WO2020224315A1 - 一种提高低中频接收机性能的方法、存储介质及接收机 - Google Patents

一种提高低中频接收机性能的方法、存储介质及接收机 Download PDF

Info

Publication number
WO2020224315A1
WO2020224315A1 PCT/CN2020/077646 CN2020077646W WO2020224315A1 WO 2020224315 A1 WO2020224315 A1 WO 2020224315A1 CN 2020077646 W CN2020077646 W CN 2020077646W WO 2020224315 A1 WO2020224315 A1 WO 2020224315A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
low
local oscillator
frequency
intermediate frequency
Prior art date
Application number
PCT/CN2020/077646
Other languages
English (en)
French (fr)
Inventor
黄妮
何大武
高存浩
黄广彬
王永栋
Original Assignee
海能达通信股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海能达通信股份有限公司 filed Critical 海能达通信股份有限公司
Priority to DE112020002240.4T priority Critical patent/DE112020002240T5/de
Priority to US17/608,640 priority patent/US11990927B2/en
Publication of WO2020224315A1 publication Critical patent/WO2020224315A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/1027Means associated with receiver for limiting or suppressing noise or interference assessing signal quality or detecting noise/interference for the received signal
    • H04B2001/1045Adjacent-channel interference

Definitions

  • This application relates to the field of communication technology, and in particular to a method, storage medium and receiver for improving the performance of a low-IF receiver.
  • the zero-IF solution Due to the advantages of the zero-IF solution such as high integration, small size, low cost, low power consumption, and no need for image frequency suppression filters, companies are adopting the zero-IF solution instead of the superheterodyne solution, but the zero-IF solution is also There are defects, such as the need to remove DC or be sensitive to signal I/Q imbalance, resulting in poor blocking performance.
  • the blocking performance of the zero-IF scheme is about 19dB worse than the superheterodyne scheme, so it is extremely susceptible to interference from external signals. It is unacceptable in actual applications.
  • the inventor of the present application found that in order to solve the problems of the zero-IF solution, the low-IF solution can be adopted, so that the blocking performance can basically be close to the superheterodyne solution, but the static low-IF solution will cause the upper adjacent channel or the lower
  • the adjacent channel selectivity (ACS, Adjacent Channel Selectivity) index drops by about 24dB, which is also unacceptable. Therefore, using a static low-IF solution cannot solve all problems.
  • the method to solve the problem of the decrease of the adjacent channel selectivity index is to judge whether there is adjacent channel interference by the energy difference, and then judge whether to switch the low-IF local oscillator according to the magnitude of the adjacent channel interference, but it must be maintained at all times
  • the received channel bandwidth includes this signal and adjacent channel interference signals on both sides.
  • the software backend has filtering processing, once the noise comes in from the hardware, the software filtering cannot achieve the effect of the hardware filtering, and the receiving sensitivity index will be affected; another The method is to directly calculate the first interference and the second interference to determine the offset direction of the low-IF local oscillator, but at the beginning, the local oscillator needs to switch back and forth at least two or three times to determine which side the low-IF local oscillator falls on. Switch the local oscillator to update the saved interference data, if you are in a call state, it will bring periodic error codes.
  • the main problem to be solved by this application is to provide a method, storage medium and receiver for improving the performance of a low-IF receiver, which can improve the adjacent channel selectivity of the low-IF receiver.
  • the technical solution adopted in this application is to provide a method for improving the performance of low-IF receivers.
  • the method includes: selecting a local oscillator signal from the preset local oscillator frequency as the initial local oscillator signal to perform processing on the input signal. Mixing process to obtain a low-IF signal, where the low-IF signal includes a low-IF useful signal and a low-IF interference signal; determine whether the energy ratio of the low-IF interference signal to the low-IF useful signal is greater than the first preset ratio; The energy ratio of the interference signal to the low intermediate frequency useful signal is greater than the first preset ratio, then another local oscillator signal is selected from the preset local oscillator frequency as the current local oscillator signal, and the input signal is processed.
  • Another technical solution adopted in this application is to provide a storage medium for storing a computer program.
  • the computer program When executed by a processor, it is used to improve the performance of the low-IF receiver described above. Methods.
  • the low-IF receiver includes a memory and a processor that are connected to each other.
  • the memory is used to store a computer program.
  • the processor When executed, it is used to implement the above-mentioned method for improving the performance of the low-IF receiver.
  • the beneficial effect of the present application is that a local oscillator signal is selected from the preset local oscillator frequency as the initial local oscillator signal to perform mixing processing on the input signal to obtain a low intermediate frequency including a low intermediate frequency useful signal and a low intermediate frequency interference signal Signal; when the energy ratio of the low-IF interference signal to the low-IF useful signal is greater than the first preset ratio, another local oscillator signal is selected from the preset local oscillator frequency as the current local oscillator signal, the input signal is processed and performed again It is determined that the selected local oscillator signal can make the energy ratio of the generated low-IF interference signal and the low-IF useful signal meet the requirements, reduce the influence of adjacent channel interference on the useful signal, and improve the adjacent channel selectivity of the low-IF receiver.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for improving the performance of a low-IF receiver provided by the present application
  • FIG. 2 is a schematic flowchart of another embodiment of the method for improving the performance of a low-IF receiver provided by the present application
  • FIG. 3 is a schematic diagram of the frequency spectrum of each signal in another embodiment of the method for improving the performance of a low-IF receiver provided by the present application;
  • FIG. 4 is another schematic diagram of the frequency spectrum of each signal in another embodiment of the method for improving the performance of a low-IF receiver provided by the present application;
  • FIG. 5 is another schematic diagram of the frequency spectrum of each signal in another embodiment of the method for improving the performance of a low-IF receiver provided by the present application;
  • FIG. 6 is a schematic structural diagram of an embodiment of a storage medium provided by the present application.
  • Fig. 7 is a schematic structural diagram of an embodiment of a low-IF receiver provided by the present application.
  • FIG. 1 is a schematic flowchart of an embodiment of a method for improving the performance of a low-IF receiver provided by the present application.
  • the method includes:
  • Step 11 Select a local oscillator signal from the preset local oscillator frequency set as the initial local oscillator signal to perform mixing processing on the input signal to obtain a low intermediate frequency signal.
  • the preset local oscillator frequency set includes at least two local oscillator signals.
