装备技术研究中心 喂入量预测方法、装置、电子设备及介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2164635Y (zh) * 1993-08-09 1994-05-18 康义民 小型联合收获机
CN1748451A (zh) * 2005-10-14 2006-03-22 河南科技大学 联合收割机随机损失率实时监测方法
CN102379188A (zh) * 2010-08-31 2012-03-21 中国农业机械化科学研究院 联合收割机喂入量测量方法及喂入量监测装置
CN103404298A (zh) * 2013-06-05 2013-11-27 西北农林科技大学 一种电驱动智能联合收割机控制系统
CN103404297A (zh) * 2013-06-05 2013-11-27 西北农林科技大学 一种电驱动智能联合收割机
CN203523335U (zh) * 2013-06-05 2014-04-09 西北农林科技大学 一种电驱动智能联合收割机控制系统
CN104322203A (zh) * 2013-07-22 2015-02-04 中国农业机械化科学研究院 一种联合收割机喂入量在线监测系统及其监测方法
WO2017075036A1 (en) * 2015-10-27 2017-05-04 Cnh Industrial America Llc Graphical yield monitor static (previous) data display on in-cab display

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101715675A (zh) * 2009-12-22 2010-06-02 江苏大学 一种光电式谷物生长密度在线检测方法及其装置
CN203563346U (zh) * 2013-10-12 2014-04-30 山东省农业机械科学研究院 收获台仿形控制系统
CN106508256B (zh) * 2015-09-10 2019-02-12 中国农业机械化科学研究院 一种稻麦联合收割机及其割幅检测装置和检测方法
US9980431B2 (en) * 2016-09-12 2018-05-29 Cnh Industrial America Llc Header height control system with multiple height sensors
CN106612931A (zh) * 2016-11-30 2017-05-10 山东省农业机械科学研究院 玉米收获机收获台高度仿形系统及方法
CN109379980A (zh) * 2017-08-09 2019-02-26 中国科学院沈阳自动化研究所 基于角度信息反馈的割台高度传感器
US10440886B2 (en) * 2017-09-27 2019-10-15 Deere & Company Feedrate control with slip compensation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2164635Y (zh) * 1993-08-09 1994-05-18 康义民 小型联合收获机
CN1748451A (zh) * 2005-10-14 2006-03-22 河南科技大学 联合收割机随机损失率实时监测方法
CN102379188A (zh) * 2010-08-31 2012-03-21 中国农业机械化科学研究院 联合收割机喂入量测量方法及喂入量监测装置
CN103404298A (zh) * 2013-06-05 2013-11-27 西北农林科技大学 一种电驱动智能联合收割机控制系统
CN103404297A (zh) * 2013-06-05 2013-11-27 西北农林科技大学 一种电驱动智能联合收割机
CN203523335U (zh) * 2013-06-05 2014-04-09 西北农林科技大学 一种电驱动智能联合收割机控制系统
CN104322203A (zh) * 2013-07-22 2015-02-04 中国农业机械化科学研究院 一种联合收割机喂入量在线监测系统及其监测方法
WO2017075036A1 (en) * 2015-10-27 2017-05-04 Cnh Industrial America Llc Graphical yield monitor static (previous) data display on in-cab display

Also Published As

Publication number Publication date
CN110235600B (zh) 2021-08-03
CN110235600A (zh) 2019-09-17

Similar Documents

Publication Publication Date Title
WO2020228094A1 (zh) 基于成熟作物属性信息实时探测的联合收获机喂入量稳定控制系统
US10757859B2 (en) System for optimizing platform settings based on crop state classification
EP3552474B1 (en) A system for controlling an operative parameter of a harvesting header
EP3456174B1 (en) Method and system for controlling the height of an agricultural implement relative to the ground
EP2510777B1 (de) Verfahren zur Einstellung einer Reinigungseinrichtung eines Mähdreschers und Reinigungseinrichtung
EP3569050B1 (en) Method and system for controlling the height of an agricultural implement relative to the ground
US20220225569A1 (en) Apparatus, Systems, And Methods For Row Crop Headers
US20230345878A1 (en) Agricultural machines and methods for controlling windrow properties
CN112056087B (zh) 一种小型切段式履带甘蔗收获机感应系统及控制方法
US11744180B2 (en) Harvester crop mapping
BR102020017085A2 (pt) Sistema de visão de resíduos.
US20230172106A1 (en) Harvesters, harvesting headers, and methods of operating agricultural machines using crop lifters
EP3695703B1 (en) Windrower with ground contour sensing system and ground contour sensing method
US20240324509A1 (en) Systems and methods for controlling the height of a harvesting implement relative to the ground
KR20230115976A (ko) 작업차, 작물 상태 검출 시스템, 작물 상태 검출 방법, 작물 상태 검출 프로그램 및 작물 상태 검출 프로그램이 기록되어 있는 기록 매체
CN114246057A (zh) 收割机作物绘图
EP3646700B1 (en) Agricultural harvester biomass estimating system
KR20230074717A (ko) 수확기
JP2023033981A (ja) 収穫機械の制御方法、収穫機械用制御プログラム、収穫機械用制御システム及び収穫機械
US20240107944A1 (en) Agricultural harvesting machine
CN117941530A (zh) 用于农业收割机的系统和方法
JP2017147976A (ja) コンバイン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929115

Country of ref document: EP

Kind code of ref document: A1