WO2020223934A1 - 血压计、血压计控制方法及检测有效的脉搏波的方法 - Google Patents

血压计、血压计控制方法及检测有效的脉搏波的方法 Download PDF

Info

Publication number
WO2020223934A1
WO2020223934A1 PCT/CN2019/086053 CN2019086053W WO2020223934A1 WO 2020223934 A1 WO2020223934 A1 WO 2020223934A1 CN 2019086053 W CN2019086053 W CN 2019086053W WO 2020223934 A1 WO2020223934 A1 WO 2020223934A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
pressure value
initial
control parameter
amplitude
Prior art date
Application number
PCT/CN2019/086053
Other languages
English (en)
French (fr)
Inventor
刘瑞
王智勇
赵纪伟
韦传敏
Original Assignee
深圳市长桑技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市长桑技术有限公司 filed Critical 深圳市长桑技术有限公司
Priority to CN201980096200.2A priority Critical patent/CN113811238B/zh
Priority to PCT/CN2019/086053 priority patent/WO2020223934A1/zh
Publication of WO2020223934A1 publication Critical patent/WO2020223934A1/zh
Priority to US17/453,868 priority patent/US20220054024A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02116Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave amplitude
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7221Determining signal validity, reliability or quality

Definitions

  • This application relates to the field of medical devices, and in particular to a blood pressure meter, a blood pressure meter control method, and a method for detecting effective pulse waves.
  • Sphygmomanometer is one of the commonly used medical testing equipment.
  • the systolic/diastolic blood pressure of the subject can be calculated by adjusting the air pressure in the cuff. In this way, the pulse wave is an accurate calculation of the systolic/diastolic blood pressure. Foundation.
  • a method for controlling a blood pressure meter includes: selecting a pulse wave control parameter, the pulse wave control parameter including at least an amplitude threshold, a time threshold, and/or a heart rate threshold; setting an initial pulse wave control parameter; applying pressure to the sphygmomanometer;
  • the initial pulse wave control parameter searches for more than one pulse wave, and corrects the initial pulse wave control parameter according to the pulse wave control parameter of the pulse wave to obtain the corrected pulse wave control parameter; according to the corrected pulse wave control parameter Find at least the next pulse wave, and further modify the corrected pulse wave control parameters according to the pulse wave control parameters of the next pulse wave; repeat the above iterative process to continuously modify the pulse wave control parameters, and extract the pulse wave control parameters
  • An effective pulse wave the blood pressure measurement result is generated according to the detection result of the effective pulse wave.
  • the method of modifying the pulse wave control parameter includes: searching for the first pulse wave and the second pulse wave whose amplitude is higher than the initial amplitude threshold, and after the initial judgment is qualified according to the The amplitude of the first pulse wave and the second pulse wave are corrected to the initial amplitude threshold, and the third pulse wave is searched for according to the corrected amplitude threshold, the initial heart rate threshold and/or the initial time threshold; The amplitude of the three pulse waves further corrects the amplitude threshold, the initial heart rate threshold and/or the initial time threshold are corrected according to the interval time between the third pulse wave and the second pulse wave, and the corrected amplitude threshold is used , Time threshold and/or Heart rate threshold to find the next pulse wave.
  • the condition for the initial judgment of the first pulse wave and the second pulse wave to be qualified includes: the interval between the two falls within the range of the initial heart rate threshold and/or the initial time threshold If it does not fall within the range, the first pulse wave is discarded, and the next pulse wave whose amplitude is higher than the initial amplitude threshold is searched for until two adjacent pulse waves fall within the range.
  • the initial amplitude threshold is a pressure value of 0.2 mmHg; the initial heart rate threshold includes a minimum of 30 beats/min and a maximum of 300 beats/min; the initial time threshold includes a minimum of 0.2 s and a maximum of 2s.
  • control method further includes forming an effective pulse wave template according to the effective pulse wave, and using the effective pulse wave template to filter out noise interference in the pulse wave.
  • the noise interference occurs at the non-pulse wave corresponding to the effective pulse wave template, the noise interference is directly filtered out; if the noise interference corresponds to the pulse wave of the effective pulse wave template When the noise interference occurs, the pulse wave is fitted and compensated.
  • the method of fitting and compensation includes: obtaining an effective pulse wave variation trend with time according to the effective pulse wave template, and finding the inflection point in the variation trend curve;
  • the effective pulse wave template a valid pulse wave in front of the pulse wave and a valid pulse wave in the back are calculated, and the sum of the amplitudes of the two is calculated to obtain the pulse wave amplitude at that place;
  • the pulse wave time is obtained according to the effective pulse wave template ;
  • the curve fitting method of least square regression is used to obtain the pulse wave at that place.
  • the step of generating a blood pressure measurement result according to the effective pulse wave detection result includes: searching for the amplitude of the pulse wave according to the pulse wave control parameter, and the method includes: first finding the pulse wave front
  • the maximum value of the pulse wave is the maximum value of the pulse wave at the minimum value of the minimum value of, and then the maximum value of the pulse wave at that point is taken as the starting point of the first maximum value appearing after the minimum value.
  • the number of the several sampling points is related to the heart rate, and the interval between two adjacent sampling points is 1 ms.
  • control method further includes: generating a final pressure value for ending pressurization according to the detection result of the effective pulse wave, the sphygmomanometer pressurizing to the final pressure value, and stopping Pressurize.
  • the method for obtaining the final pressure value includes: extracting the amplitude of each effective pulse wave, comparing the rising and falling trends of all amplitudes, and finding the peak value of the amplitude according to the following formula Calculate the final pressure value P:
  • K is the macroscopic linear correlation coefficient of the entire compression process
  • Hr is the interval time between two adjacent effective pulse waves
  • m is the systolic pressure coefficient
  • Mp is the time coordinate corresponding to the peak amplitude of all effective pulse waves.
  • control method further includes: controlling the pressurization speed, including: presetting the corresponding relationship of the pressure value changing with time, and the pressure value determined according to the corresponding relationship at different time Set the pressure value; detect the actual pressure value of the sphygmomanometer during the pressurization process; correct the preset pressure value according to the actual pressure value; adjust the pressurization speed of the sphygmomanometer according to the corrected preset pressure value.
  • the method of adjusting the pressurization speed of the sphygmomanometer according to the corrected preset pressure value includes: performing a comparison between the detected actual pressure value and the preset pressure value. By comparison, if the actual pressure value is greater than the preset pressure value, the pressurization speed is reduced; if the actual pressure value is less than the preset pressure value, the pressurization speed is increased; if the actual pressure value is If it is equal to the preset pressure value, the pressurizing speed remains unchanged.
  • the increased or decreased pressurization speed is related to the difference between the actual pressure value and the preset pressure value.
  • the proportional adjustment in the PID control algorithm is used to adjust the pressurizing speed.
  • the preset correspondence relationship of the pressure value changes with time is a linear relationship.
  • a blood pressure monitor in the second aspect of the present application, includes: a cuff, used to wrap the measured part, a motor, used to introduce air into the cuff to pressurize; an initial parameter setting unit, used to select pulse wave control parameters and set the initial pulse Wave control parameters, the pulse wave control parameters include at least an amplitude threshold, a time threshold and/or a heart rate threshold; a correction processing unit: used to control the parameters according to the initial pulse wave during the pressurization process of the motor, and according to The pulse wave found by the initial pulse wave control parameter is continuously revised to the pulse wave control parameter, and an effective pulse wave is extracted according to the corrected pulse wave control parameter; and a blood pressure calculation unit is used to calculate the effective pulse wave according to the The detection result of the pulse wave generates the blood pressure measurement result.
  • the sphygmomanometer provided above further includes a pressure detection component for detecting the actual pressure value in the cuff during the compression process; and a motor control component for adjusting the compression speed of the motor, so The motor control unit adjusts the pressurizing speed of the motor by the actual pressure value detected by the pressure detecting unit.
  • the sphygmomanometer provided above further includes: the blood pressure calculation unit obtains an end pressurization signal according to the effective pulse wave extracted by the correction processing unit, and calculates the final pressure value, the motor control unit Control the motor to pressurize to the final pressure value and stop pressurizing.
  • a method for detecting effective pulse waves includes selecting a pulse wave control parameter, the pulse wave control parameter including at least an amplitude threshold, a time threshold, and/or a heart rate threshold; setting an initial pulse wave control parameter; searching for more than one pulse wave according to the initial pulse wave control parameter, And modify the initial pulse wave control parameter according to the pulse wave control parameter of the pulse wave to obtain the corrected pulse wave control parameter; find at least the next pulse wave according to the revised pulse wave control parameter, and according to the pulse wave control parameter of the next pulse wave.
  • the pulse wave control parameter further corrects the corrected pulse wave control parameter; repeats the above iterative process to continuously correct the pulse wave control parameter, and extracts an effective pulse wave according to the pulse wave control parameter.
  • Fig. 1 is an exemplary structural block diagram according to some embodiments of the present application, in which the relationship between the components of the blood pressure meter is deployed;
  • FIG. 2 is a flowchart of an exemplary process according to some embodiments of the present application, in which a method of adjusting the compression speed of a sphygmomanometer according to a revised preset pressure value is deployed;
  • FIG. 3 is a flowchart of an exemplary process according to some embodiments of the present application, in which the process of detecting a valid pulse wave is prompted;
  • FIG. 4 is a flowchart of an exemplary process according to some embodiments of the present application, in which the control process of the blood pressure meter is prompted;
  • Fig. 5 is an exemplary detection result diagram according to some embodiments of the present application, in which a waveform distortion caused by a certain noise interference is indicated.
  • a flowchart is used in this application to illustrate the operations performed by the method according to the embodiments of the application. It should be understood that the preceding or following operations are not necessarily performed exactly in order. Instead, the various steps can be processed in reverse order or simultaneously. At the same time, you can also add other operations to these processes, or remove a step or several operations from these processes.
  • the “device”, “component” and/or “unit” used herein is a method for distinguishing different components, elements, parts, parts or assemblies of different levels. However, if other words can achieve the same purpose, the words can be replaced by other expressions.
  • the pulse wave amplitude is the amplitude of the pulse wave, that is, the pressure difference between the maximum value and the minimum value
  • the pulse wave time is the oscillation period of a complete pulse wave ( For example, the interval time between two adjacent wave crests)
  • a blood pressure monitor is provided.
  • Fig. 1 is an exemplary structural block diagram according to some embodiments of the present application, in which the relationship between the various components of a blood pressure meter is deployed.
  • a blood pressure meter may include: a cuff for wrapping around the measured part, a motor for Air is introduced into the cuff for pressurization; an initial parameter setting unit for selecting pulse wave control parameters and setting initial pulse wave control parameters, the pulse wave control parameters including at least an amplitude threshold, a time threshold, and/or Heart rate threshold; correction processing unit: used to continuously modify the pulse wave control according to the initial pulse wave control parameter and the pulse wave found according to the initial pulse wave control parameter during the pressurization process of the motor Parameters, and extract a valid pulse wave according to the corrected pulse wave control parameter; and a blood pressure calculation unit for generating a blood pressure measurement result according to the detection result of the valid pulse wave.
  • the measurement principle and process of the sphygmomanometer provided in this application can be: the motor is started, the cuff is inflated, the pressure in the cuff gradually increases, and at a certain moment (this moment corresponds to the blood vessel of the subject The moment when the compression of the cuff begins) the pulse wave waveform begins to appear in the detection result; the initial parameter setting unit, the correction processing unit, and the blood pressure calculation unit are used to process the pulse wave that appears and calculate the final Blood pressure measurement results.
  • the detection result may be obtained by a sensing module.
  • the sensing module may include one or more sensors.
  • the sensor can be an external device, or a component or electronic component of the external device.
  • the sensor module can be one or more sensors integrated on the same electronic component, or a combination of multiple electronic components (each containing one or more sensors).
  • the types of data that can be acquired by the sensor module include but are not limited to: physical data, chemical data, and biological data. Among them, physical data includes but is not limited to: sound, light, time, weight, proximity, position, temperature, humidity, pressure, current, speed, and acceleration, inhalable particles, radiation, text, images, touch, pupils, fingerprints, etc. .
  • Chemical data includes but is not limited to: air pollutants, water pollutants, carbon monoxide concentration, carbon dioxide concentration, etc.
  • Biological data includes, but is not limited to: blood pressure, heart rate, blood sugar, insulin, etc. of the organism.
  • the equipment used to detect and/or monitor sound includes, but is not limited to, a microphone.
  • the equipment used to detect and/or monitor light includes, but is not limited to, an illuminance sensor, an ambient light sensor, and the like.
  • the sphygmomanometer of the present application further includes a display module that displays the blood pressure measurement results, and the information output by the display module may include programs, software, algorithms, data, text, numbers, images, voices, etc. One or a combination of several.
  • the blood pressure monitor may further include a pressure detection component for detecting the actual pressure value in the cuff during the pressurization process; and a motor control component for adjusting the pressure The pressurizing speed of the motor, the motor control component adjusts the pressurizing speed of the motor by the actual pressure value detected by the pressure detecting component.
