WO2020221319A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2020221319A1
WO2020221319A1 PCT/CN2020/087890 CN2020087890W WO2020221319A1 WO 2020221319 A1 WO2020221319 A1 WO 2020221319A1 CN 2020087890 W CN2020087890 W CN 2020087890W WO 2020221319 A1 WO2020221319 A1 WO 2020221319A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
control information
data
data channel
frequency domain
Prior art date
Application number
PCT/CN2020/087890
Other languages
English (en)
French (fr)
Inventor
刘哲
彭金磷
董朋朋
唐浩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20798495.6A priority Critical patent/EP3934147A4/en
Publication of WO2020221319A1 publication Critical patent/WO2020221319A1/zh
Priority to US17/505,907 priority patent/US12075435B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • This application relates to the field of communication technology, and in particular to a communication method and device.
  • terminal equipment and network equipment perform wireless communication based on radio communication technology.
  • the maximum bandwidth of a carrier can reach 400MHz, but the maximum bandwidth capability supported by terminal equipment may not reach such a large bandwidth.
  • the base station cannot directly allocate frequency domain resources within the carrier bandwidth as in the long term evolution (LTE) system, but needs to be in the carrier first.
  • One or more bandwidth parts (BWP) are configured for the terminal device, and then resources are allocated to the terminal device within the scope of the BWP.
  • network equipment can configure multiple BWPs for terminal equipment. Further, the network device may activate one of the BWPs for the terminal device, or may also activate two or more of the BWPs for the terminal device, and then the network device and the terminal device communicate on the activated BWP.
  • the present application provides a communication method and device to improve the success rate of data transmission.
  • an embodiment of the present application provides a communication method, which includes:
  • the first BWP includes a first frequency domain resource and a second frequency domain resource
  • the second BWP includes a third frequency domain resource
  • the third frequency domain resource and the second frequency domain resource completely overlap in the frequency domain
  • the first data channel Located on the first frequency domain resource, the second data channel is located on the third frequency domain resource.
  • the above method provides a way to transmit data channels on the first BWP and the second BWP when the activated first BWP and the second BWP partially overlap; that is, when data needs to be transmitted on the first BWP, you can Part of the data is carried on the first BWP (such as the first frequency domain resource), and another part of the data is carried on the second BWP (such as the third frequency domain resource). On the one hand, it can improve resource utilization efficiency, and on the other hand, it can be effective Improve the success rate of data transmission.
  • the first data includes a first redundancy version obtained based on the data to be transmitted
  • the second data includes a second redundancy version obtained based on the data to be transmitted.
  • the method further includes: processing the first data, and if the processing fails, processing the first data and the second data.
  • the redundancy version on the BWP can be the same as the redundancy version on the other BWP. And analysis or joint analysis, which can effectively improve the success rate of data transmission.
  • the method further includes: receiving second control information of the second BWP from the network device, where the second control information is used to indicate the third data channel; and, according to the second control information, receiving from the network device The third data carried in the third data channel; where the third data channel is located in the third frequency domain resource, and the position of the third data channel and the position of the second data channel do not overlap.
  • the resource utilization rate can be improved on the basis of avoiding affecting the normal transmission of the third data channel.
  • the method further includes: receiving indication information from the network device, the indication information is used to indicate that the candidate time-frequency position of the first control information is the same as the candidate time-frequency position of the second control information of the second BWP; The first control information and the second control information are received at the candidate time-frequency positions of the first control information.
  • the first control information and the second control information can be detected at the candidate time-frequency positions of the first control information, that is, the first control information may not be added.
  • the first control information and the second control information are detected based on the power consumption of the blind detection of the control information.
  • the method further includes: receiving configuration parameters of the search space of the first BWP from the network device, and determining the candidate time-frequency position of the first control information according to the configuration parameters of the search space of the first BWP.
  • the payload size of the first control information is equal to the payload size of the second control information.
  • an embodiment of the present application provides a communication method, which includes:
  • the first data includes a first redundancy version obtained based on the data to be transmitted
  • the second data includes a second redundancy version obtained based on the data to be transmitted.
  • the method further includes: sending second control information of the second BWP to the terminal device, where the second control information is used to indicate a third data channel; wherein the third data channel is located in a third frequency domain resource , The position of the third data channel and the position of the second data channel do not overlap.
  • the method further includes: sending indication information to the terminal device, the indication information is used to indicate that the candidate time-frequency position of the first control information is the same as the candidate time-frequency position of the second control information of the second BWP; And, sending the first control information and/or the second control information at the candidate time-frequency position of the first control information.
  • the method further includes: sending configuration parameters of the search space of the first BWP to the terminal device.
  • the payload size of the first control information is equal to the payload size of the second control information.
  • an embodiment of the present application provides a communication method, which includes:
  • the instruction information is used to indicate that the candidate time-frequency position of the first control information of the first BWP is the same as the candidate time-frequency position of the second control information of the second BWP; and, in the candidate of the first control information The first control information and the second control information are detected at the time-frequency position.
  • the method further includes: the terminal device receives the configuration parameter of the search space of the first BWP from the network device, and determines the candidate time-frequency position of the first control information according to the configuration parameter of the search space of the first BWP .
  • the payload size of the first control information is equal to the payload size of the second control information.
  • an embodiment of the present application provides a communication method.
  • the method includes: sending instruction information to a terminal device, the instruction information being used to indicate candidate time-frequency positions of the first control information of the first BWP and the second BWP of the second BWP.
  • the candidate time-frequency positions of the control information are the same; and, the first control information and/or the second control information are sent to the terminal device at the candidate time-frequency positions of the first control information.
  • the method further includes: sending configuration parameters of the search space of the first BWP to the terminal device, where the configuration parameters of the search space of the first BWP are used to determine the candidate time-frequency position of the first control information.
  • the payload size of the first control information is equal to the payload size of the second control information.
  • an embodiment of the present application provides a device, which may be a terminal device or a network device, or may also be a semiconductor chip set in the terminal device or the network device.
  • the device has the function of realizing various possible implementation manners of the first aspect to the fourth aspect. This function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • a device of an embodiment of the present application includes: a processor and a memory; the processor is used to execute instructions stored on the memory, and when the instructions are executed, the device executes the first Aspect or any of the possible design methods of the third aspect.
  • an embodiment of the present application provides a terminal device, including the device described in the sixth aspect.
  • a device of an embodiment of the present application includes: a processor and a memory; the processor is used to execute instructions stored on the memory, and when the instructions are executed, the device executes the second Aspect or any of the possible design methods of the fourth aspect.
  • an embodiment of the present application provides a network device, including the device described in the eighth aspect.
  • an embodiment of the present application provides a communication system including the terminal device described in the seventh aspect and the network device described in the ninth aspect.
  • an embodiment of the present application further provides a computer-readable storage medium, including instructions, which when executed, implement the foregoing aspects or any of the possible design methods of the aspects.
  • the embodiments of the present application also provide a computer program product, including a computer program or instruction.
  • a computer program product including a computer program or instruction.
  • the above aspects or any of the possible designs of the aspects are implemented. method.
  • 1a, 1b, and 1c are schematic diagrams of the configuration of BWP in the carrier bandwidth provided by an embodiment of the application;
  • FIG. 2 is a schematic diagram of a system architecture to which an embodiment of the application is applicable;
  • FIG. 3 is a schematic diagram of partial overlap of the first BWP and the second BWP provided by an embodiment of the application;
  • FIG. 4 is a schematic diagram of a process corresponding to the communication method provided in Embodiment 1 of this application;
  • FIG. 5 is a schematic diagram of different data channels provided by an embodiment of the application.
  • FIG. 6a is a schematic diagram of RBs included in the first BWP and the second BWP provided by an embodiment of the application;
  • FIG. 6b is a schematic diagram of transmitting first data on a first BWP and transmitting second data on a second BWP according to an embodiment of the application;
  • FIG. 7 is a schematic flowchart corresponding to the communication method provided in the second embodiment of the application.
  • FIG. 8 is a possible exemplary block diagram of a device involved in an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of a device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • Terminal equipment It is a device with wireless transceiver function that can be deployed on land, including indoor or outdoor, handheld, wearable or vehicle-mounted; it can also be deployed on the water (such as ships, etc.); it can also be deployed in the air (For example, airplanes, balloons, satellites, etc.).
  • the terminal device may be a mobile phone (mobile phone), a tablet computer (Pad), a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (Augmented Reality, AR) terminal device, an industrial control ( Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grids, and transportation safety Wireless terminal, wireless terminal in smart city, wireless terminal in smart home, etc.
  • VR virtual reality
  • AR Augmented Reality
  • Wireless terminals in industrial control Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grids, and transportation safety Wireless terminal, wireless terminal in smart city, wireless
  • Terminal equipment can sometimes be called user equipment (UE), access terminal equipment, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile equipment, UE terminal equipment, terminal equipment, Wireless communication equipment, UE agent or UE device, etc.
