WO2020224501A1 - 一种空调除霜的控制方法、装置及空调 - Google Patents

一种空调除霜的控制方法、装置及空调 Download PDF

Info

Publication number
WO2020224501A1
WO2020224501A1 PCT/CN2020/087749 CN2020087749W WO2020224501A1 WO 2020224501 A1 WO2020224501 A1 WO 2020224501A1 CN 2020087749 W CN2020087749 W CN 2020087749W WO 2020224501 A1 WO2020224501 A1 WO 2020224501A1
Authority
WO
WIPO (PCT)
Prior art keywords
defrosting
air conditioner
duration
defrost
interval
Prior art date
Application number
PCT/CN2020/087749
Other languages
English (en)
French (fr)
Inventor
许文明
王飞
张明杰
袁俊军
Original Assignee
青岛海尔空调器有限总公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2020224501A1 publication Critical patent/WO2020224501A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • This application relates to the field of air conditioner defrosting technology, for example, to an air conditioner and its defrosting control method.
  • the ice layer on the outdoor unit will hinder the heat exchange between the internal refrigerant and the outdoor environment, which will reduce the cooling efficiency of the air conditioner.
  • the air conditioner In order to ensure the heating effect of the air conditioner, the air conditioner has to operate at higher power, which also leads to electrical energy. The additional consumption and user cost increase.
  • some existing air conditioners are equipped with a defrost function, for example, the outdoor unit is heated by the heating device installed in the outdoor unit, or the compressor is discharged in the cooling mode.
  • the high temperature refrigerant defrosts the outdoor heat exchanger.
  • the air conditioner before the air conditioner activates the defrost function, the air conditioner generally uses the external coil temperature detected by the outdoor sensor and the frost point temperature to determine whether it has reached a temperature that is easy to condense and frost, and then determine whether to activate the defrost function.
  • the air conditioner in order to avoid the problem that the air conditioner continuously and frequently activates the defrost function in a low temperature environment and affects the normal heating operation, it is generally set to After the defrosting is completed, the defrosting function will not be activated within a fixed period of time, such as setting the defrosting time interval of 20 minutes and 30 minutes; the disadvantage of this method is that the factors that affect the degree of frosting of the outdoor unit of the air conditioner include not only the external environment Factors, including the influencing factors of the air conditioner's own state.
  • the embodiment of the present disclosure provides a control method for air conditioner defrosting.
  • control method includes:
  • the air conditioner is controlled to make a defrosting determination whether to trigger the next defrosting process.
  • the embodiment of the present disclosure provides a control device for defrosting an air conditioner.
  • control device includes:
  • the first acquiring module is configured to acquire the defrosting duration of the defrosting process that the air conditioner has executed when the defrosting process of the air conditioner is completed;
  • the duration correction module is configured to: based on the defrost duration of the defrost process performed by the air conditioner, modify the defrost interval duration between the current defrost process and the next defrost process;
  • the defrosting judgment module is configured to control the air conditioner to determine whether to trigger the next defrosting process if it is determined that the interval duration condition is satisfied based on the modified defrosting interval duration.
  • the embodiment of the present disclosure provides an air conditioner.
  • the air conditioner includes the aforementioned control device.
  • the embodiment of the present disclosure provides an electronic device.
  • the electronic device includes:
  • At least one processor At least one processor
  • a memory communicatively connected with the at least one processor; wherein,
  • the memory stores instructions executable by the at least one processor, and when the instructions are executed by the at least one processor, the at least one processor executes the aforementioned control method.
  • the embodiment of the present disclosure provides a computer-readable storage medium.
  • a computer-readable storage medium stores computer-executable instructions that are configured to execute the aforementioned control method.
  • the air conditioner defrosting control method provided by the embodiments of the present disclosure can use the defrosting duration of the defrosting process performed by the air conditioner to correct the defrosting interval between the defrosting process described this time and the next defrosting process, thereby reducing
  • the problem of limited activation of the defrost function of the air conditioner and the inability to trigger the defrost function in time due to the use of a fixed defrost time interval to control whether the air conditioner activates the defrost function has achieved more accurate defrost function control.
  • FIG. 1 is a schematic flowchart of a control method for air conditioner defrosting provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a control method for air conditioner defrosting according to another embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a control method for air conditioner defrosting according to another embodiment of the present disclosure
  • Fig. 4 is a schematic structural diagram of an air conditioner defrosting control device provided by an embodiment of the present disclosure
  • Fig. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present disclosure.
  • Fig. 1 is a schematic flowchart of a control method for air conditioner defrosting provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a control method for air conditioner defrosting, including:
  • the operation of correcting the defrosting interval is performed after the air conditioner has completed a certain defrosting process.
  • the defrosting time occupied by the defrosting process can also be determined; in this way, in the embodiment of the present disclosure, the air conditioner is passed after the air conditioner completes a certain defrosting process.
  • the defrosting duration of this defrosting process of the air conditioner corrects the defrosting interval duration, and the modified defrosting interval duration is used for the defrosting judgment of the next defrosting process to be executed.
  • the air conditioner in the embodiment of the present disclosure is provided with a timing module.
  • the timing module can be used to count the defrosting duration of each defrosting process performed by the air conditioner, that is, start timing at the initial time when the air conditioner executes the defrosting process and complete the time.
  • start timing at the initial time when the air conditioner executes the defrosting process and complete the time.
  • the time between the initial time and the completion time is the defrosting duration of the current defrosting process; and the defrosting duration counted by the timing module of the air conditioner is stored as historical operating data.
  • S102 Based on the defrosting duration of the defrosting process that has been executed by the air conditioner, correct the defrosting interval duration between the current defrosting process and the next defrosting process;
  • the modified defrost interval time is one or more preset time values of different time values prestored by the air conditioner, such as 2 minutes, 7 minutes, etc.; in step S102, the air conditioner is based on the defrost The defrosting duration of the frosting process is to correct the selected set duration value;
  • the modified defrost interval is the defrost interval between the defrost process executed by the air conditioner and the previous defrost process; therefore, in the embodiments of the present disclosure, the steps of the control method of the embodiment of the present disclosure further include: obtaining the defrosting interval between the defrosting process performed by the air conditioner and the previous defrosting process, and using the defrosting interval as the defrosting interval to be corrected .
  • the air conditioner is provided with a timing module, which can be used to count the time interval between the completion time of the defrosting process performed by the air conditioner and the current time; in the above embodiment, the defrost interval time to be corrected is two adjacent The length of the interval between defrosting processes, that is, the length of time between the completion of the previous defrosting process and the beginning of the current defrosting process.
  • the interval duration condition includes that the interval duration between the completion time of the defrosting process executed by the air conditioner and the current time is greater than or equal to the corrected defrost interval duration. Therefore, if the air conditioner meets the interval time condition, the air conditioner is controlled to determine whether to trigger the next defrosting process; if the air conditioner does not meet the interval time condition, the air conditioner is controlled not to trigger the next defrosting process judgment.
  • the embodiment of the present disclosure uses the air conditioner to execute the defrost duration of the defrost process to control the defrost duration from the current defrost process to the next defrost process.
  • the frost interval is revised; the time interval between two consecutive defrosting processes can be extended when the previous defrosting time is longer and the defrosting effect is better, so as to avoid heating the air conditioner In the case of the previous defrosting time is short and the defrosting effect is poor, shorten the time interval between two adjacent defrosting processes to avoid frost and condensation in the outdoor unit Too much and reduce the heating efficiency of the air conditioner.
