WO2020224267A1 - 一种吸光隔热一体化光热蒸发材料及其制备方法和应用 - Google Patents

一种吸光隔热一体化光热蒸发材料及其制备方法和应用 Download PDF

Info

Publication number
WO2020224267A1
WO2020224267A1 PCT/CN2019/126848 CN2019126848W WO2020224267A1 WO 2020224267 A1 WO2020224267 A1 WO 2020224267A1 CN 2019126848 W CN2019126848 W CN 2019126848W WO 2020224267 A1 WO2020224267 A1 WO 2020224267A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
light
heat
evaporation material
chamber
Prior art date
Application number
PCT/CN2019/126848
Other languages
English (en)
French (fr)
Inventor
薄拯
吴声豪
杨化超
严建华
岑可法
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910370640.4A external-priority patent/CN110182789B/zh
Priority claimed from CN201910370668.8A external-priority patent/CN110101882B/zh
Priority claimed from CN201910370638.7A external-priority patent/CN110194498B/zh
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US16/960,067 priority Critical patent/US20210253431A1/en
Priority to JP2020534177A priority patent/JP7015586B2/ja
Publication of WO2020224267A1 publication Critical patent/WO2020224267A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/198Graphene oxide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/04Heat
    • A61L2/06Hot gas
    • A61L2/07Steam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/26Accessories or devices or components used for biocidal treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0029Use of radiation
    • B01D1/0035Solar energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • B01D5/0063Reflux condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • B01D5/0066Dome shaped condensation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • C01B32/186Preparation by chemical vapour deposition [CVD]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/205Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/11Apparatus for generating biocidal substances, e.g. vaporisers, UV lamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2202/00Aspects relating to methods or apparatus for disinfecting or sterilising materials or objects
    • A61L2202/10Apparatus features
    • A61L2202/12Apparatus for isolating biocidal substances from the environment
    • A61L2202/122Chambers for sterilisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/24Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Definitions