  • UE user equipment
  • access terminal equipment UE unit
  • UE station mobile station
  • mobile station mobile station
  • remote station remote terminal equipment
  • mobile equipment UE terminal equipment
  • terminal equipment Wireless communication equipment
  • UE agent or UE device etc.
  • Network equipment For example, it includes a base station (for example, an access point), which may refer to a device that communicates with a wireless mobile device through one or more cells on an air interface in an access network.
  • the base station can be used to convert received air frames and Internet Protocol (IP) packets to each other, and act as a router between the mobile device and the rest of the access network, where the rest of the access network may include an IP network.
  • IP Internet Protocol
  • the base station can also coordinate the attribute management of the air interface.
  • the base station may include the next generation node B (gNB) in the 5G NR system; or the base station may also include the evolved base station in the LTE system or the evolved LTE system (LTE-Advanced, LTE-A) ( NodeB or eNB or e-NodeB, evolutional Node B), the embodiment of the present invention is not limited.
  • gNB next generation node B
  • LTE-A evolved LTE system
  • NodeB or eNB or e-NodeB, evolutional Node B evolutional Node B
  • Downlink control channel used to carry control information.
  • the embodiments of the present application do not limit which channels are included in the downlink control channel.
  • the downlink control channel includes PDCCH or enhanced physical downlink control channel (EPDCCH), and may also include other downlink control channels used to transmit control information.
  • the main downstream control channel is PDCCH as an example for description.
  • BWP In the 5G NR system, in order to adapt to the bandwidth capability of the terminal equipment, the bandwidth supported by a carrier (which can be called carrier bandwidth, and the specific value can be 10MHz, 15MHz, 20MHz, 50MHz, 100MHz or 400MHz) Etc.) BWP is configured for the terminal device, and multiple BWPs can be configured in one carrier, for example, four BWPs can be configured in one carrier. BWP is sometimes called carrier bandwidth part, subband bandwidth, narrowband bandwidth, or other names. This application does not limit the name. For ease of description, the name is BWP Take an example.
  • a BWP contains K (K>0) subcarriers; or, a BWP is a frequency domain resource where N non-overlapping RBs are located.
  • the subcarrier spacing of the RB can be 15KHz, 30KHz, 60KHz, 120KHz, 240KHz, 480KHz Or other values; or, a BWP is a frequency domain resource where M non-overlapping resource block groups (RBG) are located.
  • RBG includes P (P>0) consecutive RBs, and the children of this RB
  • SCS subcarrier spacing
  • Figure 1a-1c the configuration of the three BWPs in the carrier bandwidth provided by the embodiment of this application.
  • Figure 1a shows the configuration of a BWP in the carrier bandwidth.
  • the network device can first allocate a BWP within the bandwidth capability of the terminal to the terminal device. Of course, it can further allocate some or all of the resources in the BWP to the terminal device for communication.
  • the network device can configure different BWP conditions for the terminal device according to the actual scenario. For example, in order to save the power consumption of the terminal device, the network device may allocate the BWP to the terminal device according to the service volume of the terminal device.
  • a smaller BWP can be allocated to the terminal device to receive control information and a small amount of data information, such as BWP1 shown in Figure 1b; when the terminal device has a large amount of service data
  • a larger BWP can be allocated to the terminal device, such as BWP2 shown in Figure 1b.
  • 5G can support multiple service types and communication scenarios, different parameters can be configured for different service types and communication scenarios, and network devices can assign corresponding BWPs to terminal devices according to different service types of terminal devices, such as As shown in FIG. 1c, a BWP can correspond to a service type.
  • the BWP can be configured with a frame structure parameter (numerology) that can meet the service requirements.
  • a frame structure parameter number of BWPs
  • different BWPs can occupy partially overlapping frequency domain resources.
  • different BWPs can also occupy completely different frequency domain resources and use different numerology.
  • the numerology corresponding to different BWPs may be the same or different, which is not limited in the present application. It is understandable that in Figures 1a to 1c, only one or two BWPs are configured in one carrier as an example. In actual applications, multiple BWPs can be configured in a carrier, which is not limited in this application.
  • Frame structure parameters refer to the parameters adopted by the communication system. For example, it can refer to a series of physical layer parameters in the air interface.
  • a BWP can correspond to a numerology. Among them, the NR system can support multiple numerologies, and multiple numerologies can be used simultaneously.
  • the numerology may include one or more of the following parameter information: sub-carrier spacing, cyclic prefix (CP) information, time unit information, bandwidth, etc.
  • the CP information may include CP length and/or CP type.
  • the CP may be a normal CP (NCP) or an extended CP (ECP).
  • the time unit is used to represent the time unit in the time domain, and may be, for example, a sampling point, a symbol, a mini-slot, a slot, a subframe, or a radio frame.
  • the information of the time unit may include the type, length, or structure of the time unit.
  • numerology can include subcarrier spacing and CP. As shown in Table 1, Table 1 shows the numerology defined by subcarrier spacing and CP that can be currently supported in the NR system:
  • Sub-carrier spacing 2 ⁇ ⁇ 15 (kHz) CP type 0 15 Normal 1 30 conventional 2 60 Regular or extended (extended) 3 120 conventional 4 240 conventional
  • the network equipment can allocate a BWP with a subcarrier spacing of 15KHz and a BWP with a subcarrier spacing of 30KHz to the terminal.
  • the terminal can be based on different scenarios and services. On demand, you can switch to a different BWP to transmit signals.
  • the numerology corresponding to different BWPs may be the same or different.
  • the subcarrier spacing can be an integer greater than or equal to zero.
  • it can be 15KHz, 30KHz, 60KHz, 120KHz, 240KHz, 480KHz, etc.
  • the subcarrier interval is the interval value between the center positions or peak positions of two adjacent subcarriers in the frequency domain in an orthogonal frequency division multiplexing (OFDM) system.
  • OFDM orthogonal frequency division multiplexing
  • the subcarrier spacing in the LTE system is 15KHz
  • the subcarrier spacing in the NR system may be 15kHz, or 30kHz, or 60kHz, or 120kHz, etc.
  • FIG. 2 is a schematic diagram of the architecture of a possible communication system to which the embodiments of this application are applicable.
  • the communication system shown in Figure 2 includes network equipment and terminal equipment. It should be understood that FIG. 2 is only a schematic diagram of the architecture of the communication system.
  • the number of network devices and the number of terminal devices in the communication system are not limited, and the communication system to which the embodiment of this application applies except includes network devices.
  • other devices may also be included, such as core network devices, wireless relay devices, and wireless backhaul devices, which are not limited in the embodiment of the present application.
  • the network device in the embodiment of the present application may integrate all functions in one independent physical device, or may distribute the functions on multiple independent physical devices, which is not limited in the embodiment of the present application.
  • the terminal device in the embodiment of the present application may be connected to the network device in a wireless manner.
  • the communication system to which the above architecture is applicable can adopt various radio access technologies (RAT), such as code division multiple access (CDMA), time division multiple access (TDMA), and frequency division multiple access (TDMA).
  • RAT radio access technologies
  • CDMA code division multiple access
  • TDMA time division multiple access
  • TDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • single carrier frequency division multiple access single carrier FDMA, SC-FDMA
  • RAT radio access technologies
  • CDMA code division multiple access
  • TDMA time division multiple access
  • TDMA frequency division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • single carrier frequency division multiple access single carrier frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • networks can be divided into 2G (generation) networks, 3G networks, 4G networks, or future evolution networks, such as 5G networks.
  • Typical 4G networks include long term evolution (LTE) networks
  • typical 5G networks include new radio access technology (NR) networks.
  • the network device and the terminal device can communicate through air interface resources, and the air interface resources can include time domain resources and frequency domain resources.
  • the network device may send a downlink control channel to the terminal device, and the downlink control channel includes control information; the network device uses the control information to allocate time-frequency resources of the data channel to the terminal.
  • the data channel may be, for example, a physical downlink shared channel (physical downlink shared channel).
  • PDSCH downlink shared channel
  • PUSCH physical uplink shared channel
  • control information may indicate the time-frequency position of the data channel, such as the symbol and/or resource block (resource block, RB) to which the data channel is mapped, where the aforementioned data transmission may include downlink data transmission and/or Uplink data transmission, downlink data (such as PDSCH data) transmission may refer to network equipment sending data to terminal equipment, and uplink data (such as PUSCH data) transmission may refer to terminal equipment sending data to network equipment.
  • Data can be broadly defined data, such as user data, system information, broadcast information, or other information.
  • network equipment and terminal equipment can communicate through air interface resources, which can include (1) network equipment sending data channels to terminal equipment or terminal equipment sending data channels to network equipment and (2) network equipment sending downlink control to terminal equipment channel.
  • air interface resources can include (1) network equipment sending data channels to terminal equipment or terminal equipment sending data channels to network equipment and (2) network equipment sending downlink control to terminal equipment channel.
  • the network device can configure multiple BWPs for the terminal device, and one configured BWP can correspond to one numerology.