  • the air conditioner defrosting control method provided by the embodiments of the present disclosure can use the defrosting duration of the defrosting process performed by the air conditioner to correct the defrosting interval between the defrosting process described this time and the next defrosting process, thereby reducing
  • the problem of limited activation of the defrost function of the air conditioner and failure to trigger the defrost function in time due to the use of a fixed defrost time interval to control whether the defrost function of the air conditioner is enabled has achieved a more accurate defrost function of the air conditioner. control.
  • the specific execution process of controlling the air conditioner in step S103 to determine whether to trigger the next defrosting process includes: when the air conditioner meets the preset defrosting conditions, determining that the air conditioner is triggered One defrosting process; in the case that the air conditioner does not meet the preset defrosting conditions, it is determined that the air conditioner does not trigger the next defrosting process.
  • the preset defrost condition includes that the temperature of the outdoor coil of the air conditioner is less than the frost point temperature.
  • the steps of the embodiments of the present disclosure further include: obtaining the outdoor coil temperature of the air conditioner; comparing the outdoor coil temperature with the frost point temperature, When the tube temperature is less than the frost point temperature, it is determined that the air conditioner triggers the next defrosting process; when the outer coil temperature is greater than or equal to the frost point temperature, it is determined that the air conditioner does not trigger the next defrosting process.
  • the outdoor unit of the air conditioner is additionally provided with a temperature sensor, which can be used to detect the real-time outdoor coil temperature of the outdoor unit coil; therefore, the above steps are to obtain the temperature detected by the temperature sensor Outdoor coil temperature;
  • the set frost point temperature is -1°C; when the outdoor coil temperature obtained from the temperature sensor is -2°C and -2°C ⁇ -1°C, it is determined that the air conditioner triggers the next defrosting process; When the outdoor coil temperature obtained from the temperature sensor is 3°C and -1°C ⁇ 3°C, it is determined that the air conditioner triggers the next defrosting process.
  • the process steps of the control method of the present application further include: acquiring the number of executions of the defrosting process of the air conditioner after the current startup; when the number of executions of the defrosting process is equal to 0, control based on the outdoor coil temperature and the frost point temperature The air conditioner determines whether to trigger the next defrosting process; if the number of executions of the defrosting process is not equal to 0, the control process of steps S101 to S103 is executed.
  • the air conditioner counts the number of executions of the defrost process after the air conditioner is turned on.
  • the initial value of the count is 0; each time the air conditioner executes the defrost process, the count is incremented by one; therefore, the defrost is performed for the first time after the air conditioner is turned on this time.
  • the air conditioner counts 0 for the defrosting process.
  • the air conditioner is controlled based on the outdoor coil temperature and the frost point temperature to determine whether to trigger the next defrosting process.
  • the air conditioner When the air conditioner is turned off at the end of this operation, the air conditioner clears the count of the defrosting process.
  • Fig. 2 is a schematic flowchart of a control method for defrosting an air conditioner according to another embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a control method for defrosting an air conditioner.
  • the process defined by the control method is performed after the air conditioner has completed a certain defrosting process; specifically including:
  • the first association relationship is configured to characterize the corresponding relationship between one or more defrost durations and the duration correction value; in the preset first association relationship, when the defrost duration is less than or equal to the first duration, The duration correction value is positive; when the defrost duration is greater than the first duration and less than or equal to the second duration, the duration correction value is zero; when the defrost duration is greater than the second duration, the duration correction value is negative.
  • Table 1 shows an optional corresponding relationship between the defrosting duration and the duration correction value.
  • Defrost time (unit: minutes)
  • Time correction value (unit: minute) t ⁇ 3 5 3 ⁇ t ⁇ 5 0 5 ⁇ t -5
  • the first time length is 3 minutes, and the corresponding time correction value is 5 minutes when the defrost time is less than or equal to 3 minutes; the second time is 5 minutes, and the defrost time is greater than 3 minutes and less than or equal to 5 minutes.
  • the corresponding duration correction value is -5 minutes, etc.; therefore, in step S202, the air conditioner can find and match the corresponding defrost duration through this table Correction value.
  • the correlation is a value calculated and determined through experiments before the air conditioner leaves the factory, and is pre-stored in the computer board, processor and other control devices of the air conditioner.
  • the sum of the defrost interval duration to be corrected and the duration correction value is calculated in step S203 to obtain the corrected defrost interval duration.
  • step S205 Determine whether the modified defrost interval time meets the interval time condition, if yes, execute step S206; if not, return to step S204;
  • S206 Control the air conditioner to determine whether to trigger the next defrosting process.
  • step S206 the specific execution process of step S206 can be referred to the foregoing embodiment, which will not be repeated here.
  • the air conditioner defrosting control method disclosed in the embodiments of the present disclosure searches for the duration correction value matching the defrost duration of the defrosting process of the corresponding air conditioner through the preset correlation relationship, and then performs the defrost interval duration according to the duration correction value
  • the correction can accurately adjust the time interval of the adjacent defrosting process that is adapted to the current working condition, so that the air conditioner can trigger the defrosting process of the air conditioner more accurately.
  • Fig. 3 is a schematic flowchart of a control method for defrosting an air conditioner according to another embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a method for controlling defrosting of an air conditioner.
  • the process defined by the control method is performed after the air conditioner has completed a certain defrosting process; specifically including:
  • the time is started after the air conditioner is turned on this time, and the accumulated operating time is the total time of the heating mode between the current time and the time when the air conditioner is turned on;
  • the time when the air conditioner is turned on this time is 6:00
  • the time when the air conditioner performs step S301 is 8:10, where 6:00 to 6:30 is the heating operation state, and 6:30 to 6:50 is the standby state.
  • 6:50 to 7:30 is the heating operation state
  • 7:30 to 7:35 is the defrosting state limited by the defrosting process
  • 7:35 to 8:00 is the heating operation state
  • 8:00 to 8: 02 is the defrosting state
  • 8:02 to 8:10 is the heating operating state.
  • the operating period of the heating state of the air conditioner that can be obtained this time includes 30 minutes from 6:00 to 6:30, and from 6:50 to 40 minutes from 7:30, 25 minutes from 7:35 to 8:00, and 8 minutes from 8:02 to 8:10, 103 minutes is the cumulative operating time of the heating mode.
  • the present application combines the cumulative operating time of heating and the defrosting time to revise the defrosting interval.
  • the defrost duration acquired in step S302 is the defrost duration of the most recent defrost process, such as 8 minutes in the time period from 8:00 to 8:02 in the embodiment of the present disclosure shown in conjunction with step S301;
  • the second association relationship is configured to characterize the corresponding relationship between one or more duration combinations and the duration correction value; the duration combination at least includes the duration interval in which the defrost duration and the cumulative operation duration of the heating mode are located.
  • Table 2 shows the corresponding relationship between an optional duration combination and a duration correction value.
  • Temperature correction value (unit: °C) t ⁇ 3 and T ⁇ T1 5 3 ⁇ t ⁇ 5 and T ⁇ T1 0 5 ⁇ t ⁇ 9 and T>T1 -1
  • step S304 the air conditioner can search and match the duration correction value of the corresponding duration combination through the table.
  • the correlation is a value calculated and determined through experiments before the air conditioner leaves the factory, and is pre-stored in the computer board, processor and other control devices of the air conditioner.
  • the sum of the defrost interval duration to be corrected and the duration correction value is calculated in step S307 to obtain the corrected defrost interval duration.
  • step S306 Determine whether the modified defrost interval time meets the interval time condition, if yes, execute step S307; if not, return to step S305;
  • S307 Control the air conditioner to determine whether to trigger the next defrosting process.