  • the invention belongs to the field of solar light and heat utilization, and particularly relates to a light absorption and heat insulation integrated light and heat evaporation material, and a preparation method and application thereof.
  • Solar energy is the most widely distributed and largest energy source on the earth. Because of its clean and renewable characteristics, it has received the most extensive attention in the 21st century when the energy crisis and environmental problems are becoming increasingly serious. Photothermal conversion is one of the most important forms of utilization of solar energy. How to achieve solar thermal conversion efficiently and at low cost, and to effectively use the converted heat energy, is becoming a current international research hotspot [VHDalvi1et al.Nat,Clim .Change 2015,5:1007-1013].
  • the Gang Chen research group of Massachusetts Institute of Technology proposed a local heating system with a double-layer structure (consisting of a light absorber and an insulator), which can efficiently use solar energy to generate steam. Compared with the traditional method of heating the entire liquid, It reduces the energy loss caused by liquid heat dissipation to the environment, and improves the photothermal conversion efficiency of solar energy [H.Ghasemi et al.Nat.Commun.2014,5:4449]. Subsequent related studies have further optimized the double-layer structure of the local heating system, such as: a light absorber with high light absorption and an insulator with good thermal insulation properties [L. Zhou et al. Sci. Adv. 2016 ,2:e1501227; Q.Jiang et al.Adv.Mater.2016,28:9400-9407].
  • the local heating system is a double-layer structure formed by directly stacking the light absorber on the upper surface of the insulator.
  • the upper layer The light absorber is easily separated from the lower insulator, causing the gap between the two to be filled with the liquid to be evaporated, and the thermal insulation performance of the system is weakened; and the separation of the light absorber and the insulator will reduce the mechanical stability of the system. Conducive to the long-term operation of the system.
  • the purpose of the present invention is to provide a light-absorbing and heat-insulating integrated photothermal evaporation material.
  • the light absorption and heat insulation integrated photothermal evaporation material provided by the present invention overcomes the problem of easy separation of the light absorber and the heat insulator, and the heat loss caused by liquid infiltration into the heat insulator, and improves the stability and light of the local heating system.
  • the heat conversion efficiency realizes fast and efficient photothermal evaporation, simple preparation process, easy to mass production, and can be applied to seawater desalination, sewage purification and high-temperature steam sterilization.
  • the light-absorbing and heat-insulating integrated photothermal evaporating material includes an insulator and a light absorbing body covering the outer surface of the heat insulator.
  • the light absorbing body is vertically-oriented graphene.
  • the heat insulator is a graphene foam, and the vertically-oriented graphene and the graphene foam are connected by a covalent bond; the light absorber is a vertically-oriented graphene whose surface is modified with a hydrophilic functional group.
  • the light absorber captures solar energy and converts the light energy into heat energy to generate local high temperature; the heat insulator blocks the heat flow transfer and reduces heat dissipation.
  • the vertically aligned graphene is composed of carbon nanowall arrays.
  • the graphene foam has a porous structure.
  • the vertically-oriented graphene modified by hydrophilic functional groups can be used as a liquid flow channel to transport liquid to a local high temperature area through capillary action to achieve rapid photothermal evaporation; and to protect the insulator from liquid wetting.
  • the hydrophilic functional group is an oxygen-containing functional group.
  • the oxygen-containing functional group is selected from one or a combination of at least two of hydroxyl (-OH), carbonyl (-CHO) and carboxyl (-COOH).
  • hydrophilic groups are hydrophilic groups. Modification of one or at least two of the above hydrophilic functional groups on the surface of vertically-oriented graphene can enhance the affinity between vertically-oriented graphene and water, and enhance vertically-oriented graphene The capillary action.
  • the light absorbance of the light absorber is 90-99%, and the thermal conductivity of the heat insulator is 0.02-0.2 W m -1 K -1 .
  • the absorbance of the light absorber is 97.0-98.2%, and the thermal conductivity of the heat insulator is 0.031-0.041 W m -1 K -1 .
  • the present invention also provides an application of the above-mentioned light absorption and heat insulation integrated photothermal evaporation material, which is applied to seawater desalination, sewage purification and high temperature steam sterilization.
  • the invention also provides a solar thermal seawater desalination device, which is simple in structure, easy to operate, can efficiently collect condensate water, solves the problem of light blocking of condensate water and steam, and has the stability and photothermal conversion efficiency of the photothermal seawater desalination system Both are significantly improved, and the salinity is significantly reduced before and after desalination.
  • a solar energy photothermal seawater desalination device comprising a light-transmitting condensing plate, a photothermal evaporating material, an evaporation chamber, and a collection chamber from top to bottom; the light-transmitting condensing plate covers the evaporation chamber and guides the condensed water to the collection chamber ,
  • the photothermal evaporation material is located in the evaporation chamber.
  • the photothermal evaporation material includes an insulator and a light absorber covering the outer surface of the insulator.
  • the light absorber is vertically-oriented graphene
  • the insulator is a graphene foam
  • the foam is connected in the form of a covalent bond
  • the light absorber is a vertically-oriented graphene whose surface is modified by a hydrophilic functional group.
  • the hydrophilic functional group is an oxygen-containing functional group.
  • the oxygen-containing functional group is selected from one or a combination of at least two of hydroxyl (-OH), carbonyl (-CHO) and carboxyl (-COOH).
  • -OH, -CHO, and -CHO are hydrophilic groups. Modification of one or at least two of the above hydrophilic functional groups on the surface of vertically-oriented graphene can enhance the affinity between vertically-oriented graphene and water, and enhance vertically-oriented graphene The capillary action.
  • the light absorbance of the light absorber is 90-99%, and the thermal conductivity of the heat insulator is 0.02-0.2 W m -1 K -1 .
  • the absorbance of the light absorber is 97.0-98.2%, and the thermal conductivity of the heat insulator is 0.031-0.041 W m -1 K -1 .
  • the collection chamber is provided with a collection port, and a light-transmitting condensing plate covers the evaporation chamber and extends to the collection port on the collection chamber to guide the condensed water to the collection chamber.
  • the evaporation chamber and the collection chamber are an integral structure.
  • the solar thermal seawater desalination device further includes an air extraction channel and a steam evacuating duct, one end of the air extraction channel is connected to the evaporation chamber, and the other end is connected to the collection chamber through the steam evacuating duct; the air extraction channel and The steam diverting duct is arranged on the side wall of the evaporation chamber.
  • the solar thermal seawater desalination device further includes an air extraction fan and a driving device arranged in the air extraction channel, and the driving device drives the air extraction fan to absorb the steam in the evaporation chamber to the steam evacuating duct.
  • the driving device is a solar panel.
  • the evaporation chamber is used to store seawater and photothermal evaporation material; the photothermal evaporation material floats on the seawater and is used for photothermal evaporation of seawater to generate steam; the light-transmitting condensing plate covers the evaporation chamber to prevent steam When overflowing outward, the steam is condensed on the light-transmitting condensing plate, and flows along the light-transmitting condensing plate to the collection chamber; the side wall of the evaporation chamber is provided with an air extraction channel, and the air extraction fan is installed in the air extraction channel, Used to absorb steam in the evaporation chamber; the steam evacuating duct is connected to the air extraction channel and the collection chamber, and the steam absorbed by the exhaust fan is transported to the collection chamber by the steam evacuating duct, and is condensed in the collection chamber; the solar panel is used It is used for photovoltaic power generation and provides electrical energy for exhaust fans.
  • the solar thermal seawater desalination device further includes a water inlet of the evaporation chamber and a water outlet of the evaporation chamber, the evaporation chamber water inlet supplements seawater to the evaporation chamber, and the evaporation chamber water outlet discharges the seawater in the evaporation chamber;
  • the hot sea water desalination device also includes a water inlet of the collection chamber and a water outlet of the collection chamber.
  • the light-transmitting condensation plate is transparent.
  • the output voltage of the solar panel is within the working voltage range of the exhaust fan.
  • the output voltage of the solar panel and the working voltage of the exhaust fan are related to the size of the device. The larger the volume, the higher the voltage requirements and the higher the corresponding working power.
  • the internal space is sealed, the water inlet of the evaporation chamber and the water outlet of the evaporation chamber are closed, and the water inlet of the collection chamber and the water outlet of the collection chamber are closed In the process of cleaning the evaporation chamber, the water inlet of the evaporation chamber and the water outlet of the evaporation chamber are open.
  • the inclination angle of the transparent condensing plate is 10°-60°.
  • the tilt is a horizontal downward tilt.
  • the inclination angle of the transparent condensing plate is 30°.
  • the evaporation chamber and the collection chamber are distributed up and down, wherein the evaporation chamber is above the collection chamber.
  • the position of the suction channel is higher than the photothermal evaporation material. Prevent seawater from flowing to the collection chamber through the suction channel.
  • the invention also provides a high-temperature steam sterilization device, which uses widely distributed, green and clean solar energy as a driving force, does not consume electric power, and has a wide application area.
  • the device of the invention is simple in structure, small in size, convenient to carry, and simple in operation.
  • the invention greatly improves the light-to-heat conversion efficiency of the device by adopting the light-heat evaporation material that both captures light energy and retards the heat flow transmission, and has short sterilization time and good sterilization effect.
  • the high-temperature steam sterilization device includes a steam chamber, a condensing plate covering the steam chamber, a carrier plate and a water storage cup assembled in the steam chamber, and a light in the water storage cup.
  • Thermal evaporation material includes an insulator and a light absorber covering the outer surface of the insulator.
  • the light absorber is vertically-oriented graphene, the insulator is a graphene foam, and the vertically-oriented graphene and graphene The foam is connected in the form of a covalent bond; the light absorber is a vertically-oriented graphene whose surface is modified by a hydrophilic functional group.
  • the hydrophilic functional group is an oxygen-containing functional group.
  • the oxygen-containing functional group is selected from one or a combination of at least two of hydroxyl (-OH), carbonyl (-CHO) and carboxyl (-COOH).
  • -OH, -CHO, and -CHO are hydrophilic groups. Modification of one or at least two of the above hydrophilic functional groups on the surface of vertically-oriented graphene can enhance the affinity between vertically-oriented graphene and water, and enhance vertically-oriented graphene The capillary action.
  • the light absorbance of the light absorber is 90-99%, and the thermal conductivity of the heat insulator is 0.02-0.2 W m -1 K -1 .
  • the absorbance of the light absorber is 97.0-98.2%, and the thermal conductivity of the heat insulator is 0.031-0.041 W m -1 K -1 .
  • the carrier plate has several through holes in the vertical direction; the steam flows through the through holes to the bottom of the steam chamber after condensing, so as to prevent the condensed water from sticking to the objects to be sterilized and affecting the sterilization effect.
  • the condensing plate condenses the light beam into the water storage cup.
  • the cross-sectional shape of the light collecting plate and the water storage cup are the same, the cross-sectional area ratio is 10-100:1, and the light collecting plate and the water storage cup are assembled concentrically.
  • a pallet for mounting a tray is provided inside the steam chamber.
  • the drag table can keep the tray from contacting the bottom of the steam chamber.
  • a groove is provided in the center of the carrier tray, and the size of the groove is equivalent to that of the bottom of the water storage cup.
  • the groove is used to fix the installation position of the water storage cup and ensure the concentric assembly relationship between the water storage cup and the concentrating plate.
  • the high-temperature steam sterilization device further includes a sealing ring and a clamp, and the sealing ring and the clamp are used to fix the condensing plate.
  • the present invention also provides a method for preparing a light-absorbing and heat-insulating integrated photothermal evaporation material, which includes the following steps:
  • step (6) Expose the vertically-oriented graphene/graphene foam obtained in step (5) to an ozone environment to generate modified hydrophilic functional groups on the surface of the vertically-oriented graphene to obtain a light-absorbing and heat-insulating integrated photothermal evaporation material.
  • the graphene oxide aqueous solution in the step (1) further includes an additive, the additive includes sodium tetraborate decahydrate, an amine-based compound or a mixture thereof; the concentration of the graphene oxide is 1-10 g L -1 , The concentration of the sodium tetraborate decahydrate is 0-10, and the concentration of the amine-based compound is 0-100; the concentration of the sodium tetraborate decahydrate and the concentration of the amine-based compound are not 0 at the same time.
  • the additive includes sodium tetraborate decahydrate, an amine-based compound or a mixture thereof
  • the concentration of the graphene oxide is 1-10 g L -1 ,
  • the concentration of the sodium tetraborate decahydrate is 0-10, and the concentration of the amine-based compound is 0-100; the concentration of the sodium tetraborate decahydrate and the concentration of the amine-based compound are not 0 at the same time.
  • the concentration of graphene oxide is directly related to the density, mechanical strength, thermal conductivity and preparation cost of the prepared graphene foam.
  • concentration of graphene oxide increases, the density of the graphene foam increases, the mechanical strength increases, the thermal conductivity increases, and the preparation cost increases;
  • the graphene oxide concentration is less than 1g L -1 , the mechanical strength of the prepared graphene foam It is weak and easily damaged during actual application;
  • the graphene oxide concentration is greater than 10g L -1 , the density and thermal conductivity of the prepared graphene foam increase, which will weaken the photothermal conversion in photothermal evaporation applications Efficiency, and the increase in preparation cost is also not conducive to the practical application of the material.
  • Sodium tetraborate is used as a structural strengthening agent in the synthesis of graphene hydrogels, which can enhance the mechanical strength of graphene foams.
  • sodium tetraborate will promote agglomeration during the hot water reaction, which will affect the thermal conductivity of the graphene foam.
  • concentration of amine-based compounds also affects the thermal conductivity and mechanical strength of the graphene foam.
  • the step of graphene oxide solution (1) comprises graphene oxide, sodium tetraborate decahydrate and amine compound concentrations were 4-6g L -1, 1-5mmol L -1 and 4- 20mmol L -1 .
  • the prepared graphene foam not only has good mechanical properties, but also has lower density and thermal conductivity.
  • the concentration of amine-based compound is less than 4mmol L -1 , the effect of amine-based compound in hindering agglomeration is weak, and the thermal conductivity of the obtained graphene foam is higher; when the concentration of amine-based compound is more than 20mmol L -1 , The obtained graphene foam has a looser structure and weaker mechanical strength.
  • the amine-based compound is selected from one or a combination of at least two of ethylene diamine, butane diamine, hexamethylene diamine, and cyclohexane diamine.
  • Diamine-based amine compounds have two amino groups, which are easy to undergo polycondensation reaction with graphene oxide, and stably exist between graphene sheets, play a role of connection and support, hinder the agglomeration of graphene, and obtain a fluffy and porous structure.
  • the amino compound is ethylene diamine.
  • the molecular size order of the four amine-based compounds of ethylenediamine, butanediamine, hexamethylenediamine and cyclohexanediamine is: ethylenediamine ⁇ butanediamine ⁇ hexamethylenediamine ⁇ cyclohexanediamine, larger molecular spacer , Will lead to weaker mechanical strength or require more structural strengthening agents, and require higher synthesis temperature and longer synthesis time. Therefore, ethylenediamine, as the smallest diamine amine compound with the smallest molecular size, is If it can meet the application requirements, it is the preferred result.
  • the hydrothermal reaction conditions in the step (2) are: the reaction temperature is 90-180°C; the reaction time is 6-18h.
  • the reaction temperature and reaction time will affect the graphene hydrogel's graphitization degree and agglomeration degree. Increasing the temperature and prolonging the time will help to increase the graphene hydrogel graphitization degree and promote the graphene oxide agglomeration and graphene hydration
  • the molding of the glue enhances the mechanical strength of the obtained graphene foam.
  • the hydrothermal reaction process When the reaction temperature is less than 90°C or the reaction time is less than 6h, the hydrothermal reaction process will be insufficient, the graphene hydrogel cannot be formed or the resulting graphene foam has weak mechanical strength; when the reaction temperature is greater than 180°C or the reaction time When it is more than 18h, it will cause serious agglomeration, and the density and thermal conductivity of the obtained graphene foam will be too large.
  • the cleaning method is to soak the graphene hydrogel with an ethanol aqueous solution for 6-24 hours, wherein the ethanol volume fraction of the ethanol aqueous solution is 10%-30%.
  • the temperature of the freezing chamber is -80 to -10°C, the freezing time is 6-24h; the temperature of the drying chamber is -20 to 0°C, the air pressure of the drying chamber is ⁇ 650Pa, and the drying time is 6 -48h.
  • the flow ratio of the mixed gas of hydrogen and methane is 0-20:1.
  • the flow ratio of H 2 and CH 4 is the key to the synthesis of vertically-oriented graphene.
  • the flow ratio of H 2 and CH 4 is greater than 20:1, the obtained composite is not vertically-oriented graphene; and the ratio of H 2 and CH 4
  • the flow ratio will affect the morphology and chemical properties of the composite.
  • the flow ratio of H 2 and CH 4 is 1-5:1.
  • the flow ratio is less than 1:1, the synthesis speed is slow; when the flow ratio is greater than 5:1, the morphology and chemical properties of the composite obtained are closer to amorphous carbon, carbon nanofibers and carbon nanotubes.
  • the reaction conditions of the chemical vapor deposition reaction are: the synthesis temperature is 500-1000° C., and the synthesis pressure is 10-1000 Pa.
  • the reaction conditions of the chemical vapor deposition reaction are: the synthesis temperature is 600-800° C., and the synthesis pressure is 10-500 Pa.
  • the speed of synthesizing vertically-oriented graphene is moderate, the energy consumption is small, and the performance meets the requirements, which is conducive to practical applications.
  • the plasma source in the chemical vapor deposition reaction is selected from microwave plasma, inductively coupled plasma or direct current glow discharge plasma, the power is 200-500 W, and the duration is 1-180 min.
  • the time is less than 1min, the amount of synthesized vertically aligned graphene is less, and the light absorption rate is low; when the time is greater than >180min, the light absorption rate and photothermal evaporation performance are not significantly improved, resulting in waste of raw materials and energy .
  • the inert gas is used as the cooling gas, and the flow rate is 10-100 ml min -1 .
  • the method for generating modified hydrophilic functional groups on the surface of the vertically-oriented graphene is to expose the vertically-oriented graphene/graphene foam obtained in step (5) to an environment with an ozone concentration of 200 ppm and maintain 1 -10min, the hydrophilic functional group is modified on the surface of the vertically oriented graphene.
  • ozone is produced by a dielectric barrier discharge device, and air is used as a raw material.