  • the network device may configure multiple BWPs for the terminal device at the same time, for example, the first BWP and the second BWP are configured for the terminal device at the same time, and the network device may also activate the first BWP and the second BWP at the same time.
  • the network device can also configure different BWPs for the terminal device at different moments, for example, configure and activate the first BWP for the terminal device at the first moment, and configure and activate the second BWP for the terminal device at the second moment. It is located before the second time, or the first time can also be located after the second time.
  • the network device configures the first BWP and the second BWP for the terminal device.
  • the first BWP is the BWP configured by the network device for the terminal device when the terminal device initially accesses it (may be referred to as the initial BWP for short).
  • the network device can send a master information block (MIB) to the terminal device.
  • MIB master information block
  • the terminal device After the terminal device receives the MIB, it can determine the first BWP configured by the network device for the terminal device according to the MIB.
  • the terminal device can know the first BWP configured by the network device for the terminal device according to the predefined information.
  • the terminal device determines the frequency domain resource of the synchronization signal by blindly detecting the synchronization signal, and then determines the frequency domain of the first BWP according to the predefined relationship Resources.
  • the first BWP is the BWP configured by the network device for the terminal device when the terminal device is initially connected, then the first BWP may be activated by default.
  • the second BWP may be a BWP configured by the network device for the terminal device after the terminal device accesses the network.
  • the network device may send a system information block (SIB) to the terminal device. After the terminal device receives the SIB, it may determine the second BWP configured by the network device for the terminal device according to the SIB.
  • the network device may send radio resource control (Radio Resource Control, RRC) signaling to the terminal device. After the terminal device receives the RRC signaling, it can know the second BWP configured by the network device for the terminal device according to the RRC signaling.
  • RRC Radio Resource Control
  • the network device may also notify the second BWP allocated to the terminal device through other signaling, for example, through public downlink control information (downlink control information, DCI) or a specific DCI of the terminal device to notify the second BWP configured for the terminal device.
  • Second BWP, or the network device can also configure the second BWP for the terminal device in a predefined manner, and the terminal device can determine the second BWP configured by the network device for the terminal device according to the predefined information.
  • the embodiment of the present invention does not limit how the network device notifies the configured second BWP.
  • the network device can activate the second BWP configured for the terminal device through a public DCI, a specific DCI of the terminal device, or high-level signaling.
  • the high-level signaling is, for example, SIB, RRC signaling, or Media Access Control (Media Access Control, MAC) control element (CE).
  • the BWP configured by the network device for the terminal device may belong to the same carrier, or may belong to different carriers.
  • the activated BWP of the terminal device may also belong to the same carrier, or belong to different carriers, which is not limited in the embodiment of the present application.
  • the relationship between the first BWP and the second BWP may have multiple scenarios, such as scenario 1, the first BWP and the second BWP BWP does not overlap at all, see the first BWP (BWP1) and the second BWP (BWP2) shown in Figure 1c; Case 2, the first BWP and the second BWP partially overlap, see Figure 3 (a), (b) , (C) as shown.
  • the network device when the network device is the terminal device to activate two BWPs (the relationship between the two BWPs is as shown in (a) or (b) in Figure 3), the network device and the terminal device The realization of the transmission data channel is described.
  • FIG. 4 is a schematic diagram of a process corresponding to a communication method provided in Embodiment 1 of this application. As shown in FIG. 4, the method includes:
  • Step 401 The network device sends first control information of the first BWP to the terminal device, where the first control information is used to indicate the first data channel and the second data channel.
  • step 402 the terminal device receives the first control information.
  • the first control information is used to indicate the first data channel and the second data channel, which may refer to: the first control information is used to indicate the time-frequency position of the first data channel and the time-frequency position of the second data channel, Taking the first control information used to indicate the time-frequency position of the first data channel as an example, for example, the first control information may include two domains, namely the frequency domain resource assignment domain and the time domain resource assignment ( In the time domain resource assignment) domain, the information carried in the frequency domain resource allocation domain may indicate the frequency domain position of the first data channel, and the information carried in the time domain resource allocation domain may indicate the time domain position of the first data channel.
  • the network device can send the first control information to the terminal device in various ways.
  • the network device sends the first control information to the terminal device on the first BWP, or the network device can also be in other
  • the activated BWP sends the first control information to the terminal device, which is not specifically limited.
  • Step 403 The network device sends the first data carried in the first data channel and the second data carried in the second data channel to the terminal device.
  • step 404 the terminal device receives the first data and the second data according to the first control information.
  • the first BWP includes a first frequency domain resource and a second frequency domain resource (it can be understood that the first BWP includes two frequency domain resources, one of which is called the first frequency domain resource, and the other frequency domain resource Called the second frequency domain resource), the second BWP includes the third frequency domain resource, and the third frequency domain resource and the second frequency domain resource completely overlap in the frequency domain, that is, the relationship between the first BWP and the second BWP It may be the situation shown in (a) or (b) in FIG. 3. Further, the first data channel may be located on a first frequency domain resource, and the second data channel may be located on a third frequency domain resource. Taking the situation shown in (a) in FIG. 3 as an example, referring to FIG. 5, the positions of the first data channel and the second data channel are illustrated.
  • the above method provides a way to transmit data channels on the first BWP and the second BWP when the activated first BWP and the second BWP partially overlap, that is, when data needs to be transmitted on the first BWP, some
  • the data is carried on the first BWP (such as the first frequency domain resource), and another part of the data is carried on the second BWP (such as the third frequency domain resource).
  • it can improve resource utilization efficiency, and on the other hand, it can effectively improve The success rate of data transmission.
  • the above method further includes: the network device sends second control information of the second BWP to the terminal device, the second control information is used to indicate the third data channel; for example, the second control information is used to indicate the third data channel
  • the terminal device can receive the third data carried in the third data channel according to the second control information.
  • the network device may send the second control information of the second BWP to the terminal device.
  • the network device sends the second control information to the terminal device on the second BWP, or the network device may also
  • the second control information sent to the terminal device on other activated BWPs is not specifically limited.
  • the third data channel may be located on the third frequency domain resource, and the position of the third data channel and the position of the second data channel do not overlap, or the position of the third data channel and the second data channel The time-frequency positions of the channels do not overlap.
  • the position of the third data channel and the time-frequency position of the second data channel do not overlap, which can be understood as the time-frequency resource occupied by the third data channel and the time-frequency resource occupied by the second data channel are different (ie, the first The time domain resources occupied by the three data channels and the time domain resources occupied by the second data channel are different, and/or the frequency domain resources occupied by the third data channel and the frequency domain resources occupied by the second data channel are different), see Figure 5 shown.
  • the subcarrier interval of the first BWP is 30KHz
  • the subcarrier interval of the second BWP is 15KHz.
  • the RB of the first BWP may include RB00, RB01, RB02, and RB03
  • the RB of the second BWP may include RB200, RB201, RB202, and RB203, among which RB02 of the first BWP and RB200, RB201 of the second BWP Overlapping in the frequency domain, RB03 of the first BWP and RB202 and RB203 of the second BWP overlap in the frequency domain.
  • RV redundancy version
  • RVi redundancy version
  • N an integer greater than 0.
  • M for example, M is 19440 bits
  • RB00, RB01, and RB02 of the first BWP need to be occupied. Since RB02 of the first BWP and RB200 and RB201 of the second BWP overlap in the frequency domain, it may be considered to carry some data on the second BWP.
  • the network device can determine the amount of data that can be carried by one RB of the first BWP and the amount of data that can be carried by one RB of the second BWP. For example, the network device can determine the amount of data that can be carried by one RB of the first BWP and The channel quality reported by the terminal knows that the amount of data that can be carried by one RB of the first BWP is N1 (for example, 3240 bits), and the second BWP is known according to the subcarrier spacing, symbol length, and channel quality reported by the terminal.
  • N1 for example, 3240 bits
  • the network device may convert the first data (the first data may include the first redundancy version, in an example, the first data includes RV0 to RVI, I is greater than or equal to 0 and less than or equal to N -1, the first redundancy version can be any one of RV0 to RVI) is mapped to RB00 and RB01 on the first BWP to send, and the second data (the second data can include the second redundancy version, in In an example, the second data includes RVI+1 to RVN, and the second redundancy version may be any one of RV0 to RVI) is mapped to the RB200 on the second BWP and sent. It can be understood that the first data channel occupies RB00 and RB01, and the second data channel occupies RB200.
  • the terminal device may process the first data first, and if the processing fails, the first data and the second data are processed together.
  • processing the first data can be understood as parsing or demodulating the first data. That is, if the terminal device successfully parses RV0 to RVI, it can no longer parse RVI+1 to RVN; if it fails to parse RV0 to RVI, it can parse RV0 to RVN.
  • the redundancy version on the BWP can be the same as the redundancy version on the other BWP. And analysis or joint analysis, which can effectively improve the success rate of data transmission.
