WO2020223948A1 - 空调系统制冷剂回收加注系统及其方法 - Google Patents

空调系统制冷剂回收加注系统及其方法 Download PDF

Info

Publication number
WO2020223948A1
WO2020223948A1 PCT/CN2019/086142 CN2019086142W WO2020223948A1 WO 2020223948 A1 WO2020223948 A1 WO 2020223948A1 CN 2019086142 W CN2019086142 W CN 2019086142W WO 2020223948 A1 WO2020223948 A1 WO 2020223948A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
conditioning system
compressor
air conditioning
air
Prior art date
Application number
PCT/CN2019/086142
Other languages
English (en)
French (fr)
Inventor
姜红运
Original Assignee
深圳市泰路科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市泰路科技有限公司 filed Critical 深圳市泰路科技有限公司
Priority to PCT/CN2019/086142 priority Critical patent/WO2020223948A1/zh
Publication of WO2020223948A1 publication Critical patent/WO2020223948A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/02Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat for separating lubricants from the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant

Definitions

  • This application relates to the technical field of air conditioning refrigerant recovery, for example, to an air conditioning system refrigerant recovery and filling system and method.
  • Refrigerant is a fluid medium that can produce refrigeration in the air conditioning system. If the refrigerant is directly discharged into the atmosphere, it will pollute the atmosphere. Therefore, the refrigerant must be recovered when the air conditioning system is maintained.
  • the equipment for the refrigerant recovery is the refrigerant recovery filling machine.
  • the recovery efficiency and the recovery speed are two very important items. Among them, the recovery efficiency is the percentage of the weight of the refrigerant recovered by the refrigerant recovery filling machine to the total weight of the original refrigerant in the air conditioning system, and the recovery speed is the ratio of the weight of the recovered refrigerant to the recovery time.
  • the refrigerant recovery filler When the refrigerant recovery filler is used to recover the refrigerant in the air-conditioning system, as the refrigerant in the air-conditioning system evaporates, the temperature of the pipes of the air-conditioning system will decrease, and the decrease in temperature will prevent the refrigerant from further evaporating. This phenomenon of weakening of evaporation in the refrigerant recovery process will cause a part of the refrigerant to remain in the air conditioning system pipeline in a low temperature and liquid state, which affects the recovery speed and recovery efficiency.
  • This application proposes a refrigerant recovery and filling system and method for an air conditioning system with high refrigerant recovery speed and efficiency.
  • an air conditioning system refrigerant recovery and filling system including a compressor, a refrigerant buffer tank and a refrigerant storage tank, wherein the inlet of the compressor is connected to the air conditioning system and is configured to The refrigerant in the air-conditioning system is compressed into a high-temperature and high-pressure gaseous refrigerant; the inlet of the refrigerant buffer tank is communicated with the outlet of the compressor, and the refrigerant outlet of the refrigerant buffer tank is connected to the air-conditioning system and the compressor respectively.
  • the refrigerant inlet of the refrigerant storage tank is in communication, and the refrigerant storage tank is configured to fill at least part of the high-temperature and high-pressure gaseous refrigerant into the air conditioning system; the refrigerant inlet of the refrigerant storage tank is connected to The refrigerant outlet of the refrigerant storage tank is in communication, and the refrigerant storage tank is configured to store the refrigerant flowing out from the refrigerant outlet of the refrigerant storage tank after being compressed by the compressor.
  • the inlet of the compressor and the refrigerant outlet of the refrigerant buffer tank are respectively communicated with one port of the air conditioning system through a control valve; or, the inlet of the compressor is connected to a port of the air conditioning system through a control valve.
  • the two ports of the air conditioning system are connected, and the refrigerant outlet of the refrigerant buffer tank is respectively connected with the two ports of the air conditioning system through a control valve.
  • the refrigerant outlet of the refrigerant storage tank is communicated with the refrigerant inlet of the refrigerant storage tank through a one-way valve, and the one-way valve allows the refrigerant to flow from the refrigerant storage tank.
  • the tank flows to the refrigerant storage tank.
  • the one-way valve communicates with the refrigerant inlet of the refrigerant storage tank through a condenser.
  • a first oil and gas separator is provided between the inlet of the compressor and the air conditioning system.
  • the refrigerant buffer tank is a second oil-gas separator, and an oil outlet of the second oil-gas separator is in communication with the compressor.
  • this application adopts the following technical solution: a method for recycling refrigerant of an air conditioning system, the method is applied to a refrigerant recovery and filling system of an air conditioning system, and the refrigerant recovery and filling system of the air conditioning system includes a compressor and a refrigerant.
  • a buffer tank and a refrigerant storage tank the inlet of the compressor is connected to the air conditioning system; the inlet of the refrigerant buffer tank is connected with the outlet of the compressor, and the refrigerant outlet of the refrigerant buffer tank is connected to the
  • the air conditioning system is in communication with the refrigerant inlet of the refrigerant storage tank; the refrigerant inlet of the refrigerant storage tank is communicated with the refrigerant outlet of the refrigerant storage tank, and the method includes: turning on the compressor, The refrigerant recovered from the air-conditioning system is compressed into a high-temperature and high-pressure gaseous refrigerant; at least part of the high-temperature and high-pressure gaseous refrigerant is injected into the air-conditioning system through the refrigerant buffer tank to heat and recover the refrigerant in the air-conditioning system; The refrigerant flowing out from the refrigerant outlet of the refrigerant storage tank after being compressed by the compressor is stored
  • the turning on the compressor to compress the refrigerant in the air-conditioning system into a high-temperature and high-pressure gaseous refrigerant includes: turning on the compressor to recover the refrigerant from the air-conditioning system, and storing the compressed refrigerant from the compressor Until the pressure upstream of the compressor reaches the first preset value.
  • At least part of the high-temperature and high-pressure gaseous refrigerant is injected into the air-conditioning system through a refrigerant buffer tank to heat and recover the refrigerant in the air-conditioning system, including at least the following One: (i) at least part of the high temperature and high pressure gaseous refrigerant is injected from the low pressure side of the air conditioning system to the air conditioning system, and the refrigerant is recovered from the high pressure side of the air conditioning system; (ii) at least part of the high temperature and high pressure gaseous refrigerant Fill the air-conditioning system from the high-pressure side of the air-conditioning system, and recover refrigerant from the low-pressure side of the air-conditioning system.
  • the (i) and (ii) respectively include: weighing the weight W1 of the refrigerant in the refrigerant storage tank; connecting the inlet of the compressor with the high-pressure side of the air conditioning system and connecting the The refrigerant outlet of the refrigerant buffer tank is communicated with the low pressure side of the air conditioning system, or the refrigerant outlet of the refrigerant buffer tank is communicated with the high pressure side of the air conditioning system and the inlet of the compressor is connected with the air conditioning system.
  • the low pressure side of the compressor is connected; the preset time of starting the compressor is maintained, the high temperature and high pressure gaseous refrigerant in the refrigerant buffer tank is filled into the air conditioning system to heat the refrigerant in the air conditioning system; the refrigerant outlet of the refrigerant buffer tank is closed
  • the control valve between the air-conditioning systems continues to open the compressor to recover the refrigerant in the air-conditioning system until the pressure upstream of the first compressor reaches the second preset value, and weigh the weight W1' of the refrigerant in the refrigerant storage tank at this time; In the case where the value of W1' is greater than the value of W1, at least one of (i) and (ii) is executed again, otherwise, the refrigerant recovery is stopped.
  • a first oil and gas separator is provided between the inlet of the compressor and the air conditioning system, and the refrigerant buffer tank is a second oil and gas separator; the compressor is compressed from the refrigerant After the refrigerant flowing out of the refrigerant outlet of the buffer tank is stored in the refrigerant storage tank, it further includes: discharging the compressor oil separated in the first oil and gas separator, and discharging the compressor oil in the second oil and gas separator. Go back to the compressor.