  • the method of adjusting the pressurization speed may be: preset the corresponding relationship of the pressure value changing with time, and the pressure value determined according to the corresponding relationship at different times is the preset pressure value; detecting the sphygmomanometer during the pressurization process Correct the preset pressure value according to the actual pressure value; adjust the pressurization speed of the sphygmomanometer according to the corrected preset pressure value.
  • the corresponding relationship may be a linear relationship. If nonlinear pressurization is used, the purpose of adjusting the pressurization speed can also be achieved. However, at the moment of pressure adjustment, the corresponding relationship of pressure value changes with time will appear. Turning point, and the turning point may be mistaken as a pulse wave during the waveform acquisition process, causing interference and misjudgment of the pulse wave signal. Using linear pressure can ensure the pressure process is stable and the collected waveform is clean and reasonable.
  • Fig. 2 is a flowchart of an exemplary process according to some embodiments of the present application, in which a method of adjusting the compression speed of a sphygmomanometer according to a revised preset pressure value is deployed.
  • the detected actual pressure value (the actual pressure value can be obtained by the pressure sensor detecting the pressure value every 100ms) can be compared with the preset pressure value, if the actual pressure value If the pressure value is greater than the preset pressure value, the pressurization speed is reduced; if the actual pressure value is less than the preset pressure value, the pressurization speed is increased; if the actual pressure value is equal to the preset pressure value, The pressurizing speed remains unchanged.
  • a pressure difference threshold may be set, such as setting a maximum pressure difference and a minimum pressure difference, if the difference between the actual pressure value and the preset pressure value falls within the maximum pressure difference and the pressure difference Between the minimum value, the pressurization speed remains unchanged; if the difference between the actual pressure value and the preset pressure value is less than the minimum pressure difference, increase the pressurization speed; if the actual pressure value is If the difference between the preset pressure values is greater than the maximum value of the pressure difference, the pressurization speed will be reduced.
  • the pressure difference threshold the pressure can be increased linearly while further reducing the pressurization process. Interference and influence.
  • the increased or decreased pressurization speed may be a fixed value. In other embodiments, the increased or decreased pressurization speed is related to the actual pressure value and the preset value. It is assumed that the difference between the pressure values is related. For example, the greater the difference, the greater the increase or decrease of the pressurization speed, which further realizes reasonable control of the pressurization speed.
  • the application uses a large amount of data to study the characteristics of the motor, analyzes and fits the data relationship between the cuff and the arm, and selects the proportional adjustment in the PID control algorithm to adjust the pressurization speed For example, in order to make the speed of the motor adjustable and reasonable, the initial speed of the motor should not be set too high or too small.
  • the blood pressure monitor may further include: the blood pressure calculation unit obtains an end pressurization signal according to the effective pulse wave extracted by the correction processing unit, and calculates it For the final pressure value, the motor control component controls the motor to be pressurized to the final pressure value and stops pressurizing.
  • the final pressure value for ending the compression may be generated according to the detection result of the effective pulse wave, and the sphygmomanometer can pressurize to the final pressure value and stop the compression.
  • the method for obtaining the final pressure value may be: extract the amplitude of each effective pulse wave, compare the upward and downward trends of all amplitudes, find the peak value of the amplitude, and calculate the final pressure according to the following formula Value P:
  • K is the macroscopic linear correlation coefficient of the entire pressurization process, such as the proportional coefficient in the aforementioned PID control algorithm (the slope of the line between the point corresponding to the amplitude peak and the origin can be taken), and the value range is 0 ⁇ + ⁇ , in order to avoid the pressure being too fast or too slow, the value range in some embodiments is 10-20; Hr is the interval time between two adjacent effective pulse waves, the value range is 0.2s-2s, m is The systolic blood pressure coefficient is a multiple obtained based on actual experience. It represents different values in the algorithm.
  • the identification point near the systolic blood pressure is calculated according to m times lower than the peak amplitude of the effective pulse wave, and the value range is 0.5-5; Mp It is the time coordinate corresponding to the peak amplitude of all valid pulse waves, and the value range is 8s ⁇ 15s.
  • the proportional coefficient in the PID control algorithm is 12, then the value of K is 12, and each adjacent two effective pulses There is a difference in the interval time of the waves.
  • the average value of Hr is 0.85s, and the value of m is 2.
  • this embodiment is The pressurization can be ended at a position about 25mmHg higher than the systolic pressure. Without affecting the test results, on the one hand, the utilization rate of the motor is improved, on the other hand, the detection time is shortened, and the inflation pressure value and the inflation time are guaranteed rationality.
  • the value of K is 16, the calculated value of Hr is 1.3s, the value of m is 0.9, and the value of Mp is 9.25s.
  • the pressure is ended at a position higher than the systolic pressure 32mmHg.
  • the method for judging the timing of the end of compression does not require fitting interpolation of the pulse amplitude, etc., and can accurately terminate the compression at a pressure that is at least 10mmHg higher after the systolic blood pressure. process.
  • the blood pressure meter and its modules shown in FIG. 1 may be implemented in various ways.
  • the apparatus and its modules may be implemented by hardware, software, or a combination of software and hardware.
  • the hardware part can be implemented using dedicated logic;
  • the software part can be stored in a memory and executed by appropriate instructions, such as a microprocessor or dedicated design hardware.
  • processor control code for example, on a carrier medium such as a disk, CD or DVD-ROM, such as a read-only memory (firmware Such codes are provided on a programmable memory or a data carrier such as an optical or electronic signal carrier.
  • the structure of the application and its modules can not only be implemented by hardware circuits such as very large-scale integrated circuits or gate arrays, semiconductors such as logic chips and transistors, or programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc. It can also be implemented by software executed by various types of processors, or can be implemented by a combination of the aforementioned hardware circuit and software (for example, firmware).
  • Fig. 3 is a flowchart of an exemplary process according to some embodiments of the present application, in which a process of detecting a valid pulse wave is prompted.
  • a method for detecting effective pulse waves is provided. Including selecting pulse wave control parameters, the pulse wave control parameters including at least amplitude threshold, time threshold and/or heart rate threshold; setting initial pulse wave control parameters; searching for more than one pulse wave according to the initial pulse wave control parameters, and The pulse wave control parameter of the pulse wave is modified to obtain the modified pulse wave control parameter by the initial pulse wave control parameter; to find at least the next pulse wave according to the revised pulse wave control parameter, and control according to the pulse wave of the next pulse wave The parameters further modify the corrected pulse wave control parameters; repeat the above iterative process to continuously modify the pulse wave control parameters, and extract the effective pulse wave according to the pulse wave control parameters.
  • the pulse wave control parameter includes at least an amplitude threshold, a time threshold, and/or a heart rate threshold. It should be noted that the selection of the pulse wave control parameter may be related to actual applications. In some embodiments, Only one pulse wave control parameter that is easier to measure can be selected; in other embodiments, for example, the subject's heart rate is abnormal due to nervous or fearful emotions, the heart rate threshold is discarded as the pulse wave control parameter, and the amplitude threshold and time can be selected The threshold is used as the pulse wave control parameter; in some embodiments, the pulse wave control parameters that can be selected are the amplitude threshold and the heart rate threshold; in other embodiments, for example, if the difference between multiple measurements is large, the pulse wave control parameter is divided by the amplitude
  • the threshold, heart rate threshold, and/or time threshold may also include other thresholds related to the pulse wave (for example, pulse wave peak-to-valley ratio) to improve measurement accuracy;
  • the initial amplitude threshold may be greater than 0.1mmHg, preferably, it may be 0.20mmHg ⁇ 0.50mmHg, for example 0.2mmHg;
  • the initial heart rate threshold may be 10 beats/min ⁇ 350 times/min, preferably 20 times/min ⁇ 320 times/min, for example, the minimum value is 30 times/min and the maximum value is 300 times/min;
  • the initial time threshold may be 0.17s ⁇ 6s, preferably , It can be 0.19s ⁇ 3s, for example, the minimum value is 0.2s and the maximum value is 2s.
  • the pulse wave signal at the initial stage is extracted in the above-mentioned relatively wide range to avoid signal missed detection;
  • the execution component pressurizes the sphygmomanometer to change the pressure value detected by the sphygmomanometer to perform blood pressure measurement;
  • the pressurization process find more than one pulse wave according to the initial pulse wave control parameter, and modify the initial pulse wave control parameter according to the pulse wave control parameter of the pulse wave to obtain the corrected pulse wave control parameter;
  • the pulse wave control parameter searches for at least the next pulse wave, and further modifies the corrected pulse wave control parameter according to the pulse wave control parameter of the next pulse wave; repeats the above iterative process to continuously modify the pulse wave control parameter until the pressure is increased
  • the effective pulse wave is extracted according to the pulse wave control parameter (the method for judging the effective pulse wave can form an effective pulse wave template according to the pulse wave control parameter, for example, the amplitude threshold of the effective pulse wave template is 120mmHg , The time threshold is 0.15s. If the detected pulse wave matches the effective pulse wave template, it is judged as a valid pulse wave, otherwise it is an invalid pulse wave); the blood pressure measurement result is generated according to the detection result of the valid pulse wave .
  • the pulse wave control parameters can be closer to the actual situation of the subject through continuous correction, and the effective pulse wave extracted from the corrected initial pulse wave control parameters can filter out the pulse wave control parameters that are too large or excessive. Invalid pulse wave detected due to small causes, while avoiding the missed detection of effective pulse wave, so that the obtained effective pulse wave is more complete and accurate.
  • search for the first pulse wave and the second pulse wave whose amplitude is higher than the initial amplitude threshold may be invalid
  • the pulse wave is to perform an initial judgment on the first pulse wave and the second pulse wave.
  • the condition for the initial judgment to be qualified may be: the interval between the two falls within the initial heart rate threshold and/or the initial time threshold range, If it does not fall within the range, the first pulse wave is discarded, and the next pulse wave whose amplitude is higher than the initial amplitude threshold is searched for until two adjacent pulse waves fall within the range.
  • the first pulse wave and the second pulse wave are initially screened to filter out a part of invalid pulse waves; after the initial judgment is qualified, the initial pulse wave and the second pulse wave are evaluated according to the amplitudes of the first pulse wave and the second pulse wave.
  • the amplitude threshold is corrected, and the third pulse wave is found according to the corrected amplitude threshold, the initial heart rate threshold and/or the initial time threshold; the amplitude threshold is further corrected according to the amplitude of the third pulse wave, and the amplitude threshold is further corrected according to the The interval time between the third pulse wave and the second pulse wave corrects the initial heart rate threshold and/or the initial time threshold, and searches for the next pulse wave according to the corrected amplitude threshold, time threshold and/or heart rate threshold.
  • the method for correcting the amplitude threshold may be: correcting the amplitude threshold into two pulse waves, the amplitude A value closer to the initial amplitude threshold (for example, 0.2mmHg).
  • the amplitude threshold is corrected to 8mmHg; in other embodiments, the method for correcting the amplitude threshold may be: correcting the amplitude threshold to two The average value of the pulse wave amplitude. In this embodiment, the amplitude threshold is corrected to 9mmHg; in other embodiments, for example, the method of correcting the amplitude threshold during the blood pressure detection process of a subject whose blood pressure changes are very unstable It can be: if the amplitude of the two pulse waves are both greater than the initial amplitude threshold, the amplitude threshold is corrected to: the initial amplitude threshold + X (where X is a fixed value between 0.01mmHg and 10mmHg); if the two pulse waves If the amplitude of the wave is less than the initial amplitude threshold, the amplitude threshold is corrected to: the initial amplitude threshold -X; if one of the two pulse wave amplitudes is greater than the initial amplitude threshold, and the other is less than the initial amplitude threshold, the amplitude
  • the amplitude threshold (the corrected amplitude threshold obtained in the previous step is 9mmHg) is further modified according to the amplitude of the third pulse wave (for example, the detection result is 12mmHg)
  • the specific method In some embodiments, if the amplitude of the third pulse wave and the corrected amplitude threshold obtained in the previous step, the difference between the two is less than or equal to Y (where Y is a value ranging from 0.01mmHg to 5mmHg A fixed value between), the corrected amplitude threshold obtained in the previous step is not corrected; if the difference between the two is greater than Y, the corrected amplitude threshold obtained in the previous step is corrected to: the previous step The obtained modified amplitude threshold +Z (where Z is a fixed value between 0.01mmHg and 1mmHg).
  • Y is 2mmHg and Z is 0.2mmHg
  • the correction obtained in the previous step The subsequent amplitude threshold is further corrected to 9.2mmHg, and the subsequent correction method of the amplitude threshold refers to the aforementioned method, which will not be repeated here.
  • Correct the initial heart rate threshold (set to include a minimum of 30 beats/min and a maximum of 300 beats/min) according to the interval time (for example, 1.6s) between the third pulse wave and the second pulse wave and/or
  • the specific method of the initial time threshold includes: in some embodiments, correcting the maximum or minimum value of the initial time threshold to the currently detected interval time, and correcting The maximum value or the minimum value depends on the difference between the currently detected interval time and the maximum value, and the difference between the currently detected interval time and the minimum value. The two differences are compared, and the difference is the smaller one Corrected to the currently detected interval time. If the difference is equal, no correction is required.