  • the frequencies of any two local oscillator signals are different, and the amplitude and phase can be the same;
  • the low-IF signal includes the low-IF useful signal and the low-IF interference signal, which can be in accordance with preset rules Or select a local oscillator signal from the preset frequency set as the initial local oscillator signal according to the principle of random selection.
  • an antenna can be used to receive the input signal, the input signal is a high-frequency signal, and then a local oscillator (LO, Local Oscillator) is used to generate a local oscillator signal, and then a mixer is used to combine the local oscillator signal with the input signal Perform down-conversion to obtain a low-IF signal.
  • LO Local Oscillator
  • Step 12 Determine whether the energy ratio of the low-IF interference signal to the low-IF useful signal is greater than the first preset ratio.
  • the energy ratio of the low-IF interference signal and the low-IF useful signal can be used to determine.
  • Step 13 If the energy ratio of the low-IF interference signal and the low-IF useful signal is greater than the first preset ratio, another local oscillator signal is selected from the preset local oscillator frequency set as the current local oscillator signal, and the input signal is processed.
  • the energy ratio of the low-IF interference signal to the low-IF useful signal is greater than the first preset ratio, it can be determined that the initial local oscillator signal is used to process the input signal, which will cause the generated low-IF interference signal to interfere with the low-IF useful signal. Strong, the adjacent channel interference is relatively strong. In order to reduce the adjacent channel interference, another local oscillator signal can be selected from the preset frequency set as the current local oscillator signal to process the input signal.
  • This embodiment provides a method for improving the performance of a low-IF receiver.
  • the input signal is processed to generate a low-IF useful signal and a low-IF interference signal by recycling the local oscillator signal concentrated in the preset local oscillator frequency, and judge the difference between the two Whether the energy ratio meets the requirements, until the selected local oscillator signal can make the generated low-IF interference signal and the low-IF useful signal energy ratio meet the requirements, reduce the impact of adjacent channel interference on useful signals, and improve the adjacent channel of the low-IF receiver Selective.
  • FIG. 2 is a schematic flowchart of another embodiment of a method for improving the performance of a low-IF receiver provided by the present application, and the method includes:
  • Step 21 Select a local oscillator signal from the preset local oscillator frequency set as the initial local oscillator signal to perform mixing processing on the input signal to obtain a low intermediate frequency signal.
  • the input signal includes a radio frequency signal and an adjacent channel interference signal.
  • the frequency difference between the radio frequency signal and the adjacent channel interference signal is within a preset range, and the low intermediate frequency useful signal is a signal generated by mixing the radio frequency signal and the local oscillator signal.
  • the low-IF interference signal is a signal generated by mixing the adjacent channel interference signal with the local oscillator signal.
  • Step 22 Obtain the energy of the low-IF interference signal and the energy of the low-IF useful signal.
  • the low-IF interference signal and the low-IF useful signal can be converted into digital signals by the ADC (Analog to Digital Converter) respectively, and then the digital signal processor can be used (DSP, Digital Signal Processor) detects the energy of low-IF interference signals and the energy of low-IF useful signals.
  • ADC Analog to Digital Converter
  • DSP Digital Signal Processor
  • Step 23 Calculate the energy ratio between the low-IF interference signal and the low-IF useful signal.
  • the energy ratio of the two can be further calculated.
  • Step 24 Determine whether the energy ratio of the low-IF interference signal to the low-IF useful signal is greater than the first preset ratio.
  • Step 25 If the energy ratio of the low-IF interference signal to the low-IF useful signal is greater than the first preset ratio, another local oscillator signal is selected from the preset local oscillator frequency set as the current local oscillator signal, and the input signal is processed.
  • the energy ratio of the low-IF interference signal to the low-IF useful signal is greater than the first preset ratio, it indicates that the currently used local oscillator signal will cause the low-IF interference signal to interfere with the low-IF useful signal more after down-conversion.
  • Another local oscillator signal processes the input signal; if the energy ratio of the low-IF interference signal to the low-IF useful signal is less than or equal to the first preset ratio, it indicates that the currently used local oscillator signal is mixed with the input signal to produce The interference of the low-IF interference signal to the low-IF useful signal is within the allowable range. At this time, the initial local oscillator signal can be used to process the input signal.
  • the hardware channel filter is used for filtering.
  • the first filter can be used to filter the low intermediate frequency.
  • the signal is filtered, and the first filter may be a narrowband filter.
  • Step 26 Detect the synchronization code to determine whether there is an error in the synchronization code.
  • the low-IF signal also includes a synchronization code.
  • the synchronization code can be detected to determine whether the synchronization code has an error, and the received synchronization code is compared with the preset synchronization code. There is no error, otherwise, an error occurs.
  • Step 27 If there is an error in the synchronization code, switch between the first filter and the second filter according to the preset period to filter the low-IF signal, or use it directly after switching to another local oscillator signal
  • the second filter performs filtering processing on the low intermediate frequency signal.
  • the second filter may be a broadband filter, and the bandwidth of the first filter is smaller than the bandwidth of the second filter.
  • Step 28 Determine whether the energy ratio of the low-IF interference signal to the low-IF useful signal is greater than the second preset ratio.
  • the current local oscillator signal can be used to process the input signal, and the first filter can be used to filter the low-IF signal.
  • the current local oscillator signal is switched to the initial local oscillator signal; when the energy ratio of the low-IF interference signal and the low-IF useful signal is determined When it is greater than the second preset ratio, continue to use the current local oscillator signal to filter the input signal.
  • Adjacent channel interference can be divided into upper adjacent channel interference and lower adjacent channel interference.
  • the interference exists at random, and it is not clear which adjacent channel the interference exists in. There may be interference in both upper and lower adjacent channels.
  • the preset local oscillator frequency set includes a first local oscillator signal and a second local oscillator signal, the frequency of the first local oscillator signal is smaller than the frequency of the second local oscillator signal, and the frequency of the radio frequency signal is equal to The frequency difference between the first local oscillator signal and the second local oscillator signal is the same.
  • the bias direction of the upper adjacent channel or the lower adjacent channel is the bias direction of the local oscillator signal.
