WO2020224191A1 - 一种双偏振雷达 - Google Patents

一种双偏振雷达 Download PDF

Info

Publication number
WO2020224191A1
WO2020224191A1 PCT/CN2019/111716 CN2019111716W WO2020224191A1 WO 2020224191 A1 WO2020224191 A1 WO 2020224191A1 CN 2019111716 W CN2019111716 W CN 2019111716W WO 2020224191 A1 WO2020224191 A1 WO 2020224191A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
module
pulse
polarization direction
polarization
Prior art date
Application number
PCT/CN2019/111716
Other languages
English (en)
French (fr)
Inventor
李赛
宁凯
王振
寸怀诚
Original Assignee
湖南宜通华盛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南宜通华盛科技有限公司 filed Critical 湖南宜通华盛科技有限公司
Priority to JP2021536763A priority Critical patent/JP7213443B2/ja
Priority to US17/420,664 priority patent/US12019153B2/en
Publication of WO2020224191A1 publication Critical patent/WO2020224191A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/106Systems for measuring distance only using transmission of interrupted, pulse modulated waves using transmission of pulses having some particular characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/024Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using polarisation effects
    • G01S7/025Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using polarisation effects involving the transmission of linearly polarised waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/282Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/292Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the present disclosure relates to the technical field of weather radars, and in particular to a dual-polarization radar.
  • the existing dual-polarization weather radar is mainly divided into: the AHV system of alternate transmission and simultaneous reception and the SHV system of simultaneous transmission and reception.
  • both SHV and AHV systems need to set up two receiving channels, resulting in a relatively high architecture scale and complexity; at the same time, equipment costs remain high.
  • the scale, complexity, and equipment cost are more obvious.
  • the embodiment of the present invention provides a dual-polarization radar, which solves the technical problems of a complex structure and large scale of a dual-polarization radar receiving module in the prior art.
  • some embodiments of the present invention provide a dual-polarization radar, including: a transmitting module, a receiving module, a transceiver switching module, a first polarization direction antenna, and a second polarization direction antenna;
  • the transmitting module is used to transmit a first pulse signal and a second pulse signal with different radio frequencies
  • the receiving module is used to receive the backscattered echo signals of the first pulse signal and the second pulse signal;
  • the transceiver switching module is configured to transmit the first pulse signal to the first polarization direction antenna, transmit the second pulse signal to the second polarization direction antenna, and change the first polarization direction Transmitting the echo signal and the echo signal in the second polarization direction to the receiving module;
  • the first polarization direction antenna is used to transmit the first pulse signal and receive the first polarization direction echo signal
  • the second polarization direction antenna is used to transmit the second polarization pulse signal and receive the second polarization direction echo signal;
  • the dual polarization radar also includes: a signal synthesis module;
  • the signal synthesis module is configured to receive the first polarization direction echo signal and the second polarization direction echo signal, and combine the first polarization direction echo signal and the second polarization direction
  • the echo signal is synthesized into a backscattered echo signal and then sent to the receiving module.
  • the transmitting module is used to generate a pulse pair signal, and the pulse pair signal includes a first pulse signal and a second pulse signal with different radio frequencies.
  • the pulse pair signal includes: two or more pulse pairs
  • the pulse width of the first pulse pair is larger than the pulse widths of other pulse pairs.
  • the transmitting module includes: a signal generator and a frequency conversion circuit
  • the signal generator is used to generate the first pulse signal and the second pulse signal with the same waveform
  • the frequency conversion circuit is used for converting the first pulse signal and the second pulse signal into two radio frequency signals with different radio frequencies and then transmitting them to the transceiver switching module.
  • the transmitting module includes: a signal generator and a frequency conversion circuit
  • the signal generator is used to generate the same first pulse signal and the second pulse signal.
  • the frequency conversion circuit is used for converting the first pulse signal and the second pulse signal into two radio frequency signals with different radio frequencies and then transmitting them to the transceiver switching module.
  • the transceiver switching module includes: a first gating module, a second gating module, and a third gating module;
  • the input end of the first gating module is connected to the transmitting module, and is used to obtain the pulse pair signal, and strobe the second gating module to transmit the first pulse signal to the first A polarization direction antenna or strobe the third gating module, and transmit the second pulse signal to the second polarization direction antenna;
  • the second gating module also receives the first polarization direction echo signal and transmits it to the signal synthesis module;
  • the third gating module also receives the second polarization direction echo signal and transmits it to the signal synthesis module.
  • the first gating module is a radio frequency switch
  • the second gating module and the third gating module are radio frequency switches or circulators.
  • the pulse pair signals are two pulse signals immediately adjacent in time, and the time interval between the two pulses is not greater than the pulse width of each pulse.
  • the pulse pair signals are two pulse signals immediately in time, and the time interval between the two pulses is not greater than 1 us.
  • the transmitting module includes a first transmitting module and a second transmitting module, and the first transmitting module and the second transmitting module synchronously transmit the first pulse signal and the second pulse signal with different radio frequencies.
  • the transceiver switching module includes: a first gating module and a second gating module;
  • the input end of the first gating module is connected to the first transmitting module, and is used to obtain a first pulse signal and transmit the first pulse signal to the first polarization direction antenna, and the first The gating module also receives the echo signal in the first polarization direction and transmits it to the signal synthesis module; and
  • the input end of the second gating module is connected to the second transmitting module, and is used to obtain a second pulse signal and transmit the second pulse signal to the second polarization direction antenna, and The second gating module also receives the second polarization direction echo signal and transmits it to the signal synthesis module.
  • the first gating module and the second gating module are radio frequency switches or circulators.
  • each of the first pulse signal and the second pulse signal includes two or more single pulses, and among the two or more single pulses, the first pulse The pulse width is greater than that of other pulses.
  • each of the first transmitting module and the second transmitting module includes a signal generator and a frequency conversion circuit.
  • the signal generator includes: a direct digital frequency synthesizer DDS or a digital-to-analog converter DA.
  • the frequency conversion circuit includes: a first mixer or a frequency multiplier.
  • the signal generator and the frequency conversion circuit are integrated into one body.
  • the receiving module includes: a receiver
  • the receiver is connected to the signal synthesis module, and receives the backscattered echo signal.
  • the receiving module includes: an analog-to-digital conversion circuit and a second mixer; the analog-to-digital conversion circuit is connected to the signal synthesis module through the second mixer.
  • the signal synthesis module includes: a power splitter, a second low noise amplifier, and a third low noise amplifier;
  • the output terminal of the power divider is connected to the receiving module
  • the two input terminals of the power divider are respectively connected to the output terminal of the second low noise amplifier and the output terminal of the third low noise amplifier;
  • the input end of the second low-noise amplifier and the input end of the third low-noise amplifier are respectively connected to the transceiver switching module to obtain the echo signal in the first polarization direction and the echo signal in the second polarization direction. Wave signal.
  • the dual-polarization radar provided in the embodiment of the present application alternately outputs pulse pair signals with different center frequencies through the transmitting module, and is connected to the first polarization direction antenna and the second polarization direction antenna and the receiving module through the transceiver switching module, thereby achieving
  • the monitoring signals of the two polarization directions are alternately sent, so as to avoid cross-coupling caused by sending two polarization signals at the same time and reduce the measurement error; further, the first polarization direction echo signal and the second polarization direction are combined through the signal synthesis module
  • the directional echo signal is sent to the receiving module to complete the reception of the echo signal, realize the optimization of the radar structure, and reduce the structure of the receiving channel, thereby greatly reducing the scale and complexity of the radar structure, which is more conducive to mass-scale use; at the same time, through the same transmission During each transmission period, the module continuously transmits pulse pair signals containing pulses of different frequencies at short intervals, or transmits pulse signals of different frequencies synchronously through different transmission modules, thereby overcoming
  • the defect of poor correlation of the echo signal caused by the long transmission time interval thereby ensuring the monitoring accuracy; further, in order to avoid the problem that the echoes of the two polarization directions are mixed together and are difficult to distinguish, the pulses of the two polarization directions are used differently. It can achieve high correlation and dual-polarization target differentiation in alternate transmission mode, and achieve good radar monitoring performance. On the other hand, it is set to emit continuous pulse pairs with different pulse widths, which can cover a longer distance library through wide pulse pairs, and solve the problem of too long blind areas of wide pulse pairs through narrow pulse pairs, thereby solving the derivative defects caused by structural optimization. While optimizing the structure, it still has good radar monitoring performance.
  • FIG. 1 is a schematic diagram of the structure of a dual-polarization radar provided by some embodiments of the present invention.
  • Fig. 2 is a pulse timing control diagram of the dual-polarization radar structure of the embodiment shown in Fig. 1.
  • FIG. 3 is a schematic diagram of the structure of dual-polarization radars provided by other embodiments of the present invention.
  • FIG. 4a is a pulse timing control diagram of the first transmitting module in the dual-polarization radar structure of the embodiment shown in FIG. 3.
  • Fig. 4b is a pulse timing control diagram of the second transmitting module in the dual-polarization radar structure of the embodiment shown in Fig. 3.
  • the embodiments of the present application provide a dual-polarization radar to solve the technical problem of a complex structure and large scale of a dual-polarization radar receiving module in the prior art.
  • the dual-polarization radar of the embodiment of the present invention greatly simplifies the structure, reduces the scale of its components, and greatly reduces its use cost, especially in phased array radars and other multi-channel radars.
  • the implementation provided by this application can still have comparable performance with the existing dual-polarization radar, and even slightly better than the dual-polarization radar based on the AHV and SHV systems.
