WO2020221362A1 - 用于修整中心凹陷焊接电极的切削刀具及其方法 - Google Patents

用于修整中心凹陷焊接电极的切削刀具及其方法 Download PDF

Info

Publication number
WO2020221362A1
WO2020221362A1 PCT/CN2020/088502 CN2020088502W WO2020221362A1 WO 2020221362 A1 WO2020221362 A1 WO 2020221362A1 CN 2020088502 W CN2020088502 W CN 2020088502W WO 2020221362 A1 WO2020221362 A1 WO 2020221362A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
welding
shape
cutting tool
edge
Prior art date
Application number
PCT/CN2020/088502
Other languages
English (en)
French (fr)
Inventor
杨上陆
王艳俊
陶武
Original Assignee
中国科学院上海光学精密机械研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910363021.2A external-priority patent/CN110539031A/zh
Application filed by 中国科学院上海光学精密机械研究所 filed Critical 中国科学院上海光学精密机械研究所
Publication of WO2020221362A1 publication Critical patent/WO2020221362A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B5/00Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor
    • B23B5/16Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor for bevelling, chamfering, or deburring the ends of bars or tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes

Definitions

  • the invention relates to the field of machinery, and more specifically to a cutting tool and a method for trimming a central recessed welding electrode.
  • Welding electrodes are used for resistance spot welding including two-layer or multi-layer stacked welding of homogeneous or heterogeneous workpieces, such as aluminum workpieces and aluminum workpieces, steel workpieces and steel workpieces, aluminum workpieces and steel workpieces.
  • Resistance spot welding is a method of applying pressure and current to two or more overlapping workpieces through electrode contact, and using the resistance between the workpieces to generate heat and melt the material to achieve connection. This method occupies the main manufacturing process in the current automobile production steel body manufacturing. With the popularization of automobile lightweight, aluminum alloy materials are increasingly used in the white body. At present, the connection method of aluminum alloy in the production of automobile body is mainly based on riveting connection.
  • Riveting is a method of higher cost, complicated process, poor surface quality, and increased body weight.
  • conventional aluminum alloy resistance spot welding has many problems, such as low strength, low electrode life, unstable solder joint strength, poor surface quality, large welding current value, serious welding spatter, and lower solder joint strength compared with riveting. This greatly limits the scope of its application. Therefore, in order to reduce manufacturing costs and expand the application volume and application range of aluminum alloys, a welding electrode that can obtain higher welding strength, longer electrode life, and easier promotion is needed, and the welding end surface has an inwardly concave welding The electrode can well overcome the shortcomings of aluminum alloy spot welding, such as low strength, serious spatter, and large current value.
  • the electrode undergoes repeated spot welding processes, and under the action of pressure and current, the end face will undergo varying degrees of wear and aging. This is mainly due to the increase in the temperature of the electrode welding surface during the welding process, which leads to local plastic deformation and the accumulation of contaminants caused by the adhesion phenomenon between the electrode and the material.
  • the electrode aging and shape change will cause defects such as deterioration of welding quality and surface quality, so it is very important to restore the welding surface to its original shape on a regular basis.
  • the speed and accuracy of the recovery process are very important, and the production cycle cannot be interrupted.
  • the purpose of the present invention is to provide a cutting tool and method for trimming a central recessed welding electrode.
  • the cutting tool of the present invention can be accurately, quickly and regularly trimmed to restore the initial welding surface shape of the welding electrode, thereby maintaining high welding
  • the quality and production activities are carried out in an orderly manner.
  • a cutting tool for trimming a central recessed welding electrode characterized in that the cutting tool includes: a main body, the main body is a hollow cylindrical structure with open ends; and cutting The cutting member is arranged in the main body, the cutting member includes one or more cutting blades, and the cutting blades are uniformly spaced radially distributed around the central axis of the main body, and the cutting The blade is fixed as a whole at the central axis of the main body, and the radially outer side of the cutting blade is fixedly connected with the main body.
  • the cutting blade divides the main body into a plurality of cutting grooves.
  • the axial outer side surface of the end and the main body respectively form two cutting grooves, the cutting grooves are used to receive the welding electrode to be trimmed, and the cutting grooves include a first cutting groove and a second cutting groove; wherein, the At least one axially outer side surface of the cutting insert is provided with a cutting edge, a protrusion is provided on the lower end of the cutting edge, and the superimposed axial projection shape of the protrusion on the cutting edge on the same side (axial projection The shape is the shape of the cutting edge viewed in the radial direction) is the same as the cross-sectional shape of the center recess of the welding electrode to be trimmed.
  • the cutting edge on an axially outer surface of the cutting insert includes a first cutting edge and a second cutting edge.
  • first cutting edge and the second cutting edge appear in pairs.
  • the cutting edge has a leading edge formed upwards and a trailing edge formed upwards with a positive back angle offset below the leading edge.
  • the height of the protrusion is greater than the height of the front edge.
  • the protrusions on the plurality of cutting edges on the same side have the same shape, and the axial projection shape of the protrusions is the same as the cross-sectional shape of the center recess of the welding electrode to be trimmed.
  • the shapes of the protrusions on the plurality of cutting edges on the same side are not exactly the same, but the superimposed axial projection shape of the protrusions is the same as the cross-sectional shape of the center recess of the welding electrode to be trimmed .
  • the shapes of the welding electrodes corrected by the first cutting groove and the second cutting groove are completely the same or different.
  • the cutting edge is divided into an upper end portion, a middle section portion and a lower end portion;
  • the cutting edge structure of the upper end portion is defined by the outer edge shape (spherical surface, arc surface or conical surface) of the welding electrode;
  • the cutting edge structure of the middle section is defined by the shape of the end surface (flat, curved, or recessed or protruding) of the welding electrode;
  • the cutting edge of the lower end portion is provided with the protrusion, so that the center can be restored by cutting The shape of the recessed welding electrode.
  • the main body and the cutting component are detachably connected.
  • a plurality of the cutting blades are detachably connected.
  • the cutting side of each cutting blade and the surface shape of the welding electrode are conformable.
  • a method for trimming a welding electrode comprising:
  • the cutting tool is fixed by a cutting machine.
  • the cutting machine clamps the outer surface of the cutting tool.
  • the inner surface of the main body is a concave-convex surface.
  • the upper end surface of the outer side surface of the body is an annular wall surface and is provided with a flange. And multiple surfaces where the edges intersect.
  • the cutting insert includes an elongated foot for supporting the cutting edge.
  • the cutting blade is fixedly connected to the inner surface of the body through the foot.
  • the foot and the inner surface of the body are locked together by mechanical fit, so that the cutting component is fixed in the body.
  • the foot and the inner surface of the main body are integrally formed, thereby fixing the cutting component in the main body.
  • the cutting groove is composed of one or more cutting edges having an upper end portion, a middle section portion and a lower end portion and a cutting groove.
  • the cutting edge and the cutting groove have an upwardly shaped front edge and an upwardly shaped rear edge that is offset by a positive relief angle below the front edge.
  • the lower end portion of the cutting insert has an upwardly shaped front edge and an upwardly shaped rear edge offset by a positive rear angle below the front edge, and the shape of the front end is a concave cross-sectional shape in the center of the trimmed electrode.
  • a plurality of the cutting inserts have the same shape.
  • Figure 1 is a perspective view of a cutting tool in an embodiment of the present invention
  • Figure 2 is an exploded view of the cutting tool in Figure 1;
  • Figure 3 is a side view of the reverse axis of the cutting tool in Figure 1;
  • Figure 4 is a top view of the cutting tool in Figure 1;
  • Figure 5 is a perspective view of the cutting tool in an embodiment of the present invention.
  • Figure 6 is a top view of the cutting tool in Figure 5;
  • Figure 7 is a perspective view of the cutting tool body in an embodiment of the present invention.
  • Fig. 8 is an axial view of the cutting insert in Fig. 1;
  • Figure 9 is a partial enlarged view of the cutting insert in Figure 8.
  • Figure 10 is a front view of the cutting insert in Figure 8.
  • Figure 11 is a cross-sectional view taken along the 100-100 section shown in Figure 10;
  • Figure 12 is a perspective view of the cutting insert in Figure 5;
  • Figure 13 is a front view of the cutting insert in Figure 12;
  • Fig. 14 is a perspective view of the electrode shape corresponding to the cutting tool in Fig. 1;
  • Figure 15 is a partial enlarged view of Figure 14;
  • FIG. 16 is a cross-sectional view taken along the central section 6-6 of the electrode 60 shown in FIG. 14;
  • Fig. 17 is an isometric view of the electrode shape corresponding to the cutting tool in Fig. 5;
  • FIG. 18 is a cross-sectional view taken along the central section 7-7 of the electrode 70 shown in FIG. 17;
  • Figure 19 is a perspective view of the shape of the electrode in an embodiment of the present invention.
  • FIG. 20 is a cross-sectional view taken along the central section 9-9 of the electrode 90 shown in FIG. 19;
  • Fig. 21 is an isometric view of the cutting insert corresponding to the electrode shown in Fig. 19;
  • Figure 22 is a front view of the cutting insert in Figure 21;