  • the network device maps the second data to the RB200 on the second BWP for transmission, it needs to determine that the third data channel does not occupy RB200 (for example, the third data channel occupies RB203), that is, the third data channel It does not overlap with the time-frequency position of the second data channel, thereby improving the resource utilization rate on the basis of avoiding affecting the normal transmission of the third data channel.
  • the description will mainly focus on the implementation of the downlink control channel transmission between the network device and the terminal device when the network device activates multiple BWPs for the terminal device.
  • FIG. 7 is a schematic diagram of a process corresponding to a communication method provided in Embodiment 2 of this application, as shown in FIG. 7, including:
  • Step 701 The network device sends first indication information to the terminal device, where the first indication information is used to indicate that the candidate time-frequency position of the first control information of the first resource is the same as the candidate time-frequency position of the second control information of the second resource.
  • Step 702 The terminal device receives the first indication information from the network device.
  • Step 703 The network device sends the first control information of the first resource and/or the second control information of the second resource at the candidate time-frequency position of the first resource.
  • Step 704 The terminal device detects the first control information and the second control information at the candidate time-frequency positions of the first control information.
  • the first control information and the second control information can be detected at the candidate time-frequency positions of the first control information, that is, the first control information may not be added.
  • the first control information and the second control information are detected based on the power consumption of the blind detection of the control information.
  • the embodiment of the application does not limit the types of the first resource and the second resource.
  • the first resource and the second resource may be two different carriers, or the first resource and the second resource may also be They are two different BWPs, for example, the first resource is the first BWP, and the second resource is the second BWP.
  • the first BWP and the second BWP may belong to the same carrier, or may also belong to different carriers, which is not limited in the embodiment of the present application.
  • the first resource is the first BWP and the second resource is the second BWP as an example.
  • the network device may send configuration information of the search space of the first BWP to the terminal device.
  • the network device sends the PDCCH configured information element (PDCCH configured information element) of the first BWP to the terminal device to the terminal device.
  • PDCCH configured IE PDCCH configured information element
  • the PDCCH configured IE can carry the configuration information of the search space of the first BWP
  • the configuration information of the search space of the first BWP can include the PDCCH monitoring period, PDCCH monitoring offset, PDCCH monitoring mode, and each PDCCH monitoring One or more of the parameters such as the number of consecutive time slots that need to be monitored in the period.
  • the PDCCH monitoring period is used to configure the terminal equipment to monitor every time slot; the PDCCH monitoring offset is used to indicate that the terminal equipment is The first time slot in the monitoring period is monitored; the PDCCH monitoring mode is used to indicate which symbol of the time slot the terminal device starts monitoring.
  • the terminal device can obtain the candidate time-frequency position of the first BWP according to the information carried in the PDCCH configured IE of the first BWP; the candidate time-frequency position of the first BWP can be understood as the possible time-frequency of the PDCCH of the first BWP position.
  • the network device sends the first indication information to the terminal device indicating that the candidate time-frequency position of the second BWP is the same as the candidate time-frequency position of the first BWP.
  • the network device can send the PDCCH configured IE of the first BWP to the terminal device And sending the PDCCH configured IE of the second BWP to the terminal device, where the PDCCH configured IE of the first BWP may include the above-described PDCCH monitoring period, PDCCH monitoring offset, PDCCH monitoring mode, and what needs to be monitored in each PDCCH monitoring period
  • the number of consecutive time slots and other parameters, and the content carried by the PDCCH configured IE of the second BWP can be empty. In this way, after receiving the PDCCH configured IE of the second BWP, the terminal device can learn the candidate time-frequency position and
  • the network device may send the PDCCH configured IE of the first BWP to the terminal device and the PDCCH configured IE of the second BWP to the terminal device, where the PDCCH configured IE of the second BWP
  • the content carried by the PDCCH configured IE is the same as the content carried by the PDCCH configured IE of the first BWP.
  • the terminal device receives the PDCCH configured IE of the second BWP, it can learn the candidate time-frequency position and the activated one of the second BWP.
  • the candidate time-frequency positions of the first BWP are the same.
  • the first indication information can be understood as the PDCCH configured IE of the second BWP in the foregoing implementation manner 1 and implementation manner 2.
  • the above description is based on an example in which the BWP activated by the network device as the terminal device includes the first BWP and the second BWP.
  • the BWP activated by the network device as the terminal device also includes the first BWP For three BWPs, the information carried in the PDCCH configured IE of the third BWP can be empty, or the content carried in the PDCCH configured IE of the third BWP is the same as the content carried in the PDCCH configured IE of the first BWP, so that the terminal device can It is learned that the candidate time-frequency position of the third BWP is the same as the candidate time-frequency position of the first BWP.
  • the network device activates the first BWP and other multiple BWPs for the terminal device, and the candidate time-frequency positions of the other multiple BWPs are the same as the candidate time-frequency positions of the first BWP, the above implementation or implementation can be used 2 to indicate the terminal device.
  • the BWP activated by the network device for the terminal device includes the first BWP, the second BWP, the third BWP, and the fourth BWP. If the candidate time-frequency positions of the first BWP and the second BWP are the same, The candidate time-frequency position of the third BWP is the same as the candidate time-frequency position of the fourth BWP.
  • the terminal device can be instructed through implementation 2, that is, the content carried by the PDCCH configured IE of the second BWP is the same as that of the first
  • the content carried by the PDCCH configured IE of the BWP is the same
  • the content carried by the PDCCH configured IE of the fourth BWP is the same as the content carried by the PDCCH configured IE of the third BWP.
  • the first control information and the second control information are used to indicate different data channels.
  • the first control information may be used to indicate data channel 1, and the second control information may be used to indicate data channel 2.
  • the first control information may be used to indicate the time-frequency position of data channel 1
  • the second control information may be used to indicate the time-frequency position of data channel 2.
  • the first control information may include two domains, namely a frequency domain resource allocation domain and a time domain resource allocation domain.
  • the frequency domain resource allocation domain is used to indicate the frequency domain position of data channel 1
  • the domain resource allocation domain is used to indicate the time domain position of data channel 1.
  • the first The configuration information of the BWP (for example, it may include the frame structure parameters of the first BWP) and the configuration information of the second BWP will cause the original payload size of the first control information to be different from the original payload size of the second control information, such as
  • the size of the frequency domain resource allocation field in the first control information may be different from the size of the frequency domain resource allocation field in the second control information.
  • the size of the time domain resource allocation field in the first control information and the size of the second control information The size of the time domain resource allocation domain may be different.
  • the network device can determine the target payload size according to the configuration information of the first BWP and the configuration information of the second BWP, or in other words, the network device can determine the target payload size according to the original payload size of the first control information and the second control information.
  • the original payload size of the information determines the target payload size.
  • the network device may perform a zero-padded operation on the control information of the first BWP so that the payload size of the control information of the first BWP is equal to the target payload size, And send the control information of the first BWP; if the original payload size of the control information of the second BWP is less than the target effective size, the network device can perform zero padding operations on the control information of the second BWP to make the control information of the second BWP valid
  • the load size is equal to the target payload size, and the control information of the second BWP is sent.
  • the network device may determine that the target payload size is K2.
  • the network device may first perform zero padding operations on the frequency domain resource allocation field and/or time domain resource allocation field in the second control information, and then perform zero padding at the end of the second control information.
  • the zero-padding operation makes the payload size of the second control information equal to K1; understandably, if the frequency-domain resource allocation field and/or time-domain resource allocation field in the second control information is zero-padding operation, the second control information If the payload size of is equal to K1, the zero padding operation may no longer be performed at the end of the second control information.
  • the network device sends the second control information, it can also directly perform the zero-padded operation at the end of the second control information, and the zero-padded length is K1-K2+1, so that the payload size of the second control information Equal to K1.
  • the first control information may further include second indication information, which is used to indicate the first BWP, and the second control information may further include third indication information, and the third indication information is used to indicate The second BWP.
  • the terminal device can start decoding from the first candidate time-frequency position of the first BWP. If the cyclic redundancy check (CRC) check succeeds, the terminal device It can be determined whether the control information is the first control information of the first BWP or the second control information of the second BWP according to the second indication information or the third indication information carried in the control information, and according to the frequency domain in the control information The information carried in the resource allocation domain and the time domain resource allocation domain determines the time-frequency position of the data channel.
  • CRC cyclic redundancy check
  • the terminal device attempts to decode from the first candidate time-frequency position. If the decoding is successful at the 10th position and the first control information is obtained, it can continue from the first time-frequency position. At the 11 positions, the decoding is attempted until the second control information is obtained successfully. For example, if the decoding is successful at the 15th position and the second control information is obtained, the remaining 5 candidate time-frequency positions may not be decoded.
  • the first indication information sent by the network device to the terminal device may be valid for a period of time, and the period of time may be negotiated and determined by the network device and the terminal device, or may be a protocol. It is pre-defined, or it may continue to be valid until the first resource and/or the second resource are deactivated, which is not specifically limited.