  • the dual-polarization radar provided by some embodiments of the present invention includes: a transmitting module 1, a receiving module 8, a transceiver switching module, a first polarization direction antenna 4, and a second polarization direction antenna 6.
  • the transmitting module 1 is used to generate a pulse pair signal, and the pulse pair signal includes a first pulse signal and a second pulse signal with different radio frequencies.
  • the pulse pair signals are two pulse signals close in time, and the time interval between the two pulses is very small, such as 1 us or less. In other words, the time interval between the two radio frequency signals is very short, which can improve the correlation between the two echo signals and ensure good monitoring accuracy.
  • the receiving module 8 is used to receive the backscattered echo signals of the first pulse signal and the second pulse signal; that is, the echo signals of two polarization directions.
  • the transceiver switching module includes a first gating module 2, a second gating module 3, and a third gating module 5, which are used to transmit the first pulse signal to the first polarization direction antenna 4,
  • the second pulse signal is transmitted to the second polarization direction antenna 6, and the first polarization direction echo signal and the second polarization direction echo signal are transmitted to the receiving module 8.
  • the dual-polarization radar also includes: a signal synthesis module 7; the signal synthesis module 7 is configured to receive the first polarization direction echo signal and the second polarization direction echo signal, and combine the first The polarization direction echo signal and the second polarization direction echo signal are synthesized into a backscattered callback signal and then sent to the receiving module 8 to realize a single receiving channel structure.
  • the first polarization direction antenna 4 is used to transmit the first pulse signal and receive the first polarization direction echo signal;
  • the second polarization direction antenna 6 is used to transmit the second polarization direction Pulse signal and receive the echo signal in the second polarization direction.
  • the pulse pair signal includes: two or more pulse pairs; among the two or more pulse pairs, the pulse width of the first pulse pair is larger than the pulses of other pulse pairs width.
  • the first radio frequency signal and the second radio frequency signal use different radio frequencies, so that the echoes in the two polarization directions can be distinguished.
  • the transmitter module transmits two or more pulse pairs in one transmission period; each pulse pair is composed of a horizontally polarized pulse H and a vertically polarized pulse V ; Among the two or more consecutive pulse pairs, the width of the first pulse pair is greater than the width of the subsequent pulse pairs. That is, the narrow pulse pair is set after the wide pulse pair to achieve the purpose of solving the blind zone, thereby avoiding the occurrence of a larger blind zone.
  • the number of pulse pairs can also be one pair, and there may be blind spots.
  • the signal transmitting module 1 may include: a signal generator 11 and a frequency conversion circuit 12; the signal generator 11 is used to generate the first pulse signal and the first pulse signal with the same waveform and different intermediate frequencies. The second pulse signal; the frequency conversion circuit 12 is used to convert the first pulse signal and the second pulse signal into two radio frequency signals with different radio frequencies and then transmit them to the transceiver switching module.
  • the signal transmitting module 1 may include: a signal generator 11 and a frequency conversion circuit 12; the signal generator 11 is used to generate the same first pulse signal and the second pulse signal; the frequency conversion The circuit 12 is used for converting the first pulse signal and the second pulse signal into two radio frequency signals with different radio frequencies and then transmitting them to the transceiver switching module.
  • the signal generator 11 may include a direct digital frequency synthesizer DDS or a digital-to-analog converter DA for generating pulse pair signals.
  • the frequency conversion circuit 12 may include: a first mixer or a frequency multiplier; of course, it may also be other frequency adjustment devices.
  • the signal generator 11 and the frequency conversion circuit 12 may be integrated into one body, such as a single RFSOC chip.
  • the receiving module 8 may include a receiver; the receiver is connected to the signal synthesis module, and receives the backscatter callback signal.
  • the receiving module 8 may include: an analog-to-digital conversion circuit AD 81 and a second mixer 82; the analog-to-digital conversion circuit AD 81 is connected to the signal synthesis module 7 through the second mixer 82 to achieve a return Acquisition and transformation of wave synthesis signals.
  • the receiving channel receiving module 8 may further include: a first low-noise amplifier 83; the first low-noise amplifier 83 is connected in series with the output terminals of the second mixer 82 and the signal synthesizer 7 In between, realize the filtering and amplifying of the received echo signal of the channel to improve the signal to noise ratio.
  • the signal synthesis module includes: a power divider 71, a second low noise amplifier 73 and a third low noise amplifier 72; the output end of the power divider 71 is connected to the receiving module 8; The two input terminals of the power divider 71 are respectively connected through the output terminal of the second low noise amplifier 73 and the output terminal of the third low noise amplifier 72; the input terminal of the second low noise amplifier 73 and the The input ends of the third low-noise amplifier 72 are respectively connected to the transceiver switching module to obtain the echo signal in the first polarization direction and the echo signal in the second polarization direction.
  • the transceiver switching module includes: a first gating module 2, a second gating module 3, and a third gating module 5; the input terminal of the first gating module 2 and the The transmitting module 1 is connected to obtain the pulse pair signal, strobe the second strobe module 3, and transmit the first pulse signal to the first polarization direction antenna 4 or strobe the first
  • the three strobe module 5 transmits the second pulse signal to the second polarization direction antenna 6; the second strobe module 3 also receives the first polarization direction echo signal and transmits it to The signal synthesis module 7; the third gating module 5 also receives the second polarization direction echo signal and transmits it to the signal synthesis module 7.
  • the first gating module 2 may be a radio frequency switch
  • the second gating module 3 and the third gating module 5 may be radio frequency switches or circulators.
  • the present invention compared with the existing dual-receiving module system, it is optimized and set to a single-receiving module to reduce the complexity of the structure and the scale of the components; it will be described in detail below.
  • the first polarization direction antenna 4 is connected to the second gating module 3, and transmits the first radio frequency signal or receives the first polarization direction echo signal; the second polarization direction antenna 6 is connected to The third gating module 5 is connected to transmit the second radio frequency signal or receive the echo signal in the second polarization direction.
  • the first strobe module 2 strobes the second strobe module 3 or the third strobe module 5 under the action of the strobe control signal, that is, the first polarized antenna is strobed 4 or the second polarized antenna 6, which emits polarized waves through the polarized feed port of the corresponding antenna.
  • the two input ends of the signal synthesis module 7 are respectively connected to the second gating module 3 and the third gating module 5 to obtain the first polarization direction
  • the echo signal and the echo signal in the second polarization direction are combined into a backscattered echo signal.
  • the horizontally polarized waves and vertically polarized waves emitted by the antenna meet the target, they will generate backscattered echoes to the radar antenna.
  • the vertical polarization port can only receive the vertically polarized wave emitted by itself, and the horizontal polarization port can only receive the horizontally polarized wave emitted by itself, and pass through the
  • the second gating module 3 and the third gating module 5 enter the signal synthesis module 7, and after synthesizing a signal, enter the receiving module 8 for analysis.
  • the moving speed of weather targets generally does not exceed 60m/s, and the corresponding Doppler frequency shift is on the order of kHz.
  • the receiver can distinguish When it comes out, it can distinguish the vertical polarization echo and the horizontal polarization echo.
  • the time interval between the two pulses in the pulse pair signal is controlled within the time corresponding to the pulse width of each pulse, instead of the pulse period interval in the existing AHV mode, so
  • the echo correlation is higher than that of the AHV mode.
  • the correlation coefficient of the two polarized waves is 0.998, which is close to the zero-delay correlation coefficient in the SHV mode; that is to say, this embodiment
  • the performance of the echo correlation of the single-receiving module optimization solution provided is the same as that of the existing SHV system radar, which is better than AHV.
  • the transmitting module includes: a signal generator 11 and a frequency conversion circuit 12;
  • the signal generator 11 is connected to the frequency conversion circuit 12, and converts the pulse pair signal into the first polarization direction radio frequency signal and the second polarization direction radio frequency signal.
  • the transmission is divided into two sub-pulses, and the signal generator 11 generates two signals IF1, IF2 of the same waveform with different center frequencies immediately adjacent in time, and then pass through the frequency conversion circuit 12 to become radio frequency signals RF1, RF2; or
  • This process can also be that the signal generator 1 generates two identical signals, and then the frequency conversion circuit 12 implements RF1 and RF2, such as the rapid switching of the local oscillator frequency in the mixer.
  • the signal generator 11 may adopt a direct digital frequency synthesizer DDS or a driver amplifier DA.
  • the frequency conversion circuit 12 may use a mixer or a frequency multiplier.
  • the frequency conversion circuit 12 can be connected to the first gating module 2 to transmit the first polarization direction radio frequency signal and the second polarization direction radio frequency signal.
  • the transmitting module 1 may further include: an amplifier 13 and a filter (not shown); the amplifier 13 and the filter are connected in series to the frequency conversion circuit 12 and the first Between the strobe module 2.
  • the receiving module 8 may include: an analog-to-digital conversion circuit AD 81 and a second mixer 82; the analog-to-digital conversion circuit AD 81 is connected to the signal synthesis module 7 through the second mixer 82; Acquisition and transformation of wave synthesis signals.
  • the receiving module 8 may further include: a first low-noise amplifier 83; the first low-noise amplifier 83 is connected in series with the output terminals of the second mixer 82 and the signal synthesizer 7 In between, the echo signal of the channel is amplified and received, and the signal-to-noise ratio is improved.
  • the signal synthesis module 7 may include: a power divider 71, a second low noise amplifier 73 and a third low noise amplifier 72; the output end of the power divider 71 is connected to the receiving module 8
  • the two output ends of the power divider 71 are respectively connected to the second gating module 3 and the third gating module 5 through the second low noise amplifier 73 and the third low noise amplifier 72, and
  • the two echo signals are combined into one, so that the signal-to-noise ratio directly connected to the power divider 71 after the second gating module 3 and the third gating module 5 is higher, and the obtained signal-to-noise ratio value exceeds that of the power divider 71 Noise figure, thereby maintaining a high signal-to-noise ratio.