  • Fig. 1 is a schematic structural diagram of an air conditioning system connected to a refrigerant recovery and filling system provided by an exemplary embodiment of the present application;
  • FIG. 2 is a schematic diagram of the internal structure of the refrigerant recovery and refilling system provided by an exemplary embodiment of the present application;
  • Fig. 3 is a structural block diagram of a control system provided by an exemplary embodiment of the present application.
  • FIG. 4 is a flowchart of a refrigerant recovery method for an air conditioning system provided by an exemplary embodiment of the present application
  • Fig. 5 is a flowchart of step S100 and step S200 provided by an exemplary embodiment of the present application
  • FIG. 6 is a flowchart of step S300 provided by an exemplary embodiment of the present application.
  • FIG. 7 is a flowchart of step S310 provided by an exemplary embodiment of the present application.
  • FIG. 8 is a flowchart of step S320 provided by an exemplary embodiment of the present application.
  • Fig. 9 is a flowchart of step S400 provided by an exemplary embodiment of the present application.
  • Air conditioning system 100. Air conditioning system; 200. Refrigerant recovery and filling system; 300. Control system;
  • controller 301, controller; 302, display device; 303, input device.
  • This exemplary embodiment provides a refrigerant recovery and filling system for an air conditioning system, as shown in FIGS. 1 to 3, which includes an air conditioning system 100, a refrigerant recovery and filling system 200 and a control system 300.
  • the air-conditioning system 100 can be, but is not limited to, a car air-conditioning system 100, and can also be other air-conditioning systems 100 that need to recover refrigerant.
  • the car air-conditioning system 100 is taken as an example for introduction.
  • Fig. 1 is a schematic structural diagram of an air conditioning system connected to a refrigerant recovery and filling system provided by an exemplary embodiment.
  • the air conditioning system 100 generally includes a second compressor 101, a second condenser 102, an expansion valve 103, and an evaporator 104 that are connected in sequence.
  • the two ports of the refrigerant recovery and filling system 200 communicate with the air conditioning system 100.
  • the refrigerant recovery and filling system 200 provided in this embodiment includes a first compressor, a refrigerant storage tank, and a refrigerant storage tank.
  • the refrigerant storage tank is the second oil-gas separator 202 as an example for description.
  • FIG. 2 is a schematic diagram of the internal structure of the refrigerant recovery and filling system 200.
  • the refrigerant recovery and filling system 200 includes a first oil-gas separator 205, a first compressor 201, a second oil-gas separator 202, a first condenser 203, and a refrigerant storage tank 204.
  • the first oil-gas separator The inlet of the compressor 205 is in communication with the air conditioning system 100, the refrigerant outlet of the first oil and gas separator 205 is in communication with the inlet of the first compressor 201, the inlet of the second oil and gas separator 202 is in communication with the outlet of the first compressor 201, The refrigerant outlet of the oil and gas separator 202 is respectively connected with the refrigerant inlet of the refrigerant storage tank 204 and the air conditioning system 100.
  • the first condenser 203 is located at the refrigerant outlet of the second oil and gas separator 202 and the refrigerant in the refrigerant storage tank 204 Between imports.
  • the inlet of the first oil separator 205 and the refrigerant outlet of the second oil separator 202 are respectively connected to the high pressure side 105 of the air conditioning system 100 and the low pressure side 106 of the air conditioning system 100, wherein the high pressure of the air conditioning system 100 Side 105 refers to the side downstream of the outlet of the second compressor 101 when the air conditioning system 100 is in normal working condition, and the low pressure side 106 of the air conditioning system 100 refers to the upstream of the inlet of the second compressor 101 when the air conditioning system 100 is in normal working condition Side.
  • the first compressor 201 is configured to provide power for recovering the refrigerant in the air-conditioning system 100 and compress the refrigerant in the air-conditioning system 100 into a high-temperature and high-pressure gaseous refrigerant.
  • the first oil separator 205 is provided to separate the refrigerant and compressor oil recovered from the air conditioning system 100 and store the compressor oil at the bottom thereof.
  • the second oil and gas separator 202 is configured to separate the compressor oil carried by the refrigerant from the first compressor 201 during the recovery process and store it at the bottom, and the second oil and gas separator 202 is configured to be able to pass through the first compressor 201
  • the compressed high temperature and high pressure gas refrigerant is injected into the air conditioning system 100 to heat the refrigerant in the air conditioning system 100.
  • the refrigerant storage tank 204 is a sealed container, and the refrigerant storage tank 204 is used to store the refrigerant recovered from the air conditioning system 100.
  • the refrigerant storage tank 204 can also inject liquid refrigerant into the air conditioning system 100.
  • the first condenser 203 is configured to allow the high-temperature and high-pressure gaseous refrigerant to be condensed and reduced in temperature and pressure into a liquid state before entering the refrigerant storage tank 204 for storage.
  • the second oil-gas separator 202 can also be changed to another container without oil-gas separation function, as long as it can buffer the high-temperature and high-pressure gas state compressed by the first compressor 201.
  • the role of the refrigerant is sufficient.
  • the first oil and gas separator 205 may not be provided.
  • the first condenser 203 may not be provided.
  • the second oil-gas separator 202 is provided to buffer at least part of the high-temperature and high-pressure gaseous refrigerant compressed by the first compressor 201, so that the second oil-gas separator can be removed in the case of "evaporation weakened during the refrigerant recovery process".
  • Part of the high-temperature and high-pressure gaseous refrigerant in 202 is injected into the air-conditioning system 100, and the heat energy generated by the first compressor 201 in the recovery process is used to heat various parts of the air-conditioning system 100, and the evaporation of the refrigerant in the air-conditioning pipeline is accelerated. Thereby, the recovery efficiency and recovery speed of the refrigerant can be improved.
  • the inlet of the first oil and gas separator 205 and the refrigerant outlet of the second oil and gas separator 202 are both connected to the air conditioning system 100 through a control valve.
  • the inlet of the first oil separator 205 is connected to the high pressure side 105 of the air conditioning system 100 through the control valve one 212, and the inlet of the first oil separator 205 is connected to the low pressure side 106 of the air conditioning system 100 through the control valve two 213.
  • each control valve in this article can be but not limited to solenoid valve.
  • the refrigerant outlet of the second oil and gas separator 202 communicates with the low pressure side 106 of the air conditioning system 100 through the control valve three 214, and the refrigerant outlet of the second oil separator 202 communicates with the high pressure side 105 of the air conditioning system 100 through the control valve 29 215.
  • control valve one 212 and control valve three 214 are opened, the high temperature and high pressure gaseous refrigerant in the second oil and gas separator 202 can be injected into the low pressure side 106 of the air conditioning system 100, and the refrigerant evaporated from the air conditioning system 100 is removed from the air conditioning system
  • the high pressure side 105 of 100 enters the refrigerant recovery and charging system 200.
  • control valve two 213 and control valve four 215 When control valve two 213 and control valve four 215 are opened, the high-temperature and high-pressure gaseous refrigerant in the second oil-air separator 202 can be injected into the high-pressure side 105 of the air conditioning system 100, and the refrigerant evaporated from the air conditioning system 100 is removed from the air conditioning system.
  • the low pressure side 106 of 100 enters the refrigerant recovery and filling system 200, so that the refrigerant in the air conditioning system 100 can be heated and recovered from two directions, and the recovery effect is better.
  • only the inlet of the first oil separator 205 and the refrigerant outlet of the second oil separator 202 may pass through the control valve and the high pressure side 105 and the low pressure side 106 of the air conditioning system 100, respectively. One of them is connected.
  • the inlet of the first oil-air separator 205 communicate with the high-pressure side 105 of the air-conditioning system 100 through a control valve
  • the refrigerant outlet of the second oil-air separator 202 communicate with the low-pressure side 106 of the air-conditioning system 100 through the control valve