  • the duration of this segment may include the duration of multiple PDCCH monitoring periods.
  • the duration of the PDCCH monitoring period is 1 time slot, and the duration of this segment includes 2 time slots (respectively time slot k, time slot k+1). ).
  • the network device From the perspective of the network device, it is possible for the network device to send the first control information and the second control information on the time slot k, but send the first control information on the time slot k+1, but not the second control information; From the perspective of the terminal device, since the terminal device cannot know whether the network device will send the first control information and the second control information at the same time in a certain time slot, the terminal device can use the time slot after receiving the first indication information. k. Both the first control information and the second control information are detected on the time slot k+1.
  • the period of time may be the length of a PDCCH monitoring period, such as a time slot.
  • the network device may send the first control in the time slot Information and second control information; from the perspective of the terminal device, the terminal device can detect the first control information and the second control information in the time slot.
  • the network device can send the control information of multiple other resources at the candidate time-frequency positions of one or some resources, thereby effectively reducing the power consumption of the blind detection control information of the terminal device.
  • step numbers involved in the embodiments of this application are only a possible example of the execution process, and do not constitute an order of execution of each step. limit. In the embodiments of the present application, there is no strict execution sequence among steps that have no time sequence dependency relationship with each other.
  • the first control information and the second control information involved in the embodiments of the present application may be DCI or information fields in the DCI.
  • the first data channel, the second data channel, and the third data channel may be PDSCH.
  • the first embodiment and the second embodiment can be implemented separately, or can also be implemented in combination, which is not specifically limited.
  • the network device and the terminal device in the first embodiment can use the method in the second embodiment to transmit the first control information and the second control information, that is, the network device can transmit the first control information
  • the first control information and the second control information are sent at the candidate time-frequency positions.
  • the network device or the terminal device may include corresponding hardware structures and/or software modules for performing various functions.
  • the embodiments of the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • FIG. 8 shows a possible exemplary block diagram of a device involved in an embodiment of the present application, and the device 800 may exist in the form of software.
  • the apparatus 800 may include: a processing unit 802 and a communication unit 803.
  • the processing unit 802 is used to control and manage the actions of the device 800.
  • the communication unit 803 is used to support communication between the device 800 and other network entities.
  • the communication unit 803 is also called a transceiver unit, and may include a receiving unit and/or a sending unit, which are used to perform receiving and sending operations, respectively.
  • the device 800 may further include a storage unit 801 for storing program codes and/or data of the device 800.
  • the processing unit 802 may be a processor or a controller, which may implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of the embodiments of the present application.
  • the communication unit 803 may be a communication interface, a transceiver, or a transceiving circuit, etc., where the communication interface is a general term. In a specific implementation, the communication interface may include multiple interfaces.
  • the storage unit 801 may be a memory.
  • the apparatus 800 may be the terminal device in any of the above embodiments, or may also be a semiconductor chip provided in the terminal device.
  • the processing unit 802 may support the apparatus 800 to perform the actions of the terminal device in the foregoing method examples.
  • the processing unit 802 mainly executes the internal actions of the terminal in the method example
  • the communication unit 803 may support communication between the apparatus 800 and the network device.
  • the communication unit 803 is configured to perform step 402 and step 404 in FIG. 4, and step 702 and step 704 in FIG. 7.
  • the communication unit is configured to receive first control information of the first BWP from the network device, the first control information is used to indicate the first data channel and the second data channel; and according to the first control information , Receiving the first data carried in the first data channel and the second data carried in the second data channel from the network device.
  • the first BWP includes a first frequency domain resource and a second frequency domain resource
  • the second BWP includes a third frequency domain resource, and the third frequency domain resource and the second frequency domain resource completely overlap in the frequency domain; the first data channel Located on the first frequency domain resource, the second data channel is located on the third frequency domain resource.
  • the first data includes a first redundancy version obtained based on the data to be transmitted
  • the second data includes a second redundancy version obtained based on the data to be transmitted.
  • the processing unit is used to process the first data, and if the processing fails, process the first data and the second data.
  • the communication unit is further configured to receive second control information of the second BWP from the network device, where the second control information is used to indicate the third data channel; and, according to the second control information, from the network device Receiving third data carried in the third data channel; where the third data channel is located in the third frequency domain resource, and the position of the third data channel and the position of the second data channel do not overlap.
  • the communication unit is further configured to receive indication information from the network device, the indication information is used to indicate that the candidate time-frequency position of the first control information is the same as the candidate time-frequency position of the second control information of the second BWP And, receiving the first control information and the second control information at the candidate time-frequency position of the first control information.
  • the communication unit is further configured to receive configuration parameters of the search space of the first BWP from the network device; the processing unit is further configured to determine the configuration parameters of the first control information according to the configuration parameters of the search space of the first BWP Candidate time-frequency position.
  • the payload size of the first control information is equal to the payload size of the second control information.
  • the apparatus 800 may be the network device in any of the above embodiments, or may also be a semiconductor chip provided in the network device.
  • the processing unit 802 may support the apparatus 800 to execute the actions of the network device in the above method examples.
  • the processing unit 802 mainly executes the actions within the network in the method example
  • the communication unit 803 may support communication between the apparatus 800 and the terminal device.
  • the communication unit 803 is configured to perform step 401 and step 403 in FIG. 4 and step 701 and step 703 in FIG. 7.
  • the communication unit is used to send first control information of the first BWP to the terminal device, the first control information is used to indicate the first data channel and the second data channel; and the bearer is sent to the terminal device The first data in the first data channel and the second data carried in the second data channel; wherein, the first BWP includes a first frequency domain resource and a second frequency domain resource, and the second BWP includes a third frequency domain resource , The third frequency domain resource and the second frequency domain resource completely overlap in the frequency domain; the first data channel is located on the first frequency domain resource, and the second data channel is located on the third frequency domain resource.
  • the first data includes a first redundancy version obtained based on the data to be transmitted
  • the second data includes a second redundancy version obtained based on the data to be transmitted.
  • the communication unit is further configured to send second control information of the second BWP to the terminal device, and the second control information is used to indicate the third data channel; where the third data channel is located in the third frequency domain Resources, the position of the third data channel and the position of the second data channel do not overlap.
  • the communication unit is further configured to send indication information to the terminal device, the indication information is used to indicate that the candidate time-frequency position of the first control information is the same as the candidate time-frequency position of the second control information of the second BWP And, sending the first control information and/or the second control information at the candidate time-frequency position of the first control information.
  • the communication unit is further configured to send configuration parameters of the search space of the first BWP to the terminal device.
  • the payload size of the first control information is equal to the payload size of the second control information.
  • FIG. 9 shows a schematic structural diagram of a device.
  • the device 900 includes a processor 910, a memory 920, and a transceiver 930.
  • the device 900 can implement the functions of the device 800 illustrated in FIG. 8.
  • the functions of the communication unit 803 illustrated in FIG. 8 may be implemented by a transceiver, and the functions of the processing unit 802 may be implemented by a processor.
  • the function of the storage unit 801 can be implemented by a memory.
  • the apparatus 900 may be the network device in the method embodiment, or it may be the terminal device in the above method embodiment, and the apparatus 900 may be used to implement the network device described in the above method embodiment.
  • the method of the terminal device for details, please refer to the description in the above method embodiment.
  • FIG. 10 is a schematic structural diagram of a terminal device 1000 according to an embodiment of the application.
  • the terminal device 1000 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the terminal device 1000 can be applied to the system architecture shown in FIG. 2 to perform the functions of the terminal device in the foregoing method embodiment.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device, execute the software program, and process the data of the software program, for example, to control the terminal device to perform the actions described in the above method embodiment.
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 10 only shows a memory and a processor. In actual terminal devices, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, etc., which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data.
  • the central processing unit is mainly used to control the entire terminal device and execute Software program, processing the data of the software program.
  • the processor in FIG. 10 integrates the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors and are interconnected by technologies such as buses.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and communication data can be built in the processor, or can be stored in the storage unit in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiver function can be regarded as the communication unit of the device 800, and the processor with the processing function It is regarded as the processing unit of the device 800.
  • the communication unit may include a receiving unit and a transmitting unit.
  • the receiving unit may also be called a receiver, a receiver, a receiving circuit, etc.
  • the transmitting unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the terminal device 1000 shown in FIG. 10 can implement various processes related to the terminal device in the method embodiment of FIG. 4 or FIG. 7.
  • the operation and/or function of each module in the terminal device 1000 is to implement the corresponding process in the foregoing method embodiment.
  • FIG. 11 is a schematic structural diagram of a network device provided by an embodiment of the application, and may be, for example, a schematic structural diagram of a base station. As shown in FIG. 11, the network device 1100 can be applied to the system architecture shown in FIG. 2 to perform the functions of the network device in the foregoing method embodiment.
  • the network device 1100 may include one or more radio frequency units, such as a remote radio unit (RRU) 1101 and one or more baseband units (BBU) (also known as digital units (DU)). )) 1102.