  • the first gating module 2, the second gating module 3, and the third gating module 5 are all used for gating.
  • the first gating module 2 can be selected as a radio frequency switch
  • the second gating module 3 and the third gating module 5 can be selected as a radio frequency switch or a circulator.
  • FIG. 3 shows a schematic diagram of the structure of dual polarization radars provided by other embodiments of the present invention.
  • FIG. 4a is a pulse timing control diagram of the first transmitting module 10 of the dual polarization radar structure of the embodiment shown in FIG. 3.
  • 4b is a pulse timing control diagram of the second transmitting module 20 of the dual polarization radar structure of the embodiment shown in FIG. 3.
  • the dual polarization radar provided by other embodiments of the present invention includes: a transmitting module 1, a receiving module 8, transceiver switching modules 30 and 50, a first polarization direction antenna 4 and a second polarization direction antenna 6.
  • the transmitting module 1 includes two transmitting modules, a first transmitting module 10 and a second transmitting module 20.
  • the first transmitting module 10 and the second transmitting module 20 are used to synchronously transmit the first pulse signal and the second pulse signal with the same waveform and different radio frequencies.
  • the first pulse signal may be a horizontally polarized pulse H
  • the second pulse signal may be a vertically polarized pulse V
  • the first pulse signal may be a vertical polarization pulse V
  • the second pulse signal may be a horizontal polarization pulse H. Since the first transmitting module 10 and the second transmitting module 20 simultaneously transmit the first pulse signal and the second pulse signal with different radio frequencies, the correlation between the two echo signals can be better improved, and good monitoring accuracy can be ensured.
  • the receiving module 8 is used to receive the backscattered echo signals of the first pulse signal and the second pulse signal; that is, the echo signals of two polarization directions.
  • the transceiver switching module 30, 50 includes a first gating module 30 and a second gating module 50, which are used to transmit the first pulse signal to the first polarization direction antenna 4, and transmit the second pulse The signal is transmitted to the second polarization direction antenna 6, and the first polarization direction echo signal and the second polarization direction echo signal are transmitted to the receiving module 8.
  • the dual-polarization radar also includes: a signal synthesis module 7; the signal synthesis module 7 is configured to receive the first polarization direction echo signal and the second polarization direction echo signal, and combine the first The polarization direction echo signal and the second polarization direction echo signal are synthesized into a backscattered callback signal and then sent to the receiving module 8 to realize a single receiving channel structure.
  • the first polarization direction antenna 4 is used to transmit the first pulse signal and receive the first polarization direction echo signal;
  • the second polarization direction antenna 6 is used to transmit the second polarization direction Pulse signal and receive the echo signal in the second polarization direction.
  • the first polarization direction antenna 4 is connected to the first gating module 30, and transmits the first radio frequency signal or receives the first polarization direction echo signal;
  • the second polarization direction The antenna 6 is connected to the second gating module 50, and transmits the second radio frequency signal or receives the second polarization direction echo signal.
  • the first gating module 30 or the second gating module 50 is gated, that is, the first polarized antenna 4 or the second polarized antenna 6 is gated, and the power is fed through the polarization of the corresponding antenna
  • the mouth emits polarized waves.
  • the two input ends of the signal synthesis module 7 are respectively connected to the first gating module 30 and the second gating module 50 to obtain the first polarization direction
  • the echo signal and the echo signal in the second polarization direction are combined into a backscattered echo signal.
  • the horizontally polarized waves and vertically polarized waves emitted by the antenna meet the target, they will generate backscattered echoes to the radar antenna.
  • the vertical polarization port can only receive the vertically polarized wave emitted by itself, and the horizontal polarization port can only receive the horizontally polarized wave emitted by itself, and pass through the
  • the first gating module 30 and the second gating module 50 enter the signal synthesis module 7 to synthesize a signal and enter the receiving module 8 for analysis.
  • each of the first pulse signal and the second pulse signal includes two or more single pulses, and the two or more pulses In a single pulse, the pulse width of the first pulse is greater than the pulse widths of other pulses.
  • the first radio frequency signal and the second radio frequency signal use different radio frequencies, so that the echoes in the two polarization directions can be distinguished.
  • the first transmitting module 10 can transmit two or more horizontally polarized single pulses in one transmission period, and at the same time, the second transmitting module 20 can transmit two or more horizontal polarization single pulses.
  • the width of the first single pulse is greater than the width of the subsequent single pulses. That is, the narrow pulse is set after the wide pulse to achieve the purpose of removing the blind zone, thereby avoiding the occurrence of a larger blind zone.
  • each of the first transmitting module 10 and the second transmitting module 20 may include: a signal generator 11 and a frequency conversion circuit 12.
  • the signal generator 11 may include a direct digital frequency synthesizer DDS or a digital-to-analog converter DA for generating pulse signals.
  • the frequency conversion circuit 12 may include: a first mixer or a frequency multiplier; of course, it may also be other frequency adjustment devices.
  • the signal generator 11 and the frequency conversion circuit 12 may be integrated into one body, such as a single RFSOC chip.
  • each of the first transmitting module 10 and the second transmitting module 20 may include: an amplifier 13 and a filter (not shown); the amplifier 13 and the filter are connected in series and connected to the frequency Between the conversion circuit 12 and the first gating module 30 or the second gating module 50.
  • the receiving module 8 may include a receiver; the receiver is connected to the signal synthesis module, and receives the backscattered echo signal.
  • the receiving module 8 may include: an analog-to-digital conversion circuit AD 81 and a second mixer 82; the analog-to-digital conversion circuit AD 81 is connected to the signal synthesis module 7 through the second mixer 82 to realize the return Acquisition and transformation of wave synthesis signals.
  • the receiving module 8 may further include: a first low noise amplifier 83; the first low noise amplifier 83 is connected in series between the second mixer 82 and the output terminal of the signal synthesizer 7 , To realize the filtering and amplification of the channel to receive the echo signal, and improve the signal-to-noise ratio.
  • the transceiver switching module includes: a first gating module 30 and a second gating module 50; the input end of the first gating module 30 is connected to the first transmitting module 10 for Obtain the first pulse signal, and transmit the first pulse signal to the first polarization direction antenna 4; the input end of the second gating module 50 is connected to the second transmitting module 20, and is used to obtain the second pulse signal , And transmit the second pulse signal to the second polarization direction antenna 6; the first gating module 30 also receives the first polarization direction echo signal and transmits it to the signal synthesis Module 7; The second gating module 50 also receives the second polarization direction echo signal and transmits it to the signal synthesis module 7.
  • the first gating module 30 and the second gating module 50 may be radio frequency switches or circulators.
  • the signal synthesis module 7 may include: a power divider 71, a second low noise amplifier 73, and a third low noise amplifier 72; the output terminal of the power divider 71 and the receiving module 8
  • the two input ends of the power divider 71 are respectively connected to the output end of the second low noise amplifier 73 and the output end of the third low noise amplifier 72; the input ends of the second low noise amplifier 73 and The input ends of the third low-noise amplifier 72 are respectively connected to the transceiver switching module to obtain the echo signal in the first polarization direction and the echo signal in the second polarization direction.
  • the two output ends of the power divider 71 are respectively connected to the first gating module 30 and the second gating module 50 through the second low noise amplifier 73 and the third low noise amplifier 72 ,
  • the two echo signals are combined into one, so that the signal-to-noise ratio directly connected to the power divider 71 after the first gating module 30 and the second gating module 50 is higher, and the obtained signal-to-noise ratio value exceeds that of the power divider 71 noise figure, thus maintaining a high signal-to-noise ratio.
  • the above-mentioned embodiment of the present invention is similar to the embodiment shown in FIG. 3, and optimizes the existing dual-receiving module system, and is configured as a single-receiving module to reduce structural complexity and component scale.
  • the two transmitting modules correspond to two radiating antennas with different polarization directions, and the two transmitting modules transmit signals of different frequencies, the transmitted waves in the two polarization directions can be distinguished only by frequency division.
  • the correlation performance of the two polarization directions reaches the ideal 1, thereby further improving the correlation of the echo signal and ensuring the accuracy of monitoring.
  • the embodiment of the present invention also proposes a weather radar monitoring method based on the dual-polarization radar of the foregoing embodiment.
  • the dual-polarization radar provided in the embodiment of the present application alternately outputs pulse pair signals with different center frequencies through the transmitting module, and is connected to the first polarization direction antenna and the second polarization direction antenna and the receiving module through the transceiver switching module, thereby achieving
  • the monitoring signals of the two polarization directions are alternately sent to avoid cross-coupling caused by sending two polarization signals at the same time, and the measurement error is reduced; further, the echo signal in the first polarization direction and the second polarization direction are returned through the transceiver switching module.
  • the wave signal is sent to the receiving module to complete the receiving of the echo signal, realize the optimization of the radar structure, and reduce the structure of the receiving channel, thereby greatly reducing the scale and complexity of the radar structure, which is more conducive to large-scale use; at the same time, through every transmission During the period, the pulse pair signals are continuously transmitted at short intervals through the same transmitter module, or pulse signals with different frequencies are synchronized through different transmitter modules, so as to overcome the echo caused by the large transmission time interval in the alternate transmission mode of the existing AHV system.
  • the pulses in the two polarization directions are used with different radio frequency and intermediate frequency. In this way, high correlation and dual-polarization target differentiation in alternate transmission mode are realized, and good radar monitoring performance is achieved.
  • it if it is set to emit continuous pulse pairs with different pulse widths, it can cover a longer distance library through wide pulses, and pass narrow pulses? Solve the problem of excessively long wide-pulse blind zone, thereby solving the derivative defects caused by structural optimization, and achieve the optimized structure while still having good radar monitoring performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

