WO2020223925A1 - 可携式重复透颅磁刺激仪器 - Google Patents

可携式重复透颅磁刺激仪器 Download PDF

Info

Publication number
WO2020223925A1
WO2020223925A1 PCT/CN2019/086007 CN2019086007W WO2020223925A1 WO 2020223925 A1 WO2020223925 A1 WO 2020223925A1 CN 2019086007 W CN2019086007 W CN 2019086007W WO 2020223925 A1 WO2020223925 A1 WO 2020223925A1
Authority
WO
WIPO (PCT)
Prior art keywords
portable
magnetic core
repetitive transcranial
magnetic stimulation
transcranial magnetic
Prior art date
Application number
PCT/CN2019/086007
Other languages
English (en)
French (fr)
Inventor
童瀚
Original Assignee
童瀚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 童瀚 filed Critical 童瀚
Priority to PCT/CN2019/086007 priority Critical patent/WO2020223925A1/zh
Publication of WO2020223925A1 publication Critical patent/WO2020223925A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/006Magnetotherapy specially adapted for a specific therapy for magnetic stimulation of nerve tissue

Definitions

  • the invention relates to a portable repetitive transcranial magnetic stimulation instrument.
  • the portable repetitive transcranial magnetic stimulation instrument of the present invention uses a pulse generator to control the operation of the driving circuit loop, and is equipped with a dedicated probe design to achieve the purpose of portability.
  • the common Repetitive Transcranial Magnetic Stimulation (rTMS) instrument is large in size and must be connected to a power source during use. Therefore, the use is restricted by the place of use, so that patients usually need to go to the position where the rTMS instrument is placed. Can receive rTMS treatment.
  • the probe of the rTMS instrument will produce noise when it is in operation, and the temperature of the probe will gradually rise over time, causing the probe to overheat and become unusable.
  • the purpose of the present invention is to provide a portable repetitive transcranial magnetic stimulation instrument, which cooperates with a newly designed probe (inductor) to reduce the power consumption of the device, thereby reducing the overall weight, so as to achieve a portable function.
  • the portable rTMS instrument of the present invention is not restricted by the environment in use, and besides being powered by a socket, it can be optionally designed to be powered by a built-in battery or a mobile power supply.
  • the present invention discloses a portable rTMS instrument, which includes a driving circuit and an inductor.
  • the inductor is electrically connected to the driving circuit and used as a probe.
  • the inductor is mainly composed of a magnetic core and at least one set of coils.
  • the magnetic core has a groove.
  • the at least one set of coils includes an upper part and a lower part.
  • the upper part of the at least one set of coils is arranged away from the magnetic core and passes through an upper side, a left side, or a right side of the magnetic core.
  • the lower portion of the at least one set of coils is arranged to pass through the groove of the magnetic core.
  • Fig. 1 depicts the appearance schematic diagram of the portable repetitive transcranial magnetic stimulation apparatus 1 of the present invention
  • Figure 2A depicts a schematic cross-sectional structure diagram of the magnetic core COE
  • Figure 2B depicts a schematic diagram of the structure of the magnetic core COE
  • FIGS. 2C to 2G depict representative diagrams of the optimized numerical meaning of the core COE
  • Figure 2H depicts a schematic diagram of the bending and extension of the magnetic core COE
  • Figure 2I depicts a schematic diagram of the magnetic core COE
  • Figure 3A depicts the magnetic flux distribution diagram of the magnetic core COE
  • 3B to 3D depict the arrangement of the upper part of the coil COL and the simulation diagram of the magnetic field distribution of the magnetic core COE;
  • 3E to 3F depict the shape of the upper part of the coil COL and the simulation diagram of the magnetic field distribution of the core COE;
  • 4A to 4B depict schematic diagrams of the arrangement of the upper part of the coil COL
  • Figure 5A depicts a schematic diagram of the structure of the upper fixing element UFC and the lower fixing element LFC;
  • FIG. 5B depicts a schematic diagram of the structure of the upper fixing element UFC and the lower fixing element LFC;
  • Figure 6A depicts a schematic diagram of the structure of a ceramic substrate
  • Figure 6B depicts a schematic diagram of the ceramic substrate arrangement
  • FIG. 7A to 7D depict schematic diagrams of the structure relationship between the ceramic substrate and the extended ceramic substrate.
  • PLMC The distance between the core protrusion and the wire
  • CT the thickness of the lower coil wire layer
  • Gap The distance between the protrusion of the magnetic core and the user's scalp
  • FIG. 1 is a schematic diagram depicting the appearance of the portable repetitive transcranial magnetic stimulation apparatus 1 of the present invention.
  • the portable Repetitive Transcranial Magnetic Stimulation (rTMS) instrument includes an upper fixing element UFC, a lower fixing element LFC, a driving circuit DRC, and an inductor L.
  • the driving circuit DRC can be packaged in a casing, and the inductor L can be disposed in another casing (not shown).
  • a controller, a screen, a button and a switch may be additionally provided on the housing of the driving circuit DRC. The controller can control the opening and closing of the portable rTMS instrument and other related operations in response to the user's operation of buttons, switches, or touching the screen.
  • the controller may have to be separately installed in other locations, and the drive circuit does not contain a control device.
  • the driving circuit includes an energy storage capacitor cap and a booster. In other embodiments, the driving circuit further includes an isolator different from a booster to comply with electrical safety regulations.
  • the energy storage capacitor may be connected to the inductor by simple resonance, or connected by a full bridge, half bridge, etc., or connected by a complex capacitor. The energy storage capacitor may be connected in any reasonable way known to those skilled in the art, so it will not be repeated here. It should be noted that although Figure 1 only depicts a single upper coil UCOL, the upper coil UCOL may have two branches distributed on the left and right, such as a common figure eight coil.
  • the inductor L is electrically connected to the driving circuit DRC and used as a probe.
  • the inductor L is mainly composed of a magnetic core COE and at least one set of coils COL.
  • the magnetic core COE has a groove CG
  • a coil COL includes an upper part UCOL, a lower part LCOL and two connecting parts INT.
  • the upper UCOL of the coil COL is set away from the COE core and passes above, left or right of the core COE, and is fixed by the upper fixing element UFC.
  • the lower part LCOL of the coil COL is arranged to pass through the groove CG and is fixed by the lower fixing element LFC, as shown in FIGS. 5A and 5B.
  • FIG. 1 only depicts a single upper coil UCOL, the upper coil UCOL may have two branches and distributed on the left and right, such as a common figure eight coil.
  • the wires in the coil COL located in the two tangent planes of the core COE are the upper UCOL and the lower LCOL, respectively.
  • the lower LCOL is the stimulation part of the probe, and the upper UCOL of the coil COL is responsible for returning the current of the lower LCOL. Therefore, the current direction of the upper UCOL is opposite to the current direction of the lower LCOL. For example: from the perspective of the core cut plane, as shown in Figure 3C, if the lower LCOL is the direction into the plane, the upper UCOL is the direction out of the plane.
  • the wires located outside the two tangent planes of the COE of the magnetic core are transitional wires.
  • a set of coils should contain at least two terminals.
  • Fig. 2A is a schematic diagram depicting the cross-sectional structure of the magnetic core COE.
  • the magnetic core COE has two side portions SP and a connecting portion CP.
  • the wire of the coil COL passes through the groove CG of the core COE through the groove CG.
  • Common types of magnetic core COE are silicon steel sheet, iron-cobalt alloy, iron-nickel alloy, magnetic powder core, amorphous and nanocrystalline, etc.
  • the saturation density is often above 0.5T.
  • the saturation density of silicon steel sheet and iron-nickel alloy is above 1.3T, and the saturation density of iron-cobalt alloy is even more than 1.9T.
  • the greater the saturation density the better the magnetic core per unit volume. Although the above three alloys have good saturation density properties, they have poor internal resistance.
  • the core COE can usually be designed as a sheet structure that is as perpendicular to the current direction as possible, as shown in Figure 2B.
  • the magnetic core COE can be composed of multiple iron chips.
  • a thickness of each iron chip can be less than 1 mm.
  • a thickness of each iron chip can be less than 0.5 mm.
  • FIG. 2C it further includes a core electrical connection portion RES and a core electrical resistance sensing portion SEN and a controller ctrl (not shown) outside the plurality of iron chips, such as Shown in Figure 2C.
  • the iron core electrical connection part RES and the iron core resistance sensing part SEN are respectively connected to a plurality of iron cores to form an electric circuit, as shown in FIG. X.
  • the iron core impedance sensing part SEN can detect resistance changes in the series structure of multiple iron cores, and transmit a signal to stop the controller Ctrl when the series resistance enters an abnormal range.
  • the purpose of the above design includes the short circuit inside the coil COL itself, the short circuit between the COE iron chips, or the short circuit between the parts that contact the human body, which means that the bottom of the two sides SP and the scalp
  • the iron core electrical connection part RES can be designed to have a resistance to adjust the resistance in the series loop.
  • the core electrical connection portion RES can be designed as an open circuit.
  • the exclusion RES can be replaced by another impedance sensing part.
  • two impedance sensing parts can be combined into one.
  • the magnetic core COE can also be made of different materials (for example, magnetic powder core, Amorphous and Nanocrystalline), so that it has an internal high-impedance structure. It can reduce the eddy current in the core COE without using a sheet structure. Because the probe has a large air gap, an air gap is also allowed in the magnetic core, or it is composed of many small magnetic cores, which does not affect the operation.
  • the magnetic core COE can have a variety of extended shapes, such as arcs, semicircles, etc., as long as the size is close, they are regarded as the equivalent structure of the rectangle.
  • the lower part of the coil COL forms a conductor layer through the groove CG with the same conductor.
  • Groove cores or inverted U-shaped cores, compared with plate cores (or grooves with a depth equal to 0mm), are related to the risk of DC loss, AC loss and thermal injury to users.
  • the DC loss part in the case of the plate core, if better DC loss is needed, the thickness of the wire layer needs to be increased, and the plate core must increase the distance from the average current.
  • the wire loses the advantages provided by the iron core as the distance from the plate-shaped magnetic core increases, and becomes the nature of an air core wire. Therefore, there is only one choice between the larger wire layer thickness and the wire layer closer to the iron core.
  • the groove magnetic core can still provide a shorter distance between the core wire and the magnetic field due to the extension SP at both ends when the wire thickness increases, and the resulting magnetic field still accumulates below, so it can have two advantages at the same time.
  • the magnetic field at the stimulating end has a fixed size to have an effect on the user.
  • the width of the wire layer is much larger than the thickness, because the magnetic field will only be distributed downward, the effect provided by the plate core and the groove core will not be very different.
  • the wire layer will not be too thin, otherwise the DC group loss will be too large.
  • the magnetic field of the plate-shaped magnetic core will not only be distributed downward, but also left and right at the same time.
  • the magnetic field of the groove magnetic core is still only distributed downward because of the extensions SP at both ends. There are fewer left and right parts of the wire layer exposed to the magnetic field, which can effectively reduce the proximity effect and reduce the AC loss.
  • a groove with a depth of 12mm is comparable to a plate-shaped magnetic core (or a groove with a depth of 0mm), which can reduce power consumption by 45% at a frequency of 4kHz the above.
  • the size of the magnetic core COE can be designed so that the wire is at a certain distance from the remote end of the two sides SP of the magnetic core COE (for example: the depth of the groove CG is equal to 12mm, and the wire layer thickness is equal to 6mm), so the wire layer thickness is less than this depth .
  • the depth of the groove should at least cover the average current position of the lower conductor. For example, in the case of a 6mm wire layer, because the average current is at 3mm, the groove depth must be at least 3mm to provide a significant effect.