  • the bias direction of the local oscillator signal is the upward adjacent channel offset.
  • the bias direction of the local oscillator signal is the downward adjacent channel offset.
  • the influence of the upper adjacent channel interference can be detected first, and the local oscillator offset value can be set to a negative value.
  • the initial local oscillator signal is the first local oscillator signal.
  • the frequency of the first local oscillator signal is less than the frequency of the radio frequency signal.
  • the first local oscillator signal is shifted to the other side of the radio frequency signal, that is, it is switched to the second local oscillator. If the energy ratio of the two is less than or equal to the first preset ratio, the first local oscillator signal is still used to process the input signal.
  • the first filter and the second filter can be switched periodically, or the second filter can be used directly.
  • the bandwidth of the second filter can interfere with the upper adjacent channel.
  • the signal is fully or at least partially included, and the energy ratio between the low-IF interference signal of the upper adjacent channel and the low-IF useful signal in the same bandwidth is calculated again to detect whether the interference signal of the upper adjacent channel still exists; If the interference is no longer present or weakened to a certain extent, switch back to the first local oscillator signal to receive.
  • the second local oscillator signal When using the second local oscillator signal to process the input signal, it is possible to detect an error in the synchronization code before detecting the interference signal of the upper adjacent channel; or it can be used when the current squelch condition does not meet the preset squelch condition When the time, the detection of the interference signal of the upper adjacent channel is performed.
  • the lower adjacent channel interference signal has a greater impact on the local oscillator signal, so as to determine which local oscillator signal is used to process the input signal to ensure that the generated low-IF useful signal suffers the least interference.
  • Figure 3(a) shows the Baud diagram of the narrowband filter with a bandwidth of 20KHz
  • Figure 3(b) shows the first local oscillator signal and radio frequency before mixing.
  • the frequency spectrum diagram of the signal and the upper adjacent channel interference signal shows the frequency spectrum diagram of the low intermediate frequency useful signal and the low intermediate frequency interference signal of the same bandwidth after mixing.
  • the frequency of the preset local oscillator signal is 410MHz
  • the frequency of the radio frequency signal is also 410MHz
  • the local oscillator offset value is -4.5KHz
  • Fig. 4(a) is the Bode diagram of the narrowband filter with a bandwidth of 20KHz
  • Figure 4(b) shows the frequency spectrum diagram of the second local oscillator signal, radio frequency signal, and upper adjacent channel interference signal before mixing.
  • Figure 4(c) shows the low-IF useful signal and low-IF interference signal of the same bandwidth after mixing.
  • Figure 5(a) is a schematic diagram of the baud of the broadband filter with a bandwidth of 40.8KHz
  • Figure 5(b) shows the schematic diagram of the frequency spectrum of the second local oscillator signal, the radio frequency signal and the upper adjacent channel interference signal before mixing
  • Figure 5(c) shows the frequency spectrum diagram of the low-IF useful signal and the low-IF interference signal of the same bandwidth after mixing.
  • a narrowband filter can be used to filter the low-IF signal, and then the hardware channel filter can be switched to a broadband filter periodically, or the hardware channel filter can also be switched non-periodically, and the broadband filter can be used directly for filtering; After the filter is switched to a wideband filter, the energy ratio between the low-IF interference signal of the upper adjacent channel and the low-IF useful signal is calculated again to detect whether the interference signal of the upper adjacent channel has disappeared or weakened to a certain extent.
  • the local oscillator signal becomes the first local oscillator signal; if the interference signal of the upper adjacent channel still exists, and the impact on the useful signal is still relatively large, the local oscillator signal is kept as the second local oscillator signal; If the hardware channel filter is switched periodically, the hardware channel filter can be switched back to the narrowband filter after the energy detection of the low-IF interference signal and the low-IF useful signal of the upper adjacent channel is completed.
  • L low frequency and its frequency is around 350MHz
  • M is intermediate frequency and its frequency is around 450MHz
  • H is high frequency and its frequency is around 500MHz.
  • Offset frequency Zero intermediate frequency
  • Low-IF Attenuator Attenuator and low intermediate frequency +1MHz 75
  • the test frequency is 435.099MHz
  • the signal strength (RSSI, Received Signal Strength Indication) is -90dBm
  • the interference signal is a digital mobile radio (DMR, Digital Mobile Radio) signal. From Table 3, it can be seen that compared with the zero-IF solution, With the addition of the attenuator in the solution of this embodiment, the anti-blocking performance is improved by up to 19 dB, and the anti-blocking performance of the low-IF solution is improved by 8-11 dB compared with the zero-IF solution.
  • the low-IF solution Due to the low-IF solution, it can solve the problems of blocking and DC in the zero-IF solution. It also solves the problem of poor performance of the adjacent channel selectivity on one side of the static low-IF solution. This can be realized based on the presence of adjacent channel interference. The frequency switching of the vibration signal does not affect the performance of the adjacent channel selectivity, and can also improve the ability to resist large signal blocking.
  • FIG. 6 is a schematic structural diagram of an embodiment of a storage medium provided by the present application.
  • the storage medium 60 is used to store a computer program 61.
  • the computer program 61 is executed by a processor, it is used to realize the improvement in the above-mentioned embodiment. Methods of low-IF receiver performance.
  • the storage medium 60 may be a server, a USB flash drive, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc.
  • the medium of the program code may be a server, a USB flash drive, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc.
  • the medium of the program code may be a server, a USB flash drive, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc.
  • the medium of the program code may be a server, a USB flash drive, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc.
  • FIG 7 is a schematic structural diagram of an embodiment of a low-IF receiver provided by the present application.
  • the low-IF receiver 70 includes a memory 71 and a processor 72 that are connected to each other.
  • the memory 71 is used to store computer programs. When the program is executed by the processor 72, it is used to implement the method for improving the performance of the low-IF receiver in the foregoing embodiment.
  • the energy ratio of the low-IF interference signal and the low-IF useful signal generated by the local oscillator signal and the input signal can meet the requirements, reduce the influence of adjacent channel interference on the useful signal, and improve the adjacent channel of the low-IF receiver. Road selectivity.
  • the disclosed method and device may be implemented in other ways.
  • the device implementation described above is only illustrative, for example, the division of modules or units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of this embodiment.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)