  • the end of the initial time threshold that is closer to the currently detected interval time is corrected to the currently detected interval time
  • the initial time threshold is corrected to include the minimum value of 0.2s and the maximum value of 1.6s; in other embodiments, the end of the initial time threshold that is closer to the currently detected interval is corrected.
  • the minimum value is corrected to: minimum value + X (where X is a fixed value between 0.01s and 0.1s); if the maximum value is closer, the maximum value is corrected to: Maximum value-X; if the distances are equal, the minimum value can be corrected to the minimum value + X, and the maximum value is corrected to the maximum value-X, or both the maximum value and the minimum value are not corrected.
  • X takes 0.05s
  • the method shown in FIG. 3 can be implemented in various ways. For example, in some embodiments, it may be implemented by hardware, software, or a combination of software and hardware.
  • the hardware part can be implemented using dedicated logic; the software part can be stored in a memory and executed by an appropriate instruction execution system, such as a microprocessor or dedicated design hardware.
  • an appropriate instruction execution system such as a microprocessor or dedicated design hardware.
  • the above-mentioned methods and systems can be implemented using computer-executable instructions and/or included in processor control codes, for example on a carrier medium such as a disk, CD or DVD-ROM, such as a read-only memory (firmware Such codes are provided on a programmable memory or a data carrier such as an optical or electronic signal carrier.
  • the method of the present application can be implemented not only by hardware circuits such as very large scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc., but also For example, it may be implemented by software executed by various types of processors, and may also be implemented by a combination of the above-mentioned hardware circuit and software (for example, firmware).
  • hardware circuits such as very large scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc.
  • programmable hardware devices such as field programmable gate arrays, programmable logic devices, etc.
  • FIG. 4 is a flowchart of an exemplary process according to some embodiments of the present application, prompting the entire control process of the blood pressure meter.
  • the sphygmomanometer starts to inflate to gradually increase the pressure in the sphygmomanometer, and during the entire compression process, the compression speed is adjusted so that the actual compression speed approaches the preset pressure value until The sphygmomanometer detects the end pressurization signal and stops pressurization; at a certain moment in the pressurization process (this moment corresponds to the moment when the subject's blood vessel starts to be compressed), a pulse wave waveform appears in the detection result, and the entire pressurization is extracted In the process of all valid pulse waves, look for the amplitude of each valid pulse wave, compare the upward and downward trends of all amplitudes, find the peak amplitude and calculate the final blood pressure measurement result.
  • the sphygmomanometer may be interfered by noise during the pressurization process, causing a certain pulse wave or a certain sampling point on the pulse wave to be incorrectly recognized or not recognized, resulting in deviations in the waveform signal, resulting in blood pressure measurement An important reason for inaccurate results. Therefore, in some embodiments, in order to quickly obtain an accurate and complete pulse wave waveform, this application suggests a method for filtering noise interference in the pulse wave.
  • the interference that can be filtered includes, but is not limited to, electromagnetic interference in the surrounding environment, During the measurement, the subject’s conscious body movements and unconscious muscle movements are small disturbances, but continuous strong disturbances are not considered.
  • the specific method for filtering the noise interference in the pulse wave includes: forming an effective pulse wave template according to the effective pulse wave, and using the effective pulse wave template to filter the noise interference in the pulse wave.
  • the noise interference occurs at the non-pulse wave corresponding to the effective pulse wave template (for example, the interval between the detected pulse wave and the previous effective pulse wave and the If the interval time obtained in the effective pulse wave template is different), the noise interference is directly filtered out, and the next effective pulse wave is searched directly; if the noise interference appears at the pulse wave corresponding to the effective pulse wave template (for example, the interval time between the detected pulse wave and the previous effective pulse wave is consistent with the interval time obtained in the effective pulse wave template, but the amplitude of the pulse wave is different from the amplitude obtained in the effective pulse wave template) , The original pulse wave at this place has been covered by interference, and the waveform at this place cannot be filtered out, and the original waveform cannot be restored. Then the pulse wave at this place can be fitted and compensated to compensate for the missing Pulse wave to ensure the integrity of the pulse wave obtained during the entire compression process.
  • the noise interference occurs at the non-pulse wave corresponding to the effective pulse wave template (for example, the interval between the detected pulse wave
  • the fitting and compensation may adopt the following method: obtain the effective pulse wave change trend with time according to the effective pulse wave template, and find the inflection point in the change trend curve; use the effective pulse wave In the template, a valid pulse wave in front of the pulse wave and a valid pulse wave in the back are calculated, and the sum of the amplitudes of the two is averaged to calculate the pulse wave amplitude at that place; the pulse wave time is obtained according to the effective pulse wave template; Pulse wave time, pulse wave amplitude and inflection point position are obtained by curve fitting method of least square regression.
  • the nth effective pulse wave before noise interference is N kn
  • the amplitude is A kn
  • the current effective pulse wave N k is the noise interference with the amplitude A k .
  • the nth effective pulse wave N k+n can be found, and the amplitude is A k+n ;
  • the effective pulse wave amplitude can be calculated, and the amplitude difference between the first sampling point and the second sampling point before the noise interference is d 12 according to ⁇ and ⁇ .
  • the amplitude difference d 23 from the second sampling point to the third sampling point is weighted and averaged, namely:
  • d p is the predicted increase
  • ⁇ and ⁇ are the correlation coefficients, which are taken according to the actual situation.
  • ⁇ and ⁇ are amplitude correlation coefficients, which are taken according to actual conditions.
  • ⁇ 'and ⁇ 'are amplitude correlation coefficients which are taken according to actual conditions.
  • is the amplitude correlation coefficient, which is taken according to the actual situation.
  • the corresponding amplitude of the noise interference can be obtained, and then according to the pulse wave time calculated in the effective pulse wave template and the change trend of the effective pulse wave with time, the corresponding inflection point in the curve can be found (for example, the first derivative is used to find the position of the zero-crossing point of the changing trend curve, which is the inflection point), and finally, the curve fitting method of least square regression is used to obtain the position according to the pulse wave time, pulse wave amplitude, and inflection point position.
  • the pulse wave can realize the compensation of the pulse wave.
  • the compensated pulse wave and the original effective pulse wave form an accurate and complete pulse wave waveform signal, avoiding redundant pulse waves caused by noise interference or inaccurate pulse waves that make it difficult to accurately calculate blood pressure measurement results.
  • Fig. 5 is an exemplary detection result diagram according to some embodiments of the present application, in which the waveform contains two similar maximum values in the same peak due to noise interference.
  • You can first find a minimum value (point A) in front of the pulse wave, and then use the first maximum value (point B) after the minimum value (point A) as the starting point to extend backwards to several sampling points The maximum value of is taken as the maximum value of the pulse wave at this place.
  • the interval between two adjacent sampling points is 1 ms.
  • the number of the several sampling points may be related to the heart rate, such as: The number of selected sampling points is such that the time to collect such a number of sampling points is less than the interval time between two pulse waves of most humans.
  • the number of sampling points is set to 200. In this way, at point B The starting point extends backward to the second maximum (point C) within 200 sampling points. At this time, compare the pressure values of point B and point C. In this embodiment, the pressure value of point C is greater than the pressure value of point B , The point C is selected as the maximum value of the pulse wave at this place. Since the interval between two pulse waves of most humans is greater than 0.2s, the 200 sampling points set in this application can avoid two adjacent pulse waves. The peaks in the pulse wave are mistaken for two sampling points in the same waveform, and at the same time, they contain the two maximum values that may be caused by noise interference as shown in Figure 5. In this embodiment, the first maximum value that appears in the pulse wave is not selected, but the maximum value within a certain range is selected as the maximum value, so as to avoid the unstable waveform caused by noise interference and the difficulty in the location of the maximum value. Judging the situation.
  • this application controls the pressurization process of the sphygmomanometer, which mainly includes the control of the pressurization speed and the control of the timing of the end of the pressurization.
  • the method for adjusting the pressurization speed may be: preset the corresponding relationship of the pressure value with time, and the pressure value determined according to the corresponding relationship at different times is the preset pressure value; The actual pressure value of the sphygmomanometer is detected during the pressurization process; the preset pressure value is corrected according to the actual pressure value; the pressurization speed of the sphygmomanometer is adjusted according to the corrected preset pressure value.
  • the corresponding relationship may be a linear relationship. If nonlinear pressurization is used, the purpose of adjusting the pressurization speed can also be achieved. However, at the moment of pressure adjustment, the corresponding relationship of pressure value changes with time will appear. Turning point, and the turning point may be mistaken as a pulse wave during the waveform acquisition process, causing interference and misjudgment of the pulse wave signal. Using linear pressure can ensure the pressure process is stable and the collected waveform is clean and reasonable.
  • the method of correcting the preset pressure value according to the actual pressure value and the method of adjusting the pressurization speed of the sphygmomanometer according to the corrected preset pressure value are similar to the aforementioned method in the specification , I won’t repeat it here.
  • the final pressure value for the end of pressurization may be generated according to the detection result of the effective pulse wave, and the sphygmomanometer pressurizes to the final pressure value and stops the pressurization. .
  • the method for obtaining the final pressure value can refer to the foregoing description in the specification, which is not repeated here.
  • control method shown in FIG. 4 can be implemented in various ways. For example, in some embodiments, it may be implemented by hardware, software, or a combination of software and hardware.
  • the hardware part can be implemented using dedicated logic; the software part can be stored in a memory and executed by an appropriate instruction execution system, such as a microprocessor or dedicated design hardware.
  • processor control codes for example on a carrier medium such as a disk, CD or DVD-ROM, such as a read-only memory (firmware Such codes are provided on a programmable memory or a data carrier such as an optical or electronic signal carrier.
  • control method of this application can be implemented not only by hardware circuits such as very large scale integrated circuits or gate arrays, semiconductors such as logic chips, transistors, etc., or programmable hardware devices such as field programmable gate arrays and programmable logic devices, but also It can be implemented by, for example, software executed by various types of processors, and can also be implemented by a combination of the above-mentioned hardware circuit and software (for example, firmware).
  • control method is only for convenience of description, and does not limit the present application within the scope of the listed embodiments. It can be understood that for those skilled in the art, after understanding the principle of the control method, it is possible to arbitrarily combine various modules without departing from this principle. For example, in some embodiments, for example, filter The method of eliminating noise interference, the method of finding an effective pulse wave, the method of calculating the final pressure value, and the method of modifying the pulse wave control parameters can be used independently or in combination. Such deformations are all within the protection scope of this application.
  • a method for calculating the end pressure signal of a sphygmomanometer which includes: extracting the amplitude of each valid pulse wave, comparing the rising and falling trends of all amplitudes, and finding the peak value of the amplitude according to the following The formula calculates the final pressure value P:
  • K is the macroscopic linear correlation coefficient of the entire compression process
  • Hr is the interval time between two adjacent effective pulse waves
  • m is the systolic pressure coefficient
  • Mp is the time coordinate corresponding to the peak amplitude of all effective pulse waves.
  • a method for filtering noise interference in a pulse wave which includes forming an effective pulse wave template according to an effective pulse wave, and using the effective pulse wave template to filter the noise interference in the pulse wave.
  • the specific method of using the effective pulse wave template to filter the noise interference in the pulse wave can also refer to the aforementioned method, which will not be repeated here. It should be noted that the method of detecting an effective pulse wave in this embodiment includes but not Limited to the methods provided in this application.
  • a method for pressurizing a sphygmomanometer which includes a corresponding relationship between a preset pressure value changing with time, and the pressure value determined according to the corresponding relationship at different times is a preset pressure value;
  • the actual pressure value of the sphygmomanometer is detected in the process; the preset pressure value is corrected according to the actual pressure value; the pressurization speed of the sphygmomanometer is adjusted according to the corrected preset pressure value.
  • the principle and method of correcting the preset pressure value according to the actual pressure value, and the principle and method of adjusting the pressurization speed of the sphygmomanometer according to the corrected preset pressure value are similar to those described above, here No longer.
  • this application uses specific words to describe the embodiments of the application.
  • “one embodiment”, “an embodiment”, and/or “some embodiments” mean a certain feature, structure, or characteristic related to at least one embodiment of the present application. Therefore, it should be emphasized and noted that “one embodiment” or “one embodiment” or “an alternative embodiment” mentioned twice or more in different positions in this specification does not necessarily refer to the same embodiment. .
  • some features, structures, or characteristics in one or more embodiments of the present application can be appropriately combined.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Signal Processing (AREA)
  • Vascular Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Psychiatry (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