  • Figure 23 is a perspective view of an elastic washer in an embodiment of the present invention.
  • Figure 24 is a schematic structural view of the cutting tool in an embodiment of the present invention being assembled with the welding electrode during use;
  • Figure 25 is an enlarged view of the protrusion in Figure 12;
  • Figure 26 is a perspective view of the protrusion in Figure 8.
  • FIG. 27 is a partial cross-sectional view of the welding electrode corresponding to the cutting insert shown in FIG. 12 only when trimming is performed;
  • Figures 28a-28e are cross-sectional views of welding electrodes that can be trimmed by the cutting tool in multiple preferred examples of the present invention.
  • the inventor developed a cutting tool and method for trimming a central recessed welding electrode for the first time.
  • the cutting tool of the present invention can cut and restore at the same time
  • the welding surface geometry of the two central recessed welding electrodes subjected to different aging mechanisms.
  • the center of the cutting tool has a special convex structure, which can achieve trimming or cutting of the first welding by periodically rotating the cutting tool around its axis
  • the geometric shapes of the first welding surface of the electrode and the second welding surface of the second welding electrode make the welding surface have the characteristics of a center depression.
  • the cutting tool of the present invention is more accurate and fast, while maintaining high welding quality. The present invention has been completed on this basis.
  • the invention provides a cutting tool for trimming a welding electrode with a central depression, which is a cutting tool with a specific structure.
  • the cutting tool of the present invention is a cutting tool capable of dressing and restoring a type of electrode with a central recessed welding surface, and specifically includes a body and a cutting component located in the body.
  • the body includes a columnar structure with openings at both ends extending in the longitudinal axis direction.
  • the cutting component is composed of one or more cutting blades.
  • the two ends of the cutting blade respectively form a first cutting groove and a second cutting groove.
  • Each cutting groove is defined by the shape of the welding surface of the modified electrode, and the cutting groove has one or more One grooving and one or more cutting edges.
  • the first cutting groove is close to the opening at one end of the body, and the second cutting groove is close to the opening at the other end of the body.
  • one or more cutting inserts can be mechanically connected with the main body of the cutting tool in an interference fit, or assembled by a gasket with elastic properties, or the cutting insert and the main body of the cutting tool can be integrally formed or welded. Other connection methods are molded together.
  • the cutting component may be composed of two cutting blades through mechanical assembly, one end of the two cutting blades is constructed as a first cutting groove, and the other end is constructed as a second cutting groove. There are two cutting edges on each cutting blade. The cutting blades are evenly spaced from each other. The cutting edges on the cutting blade are also evenly spaced from each other. The specific structure and shape of the cutting edges are respectively defined by the shape of the electrode welding surface.
  • each cutting insert can be the same or different, including but not limited to the following examples: one end of the cutting groove is used as a cutting edge to cut and dress the electrode, the other end is a center without cutting groove, and the edge part has a shape that defines the electrode Function, so that the two cutting inserts can be assembled together in opposite directions to form the first cutting groove and the second cutting groove.
  • the cutting edge surfaces of the same end on each cutting insert are aligned.
  • the lower end of the cutting surface of the pair of cutting edges at one end has an upwardly shaped front edge and an upwardly shaped rear edge that is lower than the front edge and offset by a positive clearance angle.
  • the pair of cutting edges at the other end also have the same structural features.
  • the geometric shapes of the symmetrical first welding surface and the second welding surface that can be trimmed by the cutting tool include many different structures.
  • the geometric shape of the welding surface is an arc surface depression with a center depth of 0.1 to 2 mm and a radius of 2 to 20 mm, a truncated cone shape with an end surface diameter of 3 to 15 mm or an arc shape with a radius of 20 to 100 mm,
  • the side surface is a curved surface with a radius of 8 to 100 mm or a tapered surface with an angle of 10-90° to the end surface.
  • the geometric shape of the welding surface is a circular truncated cone with a center depth of 0.1 to 2 mm, a bottom surface of 0.1 to 2 mm, a circular arc transition connection with a radius of 0.1 to 3 mm on both sides, and a truncated cone with an end surface diameter of 3 to 15 mm.
  • all connecting transition parts may include rounded transitions.
  • the geometry of the welding surface is a concave arc with a center depth of 0.1 to 2 mm and a radius of 2 to 20 mm.
  • the end surface is a truncated cone shape with a diameter of 3 to 15 mm or an arc shape with a radius of 20 to 100 mm.
  • a curved surface with a radius of 8 to 100 mm or a tapered surface with an angle of 10-90° to the end surface, and one or more protruding annular ridges or steps with a height of 20 to 500 microns can be partially or entirely included on all surfaces ⁇
  • Like structure Like structure.
  • the geometry of the welding surface is a circular truncated cone with a depth of 0.1 to 2mm in the center, a plane of 0.1-2mm at the bottom, a circular arc transition connection with a radius of 0.1-3mm on both sides, and a truncated cone with an end surface diameter of 3 to 15mm
  • Shape or arc shape with a radius of 20 to 100mm, arc shape with a side radius of 8 to 100mm or a cone with an angle of 10-90° to the end face which can include one or more parts or whole on all surfaces
  • Protruding annular ridges or stepped structures with a height of 20 to 500 microns.
  • all connecting transition parts may include rounded transitions.
  • the method of trimming welding electrodes with symmetric welding surfaces can be implemented with certain preferences.
  • the cutting tool can be rotated between 1-30 full revolutions around the axis of the first welding surface and the second welding surface, so that when the first welding surface and the second welding surface are restored, the surface is removed Materials with depths ranging from 10 to 500 microns.
  • the welding surface can also be trimmed after using it for 10-1000 times.
  • many other variants of the resistance spot welding method can also be implemented.
  • the cutting tool includes: a main body with openings at both ends and a cutting component inside the main body; the cutting component is composed of one or more identical cutting blades.
  • the two ends of the cutting insert are respectively provided with a first cutting groove and a second cutting groove.
  • Each cutting groove is defined by the shape of the cutting surface of the electrode and has one or more cutting grooves and one or more cutting edges. After the welding electrode is placed in the cutting groove, the two cutting grooves cut and restore the electrode surface shapes on both sides through the rotation of the cutting tool.
  • the main body with open ends extends longitudinally along the central axis of the first end and the second end, and includes an inner concave surface inside and a cylindrical structure feature with a boss at one end.
  • the one or more cutting inserts include elongated feet that support the cutting edge inside the body.
  • the elongated feet of one or more cutting blades and the inner concave surface of the main body are locked together by mechanical cooperation, thereby fixing the cutting component in the main body.
  • the elongated feet of one or more cutting blades are integrally formed with the inner concave surface of the body, thereby fixing the cutting component in the body.
  • the cutting component is composed of one cutting blade or a plurality of cutting blades evenly distributed along the circumference.
  • the two ends of the cutting insert have identical or different first cutting grooves and second cutting grooves.
  • the cutting groove is composed of one or more cutting edges having an upper end portion, a middle section portion and a lower end portion and a cutting groove.
  • the cutting edge and the cutting groove have an upwardly shaped front edge and an upwardly shaped rear edge that is offset by a positive relief angle below the front edge.
  • the cutting edge structure at the upper end of the cutting groove is defined by the shape of the outer edge of the corresponding electrode (spherical surface, arc surface or conical surface); the shape of the cutting edge structure in the middle section is defined by the corresponding electrode end surface shape (plane, Curved surface or recessed or protruding) defined; the lower end part has an upwardly structured cutting edge as a whole, so that the electrode shape with a central recess can be cut and restored.
  • the lower end portion of the cutting insert has an upwardly shaped front edge and an upwardly shaped rear edge that is offset from a positive rear angle below the front edge, and the shape of the front end is a concave cross-sectional shape in the center of the trimmed electrode.
  • the cutting tool body has an outer surface with an annular wall, the outer surface includes an integral lock nut, and the integral lock nut has a plurality of surfaces with intersecting edges arranged evenly around the outer surface.
  • the method for trimming a welding electrode with a centrally recessed welding surface shape includes: providing a cutting tool including a body and a cutting component in the body, the cutting component includes one or more cutting blades, and the cutting blade constructs a first Cutting groove and second cutting groove, the first cutting groove can be close to the opening at one end of the body, and the second cutting groove can be close to the opening at the other end of the body; the first cutting groove of the cutting tool receives the welding surface of the first welding electrode ; Accept the welding surface of the second welding electrode in the second cutting groove of the cutting tool; cut and restore the geometry of the first welding surface and the second welding surface by rotating the cutting tool.