  • the vertically-oriented graphene with surface modified oxygen-containing functional groups can achieve good hydrophilicity, while the internal graphene foam can maintain its superhydrophobicity.
  • the present invention has the following beneficial effects:
  • the light absorption and heat insulation integrated photothermal evaporation material provided by the present invention connects the light absorption body and the heat insulation body into a whole in the form of a covalent bond, and has the functions of capturing light energy and blocking heat flow loss, and overcomes conventional problems.
  • the light-absorbing body and the insulator are easy to separate, which improves the stability of the system.
  • the light absorber in the light-absorbing and heat-insulating integrated photothermal evaporation material provided by the present invention can also be used as a liquid flow channel to protect the heat insulator from the wetting of the liquid, prevent the heat flow from being transferred out through the infiltrated liquid, and solve the conventional localization
  • the problem of heat loss caused by liquid infiltration into the heat insulator in the heating system improves the light-to-heat conversion efficiency of the system.
  • the light absorption and heat insulation integrated photothermal evaporation material provided by the present invention realizes fast and efficient photothermal evaporation, has simple preparation process, is easy to mass production, and can be applied to the fields of seawater desalination, sewage purification, high-temperature steam sterilization and the like.
  • the solar photothermal seawater desalination device provided by the invention has the characteristics of simple structure and easy operation.
  • the solar thermal seawater desalination device provided by the invention can efficiently collect condensed water, solve the problem of light blocking of condensate water and steam, and improve the stability and light-heat conversion efficiency of the solar thermal seawater desalination system.
  • the high-temperature steam sterilization device provided by the present invention uses widely distributed, green and clean solar energy as a driving force, does not consume electric power, and has a wide application area.
  • the high-temperature steam sterilization device provided by the present invention is based on an integrated design, has no complicated structure, has low processing cost, and is easy for batch processing and production.
  • the high-temperature steam sterilization device provided by the present invention is small in size, convenient to carry, and simple in operation. By adopting the photothermal evaporating material that captures light energy and blocks heat loss, the invention greatly improves the stability of the device and the photothermal conversion efficiency, quickly generates steam, has a short sterilization time and has a good sterilization effect.
  • FIG. 1 is a schematic diagram of the structure of the integrated light-absorbing and heat-insulating photothermal evaporation material provided by the present invention
  • FIG. 2 is a preparation flow chart of the integrated light-absorbing and heat-insulating photothermal evaporation material provided by the present invention
  • Example 3 is an optical diagram and wettability characterization result of the integrated light-absorbing and heat-insulating photothermal evaporation material provided in Example 1;
  • Example 4 is a scanning electron microscope diagram of the integrated light-absorbing and heat-insulating photothermal evaporation material provided in Example 1;
  • FIG. 5 is a light absorption rate curve of the integrated light-absorbing and heat-insulating photothermal evaporation material provided in Example 1;
  • Example 6 is an X-ray photoelectron C1s energy spectrum of the integrated light-absorbing and heat-insulating photothermal evaporation material provided in Example 1;
  • FIG. 7 is a photothermal evaporation application effect diagram of the light-absorbing and heat-insulating integrated photothermal evaporation material provided by embodiment 1;
  • Fig. 8 is a schematic structural diagram of a solar thermal seawater desalination device provided by embodiments 11-20;
  • FIG. 9 is a schematic diagram of an exploded structure of the solar thermal seawater desalination device provided by embodiments 11-20;
  • FIG. 10 is a schematic diagram of a cross-sectional structure of a solar thermal seawater desalination device provided by embodiments 11-20;
  • FIG. 11 is a schematic diagram of the principle of photothermal evaporation of the solar thermal seawater desalination device provided in Examples 11-20 and the high-temperature steam sterilization device provided in Examples 21-30;
  • Figure 12 is a schematic structural diagram of a high-temperature steam sterilization device provided in embodiments 21-30;
  • Figure 13 is a schematic diagram of the exploded structure of the high-temperature steam sterilization device provided in embodiments 21-30;
  • FIG. 14 is a schematic cross-sectional structure diagram of the high-temperature steam sterilization device provided by Embodiments 21-30;
  • Figure 15 shows the steam temperature of the high-temperature steam sterilization device provided by Embodiment 21 during the sterilization process.
  • the light-absorbing and heat-insulating integrated photothermal evaporation material provided by the present invention includes an insulator 2 and a light absorbing body 1 covering the outer surface of the insulator 2, and the light absorbing body 1 has a surface modified with hydrophilic functional groups.
  • the insulator 2 is a graphene foam, the vertically-oriented graphene and the graphene foam are connected by a covalent bond; the light absorber is a vertically-oriented graphene whose surface is modified by a hydrophilic functional group .
  • the light absorber 1 captures solar energy and converts light energy into heat energy to form a local high temperature; the heat insulator 2 blocks the heat flow transfer and reduces heat dissipation. At the same time, the light absorber 1 also serves as the liquid flow channel 3, sucking the liquid 4 through capillary action, so that it reaches the local high temperature area, and realizes rapid photothermal evaporation. At the same time, the liquid flow channel 3 can protect the heat insulator 2 from the wetting of the liquid 4 and prevent the heat flow from being transferred to the outside through the infiltrated liquid 4.
  • the preparation process of the light absorption and heat insulation integrated photothermal evaporation material provided by the present invention includes: the preparation of the light absorber 1 and the synthesis of the heat insulator 2.
  • the vertically-oriented graphene is connected to the graphene foam as a whole in the form of covalent bonds.
  • Water contact angle Use a contact angle meter, the model is DropMeter A-200, to measure the water contact angle of the light absorption and heat insulation integrated photothermal evaporation material to characterize the hydrophilicity of the material, and use an electric pump to drop 10L of water droplets on On the surface of the material, a high-speed camera is used to record the change process of water droplets, and the water contact angle is calculated through the Young-Laplace equation.
  • Thermal conductivity of the insulator using a laser thermal conductivity measuring instrument, model LFA 467, the thermal conductivity of the integrated photothermal evaporation material with light absorption and thermal insulation was tested.
  • Types of surface functional groups Use an X-ray photoelectron spectrometer, model VG Escalab Mark II, to test the X-ray energy spectrum distribution and analyze the types of functional groups.
  • the configured graphene oxide aqueous solution is transferred to a Teflon high temperature and high pressure reactor, maintained at 90°C for 6 hours, and then maintained at 120°C for 6 hours, and finally, cooled to room temperature to obtain graphene hydrogel;
  • the oxygen-containing functional groups include- OH, -CHO, -CHO; among them, ozone is produced by a dielectric barrier discharge device, and air is used as a raw material; the light-absorbing and heat-insulating integrated photothermal evaporation material is obtained.
  • the optical diagram of the prepared light absorption and heat insulation integrated photothermal evaporation material is shown in a in Fig. 3, and the outer surface is black.
  • the wettability of the vertically-oriented graphene/graphene foam modified with oxygen-containing functional groups on the surface is shown in bd in Figure 3.
  • the external vertically-oriented graphene 1 exhibits strong hydrophilicity, and the water contact angle is 26.0°, indicating light absorption
  • the water can be guided by capillary action
  • the graphene foam 2 inside shows strong hydrophobicity, and the water contact angle is 130.5°, indicating that the insulator repels water infiltration, and the surface water flow channel can protect the insulator Protect from water wetting.
  • the microstructure of graphene foam is shown in Figure 4 a, showing a porous structure, low thermal conductivity, and a thermal conductivity of 0.041W m -1 K -1 ;
  • vertically oriented graphene is composed of carbon nanowall arrays, such as As shown in b in Figure 4, the vertically-oriented graphene is uniformly distributed on the framework of the graphene foam; the vertically-oriented distributed carbon nanowall array can prevent the escape of incident light and has a strong light trapping ability.
  • the average light absorption rate of the prepared light-absorbing and heat-insulating integrated photothermal evaporation material in the wavelength range of 200-2600 nanometers is as high as 97.8%.
  • the light-absorbing and heat-insulating integrated photothermal evaporation material can float on the water surface, and the light-absorbing body can capture solar energy and convert the light energy into heat energy to generate local high temperature; the insulator blocks the heat flow transfer and reduces heat dissipation; The body sucks in liquid through capillary action, so that it reaches the local high temperature area, and realizes rapid photothermal evaporation.
  • the oxygen-containing functional groups modified on the surface of the obtained light-absorbing and heat-insulating integrated photothermal evaporation material include -OH, -CHO and -COOH.
  • the configured graphene oxide aqueous solution is transferred to a Teflon high-temperature and high-pressure reactor, maintained at 120°C for 12 hours, and then cooled to room temperature to obtain graphene hydrogel;
  • the oxygen-containing functional groups include -OH, -CHO, -CHO; Among them, ozone is produced by a dielectric barrier discharge device, and air is used as a raw material; the light-absorbing and heat-insulating integrated photothermal evaporation material is obtained.
  • Table 1 shows the performance test results of the prepared light absorption and heat insulation integrated photothermal evaporation material.
  • the configured graphene oxide aqueous solution is transferred to a Teflon high-temperature and high-pressure reactor, maintained at 90°C for 6 hours, and then maintained at 180°C for 6 hours, and finally, cooled to room temperature to obtain graphene hydrogel;
  • the oxygen-containing functional groups include -OH, -CHO, -CHO; Among them, ozone is produced by a dielectric barrier discharge device, and air is used as a raw material; the light-absorbing and heat-insulating integrated photothermal evaporation material is obtained.
  • Table 1 shows the performance test results of the prepared light absorption and heat insulation integrated photothermal evaporation material.
  • the configured graphene oxide aqueous solution is transferred to a Teflon high temperature and high pressure reactor, maintained at 90°C for 12 hours, and then maintained at 180°C for 6 hours, and finally cooled to room temperature to obtain graphene hydrogel;
  • the oxygen-containing functional groups include -OH, -CHO, -CHO; Among them, ozone is produced by a dielectric barrier discharge device, and air is used as a raw material; the light-absorbing and heat-insulating integrated photothermal evaporation material is obtained.
  • Table 1 shows the performance test results of the prepared light absorption and heat insulation integrated photothermal evaporation material.
  • the configured graphene oxide aqueous solution is transferred to a Teflon high temperature and high pressure reactor, maintained at 120°C for 6 hours, and then cooled to room temperature to obtain graphene hydrogel;
  • the oxygen-containing functional groups include -OH, -CHO, -CHO; Among them, ozone is produced by a dielectric barrier discharge device, and air is used as a raw material; the light-absorbing and heat-insulating integrated photothermal evaporation material is obtained.
  • Table 1 shows the performance test results of the prepared light absorption and heat insulation integrated photothermal evaporation material.
  • the configured graphene oxide aqueous solution is transferred to a Teflon high-temperature and high-pressure reactor, maintained at 120°C for 12 hours, then at 180°C for 6 hours, and finally, cooled to room temperature to obtain graphene hydrogel;
  • the oxygen-containing functional groups include -OH, -CHO, -CHO; Among them, ozone is produced by a dielectric barrier discharge device, and air is used as a raw material; the light-absorbing and heat-insulating integrated photothermal evaporation material is obtained.
  • Table 1 shows the performance test results of the prepared light absorption and heat insulation integrated photothermal evaporation material.
  • the configured graphene oxide aqueous solution is transferred to a Teflon high temperature and high pressure reactor, maintained at 90°C for 6 hours, and then maintained at 120°C for 6 hours, and finally, cooled to room temperature to obtain graphene hydrogel;
  • the oxygen-containing functional groups include -OH, -CHO, -CHO; Among them, ozone is produced by a dielectric barrier discharge device, and air is used as a raw material; the light-absorbing and heat-insulating integrated photothermal evaporation material is obtained.
  • Table 1 shows the performance test results of the prepared light absorption and heat insulation integrated photothermal evaporation material.
  • the configured graphene oxide aqueous solution is transferred to a Teflon high-temperature and high-pressure reactor, maintained at 120°C for 12 hours, and then cooled to room temperature to obtain graphene hydrogel;
  • the oxygen-containing functional groups include -OH, -CHO, -CHO; Among them, ozone is produced by a dielectric barrier discharge device, and air is used as a raw material; the light-absorbing and heat-insulating integrated photothermal evaporation material is obtained.
  • Table 1 shows the performance test results of the prepared light absorption and heat insulation integrated photothermal evaporation material.
  • the configured graphene oxide aqueous solution is transferred to a Teflon high-temperature and high-pressure reactor, maintained at 90°C for 6 hours, and then maintained at 180°C for 6 hours, and finally, cooled to room temperature to obtain graphene hydrogel;
  • the oxygen-containing functional groups include -OH, -CHO, -CHO; Among them, ozone is produced by a dielectric barrier discharge device, and air is used as a raw material; the light-absorbing and heat-insulating integrated photothermal evaporation material is obtained.
  • Table 1 shows the performance test results of the prepared light absorption and heat insulation integrated photothermal evaporation material.
  • the configured graphene oxide aqueous solution is transferred to a Teflon high temperature and high pressure reactor, maintained at 120°C for 6 hours, and then maintained at 180°C for 6 hours, and finally, cooled to room temperature to obtain graphene hydrogel;
  • the oxygen-containing functional groups include -OH, -CHO, -CHO; Among them, ozone is produced by a dielectric barrier discharge device, and air is used as a raw material; the light-absorbing and heat-insulating integrated photothermal evaporation material is obtained.
  • the solar thermal seawater desalination device provided by embodiments 11-20 includes: a light-transmitting condensing plate 1, a photothermal evaporation material 2, an evaporation chamber 3, a collection chamber 4, and an evaporation chamber
  • the exhaust fan 10 is installed in the exhaust passage 11 on the side wall of the evaporation chamber 3, driven by the electric energy provided by the solar panel 12, and continues to operate; the evaporation chamber 3 and the collection chamber 4 are distributed up and down to form an integrated structure; sea water passes through the evaporation chamber
  • the water inlet 5 is injected into the evaporation chamber 3; the photothermal evaporation material 2 is put into the evaporation chamber 3 from above, and floats on the seawater; the height of the upper surface of the photothermal evaporation material 2 is always lower than the lowest height of the inlet of the suction channel 11 to Prevent seawater from flowing to the collection chamber 4 through the suction channel 11 and the steam evacuating duct 9; the light-transmitting condensing plate 1 covers the evaporation chamber 3 at an inclination angle of 30°, which not only serves to seal the evaporation chamber 3, but also The function of condensing water vapor and guiding the condensed water to the collection chamber 4
  • the water inlet 5 and the water outlet 7 of the evaporation chamber and the water inlet 6 and the water outlet 8 of the collection chamber are kept closed.
  • the fresh water obtained can be transferred and used through the water outlet 8 of the collection chamber.
  • the photothermal evaporation material 2 includes an insulator 22 and a light absorber 21 covering the outer surface of the insulator 22.
  • the light absorber 21 is a vertically-oriented graphene whose surface is modified with hydrophilic functional groups.
  • the heat insulator 22 is a graphene foam, and the vertically-oriented graphene and the graphene foam are connected by a covalent bond; the light absorber 21 is a vertically-oriented graphene whose surface is modified with a hydrophilic functional group.
  • the light absorber 21 captures solar energy and converts the light energy into heat energy to form a local high temperature; the heat insulator 22 blocks the heat flow transfer and reduces heat dissipation. At the same time, the light absorber 21 also acts as a liquid flow channel 23, sucking the liquid 24 through capillary action, so that it reaches a local high temperature area, and realizing rapid photothermal evaporation. At the same time, the liquid flow channel 23 can protect the heat insulator 22 from being wetted by the liquid 24, and prevent the heat flow from being transferred to the outside through the infiltrated liquid 24.
  • the photothermal evaporation materials 2 in Examples 11-20 are the light-absorbing and heat-insulating integrated photothermal evaporation materials prepared in Examples 1-10, respectively.
  • the natural seawater with a salinity of 3.25% was evaporated and condensed, and the salinity of the obtained condensed water was 0.01%, which met the drinking requirements; the salinity was 9.85 %
  • the high-temperature steam sterilization device provided by embodiments 21-30 includes: clamp 1, fixed ring 2, sealing ring 3, concentrating plate 4, photothermal evaporation material 5, storage Water cup 6, loading tray 7, steam chamber 8.
  • the photothermal evaporation material 2 includes an insulator 22 and a light absorber 21 covering the outer surface of the insulator 22.
  • the light absorber 21 is a vertically-oriented graphene whose surface is modified with hydrophilic functional groups.
  • the heat insulator 22 is a graphene foam, and the vertically-oriented graphene and the graphene foam are connected by a covalent bond; the light absorber 21 is a vertically-oriented graphene whose surface is modified with a hydrophilic functional group.
  • the light absorber 21 captures solar energy and converts the light energy into heat energy to form a local high temperature; the heat insulator 22 blocks the heat flow transfer and reduces heat dissipation. At the same time, the light absorber 21 also acts as a liquid flow channel 23, sucking the liquid 24 through capillary action, so that it reaches a local high temperature area, and realizing rapid photothermal evaporation. At the same time, the liquid flow channel 23 can protect the heat insulator 22 from being wetted by the liquid 24, and prevent the heat flow from being transferred to the outside through the infiltrated liquid 24.
  • the tray 7 is placed on the pallet of the evaporation chamber 8; the water storage cup 6 is assembled in the groove in the center of the tray 7; the water storage cup 6 is added A certain amount of water, and put the photothermal evaporating material 2 into the water storage cup 6 from above, the photothermal evaporating material 2 floats on the water surface; put the items to be sterilized on the tray 7 in the evaporation chamber; Cover the condensing plate 4 on the evaporation chamber 8, and seal the evaporation chamber 8 with a sealing ring 3, a fixing ring 3 and a clamp 1.
  • the photothermal evaporation materials 2 in Examples 21-30 are the light-absorbing and heat-insulating integrated photothermal evaporation materials prepared in Examples 1-10, respectively.
  • the light intensity is 1.0-1.2kW m -2
  • the standard biological indicator is used as the test of the sterilization effect.
  • the color of the indicator changes from purple to yellow, It indicates that the sterilization has failed.
  • the color of the indicator remains purple, the sterilization is successful.
  • the temperature in the evaporation chamber reaches 121°C after 11 minutes of operation, which is the expected sterilization temperature.
  • the biological indicator was transferred to a 56°C environment and incubated for 48 hours. After observation, the indicator that has not been sterilized is yellow, and the indicator that has undergone the sterilization process is purple, indicating successful sterilization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Water Supply & Treatment (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Toxicology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