  • step S307 the specific execution process of step S307 can be referred to the foregoing embodiment, which will not be repeated here.
  • the air conditioner defrosting control method disclosed in the embodiments of the present disclosure searches for the duration correction value matching the corresponding duration combination through a preset association relationship, and then corrects the defrost interval duration according to the duration correction value.
  • the duration combination can be At the same time, it reflects the time taken by the two different processes of the heating mode and the last defrosting process after the air conditioner is turned on this time. Since the air conditioner operates in the heating mode to absorb heat by the outdoor unit, it will also affect the degree of frosting. , The defrosting duration of the most recent defrosting process and the cumulative operating duration of the heating mode are comprehensively considered, making it easier to trigger the next defrosting process, so that the air conditioner can be triggered more accurately to adapt to the current working conditions Defrost process.
  • Fig. 4 is a schematic structural diagram of an air conditioner defrosting control device provided by an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides an air conditioner defrosting control device 4, which is applied to an air conditioner, and can control the air conditioner to execute the control process shown in the previous embodiment.
  • the control device 4 includes:
  • the first acquiring module 41 is configured to acquire the defrosting duration of the defrosting process performed by the air conditioner when the defrosting process of the air conditioner is completed;
  • the time length correction module 42 is configured to: based on the defrost time length of the defrost process performed by the air conditioner, correct the defrost interval time between the current defrost process and the next defrost process;
  • the defrost judging module 43 is configured to control the air conditioner to determine whether to trigger the next defrosting process in a case where it is determined that the interval duration condition is satisfied based on the corrected defrost interval duration.
  • control device 4 further includes a second acquisition module 44 configured to:
  • the duration correction module 42 is configured to:
  • the time length correction value corresponding to the defrost duration is obtained by matching; wherein the first correlation relationship is configured to characterize the correspondence relationship between one or more defrost duration and the time length correction value;
  • the time length of the defrost interval to be corrected is corrected.
  • control device 4 further includes a third acquiring module 45 configured to: the cumulative operating time of the heating mode of the air conditioner that is turned on this time;
  • the duration correction module 42 is configured as:
  • the duration modification value corresponding to the duration combination is obtained by matching; wherein the second association relationship is configured to characterize the corresponding relationship between one or more duration combinations and the duration modification value; the duration combination includes at least division The duration of the frost duration and the cumulative operating duration of the heating mode respectively in the interval;
  • the time length of the defrost interval to be corrected is corrected.
  • the duration correction module 42 is configured to calculate the sum of the defrost interval duration to be corrected and the duration correction value to obtain the corrected defrost interval duration.
  • the defrost judgment module 43 is configured to:
  • the air conditioner does not meet the preset defrosting conditions, it is determined that the air conditioner does not trigger the next defrosting process.
  • the embodiments of the present disclosure also provide an air conditioner, which includes an air conditioner main body and the control device provided in the foregoing embodiment.
  • the embodiment of the present disclosure also provides a computer-readable storage medium that stores computer-executable instructions, and the computer-executable instructions are configured to execute the air conditioner defrosting control method provided in the above-mentioned embodiments.
  • the embodiments of the present disclosure also provide a computer program product, the computer program product includes a computer program stored on a computer-readable storage medium, the computer program includes program instructions, when the program instructions are executed by a computer, The computer executes the air conditioner defrosting control method provided in the above embodiment.
  • the aforementioned computer-readable storage medium may be a transitory computer-readable storage medium or a non-transitory computer-readable storage medium.
  • the embodiment of the present disclosure also provides an electronic device, the structure of which is shown in FIG. 5, and the electronic device includes:
  • At least one processor (processor) 500 one processor 500 is taken as an example in FIG. 5; and a memory (memory) 501 may also include a communication interface (Communication Interface) 502 and a bus 503. Among them, the processor 500, the communication interface 502, and the memory 501 can communicate with each other through the bus 503. The communication interface 502 can be used for information transmission.
  • the processor 500 may call the logic instructions in the memory 501 to execute the air conditioner defrosting control method provided in the foregoing embodiment.
  • the above-mentioned logical instructions in the memory 501 can be implemented in the form of a software functional unit and when sold or used as an independent product, they can be stored in a computer readable storage medium.
  • the memory 501 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 500 executes functional applications and data processing by running software programs, instructions, and modules stored in the memory 501, that is, realizes the air conditioner defrosting control method in the foregoing method embodiment.
  • the memory 501 may include a program storage area and a data storage area.
  • the program storage area may store an operating system and an application program required by at least one function; the data storage area may store data created according to the use of the terminal device, and the like.
  • the memory 501 may include high-speed random access memory, and may also include non-volatile memory.
  • the technical solutions of the embodiments of the present disclosure can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes one or more instructions to enable a computer device (which can be a personal computer, a server, or a network). Equipment, etc.) execute all or part of the steps of the method described in the embodiments of the present disclosure.
  • the aforementioned storage medium may be a non-transitory storage medium, including: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
  • the first element can be called the second element, and likewise, the second element can be called the first element, as long as all occurrences of the "first element” are renamed consistently and all occurrences "Second component” can be renamed consistently.
  • the first element and the second element are both elements, but they may not be the same element.
  • the terms used in this application are only used to describe the embodiments and are not used to limit the claims. As used in the description of the embodiments and claims, unless the context clearly indicates otherwise, the singular forms of "a” (a), “one” (an) and “the” (the) are intended to also include plural forms .
  • the term “and/or” as used in this application refers to any and all possible combinations of one or more of the associated lists.
  • the term “comprise” (comprise) and its variants “comprises” and/or including (comprising) and the like refer to the stated features, wholes, steps, operations, elements, and/or The existence of components does not exclude the existence or addition of one or more other features, wholes, steps, operations, elements, components, and/or groups of these. If there are no more restrictions, the element defined by the sentence “including a" does not exclude the existence of other same elements in the process, method, or device that includes the element.
  • each embodiment focuses on the differences from other embodiments, and the same or similar parts between the various embodiments can be referred to each other.
  • the relevant parts can be referred to the description of the method parts.
  • the disclosed methods and products may be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units may only be a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection between devices or units through some interfaces, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units can be selected to implement this embodiment according to actual needs.
  • the functional units in the embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagram may represent a module, program segment, or part of the code, and the module, program segment, or part of the code contains one or more functions for realizing the specified logical function.
  • Executable instructions may also occur in a different order from the order marked in the drawings. For example, two consecutive blocks can actually be executed in parallel, and they can sometimes be executed in the reverse order, depending on the functions involved.
  • Each block in the block diagram and/or flowchart, and the combination of the blocks in the block diagram and/or flowchart, can be implemented by a dedicated hardware-based system that performs the specified functions or actions, or can be implemented by dedicated hardware Realized in combination with computer instructions.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Defrosting Systems (AREA)