提供一种双偏振雷达,包括:发射模块(1),用于发射射频不同的第一脉冲信号和第二脉冲信号;接收模块(8),用于接收第一脉冲信号和第二脉冲信号的后向散射回波信号;收发切换模块(2,3,5),用于将第一脉冲信号传输至第一极化方向天线(4),将第二脉冲信号传输至第二极化方向天线(6),并将第一极化方向回波信号和第二极化方向回波信号传输至接收模块(8);第一极化方向天线(4),用于发射第一脉冲信号,并接收第一极化方向回波信号;第二极化方向天线(6),用于发射第二极化脉冲信号,并接收第二极化方向回波信号;信号合成模块(7),用于接收第一极化方向回波信号以及第二极化方向回波信号,并合成为后向散射回波信号后发送给接收模块(8)。由此实现了交替发送同时接收单接收通道的雷达结构。

Description

一种双偏振雷达
相关申请的交叉引用
本申请要求2019年5月5日提交中国专利局的申请号为201910366778.7的发明专利申请的优先权,该专利申请的公开内容在此通过引用合并至本申请中。
技术领域
本公开内容涉及天气雷达技术领域,特别涉及一种双偏振雷达。
背景技术
现有的双偏振天气雷达主要分为:交替发送同时接收的AHV体制和同时发送同时接收的SHV体制。其中,SHV和AHV体制都需要设置两路接收通道,导致架构规模和复杂程度相对较高;同时,设备成本也居高不下。尤其对于多通道的相控阵雷达,这种规模庞大性、复杂程度以及设备成本表现得更加明显。
发明内容
本发明的实施例提供一种双偏振雷达,解决现有技术中双偏振雷达接收模块结构复杂,规模大的技术问题。
为解决上述技术问题,本发明的一些实施例提供了一种双偏振雷达,包括:发射模块、接收模块、收发切换模块、第一极化方向天线以及第二极化方向天线;
所述发射模块用于发射射频不同的第一脉冲信号和第二脉冲信号;
所述接收模块用于接收第一脉冲信号和第二脉冲信号的后向散射回波信号;
所述收发切换模块用于将所述第一脉冲信号传输至所述第一极化方向天线,将所述第二脉冲信号传输至所述第二极化方向天线,并将第一极化方向回波信号和第二极化方向回波信号传输至所述接收模块;
所述第一极化方向天线用于发射所述第一脉冲信号,并接收所述第一极化方向回波信号;
所述第二极化方向天线用于发射所述第二极化脉冲信号,并接收所述第二极化方向回波信号;
所述双偏振雷达还包括:信号合成模块;
所述信号合成模块用于接收所述第一极化方向回波信号以及所述第二极化方向回波信号,并将所述第一极化方向回波信号以及所述第二极化方向回波信号合成为后向散射回波信号后发送给所述接收模块。
根据一些实施例,所述发射模块用于生成脉冲对信号,所述脉冲对信号包括射频不同的第一脉冲信号和第二脉冲信号。
根据一些实施例,所述脉冲对信号包括:两个或两个以上的脉冲对;
所述两个或两个以上的脉冲对中,第一脉冲对的脉冲宽度大于其它脉冲对的脉冲宽度。
根据一些实施例,所述发射模块包括:信号发生器以及频率转换电路;
所述信号发生器用于生成波形相同的所述第一脉冲信号和所述第二脉冲信号;并且
所述频率转换电路用于将所述第一脉冲信号和所述第二脉冲信号转换成射频不同的两个射频信号后传输至所述收发切换模块。
根据一些实施例,所述发射模块包括:信号发生器以及频率转换电路;
所述信号发生器用于生成相同的所述第一脉冲信号和所述第二脉冲信号;并且
所述频率转换电路用于将所述第一脉冲信号和所述第二脉冲信号转换成射频不同的两个射频信号后传输至所述收发切换模块。
根据一些实施例,所述收发切换模块包括:第一选通模块、第二选通模块以及第三选通模块;
所述第一选通模块的输入端与所述发射模块相连,用于获取所述脉冲对信号,并选通所述第二选通模块,将所述第一脉冲信号传送至所述第一极化方向天线或者选通所述第三选通模块,将所述第二脉冲信号传送至所述第二极化方向天线;
所述第二选通模块还接收所述第一极化方向回波信号并将其传送至所述信号合成模块;并且
所述第三选通模块还接收所述第二极化方向回波信号并将其传送至所述信号合成模块。
根据一些实施例,所述第一选通模块为射频开关,所述第二选通模块和所述第三选通模块为射频开关或者环形器。
根据一些实施例,所述脉冲对信号为时间紧邻的两个脉冲信号,两个脉冲之间的时间间隔不大于每个脉冲的脉宽。
根据一些实施例,所述脉冲对信号为时间紧邻的两个脉冲信号,两个脉冲之间的时间间隔不大于1us。
根据一些实施例,所述发射模块包括第一发射模块和第二发射模块,所述第一发射模块和第二发射模块同步发射射频不同的第一脉冲信号和第二脉冲信号。
根据一些实施例,所述收发切换模块包括:第一选通模块以及第二选通模块;
所述第一选通模块的输入端与所述第一发射模块相连,用于获取第一脉冲信号,并将所述第一脉冲信号传送至所述第一极化方向天线,所述第一选通模块还接收所述第一极化方向回波信号并将其传送至所述信号合成模块;并且
所述第二选通模块的输入端与所述第二发射模块相连,用于获取第二脉冲信号,并将所述第二脉冲信号传送至所述第二极化方向天线,并且,所述第二选通模块还接收所述第二极化方向回波信号并将其传送至所述信号合成模块。
根据一些实施例,所述第一选通模块和所述第二选通模块为射频开关或者环形器。
根据一些实施例,所述第一脉冲信号和所述第二脉冲信号的每一个分别包括两个或两个以上的单脉冲,所述两个或两个以上的单脉冲中,第一脉冲的脉冲宽度大于其它脉冲的脉冲宽度。
根据一些实施例,所述第一发射模块和第二发射模块的每一个都包括:信号发生器以及频率转换电路。
根据一些实施例,所述信号发生器包括:直接数字式频率合成器DDS或者数模转换器DA。
根据一些实施例,所述频率转换电路包括:第一混频器或者倍频器。
根据一些实施例,所述信号发生器和所述频率转换电路集成为一体。
根据一些实施例,所述接收模块包括:接收机;
所述接收机与所述信号合成模块相连,接收所述后向散射回波信号。
根据一些实施例,所述接收模块包括:模数转换电路以及第二混频器;所述模数转换电路通过所述第二混频器与所述信号合成模块相连。
根据一些实施例,所述信号合成模块包括:功分器、第二低噪放和第三低噪放;
所述功分器的输出端与所述接收模块相连;
所述功分器的两个输入端分别和所述第二低噪放的输出端和第三低噪放的输出端相连;并且
所述第二低噪放的输入端以及所述第三低噪放的输入端分别与所述收发切换模块相连,获取所述第一极化方向回波信号和所述第二极化方向回波信号。
本申请实施例中提供的一个或多个技术方案,至少具有如下的部分或全部 技术效果或优点:
本申请实施例中提供的双偏振雷达,通过发射模块交替输出不同中心频率的脉冲对信号,并通过收发切换模块分别连接第一极化方向天线和第二极化方向天线以及接收模块,从而实现交替发送两个极化方向的监测信号,从而避免同时发送两个极化信号导致的交叉耦合,降低测量误差;进一步地,通过信号合成模块将第一极化方向回波信号和第二极化方向回波信号发送给接收模块,完成回波信号的接收,实现雷达结构优化,减少一路接收通道结构,从而大幅降低雷达结构规模和复杂程度,更利于大批量规模化使用;同时,通过同一发射模块在每一次发射期内,短间距地连续发射包含不同频率的脉冲的脉冲对信号,或者通过不同的发射模块同步发射频率不同的脉冲信号,从而克服现有的AHV体制下的交替发射模式中发射时间间隔大导致的回波信号相关性差的缺陷,从而保证监测精度;进一步地,为了避免两个偏振方向的回波混叠在一起难以分辨的问题,将两个极化方向的脉冲采用不同的射频和中频频率,从而实现交替发射模式下的高相关性和双极化目标区分,达到良好的雷达监测性能。另一方面,设置成发射连续的脉宽不同的脉冲对,能够通过宽脉冲对覆盖较远距离库,通过窄脉冲对解决宽脉冲对盲区过长问题,从而解决结构优化导致的衍生缺陷,达到了优化结构的同时,仍然具备良好的雷达监测性能。
附图说明
图1为本发明的一些实施例提供的双偏振雷达结构示意图。
图2为图1所示实施例的双偏振雷达结构脉冲时序控制图。
图3为本发明的另一些实施例提供的双偏振雷达结构示意图。
图4a为图3所示实施例的双偏振雷达结构中的第一发射模块的脉冲时序控制图。
图4b为图3所示实施例的双偏振雷达结构中的第二发射模块的脉冲时序控制图。
具体实施方式
本申请实施例通过提供一种双偏振雷达,解决现有技术中双偏振雷达接收模块结构复杂,规模大的技术问题。
为了更好的理解上述技术方案,下面将结合说明书附图以及具体的实施方式对上述技术方案进行详细说明,应当理解本发明实施例以及实施例中的具体特征是对本申请技术方案的详细的说明,而不是对本申请技术方案的限定,在不冲突的情况下,本申请实施例以及实施例中的技术特征可以相互组合。
本发明实施例的双偏振雷达,相对于现有技术中的双偏振天气雷达,大幅简化了结构,降低其组件规模,使得其使用成本大幅降低,尤其是在相控阵雷达等具有多通道的产品中;并在简化结构的同时,本申请提供的实施方案仍然能够与现有的双偏振雷达具备相当的性能,甚至略好于基于AHV和SHV体制的双偏振雷达。