  • the inlet of the first oil and gas separator 205 communicates with the low pressure side 106 of the air conditioning system 100 through a control valve
  • the refrigerant outlet of the second oil and gas separator 202 communicates with the high pressure side 105 of the air conditioning system 100 through a control valve.
  • the refrigerant outlet of the refrigerant storage tank 204 communicates with ports on both sides of the high pressure side 105 and the low pressure side 106 of the air conditioning system through a control valve five 217.
  • the liquid refrigerant in the refrigerant storage tank 204 can be filled into the air conditioning system 100 by opening the control valve five 217.
  • the gaseous refrigerant outlet of the refrigerant storage tank 204 is connected to the refrigerant inlet of the first oil and gas separator 205 through a control valve six (The communication pipeline between the refrigerant storage tank 204 and the refrigerant inlet of the first oil-air separator 205 and the control valve 6 are not shown in FIG. 2), the gas in the refrigerant storage tank 204 can be cooled by opening the control valve 6 The agent is injected into the first oil-gas separator 205 to discharge the compressor oil in the first oil-gas separator 205.
  • the refrigerant outlet of the second oil and gas separator 202 communicates with the refrigerant inlet of the refrigerant storage tank 204 through a one-way valve 216, and the one-way valve 216 is configured so that the refrigerant can only be separated from the second oil and gas
  • the condenser 202 flows unidirectionally to the refrigerant storage tank 204 to prevent the refrigerant in the first condenser 203 and the refrigerant storage tank 204 from flowing back into the second oil and gas separator 202.
  • the first condenser 203 is located downstream of the one-way valve 216.
  • the oil outlet of the second oil and gas separator 202 communicates with the inlet of the first compressor 201 through a control valve seven 218, so that the compression of the second oil and gas separator 202 can be separated by opening the control valve seven 218 The oil is drained back into the first compressor 201.
  • the refrigerant outlet of the first oil-air separator 205 is communicated with the inlet of the first compressor 201 through a control valve 219.
  • the inlet of the first oil and gas separator 205 can be, but is not limited to, a control valve 9220 provided.
  • a control valve 221 is provided at the oil outlet of the first oil-air separator 205.
  • the compressor oil separated in the first oil-air separator 205 can be discharged by closing the control valve eight 219 and the control valve nine 220, and opening the control valve six and the control valve ten 221.
  • the compressor oil separated in the second oil and gas separator 202 can be discharged back to the first compressor by closing the control valve eight 219, the control valve three 214, the control valve four 215 and the first compressor 201, and opening the control valve seven 218.
  • the compressor 201 The compressor oil separated in the second oil and gas separator 202 can be discharged back to the first compressor by closing the control valve eight 219, the control valve three 214, the control valve four 215 and the first compressor 201, and opening the control valve seven 218.
  • the compressor 201 is actuated.
  • a refrigerant weighing sensor 206 is provided at the bottom of the refrigerant storage tank 204, and the refrigerant weighing sensor 206 is configured to measure the quality of the refrigerant in the refrigerant storage tank 204.
  • the refrigerant load cell 206 can be used to determine whether the amount of refrigerant in the refrigerant storage tank 204 is higher than the minimum amount of refrigerant that needs to be stored in advance or is higher than the maximum capacity of the refrigerant storage tank 204 before recovery.
  • a pressure sensor 207 can be provided between the inlet of the first compressor 201 and the air conditioning system 100.
  • the pressure sensor 207 can be, but is not limited to, provided in the control valve one 212, the control valve two 213, and the first oil-gas separation Between the inlets of the air conditioning system 205, when the control valve one 212 or the control valve two 213 is opened, the pressure sensor 207 can measure the pressure in the air conditioning system 100. It can be understood that the number of pressure sensors 207 is not limited to one, and the location of the pressure sensor 207 is not limited to the above situation, and can be specifically set according to the location where the pressure needs to be measured.
  • a high-pressure switch 208 may be provided at the outlet of the first compressor 201 or at the refrigerant outlet of the second oil-gas separator 202, and the high-pressure switch 208 monitors the refrigerant outlet of the second oil-gas separator 208. When a high pressure is detected, the high pressure switch 208 is activated to suspend the recovery process to ensure the safety of the refrigerant recovery and filling system 200.
  • the refrigerant recovery and refilling system 200 includes a new compressor oil container 209 that communicates with the air conditioning system 100 through a control valve eleven 222, and the new compressor oil container 209 is set to be connected to the air conditioning system 100 provides new compressor oil.
  • a new oil weighing sensor 210 is arranged at the bottom of the new compressor oil container 209, and the new oil weighing sensor 210 is arranged to measure the quality of the new compressor oil in the new compressor oil container 209.
  • the refrigerant recovery and filling system 200 also includes a vacuum pump 211 communicating with the air conditioning system 100 through a control valve 12 223. The vacuum pump 211 can vacuum the air conditioning system 100 before injecting new compressor oil into the air conditioning system 100.
  • FIG. 3 schematically shows the control system 300 of the refrigerant recovery and filling system 200.
  • the control system 300 includes a controller 301.
  • the controller 301 can be, but is not limited to, a microprocessor.
  • the controller 301 can receive and read data from the pressure sensor 207, the high pressure switch 208, the new oil load cell 210 and
  • the refrigerant weighing sensor 206 can send a signal to open or close each control valve, the first compressor 201 and the vacuum pump 211.
  • the control system 300 may also be connected with a display device 302 and an input device 303 to realize human-computer interaction.
  • the present application also provides a refrigerant recovery and refilling method for an air-conditioning system, which can be but not limited to be implemented based on the above-mentioned air-conditioning system refrigerant recovery and refilling system.
  • the air conditioning system refrigerant recovery and filling method is to turn on the first compressor 201 to recover the refrigerant from the air conditioning system 100, and inject at least part of the high temperature and high pressure gaseous refrigerant compressed by the first compressor 201 into the air conditioning system 100 for heating and The refrigerant in the air conditioning system 100 is recovered.
  • the refrigerant recovery method of the air conditioning system includes steps S100 to S400.
  • step S100 the control system 300 is initialized.
  • step S200 turn on the first compressor 201 to recover the refrigerant from the air conditioning system 100 and store the refrigerant compressed by the first compressor 201 until the pressure upstream of the first compressor 201 reaches a first preset value, that is, The pressure in the air conditioning system 100 reaches the first preset value.
  • step S300 the first compressor 201 is kept turned on, and at least part of the high-temperature and high-pressure gas refrigerant compressed by the first compressor 201 is injected into the air conditioning system 100 to heat and recover the refrigerant in the air conditioning system 100.
  • step S400 the recovery of the refrigerant in the air conditioning system 100 is stopped.
  • step S100 includes step S110 and step S120.
  • step S110 the parameter W1 is set, and W1 is the weight of the refrigerant in the refrigerant storage tank 204.
  • the value of W1 can be but is not limited to be accurate to the gram.
  • step S120 the controller 301 obtains the detection results of the refrigerant weighing sensor 206 and the high pressure switch 208 to determine whether the operation can be continued. If the operation can be continued, proceed to step S200; if the operation cannot be continued, it can prompt manual processing. For example, if the high pressure switch 208 is turned on, the operation is abandoned and manual processing is prompted; if the detection result of the refrigerant weighing sensor 206 is greater than the maximum allowable weight of the refrigerant storage tank 204, a forced shutdown and an alarm are required to ensure the safety of the equipment.
  • step S200 is: open control valve one 212 and control valve two 213, connect both the high pressure side 105 and low pressure side 106 of the air conditioning system 100 to the inlet of the first oil-air separator 205, and open control valve eight 219 and The control valve nine 220 turns on the first compressor 201, and the refrigerant recovery operation is performed from both the high pressure side 105 and the low pressure side 106 of the air conditioning system 100.