  • RRU remote radio unit
  • BBU baseband units
  • DU digital units
  • the RRU 1101 may be called a transceiver unit, a transceiver, a transceiver circuit, or a transceiver, etc., and it may include at least one antenna 1111 and a radio frequency unit 1112.
  • the RRU 1101 part is mainly used for the transmission and reception of radio frequency signals and the conversion between radio frequency signals and baseband signals, for example, for sending control information in the foregoing method embodiments.
  • the RRU 1101 and the BBU 1102 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1102 is the control center of the base station, and can also be called a processing unit, which is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU (processing unit) 1102 may be used to control the base station to execute the operation flow of the network device in the foregoing method embodiment.
  • the BBU 1102 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network with a single access indication (such as an LTE network), or support different access standards. Wireless access network (such as LTE network, 5G network or other network).
  • the BBU 1102 also includes a memory 1121 and a processor 1122, and the memory 1121 is used to store necessary instructions and data.
  • the processor 1122 is configured to control the base station to perform necessary actions, for example, to control the base station to execute the operation flow of the network device in the foregoing method embodiment.
  • the memory 1121 and the processor 1122 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the network device 1100 shown in FIG. 11 can implement each process involving the network device in FIG. 4 or FIG. 7.
  • the operations and/or functions of each module in the network device 1100 are respectively set to implement the corresponding processes in the foregoing method embodiments.
  • each step in the method provided in this embodiment can be completed by an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose central processing unit (central processing unit, CPU), general-purpose processor, digital signal processing (digital signal processing, DSP), application specific integrated circuits (ASIC), field programmable gate array Field programmable gate array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof; it can also be a combination that implements computing functions, such as a combination of one or more microprocessors, DSP and micro-processing The combination of the device and so on.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory or storage unit in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electronic Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic RAM dynamic random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial link DRAM SLDRAM
  • direct rambus RAM direct rambus RAM
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer program or instruction may be stored in a computer-readable storage medium, or transmitted through the computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server integrating one or more available media.
  • the usable medium may be a magnetic medium, such as a floppy disk, a hard disk, and a magnetic tape; it may also be an optical medium, such as a DVD; it may also be a semiconductor medium, such as a solid state disk (SSD).
  • the various illustrative logic units and circuits described in the embodiments of this application can be implemented by general-purpose processors, digital signal processors, application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, Discrete gates or transistor logic, discrete hardware components, or any combination of the above are designed to implement or operate the described functions.
  • the general-purpose processor may be a microprocessor, and optionally, the general-purpose processor may also be any traditional processor, controller, microcontroller, or state machine.
  • the processor can also be implemented by a combination of computing devices, such as a digital signal processor and a microprocessor, multiple microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration achieve.
  • the steps of the method or algorithm described in the embodiments of the present application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable disk, CD-ROM or any other storage medium in the field.
  • the storage medium may be connected to the processor, so that the processor can read information from the storage medium, and can store and write information to the storage medium.
  • the storage medium may also be integrated into the processor.
  • the processor and the storage medium can be arranged in an ASIC, and the ASIC can be arranged in a terminal device.
  • the processor and the storage medium may also be arranged in different components in the terminal device.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,公开了一种通信方法及装置,其中方法包括:接收第一BWP的第一控制信息,并根据第一控制信息接收第一数据信道和第二数据信道;第一BWP包括第一频域资源和第二频域资源,第二BWP包括第三频域资源,第三频域资源和第二频域资源完全重叠;第一数据信道位于第一频域资源,第二数据信道位于第三频域资源。上述方法提供了当激活的第一BWP和第二BWP部分重叠时在第一BWP和第二BWP上传输数据的方式,也就是说,当需要在第一BWP上传输数据时,可以将部分数据承载在第一BWP上,将另一部分数据承载在第二BWP,一方面,能够提高资源利用效率,另一方面,能够有效提高数据传输的成功率。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2019年04月29日提交中国专利局、申请号为201910356746.9、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