一种检测有效的脉搏波的方法和一种血压计,以及一种血压计控制方法,检测有效的脉搏波的方法包括选择脉搏波控制参数;设置初始脉搏波控制参数;按照初始脉搏波控制参数寻找一个以上脉搏波,并根据脉搏波的脉搏波控制参数修正初始脉搏波控制参数获得修正后脉搏波控制参数;根据修正后的脉搏波控制参数寻找至少下一个脉搏波,并根据下一个脉搏波的脉搏波控制参数对修正后脉搏波控制参数进一步修正;重复迭代过程不断修正脉搏波控制参数,根据脉搏波控制参数提取有效的脉搏波。通过不断修正脉搏波控制参数,能够更加接近被测者的真实情况,进而滤除检测到的无效脉搏波,同时避免有效脉搏波的漏检。

Description

血压计、血压计控制方法及检测有效的脉搏波的方法 技术领域
本申请涉及医疗器械领域,尤其涉及一种血压计、血压计控制方法及检测有效的脉搏波的方法。
背景技术
血压计是常用的医疗检测设备之一,一般可以通过调整袖带内的气压,并据此计算被测者的收缩压/舒张压,这种方式中,脉搏波是准确计算收缩压/舒张压的基础。
鉴于此,有必要提供一种检测有效的脉搏波的方法,同时提供一种血压计和血压计控制方法。
发明内容
在本申请的第一方面,提供了一种血压计控制方法。所述方法包括:选择脉搏波控制参数,所述脉搏波控制参数至少包括幅度阈值、时间阈值和/或心率阈值;设置初始脉搏波控制参数;对血压计进行加压;加压过程中,根据所述初始脉搏波控制参数寻找一个以上脉搏波,并根据所述脉搏波的脉搏波控制参数修正所述初始脉搏波控制参数获得修正后脉搏波控制参数;根据修正后的所述脉搏波控制参数寻找至少下一个脉搏波,并根据所述的下一个脉搏波的脉搏波控制参数对修正后脉搏波控制参数进一步修正;重复上述迭代过程不断修正脉搏波控制参数,根据所述脉搏波控制参数提取有效的脉搏波;根据所述有效的脉搏波的检测结果生成血压测量结果。
进一步,上述提供的所述方法中,修正所述脉搏波控制参数的方法包括:寻找幅度高于所述初始幅度阈值的第一个脉搏波和第二个脉搏波,初始判断合格后根据所述第一个脉搏波和第二个脉搏波的幅度对所述初始幅度阈值进行修正,并根据修正后的幅度阈值和初始心率阈值和/或初始时间阈值寻找第三个脉搏波;根据所述第三个脉搏波的幅度对所述幅度阈值进一步修正,根据所述第三个脉搏波与所述第二个脉搏波的间隔时间修正初始心率阈值和/或初始时间阈值,根据修正后的幅度阈值、时间阈值和/或心率阈值寻找下一个脉搏波。
进一步,上述提供的所述方法中,所述第一个脉搏波和第二个脉搏波初始判断合格的条件包括:二者的间隔时间落入所述初始心率阈值和/或初始时间阈值范围内,若未落入该范围内,则舍弃第一个脉搏波,寻找幅度高于所述初始幅度阈值的下一个脉搏波,直至有相邻两个脉搏波落入该范围内。
进一步,上述提供的所述方法中,所述初始幅度阈值为压力值0.2mmHg;所述初始心率阈值包括最小值30次/min和最大值300次/min;所述初始时间阈值包括最小值0.2s和最大值2s。
进一步,在上述提供的所述方法中,所述控制方法进一步包括根据所述有效的脉搏波形成有效脉搏波模板,采用所述有效脉搏波模板滤除脉搏波中的噪声干扰。
进一步,上述提供的所述方法中,若对应所述有效脉搏波模板的非脉搏波处出现所述噪声干扰,则直接将该噪声干扰滤除;若对应所述有效脉搏波模板的脉搏波处出现所述噪声干扰,则对该处的脉搏波进行拟合和补偿。
进一步,上述提供的所述方法中,所述拟合和补偿的方法包括:根据所述有效脉搏波模板得到有效的脉搏波随时间的变化趋势,并找到变化趋势曲线中的拐点;利用所述有效脉搏波模板中该处脉搏波前面一个有效的脉搏波和后面一个有效的脉搏波,二者幅度之和求平均值计算得到该处脉搏波幅度;根据所述有效脉搏波模板得到脉搏波时间;根据上述脉搏波时间、脉搏波幅度以及拐点位置利用最小二乘回归的曲线拟合方式得到该处的脉搏波。
进一步,上述提供的所述方法中,根据所述有效的脉搏波的检测结果生成血压测量结果的步骤包括:根据所述脉搏波控制参数寻找脉搏波的幅度,方法包括:先找到该脉搏波前面的一个极小值,再以该极小值后出现的第一个最大值为起点向后延伸至若干个采样点内的最大值作为该处脉搏波的极大值。
进一步,上述提供的所述方法中,所述若干个采样点的数量与心率相关,相邻两个所述采样点之间间隔为1ms。
进一步,上述提供的所述方法中,所述控制方法进一步包括:根据所述有效的脉搏波的检测结果生成结束加压的最终压力值,所述血压计加压至所述最终压力值,停止加压。
进一步,上述提供的所述方法中,得到所述最终压力值的方法包括:提取每个所述的有效的脉搏波的幅度,比较所有幅度的上升下降趋势,找到幅度的 峰值,按照下述公式计算最终压力值P:
P=K×(Hr×m+Mp)
其中,K是整个加压过程宏观上的线性相关系数,Hr是相邻两个有效脉搏波的间隔时间,m是收缩压系数,Mp是所有有效的脉搏波中幅度的峰值对应的时间坐标。
进一步,上述提供的所述方法中,所述控制方法进一步包括:对加压速度进行控制,包括:预设压力值随时间变化的对应关系,不同时刻根据所述对应关系确定的压力值为预设压力值;加压过程中检测血压计的实际压力值;根据所述实际压力值修正所述预设压力值;根据所述修正后的预设压力值调节所述血压计的加压速度。
进一步,上述提供的所述方法中,根据所述修正后的预设压力值调节所述血压计的加压速度的方法包括:将检测到的所述实际压力值与所述预设压力值进行比较,若所述实际压力值大于所述预设压力值,则减小加压速度;若所述实际压力值小于所述预设压力值,则增大加压速度;若所述实际压力值等于所述预设压力值,则加压速度不变。
进一步,上述提供的所述方法中,增大或减小的所述加压速度与所述实际压力值和所述预设压力值之间的差值相关。
进一步,上述提供的所述方法中,采用PID控制算法中的比例调节对所述加压速度进行调节。
进一步,上述提供的所述方法中,预设的所述压力值随时间变化的对应关系为线性关系。
在本申请的第二方面,提供了一种血压计。所述血压计包括:袖带,用于缠绕被测部位,电机,用于向所述袖带内导入空气以进行加压;初始参数设定单元,用于选择脉搏波控制参数并设置初始脉搏波控制参数,所述脉搏波控制参数至少包括幅度阈值、时间阈值和/或心率阈值;修正处理单元:用于在所述电机的加压过程中,根据所述初始脉搏波控制参数,以及根据所述初始脉搏波控制参数寻找到的脉搏波,不断修正所述脉搏波控制参数,并根据修正后的所述脉搏波控制参数提取有效的脉搏波;以及血压计算单元,用于根据所述有效的脉搏波的检测结果生成血压测量结果。
进一步,上述提供的所述血压计进一步包括压力检测部件,用于在加压 过程中检测所述袖带内的实际压力值;和电机控制部件,用于调节所述电机的加压速度,所述电机控制部件通过所述压力检测部件检测到的实际压力值调节所述电机的加压速度。
进一步,上述提供的所述血压计进一步包括:所述血压计算单元根据所述修正处理单元提取到的所述有效的脉搏波得到结束加压信号,并计算得到最终压力值,所述电机控制部件控制所述电机加压至所述最终压力值,停止加压。
在本申请的第三方面,提供了一种检测有效的脉搏波的方法。所述方法包括选择脉搏波控制参数,所述脉搏波控制参数至少包括幅度阈值、时间阈值和/或心率阈值;设置初始脉搏波控制参数;按照所述初始脉搏波控制参数寻找一个以上脉搏波,并根据所述脉搏波的脉搏波控制参数修正初始脉搏波控制参数获得修正后脉搏波控制参数;根据修正后的脉搏波控制参数寻找至少下一个脉搏波,并根据所述的下一个脉搏波的脉搏波控制参数对修正后脉搏波控制参数进一步修正;重复上述迭代过程不断修正脉搏波控制参数,根据所述脉搏波控制参数提取有效的脉搏波。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍。显而易见地,下面描述中的附图仅仅是本申请的一些示例或实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图将本申请应用于其它类似情景。其中:
图1是根据本申请的一些实施例的示例性的结构框图,其中部署了血压计各部件之间的关系;
图2是根据本申请的一些实施例的示例性过程的流程图,其中部署了根据修正后的预设压力值调节血压计的加压速度的方法;
图3是根据本申请的一些实施例的示例性过程的流程图,其中提示了检测有效的脉搏波的过程;
图4是根据本申请的一些实施例的示例性过程的流程图,其中提示了血压计的控制过程;
图5是根据本申请的一些实施例的示例性的检测结果图,其中提示了某种噪声干扰造成的波形变形。
具体实施方式
本申请中使用了流程图用来说明根据本申请的实施例的方法所执行的操作。应当理解的是,前面或下面操作不一定按照顺序来精确地执行。相反,可以按照倒序或同时处理各种步骤。同时,也可以将其他操作添加到这些过程中,或从这些过程移除某一步或数步操作。
当理解,本文使用的“装置”、“部件”和/或“单元”是用于区分不同级别的不同组件、元件、部件、部分或装配的一种方法。然而,如果其他词语可实现相同的目的,则可通过其他表达来替换所述词语。
虽然本申请对根据本申请的实施例中的某些部件或单元做出了各种引用,然而,任何数量的不同部件或单元可以被使用并运行在客户端和/或服务器上。所述部件或单元仅是说明性的,并且所述血压计和所述方法的不同方面可以使用不同部件或单元。
如本申请和权利要求书中所示,除非上下文明确提示例外情形,“一”、“一个”、“一种”和/或“该”等词并非特指单数,也可包括复数。一般说来,术语“包括”与“包含”仅提示包括已明确标识的步骤和元素,而这些步骤和元素不构成一个排它性的罗列,方法或者设备也可能包含其它的步骤或元素。
首先对本申请中出现的主要术语进行定义,其中,脉搏波幅度即为脉搏波的振幅,也就是极大值到极小值之间的压力差;脉搏波时间为一个完整脉搏波的振荡周期(例如,相邻两个波峰之间的间隔时间);心率为每分钟心跳的次数,脉搏波时间与心率之间存在换算关系,即1/间隔时间=心率。
在本申请的一个方面,提供了一种血压计。图1是根据本申请的一些实施例的示例性的结构框图,其中部署了血压计各部件之间的关系,例如,血压计可以包括:袖带,用于缠绕被测部位,电机,用于向所述袖带内导入空气以进行加压;初始参数设定单元,用于选择脉搏波控制参数并设置初始脉搏波控制参数,所述脉搏波控制参数至少包括幅度阈值、时间阈值和/或心率阈值;修正处理单元:用于在所述电机的加压过程中,根据所述初始脉搏波控制参数,以及根据所述初始脉搏波控制参数寻找到的脉搏波,不断修正所述脉搏波控制参数,并根据修正后的所述脉搏波控制参数提取有效的脉搏波;以及血压计算单元,用于根据所述有效的脉搏波的检测结果生成血压测量结果。