  • this embodiment discloses a cutting tool that can simultaneously cut and restore the welding surfaces of two welding electrodes that have suffered different degrees of damage. It is especially suitable for the welding surface of the welding electrode with a central recessed feature and The welding surface is symmetrical.
  • the cutting tool can respectively cut and trim the welding surfaces of the welding electrodes on both sides to cut out the welding electrode with the concave feature in the center of the welding surface, and can also restore the welding electrode with the concave central feature on the initial welding surface.
  • the cutting tool can dress the welding surface as much as possible until the material wear caused by the dressing operation, the welding surface no longer supports dressing.
  • the cutting tool of this embodiment includes a body 1 and a cutting component 2, and may include an assembled elastic washer 3, where the cutting component 2 is composed of a cutting blade 21 and a cutting blade 22.
  • the body 1 of the cutting component 2 is made of hard material that can withstand the trimming of the welding electrode.
  • it is made of cutting tool steel, cemented carbide, or ceramics.
  • the cutting component 2 and the main body 1 can be matched or assembled in various ways, such as mechanical fitting, welding, brazing, cementing, or a combination of these techniques, or the main body 1 and the cutting component 2 are manufactured by an integral molding process.
  • the main body 1 and the cutting component 2 are separately processed from tool steel, and then are formed by mechanical interference fit together to form a cutting tool, and are fixed to each other by adding elastic washers 3.
  • the main body 1 has a structure with upper and lower ends open.
  • the body 1 has a circular inner surface.
  • the inner surface has 4 inner recessed channels extending longitudinally to the upper and lower opening surfaces of the same shape and size and are evenly spaced along the central axis. Each channel is composed of surfaces 171, 172, and 18.
  • the body 1 also includes an inner recessed annular channel composed of faces 15a, 15b and 16 in the middle. The inner recessed annular channel is used to place an elastic washer 3, and the body 1 is fixedly connected to the cutting component 2 through the elastic washer 3.
  • the 4 longitudinal inner concave channels and the middle inner concave annular channel divide the inner surface of the body 1 into a plurality of radial surfaces such as 13, 16, and 18, and a plurality of lateral surfaces such as 171, 172 and 15a. , 15b shows multiple horizontal surfaces.
  • the side surface of the outer surface of the body 1 has the structural feature of a lock nut as a whole.
  • the upper part of the body 1 has an annular feature as shown in 24, and the lower part has a polygonal plane feature as shown in, for example, 11a, 11b, and 11c.
  • the lower polygonal side surface is composed of six planes of equal size, that is, a regular hexagon feature, so that the cutting tool can be fixed in a cutting machine (for example, in a chuck) and rotate with the machine.
  • the lower end of the main body 1 has, for example, a flat end surface as shown in 19, which can conform to the image of the matched cutting machine.
  • the cutting component 2 is assembled by two cutting blades (21, 22) parallel to each other along the axis and perpendicular to each other.
  • the upper and lower surfaces of the cutting component 2 are respectively close to the upper and lower surfaces of the body 1.
  • the cutting inserts (21, 22) have different structural features up and down, but they are complementary to each other, and are assembled together perpendicularly intersecting each other along the central axis.
  • the central semi-hollow structures 90a and 90b are fitted together along opposite sides 25, 26, 27, 35.
  • the depth of the hollow structure generally extends to the center symmetry plane of the upper and lower ends of the entire cutting tool, and the cross-sectional shape is generally a rectangular structure or other shapes.
  • the cutting component does not have to be mechanically assembled by two cutting blades, but may also be integrally formed or formed by other connection methods such as welding or gluing.
  • the cutting blade 22 cuts counterclockwise, and the opposite cutting blade 21 cuts clockwise, so that both the upper and lower electrodes can be cut or trimmed.
  • the cutting tool has a first cutting groove and a second cutting groove at the upper and lower ends.
  • the first cutting groove at the upper end is composed of the cutting surfaces 373 and 374 of the cutting insert 21 and the cutting surfaces 371 and 372 of the cutting insert 22.
  • the cutting surfaces 371 and 372 in the first cutting groove perform cutting tasks, while 373 and 374 are variants of 371 and 372.
  • the only difference is that the lower end center does not participate in cutting, and it also has an upwardly shaped front edge and a lower front edge.
  • the edge offsets the trailing edge of the positive clearance angle.
  • the offset angle can be the same as or different from the offset angles of 371 and 372. Its main function is to guide and center the welding electrode through the upper end.
  • the upper and middle sections can also be the same as 371. , 372 are the same.
  • the four cutting surfaces are all involved in the cutting task, which makes it easier and save time to restore the shape of the first welding surface of the first welding electrode.
  • the cutting surfaces 371 and 372 of the cutting blade 22 are symmetrically connected at the lower ends, and the cutting surfaces 373 and 374 of the cutting blade 21 are symmetrically connected at the lower ends.
  • the cutting surfaces 371 and 372 of the cutting blade 22 are connected at the lower ends to produce overlapping parts.
  • the length of the chisel edge of the overlapping part is L, which can prevent the tool center from being too strong during the grinding process, which may lead to tool damage and tool collapse, and reduce grinding
  • the shaking of the process increases the stability of grinding.
  • the length L is 0.1-2 mm, preferably 0.25-1.5 mm.
  • FIGS 8 and 9 show a preferred embodiment of the cutting insert 22.
  • the overall structure of the cutting insert 22 is composed of two parts that are symmetrical left and right and front and rear, and has a characteristic structure of elongated feet. When the cutting blade 22 rotates counterclockwise along the central axis, the two symmetrical sides can participate in cutting at the same time.
  • the cutting insert 22 has upper and lower surfaces 31a, 31b that are accessible to the body.
  • the side surfaces include planes 30, 221a and 221b.
  • the surface 30 on the cutting insert 22 is assembled with the surface 172 on the internal passage of the body 1, and the surfaces 221a, 221b are connected to the body 1.
  • the faces 18 on the inner channel are assembled together with a frictional interference fit, and the side faces have an inner recessed channel formed by the faces 23 and 28, which is assembled with the elastic washer 3.
  • the cutting tool is left with cutout grooves 80a, 80b, 80c, and 80d that penetrate up and down as shown in FIG.
  • the cutting tool rotates counterclockwise along the central axis (in this example, it can only be rotated counterclockwise) (here, "counterclockwise rotation” is the direction of rotation seen from top to bottom), the upper end of the cutting tool is the first
  • the cutting insert 22 in the cutting groove is used as a cutting tool.
  • FIG. 3 shows the structure of the second cutting groove of the cutting tool.
  • the lower end portion of the center of the blade 22 has a downwardly inclined surface 36, which is generally flat or curved. Its main function is as a tool when cutting the concave feature in the center of the welding electrode, so that the cutting material can be discharged into and out of the cutting groove along 36, and will not accumulate here.
  • the surface 36 of this embodiment is an inclined surface, and its inclination angle is usually 5°-60°. When the surface 36 is a curved surface transition, the transition radius can be between 0.5 mm and 5 mm.
  • a second cutting groove is formed at the other end of the blade 22 and the other end of the blade 21 together, and its surface 49 also has a front edge formed upward and a certain angle offset backward (with the second cutting groove Rotate clockwise to observe) the trailing edge, the angle can be the same or different from the corresponding position of the upper end of the blade 22.
  • the edge surface 49 is generally low in height direction and is not used as a cutting surface to participate in the cutting or trimming of the electrode. Of course, it can also have the same height and the same structural size as the upper end to participate in the cutting of the welding surface of the second welding electrode.
  • the center has a hollow structure 90a, so that the surfaces 26, 25 and the cutting blade 22 can be assembled together to form a first cutting groove and a second cutting groove, respectively.
  • the uppermost part 321 of the cutting insert (21, 22) has a front edge formed upwards and a rear edge offset to the right by a certain angle, but they do not have to be so.
  • the cross-sectional shape of the leading edge can be a straight line or an arc. It is not used as the cutting part to perform cutting tasks, and does not participate in the cutting or trimming of the welding surface of the welding electrode. During the rotation of the tool, it is used as a guide to transition to the center of the tool. It will not contact the welding surface of the electrode, and limit the movement of the electrode in the axial direction, so that the electrode is always kept above the grinding tool.
  • the cutting part on each side of the cutting blade (21, 22) is composed of an upper part 32, a middle part 33, and a lower center part 34 to perform cutting tasks.
  • the overall performance of each part is with an upwardly shaped front edge and a rear edge that is offset to the front by a certain angle.
  • the offset angle of the positive back angle is between 3° and 30°, and more narrowly between 3° and 15° .
  • the cross-sectional shape of the upper edge of each segment is defined by the cut and modified electrode cross-sectional shape. For example, when the corresponding upper section of the electrode is a conical surface or a curved spherical surface, the leading edge of the upper end portion 32 is an oblique line or arc of the same size and shape.
  • the front edge of the middle section 33 is also a straight line or arc with the same size and shape.
  • the middle section of the corresponding electrode is a flat end surface or a spherical surface with one or more ridges protruding or concave
  • the leading edge of the middle section 33 is also concave or concave on a straight line or an arc with a corresponding number of structures of the same size.