一种吸光隔热一体化光热蒸发材料,其包括隔热体和覆盖在隔热体外表面的吸光体,吸光体为表面经亲水官能团修饰的垂直取向石墨烯,隔热体为石墨烯泡沫,垂直取向石墨烯和石墨烯泡沫以共价键形式连接,吸光体为表面经亲水官能团修饰的垂直取向石墨烯。还公开了一种吸光隔热一体化光热蒸发材料的制备方法及吸光隔热一体化光热蒸发材料的应用,一种太阳能光热海水淡化装置和高温蒸汽灭菌装置。

Description

一种吸光隔热一体化光热蒸发材料及其制备方法和应用 技术领域
本发明属于太阳能光热利用领域,尤其涉及一种吸光隔热一体化光热蒸发材料及其制备方法和应用。
背景技术
太阳能是地球上分布最广,储量最大的能源,因其清洁、可再生等特点,在能源危机和环境问题日益严重的21世纪受到最为广泛的关注。光热转化是太阳能最主要的利用形式之一,如何高效、低成本地实现太阳能的光热转化,并对转化的热能加以有效利用,正成为当前国际的研究热点[V.H.Dalvi1et al.Nat,Clim.Change 2015,5:1007-1013]。
2014年,美国麻省理工学院Gang Chen课题组提出具有双层结构(由吸光体和隔热体构成)的局域加热系统,可以高效利用太阳能产生蒸气,相对于对整个液体加热的传统方法,减少了液体向环境散热等带来的能量损失,提高了太阳能的光热转化效率[H.Ghasemi et al.Nat.Commun.2014,5:4449]。随后的相关研究对局域加热系统的双层结构做了进一步优化,如:提出具有高光吸收率的吸光体以及具有良好隔热性能的隔热体[L.Zhou et al.Sci.Adv.2016,2:e1501227;Q.Jiang et al.Adv.Mater.2016,28:9400-9407]。
但是,在已报道的局域加热系统中,存在两个问题:(1)局域加热系统是由吸光体直接堆叠在隔热体上表面所构成的双层结构,在实际蒸发过程中,上层吸光体容易与下层隔热体脱离,导致两者的间隙被待蒸发的液体填满,系统的隔热性能被削弱;并且,吸光体和隔热体的脱离会降低系统的机械稳定性,不利于系统的长期运行。(2)待蒸发的液体是通过下层隔热体内部传输到上层吸光体表面并进行换热;高热导率的液体(比如水,其热导率为:0.6W m -1K -1)进入隔热体内部会导致其隔热性能下降,进而使得运行过程中的散热损失增加、光热转化效率下降。
发明内容
本发明的目的是提供一种吸光隔热一体化光热蒸发材料。本发明提供的吸光隔热 一体化光热蒸发材料克服了吸光体与隔热体易脱离问题,以及液体渗入隔热体内部所引起的热损失问题,提高了局域加热系统的稳定性和光热转化效率,实现了快速高效的光热蒸发,制备工艺简单,易于大规模生产,可应用于海水淡化、污水净化和高温蒸汽灭菌。
一种吸光隔热一体化光热蒸发材料,所述吸光隔热一体化光热蒸发材料包括隔热体和覆盖在隔热体外表面的吸光体,所述吸光体为垂直取向石墨烯,所述隔热体为石墨烯泡沫,所述垂直取向石墨烯和石墨烯泡沫以共价键形式连接;所述吸光体为表面经亲水官能团修饰的垂直取向石墨烯。
所述吸光体捕集太阳能,并将光能转化为热能,产生局部高温;所述隔热体阻滞热流传递,减少散热。
所述垂直取向石墨烯由碳纳米壁阵列组成。所述石墨烯泡沫为多孔结构。
经亲水官能团修饰的垂直取向石墨烯可作为液体流道,通过毛细作用传输液体到局部高温区域,实现快速光热蒸发;并且保护隔热体免受液体润湿。
所述亲水官能团为含氧官能团。所述含氧官能团选自羟基(-OH)、羰基(-CHO)和羧基(-COOH)中的一种或至少两种的组合。
-OH、-CHO、-CHO为亲水基团,在垂直取向石墨烯表面修饰上述一种或至少两种亲水官能团,能够增强垂直取向石墨烯与水之间的亲和力,增强垂直取向石墨烯的毛细作用。
所述吸光体的吸光率为90-99%,所述隔热体的热导率为0.02-0.2W m -1K -1
优选的,所述吸光体的吸光率为97.0-98.2%,所述隔热体的热导率为0.031-0.041W m -1K -1
本发明还提供一种上述吸光隔热一体化光热蒸发材料的应用,所述吸光隔热一体化光热蒸发材料应用于海水淡化、污水净化和高温蒸汽灭菌。
本发明还提供了一种太阳能光热海水淡化装置,结构简单、易于操作、能够高效收集冷凝水,解决了冷凝水和蒸汽的挡光问题,光热海水淡化系统的稳定性和光热转化效率均显著提高,海水淡化前后盐度明显降低。
一种太阳能光热海水淡化装置,从上往下依次包括透光冷凝板、光热蒸发材料、蒸发室和收集室;所述透光冷凝板覆盖在蒸发室上并将冷凝水引导至收集室,所述光热蒸发材料位于蒸发室内。所述光热蒸发材料包括隔热体和覆盖在隔热体外表面的吸光体,所述吸光体为垂直取向石墨烯,所述隔热体为石墨烯泡沫,所述垂直取向石墨烯和石墨烯泡沫以共价键形式连接;所述吸光体为表面经亲水官能团修饰的垂直取向 石墨烯。所述亲水官能团为含氧官能团。
所述含氧官能团选自羟基(-OH)、羰基(-CHO)和羧基(-COOH)中的一种或至少两种的组合。-OH、-CHO、-CHO为亲水基团,在垂直取向石墨烯表面修饰上述一种或至少两种亲水官能团,能够增强垂直取向石墨烯与水之间的亲和力,增强垂直取向石墨烯的毛细作用。
所述吸光体的吸光率为90-99%,所述隔热体的热导率为0.02-0.2W m -1K -1。优选的,所述吸光体的吸光率为97.0-98.2%,所述隔热体的热导率为0.031-0.041W m -1K -1
所述收集室上设有收集口,透光冷凝板覆盖在蒸发室上并延伸至收集室上的收集口,将冷凝水引导至收集室。
优选的,所述蒸发室和收集室为一体结构。
优选的,所述太阳能光热海水淡化装置还包括抽气通道和蒸汽疏导管,所述抽气通道的一端与蒸发室连接、另一端通过蒸汽疏导管与收集室连接;所述抽气通道和蒸汽疏导管设置在蒸发室的侧壁。
优选的,所述太阳能光热海水淡化装置还包括设置在抽气通道内的抽气扇和驱动装置,所述驱动装置驱动抽气扇吸收蒸发室内的蒸汽到蒸汽疏导管。
优选的,所述驱动装置为太阳能电池板。
所述蒸发室用于储纳海水和光热蒸发材料;所述光热蒸发材料漂浮在海水上,用于光热蒸发海水,产生蒸汽;所述透光冷凝板覆盖在蒸发室上,阻止蒸汽向外溢出,蒸汽在透光冷凝板上冷凝,并沿着透光冷凝板流到收集室;所述蒸发室的侧壁上设置抽气通道,所述抽气扇安装在抽气通道内,用于吸收蒸发室内的蒸汽;所述蒸汽疏导管连接抽气通道和收集室,所述抽气扇吸收的蒸汽被蒸汽疏导管输送到收集室,并在收集室内冷凝;所述太阳能电池板用于光伏发电,并为抽气扇提供电能。
所述太阳能光热海水淡化装置还包括蒸发室的进水口和蒸发室的出水口,所述蒸发室进水口向蒸发室补充海水,所述蒸发室出水口排出蒸发室内的海水;所述太阳能光热海水淡化装置还包括收集室的进水口、收集室的出水口。
所述透光冷凝板是透明的。
所述太阳能电池板的输出电压在抽气扇的工作电压范围以内。太阳能电池板的输出电压和抽气扇的工作电压,与装置体积大小有关,体积越大,对电压要求远高,对应的工作功率也越高。
在所述太阳能光热海水淡化装置运行的过程中,内部的空间是密闭的,所述蒸发室的进水口与蒸发室的出水口是关闭,收集室的进水口和收集室的出水口是关闭的; 在清洗蒸发室的过程中,所述蒸发室的进水口与蒸发室的出水口是打开的。
所述透光冷凝板的倾斜角度为10°-60°。所述倾斜为水平向下倾斜。
优选的,所述透光冷凝板的倾斜角度为30°。
所述蒸发室与收集室呈上下分布,其中,所述蒸发室在所述收集室之上。
所述抽气通道的位置高于光热蒸发材料。防止海水通过抽气通道流到收集室。
本发明还提供了一种高温蒸汽灭菌装置,以分布广泛、绿色清洁的太阳能作为驱动力,不消耗电能,可应用的区域广。本发明装置结构简单,体积小,便于携带,且操作简单。本发明通过采用兼备捕集光能、阻滞热流传递的光热蒸发材料,大大提高了装置的光热转化效率,灭菌时间短,灭菌效果良好。
一种高温蒸汽灭菌装置,所述高温蒸汽灭菌装置包括蒸汽室、覆盖在蒸汽室上的聚光板、装配在蒸汽室内部的载物盘和蓄水杯、以及位于蓄水杯中的光热蒸发材料。所述光热蒸发材料包括隔热体和覆盖在隔热体外表面的吸光体,所述吸光体为垂直取向石墨烯,所述隔热体为石墨烯泡沫,所述垂直取向石墨烯和石墨烯泡沫以共价键形式连接;所述吸光体为表面经亲水官能团修饰的垂直取向石墨烯。
所述亲水官能团为含氧官能团。所述含氧官能团选自羟基(-OH)、羰基(-CHO)和羧基(-COOH)中的一种或至少两种的组合。-OH、-CHO、-CHO为亲水基团,在垂直取向石墨烯表面修饰上述一种或至少两种亲水官能团,能够增强垂直取向石墨烯与水之间的亲和力,增强垂直取向石墨烯的毛细作用。
所述吸光体的吸光率为90-99%,所述隔热体的热导率为0.02-0.2W m -1K -1。优选的,所述吸光体的吸光率为97.0-98.2%,所述隔热体的热导率为0.031-0.041W m -1K -1
优选的,所述载物盘竖直方向有若干个通孔;蒸汽冷凝后通过通孔流到蒸汽室的底部,避免冷凝水黏附在待灭菌物体上,影响灭菌效果。
所述聚光板将光束聚集到蓄水杯内。
优选的,所述聚光板与蓄水杯的横截面形状相同,横截面积比为10-100:1,聚光板与蓄水杯同心装配。
优选的,所述蒸汽室的内部设置安装载物盘的托台。拖台可以使载物盘与蒸汽室的底部不接触。
优选的,所述载物盘的中心设置凹槽,所述凹槽的尺寸与蓄水杯底部的尺寸相当。所述凹槽用于固定蓄水杯的安装位置,保证蓄水杯与聚光板的同心装配关系。
优选的,所述高温蒸汽灭菌装置还包括密封圈和卡箍,所述密封圈和卡箍用于固定所述聚光板。
将载物盘放置在蒸发室的托台上;把蓄水杯安放在载物台中心的凹槽里;向蓄水杯加入一定量的水,并将光热蒸发材料从上放入蓄水杯,光热蒸发材料漂浮于水面之上;将需要灭菌的物品放在蒸发室内的载物盘上;随后将聚光板覆盖在蒸发室上,用于将入射光汇聚到光热蒸发材料的上表面,并阻止蒸汽向外溢出;并用密封圈、固定环和卡箍封闭蒸发室。
本发明还提供一种制备吸光隔热一体化光热蒸发材料的方法,包括如下步骤:
(1)配制氧化石墨烯水溶液,(2)将步骤(1)得到的氧化石墨烯水溶液转移到高温高压反应釜中进行水热法反应,冷却得到石墨烯水凝胶;
(3)用乙醇水溶液浸泡步骤(2)得到的石墨烯水凝胶;
(4)将石墨烯水凝胶转移到冷冻腔冷冻,之后转移到干燥腔真空干燥,得到石墨烯泡沫;
(5)将获得的石墨烯泡沫放置于等离子体增强化学气相沉积反应腔内,通入甲烷或者氢气与甲烷的混合气,进行化学气相沉积反应后,通入惰性气体,冷却,得到垂直取向石墨烯/石墨烯泡沫;
(6)将步骤(5)得到的垂直取向石墨烯/石墨烯泡沫暴露于臭氧环境中,在垂直取向石墨烯的表面产生修饰亲水官能团,得到吸光隔热一体化光热蒸发材料。
优选的,所述步骤(1)中的氧化石墨烯水溶液还包括添加剂,所述添加剂包括十水四硼酸钠、胺基化合物或其混合物;所述氧化石墨烯的浓度为1-10g L -1,所述十水四硼酸钠浓度为0-10,所述的胺基化合物的浓度为0-100;所述十水四硼酸钠浓度和胺基化合物的浓度不同时为0。