下面将具体描述本申请的实施方案。
参见图1,本发明的一些实施例提供的双偏振雷达包括:发射模块1、接收模块8、收发切换模块、第一极化方向天线4以及第二极化方向天线6。
所述发射模块1用于生成脉冲对信号,所述脉冲对信号包括射频不同的第一脉冲信号和第二脉冲信号。
参见图2,根据一个实施例,所述脉冲对信号为时间紧邻的两个脉冲信号,两个脉冲之间的时间间隔很小,如1us或者更小。也就是说,两个射频信号之间的时间间隔很短,从而能够提升两个回波信号的相关性,保证良好的监测精度。
所述接收模块8用于接收第一脉冲信号和第二脉冲信号的后向散射回波信号;也就是两个极化方向的回波信号。
所述收发切换模块包括第一选通模块2、第二选通模块3以及第三选通模块5,用于将所述第一脉冲信号传输至所述第一极化方向天线4,将所述第二脉冲信号传输至所述第二极化方向天线6,并将第一极化方向回波信号和第二极化方向回波信号传输至所述接收模块8。
所述双偏振雷达还包括:信号合成模块7;所述信号合成模块7用于接收所述第一极化方向回波信号以及所述第二极化方向回波信号,并将所述第一极化方向回波信号以及所述第二极化方向回波信号合成为后向散射回拨信号后发送给所述接收模块8,实现单接收通道结构。
所述第一极化方向天线4用于发射所述第一脉冲信号,并接收所述第一极化方向回波信号;所述第二极化方向天线6用于发射所述第二极化脉冲信号,并接收所述第二极化方向回波信号。
参见图2,进一步地,所述脉冲对信号包括:两个或两个以上的脉冲对;所述两个或两个以上的脉冲对中,第一脉冲对的脉冲宽度大于其它脉冲对的脉冲宽度。
需要说明的是,由于两个射频信号十分接近,这样就导致两个偏振方向的回波会混叠在一起而完全无法分辨;为了分辨出回波的极化方向,本实施例中,将第一射频信号和第二射频信号采用不同的射频频率,这样能够将两个偏振方向的回波区分开来。
另一方面,在执行雷达监测时,在一个发射周期内,所述发射模块发射两个或者两个以上的脉冲对;每个脉冲对由一个水平极化脉冲H和一个垂直极化脉冲V构成;所述两个或者两个以上连续的脉冲对中,第一个脉冲对的宽度大于在其后的脉冲对的宽度。也就是在宽脉冲对后设置窄脉冲对,达到解盲区的目的,从而避免出现较大的盲区。
当然,值得说明的是,脉冲对的数量也是可以为一对的,可能存在盲区。
在一个具体的实施例中,所述信号发射模块1可以包括:信号发生器11以及频率转换电路12;所述信号发生器11用于生成波形相同,且中频不同的所述第一脉冲信号和所述第二脉冲信号;所述频率转换电路12用于将所述第一脉冲信号和所述第二脉冲信号转换成射频不同的两个射频信号后传输至所述收发切换模块。
或者,所述信号发射模块1可以包括:信号发生器11以及频率转换电路12;所述信号发生器11用于生成相同的所述第一脉冲信号和所述第二脉冲信号;所述频率转换电路12用于将所述第一脉冲信号和所述第二脉冲信号转换成射频不同的两个射频信号后传输至所述收发切换模块。
所述信号发生器11可以包括:直接数字式频率合成器DDS或者数模转换器DA,用于生成脉冲对信号。
所述频率转换电路12可以包括:第一混频器或者倍频器;当然还可以是其它频率调节设备。
根据一些实施例,所述信号发生器11和所述频率转换电路12可集成为一体,例如为单个RFSOC芯片。
所述接收模块8可以包括接收机;所述接收机与所述信号合成模块相连,接收所述后向散射回拨信号。
或者,接收模块8可以包括:模数转换电路AD 81以及第二混频器82;所述模数转换电路AD 81通过所述第二混频器82与所述信号合成模块7相连,实现回波合成信号的采集转化。
可选地,所述接收通道接收模块8还可以包括:第一低噪放83;所述第一低噪放83串联在所述第二混频器82和所述信号合成器7的输出端之间,实现通路的滤波放大接收回波信号,提升信噪比。
根据一个具体的实施例,所述信号合成模块包括:功分器71、第二低噪放73和第三低噪放72;所述功分器71的输出端与所述接收模块8相连;所述功分器71的两个输入端分别通过所述第二低噪放73的输出端和第三低噪放72的输出端相连;所述第二低噪放73的输入端以及所述第三低噪放72的输入端分别与所述收发切换模块相连,获取所述第一极化方向回波信号和所述第 二极化方向回波信号。
在一个具体的实施例中,所述收发切换模块包括:第一选通模块2、第二选通模块3以及第三选通模块5;所述第一选通模块2的输入端与所述发射模块1相连,用于获取所述脉冲对信号,并选通所述第二选通模块3,将所述第一脉冲信号传送至所述第一极化方向天线4或者选通所述第三选通模块5,将所述第二脉冲信号传送至所述第二极化方向天线6;所述第二选通模块3还接收所述第一极化方向回波信号并将其传送至所述信号合成模块7;所述第三选通模块5还接收所述第二极化方向回波信号并将其传送至所述信号合成模块7。
在一个具体的实施例中,所述第一选通模块2可以为射频开关,所述第二选通模块3和所述第三选通模块5可以为射频开关或者环形器。
本发明实施例中,相对于现有的双接收模块的体制进行了优化,设置成单接收模块,用于降低结构的复杂性和元件规模;下面将具体说明。
所述第一极化方向天线4与所述第二选通模块3相连,发射所述第一射频信号或者接收所述第一极化方向回波信号;所述第二极化方向天线6与所述第三选通模块5相连,发射所述第二射频信号或者接收所述第二极化方向回波信号。
具体来说,在发射时,所述第一选通模块2在选通控制信号的作用下,选通第二选通模块3或者第三选通模块5,也就是选通第一极化天线4或者第二极化天线6,通过对应天线的极化馈电口将极化波发射出去。
对应的,在接收回波信号时,所述信号合成模块7的两个输入端分别与所述第二选通模块3和所述第三选通模块5相连,获取所述第一极化方向回波信号和所述第二极化方向回波信号并合成为后向散射回波信号。
具体来说,通过天线发射出去的水平极化波、垂直极化波遇到目标,就会产生后向散射回波到雷达天线。回波到达双极化天线后,理想情况下垂直极化口只能接收自身发射出去的垂直极化波,而水平极化口也只能接收自身发射出去的水平极化波,分别通过所述第二选通模块3和所述第三选通模块5进入到信号合成模块7,合成一股信号后进入到接收模块8,进行解析。
通常来说,天气目标的移动速度一般不超过60m/s,对应的多普勒频移为kHz量级,只要两个射频信号的不重合频率间隔达到比如MHz量级,则接收机即可分辨出来,也就可以分辨出垂直极化回波,水平极化回波。
值得说明的是,本实施例中,所述脉冲对信号中的两个脉冲的时间间隔控制在每个脉冲的脉宽对应的时间内,而不是现有的AHV模式中的脉冲周期间隔,所以比AHV模式的回波相关性高。比如1GHz的工作频率,16m/s的谱宽分布,100us的脉冲宽度条件下,两个极化波的相关系数为0.998,接近SHV 模式下的零延时相关系数;也就是说,本实施例提供的单接收模块的优化方案的回波相关性的性能与现有采用的SHV体制的雷达持平,比AHV更优。
下面将具体针对上述功能结构进行说明。
所述发射模块包括:信号发生器11以及频率转换电路12;
所述信号发生器11与所述频率转换电路12相连,将脉冲对信号转换成所述第一极化方向射频信号和所述第二极化方向射频信号。根据一个实施例,发射分为两个子脉冲,信号发生器11生成两个时间上紧邻的不同中心频率的相同波形的信号IF1、IF2,而后经过频率转换电路12变为射频信号RF1、RF2;或者,这个过程也可以是信号发生器1生成两个一模一样的信号,然后由频率转换电路12来实现RF1、RF2,比如混频器中的本振频率快速切换。
根据一些实施例,信号发生器11可采用直接数字式频率合成器DDS或者激励放大器DA。频率转换电路12可采用混频器或者倍频器。
所述频率转换电路12可与所述第一选通模块2相连,发送所述第一极化方向射频信号和所述第二极化方向射频信号。
在一个实施例中,所述发射模块1还可以包括:放大器13和滤波器(未示出);所述放大器13和所述滤波器串联后连接在所述频率转换电路12和所述第一选通模块2之间。
所述接收模块8可以包括:模数转换电路AD 81以及第二混频器82;所述模数转换电路AD 81通过所述第二混频器82与所述信号合成模块7相连;实现回波合成信号的采集转化。
在一个实施例中,所述接收模块8还可以包括:第一低噪放83;所述第一低噪放83串联在所述第二混频器82和所述信号合成器7的输出端之间,实现通路的回波信号的放大接收,提升信噪比。
在一些实施例中,所述信号合成模块7可以包括:功分器71、第二低噪放73和第三低噪放72;所述功分器71的输出端与所述接收模块8相连;所述功分器71的两个输出端分别通过所述第二低噪放73和第三低噪放72与所述第二选通模块3和所述第三选通模块5相连,将两路回波信号合成一路,从而比第二选通模块3和第三选通模块5之后直接接到功分器71的信噪比高,得到的信噪比值要超过功分器71的噪声系数,从而保持较高的信噪比。