  • the improvement function will gradually increase with the depth of the groove, and the improvement of the effect is obvious when it reaches about half of the opening width of the magnetic core.
  • the improvement function When the groove depth is about half to double the groove width, the improvement function will increase with the groove depth, but it is not obvious. When the groove depth exceeds one time of the groove width, the improvement function will not get better with the groove depth.
  • the shape of the magnetic core may vary, so there will be no theoretical absolute range. However, after experiments, the depth of the groove between 0.4 cm and 4 cm is a reasonable range under portable weight power consumption.
  • the groove should not be confused with the plate-shaped magnetic core designed to conform to the bending of the head itself, and the difference in curvature can be used to distinguish.
  • the approximate curvature of the groove should be more than 1.5 times, more than twice, more than three times the curvature of the head, etc.
  • the average current of the upper UCOL of the coil COL must be farther from the COE of the magnetic core than the lower LCOL is from the COE of the magnetic core. It can be imagined as a figure eight-shaped coil, and the magnetic core only covers a small part of the middle, as shown in Figure 2D.
  • a comparative distance can be used, for example, the upper core distance is more than 1.5 times, more than twice, more than three times, etc., than the lower core distance; or absolute distance is used.
  • the distance between the upper UCOL and the magnetic core is at least 0.7 cm.
  • the average current of the upper UCOL and the lower LCOL of the coil COL are calculated using the following calculation methods: (1) First take the current average space vector of a single wire; (2) Take the absolute value of the distance between the space vector and the core body; and ( 3) The method of averaging the absolute value of the distance of all wires.
  • the reason for using this definition is shown in Figure 4B.
  • the upper UCOL is far away from the core COE and is a usable structure, if all the wires directly take the space vector, they will fall inside the core COE, causing misjudgment.
  • Using the above definitions (1) to (3) can accord with the intuitive interpretation that the upper UCOL is far away from the core COE.
  • the upper part of the coil far from the core is related to the DC loss, AC loss, capacitance weight and the core weight.
  • power consumption and weight can only be selected.
  • the volume of the groove core also needs to be increased (the upper coil needs to be wound on the core), and the weight will also increase.
  • the upper coil far away from the groove core can no longer have to choose between weight and power consumption (the core only needs to cover the central part).
  • the core and the lower coil are not changed, so the function is not affected, the use of a large cross-sectional area of the upper coil should be able to reduce the quality of DC loss and AC loss, the use of plate, scattered The upper coil should be able to reduce the AC loss.
  • the upper part of the coil away from the magnetic core can reduce the magnetic flux and inductance generated by the coil to the magnetic core. Reducing the magnetic flux generated by the coil to the magnetic core can avoid the saturation of the magnetic core and reduce the thickness and weight of the magnetic core. Reducing the inductance of the upper coil to the magnetic core can reduce the weight of the capacitor in the drive circuit.
  • the weight of the capacitor and the weight of the magnetic core are the heaviest parts of the necessary components of the entire device, except for the booster and the isolator. It should be noted that the following optimizations are all in the "target-oriented" situation, which means that an average user can be assumed to be at about 120 percent intensity at 20Hz, 10hz, 5hz, or other common frequencies of rTMS instruments Optimization under.
  • the width of the connecting part CP of the groove CG and the left and right width of the groove CG include the width of the lower core opening and the maximum width of the wire passing part. To match the stimulation depth and consider the size and weight factors, the width should be between 0.7 cm and 11.2 Between centimeters.
  • the thickness of the core COE in order to avoid saturation of the core, should be between 0.4 cm and 4 cm. When the opening width of the magnetic core is further designed to be between 1.4 cm and 5.6 cm, and the thickness of the magnetic core COE is further designed to be between 0.7 cm and 2.8 cm, the achievable stimulation intensity per unit weight is better.
  • the lower LCOL of the coil COL should be arranged close to the inner edge of the groove CG, and if more sets of coils are needed, they should be stacked downward.
  • the width, length, and height of the overall core opening should be less than 11.2 cm to maintain the portable size and weight.
  • the upper coil UCOL is not limited to the upper position, but also includes the left and right sides. Nevertheless, the most commonly used practically is the figure-eight coil, because it can provide a larger distance in a smaller space, and the magnetic fields of the return part at both ends will not accumulate. Therefore, a figure-of-eight winding with a magnetic core covering the center is used to test the effect of distance lift on power consumption, as shown in Figure 2D, for optimization. From the perspective of optimization, the magnetic core is a three-dimensional structure, so you can fix some parameter items before discussing other parameter items. The order adopted here is (1) First discuss the distance Spa between the magnetic core and the upper coil. (2) Discuss the length of the magnetic core (Len) and wire width (CW). (3) Discuss the influence of wire layer thickness (CT) on power consumption and weight.
  • CT wire layer thickness
  • the distance Spa between the magnetic core COE and the upper coil LCOL is shown in Figure 2D.
  • the distance is based on the average current, and the distance is at least 0.7 cm. Refer to Figure 2E for other distances. With different core thicknesses, it can be observed that the longer the distance, the smaller the current required. It should be noted that the current here is expressed in proportion, so there is no unit. Therefore, the distance can be one centimeter, two centimeters, three centimeters, four centimeters, five centimeters, six centimeters, etc., so that the required current can be reduced. Smaller current means lighter core and better power consumption. There is no maximum distance limit for the spacing, but it can be roughly set to be less than 30 cm, or less than 20 cm, 10 cm, etc. to avoid excessive volume.
  • the length has a large variation range, a reasonable range is 0.7cm to 11.2cm, a better range is 1.4cm to 8cm, and the best range is 2.8cm to 5.6cm.
  • the reasonable range is 0.7 cm to 5.6 cm
  • the preferable range is 1 cm to 4 cm
  • the best range is 1.4 to 2.8 cm.
  • CT wire layer thickness
  • Figure 2F Assuming a space of 5 cm, a core length of 4 cm, a gap between 1 mm and the scalp, and a gap of 4 mm between the wire and the protrusion (pedicle_length minus the coil thickness), a uniform circle of 8.5 cm can be fixed. The sphere is simulated with an electric field of 120v/m at a depth of 2cm at a frequency of 4k sine wave, and the result of Figure 2G can be obtained. It can be observed that the weight of the magnetic core increases as the thickness of the wire layer increases, and the power consumption decreases as the thickness of the wire layer increases.
  • the 70.7% current represents a half sine wave, which is an estimate of a sine wave with only a 90 degree angle in 180 degrees.
  • the reason for this estimation is that the electric field is the strongest when the current is the smallest, and the electric field is the weakest when the current is the largest.
  • the efficiency of the Gaussian wave is better than that of the sine wave. Therefore, the smaller electric field is cut off.
  • the sine wave part of keeps the sharper part, which corresponds to the smaller coil current.
  • the gap between the scalp and the scalp has an important effect in the portable type. Generally, the gap is between 4 and 10 mm, preferably between 2 and 4 mm, and the best gap is below 2 mm.
  • the reasonable range is between 2mm and 20mm. If it is less than 2mm, the power consumption is close to that of an air core, and if it is greater than 20mm, it is too heavy.
  • the preferred range is between 3mm and 14mm, and the best range is between 4mm and 10mm. If estimated with a half-sine wave, the weight of the magnetic core can be effectively reduced, so the reasonable range can be increased to between 2mm and 28mm. Similarly, the preferred range can be increased to between 3mm and 20mm, and the best range is between 4mm and 14mm. Because the device is portable, the weight of the magnetic core should be limited to less than one kilogram.
  • the preferred range is below 500g, and the most preferred range is below 400g.
  • the lower limit of the core weight is represented by 200g in the table, or a looser 100g is used.
  • Magnetic cores ranging from 10g to 100g produce very sharp waveforms. Although they may still be effective on the human body, they are different from commonly known magnetic stimulators and can be regarded as a different invention derived from Ling Yi.
  • the critical meaning is "balance between power consumption and core weight", or “balance between power consumption and probe weight”, and include wires at the same time.
  • the magnetic core is estimated at 8.12g/cc, saturated 2.35T alloy in Figure 2F.
  • the weight of the magnetic core has a great influence. Although the weight of the wire cannot be ignored, the degree of change is small, and the wire can be replaced with a part of aluminum conductor to reduce the weight, but the magnetic core has no way.
  • the upper coil UCOL uses aluminum conductors and the lower coil LCOL uses copper conductors, forming an "asymmetric material coil”. Therefore, the meaning of "balance between power consumption and core weight” or “balance between power consumption and probe weight” should be close. It can be imagined as the multiplication of weight and power consumption in Table 2F, and the better range has a smaller product.
  • the drive circuit DRC includes a booster; or an isolator, if any.
  • the power consumption also represents the weight of the booster or isolator, so the critical meaning at this time is to "reduce the total weight of the probe L and the driving circuit DRC, while maintaining a convenient power consumption.”
  • the driving circuit DRC including at least a capacitor and a booster, and other components and a housing, can maintain the weight that can be carried after being added to the probe. Its weight can be less than 10 kg loose, or more stringent 3.6 kg, 2.7 kg, 2.1 kg, etc.
  • the critical meaning at this time is "maintain a light-weight probe set at the neck, while the drive circuit DRC and the probe are still light and easy to carry after being combined, and maintain a convenient power consumption".
  • Convenient power consumption means that the lower the power consumption, the more power sources can be selected.
  • the power source on the wall can be changed to a mobile power supply, or power provided by other 3C products, or the built-in power supply of the device.
  • the smaller the power consumption the more convenient.
  • a more abstract concept can also be adopted, that is, in terms of the overall weight and power consumption, it means "users will find it easier to use”.
  • the best range represents the best situation
  • the second best range represents the second best situation
  • the reasonable range represents a poor but acceptable situation.
  • Its wire width (Cw) and wire layer thickness (CT) represent the width of the arc opening at the lower edge of the wire and the bottom of the wire. The distance between the edge and the top edge of the core gap.
  • the rTMS device must have an upper UCOL relative to the connecting part CP of the magnetic core COE and the coil COL, a groove CG of the magnetic core COE closer to the user end, and a lower part LCOL of the coil COL passing through the groove CG.
  • the lower part LCOL of the coil COL is the part that passes through the groove CG, that is, the average current should pass through the magnetic core groove in space, and the average current direction is taken. This average current direction is the normal vector of the tangent plane, which can cut the core COE.
  • the cutting surface selection is based on the principle of cutting out the shorter core COE, and discarding the protruding part, such as the star part as shown in Figure 2I.
  • the reason that can be discarded is that the protrusions cannot provide better functions of the device.
  • the discarded part consists of a smaller piece of magnetic core separated from the main magnetic core. Entering and leaving the cutting plane should be able to cut out the lower part LCOL of the coil COL selected at the beginning, as shown in Figure 2I where the 8 bundles of wires are located between the two cutting planes. If there is a big difference, repeat the above steps to get the best tangent plane.