氧化石墨烯的浓度与所制备的石墨烯泡沫的密度、机械强度、热导率以及制备成本都有直接关系。当氧化石墨烯的浓度增加,石墨烯泡沫的密度增加,机械强度增强,热导率升高,制备成本增加;当石墨烯氧化浓度小于1g L -1时,所制备的石墨烯泡沫的机械强度较弱,在实际应用的过程中容易损坏;当氧化石墨烯浓度大于10g L -1时,所制备的石墨烯泡沫的密度和热导率增加,会削弱在光热蒸发应用中的光热转化效率,并且制备成本的增加也不利于该材料的实际应用。
四硼酸钠被用作石墨烯水凝胶合成过程中的结构强化剂,能够增强石墨烯泡沫的机械强度。另外,四硼酸钠会促进热水反应过程中的团聚,进而影响石墨烯泡沫的热导率。胺基化合物的浓度也会同时影响石墨烯泡沫的热导率和机械强度。
优选的,所述步骤(1)中的氧化石墨烯水溶液包括氧化石墨烯、十水四硼酸钠和胺基化合物,其浓度分别为4-6g L -1、1-5mmol L -1和4-20mmol L -1
当氧化石墨烯的浓度为4-6g L -1时,所制备的石墨烯泡沫既具有良好的机械性能,又具有较低的密度和热导率。
当十水四硼酸钠的浓度<1mmol L -1时,四硼酸钠的结构强化作用较弱,所获得的石墨烯泡沫结构不稳定,易损坏;当十水四硼酸钠的浓度>5mmol L -1时,团聚现象较严重,导致所获得的石墨烯泡沫的热导率较高。
当胺基化合物的浓度<4mmol L -1时,胺基化合物阻碍团聚的作用较弱,所获得的石墨烯泡沫的热导率较高;当胺基化合物的浓度>20mmol L -1时,所获得的石墨烯泡沫的结构较蓬松,机械强度较弱。
所述胺基化合物选自乙二胺、丁二胺、己二胺、环己二胺中的一种或至少两种的组合。二胺类胺基化合物具有两个氨基,易与氧化石墨烯发生缩聚反应,稳定的存在于石墨烯片层之间,起到连接和支撑的作用,阻碍石墨烯的团聚,以获得蓬松多孔的结构。
优选的,所述胺基化合物为乙二胺。乙二胺、丁二胺、己二胺、环己二胺四种胺基化合物的分子尺寸顺序为:乙二胺<丁二胺<己二胺<环己二胺,较大的分子间隔物,会导致较弱的机械强度或需要较多的结构强化剂,且要求更高的合成温度和更长的合成时间,所以,乙二胺作为分子尺寸最小的二胺类胺基化合物中,在能满足应用要求的情况下,作为优选结果。
所述步骤(2)中水热法反应条件为:反应温度为90-180℃;反应时间为6-18h。
反应温度和反应时间会影响石墨烯水凝胶的石墨化程度和团聚程度,提高温度和延长时间都有利于提高石墨烯水凝胶的石墨化程度,促进氧化石墨烯的团聚和石墨烯水凝胶的成型,增强所获得的石墨烯泡沫的机械强度。
当反应温度小于90℃或反应时间小于6h时,会导致水热反应过程不充分,石墨烯水凝胶不能成型或最终获得的石墨烯泡沫的机械强度弱;当反应温度大于180℃或反应时间大于18h时,都会导致严重的团聚现象,使所获得的石墨烯泡沫的密度和热导率过大。
所述步骤(3)中,清洗的方法为用乙醇水溶液浸泡上述石墨烯水凝胶6-24h,其中,所述乙醇水溶液的乙醇体积分数为10%-30%。
所述步骤(4)中,冷冻腔的温度为-80至-10℃、冷冻时间为6-24h;干燥腔的温度为-20至0℃、干燥腔的气压为<650Pa、干燥时间为6-48h。
所述步骤(5)中氢气与甲烷的混合气的流量比为0-20:1。
H 2和CH 4的流量比是合成垂直取向石墨烯的关键,当H 2和CH 4的流量比大于20: 1时,所获得的合成物不是垂直取向石墨烯;并且H 2和CH 4的流量比会影响合成物的形貌和化学性质。
优选的,所述步骤(5)H 2和CH 4的流量比为1-5:1。当流量比小于1:1,合成速度较慢;当流量比大于5:1所获得的合成物的形貌和化学性质更接近于不定型碳、碳纳米纤维和碳纳米管。
所述步骤(5)中,化学气相沉积反应的反应条件为:合成温度为500-1000℃,合成气压为10-1000Pa。
当温度<500℃,无法合成垂直取向石墨烯;当温度>1000℃,有利于加快垂直取向石墨烯的合成速度,但是对设备的工艺要求较高,且能量消耗较大,不利于实际应用;当气压<10Pa时,对设备的工艺要求较高,不易达到;当气压>1000Pa时,需要更高的温度和更高的功率,不利于实际应用。
优选的,所述步骤(5)中,化学气相沉积反应的反应条件为:合成温度为600-800℃,合成气压为10-500Pa。合成垂直取向石墨烯的速度适中和能量消耗较小,且性能满足要求,利于实际应用。
所述步骤(5)中,化学气相沉积反应中的等离子体源选自微波等离子、电感耦合等离子体或直流辉光放电等离子体,功率为200-500W,维持1-180min。
当时间<1min时,所合成的垂直取向石墨烯的量较少,光吸收率较低;当时间大于>180min,对光吸收率和光热蒸发性能没有明显的提升,造成原料和能量的浪费。
优选的,维持10-120min。合成适量的垂直取向石墨烯。
所述步骤(5)中,惰性气体作为冷却气体,流量为10-100ml min -1
所述步骤(6)中,在垂直取向石墨烯的表面产生修饰亲水官能团的方法为将步骤(5)得到的垂直取向石墨烯/石墨烯泡沫暴露于臭氧浓度为200ppm的环境中,维持1-10min,亲水官能团修饰在垂直取向石墨烯的表面。其中,臭氧是通过介质阻挡放电装置产生,空气作为原料。
优选的,暴露于臭氧浓度为200ppm的环境中,维持2-4min。在这一范围内,表面修饰含氧官能团的垂直取向石墨烯够获得很好的亲水性,同时内部的石墨烯泡沫能维持其超疏水性。
本发明与现有技术相比,具有的有益效果如下:
本发明提供的吸光隔热一体化光热蒸发材料,以共价键的形式,将吸光体和隔热体连接成一个整体,兼备捕集光能、阻滞热流损失的功能,克服了常规局域加热系统中吸光体与隔热体易脱离问题,提高了系统的稳定性。
本发明提供的吸光隔热一体化光热蒸发材料中的吸光体还可以作为液体流道,保护隔热体免受液体的润湿,避免热流通过渗入的液体向外传递,解决了常规局域加热系统中液体渗入隔热体内部所引起的热损失问题,提高了系统的光热转化效率。本发明提供的吸光隔热一体化光热蒸发材料,实现了快速高效的光热蒸发,制备工艺简单,易于大规模生产,可应用于海水淡化、污水净化和高温蒸汽灭菌等领域。
本发明提供的太阳能光热海水淡化装置,具有结构简单、易于操作的特点。本发明提供的太阳能光热海水淡化装置,能够高效收集冷凝水,解决了冷凝水和蒸汽的挡光问题,提高了光热海水淡化系统的稳定性和光热转化效率。
本发明提供的高温蒸汽灭菌装置以分布广泛、绿色清洁的太阳能作为驱动力,不消耗电能,可应用的区域广。本发明提供的高温蒸汽灭菌装置基于一体化设计,没有复杂的结构,加工成本低廉,易于批量加工生产。本发明提供的高温蒸汽灭菌装置体积小,便于携带,且操作简单。本发明通过采用兼备捕集光能、阻滞热流损失的光热蒸发材料,大大提高了装置的稳定性和光热转化效率,快速产生蒸汽,灭菌时间短,灭菌效果良好。
附图说明
图1为本发明提供的吸光隔热一体化光热蒸发材料的结构示意图;
图2为本发明提供的吸光隔热一体化光热蒸发材料的制备流程图;
图3为实施例1提供的吸光隔热一体化光热蒸发材料的光学图和浸润性表征结果;
图4为实施例1提供的吸光隔热一体化光热蒸发材料的扫描电镜图;
图5为实施例1提供的吸光隔热一体化光热蒸发材料的光吸收率曲线;
图6为实施例1提供的吸光隔热一体化光热蒸发材料的X射线光电子C1s能谱图;
图7为实施例1提供的吸光隔热一体化光热蒸发材料的光热蒸发应用效果图;
图8为实施例11-20提供的太阳能光热海水淡化装置的结构示意图;
图9为实施例11-20提供的太阳能光热海水淡化装置的分解结构示意图;
图10为实施例11-20提供的太阳能光热海水淡化装置的剖面结构示意图;
图11为实施例11-20提供的太阳能光热海水淡化装置和实施例21-30提供的高温蒸汽灭菌装置的光热蒸发原理示意图;
图12为实施例21-30提供的高温蒸汽灭菌装置的结构示意图;
图13为实施例21-30提供的高温蒸汽灭菌装置分解结构示意图;
图14为实施例21-30提供的高温蒸汽灭菌装置的剖面结构示意图;
图15为实施例21提供的高温蒸汽灭菌装置在杀菌过程中的蒸汽温度。
具体实施方式
为使本发明更明显易懂,以下结合附图和具体实施例对本发明的技术方案作进一步的说明。以下描述的实施例仅用于解释本发明,并非对本发明任何形式上和实质上的限制。
如图1所示,本发明提供的吸光隔热一体化光热蒸发材料包括隔热体2和覆盖在隔热体2外表面的吸光体1,所述吸光体1为表面经亲水官能团修饰的垂直取向石墨烯,所述隔热体2为石墨烯泡沫,所述垂直取向石墨烯和石墨烯泡沫以共价键形式连接;所述吸光体为表面经亲水官能团修饰的垂直取向石墨烯。
吸光体1捕集太阳能,并将光能转化为热能,形成局部高温;隔热体2阻滞热流传递,减少散热。同时,吸光体1还作为液体流道3,通过毛细作用吸入液体4,使之到达局部高温区域,实现快速光热蒸发。同时,液体流道3可以保护隔热体2免受液体4的润湿,避免热流通过渗入的液体4向外传递。
如图2所示,本发明提供的吸光隔热一体化光热蒸发材料,即,垂直取向石墨烯/石墨烯泡沫的制备过程包括:吸光体1的制备和隔热体2的合成。首先,通过水热法和冷冻干燥法,合成具有三维结构的石墨烯泡沫(即隔热体2);然后,通过等离子体增强化学气相沉积技术,在上述石墨烯泡沫的外表面覆盖垂直取向石墨烯(即吸光体1),制备过程中,垂直取向石墨烯以共价键的形式与石墨烯泡沫连接成一个整体。
对本发明提供的吸光隔热一体化光热蒸发材料进行如下性能测试:
1、水接触角:利用接触角仪,型号为DropMeter A-200,测量吸光隔热一体化光热蒸发材料的水接触角,表征材料的亲水性,利用电动泵,将10L的水滴滴在材料表面,利用高速相机记录水滴的变化过程,通过杨-拉普拉斯方程,计算水接触角。
2、吸光体的吸光率:利用紫外-可见光分光光度计,型号为UV-3150 UV-VIS,测量吸光隔热一体化光热蒸发材料在200~2600纳米波段的光透射率和光反射率,利用公式:光吸收率=1-光透射率-光反射率,计算平均光吸收率。
3、隔热体的导热率:利用激光导热系数测量仪,型号为LFA 467,测试获得吸光隔热一体化光热蒸发材料的热导率。
4、表面官能团种类:利用X射线光电子能谱仪,型号为VG Escalab Mark II,测试X射线能谱分布,分析官能团种类。
实施例1
1.配置氧化石墨烯水溶液,其中,氧化石墨烯的浓度为4g L -1,十水四硼酸钠的浓度为1mmol L -1,乙二胺浓度为4mmol L -1
2.配置好的氧化石墨烯水溶液被转移到铁氟龙高温高压反应釜,在90℃环境下维持6h,随后在120℃环境下维持6h,最后,冷却到室温,获得石墨烯水凝胶;
3.用乙醇水溶液浸泡所获得的石墨烯水凝胶6h,其中,乙醇的体积分数为10%,目的是清洗石墨烯水凝胶表面残留的添加剂;
4.将清洗后的石墨烯水凝胶转移到温度为-80℃的冷冻腔,冷冻6h,然后转移到温度为0℃、气压<650Pa的干燥腔,真空干燥6h,获得石墨烯泡沫;
5.将所获得的石墨烯泡沫放置于等离子体增强化学气相沉积反应腔内,抽真空至<10Pa,然后,加热至800℃;
6.打开CH 4与H 2气阀,通入CH 4与H 2的混合气体,其中,H 2的流量为5ml min -1,CH 4的流量为5ml min -1,气压调整到100Pa;