  • the cross-sectional shape of the convex ridge When the lower part of the corresponding electrode is recessed into a curved surface, a platform recess or any other shape recess, the shape of the leading edge of the lower center portion 34 is also the corresponding convex cross-sectional shape of the welding electrode.
  • the electrode 60 has a trapezoidal concentric ring on the flat end surface shown in FIGS. 14 and 15 and the center is a concave arc surface.
  • Figure 1 shows an example of the tool used.
  • the suitable cutting blade 22 is shown in Figures 8, 9, 10 and 11.
  • the cross-sectional shape of the leading edge 47 ( Figures 9, 10) is the cross-sectional shape of the electrode required for trimming and cutting.
  • the cutting portion on each side of the blade 22 is composed of an upper end portion 32, a middle section portion 33, and a lower end center portion 34.
  • the cutting blade appears to have a lower end portion with an upwardly shaped front edge 47 and a front edge.
  • the upwardly formed trailing edge 39 that is offset downward by a positive clearance angle is formed by inclined surfaces 37a, 37b, and 37c on the same plane, and the surfaces 45 and 48 formed by offsetting 38 and 47.
  • the surface 45 is a curved surface
  • the leading edge 47 is a cutting edge.
  • the surface is offset by an angle to the rear to make it rotate counterclockwise when cutting, and cut waste It can be discharged from the rear and dropped into and out of the cut, and the positive clearance angle is between 3° and 30°, and more narrowly between 3° and 15°.
  • the lower end portion 34 of the cutting blade is composed of a cutting blade 3400, a side surface 3403, a side surface 3402, and a transition line 3401.
  • 3400, 3401, 3403 can be straight or curved
  • the transition 3401 can be a circular arc or rounded transition.
  • the center depression of the trimming electrode is a curved depression
  • the structure of the lower end portion 34 of the trimming blade at this time is as shown in FIGS. 25 and 26.
  • the cross-section of the center depression of the welding electrode trimmed only by the cutting edge 3400 is shown in FIG. 27.
  • the cutting edge 3400 is used to ensure that the required characteristic shape of the electrode center depression is cut and trimmed.
  • the height h is the depth of the electrode recess, which is 0.1mm-2mm, preferably 0.1-1mm; the epitaxial diameter of the central recess of the electrode is d3, and the diameter of the end face where the cutting blade 3400 is epitaxial is also d3, which is 2-15mm, preferably 2 -12mm, the radius of the blade 3400 is 1-50mm.
  • the distance between the intersection of the side surface 3403 and the blade body is d4 from the center plane, and the length of d4 does not exceed d3/2. Therefore, it is ensured that the shape and size of the recess of the cut electrode is the shape and size of the cutting blade 3400.
  • the cutting surface 3402 is a curved surface composed of 3400, 3401, 3403.
  • the shape of the side surface of the electrode cut by the upper end portion 32 is spherical.
  • the shape of the upper end portion 32 is completely the same size and shape as the arc 67 of the spherical section of the electrode.
  • the leading edge blade shape at the upper end portion 32 should be facing the corresponding A straight line, its overall structure is shown as having a leading edge formed upwards and a trailing edge offset backwards by a certain angle under the leading edge (the offset angle ⁇ as shown in FIG. 11).
  • the electrode shape is a trapezoid-shaped concentric ring on the flat end surface, it is a concentric ring structure with two layers of cross-sectional shapes that are trapezoidal, as shown in 62, 63, 64, and 65 in Figure 15, where 64 is The shape of the end face is flat, 63 is the outermost ring, 62 is the inner ring, and 65 is the recess in the middle of the ring.
  • the cross-sectional shape of the front edge of the cutting 33 at the middle of the cutting blade 22 should be the same as 62, 63, 64, 65 shows the same shape and size, below the front edge, has a rear edge that is offset to the straight rear and the formed surfaces 37a, 37b, 37c, and 42 (shown in Figure 9). There is a surface on the surface 42
  • the protrusion structure formed by 37b, 41, 44 and the front edge section of the middle section is used to ensure that 65 recesses on the electrode end surface are cut, and the left and right cavities are used to ensure the formation of the inner and outer raised rings 62, 63 of the electrode.
  • the concave shape of the electrode center is a spherical shape 61, that is, the cross-sectional shape is an arc, so the cross-sectional shape of the lower end portion 34 at the cutting position of the cutting blade 22 is an upwardly convex arc with the same size and shape.
  • the front edge is offset by a certain angle backward and downward to form a curved surface 46 to ensure the discharge of cutting materials.
  • the central depression shape is arc-surface depression 71, but the end surface is flat end 72 and there is no other special protrusion or depression structure electrode 70 (shown in Figures 17 and 18)
  • the cutting tool is shown in Figures 12 and 13.
  • the middle section 33 of the cutting insert 22 correspondingly becomes a structure without multiple depressions or protrusions, but a front edge that is integrally formed upwards and a rear edge that is offset by a certain angle to the right rear, and forms a complete ⁇ 37.
  • the lower end is still an arc surface 34 that is offset backward by a certain angle from an arc of the same size as 71, and the upper end is a curved surface 45 that is offset backward by a certain angle from an arc of the same size as 73.
  • the welding contact When the surface is still composed of a plane 94 and two layers of concentric rings 92 and 93 protruding on the plane, and the electrode side surface is a structural feature of a spherical surface 97.
  • the corresponding cutting blade shape in the present invention is shown in Figure 21 and Figure 22. The main difference is that the lower part of the cutting area 34 is a solid formed by a plane 46a and a curved surface 46b that are offset by a certain angle to the rear. feature.
  • the cross-sectional shape size of 46a is the same as the structural size of 91a of the corresponding electrode 90
  • the cross-sectional shape size of 46b is the same as the structural size of 91b of the corresponding electrode 90. It suffices that the offset length of the lower part of the region 34 in the middle section does not exceed the plane 37.
  • the centrally recessed welding electrode trimmed by the cutting tool of the present invention can also be as shown in FIGS. 28a-28e, but is not limited to the examples shown.
  • an elastic washer 3 is included, and its shape and structure are shown in FIG. 23. It mainly includes an outer ring 304 and an inner ring 302, and upper and lower surfaces 301a, 301b. Moreover, the elastic washer is not completely closed, leaving a section of opening, and a plane 303 is formed at the opening, so that it can be stretched and retracted along the axis radially. The length of the opening is determined by the elastic properties of the selected gasket material. Of course, the gasket 3 can be provided with multiple openings.
  • the washer 3 is assembled with 15a, 15b on the body and 28 on the cutting blade through faces 301a, 301b, the inner ring 302 is assembled with 28 on the blade, and the outer ring 304 is assembled with face 16 on the body. , In order to make the cutting part and the body fixedly connected.
  • the cutting blades 21 and 22 can be made of various materials including various alloy tool steels, high-speed tool steels, hard alloys, ceramic alloys, etc., which can be used to make tools; Quenching, carburizing, nitriding, carbonitriding and other heat treatment methods.
  • the welding electrode mentioned in the present invention can be constructed of any conductive and thermal conductive materials suitable for spot welding, and this kind of material may be aged during welding.
  • the electrode may be constructed of copper alloys, including copper-chromium (CuCr) alloys, copper-chromium-zirconium (CuCrZr) alloys, copper alloys with alumina particles, or various other copper alloys that can be used as electrode materials.
  • cutting tools can be used to trim and cut a pair of welding electrodes that include heterogeneous workpieces in resistance spot welding.
  • the welding of aluminum alloy and steel can be used for multilayer resistance spot welding of multiple materials, such as three-layer or four-layer resistance spot welding with equal thickness or unequal thickness.
  • the lap contact surface of the workpiece may contain various adhesives applied to material connection or epoxy resin with thermosetting effect, for example, the middle layer is filled with Uniseal 2343 adhesive with thermosetting effect.
  • the applied aluminum alloy may include deformed aluminum alloy or cast aluminum alloy, including aluminum alloy substrates with coated or uncoated surfaces.
  • aluminum alloys such as aluminum-magnesium alloys, aluminum-silicon alloys, aluminum-magnesium-silicon alloys, aluminum-zinc alloys, and aluminum-copper alloys.
  • its material state can include various tempering, including annealing, strain strengthening, solid solution strengthening and other states.
  • the thickness of the aluminum substrate is generally between 0.3 mm and 6.0 mm, preferably between 0.5 mm and 3.0 mm.
  • the steel workpieces used include a wide variety of steel substrate materials with coated or uncoated surfaces.
  • the steel substrate material can be hot-rolled or cold-rolled, and can contain any steel, such as low-carbon steel, gapless steel, bake hardening steel, two-way steel, martensitic steel and other steel substrate materials.
  • the thickness of the steel substrate is generally 0.3 mm to 6.0 mm, preferably from 0.6 mm to 2.5 mm in thickness.
  • the electrodes 110 and 112 are connected to the electrode welding guns 113 and 114, including the C-type welding torch or the X-type welding torch, and the installed cutting tool 112 is placed in the cutting Inside the machine (not shown), so that it can be rotated together with the machine, and then apply pressure to the welding gun without passing current, so that the two ends of the welding gun are pressed into the first cutting groove and the second cutting groove of the cutting tool, according to the required cutting amount
  • the pressure and time are determined by the electrode material and shape structure.
  • the pressure is between 400N and 3000N, preferably between 500N and 2000N
  • the cutting time is generally between 500ms and 5000ms, preferably between 1000ms and 3500ms.
  • the required electrode shape is finally cut or trimmed through the rotation of the cutting tool.