  • the high-temperature, high-pressure gaseous refrigerant compressed by the first compressor 201 is partially stored in the second oil and gas separator 202, and the remaining part is condensed in the first condenser 203 to dissipate heat into liquid refrigerant and then enters The refrigerant storage tank 204.
  • the one-way valve 216 prevents the liquid refrigerant in the first condenser 203 and the refrigerant storage tank 204 from flowing back into the second oil and gas separator 202.
  • the controller 301 collects the detection result of the pressure sensor 207 as P, which is the pressure upstream of the first compressor 201.
  • step S200 is stopped, and step S300 is performed.
  • the reason why step S200 is stopped is that during the refrigerant recovery process, the temperature of the air conditioning system 100 drops due to the evaporation of the refrigerant, and part of the remaining low-temperature, liquid refrigerant is difficult to evaporate again.
  • step S300 includes step S310 and step S320.
  • step S310 at least part of the high-temperature and high-pressure gaseous refrigerant compressed by the compressor is injected from the low-pressure side 106 of the air-conditioning system 100 into the air-conditioning system 100 to heat the refrigerant in the air-conditioning system 100, from the high-pressure side of the air-conditioning system 100 105 Recover refrigerant.
  • step S320 at least part of the high-temperature and high-pressure gaseous refrigerant compressed by the compressor is injected from the high-pressure side 105 of the air-conditioning system 100 into the air-conditioning system 100 to heat the refrigerant in the air-conditioning system 100, from the low-pressure side of the air-conditioning system 100 106 Recover refrigerant.
  • step S310 and step S320 are not limited, and step S310 and step S320 can be performed alternately, but not limited to, until the refrigerant recovery is completed. It should be noted that, in other embodiments, step S300 may only include step S310 or step S320.
  • step S310 includes step S311 to step S315.
  • step S311 the controller 301 reads the detection result of the refrigerant load cell 206, and assigns the detection result of the refrigerant load cell 206 to W1.
  • step S312 open control valve one 212, control valve three 214, control valve nine 220, and control valve eight 219, close control valve two 213 and control valve four 215, thereby connecting the inlet of the first compressor 201 to the air conditioning system 100
  • the high-pressure side 105 is in communication with the refrigerant outlet of the second oil and gas separator 202 and the low-pressure side 106 of the air conditioning system 100 is in communication.
  • step S313 the first compressor 201 is started for a first preset time.
  • the first preset time may be but is not limited to 90s.
  • the high-temperature and high-pressure gaseous refrigerant in the second oil-air separator 202 is injected into the air-conditioning system 100 from the low-pressure side 106 of the air-conditioning system 100, and the refrigerant in the air-conditioning system 100 is recovered from the high-pressure side 105 of the air-conditioning system 100.
  • Refrigerant recovery charging machine is used to recover the high-pressure side 105 of the air-conditioning system 100.
  • step S314 control valve three 214 is closed, control valve two 213 is opened, control valve one 212, control valve nine 220 and control valve eight 219 are kept open, and the first compressor 201 is kept open to recover the refrigerant in the air conditioning system until the first compressor 201 is opened.
  • the pressure upstream of a compressor 201 reaches a second preset value, and the second preset value may be but not limited to -0.5 bar.
  • the injection of high-temperature and high-pressure gaseous refrigerant into the air-conditioning system 100 is stopped, and the refrigerant in the air-conditioning system 100 is continuously recovered.
  • step S315 at the end of step S314, the controller 301 reads the detection result of the refrigerant load cell 206 and assigns the detection result of the refrigerant load cell 206 to W1. If the value of W1' in step S314 is greater than that of step S314, The value of W1 in S311 indicates that there is still refrigerant in the air conditioning system 100.
  • Step S320 is executed to switch to the refrigerant heating recovery cycle, or Step S310 is executed again, specifically, S321 mentioned below or S311 is executed; otherwise, The program jumps to step S400.
  • step S320 includes step S321 to step S325.
  • step S321 the controller 301 reads the detection result of the refrigerant load cell 206, and assigns the detection result of the refrigerant load cell 206 to W1.
  • step S322 control valve two 213, control valve four 215, control valve nine 220, and control valve eight 219 are opened, and control valve one 212 and control valve three 214 are closed, thereby connecting the inlet of the first compressor 201 to the air conditioning system 100.
  • the low pressure side 106 of the air-conditioning system 100 communicates with the refrigerant outlet of the second oil-air separator 202 and the high pressure side 105 of the air conditioning system 100.
  • step S323 the first compressor 201 is started for a second preset time, and the second preset time may be but is not limited to 90s.
  • the high-temperature and high-pressure gaseous refrigerant in the second oil-air separator 202 is injected into the air-conditioning system 100 from the high-pressure side 105 of the air-conditioning system 100, and the refrigerant in the air-conditioning system 100 is recovered from the low-pressure side 106 of the air-conditioning system 100.
  • Refrigerant recovery charging machine is injected into the air-conditioning system 100 from the high-pressure side 105 of the air-conditioning system 100, and the refrigerant in the air-conditioning system 100 is recovered from the low-pressure side 106 of the air-conditioning system 100.
  • step S324 the control valve four 215 is closed, the control valve one 212 is opened, the control valve 213, the control valve nine 220 and the control valve eight 219 are kept open, and the first compressor 201 is kept open to recover the refrigerant in the air conditioning system until the first The pressure upstream of the compressor 201 reaches a third preset value, and the third preset value may be but not limited to -0.5 bar.
  • the injection of high-temperature and high-pressure gaseous refrigerant into the air-conditioning system 100 is stopped, and the refrigerant in the air-conditioning system 100 is continuously recovered.
  • step S325 when step S324 ends, the controller 301 reads the detection result of the refrigerant load cell 206, and assigns the detection result of the refrigerant load cell 206 to W1. If the value of W1' in step S324 is greater than that of step S324, The value of W1 in S321 indicates that there is still refrigerant in the air-conditioning system 100, then step S310 is executed to switch to the refrigerant heating recovery cycle, or step S320 is executed again, specifically step S311 or step S321 is executed; otherwise, the program skips Go to step S400.
  • step S400 is to stop the refrigerant recovery, discharge the compressor oil separated from the oil-air separator, and then the procedure ends.
  • the compressor oil in the second oil-air separator 202 is discharged by the following method: close the control valve eight 219, (at the end of step S300, the control valve three 214 and the control valve four 215 are already in the closed state), close The first compressor 201 opens the control valve seven 218 to drain the compressor oil in the second oil-air separator 202 back to the first compressor 201.
  • the compressor oil in the first oil and gas separator 205 is discharged by the following methods: closing the control valve eight 219 and the control valve nine 220, opening the control valve six 224 and the control valve ten 221, and the refrigerant storage tank 204
  • the gaseous refrigerant in the oil separator is intermittently injected into the first oil separator 205 to discharge the compressor oil in the first oil separator 205.
  • the control valve 6 can be opened intermittently but not limited to.
  • control valve nine 220 and the control valve eight 219 are not provided, when the refrigerant in the air-conditioning system 100 is recovered, there is no need to open the control valve nine 220 and the control valve eight 219, for example, if not Setting control valve nine 220 and control valve eight 219, step B, step S312, step S314, step S322, and step S324 do not need to open the operation of control valve nine 220 and control valve eight 219.
  • control valve one 212 and the control valve three 214 are opened at the same time to improve the efficiency and speed of refrigerant recovery.
  • control valve one 212 and Any one of control valve three 214 for example, step S200, step S314, and step S324 can be changed to only open any one of control valve one 212 and control valve three 214.
  • step S200 only the set control valve one 212 or control valve two 213 can be opened to connect the inlet of the first oil-air separator 205 with the air conditioning system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调系统制冷剂回收加注系统(200)及其方法。该制冷剂回收加注系统(200)包括第一压缩机(201),制冷剂缓存罐以及制冷剂储存罐(204),第一压缩机(201)的进口与空调系统(100)连通,设置为将空调系统(100)中的制冷剂压缩为高温高压的气态制冷剂;制冷剂缓存罐的进口与第一压缩机(201)的出口连通,制冷剂缓存罐的制冷剂出口分别与空调系统(100)以及制冷剂储存罐(204)的制冷剂进口连通,制冷剂缓存罐设置为将至少部分高温高压的气态制冷剂加注至空调系统(100)中;制冷剂储存罐(204)的制冷剂进口与制冷剂缓存罐的制冷剂出口连通,制冷剂储存罐(204)设置为储存经第一压缩机(201)压缩后从制冷剂缓存罐的制冷剂出口流出的制冷剂。该空调系统制冷剂回收加注系统(200)及其方法提高了制冷剂的回收速度和回收效率。