Abstract

一种空调除霜的控制方法、装置及空调。在空调执行除霜流程完成的情况下,获取所述空调已执行的所述除霜流程的除霜时长;基于所述空调已执行的除霜流程的除霜时长,对本次所述除霜流程至下一次除霜流程之间的除霜间隔时长进行修正;在基于修正后的所述除霜间隔时长确定满足间隔时长条件的情况下,控制空调进行是否触发下一次除霜流程的除霜判断。该空调除霜的控制方法能够降低现有技术中因利用固定的除霜时间间隔的方式控制空调是否启用除霜功能所导致空调除霜功能启用受限、不能及时触发除霜功能的问题,实现了对空调除霜功能更加精准的控制。

Description

一种空调除霜的控制方法、装置及空调
本申请基于申请号为201910371807.9、申请日为2019年05月06日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及空调除霜技术领域,例如涉及一种空调及其除霜的控制方法。
背景技术
随着人们生活水平的提高,空调设备也已经走进了千家万户,家用空调、中央空调的使用越来越普遍,用户对于空调舒适度的要求也越来越高,空调使用过程中所存在的问题也逐渐暴漏出来,其中一个就是空调在严寒气候下运行时的室外机结霜冻结的问题。在空调在低温地区或者风雪较大的地区运行时,室外机的冷凝器外表面所凝结水流会滴落到底盘上,空调器长时间运行情况下,会导致空调器的冷凝器和底盘均出现结冰问题,室外机上凝结的冰层会阻碍内部的冷媒与室外环境的热量交换,使得空调的制冷效率下降,为了保证空调的制热效果,空调不得不提高功率运行,这也导致了电能的额外消耗和用户使用成本的提高。
因此,针对空调的室外机结霜结冰的问题,现有的部分空调配置有除霜功能,例如,利用设置于室外机的加热装置对室外机进行加热,或者,利用制冷模式下压缩机排出的高温冷媒对室外换热器进行化霜融冰。这里,在空调启用除霜功能之前,空调一般是利用室外传感器检测到的外盘管温度与霜点温度结合进行判断是否已经达到了容易凝结冰霜的温度状况,进而判断是否启用除霜功能。
在实现本公开实施例的过程中,发现相关技术中至少存在如下问题:相关技术中为了避免空调在低温环境下连续频繁的启用除霜功能而影响正常制热工作的问题,一般是设定空调在除霜完成之后的固定时长内不再启动除霜功能,如设定20分钟、30分钟的除霜时间间隔;这种方式存在的弊端就是影响空调室外机结霜程度的因素不仅包括外界环境因素,还包括空调自身状态的影响因素,由于空调每次除霜完成之后自身各部件的工作状态也会发生变化,如果仍以该种固定的除霜时间间隔的方式控制空调是否启用除霜功能,则实际上会与空调实际的结霜状态存在较大的误差,如在极度严寒天气状况下,如果除霜时间间隔设定较长时间,那么空调在除霜时间间隔的时间段内就容易凝结较多的冰霜,而此时空调由于除霜时间间隔的限制则不会立即启用除霜功能,因而就会影响到空调的正常使用。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种空调除霜的控制方法。
在一些实施例中,控制方法包括:
在空调执行除霜流程完成的情况下,获取所述空调已执行的所述除霜流程的除霜时长;
基于所述空调已执行的除霜流程的除霜时长,对本次所述除霜流程至下一次除霜流程之间的除霜间隔时长进行修正;
在基于修正后的所述除霜间隔时长确定满足间隔时长条件的情况下,控制空调进行是否触发下一次除霜流程的除霜判断。
本公开实施例提供了一种空调除霜的控制装置。
在一些实施例中,控制装置包括:
第一获取模块,被配置为:在空调执行除霜流程完成的情况下,获取所述空调已执行的所述除霜流程的除霜时长;
时长修正模块,被配置为:基于所述空调已执行的除霜流程的除霜时长,对本次所述除霜流程至下一次除霜流程之间的除霜间隔时长进行修正;
除霜判断模块,被配置为:在基于修正后的所述除霜间隔时长确定满足间隔时长条件的情况下,控制空调进行是否触发下一次除霜流程的除霜判断。
本公开实施例提供了一种空调。
在一些实施例中,空调包括前述的控制装置。
本公开实施例提供了一种电子设备。
在一些实施例中,电子设备包括:
至少一个处理器;以及
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行时,使所述至少一个处理器执行前述的控制方法。
本公开实施例提供了一种计算机可读存储介质。
在一些实施例中,计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令设置为执行前述的控制方法。
本公开实施例提供的一些技术方案可以实现以下技术效果:
本公开实施例提供的空调除霜的控制方法能够利用空调执行除霜流程的除霜时长对本次所述除霜流程至下一次除霜流程之间的除霜间隔时长进行修正,从而可以降低现有技术中因利用固定的除霜时间间隔的方式控制空调是否启用除霜功能所导致空调除霜功能启用受限、不能及时触发除霜功能的问题,实现了对空调除霜功能更加精准的控制。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的空调除霜的控制方法的流程示意图;
图2是本公开又一实施例提供的空调除霜的控制方法的流程示意图;
图3是本公开又一实施例提供的空调除霜的控制方法的流程示意图;
图4是本公开实施例提供的空调除霜的控制装置的结构示意图;
图5是本公开实施例提供的电子设备的结构示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
图1是本公开实施例提供的空调除霜的控制方法的流程示意图。
如图1所示,本公开实施例提供了一种空调除霜的控制方法,包括:
S101、在空调执行除霜流程完成的情况下,获取空调已执行的除霜流程的除霜时长;
在本公开实施例中,对除霜间隔时长进行修正的操作是在空调已经完成某一次除霜流程之后进行。
这里,空调在完成一次除霜流程之后,该次除霜流程所占用的除霜时长也是可以确定的;这样,在本公开实施例中,空调即是在空调完成某一次除霜流程之后,通过空调该次除霜流程的除霜时长对除霜间隔时长进行修正,修正后的除霜间隔时长是用于下一次待执行的除霜流程的除霜判断。