Abstract

一种用于修整中心凹陷焊接电极的切削刀具及其方法,切削刀具包括主体(1)和切削部件(2),切削部件(2)设置于主体(1)内,包括一个或多个切削刀片(21,22),切削刀片(21,22)以主体的中心轴线为中心呈均匀间隔开的径向分布,切削刀片(21,22)将主体间隔成多个出削槽(80a,80b,80c,80d),切削刀片两端的轴向外侧面和主体形成两个切削槽;切削刀片的至少一个轴向外侧面设有切削刃(3400),在切削刃的中部上设有凸起,凸起的轴向投影形状和焊接电极中心凹陷的截面形状相同。切削刀具可以精准、快速、定期的修整恢复中心凹陷焊接电极的初始焊接面形状,进而保持较高的焊接质量以及保证生产活动的正常有序进行。

Description

用于修整中心凹陷焊接电极的切削刀具及其方法 技术领域
本发明涉及机械领域,更具体地涉及一种用于修整中心凹陷焊接电极的切削刀具及其方法。
背景技术
焊接电极用于电阻点焊包括同质或异质工件的两层或多层层叠焊接,如铝工件和铝工件,钢工件与钢工件,铝工件与钢工件。而电阻点焊是将两层或多层搭接的工件通过电极接触施加压力和电流,利用工件之间的电阻产热熔化材料实现连接的方法。该方法在目前汽车生产钢制车身制造中占据主要的制造工序。随着汽车轻量化的普及,铝合金材料被越来越多地用于白车身中,目前汽车车身生产中铝合金的连接方法主要以铆接连接为主。而铆接是一种成本较高,工序复杂,表面质量差,增加车身重量的方法。而常规铝合金电阻点焊存在诸多问题,例如强度低、电极寿命低、焊点强度不稳定、表面质量差、焊接电流值较大,焊接飞溅严重,焊点强度与铆接相比也较低,从而极大地限制了其应用范围。因此,为降低制造成本,扩大铝合金的应用量和应用范围,需要一种能够获得更高的焊接强度、电极寿命更长,更容易推广的焊接电极,而焊接端面带有向内凹陷的焊接电极,可以很好地克服铝合金点焊焊点强度低、飞溅严重、电流值较大等缺点。
在实际生产应用中,电极经过重复的点焊过程,在压力和电流的作用下,端面会发生不同程度的磨损及老化。这主要是由于焊接过程中电极焊接面温度升高导致局部塑性变形以及电极与材料之间反应发生的粘连现象产生的污染物堆积。而电极老化及形状改变会造成焊接质量下降,表面质量下降等缺陷,所以定期地使焊接面恢复到原有形状非常重要。而且恢复过程的快速、精准非常重要,不能打断生产制造节拍。
因此,针对中心凹陷焊接电极,目前并没有相应的快速、有效的修整刀具,本领域中急需一种可以有效解决上述问题的用于修整其表面的切削刀具及其使用方法。
发明内容
本发明的目的在于提供一种用于修整中心凹陷焊接电极的切削刀具及其方法,本发明的切削刀具可以精准、快速、定期的修整恢复焊接电极的初始焊接面形状,进而保持较高的焊接质量以及生产活动的正常有序进行。
在本发明的第一方面,提供了一种用于修整中心凹陷焊接电极的切削刀具,其特征在于,所述切削刀具包括:主体,所述主体为两端开口的中空柱体结构;和切削部件,所述切削部件设置于所述主体内,所述切削部件包括一个或多个切削刀片,所述切削刀片以所述主体的中心轴线为中心呈均匀间隔开的径向分布,所述切削刀片在所述主体的中心轴线处固定成整体,且所述切削刀片的径向外侧与所述主体固定连接,所述切削刀片将所述主体间隔成多个出削槽,所述切削刀片两端的轴向外侧面和所述主体分别形成两个切削槽,所述切削槽用于接受待修整的所述焊接电极,所述切削槽包括第一切削槽和第二切削槽;其中,所述切削刀片的至少一个轴向外侧面设有切削刃,在所述切削刃的下端部上设有凸起,位于同一侧的所述切削刃上的凸起的叠加轴向投影形状(轴向投影形状为切削刃径向观察的形状)与其所修整的焊接电极中心凹陷的截面形状相同。
在另一优选例中,所述切削刀片的一个轴向外侧面上的所述切削刃包括第一切削刃和第二切削刃。
在另一优选例中,所述第一切削刃和所述第二切削刃成对出现。
在另一优选例中,所述切削刃具有向上成型的前缘和在所述前缘之下偏移正后角向上成型的后缘。
在另一优选例中,以所述后缘所在曲面为基面,所述凸起的高度大于所述前缘的高度。
在另一优选例中,位于同一侧的多个所述切削刃上的凸起的形状相同,所述凸起的轴向投影形状与其所修整的焊接电极中心凹陷的截面形状相同。
在另一优选例中,位于同一侧的多个所述切削刃上的凸起的形状不完全相同,但所述凸起的叠加轴向投影形状与其所修整的焊接电极中心凹陷的截面形状相同。
在另一优选例中,所述第一切削槽和所述第二切削槽修正的所述焊接电极的形状完全相同或者存在差异。
在另一优选例中,所述切削刃分为上端部分、中段部分和下端部分;所述上端部分的切削刃结构被所述焊接电极外边沿形状(球面、弧面或圆锥面)所限定;所 述中段部分的切削刃结构被所述焊接电极的端面形状(平面、曲面或凹陷或突出)限定;所述下端部分的切削刃设有所述凸起,以此能切割复原出所述中心凹陷的焊接电极的形状。
在另一优选例中,所述主体和所述切削部件可拆卸地连接。
在另一优选例中,多个所述切削刀片可拆卸地连接。
在另一优选例中,每个所述切削刀片的切割侧与所述焊接电极的表面形状是相适形的。
在本发明的第二方面,提供了一种用于修整焊接电极的方法,所述方法包括:
a)提供如权利要求1所述的切削刀具;
b)在所述切削刀具的第一切削槽中接受第一焊接电极焊接面;
c)在所述切削刀具的第二切削槽中接受第二焊接电极的焊接面;
d)通过转动所述切削刀具来切割和复原所述第一焊接电极焊接面和所述第二焊接电极焊接面的几何形状。
在另一优选例中,所述切削刀具通过切割机器被固定。
在另一优选例中,所述切割机器卡住所述切削刀具的外表面。
在另一优选例中,所述主体的内侧表面为凹凸面。
在另一优选例中,所述本体的外侧面的上端表面为环形壁面且设有凸缘,中下段表里面具有整体锁止螺母的结构特征,即具有围绕所述本体的外侧面均匀间隔布置且边缘相交的多个表面。
在另一优选例中,所述切削刀片包括用于支撑切削刃的细长足部。
在另一优选例中,所述切削刀片通过所述足部与所述本体的内侧面固定连接。
在另一优选例中,所述足部和所述本体的内表面通过机械配合锁紧在一起,从而将所述切削部件固定在所述本体内。
在另一优选例中,所述足部和所述本体的内表面一体成形,从而将所述切削部件固定在所述本体内。
在另一优选例中,所述切削槽上由具有上端部分、中段部分和下端部分的一个或多个切削刃和出削槽组成。
在另一优选例中,所述切削刃和出削槽具有向上成型的前缘和在前缘之下偏移正后角的向上成型的后缘。
在另一优选例中,所述切削刀片下端部分具有向上成型的前缘和在前缘之下偏 移正后角的向上成型的后缘,前端形状为所修整电极中心凹陷的截面形状。
在另一优选例中,多个所述切削刀片是相同形状。
应理解,在本发明范围内中,本发明的上述各技术特征和在下文(如实施例)中具体描述的各技术特征之间都可以互相组合,从而构成新的或优选的技术方案。限于篇幅,在此不再一一累述。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一个实施例中的切削刀具的轴侧图;
图2是图1中的切削刀具的分解图;
图3是图1中的切削刀具的反向轴侧图;
图4是图1中的切削刀具的俯视图;
图5是本发明一个实施例中的切削刀具的轴侧图;
图6是图5中的切削刀具的俯视图;
图7是本发明一个实施例中的切削刀具本体的轴侧图;
图8是图1中的切削刀片的轴侧图;
图9是图8中的切削刀片的局部放大图;
图10是图8中的切削刀片的正视图;
图11是沿图10所示100-100截面所得剖面图;
图12是图5中的切削刀片的轴侧图;
图13是图12中的切削刀片的正视图;
图14是图1中的切削刀具所对应的电极形状的轴侧图;
图15是图14的局部放大图;
图16是沿图14所示电极60中心截面6-6剖切所形成的剖面图;
图17是图5中的切削刀具所对应的电极形状的轴侧图;
图18是沿图17所示电极70中心截面7-7剖切所形成的剖面图;
图19是本发明一个实施例中电极形状的轴侧图;
图20是沿图19所示电极90中心截面9-9剖切所形成的剖面图;
图21是图19所示电极所对应的切削刀片的轴侧图;
图22是图21中的切削刀片的正视图;
图23是本发明一个实施例中的弹性垫圈的轴侧图;
图24是本发明一个实施例中的切削刀具在使用时与焊接电极进行装配的结构示意图;
图25是图12中凸起的放大图;
图26是图8中凸起的立体图;
图27是仅通过图12中所示的切削刀片进行修整时,与之对应的焊接电极的局部截面图;
图28a-28e均是本发明的多个优选实例中的切削刀具所能修整的焊接电极的截面图。
具体实施方式
本发明人经过广泛而深入的研究,通过大量筛选,首次开发了一种用于修整中心凹陷焊接电极的切削刀具及其方法,与现有技术相比,本发明的切削刀具可以同时切割和复原经受不同老化机理的两个中心凹陷焊接电极的焊接面几何形状,具体地,切削刀具中心具有特殊的凸起结构,可以达到通过切削刀具围绕其轴线周期性的旋转转动来修整或切割第一焊接电极的第一焊接面和第二焊接电极的第二焊接面的几何形状,使其焊接面具有中心凹陷的特征,本发明的切削刀具更加精准、快速,同时可以保持较高的焊接质量,在此基础上完成了本发明。
本发明提供了一种用于修整中心凹陷焊接电极的切削刀具,它是一种具有特定结构的切削刀具。
典型地,本发明的切削刀具为能够修整复原一类具有中心凹陷焊接面特征电极的切削刀具,具体地包括本体和位于本体内的切削部件。本体包括具有两端开口沿纵向轴线方向延伸的柱状结构。切削部件具有一个或多个切削刀片构成,切削刀片的两端分别形成第一切削槽和第二切削槽,每个切削槽由所修整电极的焊接表面形状限定,且切削槽内具有一个或多个出削槽以及一个或多个切削刃。第一切削槽与本体一端开口相接近,第二切削槽与本体另一端开口相接近。当焊接电极放入切削槽内后,通过切削刀具的转动,两个切削槽分别切割和复原两边的电极表面形状, 所修复切割电极表面形状具有中心凹陷的特征。
需要说明的是,该切削刀具的整体构造可以经过一些变化而不丧失它的修整能力。例如,一个或多个切削刀片可以整体与切削刀具主体过盈配合地机械连接在一起,或通过具有弹性性质的垫圈装配在一起,也可以将切削刀片与刀具主体采用整体成型的方法或焊接等其他连接方法成型连接在一起。
作为切削刀具的特别构造的另一个示例,切削部件可以由两个切削刀片通过机械装配组成,两个切削刀片的一端构建为第一切削槽,另一端构建为第二切削槽。每个切削刀片上有两条切削刃,切削刀片彼此圆周间隔均匀分布,位于切削刀片上的切削刃也彼此圆周间隔均匀分布,而切削刃的具体结构形状分别由电极焊接面的形状所限定,每个切削刀片的两端切削槽可以是相同或不同的,包括但不限于下述例子:一端切削槽作为切削刃切割、修整电极,另一端为中心无切削槽,边缘部分具有限定电极形状的功能,从而使两个切削刀片可以反向的装配在一起构成第一切削槽和第二切削槽。