7.开启电感耦合等离子体源,功率调整至250W,维持120min;
8.关闭等离子体源,关闭CH 4与H 2气阀,打开Ar气阀,通入Ar,作为冷却气体,其流量为10ml min -1,待冷却至室温,取出垂直取向石墨烯/石墨烯泡沫;
9.将所获得的垂直取向石墨烯/石墨烯泡沫复合材料暴露于臭氧浓度为200ppm的环境中,维持3min,在垂直取向石墨烯的表面修饰含氧官能团,构筑水流通道,含氧官能团包括-OH、-CHO、-CHO;其中,臭氧是通过介质阻挡放电装置产生,空气作为原料;得到吸光隔热一体化光热蒸发材料。
制备的吸光隔热一体化光热蒸发材料的光学图如图3中的a所示,外表面为黑色。经表面含氧官能团修饰的垂直取向石墨烯/石墨烯泡沫的浸润性如图3中的b-d所示,外部的垂直取向石墨烯1表现出强亲水性,水接触角为26.0°,说明吸光体作为水流通道,可以通过毛细作用引导水的传输;内部的石墨烯泡沫2表现强疏水性,水接触角为130.5°,说明隔热体排斥水的渗入,表层的水流通道可以保护隔热体免受水的润湿。
石墨烯泡沫的微观结构如图4中的a所示,表现为多孔结构、低热导率,热导率为为0.041W m -1K -1;垂直取向石墨烯由碳纳米壁阵列构成,如图4中的b所示,垂直取向石墨烯均匀地分布在石墨烯泡沫的骨架上;垂直取向分布的碳纳米壁阵列,可以阻止入射光的逃逸,具有极强的光捕集能力。
如图5所示,制备的吸光隔热一体化光热蒸发材料在200~2600纳米波段的平均光吸收率高达97.8%。应用时,吸光隔热一体化光热蒸发材料能够漂浮于水面之上,吸 光体可以捕集太阳能,并将光能转化为热能,产生局部高温;隔热体阻滞热流传递,减少散热;吸光体通过毛细作用吸入液体,使之到达局部高温区域,实现快速光热蒸发。
如图6所示,所获得的吸光隔热一体化光热蒸发材料表面修饰的含氧官能团包括-OH、-CHO和-COOH。
如图7所示,在光照强度为10kW m -2的条件下,仅34s,就能在该材料的局部高温区域检测到>100℃的饱和水蒸气,而水体温度几乎保持不变,并且该材料的蒸汽的产生速率高达12.3kg m -2h -1,对应的光热转化效率超过90%。
实施例2
1.配置氧化石墨烯水溶液,其中,氧化石墨烯的浓度为5g L -1,十水四硼酸钠的浓度为2mmol L -1,乙二胺浓度为8mmol L -1
2.配置好的氧化石墨烯水溶液被转移到铁氟龙高温高压反应釜,在120℃环境下维持12h,然后,冷却到室温,获得石墨烯水凝胶;
3.用乙醇水溶液浸泡所获得的石墨烯水凝胶12h,其中,乙醇的体积分数为20%,目的是清洗石墨烯水凝胶表面残留的添加剂;
4.将清洗后的石墨烯水凝胶转移到温度为-60℃的冷冻腔,冷冻12h,然后转移到温度为-10℃、气压<650Pa的干燥腔,真空干燥12h,获得石墨烯泡沫;
5.将所获得的石墨烯泡沫放置于等离子体增强化学气相沉积反应腔内,抽真空至<10Pa,然后,加热至700℃;
6.打开CH 4与H 2气阀,通入CH 4与H 2的混合气体,其中,H 2的流量为5ml min -1,CH 4的流量为5ml min -1,气压调整到10Pa;
7.开启电感耦合等离子体源,功率调整至250W,维持60min;
8.关闭等离子体源,关闭CH 4与H 2气阀,打开Ar气阀,通入Ar,作为冷却气体,其流量为10ml min -1,待冷却至室温,取出垂直取向石墨烯/石墨烯泡沫;
9.将所获得的垂直取向石墨烯/石墨烯泡沫暴露于臭氧浓度为200ppm的环境中,维持4min,在垂直取向石墨烯的表面修饰含氧官能团,构筑水流通道,含氧官能团包括-OH、-CHO、-CHO;其中,臭氧是通过介质阻挡放电装置产生,空气作为原料;得到吸光隔热一体化光热蒸发材料。
制备的吸光隔热一体化光热蒸发材料的性能测试结果见表1。
实施例3
1.配置氧化石墨烯水溶液,其中,氧化石墨烯的浓度为5g L -1,十水四硼酸钠的 浓度为3mmol L -1,乙二胺浓度为12mmol L -1
2.配置好的氧化石墨烯水溶液被转移到铁氟龙高温高压反应釜,在90℃环境下维持6h,随后在180℃环境下维持6h,最后,冷却到室温,获得石墨烯水凝胶;
3.用乙醇水溶液浸泡所获得的石墨烯水凝胶18h,其中,乙醇的体积分数为20%,目的是清洗石墨烯水凝胶表面残留的添加剂;
4.将清洗后的石墨烯水凝胶转移到温度为-40℃的冷冻腔,冷冻18h,然后转移到温度为-10℃、气压<650Pa的干燥腔,真空干燥24h,获得石墨烯泡沫;
5.将所获得的石墨烯泡沫放置于等离子体增强化学气相沉积反应腔内,抽真空至<10Pa,然后,加热至650℃;
6.打开CH 4与H 2气阀,通CH 4与H 2的混合气体,其中,H 2的流量为40ml min -1,CH 4的流量为10ml min -1,气压调整到300Pa;
7.开启微波等离子体源,功率调整至500W,维持10min;
8.关闭等离子体源,关闭CH 4与H 2气阀,打开N 2气阀,通入N 2,作为冷却气体,其流量为50ml min -1,待冷却至室温,取出垂直取向石墨烯/石墨烯泡沫;
9.将所获得的垂直取向石墨烯/石墨烯泡沫暴露于臭氧浓度为200ppm的环境中,维持2min,在垂直取向石墨烯的表面修饰含氧官能团,构筑水流通道,含氧官能团包括-OH、-CHO、-CHO;其中,臭氧是通过介质阻挡放电装置产生,空气作为原料;得到吸光隔热一体化光热蒸发材料。
制备的吸光隔热一体化光热蒸发材料的性能测试结果见表1。
实施例4
1.配置氧化石墨烯水溶液,其中,氧化石墨烯的浓度为6g L -1,十水四硼酸钠的浓度为5mmol L -1,乙二胺浓度为20mmol L -1
2.配置好的氧化石墨烯水溶液被转移到铁氟龙高温高压反应釜,在90℃环境下维持12h,随后在180℃环境下维持6h,最后,冷却到室温,获得石墨烯水凝胶;
3.用乙醇水溶液浸泡所获得的石墨烯水凝胶24h,其中,乙醇的体积分数为30%,目的是清洗石墨烯水凝胶表面残留的添加剂;
4.将清洗后的石墨烯水凝胶转移到温度为-10℃的冷冻腔,冷冻24h,然后转移到温度为-20℃、气压<650Pa的干燥腔,真空干燥48h,获得石墨烯泡沫;
5.将所获得的石墨烯泡沫放置于等离子体增强化学气相沉积反应腔内,抽真空至<10Pa,然后,加热至600℃;
6.打开CH 4与H 2气阀,通入CH 4与H 2的混合气体,其中,H 2的流量为50ml min -1, CH 4的流量为10ml min -1,气压调整到500Pa;
7.开启微波等离子体源,功率调整至500W,维持20min;
8.关闭等离子体源,关闭CH 4与H 2气阀,打开N 2气阀,通入N 2,作为冷却气体,其流量为100ml min -1,待冷却至室温,取出垂直取向石墨烯/石墨烯泡沫;
9.将所获得的垂直取向石墨烯/石墨烯泡沫暴露于臭氧浓度为200ppm的环境中,维持2min,在垂直取向石墨烯的表面修饰含氧官能团,构筑水流通道,含氧官能团包括-OH、-CHO、-CHO;其中,臭氧是通过介质阻挡放电装置产生,空气作为原料;得到吸光隔热一体化光热蒸发材料。
制备的吸光隔热一体化光热蒸发材料的性能测试结果见表1。
实施例5
1.配置氧化石墨烯水溶液,其中,氧化石墨烯的浓度为1g L -1
2.配置好的氧化石墨烯水溶液被转移到铁氟龙高温高压反应釜,在120℃环境下维持6h,然后,冷却到室温,获得石墨烯水凝胶;
3.将清洗后的石墨烯水凝胶转移到温度为-10℃的冷冻腔,冷冻12h,然后转移到温度为-10℃、气压<650Pa的干燥腔,真空干燥12h,获得石墨烯泡沫;
4.将所获得的石墨烯泡沫放置于等离子体增强化学气相沉积反应腔内,抽真空至<10Pa,然后,加热至500℃;
5.打开CH 4与H 2气阀,通入CH 4与H 2的混合气体,其中,H 2的流量为20ml min -1,CH 4的流量为1ml min -1,气压调整到10Pa;
6.开启电感耦合等离子体源,功率调整至200W,维持180min;
7.关闭等离子体源,关闭CH 4与H 2气阀,打开Ar气阀,通入Ar,作为冷却气体,其流量为10ml min -1,待冷却至室温,取出垂直取向石墨烯/石墨烯泡沫;
8.将所获得的垂直取向石墨烯/石墨烯泡沫暴露于臭氧浓度为200ppm的环境中,维持10min,在垂直取向石墨烯的表面修饰含氧官能团,构筑水流通道,含氧官能团包括-OH、-CHO、-CHO;其中,臭氧是通过介质阻挡放电装置产生,空气作为原料;得到吸光隔热一体化光热蒸发材料。
制备的吸光隔热一体化光热蒸发材料的性能测试结果见表1。
实施例6
1.配置氧化石墨烯水溶液,其中,氧化石墨烯的浓度为10g L -1,十水四硼酸钠的浓度为10mmol L -1,乙二胺浓度为100mmol L -1
2.配置好的氧化石墨烯水溶液被转移到铁氟龙高温高压反应釜,在120℃环境 下维持12h,随后在180℃环境下维持6h,最后,冷却到室温,获得石墨烯水凝胶;
3.用乙醇水溶液浸泡所获得的石墨烯水凝胶24h,其中,乙醇的体积分数为30%,目的是清洗石墨烯水凝胶表面残留的添加剂;
4.将清洗后的石墨烯水凝胶转移到温度为-80℃的冷冻腔,冷冻12h,然后转移到温度为-10℃、气压<650Pa的干燥腔,真空干燥12h,获得石墨烯泡沫;
5.将所获得的石墨烯泡沫放置于等离子体增强化学气相沉积反应腔内,抽真空至<10Pa,然后,加热至1000℃;
6.打开CH 4气阀,通入CH 4,其中,CH 4的流量为1ml min -1,气压调整到1000Pa;
7.开启微波等离子体源,功率调整至500W,维持1min;
8.关闭等离子体源,关闭CH 4气阀,打开N 2气阀,通入N 2,作为冷却气体,其流量为50ml min -1,待冷却至室温,取出垂直取向石墨烯/石墨烯泡沫;
9.将所获得的垂直取向石墨烯/石墨烯泡沫暴露于臭氧浓度为200ppm的环境中,维持1min,在垂直取向石墨烯的表面修饰含氧官能团,构筑水流通道,含氧官能团包括-OH、-CHO、-CHO;其中,臭氧是通过介质阻挡放电装置产生,空气作为原料;得到吸光隔热一体化光热蒸发材料。
制备的吸光隔热一体化光热蒸发材料的性能测试结果见表1。
实施例7
1.配置氧化石墨烯水溶液,其中,氧化石墨烯的浓度为6g L -1,十水四硼酸钠的浓度为1mmol L -1,丁二胺浓度为4mmol L -1
2.配置好的氧化石墨烯水溶液被转移到铁氟龙高温高压反应釜,在90℃环境下维持6h,随后在120℃环境下维持6h,最后,冷却到室温,获得石墨烯水凝胶;
3.用乙醇水溶液浸泡所获得的石墨烯水凝胶12h,其中,乙醇的体积分数为20%,目的是清洗石墨烯水凝胶表面残留的添加剂;
4.将清洗后的石墨烯水凝胶转移到温度为-80℃的冷冻腔,冷冻12h,然后转移到温度为-10℃、气压<650Pa的干燥腔,真空干燥12h,获得石墨烯泡沫;
5.将所获得的石墨烯泡沫放置于等离子体增强化学气相沉积反应腔内,抽真空至<10Pa,然后,加热至800℃;
6.打开CH 4与H 2气阀,通入CH 4与H 2的混合气体,其中,H 2的流量为50ml min -1,CH 4的流量为50ml min -1,气压调整到1000Pa;