在一些实施例中,所述第一选通模块2、所述第二选通模块3以及所述第三选通模块5,均用于选通。所述第一选通模块2可选择为射频开关,所述第二选通模块3和所述第三选通模块5可选择为射频开关或者环形器。
图3示出了本发明的另一些实施例提供的双偏振雷达的结构示意图。图4a为图3所示实施例的双偏振雷达结构的第一发射模块10的脉冲时序控制图。 图4b为图3所示实施例的双偏振雷达结构的第二发射模块20的脉冲时序控制图。参见图3,本发明的另一些实施例提供的双偏振雷达包括:发射模块1、接收模块8、收发切换模块30,50、第一极化方向天线4以及第二极化方向天线6。
与图1所示实施例不同的是,图3所示的实施例中,发射模块1包括第一发射模块10和第二发射模块20两个发射模块。所述第一发射模块10和第二发射模块20用于同步发射波形相同、射频不同的第一脉冲信号和第二脉冲信号。例如,第一脉冲信号可以为水平极化脉冲H,第二脉冲信号可以为垂直极化脉冲V。或者,第一脉冲信号可以为垂直极化脉冲V,第二脉冲信号可以为水平极化脉冲H。由于第一发射模块10和第二发射模块20同步地发射射频不同的第一脉冲信号和第二脉冲信号,从而能够更好地提升两个回波信号的相关性,保证良好的监测精度。
所述接收模块8用于接收第一脉冲信号和第二脉冲信号的后向散射回波信号;也就是两个极化方向的回波信号。
所述收发切换模块30,50包括第一选通模块30以及第二选通模块50,用于将所述第一脉冲信号传输至所述第一极化方向天线4,将所述第二脉冲信号传输至所述第二极化方向天线6,并将第一极化方向回波信号和第二极化方向回波信号传输至所述接收模块8。
所述双偏振雷达还包括:信号合成模块7;所述信号合成模块7用于接收所述第一极化方向回波信号以及所述第二极化方向回波信号,并将所述第一极化方向回波信号以及所述第二极化方向回波信号合成为后向散射回拨信号后发送给所述接收模块8,实现单接收通道结构。
所述第一极化方向天线4用于发射所述第一脉冲信号,并接收所述第一极化方向回波信号;所述第二极化方向天线6用于发射所述第二极化脉冲信号,并接收所述第二极化方向回波信号。
具体地,所述第一极化方向天线4与所述第一选通模块30相连,发射所述第一射频信号或者接收所述第一极化方向回波信号;所述第二极化方向天线6与所述第二选通模块50相连,发射所述第二射频信号或者接收所述第二极化方向回波信号。
具体来说,在发射时,选通第一选通模块30或者第二选通模块50,也就是选通第一极化天线4或者第二极化天线6,通过对应天线的极化馈电口将极化波发射出去。
对应的,在接收回波信号时,所述信号合成模块7的两个输入端分别与所述第一选通模块30和所述第二选通模块50相连,获取所述第一极化方向回 波信号和所述第二极化方向回波信号并合成为后向散射回波信号。
具体来说,通过天线发射出去的水平极化波、垂直极化波遇到目标,就会产生后向散射回波到雷达天线。回波到达双极化天线后,理想情况下垂直极化口只能接收自身发射出去的垂直极化波,而水平极化口也只能接收自身发射出去的水平极化波,分别通过所述第一选通模块30和所述第二选通模块50进入到信号合成模块7,合成一股信号后进入到接收模块8,进行解析。
参见图4a和图4b,在一个实施例中,所述第一脉冲信号和所述第二脉冲信号的每一个分别包括两个或两个以上的单脉冲,所述两个或两个以上的单脉冲中,第一脉冲的脉冲宽度大于其它脉冲的脉冲宽度。
需要说明的是,由于两个射频信号十分接近,这样就导致两个偏振方向的回波会混叠在一起而完全无法分辨;为了分辨出回波的极化方向,本实施例中,将第一射频信号和第二射频信号采用不同的射频频率,这样能够将两个偏振方向的回波区分开来。
另一方面,在执行雷达监测时,在一个发射周期内,第一发射模块10可发射两个或者两个以上的水平极化单脉冲,与此同时,第二发射模块20可发射两个或者两个以上的垂直极化单脉冲;或者,第一发射模块10可发射两个或者两个以上的垂直极化单脉冲,与此同时,第二发射模块20可发射两个或者两个以上的水平极化单脉冲。所述两个或者两个以上连续的单脉冲中,第一个单脉冲的宽度大于在其后的单脉冲的宽度。也就是在宽脉冲后设置窄脉冲,达到解盲区的目的,从而避免出现较大的盲区。
在一个具体的实施例中,第一发射模块10和第二发射模块20的每一个可以包括:信号发生器11以及频率转换电路12。所述信号发生器11可以包括:直接数字式频率合成器DDS或者数模转换器DA,用于生成脉冲信号。所述频率转换电路12可以包括:第一混频器或者倍频器;当然还可以是其它频率调节设备。
根据一些实施例,所述信号发生器11和所述频率转换电路12可集成为一体,例如为单个RFSOC芯片。
在一个实施例中,第一发射模块10和第二发射模块20的每一个可以包括:放大器13和滤波器(未示出);所述放大器13和所述滤波器串联后连接在所述频率转换电路12和所述第一选通模块30或第二选通模块50之间。
所述接收模块8可以包括接收机;所述接收机与所述信号合成模块相连,接收所述后向散射回波信号。
或者,接收模块8可以包括:模数转换电路AD 81以及第二混频器82;所述模数转换电路AD 81通过所述第二混频器82与所述信号合成模块7相连, 实现回波合成信号的采集转化。
可选地,所述接收模块8还可以包括:第一低噪放83;所述第一低噪放83串联在所述第二混频器82和所述信号合成器7的输出端之间,实现通路的滤波放大接收回波信号,提升信噪比。
在一个具体的实施例中,所述收发切换模块包括:第一选通模块30以及第二选通模块50;所述第一选通模块30的输入端与第一发射模块10相连,用于获取第一脉冲信号,并将所述第一脉冲信号传送至所述第一极化方向天线4;第二选通模块50的输入端与第二发射模块20相连,用于获取第二脉冲信号,并将所述第二脉冲信号传送至所述第二极化方向天线6;所述第一选通模块30还接收所述第一极化方向回波信号并将其传送至所述信号合成模块7;所述第二选通模块50还接收所述第二极化方向回波信号并将其传送至所述信号合成模块7。所述第一选通模块30和所述第二选通模块50可以为射频开关或者环形器。
根据一个具体的实施例,所述信号合成模块7可以包括:功分器71、第二低噪放73和第三低噪放72;所述功分器71的输出端与所述接收模块8相连;所述功分器71的两个输入端分别与所述第二低噪放73的输出端和第三低噪放72的输出端相连;所述第二低噪放73的输入端以及所述第三低噪放72的输入端分别与所述收发切换模块相连,获取所述第一极化方向回波信号和所述第二极化方向回波信号。
具体地,所述功分器71的两个输出端分别通过所述第二低噪放73和第三低噪放72与所述第一选通模块30和所述第二选通模块50相连,将两路回波信号合成一路,从而比第一选通模块30和第二选通模块50之后直接接到功分器71的信噪比高,得到的信噪比值要超过功分器71的噪声系数,从而保持较高的信噪比。
本发明的上述实施例与图3所示的实施例类似,对于现有的双接收模块的体制进行了优化,设置成单接收模块,用于降低结构的复杂性和元件规模。另外,由于两路发射模块分别对应两个不同极化方向的辐射天线,且两个发射模块发射不同频率的信号,两个极化方向的发射波仅通过分频即可区分,不再需要分时工作,两个极化方向的相关性能达到理想的1,从而进一步提升了回波信号相关性,保证监了测精度。
本发明的实施例还提出了基于上述实施例的双偏振雷达的天气雷达监测方法。
本申请实施例中提供的一个或多个技术方案,至少具有如下部分或全部技术效果或优点:
本申请实施例中提供的双偏振雷达,通过发射模块交替输出不同中心频率的脉冲对信号,并通过收发切换模块分别连接第一极化方向天线和第二极化方向天线以及接收模块,从而实现交替发送两个极化方向的监测信号、从而避免同时发送两个极化信号导致的交叉耦合,降低测量误差;进一步通过收发切换模块将第一极化方向回波信号和第二极化方向回波信号发送给接收模块,完成回波信号的接收,实现雷达结构优化,减少一路接收通道结构,从而大幅降低雷达结构规模和复杂程度,更利于大批量规模化使用;同时,通过在每一次发射期内,通过同一发射模块短间距的连续发射脉冲对信号,或者通过不同的发射模块同步发射频率不同的脉冲信号,从而克服现有的AHV体制下的交替发射模式中发射时间间隔大导致的回波信号相关性差的缺陷,从而保证监测精度;并进一步地,为了避免两个偏振方向的回波混叠在一起难以分辨的问题,将两个极化方向的脉冲采用不同的射频和中频频率,从而实现交替发射模式下的高相关性和双极化目标区分,达到良好的雷达监测性能。另一方面,设置成发射连续的脉宽不同的脉冲对,能够通过宽脉冲覆盖较远距离库,通过窄脉冲?解决宽脉冲盲区过长问题,从而解决结构优化导致的衍生缺陷,达到了优化结构的同时,仍然具备良好的雷达监测性能。
最后所应说明的是,以上具体实施方式仅用以说明本发明的技术方案而非限制,尽管参照实例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (20)