进一步地,当切削部件由两个切削刀片组成时,每个切削刀片上同一端的切削刃表面是对齐的。并且位于一端的一对切削刃的切削表面的下端部具有向上成型的前缘和低于前缘偏移正后角的向上成型的后缘。同样,位于另一端的一对切削刃也具有相同的结构特征。
可由切削刀具修整的对称的第一焊接面和第二焊接面的几何形状包含多种不同结构。例如,在一个实施方式中,焊接面几何形状为中心深度为0.1至2mm,半径为2至20mm的弧面凹陷,端面直径为3至15mm的圆台形状或半径为20至100mm的弧面形状,侧面为半径为8至100mm的弧面形状或与端面角度为10-90°的锥面。在另一个示例中,焊接面几何形状为中心深度为0.1至2mm,底部为0.1-2mm的平面,两侧半径为0.1-3mm的圆弧过渡连接的凹陷形状,端面直径为3至15mm的圆台形状或半径为20至100mm的弧面形状,侧面半径为8至100mm的弧面形状或与端面角度为10-90°的锥面。其中,所有连接过渡部位可包含有圆角过渡。
在另一个示例中,焊接面几何形状为中心深度为0.1至2mm,半径为2至20mm的弧面凹陷,端面为直径为3至15mm的圆台形状或半径为20至100mm的弧面形状,侧面半径为8至100mm的弧面形状或与端面角度为10-90°的锥面,而在所有面上可局部或整体都包含有一个或多个高度为20至500微米的突出环形脊或阶梯状结构。在另一个示例中焊接面几何形状为中心为深度为0.1至2mm,底部为0.1-2mm 的平面,两侧半径为0.1-3mm的圆弧过渡连接的凹陷形状,端面直径为3至15mm的圆台形状或半径为20至100mm的弧面形状,侧面半径为8至100mm的弧面形状或与端面角度为10-90°的锥面,在所有面上可局部或整体都包含有一个或多个高度为20至500微米的突出环形脊或阶梯状结构。其中,所有连接过渡部位可包含有圆角过渡。
修整具有对称的焊接面的焊接电极的方法可以通过一定的偏好实施。例如,切削刀具可以在围绕第一焊接面和第二焊接面的轴线的1-30个整圈之间转动,以使在复原第一焊接面和第二焊接面的情况下,从其表面去除10到500微米范围的深度的材料。另外,也可以在焊接面使用10-1000次范围内后对其进行修整。当然也可以实施电阻点焊方法的许多其他变型。
在另一优选例中,切削刀具包括:具有两端开口的主体和在主体内部的切削部件;切削部件由一个或多个相同的切削刀片组成。切削刀片的两端分别具有第一切削槽和第二切削槽,每个切削槽由电极的切削表面形状限定,且上面具有一个或多个出削槽,一个或多个切削刃。当焊接电极放入切削槽内后,通过切削刀具的转动,两个切削槽分别切割和复原两边的电极表面形状。
在另一优选例中,两端开口的主体沿着第一端和第二端中心轴线纵向延伸,包括内部具有的内凹陷表面和一端具有凸台的圆柱状结构特征。
在另一优选例中,一个或多个切削刀片包括在本体内部支撑切削刃的细长足部。
在另一优选例中,一个或多个切削刀片的细长足部与本体的内凹陷表面通过机械配合锁紧在一起,从而将切削部件固定在本体内。
在另一优选例中,一个或多个切削刀片的细长足部与本体的内凹陷表面整体成型,从而将切削部件固定在本体内。
在另一优选例中,切削部件由一个切削刀片组成或多个切削刀片沿圆周均匀分布间隔组成。
在另一优选例中,切削刀片两端具有完全相同或者存在差异的第一切削槽和第二切削槽。
在另一优选例中,切削槽上由具有上端部分、中段部分和下端部分的一个或多个切削刃和出削槽组成。
在另一优选例中,切削刃和出削槽具有向上成型的前缘和在前缘之下偏移正后角的向上成型的后缘。
在另一优选例中,切削槽上端部分的切削刃结构被所对应电极外边沿形状(球面、弧面或圆锥面)所限定;中段部分切削刃结构形状被所对应的电极端面形状(平面、曲面或凹陷或突出)限定;下端部分整体具有向上结构的切割刃,以此能切割复原出中心凹陷的电极形状。
在另一优选例中,切削刀片下端部分具有向上成型的前缘和在前缘之下偏移正后角的向上成型的后缘,前端形状为所修整电极中心凹陷的截面形状。
在另一优选例中,切削刀具本体具有环形壁的外表面,外表面包括整体锁止螺母,整体锁止螺母具有围绕外表面均匀间隔布置边缘相交的多个表面。
在另一优选例中,修整具有中心凹陷焊接面形状的焊接电极的方法包括:提供包括本体和本体内的切削部件的切削工具,切削部件包括一个或多个切削刀片,切削刀片构建出第一切削槽和第二切削槽,第一切削槽能与本体一端开口相接近,第二切削槽能与本体另一端开口相接近的;在切削刀具的第一切削槽中接受第一焊接电极焊接面;在切削刀具的第二切削槽中接受第二焊接电极的焊接面;通过转动切削刀具来切割和复原第一焊接面和第二焊接面的几何形状。
本发明的主要优点包括:
(a)结构简单,便于加工制造;
(b)装配形式多样,适用多种场合;
(c)可以精准、快速、定期的修整恢复中心凹陷焊接电极的初始焊接面形状;
(d)焊接电极修整质量高;
(e)保证生产活动的正常有序进行。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外,附图为示意图,因此本发明装置和设备的并不受所述示意图的尺寸或比例限制。
需要说明的是,在本专利的权利要求和说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出 的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
需要说明的是,在本专利的权利要求和说明书中,诸如“轴向”、“径向”、“外”以及“内”等的位置关系是相对于本发明切削刀具的主体结构而言的,“轴向外侧”是指与主体的中轴线垂直且远离主体中心的侧面,“径向外侧”是指与主体的中轴线平行且远离主体中心的侧面;切削刃上的凸起的轴向投影形状是指本发明切削刃径向观察的形状。
实施例
如图1-27中所示,本实施例公开了一种可以同时切割和复原遭受不同程度损害的两个焊接电极的焊接面的切削刀具,特别适用于焊接电极的焊接面具有中心凹陷特征且焊接面是对称的情况。通过该切削刀具可分别切割、修整两边焊接电极的焊接面来切割出焊接面中心具有凹陷特征的焊接电极,也可复原出初始焊接面具有中心凹陷特征的焊接电极。切削刀具可以尽可能多的修整焊接面直到由于修整操作导致的材料磨损,焊接面不再支持修整。
本实施例的切削刀具包括本体1、切削部件2,并可以包括装配的弹性垫圈3,其中切削部件2由切削刀片21和切削刀片22组成。
切削部件2的本体1都由可经受焊接电极修整的硬质材料所构成。例如由刀具刃具钢,硬质合金,或陶瓷等材料制成。切削部件2与本体1可以由各种方式配合或组装在一起,例如机械配合、熔焊、钎焊、胶结或这些技术的组合或是本体1与切削部件2是通过一体成型的工艺制作。在本实施例中,本体1与切削部件2分别由刀具钢单独加工而成,然后通过机械过盈配合在一起构成切削刀具的,并通过添加弹性垫圈3使之相互固定。
如图7所示,本体1具有上下两端开口的结构。本体1内部具有圆形内表面,该内表面具有4个相同形状尺寸的纵向延伸至上下开口表面的内凹陷通道且其沿中心轴线均匀间隔分布,每个通道由表面171、172和18组成。本体1中间还包含由面15a、15b和16组成的内凹陷环状通道,该内凹陷环状通道用于放置弹性垫圈3,本体1通过弹性垫圈3使其与切削部件2固定连接在一起。4个纵向的内凹陷通道和中间的内凹陷环状通道将本体1的内表面分成如13、16、18的多个径向表面和 如171、172所示的多个侧向表面和如15a、15b所示的多个水平表面。本体1的外表面的侧面整体具有锁止螺母的结构特征。本体1的上部分具有如24所示的环形特征、下部分具有例如11a、11b、和11c所示的多边形平面特征。在优选实例中,下部的多边形侧面为相等尺寸的六个平面构成,即为正六边形特征,使其可以将切削刀具固定在切割机器(例如卡盘内)内,随着机器一起转动。本体1的下端具有例如19所示的平端面特征,其可与所配合的切割机器像相适形。
如图1-6中所示,切削部件2由两个切削刀片(21、22)彼此沿轴线平行且相互垂直的相交装配而成,切削部件2的上下表面分别与本体1的上下表面相接近。如图2所示,切削刀片(21、22)上下具有不同的结构特征,但彼此是互补的,相互沿中心轴线垂直相交的装配在一起。如图2和8所示,通过中心半空心结构90a和90b沿相对的25,26,27,35贴合装配在一起。其空心结构深度一般为延伸至整个切削刀具的上下端的中心对称面,其截面形状一般为矩形结构,或是其他形状。当然如前面所述,切削部件不一定是由两个切削刀片机械装配构成,也可以是整体成型或通过焊接、胶结等其他连接方式而构成。当切削刀具沿逆时针旋转时,达到切削刀片22沿逆时针切割,反向的切削刀片21沿顺时针进行切割的目的,从而使上下电极均能得到切割或修整。
切削刀具具有上下两端的第一切削槽和第二切削槽。如图1所示,上端的第一切削槽由切削刀片21的切削表面373、374和切削刀片22的切削表面371、372构成。在第一切削槽内的切削表面371、372执行切割任务,而373、374是371、372的变型,仅有的差异为下端中心不参与切割,其同样具有向上成型的前缘和低于前缘偏移正后角的后缘,偏移角度可以与371、372的偏移角度相同或不同,其主要作用为通过上端部引导和定心焊接电极,其上端部分和中段部分也可以与371、372相同,此时则四个切削表面均参与切割任务,以此更容易和节省时间来恢复第一焊接电极的第一焊接面形状。
如图1和26所示,切削刀片22的切削表面371和372下端对称衔接,切削刀片21的切削表面373和374下端对称衔接。切削刀片22的切削表面371和372下端衔接产生重叠部分,重叠部位横刃长度为L,可防止在修磨过程中刀具中心受力太大,导致刀具损坏,发生崩刀,并减小修磨过程的晃动,增加修磨稳定性。长度L为0.1-2mm,优选地为0.25-1.5mm。
如图8和9是切削刀片22的一个优选实施例,切削刀片22的整体结构为左右 及前后对称的两部分组成并且具有细长足部的特征结构。当切削刀片22沿中心轴线逆时针旋转时,可由对称的两边同时参与切割。切削刀片22具有与本体可接近的上下表面31a、31b,侧面包含30,221a和221b的平面,切削刀片22上的面30与本体1内部通道上的面172装配,面221a,221b与本体1内部通道上的面18摩擦过盈配合的装配在一起,其侧面上具有由面23、28所构成的内凹陷通道,其是与弹性垫圈3相装配的。