可选的,本公开实施例中的空调设置有计时模块,计时模块可用于统计空调每次执行的除霜流程的除霜时长,即在空调执行除霜流程的初始时刻开始计时并在完成时刻结束计时,则初始时刻至完成时刻之间的时间即为本次除霜流程的除霜时长;并且,空调的计时模块所统计的除霜时长作为历史运行数据进行保存。
S102、基于空调已执行的除霜流程的除霜时长,对本次除霜流程至下一次除霜流程之间的除霜间隔时长进行修正;
在一些可选的实施例中,被修正的除霜间隔时长为空调预存的一个或一个以上不同时长数值的设定时长值,如2分钟,7分钟,等等;步骤S102中,空调基于除霜流程的除 霜时长对其选定的设定时长值进行修正的操作;
在另一些可选的实施例中,被修正的除霜间隔时长为空调执行的除霜流程与其前一次除霜流程之间的除霜间隔时长;因此,在本公开实施例中,在执行步骤S102之前,本公开实施例的控制方法的步骤还包括:获取空调执行的除霜流程与其前一次除霜流程之间的除霜间隔时长,并将除霜间隔时长作为待修正的除霜间隔时长。
这里,空调设置有计时模块,计时模块可用于统计空调已执行的除霜流程的完成时刻与当前时刻的间隔时长;在上述实施例中,待修正的除霜间隔时长为相邻的两次的除霜流程之间的间隔时长,即前一除霜流程的完成时刻与本次除霜流程的开始时刻之间的时长。
S103、在基于修正后的除霜间隔时长确定满足间隔时长条件的情况下,控制空调进行是否触发下一次除霜流程的除霜判断。
在本公开实施例中,间隔时长条件包括空调已执行的除霜流程的完成时刻与当前时刻的间隔时长大于或等于修正后的除霜间隔时长。因此,若空调满足该间隔时长条件,则控制空调进行是否触发下一次除霜流程的除霜判断;若空调不满足该间隔时长条件,则控制空调不进行是否触发下一次除霜流程的除霜判断。
这里,不同于相关技术中采用固定的除霜间隔时长的控制方式,本公开实施例利用空调执行除霜流程的除霜时长对本次所述除霜流程至下一次除霜流程之间的除霜间隔时长进行修正;则能够在前一次除霜时间较长、除霜效果较好的情况下,延长相连的两次除霜流程之间的时间间隔,以避免对空调在制热工况下的正常制热工作的干扰;而在前一次除霜时间较短、除霜效果较差的情况下,缩短相邻的两次除霜流程之间的时间间隔,以避免室外机中的冰霜凝结过多而降低空调制热效率的问题。
本公开实施例提供的空调除霜的控制方法能够利用空调执行除霜流程的除霜时长对本次所述除霜流程至下一次除霜流程之间的除霜间隔时长进行修正,从而可以降低现有技术中因利用固定的除霜时间间隔的方式控制空调是否启用除霜功能所导致空调除霜功能启用受限、不能及时触发除霜功能的问题,实现了对空调除霜功能更加精准的控制。
在一些可选的实施例中,步骤S103中的控制空调进行是否触发下一次除霜流程的除霜判断的具体执行过程包括:在空调满足预设的除霜条件的情况下,判定空调触发下一次除霜流程;在空调不满足预设的除霜条件的情况下,判定空调不触发下一次除霜流程。
可选的,预设的除霜条件包括空调的室外盘管温度小于霜点温度。
这里,为控制空调进行是否触发下一次除霜流程的除霜判断,本公开实施例的步骤还包括:获取空调的室外盘管温度;将室外盘管温度与霜点温度进行比较,在室外盘管温度小于霜点温度的情况下,判定空调触发下一次除霜流程;在外盘管温度大于或等于霜点温度的情况下,判定空调不触发下一次除霜流程。
在本公开实施例中,空调的室外机另设有一温度传感器,该温度传感器可用于检测室外机的盘管的实时的室外盘管温度;因此,上述步骤即是获取该温度传感器所检测到的室外盘管温度;
示例性的,设定的霜点温度为-1℃;当从温度传感器获取得到的室外盘管温度为-2℃时,-2℃<-1℃,则判定空调触发下一次除霜流程;而当从温度传感器获取得到的室外盘管温度为3℃时,-1℃<3℃,则判定空调触发下一次除霜流程。
这里,本申请控制方法的流程步骤还包括:获取空调在本次开机启动之后除霜流程的执行次数;在除霜流程的执行次数等于0的情况下,基于室外盘管温度和霜点温度控制空调进行是否触发下一次除霜流程的除霜判断;在除霜流程的执行次数不等于0的情况下,则执行步骤S101至S103的控制流程。
空调在开机启动之后对除霜流程的执行次数进行计数操作,计数的初始值为0;空调每执行一次除霜流程,则计数加1;因此,在空调本次开机启动之后、首次执行除霜流程之前,空调对除霜流程的计数为0,此时则基于室外盘管温度和霜点温度控制空调进行是否触发下一次除霜流程的除霜判断。
在空调本次运行结束关机时,空调将除霜流程的计数清零。
图2是本公开又一实施例提供的空调除霜的控制方法的流程示意图。
如图2所示,本公开实施例提供了一种空调除霜的控制方法,该控制方法所限定的流程是在空调已经完成某一次除霜流程之后进行;具体包括:
S201、获取空调已执行的除霜流程的除霜时长;
S202、基于除霜时长和预设的第一关联关系,匹配得到除霜时长对应的时长修正值;
在本公开实施例中,第一关联关系配置为表征一个或一个以上除霜时长与时长修正值的对应关系;预设的第一关联关系中,当除霜时长小于或等于第一时长时,时长修正值为正值;当除霜时长大于第一时长且小于或等于第二时长时,时长修正值为零;当除霜时长大于第二时长时,时长修正值为负值。
示例性的,表1中示出了一种可选的除霜时长与时长修正值的对应关系。
除霜时长(单位:分钟) 时长修正值(单位:分钟)
t<3 5
3≤t<5 0
5<t -5
表1
表1中,第一时长为3分钟,除霜时长小于或等于3分钟时对应的时长修正值为5分钟;第二时长为5分钟,除霜时长大于3分钟且小于或等于5分钟时对应的时长修正值为0分钟;除霜时长大于或等于5分钟时其对应的时长修正值为-5分钟,等;因此在步骤S202中,空调通过该表格可以查找匹配出对应除霜时长的时长修正值。
该关联关系为空调出厂前通过实验等方式计算确定的数值,并预存在空调的电脑板、处理器等控制装置中。
S203、基于匹配得到的时长修正值对待修正的除霜间隔时长进行修正;
在本公开实施例中,步骤S203中计算待修正的除霜间隔时长和时长修正值之和,得到修正后的除霜间隔时长。
S204、获取空调已执行的除霜流程的完成时刻与当前时刻的间隔时长;
S205、判断修正后的除霜间隔时长是否满足间隔时长条件,若是,则执行步骤S206;若否,则返回步骤S204;
S206、控制空调进行是否触发下一次除霜流程的除霜判断。