  • This cutting plane mainly provides the function of equivalent judgment.
  • the lower coil should still be close to the core, so the direction of the different wires in the lower part of the entering end coil may be different, as shown in the white arrow in Figure 2I, there should still be 80% of the wire offset angle. Within 60 degrees. It can be imagined that a 60-degree sharp cone contains 80% of the wire direction.
  • the above description is only to provide a reference for the equivalence of irregular magnetic cores. In fact, the judgment of those skilled in this technical field is still the main one.
  • the two cut planes can distinguish the lower LCOL of the coil.
  • the lower LCOL of the coil is the position sandwiched by the two cut surfaces, and the position beyond this position can be regarded as the connecting coil.
  • the distance from the magnetic core is not particularly limited. It is of transitional nature. It is close to the lower LCOL part of the coil because of The magnetic core distance is not as close as the lower LCOL of the coil, and its properties may not be similar to the lower LCOL of the coil. However, the part close to the upper coil, because it is also far away from the magnetic core, should be similar in nature to the upper coil.
  • the upper UCOL of the coil corresponds to the return part of the lower LCOL of the coil, that is, the opposite part of the current, which is not limited to the position of the cut surface.
  • the width of the groove CG of the magnetic core COE needs to match the depth of the rTMS instrument to be stimulated. For example, if the stimulation site is at a depth of 2.5 cm, such as the stimulation site SD in FIG. 3A, the width of the lower opening of the selected groove CG is about 2 cm.
  • the traditional coil has six directions in space that the magnetic field can diffuse, namely, up, down, left, right, front, and back. If it is changed to the design in Figure 3A, only the lower distribution is left, which means that only the manufacturing is required. About a quarter of the magnetic field energy. This choice of width can create sufficient magnetic field gradients, and ultimately use magnetic field gradients instead of absolute strength to generate electric field stimulation. Therefore, choosing a curved magnetic field intensity distribution is more effective than a flat magnetic field intensity distribution.
  • the distances between the upper UCOL of the coil COL and the COE of the magnetic core in FIGS. 3B to 3D are 0 cm, 6 cm, and 12 cm, respectively. Taking a model with a length of 5 cm in the tangential direction, a frequency of 10 kHz, and an energizing time of 0.2% as an example, if the winding method shown in Figure 3B is used, resulting in a maximum magnetic field of 0.2T at a depth of 2 cm, the maximum total inductance can be calculated. The energy is 14 joules and the AC loss is 8.14 watts. If the upper UCOL of the coil COL is moved 6 cm away, as shown in Fig.
  • the maximum stored energy becomes 12 Joules and the power consumption becomes 5.44 watts.
  • the total energy storage can be reduced to 86% and the power consumption can be reduced to 70% under the same stimulation intensity. If the distance between the upper UCOL of the coil COL and the COE of the magnetic core is increased to 12 cm, as shown in Figure 3D, it can be observed that the power consumption and energy storage no longer change.
  • the shape of the upper UCOL of the coil COL will also affect the power consumption and energy storage.
  • the upper UCOL of the coil COL is composed of eight pieces of wire with a total width of 5.4 cm and a total height of 1.2 cm.
  • the total energy storage can be reduced to 11 joules and the total power consumption can be 4.1 watts.
  • the total energy storage can be reduced to 79%, and the power consumption can be reduced to 50%. This phenomenon is because the AC resistance is mainly generated by the magnetic field.
  • the power consumption can be reduced even more.
  • a larger conductor sheet or a thicker wire can be used. Because the weight of the wire with a large cross-sectional area is heavier, the method in Figure 3F can be used to replace the eight pieces of wires in the upper UCOL of the coil COL in Figure 3E with the 24 wires in Figure 3F, and the lower LCOL of the coil COL remains 8 wires, that is, a wire of the lower part LCOL of the coil COL extends out of the groove and is divided into 3 wires, and when they are wound back to the lower part LCOL of the coil COL, they are combined into one wire again.
  • the wire of the lower part LCOL of the coil COL extends outward, and is connected to the outside of the core COE to form a loop through the connection part INT and the upper part UCOL of the coil COL.
  • the number of wires in the lower LCOL can be less than the number of wires in the upper UCOL (for example, the difference is half), that is, the number of first wires in the lower LCOL of the coil COL is less than the number of second wires in the upper UCOL of the coil COL, or the upper UCOL can be cut
  • a larger area conductor replaces the stranded wire.
  • the present invention can further reduce the proximity effect (proximity effect) and reduce the alternating current (AC) resistance in addition to reducing the direct current group.
  • a wire spacing of the upper UCOL of the coil COL is greater than a wire spacing of the lower LCOL, so that the total spacing of a wire of the upper UCOL is greater than the total spacing of a wire of the lower LCOL of the coil COL to reduce AC impedance.
  • the upper UCOL of the coil COL may have a dispersed shape or a branched shape, as shown in FIGS. 4A to 4B.
  • the dispersion of the upper UCOL of the coil COL can further reduce the accumulation of the magnetic field, thereby reducing the proximity effect and AC impedance.
  • the branched shape of the upper UCOL of the coil COL can further reduce the total resistance.
  • the upper UCOL of the coil COL can use a large-area wire, that is, a wire width of the upper UCOL is larger than a wire width of the lower LCOL, so that the wire cross-sectional area of the upper LCOL is larger than the wire of the lower LCOL of the coil COL Cross-sectional area to reduce AC impedance.
  • the lower fixing element LFC is composed of a plurality of ceramic substrates, as shown in FIG. 6A.
  • Each ceramic substrate has a middle part MP, a first end EP1 and a second end EP2.
  • the first end EP1 and the second end EP2 are connected via an intermediate part MP.
  • the ceramic substrates are stacked in a layered structure, and the connecting portion CP of the magnetic core COE shields the middle portions MP of the ceramic substrate.
  • the lower fixing element LFC can be fixed in the groove of the magnetic core COE in a stepped shape or a tenon shape, as shown in FIG. 6B.
  • the composition of the ceramic substrate can be alumina, aluminum nitride, silicon nitride, silicon carbide or other thermally conductive and non-conductive ceramic materials.
  • the width of a wire of the coil COL disposed at the first end EP1 and the second end EP2 may be larger than the width of a wire disposed at the middle parts MP. When more than one wire layer is used, multiple ceramic substrate stacks can be used.
  • the inductor L may further include a plurality of extended ceramic substrates SCS and carry the upper part UCOL of the coil COL, as shown in FIG. 7A.
  • the extended ceramic substrate SCS can be designed to be integrally formed with the ceramic substrate.
  • the extended ceramic substrate SCS may include a central heat dissipation structure SCS1 and at least one insulation structure SCS2, so that the upper UCOL of the coil COL, the lower LCOL of the coil COL and the central heat dissipation structure SCS1 are in the air AIR The communication in is isolated, as shown in Figure 7B.
  • the insulating structure SCS2 can be composed of a single material, such as an insulator such as plastic, or multiple materials, such as a combination of different fillers and plastic.
  • the insulating structure SCS2 can be formed by combining various materials with the ceramic plate itself, as shown in Fig. 7B.
  • the central heat sink structure SCS1 can directly conduct the heat generated by the coil, and the coil itself is not in contact with the air, which makes the inductor L if it is accidentally dropped into the water when it is used at home. Cause danger.
  • this design can reduce the accumulation of waste heat.
  • the central heat dissipation structure SCS1 can be designed to have a perforated structure to facilitate air conduction, as shown in FIG. 7C.
  • the central heat sink structure SCS1 can cooperate with at least one fan device FAN, as shown in FIG. 7D.
  • the device has a current sensor Sens2, an energy storage capacitor Cap and a controller Ctrl.
  • the controller Ctrl2 is the controller that controls the charging and discharging of the inductor L.
  • the current sensor Sens is coupled to the coil COL and to the controller Ctrl2 at the same time.
  • the current sensor Sens2 is used to detect the change rate of the current of the coil COL at the beginning of the stimulation cycle, and transmit a signal when the current change rate exceeds a preset normal range to stop the controller Ctrl2. It should be noted that the purpose of the above design is to prevent the probe from accidentally approaching metal objects other than the device when used at home, and generating eddy currents on the metal objects other than the device, which may cause dangerous situations.
  • the inductance value of the inductor L will decrease or change.
  • the preset range can be given in the design first. If the current change rate exceeds the preset range, it means that the inductance value has changed, and meanwhile, it means that a metal object other than the device is accidentally approached.
  • the change of the inductance value may also represent the short-circuit aging in the inductor L.
  • a voltage sensor Sens3 may be further included, coupled to the energy storage capacitor Cap, and the controller Ctrl2 or the current sensor Sens2. The voltage sensor Sens3 can detect the voltage of the energy storage capacitor Cap, and is used in conjunction with the current sensor Sens2 to achieve a more accurate detection function.
  • the device has a humidity sensor Sens4 and a controller Ctrl3.
  • the humidity sensor Sens4 is disposed on the inductor L and coupled to the controller Ctrl3.
  • the humidity sensor Sens4 may be a general humidity sensor, a condensation sensor or other types of water sensors, which are used to detect high saturation humidity and transmit a signal when the humidity enters a preset dangerous range Make the controller Ctrl3 stop functioning. It should be noted that the purpose of the humidity sensor is to prevent the danger caused by charging and discharging the inductor L when it is dropped into the water. Therefore, the preset danger range is the humidity of contact with water, not humid weather.
  • an integrated device includes a probe and a driving circuit to form an integrated device.
  • the probe contains a magnetic core, a coil and its casing, the drive circuit contains a capacitor, a booster and its casing.
  • the probe is integrated into a headgear set, which may be fixed on the user's head by earphones or other forms. Its weight does not exceed 1.2kG, and the drive circuit does not exceed 2.4kG. In other embodiments, the probe does not exceed 0.9kG, and the drive circuit does not exceed 1.8kG. In other embodiments, the probe does not exceed 0.7 kG, and the drive circuit does not exceed 1.4 kG.
  • an integrated device in other embodiments, includes a probe and a drive circuit.
  • the drive circuit includes a super capacitor in addition to a booster and a capacitor.
  • the super capacitor is connected in series to the power end of the booster, which is the front end. It should be noted that the significance of the super capacitor lies in the rest between stimulations. For example, if the common stimulus rests for four seconds and twelve seconds, the power supply terminal can charge the super capacitor with a constant lower power, and the super capacitor only discharges during stimulation. Booster, the power supplied by the power supply is only about one-fourth of the booster.
  • the integrated device can be connected by a mobile power supply or a lower power cable, such as a power source less than 100W, due to the reduced power consumption of the super capacitor.
  • a power source less than 80W can be used.
  • a power source less than 60W can be used.
  • power reduction can also be possible with the use of a USB signal cable, because the power of the USB3 signal cable is 100W.
  • an integrated device uses a USB cable to connect to an external device, and there is no other power cable.
  • an integrated device uses a USB cable to connect to an external device, and the USB cable not only provides power, but also transmits control signals.
  • the portable rTMS instrument of the present invention can reduce the power consumption required during use, improve the heat dissipation capacity, and reduce the overall weight of the device through a specially designed circuit and probe (inductor). Achieve portable functions. Accordingly, compared with the conventional rTMS instrument, the portable rTMS instrument of the present invention is not restricted by the environment in use, and can be built-in battery or mobile power source as a power source.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Neurology (AREA)
  • Magnetic Treatment Devices (AREA)