  1. 一种双偏振雷达,包括:发射模块(1)、接收模块(8)、收发切换模块、第一极化方向天线(4)以及第二极化方向天线(6);
    所述发射模块(1)用于发射射频不同的第一脉冲信号和第二脉冲信号;
    所述接收模块(8)用于接收第一脉冲信号和第二脉冲信号的后向散射回波信号;
    所述收发切换模块(2,3,5;30,50)用于将所述第一脉冲信号传输至所述第一极化方向天线(4),将所述第二脉冲信号传输至所述第二极化方向天线(6),并将第一极化方向回波信号和第二极化方向回波信号传输至所述接收模块(8);
    所述第一极化方向天线(4)用于发射所述第一脉冲信号,并接收所述第一极化方向回波信号;
    所述第二极化方向天线(6)用于发射所述第二极化脉冲信号,并接收所述第二极化方向回波信号;
    所述双偏振雷达还包括:信号合成模块(7);
    所述信号合成模块(7)用于接收所述第一极化方向回波信号以及所述第二极化方向回波信号,并将所述第一极化方向回波信号以及所述第二极化方向回波信号合成为后向散射回波信号后发送给所述接收模块(8)。
  2. 如权利要求1所述的双偏振雷达,其中,所述发射模块(1)用于生成脉冲对信号,所述脉冲对信号包括射频不同的第一脉冲信号和第二脉冲信号。
  3. 如权利要求2所述的双偏振雷达,其中,所述脉冲对信号包括:两个或两个以上的脉冲对;
    所述两个或两个以上的脉冲对中,第一脉冲对的脉冲宽度大于其它脉冲对的脉冲宽度。
  4. 如权利要求2所述的双偏振雷达,其中,所述发射模块(1)包括:信号发生器(11)以及频率转换电路(12);
    所述信号发生器(11)用于生成波形相同的所述第一脉冲信号和所述第二脉冲信号;并且
    所述频率转换电路(12)用于将所述第一脉冲信号和所述第二脉冲信号转换成射频不同的两个射频信号后传输至所述收发切换模块。
  5. 如权利要求2所述的双偏振雷达,其中,所述发射模块(1)包括:信号发生器(11)以及频率转换电路(12);
    所述信号发生器(11)用于生成相同的所述第一脉冲信号和所述第二脉冲 信号;并且
    所述频率转换电路(12)用于将所述第一脉冲信号和所述第二脉冲信号转换成射频不同的两个射频信号后传输至所述收发切换模块。
  6. 如权利要求2所述的双偏振雷达,其中,所述收发切换模块(2,3,5)包括:第一选通模块(2)、第二选通模块(3)以及第三选通模块(5);
    所述第一选通模块(2)的输入端与所述发射模块(1)相连,用于获取所述脉冲对信号,并选通所述第二选通模块(3),将所述第一脉冲信号传送至所述第一极化方向天线(4)或者选通所述第三选通模块(5),将所述第二脉冲信号传送至所述第二极化方向天线(6);
    所述第二选通模块(3)还接收所述第一极化方向回波信号并将其传送至所述信号合成模块(7);并且
    所述第三选通模块(5)还接收所述第二极化方向回波信号并将其传送至所述信号合成模块(7)。
  7. 如权利要求6所述的双偏振雷达,其中,所述第一选通模块(2)为射频开关,所述第二选通模块(3)和所述第三选通模块(5)为射频开关或者环形器。
  8. 如权利要求2所述的双偏振雷达,其中,所述脉冲对信号为时间紧邻的两个脉冲信号,两个脉冲之间的时间间隔不大于每个脉冲的脉宽。
  9. 如权利要求2所述的双偏振雷达,其中,所述脉冲对信号为时间紧邻的两个脉冲信号,两个脉冲之间的时间间隔不大于1us。
  10. 如权利要求1所述的双偏振雷达,其中,所述发射模块(1)包括第一发射模块(10)和第二发射模块(20),所述第一发射模块(10)和第二发射模块(20)同步发射射频不同的第一脉冲信号和第二脉冲信号。
  11. 如权利要求10所述的双偏振雷达,其中,所述收发切换模块(30,50)包括:第一选通模块(30)以及第二选通模块(50);
    所述第一选通模块(30)的输入端与所述第一发射模块(10)相连,用于获取第一脉冲信号,并将所述第一脉冲信号传送至所述第一极化方向天线(4),所述第一选通模块(30)还接收所述第一极化方向回波信号并将其传送至所述信号合成模块(7);并且
    所述第二选通模块(50)的输入端与所述第二发射模块(20)相连,用于获取第二脉冲信号,并将所述第二脉冲信号传送至所述第二极化方向天线(6),并且,所述第二选通模块(50)还接收所述第二极化方向回波信号并将其传送至所述信号合成模块(7)。
  12. 如权利要求11所述的双偏振雷达,其中,所述第一选通模块(30) 和所述第二选通模块(50)为射频开关或者环形器。
  13. 如权利要求10所述的双偏振雷达,其中,所述第一脉冲信号和所述第二脉冲信号的每一个分别包括两个或两个以上的单脉冲,所述两个或两个以上的单脉冲中,第一脉冲的脉冲宽度大于其它脉冲的脉冲宽度。
  14. 如权利要求10所述的双偏振雷达,其中,所述第一发射模块(10)和第二发射模块(20)的每一个都包括:信号发生器(11)以及频率转换电路(12)。
  15. 如权利要求4、5或14所述的双偏振雷达,其中,所述信号发生器(11)包括:直接数字式频率合成器DDS或者数模转换器DA。
  16. 如权利要求15所述的双偏振雷达,其中,所述频率转换电路(12)包括:第一混频器或者倍频器。
  17. 如权利要求15所述的双偏振雷达,其中,所述信号发生器(11)和所述频率转换电路(12)集成为一体。
  18. 如权利要求1所述的双偏振雷达,其中,所述接收模块(8)包括:接收机;
    所述接收机与所述信号合成模块(7)相连,接收所述后向散射回波信号。
  19. 如权利要求1所述的双偏振雷达,其中,所述接收模块(8)包括:模数转换电路(81)以及第二混频器(82);所述模数转换电路(81)通过所述第二混频器(82)与所述信号合成模块(7)相连。
  20. 如权利要求1所述的双偏振雷达,其中,所述信号合成模块(7)包括:功分器(71)、第二低噪放(73)和第三低噪放(72);
    所述功分器(71)的输出端与所述接收模块(8)相连;
    所述功分器(71)的两个输入端分别和所述第二低噪放(73)的输出端和第三低噪放(72)的输出端相连;并且
    所述第二低噪放(73)的输入端以及所述第三低噪放(72)的输入端分别与所述收发切换模块(2,3,5)相连,获取所述第一极化方向回波信号和所述第二极化方向回波信号。
PCT/CN2019/111716 2019-05-05 2019-10-17 一种双偏振雷达 WO2020224191A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021536763A JP7213443B2 (ja) 2019-05-05 2019-10-17 二重偏波レーダー
US17/420,664 US12019153B2 (en) 2019-05-05 2019-10-17 Dual-polarizaton radar