Abstract

本申请公开了一种提高低中频接收机性能的方法、存储介质及接收机,该方法包括从预设本振频率集中选择一个本振信号作为初始本振信号对输入信号进行混频处理,以得到低中频信号,其中,低中频信号包括低中频有用信号和低中频干扰信号;判断低中频干扰信号与低中频有用信号的能量比值是否大于第一预设比值;若低中频干扰信号与低中频有用信号的能量比值大于第一预设比值,则从预设本振频率集中选取另一本振信号作为当前本振信号,对输入信号进行处理。通过上述方式,本申请能够提高低中频接收机的邻道选择性。

Description

一种提高低中频接收机性能的方法、存储介质及接收机 技术领域
本申请涉及通信技术领域,具体涉及一种提高低中频接收机性能的方法、存储介质及接收机。
背景技术
零中频方案由于集成度高、体积小、成本低、功率消耗较低以及不需要镜像频率抑制滤波器等方面的优势,各公司都在采用零中频方案替代超外差方案,但是零中频方案也存在缺陷,如需要去除直流或者对信号I/Q不平衡度很敏感,从而导致阻塞性能变差,零中频方案阻塞性能大概比超外差方案差19dB,因此极易受到外部信号的干扰,这在实际应用中是不可接受的。
本申请的发明人在长期研发中发现,为了解决零中频方案存在的问题,可采用低中频方案,使得阻塞性能基本可以接近超外差方案,但是静态的低中频方案会使上邻道或下邻道的邻道选择性(ACS,Adjacent Channel Selectivity)指标下降24dB左右,这也是不可以接受的,故使用静态的低中频方案不能解决所有问题。
现有技术中解决邻道选择性指标下降的问题的方法有,通过能量差值来判断出是否存在邻道干扰,再根据邻道干扰的大小来判断是否切换低中频本振,但必须时刻保持接收的信道带宽包含本信号和两边的邻道干扰信号,虽然软件后端有滤波处理,但是一旦噪声从硬件进来,软件滤波达不到硬件滤波的效果,接收灵敏度指标会受到影响;另一种方法是直接计算第一干扰和第二干扰来判断低中频的本振偏移方向,但刚开始时本振需要至少来回切换两到三次,才能确定低中频的本振落在哪一边,周期性地切换本振来更新保存的干扰数据,如果正处于呼叫状态则会带来周期性误码。
发明内容
本申请主要解决的问题是提供一种提高低中频接收机性能的方法、 存储介质及接收机,能够提高低中频接收机的邻道选择性。
为解决上述技术问题,本申请采用的技术方案是提供一种提高低中频接收机性能的方法,该方法包括:从预设本振频率集中选择一个本振信号作为初始本振信号对输入信号进行混频处理,以得到低中频信号,其中,低中频信号包括低中频有用信号和低中频干扰信号;判断低中频干扰信号与低中频有用信号的能量比值是否大于第一预设比值;若低中频干扰信号与低中频有用信号的能量比值大于第一预设比值,则从预设本振频率集中选取另一本振信号作为当前本振信号,对输入信号进行处理。
为解决上述技术问题,本申请采用的另一技术方案是提供一种存储介质,该存储介质用于存储计算机程序,计算机程序在被处理器执行时,用于实现上述的提高低中频接收机性能的方法。
为解决上述技术问题,本申请采用的另一技术方案是提供一种低中频接收机,该低中频接收机包括互相连接的存储器和处理器,其中,存储器用于存储计算机程序,计算机程序在被处理器执行时,用于实现上述的提高低中频接收机性能的方法。
通过上述方案,本申请的有益效果是:从预设本振频率集中选择一个本振信号作为初始本振信号对输入信号进行混频处理,得到包含低中频有用信号和低中频干扰信号的低中频信号;在低中频干扰信号与低中频有用信号的能量比值大于第一预设比值时,从预设本振频率集中选取另一本振信号作为当前本振信号,对输入信号进行处理并再次进行判断,直至选择的本振信号能够使得生成的低中频干扰信号与低中频有用信号的能量比值满足要求,降低邻道干扰对有用信号的影响,提高低中频接收机的邻道选择性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出 创造性劳动的前提下,还可以根据这些附图获得其他的附图。其中:
图1是本申请提供的提高低中频接收机性能的方法一实施例的流程示意图;
图2是本申请提供的提高低中频接收机性能的方法另一实施例的流程示意图;
图3是本申请提供的提高低中频接收机性能的方法另一实施例中各信号的频谱示意图;
图4是本申请提供的提高低中频接收机性能的方法另一实施例中各信号的另一频谱示意图;
图5是本申请提供的提高低中频接收机性能的方法另一实施例中各信号的又一频谱示意图;
图6是本申请提供的存储介质一实施例的结构示意图;
图7是本申请提供的低中频接收机一实施例的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性的劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参阅图1,图1是本申请提供的提高低中频接收机性能的方法一实施例的流程示意图,该方法包括:
步骤11:从预设本振频率集中选择一个本振信号作为初始本振信号对输入信号进行混频处理,以得到低中频信号。
该预设本振频率集包括至少两个本振信号,任意两个本振信号的频率不同,幅度和相位可以相同;低中频信号包括低中频有用信号和低中频干扰信号,可按照预设规则或按照随机选取原则从预设频率集中选择一个本振信号作为初始本振信号。
在一具体的实施例中,可利用天线接收输入信号,输入信号为高频 信号,然后利用本地振荡器(LO,Local Oscillator)产生本振信号,再利用混频器将本振信号与输入信号进行下变频,从而得到低中频信号。
步骤12:判断低中频干扰信号与低中频有用信号的能量比值是否大于第一预设比值。
为了判断低中频干扰信号对低中频有用信号的干扰是否比较大,可利用低中频干扰信号与低中频有用信号的能量比值来判定。