Abstract

一种可携式重复透颅磁刺激仪器(1),其包含一驱动电路以及一电感器(L)。电感器(L)电性连接至驱动电路,用以作为一探头。电感器(L)主要由一磁芯(COE)及一线圈(COL)所组成。磁芯(COE)具有一凹槽(CG)。线圈(COL)包含一上部及一下部。线圈(COL)的上部被设置成远离磁芯(COE)且通过磁芯(COE)的一上方、一左方或一右方。线圈(COL)的下部被设置成通过磁芯(COE)的凹槽(CG)。

Description

可携式重复透颅磁刺激仪器 技术领域
本发明是关于可携式重复透颅磁刺激仪器。具体而言,本发明的可携式重复透颅磁刺激仪器藉由脉冲产生器分别控制驱动电路回路的运作,并搭配专属的探头设计,以达到可携带的目的。
背景技术
目前常见的重复透颅磁刺激(Repetitive Transcranial Magnetic Stimulation;rTMS)仪器体积较大,且使用时必须连接电源,因此在使用上受使用场地的限制,使得患者通常需至rTMS仪器摆放的位置才得以接受rTMS治疗。此外,rTMS仪器的探头在运作时会产生噪音,且探头温度亦会随着使用时间逐渐上升,造成探头过热而无法使用。
有鉴于此,如何提供一可携式rTMS仪器,其使用上可不受环境所限制,乃为该领域的业者亟需解决的问题。
发明内容
本发明的目的在于提供一种可携式重复透颅磁刺激仪器,其配合新设计的探头(电感器)以减少装置的功耗,进而减少整体重量,以达到可携带的功能。据此,相对于习知的rTMS仪器,本发明的可携式rTMS仪器使用上可不受到环境所限制,且除了插座供电外,可选择设计成透过内建电池或行动电源来供电。
为达上述目的,本发明揭露一种可携式rTMS仪器,其包含一驱动电路以及一电感器。该电感器电性连接至该驱动电路,用以作为一探头。该电感器主要由一磁芯及至少一组线圈所组成。该磁芯具有一凹槽。该至少一组线圈包含一上部及一下部。该至少一组线圈的该上部被设置成远离该 磁芯且通过该磁芯的一上方、一左方或一右方。该至少一组线圈的该下部被设置成通过该磁芯的该凹槽。
于参阅图式及本发明的实施方式后,此技术领域具有通常知识者便可了解本发明的其他目的,以及本发明的技术手段及实施态样。
附图说明
图1描绘本发明的可携式重复透颅磁刺激仪器1的外观示意图;
第图2A描绘磁芯COE的截面结构示意图;
第图2B描绘磁芯COE的结构示意图;
第图2C至图2G描绘磁芯COE的最佳化数值意义代表图;
第图2H描绘磁芯COE弯曲延伸示意图;
图2I描绘磁芯COE示意图;
图3A描绘磁芯COE的磁通量分布图;
图3B至图3D描绘线圈COL上部的设置及磁芯COE的磁场分布模拟图;
图3E至图3F描绘线圈COL上部的形状及磁芯COE的磁场分布模拟图;
图4A至图4B描绘线圈COL上部的设置示意图;
图5A描绘上固定元件UFC及下固定元件LFC的结构示意图;
图5B描绘上固定元件UFC及下固定元件LFC的结构示意图;
图6A描绘陶瓷基板的结构示意图;
图6B描绘陶瓷基板设置示意图;
图7A至图7D描绘陶瓷基板及延伸陶瓷基板的结构关系示意图。
符号说明:
1:可携式重复透颅磁刺激仪器
L:电感器
COE:磁芯
COL:线圈
Len:磁芯长度
Spa:磁芯与上部线圈距离
CW:下部线圈导线宽度
PLMC:磁芯突出部与导线距离
CT:下部线圈导线层厚度
Gap:磁芯突出部与使用者头皮距离
UCOL:上部线圈
LCOL:下部线圈
INT:连接部
UFC:上固定元件
LFC:下固定元件
DRC:驱动电路
CP:连接部
SP:侧边部
CG:凹槽
SD:刺激部位
H:壳体
CS:陶瓷基板
SCS:延伸陶瓷基板
SCS1:陶瓷基板的散热部
SCS2:绝缘构造
MP:中间部
EP1:第一端部
EP2:第二端部
AIR:空气
具体实施方式
以下将透过实施例来解释本发明的内容。须说明者,本发明的实施例并非用以限制本发明须在如实施例所述的任何特定的环境、应用或特殊方式方能实施。因此,有关实施例的说明仅为阐释本发明的目的,而非用以限制本发明,且本发明所请求的范围,以申请专利范围为准。此外,于以下实施例及图式中,与本发明非直接相关的元件已省略而未绘示,且图式中各元件间的尺寸关系仅为求容易了解,并非用以限制实际比例。材料性质除非有另外定义,不然都指室温下测得。数值范围可包含或不包含端点,不冲突情况下视为包含端点,冲突下以不违反前例为主。
本发明第一实施例如图1所示。图1是描绘本发明的可携式重复透颅磁刺激仪器1的外观示意图。可携式重复透颅磁刺激(Repetitive Transcranial Magnetic Stimulation;rTMS)仪器包含一上固定元件UFC、一下固定元件LFC、一驱动电路DRC以及一电感器L。驱动电路DRC可被封装于一壳体中,而电感器L可被设置于另一壳体(图未绘示)中。驱动电路DRC的壳体上可能额外设置有一控制器、一莹幕、一按钮及一开关。控制器可因应使用者操作按钮、开关或触碰莹幕等动作,控制可携式rTMS仪器的开启与关闭及其他相关运作。不过依据iec60601等电器安规,该控制器可能必须分开设置于其他位置,该驱动电路则不含控制装置。该驱动电路内包含一储能电容cap与一升压器。于其他实施例中,该驱动电路更包含一不同于升压器的隔离器,以符合电器安规。该储能电容可能以简单共振连接至电感,或以全桥,半桥等方式,或者以复数电容连结。该储能电容可能由领域中熟练者熟知的任何合理方式连接,故在此不再赘述。须说明者,图一虽仅绘出单一上部线圈UCOL,不过该上部线圈UCOL可能具有两个分支并分布在左右,如一般常见的八字形线圈。
电感器L电性连接至驱动电路DRC,用以作为一探头。电感器L主要由一磁芯COE及至少一组线圈COL所组成。磁芯COE具有一凹槽CG,一线圈COL包含一上部UCOL、一下部LCOL及二连接部INT。线圈COL之上部UCOL被设置成远离COE磁芯且通过磁芯COE的上方、左方或右方,且被上固定元件UFC所固定。线圈COL的下部LCOL被设置成通过凹槽CG,且被下固定元件LFC所固定,如图5A与图5B所示。须说明者, 图1虽仅绘出单一上部线圈UCOL,不过该上部线圈UCOL可能具有两个分支并分布在左右,如一般常见的八字形线圈。
具体而言,如图3B至图3F所示,线圈COL中位于磁芯COE二切平面内的导线分别为上部UCOL及下部LCOL。下部LCOL为探头的刺激部,线圈COL的上部UCOL负责回流下部LCOL的电流。因此,上部UCOL的电流方向与下部LCOL的电流方向为反向。例如:以磁芯切平面来看,如图3C,若下部LCOL为进入平面方向,则上部UCOL为出平面方向。此外,位于磁芯COE二切平面外的导线(即,连接部INT的导线,其非属于上部UCOL及下部LCOL的导线),则属于过渡性质的导线。一组线圈应包含至少两个接出端点。
第图2A是描绘磁芯COE的截面结构示意图。磁芯COE具有二侧边部SP及一连接部CP。线圈COL的导线经由凹槽CG处通过磁芯COE的凹槽CG。磁芯COE常见的种类为硅钢片、铁钴合金、铁镍合金、磁粉芯、非晶质(Amorphous)及奈米晶体(Nanocrystalline)等,饱和密度皆常在0.5T以上。硅钢片、铁镍合金的饱和密度在1.3T以上,其中铁钴合金饱和密度更在1.9T以上。饱和密度愈大则单位体积磁芯效果愈好。上述三种合金,虽饱和密度性质佳,但内部阻抗较差,因此为了加强阻抗抵抗涡电流,磁芯COE通常可设计为尽可能地垂直电流方向的片状构造,如图2B所示。举例而言,磁芯COE可由复数铁芯片组成。当磁芯COE由一高磁通饱和材料构成,且磁芯COE的饱和密度大于1.3T时,各铁芯片的一厚度可小于1毫米。此外,当磁芯COE的饱和密度大于1.9T时,各铁芯片的一厚度可小于0.5毫米。再者,片状构造间(即,铁芯片间)具有绝缘层,以降低磁芯COE内的涡电流。
于另一实施例中,如图2C所示,更包含一复数铁芯片外的铁芯电气连接部RES与,一铁芯电气电阻感测部SEN与一控制器ctrl(未绘出),如图2C所示。该铁芯电气连接部RES与该铁芯电阻感测部SEN分别与复数铁芯连接以构成电气回路,如图X所示。该铁芯阻抗感测部SEN可于侦测复数铁芯串联结构中的电阻变化,并在串联电阻进入一异常范围时传递讯号使得该控制器Ctrl停止作用。须说明者,上述设计的目的在探头有短路情 况发生时,包含线圈COL本身内部的短路,COE铁芯片间的短路,或是与人体接触部分的短路,意即二侧边部SP下方与头皮的短路时,能侦测并停止回路充放电。于其他实施例中,该铁芯电气连接部RES可设计成具有一排阻,以调整串联回路中的电阻。于其他实施例中,该铁芯电气连接部RES可设计成开路。于其他实施例中,排阻RES可用另一阻抗感测部取代。于其他实施例中,两个阻抗感测部可结合成为一个。