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910366778.7A CN110146892B (zh) 2019-05-05 2019-05-05 一种双偏振雷达
CN201910366778.7 2019-05-05

Publications (1)

Publication Number Publication Date
WO2020224191A1 true WO2020224191A1 (zh) 2020-11-12

Family

ID=67594596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111716 WO2020224191A1 (zh) 2019-05-05 2019-10-17 一种双偏振雷达

Country Status (4)

Country Link
US (1) US12019153B2 (zh)
JP (1) JP7213443B2 (zh)
CN (1) CN110146892B (zh)
WO (1) WO2020224191A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110146892B (zh) 2019-05-05 2023-08-01 浙江宜通华盛科技有限公司 一种双偏振雷达
CN110995224A (zh) * 2019-12-09 2020-04-10 成都知融科技股份有限公司 一种具备收发切换和极化切换功能的开关结构
CN111239741A (zh) * 2020-01-21 2020-06-05 航天新气象科技有限公司 相控阵天气雷达偏振控制方法及相控阵天气雷达系统
CN111239748B (zh) * 2020-03-16 2021-07-13 中国水产科学研究院渔业机械仪器研究所 一种提高水平探鱼仪航向分辨率的方法及其装置
US11784674B2 (en) * 2020-03-24 2023-10-10 Qualcomm Incorporated Calibration of open space for an antenna array module
US20220271907A1 (en) * 2021-02-19 2022-08-25 Meta Platforms, Inc. Multiband fdd (frequency division duplex) radio configuration for reduction in transmit and receive path resources
CN114935739B (zh) * 2022-07-20 2022-11-01 南京恩瑞特实业有限公司 一种相控阵天气雷达机内测试源的补偿系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004086075A2 (en) * 2003-03-21 2004-10-07 Enterprise Electronics Corporation Simultaneous dual polarization radar system
CN103323850A (zh) * 2013-05-28 2013-09-25 芜湖航飞科技股份有限公司 一种双线偏振多普勒天气雷达系统
CN105717493A (zh) * 2016-03-17 2016-06-29 哈尔滨工程大学 一种基于合成极化方法的被动雷达辐射源极化识别与测向系统
CN105785371A (zh) * 2016-03-21 2016-07-20 北京无线电测量研究所 全固态双频段双偏振多普勒天气雷达系统及雷达测量的方法
CN106772335A (zh) * 2017-01-18 2017-05-31 重庆大学 面向大型结构形变监测的有源异频收发式微波雷达系统
CN107526063A (zh) * 2016-06-20 2017-12-29 株式会社万都 雷达设备和处理雷达信号的方法
CN110146892A (zh) * 2019-05-05 2019-08-20 湖南宜通华盛科技有限公司 一种双偏振雷达

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3335778B2 (ja) * 1994-09-19 2002-10-21 株式会社東芝 レーダ装置
JP2000275329A (ja) 1999-03-24 2000-10-06 Toshiba Corp ドップラレーダ装置
JP3893293B2 (ja) 2002-01-21 2007-03-14 三菱電機株式会社 偏波レーダ装置およびそのパルス送受信方法
US7551123B2 (en) 2006-03-22 2009-06-23 Enterprise Electronics Corporation Phase shifted transmitted signals in a simultaneous dual polarization weather system
US8345716B1 (en) * 2007-06-26 2013-01-01 Lockheed Martin Corporation Polarization diverse antenna array arrangement
US8102955B2 (en) * 2007-09-13 2012-01-24 Lawrence Livermore National Security, Llc Multi-pulse frequency shifted (MPFS) multiple access modulation for ultra wideband
JP4861384B2 (ja) * 2008-08-25 2012-01-25 株式会社東芝 レーダ装置
GB0817570D0 (en) * 2008-09-25 2008-11-05 Secr Defence Improved weather radar
JP5398306B2 (ja) 2009-03-04 2014-01-29 古野電気株式会社 レーダ装置
CN203423247U (zh) * 2013-08-03 2014-02-05 张鹿平 机械式扫描双发双收大功率全相参双偏振雷达馈线系统
EP3051306B1 (en) 2013-09-27 2019-04-24 Nissan Motor Co., Ltd Antenna device and signal processing method
JP2015169508A (ja) 2014-03-06 2015-09-28 三菱電機株式会社 偏波レーダ装置
JP6289744B2 (ja) 2015-04-10 2018-03-07 三菱電機株式会社 レーダ装置
US10048370B2 (en) * 2015-07-07 2018-08-14 Honeywell International Inc. Estimating weather and ground reflectivity with doppler spectral information
US10725164B1 (en) * 2017-04-14 2020-07-28 Anritsu Company System and method for detecting vehicles and structures including stealth aircraft
KR102466677B1 (ko) * 2017-08-22 2022-11-14 삼성전자주식회사 라이다 및 그 동작방법
US10955541B2 (en) * 2017-08-29 2021-03-23 Veoneer Us, Inc. Apparatus and method for RF interference avoidance in an automotive detection system
GB2571709B (en) * 2018-02-28 2020-09-09 Cambium Networks Ltd Interference mitigation apparatus and method for a wireless terminal
US10627516B2 (en) * 2018-07-19 2020-04-21 Luminar Technologies, Inc. Adjustable pulse characteristics for ground detection in lidar systems
US11513198B2 (en) * 2019-01-04 2022-11-29 Waymo Llc LIDAR pulse elongation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004086075A2 (en) * 2003-03-21 2004-10-07 Enterprise Electronics Corporation Simultaneous dual polarization radar system
CN103323850A (zh) * 2013-05-28 2013-09-25 芜湖航飞科技股份有限公司 一种双线偏振多普勒天气雷达系统
CN105717493A (zh) * 2016-03-17 2016-06-29 哈尔滨工程大学 一种基于合成极化方法的被动雷达辐射源极化识别与测向系统
CN105785371A (zh) * 2016-03-21 2016-07-20 北京无线电测量研究所 全固态双频段双偏振多普勒天气雷达系统及雷达测量的方法
CN107526063A (zh) * 2016-06-20 2017-12-29 株式会社万都 雷达设备和处理雷达信号的方法
CN106772335A (zh) * 2017-01-18 2017-05-31 重庆大学 面向大型结构形变监测的有源异频收发式微波雷达系统
CN110146892A (zh) * 2019-05-05 2019-08-20 湖南宜通华盛科技有限公司 一种双偏振雷达

Also Published As

Publication number Publication date
CN110146892B (zh) 2023-08-01
JP7213443B2 (ja) 2023-01-27
CN110146892A (zh) 2019-08-20
US20220099827A1 (en) 2022-03-31
JP2022524476A (ja) 2022-05-06
US12019153B2 (en) 2024-06-25

Similar Documents

Publication Publication Date Title
WO2020224191A1 (zh) 一种双偏振雷达
CN102680963B (zh) 支持近程和远程雷达操作的雷达装置
CN106950563B (zh) 可负担得起的组合脉冲/fmcw雷达aesa
CN106772296B (zh) 气象雷达回波强度标校装置及方法
CN204031163U (zh) 大功率毫米波收发组件
US5500646A (en) Simultaneous differential polymetric measurements and co-polar correlation coefficient measurement
US8085181B2 (en) Polarization-modulated transmitter for a weather radar
CN110133634B (zh) 一种基于频分复用技术的mimo雷达虚拟孔径测角方法
CN102955155A (zh) 一种分布式有源相控阵雷达及其波束形成方法
KR20070110721A (ko) 무선통신 기능을 갖춘 차량용 레이더 듀얼모드 시스템
JPH075252A (ja) 時分割型fmレーダシステム
JP2015197438A (ja) Fmcwレーダー及びパルスレーダーを組み合わせるハイブリッドレーダーシステム
CN108254722B (zh) 一种双频相控阵雷达系统及其实现方法
CN108828546B (zh) 一种天基多通道动目标雷达接收处理系统及方法
CN203287518U (zh) 一种调频连续波收发模块
CN110568430B (zh) 一种具有保护通道的单脉冲雷达无盲区测距方法和系统
WO2006035109A1 (en) Method and apparatus for calibration of horizontal and vertical channels in a dual polarized weather radar
CN113534060A (zh) 一种船用有源相控阵雷达
KR100979284B1 (ko) 레이더 송수신 시스템
US20200271775A1 (en) Multi-Channel Split-Swath (MCSS) Synthetic Aperture Radar (SAR)
CN113917456A (zh) 一种可跨介质探测水下声源的多通道脉冲多普勒雷达
CN210465674U (zh) 一种Ku频段搜索告警雷达射频前端
CN209765034U (zh) 一种x波段车载探测雷达接收装置
CN114994687B (zh) 一种双频大气雷达系统及其控制方法
KR20120106567A (ko) 단거리 및 장거리 레이더 기능을 동시에 지원하는 레이더 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927581

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021536763

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927581

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19927581

Country of ref document: EP

Kind code of ref document: A1