Description

空调系统制冷剂回收加注系统及其方法 技术领域
本申请涉及空调制冷剂回收技术领域,例如涉及一种空调系统制冷剂回收加注系统及其方法。
背景技术
制冷剂是能够在空调系统中产生制冷作用的流体介质。如果将制冷剂直接排放至大气中会对大气造成污染,所以空调系统维护时,必须对制冷剂进行回收。对制冷剂进行回收的设备是制冷剂回收加注机,制冷剂回收加注机的技术指标中,回收效率和回收速度是很重要的两项。其中,回收效率为制冷剂回收加注机所回收的制冷剂重量占空调系统内原有的制冷剂总重量的百分比,回收速度为所回收的制冷剂重量与回收时间的比值。
在使用制冷剂回收加注机对空调系统内的制冷剂进行回收时,随着空调系统内制冷剂蒸发,空调系统的管路温度会降低,温度降低会阻止制冷剂进一步蒸发。这种制冷剂回收过程中蒸发减弱的现象,会造成一部分制冷剂以低温、液态状残留在空调系统管路内,影响回收速度和回收效率。
为避免上述情况,很多制冷剂回收加注机生产厂家,会间歇性的回收,以给空调系统中的残留制冷剂升温时间。有时甚至需要等待很多次,回收非常耗时,而且即使如此,回收效率通常也并不高。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提出一种制冷剂的回收速度和回收效率高的空调系统制冷剂回收加注系统及方法。
本申请采用以下技术方案:一种空调系统制冷剂回收加注系统,包括压缩机,制冷剂缓存罐以及制冷剂储存罐,其中,所述压缩机的进口与空调系统连通,设置为将所述空调系统中的制冷剂压缩为高温高压的气态制冷剂;所述制冷剂缓存罐的进口与所述压缩机的出口连通,所述制冷剂缓存罐的制冷剂出口 分别与所述空调系统和所述制冷剂储存罐的制冷剂进口连通,所述制冷剂缓存罐设置为将至少部分所述高温高压的气态制冷剂加注至所述空调系统中;所述制冷剂储存罐的制冷剂进口与所述制冷剂缓存罐的制冷剂出口连通,所述制冷剂储存罐设置为储存经所述压缩机压缩后从所述制冷剂缓存罐的制冷剂出口流出的制冷剂。
在一个示例实施方式中,所述压缩机的进口和制冷剂缓存罐的制冷剂出口分别通过控制阀与所述空调系统的一个端口连通;或者,所述压缩机的进口通过控制阀分别与所述空调系统的两个端口连通,所述制冷剂缓存罐的制冷剂出口通过控制阀分别与所述空调系统的两个端口连通。
在一个示例实施方式中,所述制冷剂缓存罐的制冷剂出口与所述制冷剂储存罐的制冷剂进口通过单向阀连通,所述单向阀使所述制冷剂从所述制冷剂缓存罐流向所述制冷剂储存罐。
在一个示例实施方式中,所述单向阀与所述制冷剂储存罐的制冷剂进口之间通过冷凝器连通。
在一个示例实施方式中,所述压缩机的进口与所述空调系统之间设置有第一油气分离器。
在一个示例实施方式中,所述制冷剂缓存罐为第二油气分离器,所述第二油气分离器的出油口与所述压缩机连通。
另一方面,本申请采用以下技术方案:一种空调系统制冷剂回收方法,所述方法应用于空调系统制冷剂回收加注系统,所述空调系统制冷剂回收加注系统包括压缩机、制冷剂缓存罐和制冷剂储存罐,所述压缩机的进口与空调系统连通;所述制冷剂缓存罐的进口与所述压缩机的出口连通,所述制冷剂缓存罐的制冷剂出口分别与所述空调系统和所述制冷剂储存罐的制冷剂进口连通;所述制冷剂储存罐的制冷剂进口与所述制冷剂缓存罐的制冷剂出口连通,所述方法包括:开启所述压缩机,将从空调系统中回收的制冷剂压缩为高温高压的气态制冷剂;通过制冷剂缓存罐将至少部分高温高压的气态制冷剂加注至所述空调系统以加热并回收空调系统中的制冷剂;将经所述压缩机压缩后从所述制冷剂缓存罐的制冷剂出口流出的制冷剂储存至所述制冷剂储存罐中。
在一个示例实施方式中,所述开启压缩机,将空调系统中的制冷剂压缩为高温高压的气态制冷剂包括:开启所述压缩机以从空调系统回收制冷剂,并储 存经压缩机压缩后的制冷剂,直至压缩机上游的压力达到第一预设值。
在一个示例实施方式中,其中,所述通过制冷剂缓存罐将至少部分所述高温高压的气态制冷剂加注至所述空调系统以加热并回收所述空调系统中的制冷剂,包括以下至少之一:;(i)将至少部分高温高压的气态制冷剂从空调系统的低压侧加注至空调系统,从空调系统的高压侧回收制冷剂;(ii)将至少部分高温高压的气态制冷剂从空调系统的高压侧加注至空调系统,从空调系统的低压侧回收制冷剂。
在一个示例实施方式中,所述(i)和所述(ii)分别包括:称量制冷剂储存罐中制冷剂的重量W1;将压缩机的进口与空调系统的高压侧连通且将所述制冷剂缓存罐的制冷剂出口与空调系统的低压侧连通,或者将所述制冷剂缓存罐的制冷剂出口与所述空调系统的高压侧连通且将所述压缩机的进口与所述空调系统的低压侧连通;维持启动压缩机预设时间,制冷剂缓存罐中的高温高压的气态制冷剂加注至空调系统中以加热空调系统中的制冷剂;关闭制冷剂缓存罐的制冷剂出口与空调系统之间的控制阀,继续开启压缩机回收空调系统中的制冷剂直至第一压缩机上游的压力达到第二预设值,称量此时制冷剂储存罐中制冷剂的重量W1’;在W1’的值大于W1的值的情况下,再次执行所述(i)和所述(ii)中的至少一种,否则停止回收制冷剂。
在一个示例实施方式中,压缩机的进口与空调系统之间设置有第一油气分离器,制冷剂缓存罐为第二油气分离器;所述将经所述压缩机压缩后从所述制冷剂缓存罐的制冷剂出口流出的制冷剂储存至所述制冷剂储存罐中之后,还包括:排出第一油气分离器中分离出的压缩机油,将第二油气分离器中的压缩机油排回至所述压缩机中。
本申请本申请在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
图1是本申请示例实施方式提供的与制冷剂回收加注系统连接的空调系统的结构示意图;
图2是本申请示例实施方式提供的制冷剂回收加注系统的内部结构的示意图;
图3是本申请示例实施方式提供的控制系统的结构框图;
图4是本申请示例实施方式提供的空调系统制冷剂回收方法的流程图;
图5是本申请示例实施方式提供的步骤S100和步骤S200的流程图;
图6是本申请示例实施方式提供的步骤S300的流程图;
图7是本申请示例实施方式提供的步骤S310的流程图;
图8是本申请示例实施方式提供的步骤S320的流程图;
图9是本申请示例实施方式提供的步骤S400的流程图。
附图标记:
100、空调系统;200、制冷剂回收加注系统;300、控制系统;
101、第二压缩机;102、第二冷凝器;103、膨胀阀;104、蒸发器;105、高压侧;106、低压侧;
201、第一压缩机;202、第二油气分离器;203、第一冷凝器;204、制冷剂储存罐;205、第一油气分离器;206、制冷剂称重传感器;207、压力传感器;208、高压开关;209、新压缩机油容器;210、新油称重传感器;211、真空泵;212、控制阀一;213、控制阀二;214、控制阀三;215、控制阀四;216、单向阀;217、控制阀五;218、控制阀七;219、控制阀八;220、控制阀九;221、控制阀十;222、控制阀十一;223、控制阀十二;224、控制阀六;
301、控制器;302、显示装置;303、输入装置。
具体实施方式
下面结合附图并通过示例实施方式来进一步说明本申请的技术方案。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或者暗示相对重要性。
本示例实施方式提供了一种空调系统制冷剂回收加注系统,如图1至图3所示,其包括空调系统100、制冷剂回收加注系统200和控制系统300。空调系统100可以但不局限为车用空调系统100,也可以为其他需要回收制冷剂的空调系统100,本示例实施方式中以车用空调系统100为例进行介绍。
图1为本示例实施方式提供的与制冷剂回收加注系统连接的空调系统的结构示意图。如图1所示,空调系统100通常包括依次连通的第二压缩机101、第二冷凝器102、膨胀阀103和蒸发器104。制冷剂回收加注系统200的两个端口与空调系统100连通。