切削刀片21、22、弹性垫圈3都与本体1相互装配组成切削刀具后,在切削刀具中留有如图4所示的上下贯通的出削槽80a、80b、80c和80d。当切削刀具沿中心轴线逆时针旋转时(本实例中只能是逆时针旋转)(这里的“逆时针转动”是从上向下观察时看到的转动方向),切削刀具的上端部第一切削槽内的切削刀片22作为切削刀具,在切削刀具背面的第二切削槽此时以顺时针旋转,切削刀片21作为切削刀具,从而电极切削废料从出削槽80a、80b、80c和80d排出,如图3所示为切削刀具的第二切削槽的结构图。
如图8所示,在刀片22的中心下端部分具有向下倾斜的表面36,其通常是平面或曲面过渡。其主要作用是作为刀具在切割焊接电极中心凹陷特征时,使得切削料可以沿着36排入出削槽,不会在此处堆积。本实施例的面36为斜面,其倾斜角度通常为5°-60°。当面36为曲面过渡时,过渡半径可以为0.5mm至5mm之间。
如图10所示,在刀片22的另一端与刀片21的另一端共同构建出第二切削槽,其表面49同样具有向上成型的前缘和向后偏移一定的角度(以第二切削槽顺时针旋转观察)的后缘,角度可以与刀片22上端所对应处相同或不同。其边缘表面49一般高度方向偏低,并不作为切割表面来参与电极的切割或修整,当然也可以与其上端具有相同的高度和相同的结构尺寸来参与第二焊接电极焊接面的切割。其中心具有中空的结构90a,从而可以通过面26、25与切削刀片22垂直相交地装配在一起分别构建出第一切割槽和第二切割槽。
如图8所示,在切削刀片(21、22)的最上端部分321具有向上成型的前缘和向正后方偏移一定角度的后缘,但他们不是必须如此。前缘截面形状可以是直线或弧线,其并不作为切割部分来执行切割任务,并不参与焊接电极焊接面的切割或修整,在刀具转动期间,是作为引导面向刀具中心过渡,即其通常不会与电极焊接面接触,并在轴向方向限定电极运动,使电极始终保持在修磨刀具的上方。
在切削刀片(21、22)每边切割部分由上端部分32、中段部分33、下端中心部 分34所构成执行切割任务。各个部分整体表现均为具有向上成型的前缘和向正后方偏移一定角度的后缘,正后角偏移角度从3°到30°之间,更窄地为3°到15°之间。每段的上缘截面形状由所切割、修正的电极截面形状限定。例如当所对应电极上段为锥面或曲面球面时,则上端部分32前缘刀刃为相同尺寸形状的斜线或圆弧。当所对应电极中段为平端面或球面时,则中段部分33前缘刀刃也为相同尺寸形状的直线或弧线。当所对应电极中段为平端面或球面上存在突出或凹陷的一层或多层环脊时,则中段部分33的前缘刀刃也为存在对应数量的相同尺寸结构的直线上或弧线上凹陷或凸出的环脊的截面形状。当所对应电极下段部分凹陷为弧面、平台凹陷或其他任何形状的凹陷时,则下端中心部分34的前缘刀刃形状也为对应的焊接电极的凸起截面形状。
例如一个优选的实施方式中,针对图14、15中所示平端面上具有梯形状同心环、中心为弧面凹陷的电极60。图1中所示为所用刀具实例,适用切削刀片22如图8、9、10和11所示,前缘47(图9、10)截面形状为所需修整、切割电极的截面形状。此时,如图9所示,刀片22每边切割部分由上端部分32、中段部分33、下端中心部分34所构成,切削刀片表现为具有下端部分具有向上成型的前缘47和在前缘之下偏移正后角的向上成型的后缘39,所形成的倾斜面为37a、37b和37c在同一个平面上,以及由38、47偏移形成的面45和48,当所修整电极外沿形状为球面形时,即刃38为弧线时,则面45为曲面,前缘47为切削刃,通过向正后方偏移角度的面,以使在切割时进行逆时针旋转,切割废削可以从后方排出掉入出削口,正后角偏移角度从3°到30°之间,更窄地为3°到15°之间。
如图25和图26所示的切削刀片,切割刀片下端部分34是由切割刀刃3400、侧面3403、侧面3402和过渡线3401所构成。其中3400、3401、3403可以为直线或曲线,其中过渡处3401可以为圆弧或圆角过渡。示例性地,当修整电极中心凹陷为弧面凹陷时,此时修整刀片下端部分34结构如图25和图26所示。仅通过切割刃3400进行修整的焊接电极中心凹陷的截面如图27所示。通过切割刃3400以保证切割、修整出所需电极中心凹陷的特征形状。高度h为电极凹陷深度,为0.1mm-2mm,优选地为0.1-1mm;电极中心凹陷处外延直径为d3,则切割刀刃3400外延所在端面直径同样为d3,为2-15mm,优选地为2-12mm,刀刃3400的半径为1-50mm。侧面3403与刀片本体交汇处距离中心平面为d4,d4的长度不超过d3/2。从而保证所切割出电极的凹陷形状大小为切割刃3400的形状大小。此实例中,切 削表面3402是由3400、3401、3403所构成的曲面。
在本优选实施方式中,如图14、15所示,上端部分32所切割的电极的侧面形状为球面形,则此时上端部分32的形状为完全与电极的球面截面弧线67相同大小形状的弧线,以此来达到切割、修整出侧面为球面形状的电极的目的,当然若所需修整电极侧面为圆锥形时,则此时上端部分32处的前缘刀刃形状应为向对应的直线,其整体结构表现为具有向上成型的前缘以及前缘之下向后偏移一定角度的后缘(如图11中所示偏移角度θ)。
在本优选实施方式中,由于电极形状为平端面上具有梯形状同心环为带有两层截面形状为梯形装的同心环结构,如图15中62、63、64、65所示,64为端面形状为平面,63为最外层环,62为内层环,65为环中间凹陷,所以此时在切削刀片22的中段切割处33的前缘截面形状应为与62、63、64、65所示相同的形状尺寸,在前缘之下,具有向正后方偏移角度的后缘和所形成的面37a、37b、37c以及42(图9所示),在面42上存在由面37b、41、44及中段前缘截面所构成的凸起结构以此来保证切割出电极端面上65处凹陷,左右两侧空腔来保证电极内外侧凸起环62、63的形成。在向正后方偏移角度形成的面42上可以存在有向内或向外偏移一定角度的面43、40。通过面43向轴中心内部偏移,面40向外偏移,面44向外偏移,面41向内偏移,可以充分地保证在切割、修整62、63、64、65形状时,切削废料的排出。当然若电极中段形状为其他的变型(例如其他数量的环、环截面形状为其他凸起或凹陷形式的脊等),切削刀片也应为与之对应的变型。
在本优选实施方式中,电极中心凹陷形状为球面形状61,即截面形状为弧形,所以切削刀片22切割位置处下端部分34的截面形状为与之尺寸形状相同的向上凸起的弧形。同样前缘处向后下方偏移一定的角度进而形成弧面46,以保证切削料的排出。
再例如,在另一个优选的实施方式中,针对中心凹陷形状为弧面凹陷71、但端面为平端面72且无其他特殊凸起或凹陷结构的电极70时(图17、18所示)的切削刀具如图12、13所示。此时,切削刀片22的中段部分33则相应变为不存在多处凹陷或凸起的结构,只是一个整体向上成型的前缘并向正后方偏移一定角度的后缘,并形成一个完整的斜面37。下端仍为由与71相同大小尺寸的弧线向后偏移一定角度的弧面34,上端部为与73尺寸大小相同的弧线向后偏移一定角度的曲面45。
再例如,在另一个优选的实施方式中,针对图19、20所示焊接电极时,即中心 凹陷形状91为顶端为直线91a、两侧为弧线91b回转所形成的凹陷结构时,焊接接触面上仍然由平面94及平面上凸起的两层同心环92、93,电极侧面为球面97的结构特征时。则本发明中所对应的切削刀片形状为图21及图22所示,其主要差别在于切割中段下部分区域34,是由向正后方偏移一定的角度形成的平面46a和曲面46b构成的实体特征。46a的截面形状尺寸与对应电极90的91a的结构尺寸相同,46b的截面形状尺寸与对应电极90的91b的结构尺寸相同。切割中段下部分区域34向后方偏移的长度不超过平面37即可。
通过本发明的切削刀具进行修整的中心凹陷的焊接电极还可以如图28a-28e所示,但不限于所示示例。
在一个优选实施方式中包含弹性垫圈3,其形状结构如图23所示。其主要包括外圈304及内圈302,上下表面301a、301b。而且弹性垫圈并不是完全闭合的,留有一段开口,在开口处形成平面303,从而可以沿着轴线径向放心伸缩。开口长度通过所选用垫圈材料的弹性性能所决定。当然垫圈3可以设有多段开口。在切削刀具内,垫圈3通过面301a、301b与本体上的15a、15b及切削刀片上的28贴合装配,通过内圈302与刀片上的28装配,外圈304与本体上的面16装配,以此来使切削部件与本体固定连接。
本发明中,所述切割刀片21、22可以有包括各种合金工具钢、高速工具钢、硬质合金、陶瓷合金等各种可用于制作刀具的材料制成;其可经过包括整体淬火、表面淬火、渗碳、渗氮、碳氮共渗等热处理方法处理。
值得注意的是,在本发明中所提到的焊接电极可由包括适用于点焊的任何导电和导热材料构造出,该种材料可能在焊接期间发生老化。例如电极可由铜合金构造,包括铜铬(CuCr)合金、铜铬锆(CuCrZr)合金,添加氧化铝颗粒的铜合金或其他各种的可用作电极材料的铜合金。
如果需要,切削刀具可用于修整、切割在电阻点焊中包括异质工件的一对焊接电极。例如铝合金和钢的焊接。而且所切割、修整出的电极可用于多层多种材料的层叠电阻点焊,例如三层或四层,等厚度或不等厚度的电阻点焊过程。在工件的搭接接触表面可以包含由各种应用于材料连接的粘结剂或热固化效果的环氧树脂,例如中间层填充热固化作用的Uniseal2343粘结剂。
所应用铝合金可包含变形铝合金或铸造铝合金,包括表面具有涂层或未涂层的铝合金基板。例如铝镁合金、铝硅合金、铝镁硅合金、铝锌合金、铝铜合金等铝合 金。而且其材料状态可以包括各种回火,包括退火、应变强化、固溶强化等状态。铝基板的厚度一般为0.3毫米至6.0毫米之间,优选地为从0.5毫米至3.0毫米之间。
所用钢制工件,包括表面具有涂层或未涂层的多种多样的各种钢基板材料。钢基板材料可以通过热轧或冷轧,可以包含任何钢,如低碳钢、无间隙钢、烘烤硬化钢、双向钢、马氏体钢等钢基板材料。钢基板的厚度一般为0.3毫米至6.0毫米,优选地为从0.6毫米至2.5毫米厚度之间。
在执行切割任务时,如图24所示为切割实施过程,将电极110、112连接到所用电极焊枪113、114上,包括C型焊枪或X型焊枪,将装好的切削刀具112放入切割机器(未标出)内,以使其可以随机器一起转动,然后给焊枪施加压力但不通电流,使焊枪两端压入切削刀具的第一切削槽和第二切削槽,根据所需切割量及电极材料和形状结构确定压力及时间,一般地压力为400N至3000N,优选地为500N至2000N之间,切割时间一般为500ms至5000ms,优选地为1000ms至3500ms。通过切削刀具的转动最终切割或修整出所需电极形状。
在本发明提及的所有文献都在本申请中引用作为参考,就如同每一篇文献被单独引用作为参考那样。此外应理解,在阅读了本发明的上述讲授内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。