步骤13:若低中频干扰信号与低中频有用信号的能量比值大于第一预设比值,则从预设本振频率集中选取另一本振信号作为当前本振信号,对输入信号进行处理。
在低中频干扰信号与低中频有用信号的能量比值大于第一预设比值时,可判定利用初始本振信号对输入信号进行处理,会使得生成的低中频干扰信号对低中频有用信号的干扰较强,邻道干扰比较强,为了降低邻道干扰,可从预设频率集中选取另一个本振信号作为当前本振信号,对输入信号进行处理。
本实施例提供了一种提高低中频接收机性能的方法,循环利用预设本振频率集中的本振信号对输入信号进行处理生成低中频有用信号和低中频干扰信号,并判断两者之间的能量比值是否满足要求,直至选择的本振信号能够使得生成的低中频干扰信号与低中频有用信号的能量比值满足要求,降低邻道干扰对有用信号的影响,提高低中频接收机的邻道选择性。
参阅图2,图2是本申请提供的提高低中频接收机性能的方法另一实施例的流程示意图,该方法包括:
步骤21:从预设本振频率集中选择一个本振信号作为初始本振信号对输入信号进行混频处理,以得到低中频信号。
输入信号包括射频信号以及邻道干扰信号,射频信号与邻道干扰信号之间的频率差值在预设范围以内,且低中频有用信号为将射频信号与本振信号混频后产生的信号,低中频干扰信号为将邻道干扰信号与本振信号混频后产生的信号。
步骤22:获取低中频干扰信号的能量与低中频有用信号的能量。
可在获取到低中频干扰信号和低中频有用信号之后,利用模数转化器(ADC,Analog to Digital Converter)将低中频干扰信号和低中频有用信号分别转换为数字信号,然后利用数字信号处理器(DSP,Digital Signal Processor)检测低中频干扰信号的能量与低中频有用信号的能量。
步骤23:计算低中频干扰信号与低中频有用信号之间的能量比值。
在检测到低中频干扰信号的能量与低中频有用信号的能量之后,可进一步去计算两者的能量比值。
步骤24:判断低中频干扰信号与低中频有用信号的能量比值是否大于第一预设比值。
步骤25:若低中频干扰信号与低中频有用信号的能量比值大于第一预设比值,则从预设本振频率集中选取另一本振信号作为当前本振信号,对输入信号进行处理。
若低中频干扰信号与低中频有用信号的能量比值大于第一预设比值,则表明当前使用的本振信号会使得下变频后低中频干扰信号对低中频有用信号的干扰比较大,此时可以另一本振信号对输入信号进行处理;若低中频干扰信号与低中频有用信号的能量比值小于或等于第一预设比值,则表明当前所使用的本振信号与输入信号混频后,产生的低中频干扰信号对低中频有用信号的干扰在容许的范围内,此时可继续利用初始本振信号对输入信号进行处理。
在一具体的实施例中,在从预设本振频率集中选取另一本振信号,对输入信号进行处理后,利用硬件信道滤波器进行滤波,具体地,可以利用第一滤波器对低中频信号进行滤波处理,该第一滤波器可以为窄带滤波器。
步骤26:对同步码进行检测,判断同步码是否有误码。
在一具体的实施例中,低中频信号还包括同步码,可对同步码进行检测,判断同步码是否有误码,将接收到的同步码与预设同步码进行对比,若一致,则说明无误码,否则,则出现误码。
步骤27:若同步码有误码,则按照预设周期在第一滤波器和第二滤波器之间切换,以对低中频信号进行滤波处理,或者在切换到另一本振 信号后直接利用第二滤波器对低中频信号进行滤波处理。
第二滤波器可以为宽带滤波器,第一滤波器的带宽小于第二滤波器的带宽。
在其他实施例中,还可根据当前静噪条件来判断是否需要进行能量的检测,先获取当前静噪条件,然后判断当前静噪条件是否小于预设静噪条件,若当前静噪条件大于预设静噪条件,则获取低中频干扰信号能量与低中频有用信号的能量。
步骤28:判断低中频干扰信号与低中频有用信号的能量比值是否大于第二预设比值。
若低中频信号无误码,则可继续利用当前本振信号对输入信号处理,利用第一滤波器对低中频信号进行滤波。
在判断到低中频干扰信号与低中频有用信号的能量比值小于第二预设比值时,将当前本振信号切换为初始本振信号;在判断到低中频干扰信号与低中频有用信号的能量比值大于第二预设比值时,则继续利用当前本振信号对输入信号进行滤波。
邻道干扰可分为上邻道干扰和下邻道干扰,干扰是随机存在的,不清楚干扰存在于哪一个邻道,可能上下邻道都存在干扰。
在一具体的实施例中,该预设本振频率集包括第一本振信号和第二本振信号,第一本振信号的频率小于第二本振信号的频率,且射频信号的频率与第一本振信号以及第二本振信号的频率差相同。
上邻道或下邻道的偏置方向为本振信号的偏置方向,当利用第一本振信号对输入信号进行处理时,本振信号的偏置方向为向上邻道偏移,当利用第二本振信号对输入信号进行处理时,本振信号的偏置方向为向下邻道偏移。
可先检测上邻道干扰的影响,设置本振偏移值为负值,初始本振信号为第一本振信号,第一本振信号的频率小于射频信号的频率,输入信号与第一本振信号在经混频处理和数字化后,计算出与第一本振信号的偏移方向同侧的邻道信号与低中频有用信号的能量比值,即计算上邻道的低中频干扰信号与低中频有用信号的能量比值,如果两者的能量比值 大于第一预设比值,则认为上邻道有干扰,并将第一本振信号偏移到射频信号的另一边,即切换至第二本振信号;如果两者的能量比值小于或等于第一预设比值,则仍然使用第一本振信号对输入信号进行处理。
当利用第二本振信号来对输入信号进行处理时,可以周期性的切换第一滤波器和第二滤波器,或直接采用第二滤波器,第二滤波器的带宽可以将上邻道干扰信号全部或至少部分地包含进来,再次计算上邻道的低中频干扰信号与低中频有用信号在相同带宽内的能量比值,从而来检测上邻道的干扰信号是否还存在;如果上邻道的干扰已不存在或衰弱到一定程度,则切回到第一本振信号进行接收。
在利用第二本振信号来对输入信号进行处理时,可以在检测到同步码有误码,再进行上邻道的干扰信号的检测;或者可以在当前静噪条件不满足预设静噪条件时,再进行上邻道的干扰信号的检测。