此外,于其他实施例中,磁芯COE亦可使用不同材料(例如:磁粉芯、非晶质(Amorphous)及奈米晶体(Nanocrystalline))制造,使其本身即具有一内部高阻抗构造,则可以在不使用片状构造的情形下降低磁芯COE内的涡电流。因为探头有很大的气隙(airgap),因此磁芯中也容许有气隙存在,或用很多小磁芯组合而成,不影响操作。
磁芯COE可具有多种延伸的形状,如圆弧形,半圆形等,只要尺寸接近,皆视为矩行的等效结构。线圈COL的下部以同向导线构成一导线层通过凹槽CG。凹槽磁芯或称为倒U型磁芯,与板状磁芯(或称为深度等于0mm的凹槽)相比较,对直流损耗、交流损耗及对使用者热伤害的危险有关。直流损耗部分,以板状磁芯来说,若需要较好的直流损耗,则需要增加导线层厚度,则板状磁芯必须增加与平均电流的距离。导线会随着与板状磁芯距离增加而丧失铁芯提供的优点,变成空气芯导线的性质。因此在较大的导线层厚度与距离铁芯较近的导线层两者之间,只能选择一种做法。凹槽磁芯则因为两端延伸部SP,在导线增加厚度的形况下仍能提供较短的铁芯导线距离,且造成的磁场仍然累加在下方,因此能同时具备两个优点。
交流损耗部分,刺激端的磁场有固定大小,才能对使用者产生效果。在导线层宽度远大于厚度的情况下,因为磁场只会往下方分布,板状磁芯与凹槽磁芯提供的效果不会有很大的差别。举例而言,对于3公分宽,0.1公分厚的导线层来说,提供一个12mm的凹槽只会降低在4kHz频率下20%的损耗。然而,因为直流损耗的关系,导线层不会做的太薄,否则直流组损耗会过大。再者,对较厚的导线层,板状磁芯的磁场除了会往下方分布外,也会同时往左右分布。与板状磁芯不同,凹槽磁芯的磁场因为两端延伸部SP,仍只会往下分布。导线层少了暴露在磁场下的左右部分,可有效 降低邻近效应(proximity effect),降低交流损耗。举例而言,在3公分宽,导线层厚度等于6mm时,深度等于12mm的凹槽,可比板状磁芯(或称为深度等于0mm的凹槽),在4kHz频率下可降低功耗45%以上。
热伤害部分,若将两侧边部SP延伸超过导线层的最下部,由于二侧边部SP的远程端点是作为探头的贴近部以贴近人体,故此配置将使得导线不会接近人体,以减少线圈COL对人体的热伤害。另外,较低的直流损耗及交流损耗本身也能减少热量产生。
磁芯COE的尺寸设计可使得导线距离磁芯COE的二侧边部SP的远程端点有一定距离(例如:凹槽CG的深度等于12mm,导线层厚度等于6mm),故导线层厚度小于此深度。凹槽深度应至少覆盖下部导线的平均电流位置。举例而言,以6mm的导线层来说,因为平均电流位于3mm处,凹槽深度至少要大于3mm才能提供明显效果。改善功能会随凹槽深度逐渐增加,在约莫到达磁芯开口宽度的一半时,其效果的改善很明显。凹槽深度在凹槽宽度约一半到一倍时,改善功能随凹槽深度虽会增加效果但已不明显。凹槽深度在超过凹槽宽度一倍时,改善功能随凹槽深度已不太会变好。磁芯形状可能有变异,因此不会有理论上的绝对范围,但经实验,在可携式的重量功耗下,凹槽的该深度介于0.4公分至4公分是其中一个合理范围。另外凹槽不应与为了符合头部本身弯曲设计的板状磁芯混淆,为了区分可以采用曲率的差别。例如,凹槽大致曲率应该为头部曲率的一点五倍以上,两倍以上,三倍以上..等等。
线圈COL的上部UCOL平均电流须距离磁芯COE大小与下部LCOL距离磁芯COE相比,有较远的距离。可以想象成一个八字形的线圈,而磁芯仅覆盖中间一小部分,如图2D所示。可以采用比较式的距离,例如上部磁芯距为下部磁芯距的一点五倍以上,两倍以上,三倍以上..等等;或采用绝对距离。上部UCOL与磁芯距离差距至少0.7公分以上。线圈COL的上部UCOL及下部LCOL的平均电流距离磁芯COE大小采用以下计算方法:(1)先取单一导线的电流平均空间向量;(2)取该空间向量与磁芯主体距离绝对值;以及(3)将所有导线的距离绝对值再取平均的方法。使用此定义的原因如图4B所示,其上部UCOL虽远离磁芯COE且为一可用构造,但其所 有导线若直接取空间向量则落在磁芯COE内部而造成误判。采用上述(1)至(3)定义则能符合直觉上对上部UCOL远离磁芯COE的解释。
对凹槽磁芯的上部线圈来说,远离磁芯的线圈上部与直流损耗、交流损耗、电容重量与磁芯重量有关。在传统绕线式磁芯的情况下,功耗与重量只能二择一。举例而言,若想要较低的能量损耗时,采用距离较远的上部线圈,则凹槽磁芯的体积也需要跟着增加(上部线圈需要缠绕在磁芯上),则重量也会增加。远离凹槽磁芯的上部线圈,则可让重量与功耗不再只能二择一(磁芯只需覆盖中央部分)。另外,于其他实施例中,在磁芯及下部线圈都没改变,因而不影响功能的情况下,采用一个大截面积的上部线圈应该可以降低质直流损耗与交流损耗,采用板状,分散状的上部线圈则应该可以降低交流损耗。
再者,线圈上部远离磁芯可降低线圈对磁芯产生的磁通量与电感。降低线圈对磁芯产生的磁通量可避免磁芯饱和而减小磁芯厚度与重量,降低线圈上部对磁芯产生的电感则可减小驱动回路中电容的重量。其中电容重量与磁芯重量是整个装置必要原件中,除了升压器、隔离器外,最重的部分。须说明者,后面所述的最佳化都是在“目标导向”的情形下,意即能达到假设一个平均使用者在约120百分比强度,于20Hz,10hz,5hz,或其他rTMS仪器常用频率下的最佳化。
凹槽CG的连接部CP的宽度,以及凹槽CG左右宽度,包含下端磁芯开口宽度,以及导线通过部最大宽度,为配合刺激深度及考虑大小重量因素,宽度皆应介于0.7公分至11.2公分之间。磁芯COE的厚度,为了避免磁芯饱和,应介于0.4公分至4公分。当磁芯开口宽度更进一步设计成介于1.4公分至5.6公分间,且磁芯COE的厚度更进一步设计成介于0.7公分至2.8公分间时,对每单位重量可达到的刺激强度更好。线圈COL的下部LCOL应从贴近凹槽CG内缘开始排列,若需要更多组线圈时则往下方叠加。整体磁芯开口宽度与长度,高度皆应小于11.2公分,以维持可携带的尺寸与重量。
以上为大致的尺寸描述。本文叙述中上部线圈UCOL不限于只在上方位置,也包括左右方。尽管如此,务实上最常使用的仍然是8字形线圈, 因为可以在一个较小的空间中提供一个较大的远离距离,且两端的回流部磁场不会产生累加。因此在此以8字形绕线搭配覆盖在中央的磁芯测试远离距提对功耗的影响,如图2D所示,来进行最佳化。站在最佳化的角度,磁芯为三维结构,因此可以先固定一些参数项后,再讨论其他的参数项。这里采取的顺序为(1)先讨论磁芯与上部线圈的间距Spa。(2)讨论磁芯的长度(Len)与导线宽度(CW)。(3)讨论导线层厚度(CT)对功耗及重量的影响。
磁芯COE与上部线圈LCOL的间距Spa,如图2D所示。其间距以平均电流为准,至少距离0.7公分以上。其他的距离可以参考图2E,在不同的磁芯的厚度下,可以观察到距离愈远,所需的电流就愈小。须说明者这边的电流采用比例表达,故没有单位。因此间距可以采用一公分,两公分,三公分,四公分,五公分,六公分等等,接可以使得需要的电流减小。小的电流代表较轻的磁芯与较佳的功耗。间距并没有最大距离限制,不过可大致定为小于30公分,或小于20公分,10公分等,以避免体积过大。
接下来讨论磁芯的长度(Len)。长度有较大的变异范围,合理的范围在0.7cm至11.2cm,较佳的范围在1.4cm至8cm,最佳的范围在2.8cm至5.6cm。导线宽度(Cw)部分,合理的范围在0.7cm至5.6cm,较佳范围在1cm至4cm,最佳范围在1.4至2.8cm。