本申请提供的血压计测量原理及过程可以为:所述电机启动,向所述袖带内充气,所述袖带内的压力逐渐增大,并在某一时刻(该时刻对应被测者血管开始受到袖带的压迫的时刻)开始在检测结果中出现脉搏波波形;所述初始参数设定单元、修正处理单元以及血压计算单元用于对出现的所述脉搏波进行处理并计算得到最终的血压测量结果。
在一些实施例中,所述检测结果可以通过传感模块获得,在一些实施例中,传感模块可以包括一个或多个传感器。传感器可以是外部设备,或外部设备的一个部件或电子元件。传感模块可以是一个或多个传感器集成在同一个电子元件上,也可以是多个电子元件(各包含一个或多个传感器)的结合。传感模块可以获取的数据类型包括但不限于:物理数据、化学数据和生物数据等。其中,物理数据包括但不限于:声音、光、时间、重量、接近、位置、温度、湿度、压强、电流、速度、和加速度、可吸入颗粒、辐射、文字、图像、触感、瞳孔、指纹等。化学数据包括但不限于:空气污染物、水污染物、一氧化碳浓度、二氧化碳浓度等。生物数据包括但不限于:生物体的血压、心率、血糖、胰岛素等。在一些实施例中,用来检测和/或监测声音的设备包括但不限于麦克风等。在一些实施例中,用来检测和/或监测光的设备包括但不限于照度传感器、环境光传感器等。
在一些实施例中,本申请的血压计还包括对所述血压测量结果进行显示的显示模块,所述显示模块输出的信息可以包括程序、软件、算法、数据、文本、数字、图像、语音等的一种或几种的组合。
需要注意的是,以上描述,仅为描述方便,并不能把本申请限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解本申请的原理后,可以在不背离这一原理的情况下,对实施上述血压计进行形式和细节上的各种修正和改变。然而,这些变化和修改不脱离本申请的范围。
请继续参考图1,在一些实施例中,所述血压计进一步可以包括压力检测部件,用于在加压过程中检测所述袖带内的实际压力值;和电机控制部件,用于调节所述电机的加压速度,所述电机控制部件通过所述压力检测部件检测到的实际压力值调节所述电机的加压速度。
在一些实施例中,调节加压速度的方法可以为:预设压力值随时间变化的对应关系,不同时刻根据所述对应关系确定的压力值为预设压力值;加压过程中检测血压计的实际压力值;根据所述实际压力值修正所述预设压力值;根据所 述修正后的预设压力值调节所述血压计的加压速度。在一些实施例中,该对应关系可以为线性关系,若采用非线性加压,同样可以起到调节加压速度的目的,但是在压力调节的时刻,压力值随时间变化的对应关系中会出现转折点,而该转折点在波形采集的过程中可能会被误认为是脉搏波,造成脉搏波信号的干扰和误判,而采用线性加压可以确保加压过程稳定,采集到的波形干净合理。
图2是根据本申请的一些实施例的示例性过程的流程图,其中部署了根据修正后的预设压力值调节血压计的加压速度的方法。在一些实施例中,可以将检测到的所述实际压力值(该实际压力值可以通过压力传感器每100ms检测一下压力值来得到)与所述预设压力值进行比较,若所述实际压力值大于所述预设压力值,则减小加压速度;若所述实际压力值小于所述预设压力值,则增大加压速度;若所述实际压力值等于所述预设压力值,则加压速度不变。在另一些实施例中,可以设置压力差阈值,如设置压力差最大值和压力差最小值,若所述实际压力值与所述预设压力值的差值落入压力差最大值和压力差最小值之间,则加压速度保持不变;若所述实际压力值与所述预设压力值的差值小于压力差最小值,则增大加压速度;若所述实际压力值与所述预设压力值的差值大于压力差最大值,则减小加压速度,通过压力差阈值的方式,可以在保证压力呈线性上升的同时,进一步减小加压过程调速对后续波形分析的干扰和影响。
在一些实施例中,增大或减小的所述加压速度可以是固定值,在另一些实施例中,增大或减小的所述加压速度与所述实际压力值和所述预设压力值之间的差值相关,例如,差值越大,增大或减小的所述加压速度越大,进一步实现加压速度的合理控制。
在一些实施例中,本申请通过大量的数据进行电机特性的研究,分析和拟合了袖带及手臂之间的数据关系,选用了PID控制算法中的比例调节对所述加压速度进行调节,例如:为使电机的速度可调且合理,电机的初始速度不应设置过大也不能过小,通过研究数据发现在电机的初始占空比为80%±5%时较为合理,而仅采用PID控制算法中的比例调节,一方面能够实时快速地对电机的占空比进行调节,使压力线性上升,且电机的加减速不会对有效的脉搏波造成抑制和放大,保证了有效的脉搏波不被PID调节导致变形,减小电机调速对后期波形分析的影响。
请继续参考图1,在一些实施例中,所述血压计进一步还可以包括:所述 血压计算单元根据所述修正处理单元提取到的所述有效的脉搏波得到结束加压信号,并计算得到最终压力值,所述电机控制部件控制所述电机加压至所述最终压力值,停止加压。
在一些实施例中,可以根据所述有效的脉搏波的检测结果生成结束加压的最终压力值,所述血压计加压至所述最终压力值,停止加压。
在一些实施例中,得到所述最终压力值的方法可以为:提取每个所述的有效的脉搏波的幅度,比较所有幅度的上升下降趋势,找到幅度的峰值,按照下述公式计算最终压力值P:
P=K×(Hr×m+Mp)         公式(1)
其中,K是整个加压过程宏观上的线性相关系数,例如前述PID控制算法中的比例系数(可以取幅度峰值对应的点与原点之间的连线的斜率),取值范围为0~﹢∞,为了避免加压过快或过慢,在一些实施例中的取值范围为10~20;Hr是相邻两个有效脉搏波的间隔时间,取值范围为0.2s~2s,m是收缩压系数,是根据实际经验得来的一个倍数,在算法中表示不同值,例如按照低于有效脉搏波峰值幅度的m倍计算收缩压附近的识别点,取值范围为0.5~5;Mp是所有有效的脉搏波中幅度的峰值对应的时间坐标,取值范围为8s~15s。
下面以某一个具体实施例的情况为例,说明计算最终压力值的方法:在该实施例中,PID控制算法中的比例系数为12,则K取值为12,各个相邻两个有效脉搏波的间隔时间有差异,求均值得到Hr为0.85s,m取值为2,所有有效的脉搏波中幅度的峰值出现在11.65s处,则Mp取值为11.65s,将上述取值带入公式(1)中,计算得到最终压力值P=160.2mmHg,血压测量结果中得到收缩压为135mmHg,相对于现有技术中收缩压+30mmHg~40mmHg作为结束加压信号的方式,本实施例在高于收缩压约25mmHg的位置处即可结束加压,在不影响测试结果的前提下,一方面提高了电机的利用率,另一方面缩短了检测时间,保证了充气压力值及充气时间的合理性。
在另外一个实施例中,K取值为16,计算得到Hr为1.3s,m取值为0.9,Mp取值为9.25s,将上述取值带入公式(1)中,计算得到最终压力值P=166.72mmHg,血压测量结果中得到收缩压为135mmHg,本实施例在高于收缩压32mmHg的位置处结束加压。
由上述两个实施例可知,本申请提供的判断加压结束时机的方法,不需 要进行脉搏幅度的拟合插值等方式,就可以准确的在收缩压之后至少高出10mmHg的压力处结束加压过程。
应当理解,图1所示的血压计及其模块可以利用各种方式来实现。例如,在一些实施例中,装置及其模块可以通过硬件、软件或者软件和硬件的结合来实现。其中,硬件部分可以利用专用逻辑来实现;软件部分则可以存储在存储器中,由适当的指令执行,例如微处理器或者专用设计硬件来执行。本领域技术人员可以理解上述的方法和结构可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本申请的结构及其模块不仅可以有诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用例如由各种类型的处理器所执行的软件实现,还可以由上述硬件电路和软件的结合(例如,固件)来实现。
需要注意的是,以上对于结构及其模块的描述,仅为描述方便,并不能把本申请限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该结构的原理后,可能在不背离这一原理的情况下,对各个模块进行任意组合,或者构成子装置与其他模块连接。诸如此类的变形,均在本申请的保护范围之内。
图3是根据本申请的一些实施例的示例性过程的流程图,其中提示了检测有效的脉搏波的过程。在本申请的另一个方面,提供了一种检测有效的脉搏波的方法。包括选择脉搏波控制参数,所述脉搏波控制参数至少包括幅度阈值、时间阈值和/或心率阈值;设置初始脉搏波控制参数;按照所述初始脉搏波控制参数寻找一个以上脉搏波,并根据所述脉搏波的脉搏波控制参数修正初始脉搏波控制参数获得修正后脉搏波控制参数;根据修正后的脉搏波控制参数寻找至少下一个脉搏波,并根据所述的下一个脉搏波的脉搏波控制参数对修正后脉搏波控制参数进一步修正;重复上述迭代过程不断修正脉搏波控制参数,根据所述脉搏波控制参数提取有效的脉搏波。
在一些实施例中,所述脉搏波控制参数至少包括幅度阈值、时间阈值和/或心率阈值,需要说明的是,所述脉搏波控制参数的选择可以与实际应用场合相关,在一些实施例中可以只选取一个较容易测量的脉搏波控制参数;在另一些实 施例中,例如被测者由于紧张或恐惧的情绪导致心率异常,则舍弃心率阈值作为脉搏波控制参数,可以选择幅度阈值和时间阈值作为脉搏波控制参数;在一些实施例中,可以选择的脉搏波控制参数为幅度阈值和心率阈值;在另一些实施例中,例如多次测量结果差距较大,则脉搏波控制参数除幅度阈值、心率阈值和/或时间阈值外还可以包括其他与脉搏波相关的其他阈值(例如,脉搏波峰谷比),以提高测量精度;
设置初始脉搏波控制参数,在一些实施例中,所述初始幅度阈值可以为大于0.1mmHg,优选地,可以为0.20mmHg~0.50mmHg,例如0.2mmHg;所述初始心率阈值可以为10次/min~350次/min,优选地,可以为20次/min~320次/min,例如最小值30次/min和最大值300次/min;所述初始时间阈值可以为0.17s~6s,优选地,可以为0.19s~3s,例如最小值0.2s和最大值2s,以上述较为宽泛的范围提取初始阶段的脉搏波信号,以免造成信号漏检;
执行部件(例如,电机)对血压计进行加压,使血压计检测到的压力值发生变化,以进行血压测量;