本实施例中提供的制冷剂回收加注系统200包括第一压缩机,制冷剂缓存罐以及制冷剂储存罐,本申请以制冷剂缓存罐为第二油气分离器202为例进行说明。图2为制冷剂回收加注系统200内部结构的示意图。如图2所示,制冷剂回收加注系统200包括第一油气分离器205、第一压缩机201、第二油气分离器202、第一冷凝器203和制冷剂储存罐204,第一油气分离器205的进口与空调系统100连通,第一油气分离器205的制冷剂出口与第一压缩机201的进口连通,第二油气分离器202的进口与第一压缩机201的出口连通,第二油气分离器202的制冷剂出口分别与制冷剂储存罐204的制冷剂进口和空调系统100连通,第一冷凝器203位于第二油气分离器202的制冷剂出口与制冷剂储存罐204的制冷剂进口之间。在一实施例中,第一油气分离器205的进口和第二油气分离器202的制冷剂出口分别与空调系统100的高压侧105和空调系统100的低压侧106连通,其中空调系统100的高压侧105是指空调系统100处于正常工作状态时位于第二压缩机101出口下游的一侧,空调系统100的低压侧106是指空调系统100处于正常工作状态时位于第二压缩机101进口的上游的一侧。
第一压缩机201设置为提供回收空调系统100中的制冷剂的动力,将空调系统100中的制冷剂压缩为高温高压的气态制冷剂。第一油气分离器205设置为将从空调系统100回收的制冷剂和压缩机油分离并将压缩机油储存在其底部。第二油气分离器202设置为将回收过程中制冷剂从第一压缩机201带出的压缩机油分离并储存在底部,且第二油气分离器202被配置为能够将经第一压缩机201压缩后的高温高压的气态制冷剂注入至空调系统100中以加热空调系统100中的制冷剂。制冷剂储存罐204为密封的容器,制冷剂储存罐204用于存储从空调系统100中回收的制冷剂。制冷剂储存罐204还可以向空调系统100注入液态制冷剂。第一冷凝器203设置为使高温高压的气态制冷剂经过冷凝降温降压成液态后再进入制冷剂储存罐204储存。需要说明的是,其他实施方式中,也可以将第二油气分离器202改设为其他没有油气分离功能的容器,只要其能够起到缓存部分经第一压缩机201压缩后的高温高压的气态制冷剂的作用即可。 其他实施方式中,也可以不设置第一油气分离器205。其他实施方式中,也可以不设置第一冷凝器203。
通过设置第二油气分离器202来缓存至少部分经第一压缩机201压缩后的高温高压的气态制冷剂,从而能在“制冷剂回收过程中蒸发减弱”等情况下,将第二油气分离器202中的部分高温高压的气态制冷剂注入至空调系统100中,利用第一压缩机201在回收过程中产生的热能对空调系统100内的各部分加热,加速空调管路内制冷剂的蒸发,从而能够提高制冷剂的回收效率和回收速度。
为了便于控制制冷剂的流动,第一油气分离器205的进口和第二油气分离器202的制冷剂出口均通过控制阀与空调系统100连通。在一实施例中,第一油气分离器205的进口通过控制阀一212与空调系统100的高压侧105连通,第一油气分离器205的进口通过控制阀二213与空调系统100的低压侧106连通,本文中的各个控制阀均可以但不局限为电磁阀。第二油气分离器202的制冷剂出口通过控制阀三214与空调系统100的低压侧106连通,第二油气分离器202的制冷剂出口通过控制阀四215与空调系统100的高压侧105连通。当开启控制阀一212和控制阀三214时,第二油气分离器202中的高温高压的气态制冷剂能够注入至空调系统100的低压侧106,空调系统100中蒸发出的制冷剂从空调系统100的高压侧105进入制冷剂回收加注系统200。当开启控制阀二213和控制阀四215时,第二油气分离器202中的高温高压的气态制冷剂能够注入至空调系统100的高压侧105,空调系统100中蒸发出的制冷剂从空调系统100的低压侧106进入制冷剂回收加注系统200,从而可以从两个方向对空调系统100中的制冷剂进行加热回收循环,回收效果更好。
需要说明的是,其他实施方式中,也可以仅令第一油气分离器205的进口和第二油气分离器202的制冷剂出口分别通过控制阀与空调系统100的高压侧105和低压侧106中的一者连通。例如,令第一油气分离器205的进口通过控制阀与空调系统100的高压侧105连通,第二油气分离器202的制冷剂出口通过控制阀与空调系统100的低压侧106连通;或者,令第一油气分离器205的进口通过控制阀与空调系统100的低压侧106连通,第二油气分离器202的制冷剂出口通过控制阀与空调系统100的高压侧105连通,该实施方式中,仅具有一个方向对空调系统100中的制冷剂进行加热回收循环。
在一实施例中,制冷剂储存罐204的制冷剂出口通过控制阀五217与空调 系统的高压侧105和低压侧106这两侧的端口连通。可以通过开启控制阀五217,将制冷剂储存罐204中的液态制冷剂加注至空调系统100中。
为了便于将第一油气分离器205中分离出的压缩机油排出,在一实施例中,制冷剂储存罐204的气态制冷剂出口通过控制阀六与第一油气分离器205的制冷剂进口连通(图2中未示出制冷剂储存罐204与第一油气分离器205的制冷剂进口间的连通管路及控制阀六),可以通过开启控制阀六将制冷剂储存罐204中的气态制冷剂注入至第一油气分离器205中,以将第一油气分离器205中的压缩机油排出。
在一实施例中,第二油气分离器202的制冷剂出口通过单向阀216与制冷剂储存罐204的制冷剂进口连通,单向阀216被配置为使得制冷剂只能从第二油气分离器202向制冷剂储存罐204单向流动,以防止第一冷凝器203和制冷剂储存罐204中的制冷剂回流到第二油气分离器202中。在一实施例中,第一冷凝器203位于单向阀216的下游。
在一实施例中,第二油气分离器202的出油口通过控制阀七218与第一压缩机201的进口连通,从而能够通过开启控制阀七218将第二油气分离器202分离出的压缩机油排回至第一压缩机201中。
在一实施例中,第一油气分离器205的制冷剂出口通过控制阀八219与第一压缩机201的进口连通。第一油气分离器205的进口处可以但不局限为设置有控制阀九220。在一实施例中,第一油气分离器205的出油口处设置有控制阀十221。能够通过关闭控制阀八219和控制阀九220,开启控制阀六和控制阀十221,来将第一油气分离器205中分离出的压缩机油排出。能够通过关闭控制阀八219、控制阀三214、控制阀四215和第一压缩机201、开启控制阀七218,来将第二油气分离器202中分离出的压缩机油排回至第一压缩机201中。
请继续参阅图2,制冷剂储存罐204的底部设置有制冷剂称重传感器206,制冷剂称重传感器206设置为测量制冷剂储存罐204中的制冷剂质量。可以在回收之前通过制冷剂称重传感器206来判断制冷剂储存罐204中的制冷剂量是否高于需要预先储存的最低制冷剂量或者是否高于制冷剂储存罐204的最大容量。如图2所示,可以在第一压缩机201的进口和空调系统100之间设置压力传感器207,压力传感器207可以但不局限为设置在控制阀一212、控制阀二213以及第一油气分离器205的进口之间,当开启控制阀一212或控制阀二213时, 压力传感器207可以测量空调系统100中的压力。可以理解的是,压力传感器207的数量并不局限于一个,其设置位置并不局限于上述情况,可根据需要测量压力的部位具体设置。在一实施例中,可以在第一压缩机201的出口处或者在第二油气分离器202的制冷剂出口处设置高压开关208,高压开关208监测第二油气分离器208的制冷剂出口处的压力,并且当检测到高压时激活高压开关208,暂停回收过程,以保证制冷剂回收加注系统200的安全。
请继续参阅图2,在一实施例中,制冷剂回收加注系统200包括通过控制阀十一222与空调系统100连通的新压缩机油容器209,新压缩机油容器209设置为向空调系统100提供新的压缩机油。新压缩机油容器209的底部设置有新油称重传感器210,新油称重传感器210设置为测量新压缩机油容器209中的新压缩机油质量。制冷剂回收加注系统200还包括通过控制阀十二223与空调系统100连通的真空泵211,真空泵211能够在向空调系统100之中注入新压缩机油之前,对空调系统100进行抽真空。
图3示意性地示出了制冷剂回收加注系统200的控制系统300。如图3所示,控制系统300包括控制器301,控制器301可以但不局限为微处理器,控制器301能够接收和读取来自压力传感器207、高压开关208、新油称重传感器210和制冷剂称重传感器206的信号,并能够发出开启或者关闭各个控制阀、第一压缩机201和真空泵211的信号。控制系统300还可以连接有显示装置302和输入装置303,以实现人机交互。
本申请还提供了一种空调系统制冷剂回收加注方法,其可以但不局限为基于上述空调系统制冷剂回收加注系统实现。