接下来讨论导线层厚度(CT)对功耗及重量的影响,如图2F所示。假设5公分的间距(space),4cm的磁芯长度(length),1mm与头皮的间隙(gap),4mm的导线与突出部差距(pedicle_length减掉coil thickness),可以固定造成8.5cm均质圆球形在4k弦波频率下2cm深处120v/m电场为准进行模拟,可以得到图2G的结果。可以观察到磁芯重量随导线层厚度增加而增加,功耗随导线层厚度增加而减少。以扣掉线圈后磁芯造成的静电感下降至70%为基准,选出最小所需厚度以估计重量,假设侧边与上部磁芯厚度相同。70.7%电流代表的是半弦波,也就是180度中仅有90度角的弦波估计。可以这样做估计的原因在于,电流最小时造成的电场最强,电流最大时造成的电场最弱,依照以往电刺激研究的经验,高斯波效率会优于弦波,因此,截去较小电场的弦波部分,保留较尖锐的部分,所对应到的是较小的线圈电流。因此可合理推测,磁芯未必需要以最大电流进行估计。须说明者, 与头皮的间隙(gap)在可携式中有重要的影响,一般间隙在4至10mm间,较佳间隙在2至4mm间,最佳间隙在2mm以下。
因此,导线层厚度(coil_thickness)若以完整电流估计,合理范围在2mm至20mm间,小于2mm则功耗接近空气芯,大于20mm则太重。较佳的范围在3mm至14mm间,最佳的范围在4mm至10mm间。若以半弦波估计,则可以有效降低磁芯的重量,因此合理范围可以提升到2mm至28mm间。同理,较佳范围可提升至3mm至20mm间,最佳的范围在4mm至14mm间。因为装置为可携式,应该对磁芯限制其重量,必须在一公斤以下。较佳范围在500g以下,最佳的范围在400g以下。磁芯重量的下限由表格中的200g代表,或采用更宽松的100g。介于10g至100g的磁芯会产生非常尖锐的波形,虽然可能对人体仍有功效,但已与一般认知的磁刺激器不同,可视为令一衍生的不同发明。
(1)站在探头角度,其临界意义在于“功耗与磁芯重量的平衡”,或是“功耗与探头重量的平衡”,及为同时包含导线。磁芯在图2F中以8.12g/cc,饱和2.35T的合金进行估计。磁芯重量影响较大,导线重量虽也不能忽略,但其改变程度较小,且导线可以改用部分铝导体来降低重量,而磁芯没有办法。例如,于其他实施例中,上部线圈UCOL采用铝导体而下部线圈LCOL采用铜导体,行成一个“不对称的材料线圈”。因此,“功耗与磁芯重量的平衡”,或是“功耗与探头重量的平衡”其意义应该接近。可以想象成表2F中重量与功耗的相乘,其较佳范围则有较小的乘积。
(2)站在探头L及驱动电路DRC的机械及电力角度,则因为驱动电路DRC包含升压器;或隔离器,若有的话。则此情况下,功耗也同时代表了升压器或隔离器的重量,因此此时临界意义则为“减低探头L及驱动电路DRC的总重,同时维持一个方便使用的功耗”。
(3)站在穿戴式使用者角度,探头L及其外壳,及上固定元件UFC,下固定元件LFC等,总和成一个探头套组,则其重量需以头部或颈部负担。驱动电路DRC,至少包含电容与升压器,及其他元件及外壳,则维持与探头加总后可以携带的重量即可。其重量可以采用宽松的小于10公斤,或较为严格的3.6公斤,2.7公斤,2.1公斤等。则此时临界意义为“维持一个 颈部可负担较轻的探头套组,同时驱动电路DRC与探头加总后仍然轻量化方便携带,且维持一个方便使用的功耗”。方便使用的功耗意思是,功耗愈小能选择的电源来源就愈多,例如从墙壁上的电源,可改由行动电源,或其他3C产品提供的电源,或装置内建电源等,因此功耗愈小就愈方便。当然,也可以采用较抽象的概念,即以整体观之,该总和的重量,功耗来说,“使用者会觉得更好用”的意义。最佳范围代表最佳情况,次佳范围代表次佳情况,合理范围代表较差但可接受的情况。需特别说明,虽已矩形举例,但其同时代表圆弧形的最佳化,其导线宽度(Cw),导线层厚度(CT)等则代表导线下缘处的圆弧开口宽度,及导线下缘处距离磁芯缺口上缘距离。
以上皆表示矩形磁芯及规则导线的状况,实际上磁心与导线形状可在上述基准上进行各种变异。若为不规则磁芯与导线,线圈COL的下部LCOL的平均电流,在出口与入口的方向往左,往右,往下或往上弯曲夹角需在60度内,例如图2H所示往左夹角,则弯曲需再60度内。所属领域中具有通常知识者可了解,依据必欧-沙伐定律(Biot-Savart law),最终磁场为电流与导磁物质的积分总和决定,磁芯COE亦可沿前后两侧向下弯曲延伸,如图2G所示,或者往二侧边部SP其中一侧弯曲,如图2H所示,依据必欧-沙伐定律(Biot-Savart law)最终造成的磁场不会差距太大。同理于图2H中,箭头为电流方向,大部分的导线上的电流方向为同向,但有一导线上的电流方向与其他导线上的电流方向反向,然而,依据必欧-沙伐定律(Biot-Savart law)最终造成的磁场不会差距太大。线圈COL的下部LCOL各股导线中,电流方夹角60%内,可视为同方向的导线,应占全部导线数量80%以上。以上叙述仅在提供不规则磁芯与导线等效上的参考,实际上仍以此技术领域熟练者判断为主。
虽以矩形结构即可达到探头应有的功能,不过假如在一些情况下需要采用不规则形状的磁芯,以图2I说明设计原则。rTMS装置一定有一相对于磁芯COE的连接部CP与线圈COL的上部UCOL,较贴近使用者端的磁芯COE的凹槽CG与通过凹槽CG的线圈COL的下部LCOL。线圈COL的下部LCOL以通过凹槽CG的部分,亦即平均电流应在空间中通过磁芯 凹槽内,取平均电流方向,此平均电流方向为切平面的法向量,可对磁芯COE切出一进入切面及一离开切面,如图2I所示的黑色箭头。切面选择以切出较短的磁芯COE为原则,舍弃突出部分,如图2I所示的星星部分。可以舍弃的原因为突出部无法提供装置更好的功能。舍弃的部分包括与主磁芯分离的较小块磁芯。进入切面及离开切面应可切出一开始选择的线圈COL的下部LCOL,如图2I中的8束导线位于两切平面间的部分。若有很大的差别则重复上述步骤叠代以取得最佳的切平面。此切平面主要在提供等效判断的功能。
第一,提供判断前面段落所提到的凹槽宽度、凹槽深度、磁芯厚度、线圈的上部的范围、线圈的上部与磁芯距离、线圈的下部与磁芯距离。若将进入切面及离开切面间,以其他同方向切面将探头进行等分分割,则应有至少80%的切面要大致符合前面段落提供的数值。虽不严格规定每一数值范围要完全符合,但应有至少80%的数值在给定的叙述范围内。每一切面的不同范围可分开计算,以符合一个凹槽磁芯的形状。以上叙述仅在提供不规则磁芯等效上的参考,实际上仍以此技术领域熟练者判断为主。
第二,提供线圈的下部弯曲角度判断:以进入切面与往内40%一切面中间段落作为进入端线圈的下部,以离开切面与往内40%一切面中间段落作为离开端线圈的下部,则进入端线圈的下部与离开端线圈的下部可以分别计算其平均电流来计算偏移角度。此外,因不规则磁芯中,下部线圈仍应贴近磁芯,因此进入端线圈的下部内不同导线内方向可能不同,如图2I中的白色箭头,则仍应有80%导线互相偏移角度在60度内。可想象成一个60度尖角的圆锥包含80%导线方向。以上叙述仅在提供不规则磁芯等效上的参考,实际上仍以此技术领域熟练者判断为主。
第三,此二切面可区线圈的该下部LCOL。线圈的该下部LCOL即为两切面所夹的位置,超出此位置的可视为连接线圈,其与磁芯距离则无特别限制,属于过渡性质,其接近线圈的该下部LCOL的部分,因与磁芯距离不如线圈的该下部LCOL一样靠近,性质未必类似线圈的该下部LCOL。不过在接近上部线圈的部分,因为一样远离磁芯,性质应类似于上部线圈。线圈的该上部UCOL则为对应线圈的该下部LCOL的回流部分,即为电流 相反的部分,为并不限于切面位置。
磁芯COE的凹槽CG的宽度选择需配合rTMS仪器欲刺激的深度。举例而言,若刺激部位在2.5公分深度的位置,如图3A中的刺激部位SD,则选择的凹槽CG的下部开口的宽度大约为2公分。进一步言,传统线圈在空间中磁场有六个方向可以扩散,即上、下、左、右、前、后,若改为图3A中设计,则只剩下下方的分布,意即只需要制造约四分之一的磁场能量。此种宽度选择更可制造足够的磁场梯度,最终利用磁场梯度而非绝对强度产生电场刺激,故选择弯曲的磁场强度分布会比平直的磁场强度分布更有效。
第图3B至图3D中线圈COL的上部UCOL与磁芯COE的距离分别为0公分、6公分及12公分。以切面方向长度为5公分的模型,频率10kHz,0.2%的通电时间为例,若采用图3B的绕线方式,造成2cm深度有最大0.2T的磁场来说,则可计算出总电感最大储能为14焦耳,交流损耗为8.14瓦特。若将线圈COL的上部UCOL往远处移动6公分,如图3C所示,则最大储能变为12焦耳,功耗变为5.44瓦特。换言之,若将线圈COL的上部UCOL远离磁芯COE,在同样的刺激强度下,可使总储能变为86%,功耗变为70%。若再将线圈COL的上部UCOL与磁芯COE的距离增加至12公分,如图3D所示,则可观察到功耗及储能不再改变。