同样地,可以检测下邻道干扰信号是否对本振信号的影响较大,从而确定使用哪个本振信号来对输入信号进行处理,以保证生成的低中频有用信号受到的干扰最小。
例如,假设无下邻道干扰,如图3所示,图3(a)表示窄带滤波器的波特示意图,其带宽为20KHz,图3(b)表示混频前第一本振信号、射频信号以及上邻道干扰信号的频谱示意图,图3(c)表示混频后相同带宽的低中频有用信号和低中频干扰信号的频谱示意图。
假设预设本振信号的频率为410MHz,射频信号的频率也为410MHz,本振偏移值为-4.5KHz,可以得到第一本振信号的频率为:410MHz-4.5KHz=409.9955MHz,上邻道干扰信号与射频信号的频率差为-12.5KHz,即上邻道干扰信号的频率为:410MHz-12.5KHz=409.9875MHz,在经过混频处理后,低中频有用信号的频率为:409.9955MHz-410MHz=-4.5KHz,低中频干扰信号的频率为:409.9955MHz-409.9875MHz=8KHz。
当上邻道的干扰较大时,切换至第二本振信号对输入信号进行处理,如图4和图5所示,图4(a)为窄带滤波器的波特示意图,其带宽为20KHz,图4(b)表示混频前第二本振信号、射频信号以及上邻道干扰信 号的频谱示意图,图4(c)表示混频后相同带宽的低中频有用信号和低中频干扰信号的频谱示意图;图5(a)为宽带滤波器的波特示意图,其带宽为40.8KHz,图5(b)表示混频前第二本振信号、射频信号以及上邻道干扰信号的频谱示意图,图5(c)表示混频后相同带宽的低中频有用信号和低中频干扰信号的频谱示意图。
在本振信号偏移到下邻道所在的一侧进行接收时,本振偏移值为4.5KHz,即第二本振信号的频率为:410MHz+4.5KHz=410.0045MHz,低中频有用信号的频率为:410.0045MHz-410MHz=4.5KHz,低中频干扰信号的频率为:410.0045-409.9875MHz=17KHz。
初始时可利用窄带滤波器对低中频信号进行滤波,然后周期性地将硬件信道滤波器切换为宽带滤波器,或者也可不周期性切换硬件信道滤波器,直接采用宽带滤波器滤波;在硬件信道滤波器切换为宽带滤波器之后,再次计算上邻道的低中频干扰信号与低中频有用信号之间的能量比值,检测上邻道的干扰信号是否已消失或衰弱到一定程度,如果上邻道的干扰信号已消失,则本振信号变为第一本振信号;如果上邻道的干扰信号仍存在,对有用信号的影响仍然比较大,则将本振信号保持为第二本振信号;如果采用周期性切换硬件信道滤波器的方式,则在上邻道的低中频干扰信号与低中频有用信号的能量检测结束后,可以将硬件信道滤波器切回到窄带滤波器。
采用本实施例中的方案,得到低中频接收机的指标如表一至表三所示:
表一 静态低中频方案的邻道选择性指标
Figure PCTCN2020077646-appb-000001
其中,L为低频,其频率为350MHz左右,M为中频,其频率为450MHz左右,H为高频,其频率为500MHz左右。
表二 动态低中频方案的邻道选择性指标
Figure PCTCN2020077646-appb-000002
从表一和表二的数据可以看出,相比现有的静态低中频方案的邻道选择性,本实施例所采用的动态低中频方案提升了上邻道的邻道选择性。
表三 动态低中频方案的抗阻塞特性测试结果
偏移频率 零中频 低中频 衰减器 衰减器与低中频
+1MHz 75 83 79 94
-1MHz 73 83 78 92
+10MHz 75 85 79 94
-10MHz 72 83 78 91
其中,测试频率为435.099MHz,信号强度(RSSI,Received Signal Strength Indication)为-90dBm,干扰信号为数字移动对讲机(DMR,Digital Mobile Radio)信号,从表三可看出相比零中频方案,利用本实施例的方案加上衰减器,抗阻塞性能最高提升了19dB,低中频方案相比于零中频方案其抗阻塞性提高了8~11dB。
由于采用低中频方案,可以解决零中频方案存在的阻塞以及直流等问题,还解决了静态低中频方案存在的一侧邻道选择性的性能差的问题,可根据邻道干扰的存在情况实现本振信号的频率切换而不影响邻道选择性的性能,还能改善抗大信号阻塞能力。
参阅图6,图6是本申请提供的存储介质一实施例的结构示意图,该存储介质60用于存储计算机程序61,计算机程序61在被处理器执行时,用于实现上述实施例中的提高低中频接收机性能的方法。
其中,该存储介质60可以是服务端、U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access  Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
参阅图7,图7是本申请提供的低中频接收机一实施例的结构示意图,该低中频接收机70包括互相连接的存储器71和处理器72,其中,存储器71用于存储计算机程序,计算机程序在被处理器72执行时,用于实现上述实施例中的提高低中频接收机性能的方法。
通过选择合适的本振信号,使得利用本振信号与输入信号生成的低中频干扰信号与低中频有用信号的能量比值满足要求,降低邻道干扰对有用信号的影响,提高低中频接收机的邻道选择性。
在本申请所提供的几个实施方式中,应该理解到,所揭露的方法以及设备,可以通过其它的方式实现。例如,以上所描述的设备实施方式仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施方式方案的目的。
另外,在本申请各个实施方式中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
以上仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (10)