该空调系统制冷剂回收加注方法为开启第一压缩机201从空调系统100中回收制冷剂,将第一压缩机201压缩后的至少部分高温高压的气态制冷剂注入至空调系统100以加热并回收空调系统100中的制冷剂。
在一实施例中,如图4所示,该空调系统制冷剂回收方法包括步骤S100至步骤S400。
在步骤S100中,初始化控制系统300。
在步骤S200中,开启第一压缩机201从空调系统100回收制冷剂并储存经第一压缩机201压缩后的制冷剂,直至第一压缩机201上游的压力达到第一预设值,也即空调系统100中的压力达到第一预设值。
在步骤S300中,保持开启第一压缩机201,将第一压缩机201压缩后的至少部分高温高压的气态制冷剂注入至空调系统100以加热并回收空调系统100中的制冷剂。
在步骤S400中,停止回收空调系统100中的制冷剂。
在一实施例中,如图5所示,步骤S100包括步骤S110和步骤S120。
在步骤S110中,设置参数W1,W1为制冷剂储存罐204中的制冷剂的重量。W1的值可以但不局限为精确到克。
在步骤S120中,控制器301获取制冷剂称重传感器206和高压开关208的检测结果,以确定是否可以继续操作,如果可以继续操作,进行步骤S200;如果不可以继续操作,可提示人工处理。例如如果高压开关208被打开,则放弃操作并提示人工处理;如果制冷剂称重传感器206的检测结果大于制冷剂储存罐204最大允许重量,则强制停机并报警,保证设备安全。
在一实施例中,步骤S200为:打开控制阀一212和控制阀二213,把空调系统100高压侧105和低压侧106均与第一油气分离器205的进口连通,打开控制阀八219和控制阀九220,打开第一压缩机201,从空调系统100的高压侧105和低压侧106这两侧实施回收制冷剂操作。制冷剂回收过程中,经第一压缩机201压缩的高温、高压的气态制冷剂部分储存于第二油气分离器202中,其余的部分在第一冷凝器203内冷凝散热为液态制冷剂然后进入制冷剂储存罐204中。单向阀216阻止第一冷凝器203和制冷剂储存罐204中的液态制冷剂回流到第二油气分离器202中。制冷剂回收过程中,控制器301采集压力传感器207的检测结果为P,P即为第一压缩机201上游的压力,当P小于或者等于一个较低的第一预设值时,例如第一预设值为0bar,则停止步骤S200,并进行步骤S300。之所以停止步骤S200,是因为制冷剂回收过程中,空调系统100中因为制冷剂的蒸发而温度下降,部分残留的低温、液态制冷剂难以再蒸发。
在一实施例中,如图6所示,步骤S300包括步骤S310和步骤S320。
在步骤S310中,将经过压缩机压缩后的至少部分高温高压的气态制冷剂从空调系统100的低压侧106注入至空调系统100以加热空调系统100中的制冷剂,从空调系统100的高压侧105回收制冷剂。
在步骤S320中,将经过压缩机压缩后的至少部分高温高压的气态制冷剂从空调系统100的高压侧105注入至空调系统100以加热空调系统100中的制冷 剂,从空调系统100的低压侧106回收制冷剂。
步骤S310和步骤S320的先后次序不限,步骤S310和步骤S320可以但不局限为交替进行,直至制冷剂回收完毕。需要说明地是,其他实施方式中步骤S300也可以仅包括步骤S310或者步骤S320。
在一实施例中,如图7所示,步骤S310包括步骤S311至步骤S315。
在步骤S311中,控制器301读取制冷剂称重传感器206的检测结果,将制冷剂称重传感器206的检测结果赋给W1。
在步骤S312中,开启控制阀一212、控制阀三214、控制阀九220和控制阀八219,关闭控制阀二213和控制阀四215,从而将第一压缩机201的进口与空调系统100的高压侧105连通、第二油气分离器202的制冷剂出口与空调系统100的低压侧106连通。
在步骤S313中,启动第一压缩机201第一预设时间,第一预设时间可以但不局限为90s。该步骤中,第二油气分离器202中的高温高压的气态制冷剂从空调系统100的低压侧106注入至空调系统100中,空调系统100中的制冷剂从空调系统100的高压侧105回收至制冷剂回收充注机中。
在步骤S314中,关闭控制阀三214,开启控制阀二213,保持开启控制阀一212、控制阀九220和控制阀八219,保持开启第一压缩机201回收空调系统中的制冷剂直至第一压缩机201上游的压力达到第二预设值,第二预设值可以但不局限为-0.5bar。该步骤中,停止向空调系统100注入高温高压的气态制冷剂,且继续回收空调系统100中的制冷剂。
在步骤S315中,步骤S314结束时,控制器301读取制冷剂称重传感器206的检测结果,将制冷剂称重传感器206的检测结果赋给W1,如果步骤S314中的W1’的值大于步骤S311中的W1的值,表明空调系统100内仍有制冷剂,执行步骤S320换向执行制冷剂加热回收循环、或者再次执行步骤S310,具体地执行下文中提及的S321或者执行S311;否则,程序跳转到步骤S400。
在一实施例中,如图8所示,步骤S320包括步骤S321至步骤S325。
在步骤S321中,控制器301读取制冷剂称重传感器206的检测结果,将制冷剂称重传感器206的检测结果赋给W1。
在步骤S322中,开启控制阀二213、控制阀四215、控制阀九220和控制阀八219,关闭控制阀一212和控制阀三214,从而将第一压缩机201的进口与 空调系统100的低压侧106连通、第二油气分离器202的制冷剂出口与空调系统100的高压侧105连通。
在步骤S323中,启动第一压缩机201第二预设时间,第二预设时间可以但不局限为90s。该步骤中,第二油气分离器202中的高温高压的气态制冷剂从空调系统100的高压侧105注入至空调系统100中,空调系统100中的制冷剂从空调系统100的低压侧106回收至制冷剂回收充注机中。
在步骤S324中,关闭控制阀四215,开启控制阀一212,保持开启控制阀213、控制阀九220和控制阀八219,保持开启第一压缩机201回收空调系统中的制冷剂直至第一压缩机201上游的压力达到第三预设值,第三预设值可以但不局限为-0.5bar。该步骤中,停止向空调系统100注入高温高压的气态制冷剂,且继续回收空调系统100中的制冷剂。
在步骤S325中,步骤S324结束时,控制器301读取制冷剂称重传感器206的检测结果,将制冷剂称重传感器206的检测结果赋给W1,如果步骤S324中的W1’的值大于步骤S321中的W1的值,表明空调系统100内仍有制冷剂,则执行步骤S310换向执行制冷剂加热回收循环、或者再次执行步骤S320,具体地执行步骤S311或者执行步骤S321;否则,程序跳转到步骤S400。
在一实施例中,如图9所示,步骤S400为停止回收制冷剂,排出油气分离器中分离出的压缩机油,然后程序结束。
在一实施例中,通过如下方式排出第二油气分离器202中的压缩机油:关闭控制阀八219,(步骤S300结束时,控制阀三214和控制阀四215已处于关闭状态),关闭第一压缩机201,开启控制阀七218,将第二油气分离器202中的压缩机油排回至第一压缩机201中。
在一实施例中,通过如下方式排出第一油气分离器205中的压缩机油:关闭控制阀八219和控制阀九220,打开控制阀六224和控制阀十221,将制冷剂储存罐204中的气态制冷剂间歇性地注入到第一油气分离器205中,以将第一油气分离器205中的压缩机油排出。其中控制阀六可以但不局限为间歇性开启。
需要说明的是,在未设置控制阀九220和控制阀八219的实施方式中,则回收空调系统100中的制冷剂时,无需开启控制阀九220和控制阀八219的操作,例如如果未设置控制阀九220和控制阀八219,步骤B、步骤S312、步骤S314、步骤S322和步骤S324则无需开启控制阀九220和控制阀八219的操作。
需要说明的是,回收空调系统100中的制冷剂时,同时开启控制阀一212和控制阀三214,是为了提高制冷剂的回收效率和速度,该步骤中也可以仅开启控制阀一212和控制阀三214中的任一个阀,例如步骤S200、步骤S314和步骤S324中均可以改设为仅开启控制阀一212和控制阀三214中的任一个阀。
在第一油气分离器205的进口仅通过控制阀与空调系统的高压侧105或者仅通过控制阀与空调系统的低压侧106连通的实施方式中,即仅设置控制阀一212或仅设置控制阀二213时,步骤S200中,仅打开所设置的控制阀一212或控制阀二213,即可将第一油气分离器205的进口与空调系统连通。