除了将线圈COL的上部UCOL远离磁芯COE外,线圈COL的上部UCOL的形状也会影响功耗及储能。如图3E所示,线圈COL的上部UCOL由总宽度5.4公分,总高度1.2公分的八片导线片组成,则可使总储能变为11焦耳,总功耗变为4.1瓦特。换言之,若将线圈COL的上部UCOL远离磁芯COE且采用更大空间分布的导线,在同样的刺激强度下,可使总储能变为79%,功耗变为50%。此现象是因为交流电阻主要由磁场产生,若将同样的电流分散在更大的空间,则可更加降低功耗,例如:采用较宽大的导体片,或更粗的导线。由于截面积大的导线的重量较重,因此可以采用图3F中的方式,将图3E中线圈COL的上部UCOL的八片导线替换为图3F中的24条导线,线圈COL的下部LCOL仍维持8条导线,即线圈COL的下部LCOL的一导线延伸出凹槽外分成3条导线,再绕回线圈COL的下 部LCOL时再次合并为一条导线。于图3F中,线圈COL的上部UCOL于空间中的总宽度5.4cm,总高度1.2cm仍与图3E相同,可得总储能变为11焦耳,总功耗为4.14瓦特。须说明者,图3B至图3F虽仅绘出单一上部线圈UCOL,不过该上部线圈UCOL的模拟结果类似具有两个分支并分布在左右,如一般常见的八字形线圈的结果,故也代表八字形线圈,只是以二维图中以上部线圈较容易表示。
另一方面,线圈COL的下部LCOL的导线向外延伸,并透过线圈COL的连接部INT及上部UCOL于磁芯COE外部连接成回路。下部LCOL的导线数可小于上部UCOL的导线数(例如:相差一半),亦即线圈COL的下部LCOL的一第一导线数小于线圈COL的上部UCOL的一第二导线数,或上部UCOL以截面积更大的导体代替多股导线。在此配置下,本发明除了可以降低直流电组外,可进一步降低邻近效应(proximity effect),并降低交流(alternating current;AC)电阻。
于其他实施例中,线圈COL的上部UCOL的一导线间距大于下部LCOL的一导线间距,使得上部UCOL的一导线总间距大于线圈COL的下部LCOL的一导线总间距以降低交流阻抗。
于其他实施例中,线圈COL的上部UCOL可呈现分散状或分枝状,如图4A至图4B所示。线圈COL的上部UCOL的分散可进一步地降低磁场的累加,进而降低邻近效应及交流阻抗。线圈COL的上部UCOL的分枝状可进一步降低总电阻。
此外,于其他实施例中,线圈COL的上部UCOL可使用大面积导线,即上部UCOL的一导线宽度大于下部LCOL的一导线宽度,以使上部LCOL的导线截面积大于线圈COL的下部LCOL的导线截面积,以降低交流阻抗。
在其他实施例中,下固定元件LFC由复数陶瓷基板所组成,如图6A所示。各陶瓷基板具有一中间部MP、一第一端部EP1及一第二端部EP2。第一端部EP1及第二端部EP2经由中间部MP连接。该等陶瓷基板堆叠成一层状结构,且磁芯COE的连接部CP遮蔽该等陶瓷基板的该等中间部MP。下固定元件LFC可以阶梯状或卡榫状固定于磁芯COE的凹槽内,如图6B所示。陶瓷基板的成分可使用氧化铝、氮化铝、氮化硅、碳化硅或及 其他导热且不导电的陶瓷材料。
将线圈COL的下部LCOL设置于陶瓷基板上可提高电感器L的散热速度,因此当线圈COL上的电流集中于空间中的一处(例如:陶瓷基板的中间部MP)时,电感器L仍不会被烧毁。线圈COL设置于第一端部EP1及第二端部EP2的之一导线宽度可大于设置于该等中间部MP的一导线宽度。当使用多于一层的导线层时,可以使用复数陶瓷基板堆叠。
于其他实施例中,电感器L可更包含复数延伸陶瓷基板SCS并且承载线圈COL的上部UCOL,如图7A所示。该等延伸陶瓷基板SCS可设计成与该等陶瓷基板一体成形。此外,于另一实施例中,延伸陶瓷基板SCS一可包含一中心散热部构造SCS1与至少一绝缘构造SCS2,使得线圈COL的上部UCOL、线圈COL的下部LCOL与中心散热部构造SCS1在空气AIR中的沟通被隔离,如图7B所示。该绝缘构造SCS2可由单一物质构成,如塑料等绝缘体,或是用复数物质,例如不同填充物与塑料搭配构成。该绝缘构造SCS2更可由各种物质与陶瓷板本身组合而成,如图7B所示。须说明者,该中心散热部构造SCS1可直接传导线圈产生的热能,而线圈本身不与空气接触,这使得该电感器L若在居家使用的情况下,若不慎掉入水中,仍不会造成危险。并且,因为陶瓷板的导热性比传统聚合物要来的好,此种设计可减少废热的累积。
于其他实施例中,该中心散热部构造SCS1可设计成具有穿孔结构,以利于空气导通,如图7C所示。另外,于其他实施例中,该中心散热部构造SCS1可配合至少一风扇装置FAN,如图7D所示。
在其他实施例中,此装置具有一电流感测器Sens2,一储能电容Cap与一控制器Ctrl。该控制器Ctrl2即为控制电感L充放电的控制器。电流感测器Sens同时耦合至线圈COL与至该控制器Ctrl2。该电流感测器Sens2用以侦测线圈COL在刺激周期开始时的电流的变化率,并在电流变化率超出一预设的正常范围时传递讯号使得该控制器Ctrl2停止作用。须说明者,上述设计的目的在于防止探头在居家使用的情况时,不慎靠近本装置以外的金属物体,并且在本装置以外的金属物体上产生涡电流,以造成危险的情况。电感L附近若有金属物体,则此电感L的电感值会下降或改变,在 该储能电容Cap电压固定的情况下,电流的变化率会与原本设计不同。因此,可在设计时先给定该预设范围,若电流变化率超出该预设范围则代表电感值改变,同时代表有本装置以外的金属物体不慎靠近。此外,电感值的改变也可能代表电感器L中的短路老化情况。于其他实施例中,更可包含一电压感测器Sens3,同时耦合至该储能电容Cap,与该控制器Ctrl2或该电流感测器Sens2。该电压感测器Sens3可侦测该储能电容Cap的电压,与该电流感测器Sens2配合使用来达到更精确的侦测功能。
在其他实施例中,此装置具有一湿度感测器Sens4与一控制器Ctrl3。该湿度感测器Sens4设置于该电感器L之上,并耦合至该控制器Ctrl3。该湿度感测器Sens4可能为一般湿度感测器,结露感测器或其他种类的水感测器,其用于侦测高饱和湿度,并在湿度进入一预设的危险范围时传递讯号使得该控制器Ctrl3停止作用。须说明者,该湿度感测器目的在于防止电感L掉入水中时仍进行充放电所带来的危险,故该预设的危险范围为接触到水的湿度,而非潮湿的天气。
于其他实施例中,一整合装置包含一探头与一驱动电路,构成一个整合的装置。该探头包含磁芯,线圈与其外壳,该驱动电路包含电容,升压器与其外壳。该探头整合成一个头套组,可能以耳机或其他形式固定于使用者头上,其重量不超过1.2kG,该驱动电路不超过2.4kG。于其他实施例中,该探头不超过0.9kG,该驱动电路不超过1.8kG。于其他实施例中,该探头不超过0.7kG,该驱动电路不超过1.4kG。
于其他实施例中,一整合装置包含一探头与一驱动电路,该驱动电路除了升压器与电容外,更包含一超级电容。该超级电容串接在升压器的电源端,也就是前端。须说明者,该超级电容的意义在于刺激间休息时,例如,常见的刺激四秒休息十二秒,则电源端可以恒定较低功率使超级电容充电,而该超级电容仅在刺激时放电给升压器,则电源端供应的功率仅为升压器的四分之一左右。
于其他实施例中,该整合装置由于超级电容降低功耗,可使用行动电源或功率较低的连接线进行连接,例如小于100W的电源来源。于其他实施例中,可使用小于80W的电源来源。于其他实施例中,可使用小于60W 的电源来源。须说明者,降低功率除了本身的优点外,更可使用usb讯号线供电成为可能,因为USB3的讯号线功率为100W。于其他实施例中,一整合装置使用一usb连接线与外部装置连接,且无其他电源线。于其他实施例中,一整合装置使用一usb连接线与外部装置连接,且该usb连接线除了供电外,也同时传递控制讯号。
综上所述,本发明的可携式rTMS仪器透过特殊设计的电路及探头(电感器),可降低使用时所需的用电量,提高散热能力,并可减少装置整体的重量,以达到可携带的功能。据此,相对于习知的rTMS仪器,本发明的可携式rTMS仪器使用上可不受到环境所限制,且可以内建电池或行动电源作为供电来源。
需说明者是,上述的实施例仅用以揭露本发明的实施态样,以及阐释本发明的技术特征,并非用来限制本发明的保护范畴。此外,任何熟悉此技术者可轻易完成的改变或均等性的安排均属于本发明所主张的范围,且本发明的权利保护范围应以申请专利范围为准。