在本公开实施例中,步骤S206的具体执行过程可以参照前文中的实施例,在此不作赘述。
本公开实施例中所公开的提供的空调除霜的控制方法通过预设的关联关系查找匹配对应空调执行除霜流程的除霜时长的时长修正值,进而根据时长修正值对除霜间隔时长进行修正,能够精确的调整与当前工况相适配的相邻的除霜流程的时间间隔,使得空调更加精确的触发空调的除霜流程。
图3是本公开又一实施例提供的空调除霜的控制方法的流程示意图。
如图3所示,本公开实施例提供了一种空调除霜的控制方法,该控制方法所限定的流程是在空调已经完成某一次除霜流程之后进行;具体包括:
S301、获取空调本次开机的制热模式的累计运行时长;
在本公开实施例中,在空调本次开机之后开始计时,累计运行时长为当前时刻的与空调开机的时刻之间的制热模式的总时长;
例如,空调本次开机的时刻为6:00,空调执行步骤S301的时刻为8:10,其中,6:00至6:30为制热运行状态,6:30至6:50为待机状态,6:50至7:30为制热运行状态,7:30至7:35为除霜流程所限定的除霜状态,7:35至8:00为制热运行状态,8:00至8:02为除霜状态,8:02至8:10为制热运行状态,则可以获取的空调本次开机的制热状态的运行时段包括6:00至6:30的30分钟、6:50至7:30的40分钟、7:35至8:00的25分钟以及8:02至8:10的8分钟,相加之和得到的103分钟即为制热模式的累计运行时长。
在本公开实施例中,本申请结合制热的累计运行时长和除霜时长共同对除霜间隔时长进行修正。
S302、获取空调已执行的除霜流程的除霜时长;
步骤S302中获取的为距离当前最近的一次除霜流程的除霜时长,如结合步骤S301示出的本公开实施例中8:00至8:02的时间段的8分钟;
S303、基于时长组合和预设的第二关联关系,匹配得到时长组合对应的时长修正值;
在本公开实施例中,第二关联关系配置为表征一个或一个以上时长组合与时长修正值的对应关系;时长组合至少包括除霜时长和制热模式的累计运行时长各自所处的时长区间。
示例性的,表2中示出是一个可选的时长组合与时长修正值的对应关系。
时长组合(单位:分钟) 温度修正值(单位:℃)
t<3且T<T1 5
3<t≤5且T<T1 0
5<t≤9且T>T1 -1
表2
其中,t为除霜时长,T为制热模式的累计运行时长。在步骤S304中,空调通过该表格可以查找匹配出对应时长组合的时长修正值。
该关联关系为空调出厂前通过实验等方式计算确定的数值,并预存在空调的电脑板、处理器等控制装置中。
S304、基于匹配得到的时长修正值对待修正的除霜间隔时长进行修正;
在本公开实施例中,步骤S307中计算待修正的除霜间隔时长和时长修正值之和,得到修正后的除霜间隔时长。
S305、获取空调已执行的除霜流程的完成时刻与当前时刻的间隔时长;
S306、判断修正后的除霜间隔时长是否满足间隔时长条件,若是,则执行步骤S307;若否,则返回步骤S305;
S307、控制空调进行是否触发下一次除霜流程的除霜判断。
在本公开实施例中,步骤S307的具体执行过程可以参照前文中的实施例,在此不作赘述。
本公开实施例中所公开的提供的空调除霜的控制方法通过预设的关联关系查找匹配对应时长组合的时长修正值,进而根据时长修正值对除霜间隔时长进行修正,这里,时长组合可以同时反映空调本次开机运行之后制热模式和最近一次的除霜流程这两个不同流程所占用的时长,由于空调以制热模式运行室外机吸收热量,因此也会影响到结霜程度,这样,将最近一次的除霜流程的除霜时长与制热模式的累计运行时长综合进行考虑,使其能够更容易触发下一次除霜流程,这样,使得空调更加精确的触发适配当前工况的除霜流程。
图4是本公开实施例提供的空调除霜的控制装置的结构示意图。
如图4所示,本公开实施例提供了一种空调除霜的控制装置4,应用于空调,可控制空调执行前文实施例中所示出的控制流程。控制装置4包括:
第一获取模块41,被配置为:在空调执行除霜流程完成的情况下,获取空调已执行的除霜流程的除霜时长;
时长修正模块42,被配置为:基于空调已执行的除霜流程的除霜时长,对本次除霜流程至下一次除霜流程之间的除霜间隔时长进行修正;
除霜判断模块43,被配置为:在基于修正后的除霜间隔时长确定满足间隔时长条件的情况下,控制空调进行是否触发下一次除霜流程的除霜判断。
在一些可选实施例中,控制装置4还包括第二获取模块44,被配置为:
获取空调执行的除霜流程与其前一次除霜流程之间的除霜间隔时长,并将除霜间隔时长作为待修正的除霜间隔时长。
在一些可选实施例中,时长修正模块42被配置为:
基于除霜时长和预设的第一关联关系,匹配得到除霜时长对应的时长修正值;其中,第一关联关系配置为表征一个或一个以上除霜时长与时长修正值的对应关系;
基于匹配得到的时长修正值对待修正的除霜间隔时长进行修正。
在一些可选实施例中,控制装置4还包括第三获取模块45,被配置为:空调本次开机的制热模式的累计运行时长;
时长修正模块42被配置为:
基于时长组合和预设的第二关联关系,匹配得到时长组合对应的时长修正值;其中,第二关联关系配置为表征一个或一个以上时长组合与时长修正值的对应关系;时长组合至少包括除霜时长和制热模式的累计运行时长各自所处的时长区间;
基于匹配得到的时长修正值对待修正的除霜间隔时长进行修正。
在一些可选实施例中,时长修正模块42被配置为:计算待修正的除霜间隔时长和时长修正值之和,得到修正后的除霜间隔时长。
在一些可选实施例中,除霜判断模块43被配置为:
在空调满足预设的除霜条件的情况下,判定空调触发下一次除霜流程;
在空调不满足预设的除霜条件的情况下,判定空调不触发下一次除霜流程。
本申请的控制装置控制空调执行的控制流程的具体执行方式可参照前文控制方法的实施例的对应部分,在此不作赘述。
本公开实施例还提供了一种空调,空调包括空调主体以及前文实施例中所提供的控制装置。
本公开实施例还提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述实施例中所提供的空调除霜的控制方法。
本公开实施例还提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述实施例中所提供空调除霜的控制方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例还提供了一种电子设备,其结构如图5所示,该电子设备包括:
至少一个处理器(processor)500,图5中以一个处理器500为例;和存储器(memory)501,还可以包括通信接口(Communication Interface)502和总线503。其中,处理器500、通信接口502、存储器501可以通过总线503完成相互间的通信。通信接口502可以用于信息传输。处理器500可以调用存储器501中的逻辑指令,以执行上述实施例中所提供的空调除霜的控制方法。
此外,上述的存储器501中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器501作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器500通过运行存储在存储器501中的软件程序、指令以及模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的空调除霜的控制方法。
存储器501可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器501可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法或者设备中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、 产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、设备等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种空调除霜的控制方法,其特征在于,包括:
    在空调执行除霜流程完成的情况下,获取所述空调已执行的所述除霜流程的除霜时长;
    基于所述空调已执行的除霜流程的除霜时长,对本次所述除霜流程至下一次除霜流程之间的除霜间隔时长进行修正;
    在基于修正后的所述除霜间隔时长确定满足间隔时长条件的情况下,控制空调进行是否触发下一次除霜流程的除霜判断。
  2. 根据权利要求1所述的控制方法,其特征在于,在基于所述空调已执行的除霜流程的除霜时长,对本次所述除霜流程至下一次除霜流程之间的除霜间隔时长进行修正之前,所述控制方法还包括:
    获取所述空调执行的所述除霜流程与其前一次除霜流程之间的除霜间隔时长,并将所述除霜间隔时长作为待修正的除霜间隔时长。
  3. 根据权利要求2所述的控制方法,其特征在于,所述基于所述空调已执行的除霜流程的除霜时长,对本次所述除霜流程至下一次除霜流程之间的除霜间隔时长进行修正,包括:
    基于所述除霜时长和预设的第一关联关系,匹配得到所述除霜时长对应的时长修正值;其中,所述第一关联关系配置为表征一个或一个以上除霜时长与时长修正值的对应关系;
    基于匹配得到的所述时长修正值对所述待修正的除霜间隔时长进行修正。
  4. 根据权利要求2所述的控制方法,其特征在于,
    在所述基于所述空调已执行的除霜流程的除霜时长,对本次所述除霜流程至下一次除霜流程之间的除霜间隔时长进行修正之前,所述控制方法还包括:空调本次开机的制热模式的累计运行时长;
    所述基于所述空调已执行的除霜流程的除霜时长,对本次所述除霜流程至下一次除霜流程之间的除霜间隔时长进行修正,包括:
    基于时长组合和预设的第二关联关系,匹配得到所述时长组合对应的时长修正值;其中,所述第二关联关系配置为表征一个或一个以上所述时长组合与时长修正值的对应关系;所述时长组合至少包括所述除霜时长和所述制热模式的累计运行时长各自所处的时长区间;
    基于匹配得到的所述时长修正值对所述待修正的除霜间隔时长进行修正。
  5. 根据权利要求3或4所述的控制方法,其特征在于,所述基于匹配得到的所述时长修正值对所述待修正的除霜间隔时长进行修正,包括:计算所述待修正的除霜间隔时长和所述时长修正值之和,得到所述修正后的除霜间隔时长。
  6. 根据权利要求1所述的控制方法,其特征在于,所述控制空调进行是否触发下一 次除霜流程的除霜判断,包括:
    在所述空调满足预设的除霜条件的情况下,判定所述空调触发所述下一次除霜流程;
    在所述空调不满足预设的除霜条件的情况下,判定所述空调不触发所述下一次除霜流程。
  7. 一种空调除霜的控制装置,其特征在于,包括:
    第一获取模块,被配置为:在空调执行除霜流程完成的情况下,获取所述空调已执行的所述除霜流程的除霜时长;
    时长修正模块,被配置为:基于所述空调已执行的除霜流程的除霜时长,对本次所述除霜流程至下一次除霜流程之间的除霜间隔时长进行修正;
    除霜判断模块,被配置为:在基于修正后的所述除霜间隔时长确定满足间隔时长条件的情况下,控制空调进行是否触发下一次除霜流程的除霜判断。
  8. 根据权利要求7所述的控制装置,其特征在于,所述控制装置还包括第二获取模块,被配置为:
    获取所述空调执行的所述除霜流程与其前一次除霜流程之间的除霜间隔时长,并将所述除霜间隔时长作为待修正的除霜间隔时长。
  9. 根据权利要求8所述的控制装置,其特征在于,所述时长修正模块被配置为:
    基于所述除霜时长和预设的第一关联关系,匹配得到所述除霜时长对应的时长修正值;其中,所述第一关联关系配置为表征一个或一个以上除霜时长与时长修正值的对应关系;
    基于匹配得到的所述时长修正值对所述待修正的除霜间隔时长进行修正。
  10. 一种空调,其特征在于,包括如权利要求7至9任一项所述的控制装置。
PCT/CN2020/087749 2019-05-06 2020-04-29 一种空调除霜的控制方法、装置及空调 WO2020224501A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910371807.9A CN111895593B (zh) 2019-05-06 2019-05-06 一种空调除霜的控制方法、装置及空调
CN201910371807.9 2019-05-06