  1. 一种提高低中频接收机性能的方法,其中,包括:
    从预设本振频率集中选择一个本振信号作为初始本振信号对输入信号进行混频处理,以得到低中频信号,其中,所述低中频信号包括低中频有用信号和低中频干扰信号;
    判断所述低中频干扰信号与所述低中频有用信号的能量比值是否大于第一预设比值;
    若是,则从所述预设本振频率集中选取另一本振信号作为当前本振信号,对所述输入信号进行处理。
  2. 根据权利要求1所述的提高低中频接收机性能的方法,其中,所述判断所述低中频干扰信号与所述低中频有用信号的能量比值是否大于第一预设比值的步骤之前,包括:
    获取所述低中频干扰信号的能量与所述低中频有用信号的能量;
    计算所述低中频干扰信号与所述低中频有用信号之间的能量比值。
  3. 根据权利要求1所述的提高低中频接收机性能的方法,其中,所述方法还包括:
    若所述低中频干扰信号与所述低中频有用信号的能量比值小于或等于所述第一预设比值,则继续利用所述初始本振信号对所述输入信号进行处理。
  4. 根据权利要求1所述的提高低中频接收机性能的方法,其中,所述低中频信号还包括同步码,所述方法还包括:
    对所述同步码进行检测,判断所述同步码是否有误码;
    若是,则按照预设周期在第一滤波器和第二滤波器之间切换,以对所述低中频信号进行滤波处理,或者在切换到所述另一本振信号后直接利用所述第二滤波器对所述低中频信号进行滤波处理,并判断所述低中频干扰信号与所述低中频有用信号的能量比值是否大于第二预设比值;
    其中,所述第一滤波器的带宽小于所述第二滤波器的带宽。
  5. 根据权利要求4所述的提高低中频接收机性能的方法,其中,所 述方法还包括:
    在判断到所述低中频干扰信号与所述低中频有用信号的能量比值小于所述第二预设比值时,将所述当前本振信号切换为所述初始本振信号。
  6. 根据权利要求1所述的提高低中频接收机性能的方法,其中,所述方法还包括:
    获取当前静噪条件,判断所述当前静噪条件是否小于预设静噪条件;
    若否,则获取所述低中频干扰信号能量与所述低中频有用信号的能量。
  7. 根据权利要求1所述的提高低中频接收机性能的方法,其中,
    所述输入信号包括射频信号以及邻道干扰信号,所述射频信号与所述邻道干扰信号之间的频率差值在预设范围以内,且所述低中频有用信号为将所述射频信号与所述本振信号混频后产生的信号,所述低中频干扰信号为将所述邻道干扰信号与所述本振信号混频后产生的信号。
  8. 根据权利要求7所述的提高低中频接收机性能的方法,其中,
    所述预设本振频率集包括第一本振信号和第二本振信号,所述第一本振信号的频率小于所述第二本振信号的频率,且射频信号的频率与所述第一本振信号以及第二本振信号的频率差相同,所述干扰信号包括上邻道干扰信号和下邻道干扰信号。
  9. 一种存储介质,用于存储计算机程序,其中,所述计算机程序在被处理器执行时,用于实现权利要求1-8中任一项所述的提高低中频接收机性能的方法。
  10. 一种低中频接收机,其中,包括互相连接的存储器和处理器,其中,所述存储器用于存储计算机程序,所述计算机程序在被所述处理器执行时,用于实现权利要求1-8中任一项所述的提高低中频接收机性能的方法。
PCT/CN2020/077646 2019-05-05 2020-03-03 一种提高低中频接收机性能的方法、存储介质及接收机 WO2020224315A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112020002240.4T DE112020002240T5 (de) 2019-05-05 2020-03-03 Verfahren zur Verbesserung der Leistung eines Empfängers mit niedriger Zwischenfrequenz, Speichermedium und Empfänger
US17/608,640 US11990927B2 (en) 2019-05-05 2020-03-03 Method for improving performance of low-intermediate frequency receiver, storage medium, and receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910368255.6 2019-05-05
CN201910368255.6A CN111901002B (zh) 2019-05-05 2019-05-05 一种提高低中频接收机性能的方法、存储介质及接收机