无线通信系统中,终端设备和网络设备基于无线电通信技术进行无线通信。在正在讨论的5G新无线(new radio,NR)通信系统中,一个载波的最大带宽可以到400MHz,但是终端设备支持的最大带宽能力可能达不到如此大的带宽。当终端设备不支持一个载波的带宽能力的时候,基站无法像长期演进(long term evolution,LTE)系统那样,直接在载波带宽的范围内为终端设备分配频域资源,而是需要先在载波内为终端设备配置一个或多个带宽部分(bandwidth part,BWP),然后在该BWP范围内向该终端设备分配资源。
在NR中,网络设备可以为终端设备配置多个BWP。进一步地,网络设备可能会为终端设备激活其中的一个BWP,或者也可能会为终端设备激活其中的两个或两个以上BWP,进而网络设备和终端设备在激活的BWP上进行通信。
然而,当网络设备为终端设备激活多个BWP时,网络设备和终端设备如何在多个激活的BWP上进行通信,仍需进一步研究。
发明内容
有鉴于此,本申请提供了一种通信方法及装置,用以提高数据传输的成功率。
第一方面,本申请实施例提供一种通信方法,该方法包括:
从网络设备接收第一BWP的第一控制信息,第一控制信息用于指示第一数据信道和第二数据信道;以及根据第一控制信息,从网络设备接收第一数据信道中承载的第一数据和第二数据信道中承载的第二数据。其中,第一BWP包括第一频域资源和第二频域资源,第二BWP包括第三频域资源,第三频域资源和第二频域资源在频域上完全重叠;第一数据信道位于第一频域资源上,第二数据信道位于第三频域资源上。
上述方法提供了当激活的第一BWP和第二BWP部分重叠时,在第一BWP和第二BWP上传输数据信道的方式;也就是说,当需要在第一BWP上传输数据时,可以将部分数据承载在第一BWP(比如第一频域资源)上,将另一部分数据承载在第二BWP(比如第三频域资源),一方面,能够提高资源利用效率,另一方面,能够有效提高数据传输的成功率。
在一种可能的设计中,第一数据包括基于待传输数据得到的第一冗余版本,第二数据包括基于待传输数据得到的第二冗余版本。
在一种可能的设计中,该方法还包括:对第一数据进行处理,若处理失败,则对第一数据和第二数据进行处理。
采用这种方式,由于待传输数据可以通过不同的BWP来发送,从而在某一BWP上的冗余版本解析失败时,可以对该BWP上的冗余版本和另一BWP上的冗余版本一并解析或联合解析,从而能够有效提高数据传输的成功率。
在一种可能的设计中,该方法还包括:从网络设备接收第二BWP的第二控制信息,第二控制信息用于指示第三数据信道;以及,根据第二控制信息,从网络设备接收第三数据信道中承载的第三数据;其中,第三数据信道位于第三频域资源,第三数据信道的位置和第二数据信道的位置不重叠。
采用上述方法,由于第三数据信道与第二数据信道的位置不重叠,从而能够在避免影响第三数据信道的正常传输的基础上,提高资源利用率。
在一种可能的设计中,该方法还包括:从网络设备接收指示信息,指示信息用于指示第一控制信息的候选时频位置和第二BWP的第二控制信息的候选时频位置相同;在第一控制信息的候选时频位置上接收第一控制信息和第二控制信息。
采用上述方法,由于第一控制信息和第二控制信息的候选时频位置相同,从而可以在第一控制信息的候选时频位置上检测第一控制信息和第二控制信息,即可以不增加第一控制信息的盲检功耗的基础上检测第一控制信息和第二控制信息。
在一种可能的设计中,该方法还包括:从网络设备接收第一BWP的搜索空间的配置参数,并根据第一BWP的搜索空间的配置参数确定第一控制信息的候选时频位置。
在一种可能的设计中,第一控制信息的有效负荷大小和第二控制信息的有效负荷大小相等。
第二方面,本申请实施例提供一种通信方法,该方法包括:
向终端设备发送第一BWP的第一控制信息,第一控制信息用于指示第一数据信道和第二数据信道;以及向终端设备发送承载在第一数据信道中的第一数据和承载在第二数据信道中的第二数据;其中,第一BWP包括第一频域资源和第二频域资源,第二BWP包括第三频域资源,第三频域资源和第二频域资源在频域上完全重叠;第一数据信道位于第一频域资源上,第二数据信道位于第三频域资源上。
在一种可能的设计中,第一数据包括基于待传输数据得到的第一冗余版本,第二数据包括基于待传输数据得到的第二冗余版本。
在一种可能的设计中,该方法还包括:向终端设备发送第二BWP的第二控制信息,第二控制信息用于指示第三数据信道;其中,第三数据信道位于第三频域资源,第三数据信道的位置和第二数据信道的位置不重叠。
在一种可能的设计中,该方法还包括:向终端设备发送指示信息,指示信息用于指示第一控制信息的候选时频位置和第二BWP的第二控制信息的候选时频位置相同;以及,在第一控制信息的候选时频位置上发送第一控制信息和/或第二控制信息。
在一种可能的设计中,该方法还包括:向终端设备发送第一BWP的搜索空间的配置参数。
在一种可能的设计中,第一控制信息的有效负荷大小和第二控制信息的有效负荷大小相等。
第三方面,本申请实施例提供一种通信方法,该方法包括:
从网络设备接收指示信息,指示信息用于指示第一BWP的第一控制信息的候选时频位置和第二BWP的第二控制信息的候选时频位置相同;以及,在第一控制信息的候选时频位置上检测第一控制信息和第二控制信息。
在一种可能的设计中,该方法还包括:终端设备从网络设备接收第一BWP的搜索空间的配置参数,并根据第一BWP的搜索空间的配置参数确定第一控制信息的候选时频位置。
在一种可能的设计中,第一控制信息的有效负荷大小和第二控制信息的有效负荷大小相等。
第四方面,本申请实施例提供一种通信方法,该方法包括:向终端设备发送指示信息,指示信息用于指示第一BWP的第一控制信息的候选时频位置和第二BWP的第二控制信息的候选时频位置相同;以及,在第一控制信息的候选时频位置上向终端设备发送第一控制信息和/或第二控制信息。
在一种可能的设计中,该方法还包括:向终端设备发送第一BWP的搜索空间的配置参数,第一BWP的搜索空间的配置参数用于确定第一控制信息的候选时频位置。
在一种可能的设计中,第一控制信息的有效负荷大小和第二控制信息的有效负荷大小相等。
第五方面,本申请实施例提供一种装置,该装置可以是终端设备或网络设备,或者也可以是设置在终端设备或网络设备中的半导体芯片。该装置具有实现上述第一方面至第四方面的各种可能的实现方式的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第六方面,本申请实施例一种装置,包括:处理器和存储器;所述处理器用于执行存储在所述存储器上的指令,当所述指令被执行时,使得该装置执行如上述第一方面或第三方面的任一种可能的设计中的方法。
第七方面,本申请实施例提供一种终端设备,包括第六方面所述的装置。
第八方面,本申请实施例一种装置,包括:处理器和存储器;所述处理器用于执行存储在所述存储器上的指令,当所述指令被执行时,使得该装置执行如上述第二方面或第四方面的任一种可能的设计中的方法。
第九方面,本申请实施例提供一种网络设备,包括第八方面所述的装置。
第十方面,本申请实施例提供一种通信系统,包括第七方面所述的终端设备和第九方面所述的网络设备。
第十一方面,本申请实施例还提供一种计算机可读存储介质,包括指令,当所述指令被执行时,实现上述各方面或各方面的任一种可能的设计中的方法。
第十二方面,本申请实施例还提供一种计算机程序产品,包括计算机程序或指令,当所述计算机程序或指令被执行时,实现上述各方面或各方面的任一种可能的设计中的方法。
附图说明
图1a、图1b和图1c为本申请实施例提供的BWP在载波带宽中的配置示意图;
图2为本申请实施例适用的一种系统架构示意图;
图3为本申请实施例提供的第一BWP和第二BWP部分重叠示意图;
图4为本申请实施例一提供的通信方法所对应的流程示意图;
图5为本申请实施例提供的不同数据信道示意图;
图6a为本申请实施例提供的第一BWP和第二BWP所包括的RB示意图;
图6b为本申请实施例提供的在第一BWP上传输第一数据以及在第二BWP上传输第二数据示意图;
图7为本申请实施例二提供的通信方法所对应的流程示意图;
图8为本申请实施例中所涉及的装置的可能的示例性框图;
图9为本申请实施例提供的一种装置的结构示意图;
图10为本申请实施例提供的一种终端设备的结构示意图;
图11为本申请实施例提供的一种网络设备的结构示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请作进一步地详细描述。
以下,对本发明实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)终端设备:是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为用户设备(user equipment,UE)、接入终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。
(2)网络设备:例如包括基站(例如,接入点),可以是指接入网中在空中接口上通过一个或多个小区与无线移动设备通信的设备。基站可用于将收到的空中帧与网际协议(IP)分组进行相互转换,作为移动设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。基站还可协调对空中接口的属性管理。例如,基站可以包括5G NR系统中的下一代节点B(next generation node B,gNB);或者基站也可以包括LTE系统或演进的LTE系统(LTE-Advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),本发明实施例并不限定。
(3)下行控制信道:用于承载控制信息。本申请实施例不限制下行控制信道究竟包括哪些信道,例如包括PDCCH或增强的物理下行控制信道(enhanced physical downlink control channel,EPDCCH),还可包括其他用于传输控制信息的下行控制信道。下文中将主要以下行控制信道为PDCCH为例进行描述。
(4)BWP:在5G NR系统中,为适配终端设备的带宽能力,可以在一个载波支持的带宽(可称为载波带宽,具体取值可以为10MHz、15MHz、20MHz、50MHz、100MHz或400MHz等)内为终端设备配置BWP,一个载波中可配置多个BWP,例如一个载波可以配置4个BWP。BWP有时也可称为载波带宽部分(carrier bandwidth part)、子带(subband) 带宽、窄带(narrowband)带宽,或者其他的名称,本申请对名称并不做限定,为了便于描述,以名称是BWP为例说明。例如,一个BWP包含K(K>0)个子载波;或者,一个BWP为N个不重叠的RB所在的频域资源,该RB的子载波间隔可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz或其他值;或者,一个BWP为M个不重叠的资源块组(resource block group,RBG)所在的频域资源,例如,一个RBG包括P(P>0)个连续的RB,该RB的子载波间隔(subcarrier spacing,SCS)可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz或其他值,例如为2的整数倍。
如图1a-图1c所示,为本申请实施例提供的三种BWP在载波带宽中的配置情况。图1a为在载波带宽中配置一个BWP的情况,网络设备可先为终端设备分配在终端带宽能力范围内的BWP,当然还可以进一步为终端设备分配该BWP中的部分或全部资源用于通信。网络设备可根据实际场景为终端设备配置不同的BWP情况。例如,为了节省终端设备的功耗,网络设备可以根据终端设备的业务量为终端设备分配BWP。当终端设备没有业务数据传输或只有少量业务数据传输时,可以为终端设备分配较小的BWP用于接收控制信息和少量的数据信息,如图1b所示的BWP1;当终端设备有大量业务数据需要传输时,可以为终端设备分配较大的BWP,如图1b所示的BWP2。又例如,由于5G中可以支持多种业务类型、通信场景,针对不同的业务类型、通信场景,可以配置不同的参数,网络设备可以根据终端设备不同的业务类型为终端设备分配相应的BWP,如图1c所示,一个BWP可以对应一种业务类型,为了满足该业务类型的业务需求,可以将该BWP配置能够满足业务需求的帧结构参数(numerology)。其中,由图1b可知,不同的BWP可以占用部分重叠的频域资源。由图1c可知,不同的BWP也可以占用完全不同的频域资源以及使用不同的numerology。在本申请实施例中,不同BWP对应的numerology可以相同也可以不同,本申请不作限制。可以理解的是,图1a-图1c中仅以在一个载波中配置一个或两个BWP为例说明,实际应用中可在载波中配置多个BWP,本申请不做限定。