加压过程中,根据所述初始脉搏波控制参数寻找一个以上脉搏波,并根据所述脉搏波的脉搏波控制参数修正所述初始脉搏波控制参数获得修正后脉搏波控制参数;根据修正后的所述脉搏波控制参数寻找至少下一个脉搏波,并根据所述的下一个脉搏波的脉搏波控制参数对修正后脉搏波控制参数进一步修正;重复上述迭代过程不断修正脉搏波控制参数直至加压过程结束,根据所述脉搏波控制参数提取有效的脉搏波(判断有效的脉搏波的方法可以根据所述脉搏波控制参数形成有效脉搏波模板,例如,所述有效脉搏波模板的幅度阈值为120mmHg,时间阈值为0.15s,若检测到的脉搏波与所述有效脉搏波模板匹配,则判断为有效脉搏波,否则为无效脉搏波);根据所述有效的脉搏波的检测结果生成血压测量结果。
本申请中,脉搏波控制参数通过不断修正能够更加接近被测者的真实情况,则根据修正后的初始脉搏波控制参数提取到的有效的脉搏波可以滤除由于脉搏波控制参数过大或过小导致的检测到的无效脉搏波,同时避免了有效脉搏波的漏检,从而使得得到的有效脉搏波更加完整和准确。
在一些实施例中,寻找幅度高于初始幅度阈值(例如,0.2mmHg)的第一个脉搏波和第二个脉搏波,所述第一个脉搏波和第二个脉搏波有可能是无效的 脉搏波,对所述第一个脉搏波和第二个脉搏波进行初始判断,初始判断合格的条件可以为:二者的间隔时间落入所述初始心率阈值和/或初始时间阈值范围内,若未落入该范围内,则舍弃第一个脉搏波,寻找幅度高于所述初始幅度阈值的下一个脉搏波,直至有相邻两个脉搏波落入该范围内,通过初始判断可以对所述第一个脉搏波和第二个脉搏波进行初始筛选,滤除一部分无效的脉搏波;初始判断合格后,根据所述第一个脉搏波和第二个脉搏波的幅度对所述初始幅度阈值进行修正,并根据修正后的幅度阈值和初始心率阈值和/或初始时间阈值寻找第三个脉搏波;根据所述第三个脉搏波的幅度对所述幅度阈值进一步修正,根据所述第三个脉搏波与所述第二个脉搏波的间隔时间修正初始心率阈值和/或初始时间阈值,根据修正后的幅度阈值、时间阈值和/或心率阈值寻找下一个脉搏波。
下面,以某一个具体检测结果(第一个脉搏波的幅度为8mmHg,第二个脉搏波的幅度为10mmHg)为例,说明根据所述第一个脉搏波和第二个脉搏波的幅度对所述初始幅度阈值进行修正的具体方法,在一些实施例中,例如对持续高血压患者的血压检测过程,对幅度阈值进行修正的方法可以是:将幅度阈值修正为两个脉搏波中,幅度更接近初始幅度阈值(例如,0.2mmHg)的一个数值,此实施例中,将幅度阈值修正为8mmHg;在另一些实施例中,对幅度阈值进行修正的方法可以是:将幅度阈值修正为两个脉搏波幅度的平均值,此实施例中,将幅度阈值修正为9mmHg;在又一些实施例中,例如对血压变化很不稳定的被测者的血压检测过程,对幅度阈值进行修正的方法可以是:若两个脉搏波的幅度均大于初始幅度阈值,则将幅度阈值修正为:初始幅度阈值+X(其中X为取值0.01mmHg至10mmHg之间的一个固定数值);若两个脉搏波的幅度均小于初始幅度阈值,则将幅度阈值修正为:初始幅度阈值-X;若两个脉搏波的幅度其中之一大于初始幅度阈值,另一个小于初始幅度阈值,则幅度阈值不变,此实施例中,假设X取值为2mmHg,则将幅度阈值修正为2.2mmHg。
同样的,以某一个具体检测结果为例说明根据所述第三个脉搏波的幅度(例如检测结果为12mmHg)对所述幅度阈值(前一步骤得到的修正后的幅度阈值为9mmHg)进一步修正的具体方法:在一些实施例中,若所述第三个脉搏波的幅度与前一步骤得到的修正后的幅度阈值,二者的差值小于等于Y(其中Y为取值0.01mmHg至5mmHg之间的一个固定数值),则不对前一步骤得到的修正后的幅度阈值进行修正;若二者的差值大于Y,则将前一步骤得到的修正后的幅 度阈值修正为:前一步骤得到的修正后的幅度阈值+Z(其中Z为取值0.01mmHg至1mmHg之间的一个固定数值),在本实施例中,Y取2mmHg,Z取0.2mmHg,则将前一步骤得到的修正后的幅度阈值进一步修正为9.2mmHg,后续幅度阈值的修正方法参考前述方法,此处不赘述。
根据所述第三个脉搏波与所述第二个脉搏波的间隔时间(例如1.6s)修正初始心率阈值(设定为包括最小值30次/min和最大值300次/min)和/或初始时间阈值(设定为包括最小值0.2s和最大值2s)的具体方法包括:在一些实施例中,将所述初始时间阈值的最大值或者最小值修正为当前检测到的间隔时间,修正最大值还是最小值取决于当前检测到的间隔时间与最大值的差值,以及当前检测到的间隔时间与最小值之间的差值,将两差值进行比较,将差值较小的一个修正为当前检测到的间隔时间,若差值相等,可不进行修正,换句话说,将初始时间阈值的两端点中距离当前检测到的间隔时间更接近的一端修正为当前检测到的间隔时间,本实施例中,将初始时间阈值修正为包括最小值0.2s和最大值1.6s;在另一些实施例中,将初始时间阈值的两端点中距离当前检测到的间隔时间更接近的一端进行修正,若最小值更接近,则将最小值修正为:最小值+X(其中X为取值0.01s至0.1s之间的一个固定数值);若最大值更接近,则将最大值修正为:最大值-X;若距离相等,可同时将最小值修正为最小值+X,最大值修正为最大值-X,也可以最大值和最小值都不修正,本实施例中,X取0.05s,则将初始时间阈值修正为包括最小值0.25s和最大值2s;需要说明的是,由于间隔时间与心率之间的换算关系,即1/间隔时间=心率,因此,心率阈值和时间阈值之间可以相互转换,修正方法也可采用同样的修正方法,故心率阈值以及后续心率阈值及时间阈值的修正方法可参考前述方法,此处不赘述。
应当理解,图3所示的方法可以利用各种方式来实现。例如,在一些实施例中,可以通过硬件、软件或者软件和硬件的结合来实现。其中,硬件部分可以利用专用逻辑来实现;软件部分则可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域技术人员可以理解上述的方法和系统可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本申请的方法不仅可以有诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等 的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件设备的硬件电路实现,也可以用例如由各种类型的处理器所执行的软件实现,还可以由上述硬件电路和软件的结合(例如,固件)来实现。
需要注意的是,以上对于方法的描述,仅为描述方便,并不能把本申请限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该方法的原理后,可能在不背离这一原理的情况下,对各个步骤进行任意组合,诸如此类的变形,均在本申请的保护范围之内。
本申请的又一个方面公开了一种血压计的控制方法。图4是根据本申请的一些实施例的示例性过程的流程图,提示了血压计的整个控制过程。例如,可以包括如下过程:血压计开始充气,使血压计内的压力逐渐增大,在整个加压过程中,对加压速度进行调节,使实际加压速度趋近于预设压力值,直至血压计检测到结束加压信号而停止加压;在加压过程中的某一时刻(该时刻对应被测者血管开始受到压迫的时刻)开始在检测结果中出现脉搏波波形,提取整个加压过程中所有有效的脉搏波,寻找每个有效脉搏波的幅度,并比较所有幅度的上升下降趋势,找到幅度的峰值并计算得到最终的血压测量结果。
需要说明的是,对于提取有效的脉搏波的步骤方法、调节所述电机的加压速度的方法以及计算得到最终压力值的方法均可以参考说明书前述内容,此处不予赘述。
在一些实施例中,由于血压计加压过程中,可能受到噪声干扰,造成某个脉搏波或者脉搏波上的某个采样点错误识别或识别不到,导致波形信号出现偏差,形成了血压测量结果不准确的重要原因。因此,在一些实施例中,为了快速得到准确完整的脉搏波波形,本申请提示了滤除脉搏波中的噪声干扰的方法,其中,可以滤除的干扰包括但不限于周围环境的电磁干扰、测量过程中被测者的有意识的肢体动作以及无意识的肌肉动作等小幅度干扰,但不考虑连续的强幅度的干扰。
滤除脉搏波中的噪声干扰的具体方法包括:可以根据所述有效的脉搏波形成有效脉搏波模板,采用所述有效脉搏波模板滤除脉搏波中的噪声干扰。
请继续参考图4,在一些实施例中,若对应所述有效脉搏波模板的非脉搏波处出现所述噪声干扰(例如,检测到的脉搏波与前一个有效脉搏波的间隔时间与所述有效脉搏波模板中得到的间隔时间有差异),则直接将该噪声干扰滤除, 直接进行下一个有效脉搏波的寻找;若对应所述有效脉搏波模板的脉搏波处出现所述噪声干扰(例如检测到的脉搏波与前一个有效脉搏波的间隔时间与所述有效脉搏波模板中得到的间隔时间相符合,但是该脉搏波的幅度与所述有效脉搏波模板中得到的幅度有差异),该处原本的脉搏波已经被干扰覆盖,不能对该处的波形进行滤除,也无法对原始的波形进行恢复,则对该处的脉搏波进行拟合和补偿,以补偿此处缺失的脉搏波,从而保证整个加压过程中得到的脉搏波的完整性。
在一些实施例中,所述拟合和补偿可以采用如下方法:根据所述有效脉搏波模板得到有效的脉搏波随时间的变化趋势,并找到变化趋势曲线中的拐点;利用所述有效脉搏波模板中该处脉搏波前面一个有效的脉搏波和后面一个有效的脉搏波,二者幅度之和求平均值计算得到该处脉搏波幅度;根据所述有效脉搏波模板得到脉搏波时间;根据上述脉搏波时间、脉搏波幅度以及拐点位置利用最小二乘回归的曲线拟合方式得到该处的脉搏波。
下面具体说明得到该处的脉搏波的方法:
假设噪声干扰前的第n个有效脉搏波为N k-n,幅度为A k-n,在当前有效脉搏波N k幅度为A k的噪声干扰处向后继续寻找第n个有效脉搏波,在不考虑连续的强干扰的前提下,可以找到第n个有效脉搏波N k+n,且幅度为A k+n
如果噪声干扰出现在第一个脉搏波处,没有前面的有效脉搏波,则直接放弃这个脉搏波;
如果噪声干扰出现在某个脉搏波的前三个采样点处,且A k+1>A k-1,则令
Figure PCTCN2019086053-appb-000001
否者本次测量失败,结束测量。
如果噪声干扰出现在第三个采样点之后,则前面有效的脉搏波增幅可以计算得到,按照α、β的方式分别将噪声干扰前第一个采样点到第二个采样点的幅度差d 12、第二个采样点到第三个采样点的幅度差d 23加权求和平均,即:
d p=(α×d 12+β×d 23)/(α+β)