7.开启直流辉光放电等离子体源,功率调整至500W,维持30min;
8.关闭等离子体源,关闭CH 4与H 2气阀,打开N 2气阀,通入N 2,作为冷却气体,其流量为50ml min -1,待冷却至室温,取出垂直取向石墨烯/石墨烯泡沫;
9.将所获得的垂直取向石墨烯/石墨烯泡沫暴露于臭氧浓度为200ppm的环境中,维持5min,在垂直取向石墨烯的表面修饰含氧官能团,构筑水流通道,含氧官能团包括-OH、-CHO、-CHO;其中,臭氧是通过介质阻挡放电装置产生,空气作为原料;得到吸光隔热一体化光热蒸发材料。
制备的吸光隔热一体化光热蒸发材料的性能测试结果见表1。
实施例8
1.配置氧化石墨烯水溶液,其中,氧化石墨烯的浓度为6g L -1,十水四硼酸钠的浓度为2mmol L -1,丁二胺浓度为4mmol L -1
2.配置好的氧化石墨烯水溶液被转移到铁氟龙高温高压反应釜,在120℃环境下维持12h,然后,冷却到室温,获得石墨烯水凝胶;
3.用乙醇水溶液浸泡所获得的石墨烯水凝胶12h,其中,乙醇的体积分数为20%,目的是清洗石墨烯水凝胶表面残留的添加剂;
4.将清洗后的石墨烯水凝胶转移到温度为-80℃的冷冻腔,冷冻12h,然后转移到温度为-10℃、气压<650Pa的干燥腔,真空干燥12h,获得石墨烯泡沫;
5.将所获得的石墨烯泡沫放置于等离子体增强化学气相沉积反应腔内,抽真空至<10Pa,然后,加热至700℃;
6.打开CH 4与H 2气阀,通入CH 4与H 2的混合气体,其中,H 2的流量为5ml min -1,CH 4的流量为5ml min -1,气压调整到100Pa;
7.开启微波等离子体源,功率调整至250W,维持1min;
8.关闭微波等离子体源,关闭CH 4与H 2气阀,打开Ar气阀,通入Ar,作为冷却气体,其流量为20ml min -1,待冷却至室温,取出垂直取向石墨烯/石墨烯泡沫;
9.将所获得的垂直取向石墨烯/石墨烯泡沫暴露于臭氧浓度为200ppm的环境中,维持3min,在垂直取向石墨烯的表面修饰含氧官能团,构筑水流通道,含氧官能团包括-OH、-CHO、-CHO;其中,臭氧是通过介质阻挡放电装置产生,空气作为原料;得到吸光隔热一体化光热蒸发材料。
制备的吸光隔热一体化光热蒸发材料的性能测试结果见表1。
实施例9
1.配置氧化石墨烯水溶液,其中,氧化石墨烯的浓度为6g L -1,十水四硼酸钠的浓度为3mmol L -1;己二胺浓度为4mmol L -1
2.配置好的氧化石墨烯水溶液被转移到铁氟龙高温高压反应釜,在90℃环境下维持6h,随后在180℃环境下维持6h,最后,冷却到室温,获得石墨烯水凝胶;
3.用乙醇水溶液浸泡所获得的石墨烯水凝胶12h,其中,乙醇的体积分数为20%,目的是清洗石墨烯水凝胶表面残留的添加剂;
4.将清洗后的石墨烯水凝胶转移到温度为-80℃的冷冻腔,冷冻12h,然后转移到温度为-10℃、气压<650Pa的干燥腔,真空干燥12h,获得石墨烯泡沫;
5.将所获得的石墨烯泡沫放置于等离子体增强化学气相沉积反应腔内,抽真空至<10Pa,然后,加热至700℃;
6.打开CH 4与H 2气阀,通入CH 4与H 2的混合气体,其中,H 2的流量为5ml min -1,CH 4的流量为5ml min -1,气压调整到100Pa;
7.开启电感耦合等离子体源,功率调整至250W,维持60min;
8.关闭微波等离子体源,关闭CH 4与H 2气阀,打开Ar气阀,通入Ar,作为冷却气体,其流量为20ml min -1,待冷却至室温,取出垂直取向石墨烯/石墨烯泡沫;
9.将所获得的垂直取向石墨烯/石墨烯泡沫暴露于臭氧浓度为200ppm的环境中,维持3min,在垂直取向石墨烯的表面修饰含氧官能团,构筑水流通道,含氧官能团包括-OH、-CHO、-CHO;其中,臭氧是通过介质阻挡放电装置产生,空气作为原料;得到吸光隔热一体化光热蒸发材料。
制备的吸光隔热一体化光热蒸发材料的性能测试结果见表1。
实施例10
1.配置氧化石墨烯水溶液,其中,氧化石墨烯的浓度为6g L -1,十水四硼酸钠的浓度为4mmol L -1,环己二胺浓度为4mmol L -1
2.配置好的氧化石墨烯水溶液被转移到铁氟龙高温高压反应釜,在120℃环境下维持6h,随后在180℃环境下维持6h,最后,冷却到室温,获得石墨烯水凝胶;
3.用乙醇水溶液浸泡所获得的石墨烯水凝胶12h,其中,乙醇的体积分数为20%,目的是清洗石墨烯水凝胶表面残留的添加剂;
4.将清洗后的石墨烯水凝胶转移到温度为-80℃的冷冻腔,冷冻12h,然后转移到温度为-10℃、气压<650Pa的干燥腔,真空干燥12h,获得石墨烯泡沫;
5.将所获得的石墨烯泡沫放置于等离子体增强化学气相沉积反应腔内,抽真空至<10Pa,然后,加热至700℃;
6.打开CH 4与H 2气阀,通入CH 4与H 2的混合气体,其中,H 2的流量为5ml min -1,CH 4的流量为5ml min -1,气压调整到100Pa;
7.开启电感耦合等离子体源,功率调整至250W,维持30min;
8.关闭微波等离子体源,关闭CH 4与H 2气阀,打开Ar气阀,通入Ar,作为冷却气体,其流量为20ml min -1,待冷却至室温,取出垂直取向石墨烯/石墨烯泡沫;
9.将所获得的垂直取向石墨烯/石墨烯泡沫暴露于臭氧浓度为200ppm的环境中,维持3min,在垂直取向石墨烯的表面修饰含氧官能团,构筑水流通道,含氧官能团包括-OH、-CHO、-CHO;其中,臭氧是通过介质阻挡放电装置产生,空气作为原料;得到吸光隔热一体化光热蒸发材料。
实施例1-10制备的吸光隔热一体化光热蒸发材料的性能测试结果见表1。
表1 实施例1-10制备的吸光隔热一体化光热蒸发材料的性能测试结果
Figure PCTCN2019126848-appb-000001
实施例11-20
如图8、图9和图10所示,实施例11-20提供的太阳能光热海水淡化装置,包括:透光冷凝板1、光热蒸发材料2、蒸发室3、收集室4、蒸发室进水口5、收集室进水口6、蒸发室出水口7、收集室出水口8、蒸汽疏导管9、抽气扇10、抽气通道11、太阳能电池12。
抽气扇10安装在蒸发室3侧壁上的抽气通道11内,由太阳能电池板12提供的电能驱动,持续运转;蒸发室3与收集室4上下分布,组成一体结构;海水通过蒸发室进水口5注入蒸发室3;光热蒸发材料2自上放入蒸发室3,并漂浮于海水之上;光热蒸发材料2的上表面高度始终低于抽气通道11入口的最低高度,以防止海水通过抽气通道11和蒸汽疏导管9流到收集室4;透光冷凝板1以30°的倾斜角度覆盖在蒸发室 3之上,既起到封闭蒸发室3的作用,又起到冷凝水蒸气并将冷凝水引导至收集室4的作用;光热蒸发材料2吸收太阳能,并将光能转化为热能,蒸发海水;抽气扇10将蒸发室3内的蒸汽吸入抽气通道11,并通过蒸汽疏导管9将蒸汽引导至收集室4。在装置的运行过程中,蒸发室的进水口5、出水口7和收集室的进水口6、出水口8都保持关闭状态。当装置停止工作后,可以通过收集室的出水口8,转移、使用所获得的淡水。
如图11所示,光热蒸发材料2包括隔热体22和覆盖在隔热体22外表面的吸光体21,所述吸光体21为表面经亲水官能团修饰的垂直取向石墨烯,所述隔热体22为石墨烯泡沫,所述垂直取向石墨烯和石墨烯泡沫以共价键形式连接;所述吸光体21为表面经亲水官能团修饰的垂直取向石墨烯。
吸光体21捕集太阳能,并将光能转化为热能,形成局部高温;隔热体22阻滞热流传递,减少散热。同时,吸光体21还作为液体流道23,通过毛细作用吸入液体24,使之到达局部高温区域,实现快速光热蒸发。同时,液体流道23可以保护隔热体22免受液体24的润湿,避免热流通过渗入的液体24向外传递。
实施例11-20中的光热蒸发材料2分别为实施例1-10制备的吸光隔热一体化光热蒸发材料。
使用实施例11-20提供的太阳能光热海水淡化装置,对盐度为3.25%的天然海水进行蒸发冷凝处理,所获得的冷凝水的盐度为0.01%,满足饮用要求;对盐度为9.85%的天然海水进行蒸发冷凝处理,所获得的冷凝水的盐度为0.01%,满足饮用要求;对盐度为16.7%的天然海水进行蒸发冷凝处理,所获得的冷凝水的盐度为0.02%,满足饮用要求。
实施例11-20提供的太阳能光热海水淡化装置的性能测试结果如表2所示。
表2 实施例11-20提供的太阳能光热海水淡化装置的性能测试结果
Figure PCTCN2019126848-appb-000002
Figure PCTCN2019126848-appb-000003
实施例21-30
如图12、图13和图14所示,实施例21-30提供的高温蒸汽灭菌装置,包括:卡箍1、固定环2、密封圈3、聚光板4、光热蒸发材料5、蓄水杯6、载物盘7、蒸汽室8。
如图11所示,光热蒸发材料2包括隔热体22和覆盖在隔热体22外表面的吸光体21,所述吸光体21为表面经亲水官能团修饰的垂直取向石墨烯,所述隔热体22为石墨烯泡沫,所述垂直取向石墨烯和石墨烯泡沫以共价键形式连接;所述吸光体21为表面经亲水官能团修饰的垂直取向石墨烯。
吸光体21捕集太阳能,并将光能转化为热能,形成局部高温;隔热体22阻滞热流传递,减少散热。同时,吸光体21还作为液体流道23,通过毛细作用吸入液体24,使之到达局部高温区域,实现快速光热蒸发。同时,液体流道23可以保护隔热体22免受液体24的润湿,避免热流通过渗入的液体24向外传递。
如图12、图13和图14所示,将载物盘7放置在蒸发室8的托台上;把蓄水杯6装配在载物盘7中心的凹槽里;向蓄水杯6加入一定量的水,并将光热蒸发材料2从上放入蓄水杯6,光热蒸发材料2漂浮于水面之上;将需要灭菌的物品放在蒸发室内的载物盘7上;随后将聚光板4覆盖在蒸发室8上,并用密封圈3、固定环3和卡箍1封闭蒸发室8。
实施例21-30中的光热蒸发材料2分别为实施例1-10制备的吸光隔热一体化光热蒸发材料。
用实施例21提供的高温蒸汽灭菌装置,在自然光下运行,光照强度为1.0-1.2kW m -2,利用标准生物指示剂作为杀菌效果的检验,当指示剂的颜色由紫色变为黄色,说明灭菌失败,当指示剂的颜色保持紫色,说明杀菌成功。如图15所示,蒸发室内的温度在运行11min后,达到121℃,即预期的灭菌温度,根据WHO标准,在121℃高温蒸汽的环境下维持30min可达到充分的消毒灭菌效果。因此,在运行41min后,停止工作。经过杀菌后的生物指示剂被转移到56℃的环境中培育48h。经观察,没有经过灭菌处理的指示剂表现为黄色,经过灭菌过程的指示剂表现为紫色,说明灭菌成功。
实施例21-30提供的高温蒸汽灭菌装置的性能测试结果如表3所示。
表3 实施例21-30提供的高温蒸汽灭菌装置的性能测试结果
Figure PCTCN2019126848-appb-000004
上述是结合实施例对本发明作出的详细说明,但是本发明的实施方式并不受上述实施例的限制,其它任何在本发明专利核心指导思想下所作的改变、替换、组合简化等都包含在本发明专利的保护范围之内。