Claims (25)

  1. 一种可携式重复透颅磁刺激(Repetitive Transcranial Magnetic Stimulation;rTMS)仪器,包含:
    一驱动电路;以及
    一电感器,电性连接至该驱动电路,用以作为一探头;
    其中,该电感器主要由一磁芯及至少一组线圈所组成,该磁芯具有一凹槽,该至少一组线圈包含一上部及一下部,该至少一组线圈的该上部被设置成远离该磁芯至少0.7公分且通过该磁芯的一上方、一右方或一左方,以及该至少一组线圈的该下部被设置成通过该磁芯的该凹槽。
  2. 根据权利要求1所述的可携式重复透颅磁刺激仪器,其中该至少一组线圈的该上部远离该磁芯至少2公分。
  3. 根据权利要求2所述的可携式重复透颅磁刺激仪器,其中该至少一组线圈的该上部远离该磁芯至少4公分。
  4. 根据权利要求1所述的可携式重复透颅磁刺激仪器,其中该凹槽的一宽度介于1公分至4公分间,该磁芯的一长度介于1.4公分至8公分间。
  5. 根据权利要求4所述的可携式重复透颅磁刺激仪器,其中该凹槽的一宽度介于1.4公分至2.8公分间,该磁芯的一长度介于2.8公分至5.6公分间。
  6. 根据权利要求1所述的可携式重复透颅磁刺激仪器,其中该下部线圈导线层厚度介于2mm至28mm间。
  7. 根据权利要求6所述的可携式重复透颅磁刺激仪器,其中该下部线圈导线层厚度介于3mm至20mm间。
  8. 根据权利要求7所述的可携式重复透颅磁刺激仪器,其中该下部线圈导线层厚度介于4mm至14mm间。
  9. 根据权利要求1所述的可携式重复透颅磁刺激仪器,其中更包含一下固定元件,其中该至少一组线圈的该下部更被设置成被该下固定元件所固定,该下固定元件是由复数陶瓷基板所组成,各该陶瓷基板具有一中间部、一第一端部及一第二端部,该第一端部及该第二端部经由该中间部连 接。
  10. 根据权利要求9所述的可携式重复透颅磁刺激仪器,其中该电感器包含复数延伸陶瓷基板,该等延伸陶瓷基板沿着该磁芯的该二侧边部分别与该等陶瓷基板接触,或与该等陶瓷基板一体成形。
  11. 根据权利要求9所述的可携式重复透颅磁刺激仪器,其中该等陶瓷基板堆叠成一层状结构。
  12. 根据权利要求10所述的可携式重复透颅磁刺激仪器,其中该等陶瓷基板包含一中心散热部构造。
  13. 根据权利要求12所述的可携式重复透颅磁刺激仪器,其中该等陶瓷基板包含一绝缘构造,使线圈不与空气直接接触。
  14. 根据权利要求12所述的可携式重复透颅磁刺激仪器,其中该等陶瓷基板包含一风扇。
  15. 根据权利要求1所述的可携式重复透颅磁刺激仪器,其中该磁芯是由复数铁芯片垂直电流方向排列组成,该磁芯由一高磁通饱和材料构成,饱和密度大于1.3特斯拉(T),各该铁芯片的一厚度小于1毫米。
  16. 根据权利要求1所述的可携式重复透颅磁刺激仪器,其中该磁芯是由复数铁芯片垂直电流方向排列组成,该磁芯由一高磁通饱和材料构成,饱和密度大于1.9T,各该铁芯片的一厚度小于0.5毫米。
  17. 根据权利要求1所述的可携式重复透颅磁刺激仪器,更包含一电流感测器,用以侦测探头中电感值变化,并在电感值异常时停止电路操作。
  18. 根据权利要求1所述的可携式重复透颅磁刺激仪器,更包含一湿度感测器,用以侦测湿度变化,并在湿度异常时停止电路操作。
  19. 根据权利要求1所述的可携式重复透颅磁刺激仪器,其中该线圈的该上部的一导线截面积大于该下部的一导线截面积。
  20. 根据权利要求1所述的可携式重复透颅磁刺激仪器,其中该线圈的该上部的一导线总间距大于该下部的一导线总间距。
  21. 根据权利要求1所述的可携式重复透颅磁刺激仪器,其中该驱动电路包含一超级电容,该超级电容串接在升压器的电源测。
  22. 根据权利要求1所述的可携式重复透颅磁刺激仪器,其中该仪器 探头组重量不超过1.2kG,其驱动电路组不超过2.4kG。
  23. 根据权利要求22所述的可携式重复透颅磁刺激仪器,其中该仪器探头组重量不超过0.9kG,其驱动电路组不超过1.8kG。
  24. 根据权利要求1所述的可携式重复透颅磁刺激仪器,其中该仪器以小于100瓦的电源线连接。
  25. 根据权利要求24所述的可携式重复透颅磁刺激仪器,其中该仪器以小于80瓦的电源线连接。
PCT/CN2019/086007 2019-05-08 2019-05-08 可携式重复透颅磁刺激仪器 WO2020223925A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086007 WO2020223925A1 (zh) 2019-05-08 2019-05-08 可携式重复透颅磁刺激仪器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086007 WO2020223925A1 (zh) 2019-05-08 2019-05-08 可携式重复透颅磁刺激仪器

Publications (1)

Publication Number Publication Date
WO2020223925A1 true WO2020223925A1 (zh) 2020-11-12

Family

ID=73051255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086007 WO2020223925A1 (zh) 2019-05-08 2019-05-08 可携式重复透颅磁刺激仪器

Country Status (1)

Country Link
WO (1) WO2020223925A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125546A (ja) * 2010-11-25 2012-07-05 Osaka Univ 磁気コイル及び経頭蓋磁気刺激装置
CN103028193A (zh) * 2012-12-18 2013-04-10 深圳英智科技有限公司 经颅磁刺激线圈的半导体冷却装置
CN202961527U (zh) * 2012-12-18 2013-06-05 深圳英智科技有限公司 经颅磁刺激线圈结构
CN104519953A (zh) * 2012-04-06 2015-04-15 纽波特大脑研究实验室公司 重复经颅磁刺激装置
CN206228772U (zh) * 2017-04-10 2017-06-09 甘景梨 一种经颅磁刺激新型线圈装置
CN107530549A (zh) * 2015-04-03 2018-01-02 国立大学法人东京大学 经颅磁刺激装置用线圈装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125546A (ja) * 2010-11-25 2012-07-05 Osaka Univ 磁気コイル及び経頭蓋磁気刺激装置
CN104519953A (zh) * 2012-04-06 2015-04-15 纽波特大脑研究实验室公司 重复经颅磁刺激装置
CN103028193A (zh) * 2012-12-18 2013-04-10 深圳英智科技有限公司 经颅磁刺激线圈的半导体冷却装置
CN202961527U (zh) * 2012-12-18 2013-06-05 深圳英智科技有限公司 经颅磁刺激线圈结构
CN107530549A (zh) * 2015-04-03 2018-01-02 国立大学法人东京大学 经颅磁刺激装置用线圈装置
CN206228772U (zh) * 2017-04-10 2017-06-09 甘景梨 一种经颅磁刺激新型线圈装置

Similar Documents

Publication Publication Date Title
CN101233664B (zh) 充电效率变化减小的无线充电器
JP5662344B2 (ja) 誘導加熱装置およびそれを備えた誘導加熱調理器
US9129741B2 (en) Method and apparatus for wireless power transmission
JP2017530557A (ja) 誘導性電力伝送システム用送信機
WO2020223925A1 (zh) 可携式重复透颅磁刺激仪器
US11490662B2 (en) Power supply unit for aerosol inhaler
US20190134417A1 (en) Portable repetitive transcranial magnetic stimulation apparatus
JP2014039437A (ja) 充放電装置
KR100541029B1 (ko) 다양한 전자파를 이용한 무선 충전장치
CN204145788U (zh) 用于锅具的电能采集装置、锅具和电磁加热电饭煲
CN204717780U (zh) 功率互锁的电磁炉
JP2014128048A (ja) 高周波電圧発生装置及び受給電システム
CN208444724U (zh) 一种集成谐振电感的llc半桥变压器
KR102220909B1 (ko) 무선 전력 시스템
CN207542040U (zh) 一种反激式开关电源变压器
CN211480961U (zh) 一种无线充电座
CN207542837U (zh) 一种无线充电器
CN214857398U (zh) 压力感应系统及脱毛仪
CN215988330U (zh) 一种连续可调的可变电感器
CN201768669U (zh) 一种振动换能器及安装有振动换能器的按摩器
CN205670482U (zh) 一种变压器
CN209029221U (zh) 具有散热减噪功能的变压器
CN208939667U (zh) 一种用于无线电能传输系统的电磁装置
CN206685235U (zh) 带温度预警装置的变压器设备
JP2014229727A (ja) 電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927986

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927986

Country of ref document: EP

Kind code of ref document: A1