其中,d p为预测的增幅,α、β为相关系数,根据实际情况取值。
如果A k+1>A k-1且A k+1≥A k-1+2×d p,则
Figure PCTCN2019086053-appb-000002
否则如果A k+1>A k-1且A k+1≥A k-1+d p,则A k=A k-1+δ×d p,否则A k=A k-1+ε×d p
其中δ、ε为幅度相关系数,根据实际情况取值。
如果A k+1<A k-1且A k+1≤A k-1-2×d p,则
Figure PCTCN2019086053-appb-000003
否则如果A k+1<A k-1且A k+1≤A k-1+d p,则A k=A k-1-δ′×d p,否则A k=A k-1-ε′×d p
其中δ′、ε′为幅度相关系数,根据实际情况取值。
如果A k+1=A k-1,则A k=A k-1+ε″×d p
其中ε″为幅度相关系数,根据实际情况取值。
利用上述计算方法,可以得到噪声干扰处的相应幅度,再根据所述有效脉搏波模板中计算得来的脉搏波时间,以及有效的脉搏波随时间的变化趋势,可以找到曲线中相应的拐点(例如,利用一次导求出所述变化趋势曲线过零点的位置,该位置即为拐点),最后根据上述脉搏波时间、脉搏波幅度以及拐点位置利用最小二乘回归的曲线拟合方式得到该处的脉搏波,从而实现脉搏波的补偿。
补偿后的脉搏波与原有的有效脉搏波组成准确、完整的脉搏波波形信号,避免噪声干扰造成的多余脉搏波或者不准确的脉搏波导致血压测量结果难以准确计算。
图5是根据本申请的一些实施例的示例性的检测结果图,其中的波形由于噪声干扰导致了在同一个波峰中包含了两个相近的极大值,在本申请的一些实施例中,可以先找到该脉搏波前面的一个极小值(A点),再以该极小值(A点)后出现的第一个最大值(B点)为起点向后延伸至若干个采样点内的最大值作为该处脉搏波的极大值,在一些实施例中,相邻两个所述采样点之间间隔为1ms,另外,所述若干个采样点的数量可以与心率相关,如:选取的采样点的数量使得采集如此数量的采样点的时间小于大多数人类的两个脉搏波之间的间隔时间,本实施例中,采样点的数量设置为200个,这样,在以B点为起点向后延伸至200个采样点内出现了第二个最大值(C点),此时比较B点和C点的压力值大小,本实施例中,C点压力值大于B点压力值,则选取C点作为该处脉搏波的极大值,由于大多数人类的两个脉搏波之间的间隔时间都大于0.2s,本申请设置的200个采样点,既能够避免相邻两个脉搏波中的波峰被误认为是同一个波形中的两个采样点,同时也最大限度的包含了噪声干扰可能造成的如图5所示的两个极大值的情况。本实施例没有选取脉搏波中出现的第一个极大值,而是选用一定范围内的最大值作为极大值,从而免除了噪声干扰导致的波形不稳定,继而导致的极大 值位置难以判断的情况。
由于血压计加压过程中压力上升的很快,加压阶段如果不能快速及时的处理信号可能导致压力过充或者欠压。因此,本申请对血压计的加压过程进行控制,其中主要包括加压速度的控制和加压结束时机的控制。
对于加压速度的控制,在一些实施例中,调节加压速度的方法可以为:预设压力值随时间变化的对应关系,不同时刻根据所述对应关系确定的压力值为预设压力值;加压过程中检测血压计的实际压力值;根据所述实际压力值修正所述预设压力值;根据所述修正后的预设压力值调节所述血压计的加压速度。在一些实施例中,该对应关系可以为线性关系,若采用非线性加压,同样可以起到调节加压速度的目的,但是在压力调节的时刻,压力值随时间变化的对应关系中会出现转折点,而该转折点在波形采集的过程中可能会被误认为是脉搏波,造成脉搏波信号的干扰和误判,而采用线性加压可以确保加压过程稳定,采集到的波形干净合理。
在一些实施例中,根据所述实际压力值修正所述预设压力值的方法,以及根据所述修正后的预设压力值调节所述血压计的加压速度的方法,与说明书前述方法类似,此处不再赘述。
对于加压结束时机的控制,在一些实施例中,可以根据所述有效的脉搏波的检测结果生成结束加压的最终压力值,所述血压计加压至所述最终压力值,停止加压。
其中,得到所述最终压力值的方法可以参考说明书前述记载,此处不再赘述。
应当理解,图4所示的控制方法可以利用各种方式来实现。例如,在一些实施例中,可以通过硬件、软件或者软件和硬件的结合来实现。其中,硬件部分可以利用专用逻辑来实现;软件部分则可以存储在存储器中,由适当的指令执行系统,例如微处理器或者专用设计硬件来执行。本领域技术人员可以理解上述的方法和系统可以使用计算机可执行指令和/或包含在处理器控制代码中来实现,例如在诸如磁盘、CD或DVD-ROM的载体介质、诸如只读存储器(固件)的可编程的存储器或者诸如光学或电子信号载体的数据载体上提供了这样的代码。本申请的控制方法不仅可以有诸如超大规模集成电路或门阵列、诸如逻辑芯片、晶体管等的半导体、或者诸如现场可编程门阵列、可编程逻辑设备等的可编程硬件 设备的硬件电路实现,也可以用例如由各种类型的处理器所执行的软件实现,还可以由上述硬件电路和软件的结合(例如,固件)来实现。
需要注意的是,以上对于控制方法的描述,仅为描述方便,并不能把本申请限制在所举实施例范围之内。可以理解,对于本领域的技术人员来说,在了解该控制方法的原理后,可能在不背离这一原理的情况下,对各个模块进行任意组合,例如,在一些实施例中,例如,滤除噪声干扰的方法、寻找有效脉搏波的方法、计算最终压力值的方法、修正脉搏波控制参数的方法均可独立运用或者组合运用。诸如此类的变形,均在本申请的保护范围之内。
在本申请的另一方面,提供了一种血压计结束加压信号的计算方法,包括:提取每个有效的脉搏波的幅度,比较所有幅度的上升下降趋势,找到幅度的峰值,按照下述公式计算最终压力值P:
P=K×(Hr×m+Mp)
其中,K是整个加压过程宏观上的线性相关系数,Hr是相邻两个有效脉搏波的间隔时间,m是收缩压系数,Mp是所有有效的脉搏波中幅度的峰值对应的时间坐标,血压计加压至所述最终压力值,停止加压。计算所述最终压力值的原理与方法与前文记载相似,此处不再赘述。
本申请的又一方面,提供了一种滤除脉搏波中的噪声干扰的方法,包括根据有效的脉搏波形成有效脉搏波模板,采用所述有效脉搏波模板滤除脉搏波中的噪声干扰。采用所述有效脉搏波模板滤除脉搏波中的噪声干扰的具体方法也可以参考前述方法,此处不再赘述,需要说明的是,该实施例中检测得到有效的脉搏波的方法包括但不限于本申请中提供的方法。
在本申请的又一方面,提供了一种血压计加压方法,包括预设压力值随时间变化的对应关系,不同时刻根据所述对应关系确定的压力值为预设压力值;加压过程中检测血压计的实际压力值;根据所述实际压力值修正所述预设压力值;根据所述修正后的预设压力值调节所述血压计的加压速度。根据所述实际压力值修正所述预设压力值的原理和方法,以及根据所述修正后的预设压力值调节所述血压计的加压速度的原理和方法,与前文记载相似,此处不再赘述。
上文已对基本概念做了描述,显然,对于本领域技术人员来说,上述详细披露仅仅作为示例,而并不构成对本申请的限定。虽然此处并没有明确说明,本领域技术人员可能会对本申请进行各种修改、改进和修正。该类修改、改进和 修正在本申请中被建议,所以该类修改、改进、修正仍属于本申请示范实施例的精神和范围。
同时,本申请使用了特定词语来描述本申请的实施例。如“一个实施例”、“一实施例”、和/或“一些实施例”意指与本申请至少一个实施例相关的某一特征、结构或特点。因此,应强调并注意的是,本说明书中在不同位置两次或多次提及的“一实施例”或“一个实施例”或“一个替代性实施例”并不一定是指同一实施例。此外,本申请的一个或多个实施例中的某些特征、结构或特点可以进行适当的组合。
此外,本领域技术人员可以理解,本申请的各方面可以通过若干具有可专利性的种类或情况进行说明和描述,包括任何新的和有用的工序、机器、产品或物质的组合,或对他们的任何新的和有用的改进。相应地,本申请的各个方面可以完全由硬件执行、可以完全由软件(包括固件、常驻软件、微码等)执行、也可以由硬件和软件组合执行。以上硬件或软件均可被称为“数据块”、“模块”、“引擎”、“单元”、“组件”或“系统”。此外,本申请的各方面可能表现为位于一个或多个计算机可读介质中的计算机产品,该产品包括计算机可读程序编码。
此外,除非权利要求中明确说明,本申请所述处理元素和序列的顺序、数字字母的使用、或其他名称的使用,并非用于限定本申请流程和方法的顺序。尽管上述披露中通过各种示例讨论了一些目前认为有用的发明实施例,但应当理解的是,该类细节仅起到说明的目的,附加的权利要求并不仅限于披露的实施例,相反,权利要求旨在覆盖所有符合本申请实施例实质和范围的修正和等价组合。
同理,应当注意的是,为了简化本申请披露的表述,从而帮助对一个或多个发明实施例的理解,前文对本申请实施例的描述中,有时会将多种特征归并至一个实施例、附图或对其的描述中。但是,这种披露方法并不意味着本申请对象所需要的特征比权利要求中提及的特征多。实际上,实施例的特征要少于上述披露的单个实施例的全部特征。
一些实施例中使用了描述成分、属性数量的数字,应当理解的是,此类用于实施例描述的数字,在一些示例中使用了修饰词“大约”、“近似”或“大体上”来修饰。除非另外说明,“大约”、“近似”或“大体上”表明所述数字允许有±20%的变化。相应地,在一些实施例中,说明书和权利要求中使用的数 值参数均为近似值,该近似值根据个别实施例所需特点可以发生改变。在一些实施例中,数值参数应考虑规定的有效数位并采用一般位数保留的方法。尽管本申请一些实施例中用于确认其范围广度的数值域和参数为近似值,在具体实施例中,此类数值的设定在可行范围内尽可能精确。
针对本申请引用的每个专利、专利申请、专利申请公开物和其他材料,如文章、书籍、说明书、出版物、文档等,特此将其全部内容并入本申请作为参考。与本申请内容不一致或产生冲突的申请历史文件除外,对本申请权利要求最广范围有限制的文件(当前或之后附加于本申请中的)也除外。需要说明的是,如果本申请附属材料中的描述、定义、和/或术语的使用与本申请所述内容有不一致或冲突的地方,以本申请的描述、定义和/或术语的使用为准。
最后,应当理解的是,本申请中所述实施例仅用以说明本申请实施例的原则。其他的变形也可能属于本申请的范围。因此,作为示例而非限制,本申请实施例的替代配置可视为与本申请的教导一致。相应地,本申请的实施例不仅限于本申请明确介绍和描述的实施例。