Claims (10)

  1. 一种用于修整中心凹陷焊接电极的切削刀具,其特征在于,所述切削刀具包括:
    主体,所述主体为两端开口的中空柱体结构;和
    切削部件,所述切削部件设置于所述主体内,所述切削部件包括一个或多个切削刀片,所述切削刀片以所述主体的中心轴线为中心呈均匀间隔开的径向分布,所述切削刀片在所述主体的中心轴线处固定成整体,且所述切削刀片的径向外侧与所述主体固定连接,所述切削刀片将所述主体间隔成多个出削槽,所述切削刀片两端的轴向外侧面和所述主体分别形成两个切削槽,所述切削槽用于接受待修整的所述焊接电极,所述切削槽包括第一切削槽和第二切削槽;
    其中,所述切削刀片的至少一个轴向外侧面设有切削刃,在所述切削刃的下端部上设有凸起,位于同一侧的所述切削刃上的凸起的叠加轴向投影形状与其所修整的焊接电极中心凹陷的截面形状相同。
  2. 如权利要求1所述的切削刀具,其特征在于,所述切削刃具有向上成型的前缘和在所述前缘之下偏移正后角向上成型的后缘。
  3. 如权利要求2所述的切削刀具,其特征在于,以所述后缘所在曲面为基面,所述凸起的高度大于所述前缘的高度。
  4. 如权利要求1所述的切削刀具,其特征在于,位于同一侧的多个所述切削刃上的凸起的形状相同,所述凸起的轴向投影形状与其所修整的焊接电极中心凹陷的截面形状相同。
  5. 如权利要求1所述的切削刀具,其特征在于,所述第一切削槽和所述第二切削槽修正的所述焊接电极的形状完全相同或者存在差异。
  6. 如权利要求1所述的切削刀具,其特征在于,所述切削刃分为上端部分、中段部分和下端部分;所述上端部分的切削刃结构被所述焊接电极外边沿形状所限定;所述中段部分的切削刃结构被所述焊接电极的端面形状限定;所述下端部分的切削刃设有所述凸起。
  7. 如权利要求1所述的切削刀具,其特征在于,所述主体和所述切削部件可拆卸地连接。
  8. 如权利要求7所述的切削刀具,其特征在于,多个所述切削刀片可拆卸地连接。
  9. 如权利要求1所述的切削刀具,其特征在于,每个所述切削刀片的切割侧与所述焊接电极的表面形状是相适形的。
  10. 一种用于修整焊接电极的方法,所述方法包括:
    a)提供如权利要求1所述的切削刀具;
    b)在所述切削刀具的第一切削槽中接受第一焊接电极焊接面;
    c)在所述切削刀具的第二切削槽中接受第二焊接电极的焊接面;
    d)通过转动所述切削刀具来切割和复原所述第一焊接电极焊接面和所述第二焊接电极焊接面的几何形状。
PCT/CN2020/088502 2019-04-30 2020-04-30 用于修整中心凹陷焊接电极的切削刀具及其方法 WO2020221362A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910363021.2 2019-04-30
CN201910363021.2A CN110539031A (zh) 2018-05-28 2019-04-30 用于修整中心凹陷焊接电极的切削刀具及其方法

Publications (1)

Publication Number Publication Date
WO2020221362A1 true WO2020221362A1 (zh) 2020-11-05

Family

ID=73029756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/088502 WO2020221362A1 (zh) 2019-04-30 2020-04-30 用于修整中心凹陷焊接电极的切削刀具及其方法

Country Status (1)

Country Link
WO (1) WO2020221362A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966506A (en) * 1990-03-05 1990-10-30 Stillwater Technologies, Inc. Welding tip dresser
DE202004003379U1 (de) * 2003-07-31 2004-05-19 Bräuer, Andreas, Dipl.-Ing. Vorrichtung zum Bearbeiten von Werkstücken mit Rotationsflächen
DE102012008257A1 (de) * 2012-04-25 2013-10-31 Peter Lutz Fräskopf für das Entfernen von Ablagerungen an Schweißelektroden für das Widerstandsschweißen
CN106903418A (zh) * 2017-02-08 2017-06-30 南京君哲工业自动化有限公司 分体式多刀刃修磨刀具单元
CN107030362A (zh) * 2016-02-04 2017-08-11 通用汽车环球科技运作有限责任公司 焊接电极切割刀具及其使用方法
CN107042355A (zh) * 2016-02-04 2017-08-15 通用汽车环球科技运作有限责任公司 焊接电极切割刀具及其使用方法
CN110539031A (zh) * 2018-05-28 2019-12-06 中国科学院上海光学精密机械研究所 用于修整中心凹陷焊接电极的切削刀具及其方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4966506A (en) * 1990-03-05 1990-10-30 Stillwater Technologies, Inc. Welding tip dresser
DE202004003379U1 (de) * 2003-07-31 2004-05-19 Bräuer, Andreas, Dipl.-Ing. Vorrichtung zum Bearbeiten von Werkstücken mit Rotationsflächen
DE102012008257A1 (de) * 2012-04-25 2013-10-31 Peter Lutz Fräskopf für das Entfernen von Ablagerungen an Schweißelektroden für das Widerstandsschweißen
CN107030362A (zh) * 2016-02-04 2017-08-11 通用汽车环球科技运作有限责任公司 焊接电极切割刀具及其使用方法
CN107042355A (zh) * 2016-02-04 2017-08-15 通用汽车环球科技运作有限责任公司 焊接电极切割刀具及其使用方法
CN106903418A (zh) * 2017-02-08 2017-06-30 南京君哲工业自动化有限公司 分体式多刀刃修磨刀具单元
CN110539031A (zh) * 2018-05-28 2019-12-06 中国科学院上海光学精密机械研究所 用于修整中心凹陷焊接电极的切削刀具及其方法

Similar Documents

Publication Publication Date Title
US8113746B2 (en) Cutting insert, cutting tool, and method of cutting workpiece using the same
JP4888662B2 (ja) 摩擦攪拌接合工具
JP6119916B2 (ja) 切削インサートおよび切削工具
KR100440869B1 (ko) 절단용 톱판
US8858132B2 (en) Cutting insert
US20080011810A1 (en) Friction stir welding tool
US20080264231A1 (en) Saw blade
KR20110050648A (ko) 절삭 공구 및 이를 위한 둥근 양면형 절삭 인서트
JP2008512252A (ja) 転削工具、転削工具用転削インサート、及び一体型転削工具
US20180036811A1 (en) Cutting tool and indexable rotary cutting tool
JPS62502182A (ja) ドリル
US20210346979A1 (en) Joining method
JP2007506560A (ja) バリを除去するための工具
CN110369848A (zh) 一种电阻点焊电极帽
WO2010110141A1 (ja) 溶接ボルト
WO2020221362A1 (zh) 用于修整中心凹陷焊接电极的切削刀具及其方法
CN110539031A (zh) 用于修整中心凹陷焊接电极的切削刀具及其方法
US10766082B2 (en) Blades
US3421198A (en) Method of making wear resistant piston ring
CN214517941U (zh) 一种可重复使用的硬质合金圆锯片
JPH11138324A (ja) ミーリングカッタ
US20200038975A1 (en) Cutting disk
JP3657546B2 (ja) ドリル
JP7332050B2 (ja) エレメント、摩擦エレメント接合方法および摩擦エレメント接合継手の製造方法
CN215279934U (zh) 一种汽车皮带轮车削刀片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798398

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20798398

Country of ref document: EP

Kind code of ref document: A1