Claims (15)

  1. 一种吸光隔热一体化光热蒸发材料,其特征在于,所述吸光隔热一体化光热蒸发材料包括隔热体和覆盖在隔热体外表面的吸光体,所述吸光体为垂直取向石墨烯,所述隔热体为石墨烯泡沫,所述垂直取向石墨烯和石墨烯泡沫以共价键形式连接;所述吸光体为表面经亲水官能团修饰的垂直取向石墨烯。
  2. 根据权利要求1所述的吸光隔热一体化光热蒸发材料,其特征在于,所述亲水官能团为含氧官能团。
  3. 根据权利要求1所述的吸光隔热一体化光热蒸发材料,其特征在于,所述吸光体的吸光率为90-99%,所述隔热体的热导率为0.02-0.2Wm -1K -1
  4. 一种制备权利要求1所述的吸光隔热一体化光热蒸发材料的方法,包括如下步骤:
    (1)配制氧化石墨烯水溶液;
    (2)将步骤(1)得到的氧化石墨烯水溶液转移到高温高压反应釜中进行水热法反应,冷却得到石墨烯水凝胶;
    (3)用乙醇水溶液浸泡步骤(2)得到的石墨烯水凝胶;
    (4)将石墨烯水凝胶转移到冷冻腔冷冻,之后转移到干燥腔真空干燥,得到石墨烯泡沫;
    (5)将获得的石墨烯泡沫放置于等离子体增强化学气相沉积反应腔内,通入甲烷或者氢气与甲烷的混合气,进行化学气相沉积反应后,通入惰性气体,冷却,得到垂直取向石墨烯/石墨烯泡沫;
    (6)将步骤(5)得到的垂直取向石墨烯/石墨烯泡沫暴露于臭氧环境中,在垂直取向石墨烯的表面产生修饰亲水官能团,得到吸光隔热一体化光热蒸发材料。
  5. 根据权利要求4所述的吸光隔热一体化光热蒸发材料的制备方法,其特征在于,所述步骤(1)中的氧化石墨烯水溶液还包括添加剂,所述添加剂包括十水四硼酸钠、胺基化合物或其混合物;所述氧化石墨烯的浓度为1-10g L -1,所述十水四硼酸钠浓度为0-10mmol L -1,所述的胺基化合物的浓度为0-100mmol L -1;所述十水四硼酸钠浓度和胺基化合物的浓度不同时为0。
  6. 根据权利要求4所述的吸光隔热一体化光热蒸发材料的制备方法,其特征在于,所述步骤(2)中水热法反应条件为:反应温度为90-180℃;反应时间为6-18h。
  7. 根据权利要求4所述的吸光隔热一体化光热蒸发材料的制备方法,其特征在于,所述步骤(5)中氢气与甲烷的混合气的流量比为0-20:1。
  8. 根据权利要求4所述的吸光隔热一体化光热蒸发材料的制备方法,其特征在于,所述步骤(5)中化学气相沉积反应的反应条件为:合成温度为500-1000℃,合成气压为10-1000Pa。
  9. 一种根据权利要求1-3中任一项所述的吸光隔热一体化光热蒸发材料的应用,所述吸光隔热一体化光热蒸发材料用于海水淡化、污水净化和高温蒸汽灭菌。
  10. 一种太阳能光热海水淡化装置,其特征在于,所述太阳能光热海水淡化装置从上往下依次包括透光冷凝板、蒸发室和收集室;蒸发室内设有光热蒸发材料;所述透光冷凝板覆盖在蒸发室上并将冷凝水引导至收集室;所述光热蒸发材料为权利要求1-3任一所述的吸光隔热一体化光热蒸发材料。
  11. 根据权利要求10所述的太阳能光热海水淡化装置,其特征在于,所述太阳能光热海水淡化装置还包括抽气通道和蒸汽疏导管,所述抽气通道的一端与蒸发室连接、另一端通过蒸汽疏导管与收集室连接;所述抽气通道和蒸汽疏导管设置在蒸发室的侧壁。
  12. 根据权利要求10所述的太阳能光热海水淡化装置,其特征在于,所述透光冷凝板的倾斜角度为10°-60°。
  13. 一种高温蒸汽灭菌装置,其特征在于,所述高温蒸汽灭菌装置包括蒸汽室、覆盖在蒸汽室上的聚光板、装配在蒸汽室内部的载物盘和蓄水杯、以及位于蓄水杯中的光热蒸发材料;所述光热蒸发材料为权利要求1-3任一所述的吸光隔热一体化光热蒸发材料。
  14. 根据权利要求13所述的高温蒸汽灭菌装置,其特征在于,所述载物盘竖直方向有若干个通孔;所述聚光板将光束聚集到蓄水杯内;所述聚光板与蓄水杯的横截面形状相同,横截面积比为10-100:1,聚光板与蓄水杯同心装配。
  15. 根据权利要求13所述的高温蒸汽灭菌装置,其特征在于,所述蒸汽室的内部设置安装载物盘的托台。
PCT/CN2019/126848 2019-05-06 2019-12-20 一种吸光隔热一体化光热蒸发材料及其制备方法和应用 WO2020224267A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/960,067 US20210253431A1 (en) 2019-05-06 2019-12-20 Photothermal evaporation material integrating light absorption and thermal insulation, preparation application thereof, use thereof
JP2020534177A JP7015586B2 (ja) 2019-05-06 2019-12-20 吸光断熱一体化光熱蒸発材料及びその調製方法と応用

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910370640.4A CN110182789B (zh) 2019-05-06 2019-05-06 一种吸光隔热一体化光热蒸发材料及其制备方法和应用
CN201910370638.7 2019-05-06
CN201910370668.8A CN110101882B (zh) 2019-05-06 2019-05-06 一种高温蒸汽灭菌装置
CN201910370640.4 2019-05-06
CN201910370638.7A CN110194498B (zh) 2019-05-06 2019-05-06 一种太阳能光热海水淡化装置
CN201910370668.8 2019-05-06

Publications (1)

Publication Number Publication Date
WO2020224267A1 true WO2020224267A1 (zh) 2020-11-12

Family

ID=73051027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126848 WO2020224267A1 (zh) 2019-05-06 2019-12-20 一种吸光隔热一体化光热蒸发材料及其制备方法和应用

Country Status (3)

Country Link
US (1) US20210253431A1 (zh)
JP (1) JP7015586B2 (zh)
WO (1) WO2020224267A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117142552B (zh) * 2023-09-19 2024-05-31 郑州大学 一种自组装双功能光热蒸发柱及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111777252B (zh) * 2020-07-10 2022-07-15 陕西理工大学 一种基于石墨烯过滤的防堵海水淡化装置
CN114873677B (zh) * 2022-05-18 2023-04-07 西安交通大学 一种抗盐沉积的太阳能光热转化水处理方法及装置
CN114940523B (zh) * 2022-06-27 2023-09-01 青岛大学 基于界面光热蒸发技术的太阳能海水淡化收集装置
CN115196632A (zh) * 2022-07-14 2022-10-18 南昌大学 一种石墨烯基光热转换材料的制备方法及其应用
CN115404698B (zh) * 2022-07-22 2024-04-12 湖北大学 一种基于生物质黑色素墨球的太阳能吸收材料及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104927791A (zh) * 2015-06-15 2015-09-23 西北工业大学 氧化石墨烯与ntc半导体粉体杂化太阳能吸热材料及制备方法
US20170121177A1 (en) * 2014-06-09 2017-05-04 University Of Surrey Method for Graphene and Carbon Nanotube Growth
CN106865528A (zh) * 2017-02-24 2017-06-20 湖北大学 一种还原氧化石墨烯薄膜及其制备方法和应用
CN106892476A (zh) * 2017-04-28 2017-06-27 北京化工大学 一种海水淡化装置
CN107311467A (zh) * 2017-05-27 2017-11-03 北京大学 一种基于石墨烯玻璃的光热转化器件的制备方法、石墨烯玻璃和光热转化器件
CN110101882A (zh) * 2019-05-06 2019-08-09 浙江大学 一种高温蒸汽灭菌装置
CN110182789A (zh) * 2019-05-06 2019-08-30 浙江大学 一种吸光隔热一体化光热蒸发材料及其制备方法和应用
CN110194498A (zh) * 2019-05-06 2019-09-03 浙江大学 一种太阳能光热海水淡化装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012522B2 (en) * 2011-06-15 2015-04-21 Massachusetts Institute Of Technology Foams of graphene, method of making and materials made thereof
WO2017053089A1 (en) * 2015-09-23 2017-03-30 Nanotek Instruments, Inc. Monolithic film of integrated highly oriented halogenated graphene
CN108602046B (zh) * 2015-12-28 2023-02-17 纳米技术仪器公司 石墨烯-碳混杂泡沫

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170121177A1 (en) * 2014-06-09 2017-05-04 University Of Surrey Method for Graphene and Carbon Nanotube Growth
CN104927791A (zh) * 2015-06-15 2015-09-23 西北工业大学 氧化石墨烯与ntc半导体粉体杂化太阳能吸热材料及制备方法
CN106865528A (zh) * 2017-02-24 2017-06-20 湖北大学 一种还原氧化石墨烯薄膜及其制备方法和应用
CN106892476A (zh) * 2017-04-28 2017-06-27 北京化工大学 一种海水淡化装置
CN107311467A (zh) * 2017-05-27 2017-11-03 北京大学 一种基于石墨烯玻璃的光热转化器件的制备方法、石墨烯玻璃和光热转化器件
CN110101882A (zh) * 2019-05-06 2019-08-09 浙江大学 一种高温蒸汽灭菌装置
CN110182789A (zh) * 2019-05-06 2019-08-30 浙江大学 一种吸光隔热一体化光热蒸发材料及其制备方法和应用
CN110194498A (zh) * 2019-05-06 2019-09-03 浙江大学 一种太阳能光热海水淡化装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117142552B (zh) * 2023-09-19 2024-05-31 郑州大学 一种自组装双功能光热蒸发柱及其制备方法

Also Published As

Publication number Publication date
JP7015586B2 (ja) 2022-02-15
JP2021525206A (ja) 2021-09-24
US20210253431A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
WO2020224267A1 (zh) 一种吸光隔热一体化光热蒸发材料及其制备方法和应用
CN110194498B (zh) 一种太阳能光热海水淡化装置
CN110182789B (zh) 一种吸光隔热一体化光热蒸发材料及其制备方法和应用
Zhang et al. Direct solar steam generation system for clean water production
CN210214859U (zh) 一种太阳能光热海水淡化装置
CN112978834B (zh) 一种水面漂浮式冷凝器太阳能海水淡化装置
Zhang et al. Carbon nanofibers enhanced solar steam generation device based on loofah biomass for water purification
US10946340B2 (en) Superhydrophobic coated micro-porous carbon foam membrane and method for solar-thermal driven desalination
CN107338642A (zh) 一种功能化非织造布海水淡化材料及其制备方法和应用
Huang et al. A solar evaporator based on hollow polydopamine nanotubes with all-in-one synergic design for highly-efficient water purification
Gao et al. Sandwich-structured MXene/wood aerogel with waste heat utilization for continuous desalination
CN108925309B (zh) 一种农业大棚自给水系统
Yashim et al. Recent advances on lightweight aerogel as a porous receiver layer for solar thermal technology application
CN110218354A (zh) 一种用于光热水蒸汽转化的聚乙烯醇碳纳米管凝胶材料
Gu et al. Multilevel design strategies of high-performance interfacial solar vapor generation: A state of the art review
Wang et al. Janus carbon nanotube sponges for highly efficient solar-driven vapor generation
CN210419368U (zh) 一种太阳能光热膜蒸馏装置
CN112960719B (zh) 一种高效净水的净水系统
CN109607651B (zh) 合成生物色素膜海水淡化装置
CN110101882B (zh) 一种高温蒸汽灭菌装置
CN109566200B (zh) 一种基于流化床的农业大棚自给水系统
CN115725112B (zh) 一种Janus双层气凝胶及其制备方法与应用
US20220184557A1 (en) Solar-thermal membrane for dewatering aqueous organic-acid solutions
CN212609646U (zh) 一种光热蒸发和余热回收一体化装置
Ma et al. Recent Progress on Emerging Porous Materials for Solar‐Driven Interfacial Water Evaporation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020534177

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928088

Country of ref document: EP

Kind code of ref document: A1