Claims (20)

  1. 一种血压计控制方法,其特征是:
    选择脉搏波控制参数,所述脉搏波控制参数至少包括幅度阈值、时间阈值和/或心率阈值;
    设置初始脉搏波控制参数;
    对血压计进行加压;
    加压过程中,根据所述初始脉搏波控制参数寻找一个以上脉搏波,并根据所述脉搏波的脉搏波控制参数修正所述初始脉搏波控制参数获得修正后脉搏波控制参数;
    根据修正后的所述脉搏波控制参数寻找至少下一个脉搏波,并根据所述的下一个脉搏波的脉搏波控制参数对修正后脉搏波控制参数进一步修正;
    重复上述迭代过程不断修正脉搏波控制参数,根据所述脉搏波控制参数提取有效的脉搏波;
    根据所述有效的脉搏波的检测结果生成血压测量结果。
  2. 根据权利要求1所述的控制方法,其特征在于,修正所述脉搏波控制参数的方法包括:
    寻找幅度高于所述初始幅度阈值的第一个脉搏波和第二个脉搏波,初始判断合格后根据所述第一个脉搏波和第二个脉搏波的幅度对所述初始幅度阈值进行修正,并根据修正后的幅度阈值和初始心率阈值和/或初始时间阈值寻找第三个脉搏波;根据所述第三个脉搏波的幅度对所述幅度阈值进一步修正,根据所述第三个脉搏波与所述第二个脉搏波的间隔时间修正所述初始心率阈值和/或初始时间阈值,根据修正后的幅度阈值、时间阈值和/或心率阈值寻找下一个脉搏波。
  3. 根据权利要求2所述的控制方法,其特征在于,所述第一个脉搏波和第二个脉搏波初始判断合格的条件包括:二者的间隔时间落入所述初始心率阈值和/或初始时间阈值范围内,若未落入该范围内,则舍弃第一个脉搏波,寻找幅度高于所述初始幅度阈值的下一个脉搏波,直至有相邻两个脉搏波落入该范围内。
  4. 根据权利要求2或3所述的控制方法,其特征在于,所述初始幅度阈值为压力值0.2mmHg;所述初始心率阈值包括最小值30次/min和最大值300次/min; 所述初始时间阈值包括最小值0.2s和最大值2s。
  5. 根据权利要求1所述的控制方法,其特征在于,所述控制方法还包括根据所述有效的脉搏波形成有效脉搏波模板,采用所述有效脉搏波模板滤除脉搏波中的噪声干扰。
  6. 根据权利要求5所述的控制方法,其特征在于,若对应所述有效脉搏波模板的非脉搏波处出现所述噪声干扰,则直接将该噪声干扰滤除;若对应所述有效脉搏波模板的脉搏波处出现所述噪声干扰,则对该处的脉搏波进行拟合和补偿。
  7. 根据权利要求6所述的控制方法,其特征在于,所述拟合和补偿的方法包括:根据所述有效脉搏波模板得到有效的脉搏波随时间的变化趋势,并找到变化趋势曲线中的拐点;利用所述有效脉搏波模板中该处脉搏波前面一个有效的脉搏波和后面一个有效的脉搏波,二者幅度之和求平均值计算得到该处脉搏波幅度;根据所述有效脉搏波模板得到脉搏波时间;根据上述脉搏波时间、脉搏波幅度以及拐点位置利用最小二乘回归的曲线拟合方式得到该处的脉搏波。
  8. 根据权利要求1所述的控制方法,其特征在于,根据所述有效的脉搏波的检测结果生成血压测量结果的步骤包括:根据所述脉搏波控制参数寻找脉搏波的幅度,方法包括:先找到该脉搏波前面的一个极小值,再以该极小值后出现的第一个最大值为起点向后延伸至若干个采样点内的最大值作为该处脉搏波的极大值。
  9. 根据权利要求8所述的控制方法,其特征在于,所述若干个采样点的数量与心率相关,相邻两个所述采样点之间间隔为1ms。
  10. 根据权利要求1所述的控制方法,其特征在于,所述控制方法还包括:根据所述有效的脉搏波的检测结果生成结束加压的最终压力值,所述血压计加压至所述最终压力值,停止加压。
  11. 根据权利要求10所述的控制方法,其特征在于,得到所述最终压力值的方 法包括:提取每个所述的有效的脉搏波的幅度,比较所有幅度的上升下降趋势,找到幅度的峰值,按照下述公式计算最终压力值P:
    P=K×(Hr×m+Mp)
    其中,K是整个加压过程宏观上的线性相关系数,Hr是相邻两个有效脉搏波的间隔时间,m是收缩压系数,Mp是所有有效的脉搏波中幅度的峰值对应的时间坐标。
  12. 根据权利要求1所述的控制方法,其特征在于,所述控制方法还包括:对加压速度进行控制,包括:
    预设压力值随时间变化的对应关系,不同时刻根据所述对应关系确定的压力值为预设压力值;
    加压过程中检测血压计的实际压力值;
    根据所述实际压力值修正所述预设压力值;
    根据所述修正后的预设压力值调节所述血压计的加压速度。
  13. 根据权利要求12所述的控制方法,其特征在于,根据所述修正后的预设压力值调节所述血压计的加压速度的方法包括:
    将检测到的所述实际压力值与所述预设压力值进行比较,若所述实际压力值大于所述预设压力值,则减小加压速度;若所述实际压力值小于所述预设压力值,则增大加压速度;若所述实际压力值等于所述预设压力值,则加压速度不变。
  14. 根据权利要求13所述的控制方法,其特征在于,增大或减小的所述加压速度与所述实际压力值和所述预设压力值之间的差值相关。
  15. 根据权利要求12所述的控制方法,其特征在于,采用PID控制算法中的比例调节对所述加压速度进行调节。
  16. 根据权利要求12所述的控制方法,其特征在于,预设的所述压力值随时间变化的对应关系为线性关系。
  17. 一种血压计,包括:
    袖带,用于缠绕被测部位,
    电机,用于向所述袖带内导入空气以进行加压;
    初始参数设定单元,用于选择脉搏波控制参数并设置初始脉搏波控制参数,所述脉搏波控制参数至少包括幅度阈值、时间阈值和/或心率阈值;
    修正处理单元:用于在所述电机的加压过程中,根据所述初始脉搏波控制参数,以及根据所述初始脉搏波控制参数寻找到的脉搏波,不断修正所述脉搏波控制参数,并根据修正后的所述脉搏波控制参数提取有效的脉搏波;以及
    血压计算单元,用于根据所述有效的脉搏波的检测结果生成血压测量结果。
  18. 根据权利要求17所述的血压计,其特征在于,所述血压计还包括:
    压力检测部件,用于在加压过程中检测所述袖带内的实际压力值;和
    电机控制部件,用于调节所述电机的加压速度,
    所述电机控制部件通过所述压力检测部件检测到的实际压力值调节所述电机的加压速度。
  19. 根据权利要求18所述的血压计,其特征在于,
    所述血压计算单元根据所述修正处理单元提取到的所述有效的脉搏波得到结束加压信号,并计算得到最终压力值,所述电机控制部件控制所述电机加压至所述最终压力值,停止加压。
  20. 一种检测有效的脉搏波的方法,其特征是:
    选择脉搏波控制参数,所述脉搏波控制参数至少包括幅度阈值、时间阈值和/或心率阈值;
    设置初始脉搏波控制参数;
    按照所述初始脉搏波控制参数寻找一个以上脉搏波,并根据所述脉搏波的脉搏波控制参数修正初始脉搏波控制参数获得修正后脉搏波控制参数;
    根据修正后的脉搏波控制参数寻找至少下一个脉搏波,并根据所述的下一个脉搏波的脉搏波控制参数对修正后脉搏波控制参数进一步修正;
    重复上述迭代过程不断修正脉搏波控制参数,根据所述脉搏波控制参数提取有效 的脉搏波。
PCT/CN2019/086053 2019-05-08 2019-05-08 血压计、血压计控制方法及检测有效的脉搏波的方法 WO2020223934A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980096200.2A CN113811238B (zh) 2019-05-08 2019-05-08 血压计、血压计控制方法及检测有效的脉搏波的方法
PCT/CN2019/086053 WO2020223934A1 (zh) 2019-05-08 2019-05-08 血压计、血压计控制方法及检测有效的脉搏波的方法
US17/453,868 US20220054024A1 (en) 2019-05-08 2021-11-08 Sphygmomanometer, method for controlling sphygmomanometer, and method for detecting effective pulse wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086053 WO2020223934A1 (zh) 2019-05-08 2019-05-08 血压计、血压计控制方法及检测有效的脉搏波的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/453,868 Continuation US20220054024A1 (en) 2019-05-08 2021-11-08 Sphygmomanometer, method for controlling sphygmomanometer, and method for detecting effective pulse wave

Publications (1)

Publication Number Publication Date
WO2020223934A1 true WO2020223934A1 (zh) 2020-11-12

Family

ID=73051257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086053 WO2020223934A1 (zh) 2019-05-08 2019-05-08 血压计、血压计控制方法及检测有效的脉搏波的方法

Country Status (3)

Country Link
US (1) US20220054024A1 (zh)
CN (1) CN113811238B (zh)
WO (1) WO2020223934A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115670408B (zh) * 2022-12-28 2023-04-28 可孚医疗科技股份有限公司 血压测量装置及其线性模型系数自修正方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020183627A1 (en) * 2001-05-31 2002-12-05 Katsuyoshi Nishii Method and apparatus for monitoring biological abnormality and blood pressure
CN101612039A (zh) * 2009-07-28 2009-12-30 中国人民解放军第三军医大学野战外科研究所 自适应血压检测装置
CN102247133A (zh) * 2010-05-21 2011-11-23 日本光电工业株式会社 血压测量装置和血压测量方法
CN106236057A (zh) * 2016-08-30 2016-12-21 苏州品诺维新医疗科技有限公司 一种血压计和一种检测血压的方法
CN107049290A (zh) * 2017-04-17 2017-08-18 北京大学 一种动态血压测量方法和系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107865647B (zh) * 2016-09-28 2020-01-14 京东方科技集团股份有限公司 血压检测装置以及血压检测装置的校正方法
CN109124610B (zh) * 2018-09-26 2021-07-30 深圳星脉医疗仪器有限公司 一种无创血压测量的抗干扰方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020183627A1 (en) * 2001-05-31 2002-12-05 Katsuyoshi Nishii Method and apparatus for monitoring biological abnormality and blood pressure
CN101612039A (zh) * 2009-07-28 2009-12-30 中国人民解放军第三军医大学野战外科研究所 自适应血压检测装置
CN102247133A (zh) * 2010-05-21 2011-11-23 日本光电工业株式会社 血压测量装置和血压测量方法
CN106236057A (zh) * 2016-08-30 2016-12-21 苏州品诺维新医疗科技有限公司 一种血压计和一种检测血压的方法
CN107049290A (zh) * 2017-04-17 2017-08-18 北京大学 一种动态血压测量方法和系统

Also Published As

Publication number Publication date
CN113811238A (zh) 2021-12-17
CN113811238B (zh) 2024-04-19
US20220054024A1 (en) 2022-02-24

Similar Documents

Publication Publication Date Title
JP5919879B2 (ja) 血圧測定装置、血圧測定方法、血圧測定プログラム
US10537254B2 (en) Blood pressure calculation method based on pulse return wave transmission time, and blood pressure monitor
US7393327B2 (en) Blood pressure monitoring apparatus
RU2522969C2 (ru) Электронный сфигмоманометр и способ измерения кровяного давления
JP6149548B2 (ja) 電子血圧計
US20120149994A1 (en) Method and system for controlling non-invasive blood pressure determination based on other physiological parameters
EP3210529B1 (en) Blood pressure measurement method, blood pressure measurement device, blood pressure measurement program and computer-readable storage medium
EP3773157B1 (en) Apparatus for use with a wearable cuff
US20170325751A1 (en) Blood pressure measurement apparatus and blood pressure measurement method
US20200008690A1 (en) Blood pressure data processing apparatus, blood pressure data processing method, and program
Junior et al. Estimation of blood pressure and pulse transit time using your smartphone
JPWO2011027438A1 (ja) 脈波計測装置
JP5041155B2 (ja) 血圧測定装置
WO2020223934A1 (zh) 血压计、血压计控制方法及检测有效的脉搏波的方法
WO2023061565A1 (en) Apparatus, system and method for determining whether a person is asleep
CN108289624B (zh) 血压信息计算装置、血压信息计算方法、血压信息计算程序及存储该程序的存储介质
JP6248735B2 (ja) 血管指標値算出装置、血管指標値算出方法、および、血管指標値算出プログラム
TWI774040B (zh) 血壓量測方法及血壓量測裝置
JP2015181666A5 (zh)
US11154206B2 (en) Viscoelasticity characteristics acquisition device, viscoelasticity characteristics acquisition method, viscoelasticity characteristics acquisition program, and recording medium recording said program
JPH0889485A (ja) 血圧測定装置
JP2981277B2 (ja) 加速度脈波検出装置
WO2012100657A1 (zh) 一种采用图像识别/斜率确定法的电子血压计
JPH0375037A (ja) 血圧測定方法
JP2010279732A (ja) 電子血圧計の脈波データ補正装置、電子血圧計の脈波データ補正装置の制御方法、プログラムおよび記録媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927862

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19927862

Country of ref document: EP

Kind code of ref document: A1