Publications (1)

Publication Number Publication Date
WO2020224501A1 true WO2020224501A1 (zh) 2020-11-12

Family

ID=73051449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087749 WO2020224501A1 (zh) 2019-05-06 2020-04-29 一种空调除霜的控制方法、装置及空调

Country Status (2)

Country Link
CN (1) CN111895593B (zh)
WO (1) WO2020224501A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114704936A (zh) * 2022-02-18 2022-07-05 青岛海尔空调器有限总公司 用于控制直流空调器的方法及装置、直流空调器
CN114811880A (zh) * 2022-02-28 2022-07-29 青岛海尔空调器有限总公司 用于直流空调器除霜的方法及装置、直流空调器
WO2022174842A1 (zh) * 2021-02-19 2022-08-25 青岛海尔空调电子有限公司 空调器及其除霜控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113865007B (zh) * 2020-06-30 2023-06-23 青岛海尔空调器有限总公司 空调器及其控制方法
CN114151928B (zh) * 2021-11-26 2023-03-21 宁波奥克斯电气股份有限公司 一种空调器延长制热时间的控制方法、装置及空调器
CN114413414B (zh) * 2021-12-14 2023-05-12 珠海格力电器股份有限公司 一种除霜退出判断方法及空调系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064348A (zh) * 1991-01-26 1992-09-09 三星电子株式会社 冷藏箱的除霜控制方法
CN1204029A (zh) * 1997-06-27 1999-01-06 三星电子株式会社 空调器的除霜装置及其方法
CN101738054A (zh) * 2009-12-30 2010-06-16 天津大学 基于冷藏库旁通循环式除霜结构的除霜方法
CN101793454A (zh) * 2010-03-10 2010-08-04 合肥美菱股份有限公司 一种电冰箱智能化霜的控制方法
CN101846428A (zh) * 2009-03-24 2010-09-29 泰州乐金电子冷机有限公司 冰箱自动除霜控制装置
CN105157323A (zh) * 2015-09-17 2015-12-16 南京创维电器研究院有限公司 一种风冷冰箱的除霜方法和除霜系统
CN105387560A (zh) * 2015-10-30 2016-03-09 株洲麦格米特电气有限责任公司 一种直流变频空调智能除霜方法
KR20170132939A (ko) * 2016-05-24 2017-12-05 주식회사 대유위니아 냉장고 제상 운전 방법
US10197325B2 (en) * 2014-03-20 2019-02-05 Lg Electronics Inc. Air conditioner with two injection circuits and method of controlling the air conditioner

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101251326B (zh) * 2008-04-06 2011-09-07 梁嘉麟 将冷暖分体空调器设置在库房中构成无霜冷库的应用方法
CN103486781B (zh) * 2012-06-13 2015-08-19 珠海格力电器股份有限公司 空调化霜方法及装置
US20140352335A1 (en) * 2013-05-31 2014-12-04 Haier America Research And Development Co., Ltd. Adaptive defrost
KR101643890B1 (ko) * 2015-04-16 2016-07-29 한국알프스 주식회사 냉장고 제상 제어 장치 및 방법
CN106152388A (zh) * 2015-04-23 2016-11-23 青岛海尔空调电子有限公司 一种空调机组的除霜方法及装置
KR101638929B1 (ko) * 2016-02-29 2016-07-12 한국교통대학교산학협력단 착상 감지 장치 및 제어 방법
CN107289601B (zh) * 2017-06-22 2019-11-22 芜湖美智空调设备有限公司 空调系统、除霜控制方法及计算机可读存储介质
CN109028639B (zh) * 2018-07-03 2019-10-22 浙江国祥股份有限公司 一种空气源热泵的除霜控制方法及空气源热泵
CN109654776B (zh) * 2019-01-11 2021-03-02 广东芬尼克兹节能设备有限公司 一种热泵系统的除霜控制方法及系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1064348A (zh) * 1991-01-26 1992-09-09 三星电子株式会社 冷藏箱的除霜控制方法
CN1204029A (zh) * 1997-06-27 1999-01-06 三星电子株式会社 空调器的除霜装置及其方法
CN101846428A (zh) * 2009-03-24 2010-09-29 泰州乐金电子冷机有限公司 冰箱自动除霜控制装置
CN101738054A (zh) * 2009-12-30 2010-06-16 天津大学 基于冷藏库旁通循环式除霜结构的除霜方法
CN101793454A (zh) * 2010-03-10 2010-08-04 合肥美菱股份有限公司 一种电冰箱智能化霜的控制方法
US10197325B2 (en) * 2014-03-20 2019-02-05 Lg Electronics Inc. Air conditioner with two injection circuits and method of controlling the air conditioner
CN105157323A (zh) * 2015-09-17 2015-12-16 南京创维电器研究院有限公司 一种风冷冰箱的除霜方法和除霜系统
CN105387560A (zh) * 2015-10-30 2016-03-09 株洲麦格米特电气有限责任公司 一种直流变频空调智能除霜方法
KR20170132939A (ko) * 2016-05-24 2017-12-05 주식회사 대유위니아 냉장고 제상 운전 방법

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022174842A1 (zh) * 2021-02-19 2022-08-25 青岛海尔空调电子有限公司 空调器及其除霜控制方法
CN114704936A (zh) * 2022-02-18 2022-07-05 青岛海尔空调器有限总公司 用于控制直流空调器的方法及装置、直流空调器
CN114704936B (zh) * 2022-02-18 2024-04-09 青岛国创智能家电研究院有限公司 用于控制直流空调器的方法及装置、直流空调器
CN114811880A (zh) * 2022-02-28 2022-07-29 青岛海尔空调器有限总公司 用于直流空调器除霜的方法及装置、直流空调器
CN114811880B (zh) * 2022-02-28 2024-04-05 青岛国创智能家电研究院有限公司 用于直流空调器除霜的方法及装置、直流空调器

Also Published As

Publication number Publication date
CN111895593A (zh) 2020-11-06
CN111895593B (zh) 2022-04-19

Similar Documents

Publication Publication Date Title
WO2020224501A1 (zh) 一种空调除霜的控制方法、装置及空调
CN110736203B (zh) 用于空调除霜的控制方法、控制装置及空调
CN112050369B (zh) 一种用于空调除霜的控制方法、控制装置及空调
CN110749041B (zh) 一种空调器的运行控制方法、系统、空调器及存储介质
WO2020224497A1 (zh) 一种空调除霜的控制方法、装置及空调
CN112524773B (zh) 一种电子膨胀阀开度确定方法和装置
CN111895596B (zh) 一种空调除霜的控制方法、装置及空调
CN112880130B (zh) 空调控制方法、装置和电子设备
CN112050376A (zh) 一种用于空调除霜的控制方法、控制装置及空调
CN111895600B (zh) 一种空调除霜的控制方法、装置及空调
CN112050375A (zh) 一种用于空调除霜的控制方法、控制装置及空调
CN112050377A (zh) 一种用于空调除霜的控制方法、控制装置及空调
CN111895597B (zh) 一种空调除霜的控制方法、装置及空调
CN111895602B (zh) 一种空调除霜的控制方法、装置及空调
US10845107B2 (en) Variable speed compressor based AC system and control method
CN112050367B (zh) 一种用于空调除霜的控制方法、控制装置及空调
WO2020224502A1 (zh) 一种空调除霜的控制方法、装置及空调
CN112050373A (zh) 一种用于空调除霜的控制方法、控制装置及空调
CN111895591B (zh) 一种空调除霜的控制方法、装置及空调
CN112781286A (zh) 除霜控制方法及设备、风冷模块机组
CN112050370A (zh) 一种用于空调除霜的控制方法、控制装置及空调
CN111895599B (zh) 一种空调除霜的控制方法、装置及空调
CN111895595B (zh) 一种空调除霜的控制方法、装置及空调
CN111895598B (zh) 一种空调除霜的控制方法、装置及空调
CN110470003B (zh) 用于空调除霜的控制方法及装置、空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802381

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802381

Country of ref document: EP

Kind code of ref document: A1