Claims (10)

  1. 一种空调系统制冷剂回收加注系统,包括压缩机,制冷剂缓存罐以及制冷剂储存罐,其中,
    所述压缩机的进口与空调系统连通,设置为将所述空调系统中的制冷剂压缩为高温高压的气态制冷剂;
    所述制冷剂缓存罐的进口与所述压缩机的出口连通,所述制冷剂缓存罐的制冷剂出口分别与所述空调系统和所述制冷剂储存罐的制冷剂进口连通,所述制冷剂缓存罐设置为将至少部分所述高温高压的气态制冷剂加注至所述空调系统中;
    所述制冷剂储存罐的制冷剂进口与所述制冷剂缓存罐的制冷剂出口连通,所述制冷剂储存罐设置为储存经所述压缩机压缩后从所述制冷剂缓存罐的制冷剂出口流出的制冷剂。
  2. 根据权利要求1所述的空调系统制冷剂回收加注系统,其中,
    所述压缩机的进口和所述制冷剂缓存罐的制冷剂出口分别通过控制阀与所述空调系统的一个端口连通;或者,
    所述压缩机的进口通过控制阀分别与所述空调系统的两个端口连通,所述制冷剂缓存罐的制冷剂出口通过控制阀分别与所述空调系统的两个端口连通。
  3. 根据权利要求1所述的空调系统制冷剂回收加注系统,其中,所述制冷剂缓存罐的制冷剂出口与所述制冷剂储存罐的制冷剂进口通过单向阀连通,所述单向阀使所述制冷剂从所述制冷剂缓存罐流向所述制冷剂储存罐。
  4. 根据权利要求1所述的空调系统制冷剂回收加注系统,其中,所述压缩机的进口与所述空调系统之间设置有第一油气分离器。
  5. 根据权利要求1至4任一项所述的空调系统制冷剂回收加注系统,其中,所述制冷剂缓存罐为第二油气分离器。
  6. 一种空调系统制冷剂回收加注方法,所述方法应用于空调系统制冷剂回收加注系统,所述空调系统制冷剂回收加注系统包括压缩机、制冷剂缓存罐和制冷剂储存罐,所述压缩机的进口与空调系统连通;所述制冷剂缓存罐的进口与所述压缩机的出口连通,所述制冷剂缓存罐的制冷剂出口分别与所述空调系统和所述制冷剂储存罐的制冷剂进口连通;所述制冷剂储存罐的制冷剂进口与所述制冷剂缓存罐的制冷剂出口连通,所述方法包括:
    开启所述压缩机,将从空调系统中回收的制冷剂压缩为高温高压的气态制 冷剂;
    通过制冷剂缓存罐将至少部分所述高温高压的气态制冷剂加注至所述空调系统以加热并回收空调系统中的制冷剂;
    将经所述压缩机压缩后从所述制冷剂缓存罐的制冷剂出口流出的制冷剂储存至所述制冷剂储存罐中。
  7. 根据权利要求6所述的空调系统制冷剂回收加注方法,所述开启压缩机,将空调系统中的制冷剂压缩为高温高压的气态制冷剂包括:
    开启所述压缩机以从所述空调系统回收制冷剂,并储存经所述压缩机压缩后的高温高压的气态制冷剂,直至所述压缩机上游的压力达到第一预设值。
  8. 根据权利要求6所述的空调系统制冷剂回收加注方法,其中,所述通过制冷剂缓存罐将至少部分所述高温高压的气态制冷剂加注至所述空调系统以加热并回收所述空调系统中的制冷剂包括以下至少之一:
    (i)将至少部分所述高温高压的气态制冷剂从所述空调系统的低压侧加注至所述空调系统,从所述空调系统的高压侧回收制冷剂;
    (ii)将至少部分所述高温高压的气态制冷剂从所述空调系统的高压侧加注至所述空调系统,从所述空调系统的低压侧回收制冷剂。
  9. 根据权利要求8所述的空调系统制冷剂回收加注方法,所述(i)和所述(ii)分别包括:
    称量所述制冷剂储存罐中制冷剂的重量W1;
    将所述压缩机的进口与所述空调系统的高压侧连通且将所述制冷剂缓存罐的制冷剂出口与所述空调系统的低压侧连通,或者将所述制冷剂缓存罐的制冷剂出口与所述空调系统的高压侧连通且将所述压缩机的进口与所述空调系统的低压侧连通;
    维持启动所述压缩机预设时间,所述制冷剂缓存罐中的所述高温高压的气态制冷剂加注至所述空调系统中以加热并回收空调系统中的制冷剂;
    关闭所述制冷剂缓存罐的制冷剂出口与所述空调系统之间的控制阀,继续开启所述压缩机以回收空调系统中的制冷剂直至所述压缩机上游的压力达到第二预设值,称量此时制冷剂储存罐中制冷剂的重量W1’,在W1’的值大于W1的值的情况下,再次执行所述(i)和所述(ii)中的至少一种,否则停止回收制冷剂。
  10. 根据权利要求9所述的空调系统制冷剂回收加注方法,其中,所述压缩机的进口与所述空调系统之间设置有第一油气分离器,所述制冷剂缓存罐为第二油气分离器;所述将经所述压缩机压缩后从所述制冷剂缓存罐的制冷剂出口流出的制冷剂储存至所述制冷剂储存罐中之后,还包括:
    排出所述第一油气分离器中分离出的压缩机油,将所述第二油气分离器中的压缩机油排回至所述压缩机中。
PCT/CN2019/086142 2019-05-09 2019-05-09 空调系统制冷剂回收加注系统及其方法 WO2020223948A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086142 WO2020223948A1 (zh) 2019-05-09 2019-05-09 空调系统制冷剂回收加注系统及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086142 WO2020223948A1 (zh) 2019-05-09 2019-05-09 空调系统制冷剂回收加注系统及其方法

Publications (1)

Publication Number Publication Date
WO2020223948A1 true WO2020223948A1 (zh) 2020-11-12

Family

ID=73050918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086142 WO2020223948A1 (zh) 2019-05-09 2019-05-09 空调系统制冷剂回收加注系统及其方法

Country Status (1)

Country Link
WO (1) WO2020223948A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2645948A1 (fr) * 1989-04-14 1990-10-19 Mathieu Christian Installation de recuperation d'un fluide frigorigene, notamment chlorofluorocarbone
CN201100800Y (zh) * 2007-09-19 2008-08-13 诸暨市鸿森机械有限公司 一种冷媒回收加注机
CN103075852A (zh) * 2013-02-18 2013-05-01 武汉理工大学 一种用于制冷剂回收加注机的双阀块汇流机构
CN103090606A (zh) * 2012-03-02 2013-05-08 台州朗讯机械有限公司 汽车空调冷冻油更换装置
CN204665777U (zh) * 2015-05-05 2015-09-23 上海佐竹冷热控制技术有限公司 用于车辆空调测试系统的制冷剂加注回收系统
CN106338166A (zh) * 2016-08-05 2017-01-18 浙江吉利控股集团有限公司 一种智能冷媒加注和回收装置
CN206637903U (zh) * 2017-04-17 2017-11-14 海宁泽尔汽车检测设备有限公司 汽车空调制冷剂回收加注机
CN109764578A (zh) * 2019-02-01 2019-05-17 深圳市泰路科技有限公司 空调系统的压缩机油回收系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2645948A1 (fr) * 1989-04-14 1990-10-19 Mathieu Christian Installation de recuperation d'un fluide frigorigene, notamment chlorofluorocarbone
CN201100800Y (zh) * 2007-09-19 2008-08-13 诸暨市鸿森机械有限公司 一种冷媒回收加注机
CN103090606A (zh) * 2012-03-02 2013-05-08 台州朗讯机械有限公司 汽车空调冷冻油更换装置
CN103075852A (zh) * 2013-02-18 2013-05-01 武汉理工大学 一种用于制冷剂回收加注机的双阀块汇流机构
CN204665777U (zh) * 2015-05-05 2015-09-23 上海佐竹冷热控制技术有限公司 用于车辆空调测试系统的制冷剂加注回收系统
CN106338166A (zh) * 2016-08-05 2017-01-18 浙江吉利控股集团有限公司 一种智能冷媒加注和回收装置
CN206637903U (zh) * 2017-04-17 2017-11-14 海宁泽尔汽车检测设备有限公司 汽车空调制冷剂回收加注机
CN109764578A (zh) * 2019-02-01 2019-05-17 深圳市泰路科技有限公司 空调系统的压缩机油回收系统及方法

Similar Documents

Publication Publication Date Title
KR100878819B1 (ko) 공기조화기 및 그 제어방법
US8079226B2 (en) Method for accurately recharging A/C systems
US10330350B2 (en) Air conditioning system, compression system with gas secondary injection and judgment and control method thereof
CN103115458B (zh) 全自动的气体回收充注装置及方法
US6434953B2 (en) Filling device for motor vehicle air-conditioning systems
CN106196778B (zh) 一种冷媒循环系统及其控制方法
CN110075448A (zh) 一种乘用车动力电池系统自动灭火系统及控制方法
CN102829582A (zh) 空调冷媒回收系统和方法
JP6055647B2 (ja) 冷媒処理装置
CA2890872C (en) Device and method for maintaining an air conditioner
JP6573523B2 (ja) 冷媒回収装置
CN102818406A (zh) 空调热泵冷媒回收装置、方法及空调室外机
US11079147B2 (en) Method for loading refrigerant in an air conditioning system
WO2020155474A1 (zh) 空调系统的压缩机油回收系统和方法、冷媒回收加注机
US6233952B1 (en) Pretrip routine comprising of individual refrigeration system components
EP0813033B1 (en) Mixed refrigerant injection method
CN201100800Y (zh) 一种冷媒回收加注机
WO2020223948A1 (zh) 空调系统制冷剂回收加注系统及其方法
CN102788402A (zh) 空调冷媒循环系统的控制方法及空调系统
CN201615644U (zh) 空调冷媒循环机组
CN109827362A (zh) 电子膨胀阀控制装置、co2制冷热泵系统及其控制方法
JP2013160409A (ja) 冷媒処理装置
JP2869904B2 (ja) 冷凍サイクル制御装置
JPH03117862A (ja) フロンガス回収装置
CN219871691U (zh) 一种自动补充冷媒的电池测试系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928279

Country of ref document: EP

Kind code of ref document: A1