Publications (1)

Publication Number Publication Date
WO2020224315A1 true WO2020224315A1 (zh) 2020-11-12

Family

ID=73051424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077646 WO2020224315A1 (zh) 2019-05-05 2020-03-03 一种提高低中频接收机性能的方法、存储介质及接收机

Country Status (4)

Country Link
US (1) US11990927B2 (zh)
CN (1) CN111901002B (zh)
DE (1) DE112020002240T5 (zh)
WO (1) WO2020224315A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114759939B (zh) * 2021-01-08 2023-11-24 海能达通信股份有限公司 一种提高接收机性能的方法、接收机和存储介质
WO2022155843A1 (zh) * 2021-01-21 2022-07-28 海能达通信股份有限公司 一种自适应抗干扰方法及自适应抗干扰装置
CN113014273B (zh) * 2021-01-21 2022-08-30 海能达通信股份有限公司 一种自适应抗干扰方法及自适应抗干扰装置
CN114520988B (zh) * 2021-12-21 2024-01-12 海能达通信股份有限公司 一种静噪控制方法、装置、设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101151810A (zh) * 2005-01-13 2008-03-26 Nxp股份有限公司 低中频接收机及其采样方法
CN102025382A (zh) * 2009-09-11 2011-04-20 澜起科技(上海)有限公司 信号处理方法及接收机
CN103346812A (zh) * 2013-07-01 2013-10-09 北京昆腾微电子有限公司 音频接收芯片的调台方法和装置及音频接收机
WO2015017986A1 (en) * 2013-08-06 2015-02-12 Motorola Solutions, Inc. Very low intermediate frequency (vlif) receiver and method of controlling vlif recewer
US9413402B1 (en) * 2015-06-25 2016-08-09 Intel IP Corporation Dynamic low IF injection side selection

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9818397D0 (en) * 1998-08-25 1998-10-21 Philips Electronics Nv Low if receiver
CN1157054C (zh) * 1999-07-16 2004-07-07 汤姆森特许公司 具有偏移调谐装置的数字信号电视接收机
KR100969665B1 (ko) * 2008-11-18 2010-07-14 주식회사 텔레칩스 Ofdm 통신 시스템의 수신 성능 개선 장치 및 방법
JP2010154501A (ja) * 2008-11-27 2010-07-08 Sony Corp チューナモジュール
CN103368589B (zh) * 2012-04-01 2015-05-20 展讯通信(上海)有限公司 干扰抑制方法、装置及接收机
CN203368450U (zh) * 2013-07-01 2013-12-25 北京昆腾微电子有限公司 音频接收芯片的调台装置及音频接收机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101151810A (zh) * 2005-01-13 2008-03-26 Nxp股份有限公司 低中频接收机及其采样方法
CN102025382A (zh) * 2009-09-11 2011-04-20 澜起科技(上海)有限公司 信号处理方法及接收机
CN103346812A (zh) * 2013-07-01 2013-10-09 北京昆腾微电子有限公司 音频接收芯片的调台方法和装置及音频接收机
WO2015017986A1 (en) * 2013-08-06 2015-02-12 Motorola Solutions, Inc. Very low intermediate frequency (vlif) receiver and method of controlling vlif recewer
US9413402B1 (en) * 2015-06-25 2016-08-09 Intel IP Corporation Dynamic low IF injection side selection

Also Published As

Publication number Publication date
US20220224363A1 (en) 2022-07-14
CN111901002A (zh) 2020-11-06
US11990927B2 (en) 2024-05-21
CN111901002B (zh) 2021-11-16
DE112020002240T5 (de) 2022-01-13

Similar Documents

Publication Publication Date Title
WO2020224315A1 (zh) 一种提高低中频接收机性能的方法、存储介质及接收机
US9379748B2 (en) Interference adaptive wideband receiver
JP5331130B2 (ja) 無線受信機における局検出及び探索のためのシステム及び方法
JP5788609B2 (ja) 動的な受信機の切り替え
US6577855B1 (en) Low IF receiver
US8095095B2 (en) Band switch control apparatus for intermediate frequency filter
JP2002525957A (ja) 干渉に基づくレシーバ直線性のインテリジェント制御
CN103404039B (zh) 无线电中的备用频率切换、自动搜索和自动调谐至一频率的方法
KR19990087283A (ko) 수신된 무선 주파수 신호의 디지털화및 검출을 위한 장치 및 방법
CN103368589A (zh) 干扰抑制方法、装置及接收机
CN101257465A (zh) 信号转换的方法、正交解调器及零中频接收机
US9130683B2 (en) Silence based attenuation for enhanced idle-channel FM or other receiver co-existence with a coexisting radio and circuits, processes, and systems
CN101299616B (zh) 射频接收机及具有该射频接收机的电子设备
US8750817B2 (en) Controlling filter bandwidth based on blocking signals
US8224280B2 (en) Radio frequency receiver, wireless communication unit and method of operation
CN103001654A (zh) 一种自适应变中频射频接收机
CN104272686A (zh) 微波数字无线电应用中的双接收机信号电平和干扰检测接收机结构
US11711102B2 (en) Local oscillator switching control for a very low intermediate frequency receiver
US20240106464A1 (en) Wideband-Tunable RF Receiver With High Dynamic Range and High Out-of-Band Rejection
KR100704625B1 (ko) 무선 채널 검색 방법 및 장치
CN113595570A (zh) 一种镜像干扰解决方法和装置
US7583947B2 (en) Method and system for single sideband mixing receiver architecture for improving signal quality
JPH0998121A (ja) 空間ダイバシティ・ワイヤレス受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20801527

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20801527

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20801527

Country of ref document: EP

Kind code of ref document: A1