(5)帧结构参数:是指通信系统所采用的参数。例如可以是指空口中的一系列物理层参数。一个BWP可以对应一个numerology。其中,NR系统可支持多种numerology,多个numerology可以同时使用。numerology可以包括以下参数信息中的一个或多个:子载波间隔,循环前缀(cyclic prefix,CP)的信息,时间单位的信息,带宽等。CP的信息可以包括CP长度和/或者CP类型。例如,CP可以为常规CP(normal CP,NCP),或者扩展CP(extended CP,ECP)。时间单位用于表示时域内的时间单元,例如可以为采样点、符号、微时隙(mini-slot)、时隙(slot)、子帧(subframe)或者无线帧等等。时间单位的信息可以包括时间单位的类型、长度或者结构等。例如,numerology可以包括子载波间隔和CP,如表1所示,表1给出了NR系统中目前可以支持的、由子载波间隔和CP定义的numerology:
表1
μ 子载波间隔=2 μ·15(kHz) CP类型
0 15 常规(normal)
1 30 常规
2 60 常规或扩展(extended)
3 120 常规
4 240 常规
其中,μ用于确定子载波间隔,例如,μ=0时,子载波间隔为15kHz,μ=1时,子载波间隔为30kHz。以子载波间隔为例,若终端支持子载波间隔15kHz和30kHz,则网络设备可以为终端分配一个子载波间隔为15KHz的BWP,和一个子载波间隔为30KHz的BWP,终端根据不同的场景和业务需求,可以切换到不同的BWP上传输信号。当终端支持多个BWP时,其中不同的BWP对应的numerology可以相同也可以不同。
其中,子载波间隔可以为大于等于0的整数。例如可以为15KHz、30KHz、60KHz、120KHz、240KHz、480KHz等。子载波间隔,是正交频分复用(orthogonal frequency division multiplexing,OFDM)系统中,频域上相邻的两个子载波的中心位置或峰值位置之间的间隔值。例如,LTE系统中的子载波间隔为15KHz,NR系统的子载波间隔可以是15kHz,或30kHz,或60kHz,或120kHz等。
(6)本申请实施例中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也不表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。“至少一个”是指一个或者多个。至少两个是指两个或者多个。“至少一个”、“任意一个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个、种),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
图2为本申请实施例适用的一种可能的通信系统的架构示意图。如图2所示的通信系统包括网络设备和终端设备。应理解,图2仅为通信系统的一个架构示意图,本申请实施例中对通信系统中网络设备的数量、终端设备的数量不作限定,而且本申请实施例所适用的通信系统中除了包括网络设备和终端设备以外,还可以包括其它设备,如核心网设备、无线中继设备和无线回传设备等,对此本申请实施例也不作限定。以及,本申请实施例中的网络设备可以将所有的功能集成在一个独立的物理设备,也可以将功能分布在多个独立的物理设备上,对此本申请实施例也不作限定。此外,本申请实施例中的终端设备可以通过无线方式与网络设备连接。
上述架构适用的通信系统可以采用各种无线接入技术(radio access technology,RAT),例如码分多址(code division multiple access,CDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequency division multiple access,FDMA)、正交频分多址(orthogonal frequency-division multiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA)等,本申请对通信系统所采用的RAT不做限定。在本申请中,术语“系统”可以和“网络”相互替换。根据不同网络的容量、速率、时延、所采用的RAT等因素可以将网络分为2G(generation)网络、3G网络、 4G网络或者未来演进网络,如5G网络。典型的4G网络包括长期演进(long term evolution,LTE)网络,典型的5G网络包括新无线接入技术(new radio access technique,NR)网络。
本申请实施例描述的系统架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着通信系统架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
在图2所示意的系统架构中,网络设备与终端设备可以通过空口资源进行通信,空口资源可以包括时域资源和频域资源。示例性地,网络设备可以向终端设备发送下行控制信道,下行控制信道中包括控制信息;网络设备通过该控制信息为终端分配数据信道的时频资源,数据信道可以为比如物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行共享信道(physical uplink shared channel,PUSCH),如此,网络设备和终端设备在该分配的时频资源通过数据信道进行数据传输。在一个示例中,该控制信息可以指示数据信道的时频位置,比如数据信道所映射至的符号和/或资源块(resource block,RB),其中,上述数据传输可以包括下行数据传输和/或上行数据传输,下行数据(如PDSCH承载的数据)传输可以指网络设备向终端设备发送数据,上行数据(如PUSCH承载的数据)传输可以是指终端设备向网络设备发送数据。数据可以是广义的数据,比如可以用户数据,也可以是系统信息,广播信息,或其他的信息等。
也就是说,网络设备与终端设备可以通过空口资源进行通信,可以包括(1)网络设备向终端设备发送数据信道或终端设备向网络设备发送数据信道和(2)网络设备向终端设备发送下行控制信道。下文中将主要基于实施例一和实施例二对这两方面进行展开描述。
实施例一
网络设备可以为终端设备配置多个BWP,其中,一个配置的BWP可以对应一个numerology。网络设备可能同时为终端设备配置多个BWP,例如同时为终端设备配置第一BWP和第二BWP,且网络设备也可以同时激活第一BWP和第二BWP。或者,网络设备也可以在不同时刻为终端设备配置不同的BWP,例如在第一时刻为终端设备配置并激活第一BWP,在第二时刻为终端设备配置并激活第二BWP,第一时刻可以位于第二时刻之前,或者第一时刻也可以位于第二时刻之后。
例如,网络设备为终端设备配置了第一BWP和第二BWP。其中,第一BWP是终端设备在初始接入时网络设备为终端设备配置的BWP(可以简称为初始BWP)。则,网络设备可以向终端设备发送主信息块(master information block,MIB),终端设备接收MIB后,就可以根据MIB确定网络设备为终端设备配置的第一BWP。或者,终端设备根据预定义信息可以知道网络设备为终端设备配置的第一BWP,例如终端设备通过盲检同步信号确定同步信号的频域资源,再根据预定义的关系确定第一BWP的频域资源。其中,如果第一BWP是终端设备在初始接入时网络设备为终端设备配置的BWP,那么第一BWP可以是默认激活的。
第二BWP可以是终端设备在接入网络之后网络设备为终端设备配置的BWP。例如,网络设备可以向终端设备发送系统信息块(system information block,SIB),终端设备接收SIB后,就可以根据SIB确定网络设备为终端设备配置的第二BWP。或者,网络设备可以 向终端设备发送无线资源控制(Radio Resource Control,RRC)信令,终端设备接收RRC信令后,根据该RRC信令就可以知道网络设备为终端设备配置的第二BWP。或者,网络设备也可以通过其他的信令来通知为终端设备分配的第二BWP,例如通过公共下行控制信息(downlink control information,DCI)或终端设备的特定的DCI来通知为终端设备配置的第二BWP,或者网络设备也可以通过预定义的方式来为终端设备配置第二BWP,则终端设备根据预定义信息就能够确定网络设备为终端设备配置的第二BWP。本发明实施例对于网络设备如何通知配置的第二BWP不做限制。在这种情况下,网络设备可以通过公共DCI、终端设备的特定的DCI或高层信令来激活为终端设备配置的第二BWP。其中,高层信令例如为SIB、RRC信令或媒体接入控制(Media Access Control,MAC)控制元素(Control Element,CE)。
需要说明的是,网络设备为终端设备配置的BWP可以属于同一个载波,也可以属于不同的载波。同样的,终端设备的激活的BWP也是可以属于同一个载波,或者属于不同的载波,本申请实施例不做限制。
以网络设备为终端设备激活两个BWP(比如第一BWP和第二BWP)为例,第一BWP和第二BWP之间的关系可能有多种情形,比如情形1,第一BWP和第二BWP完全不重叠,参见图1c中第一BWP(BWP1)和第二BWP(BWP2)所示;情形2,第一BWP和第二BWP部分重叠,参见图3中的(a)、(b)、(c)所示。
在实施例一中,将主要针对网络设备为终端设备激活两个BWP(两个BWP的关系为图3中的(a)或(b)所示意的情形)时,网络设备和终端设备之间传输数据信道的实现方式进行描述。
图4为本申请实施例一提供的一种通信方法所对应的流程示意图,如图4所示,该方法包括:
步骤401,网络设备向终端设备发送第一BWP的第一控制信息,第一控制信息用于指示第一数据信道和第二数据信道。
相应地,在步骤402中,终端设备接收第一控制信息。
示例性地,第一控制信息用于指示第一数据信道和第二数据信道,可以是指:第一控制信息用于指示第一数据信道的时频位置和第二数据信道的时频位置,以第一控制信息用于指示第一数据信道的时频位置为例,比如第一控制信息中可以包括两个域,分别为频域资源分配(frequency domain resource assignment)域和时域资源分配(time domain resource assignment)域,频域资源分配域中携带的信息可以指示第一数据信道的频域位置,时域资源分配域中携带的信息可以指示第一数据信道的时域位置。
本申请实施例中,网络设备向终端设备发送第一控制信息的实现方式可以有多种,比如,网络设备在第一BWP上向终端设备发送第一控制信息,或者,网络设备也可以在其它激活的BWP上向终端设备发送第一控制信息,具体不做限定。
步骤403,网络设备向终端设备发送承载在第一数据信道中的第一数据和承载在第二数据信道中的第二数据。
相应地,在步骤404中,终端设备根据第一控制信息,接收第一数据和第二数据。
其中,第一BWP包括第一频域资源和第二频域资源(可以理解为,第一BWP包括两段频域资源,其中一段频域资源称为第一频域资源,另一段频域资源称为第二频域资源),第二BWP包括第三频域资源,第三频域资源和第二频域资源在频域上完全重叠,也就是 说,第一BWP和第二BWP的关系可以为图3中的(a)或(b)所示意的情形。进一步地,第一数据信道可以位于第一频域资源上,第二数据信道可以位于第三频域资源上。以图3中的(a)所示意的情形为例,参见图5所示,示意出了第一数据信道和第二数据信道的位置。
上述方法提供了当激活的第一BWP和第二BWP部分重叠时在第一BWP和第二BWP上传输数据信道的方式,也就是说,当需要在第一BWP上传输数据时,可以将部分数据承载在第一BWP(比如第一频域资源)上,将另一部分数据承载在第二BWP(比如第三频域资源),一方面,能够提高资源利用效率,另一方面,能够有效提高数据传输的成功率。
在一个示例中,上述方法还包括:网络设备向终端设备发送第二BWP的第二控制信息,第二控制信息用于指示第三数据信道;比如,第二控制信息用于指示第三数据信道的时频位置,具体方式可以参见上述第一控制信息指示第一数据信道的时频位置的方式,不再赘述。相应地,终端设备可以根据第二控制信息,接收承载在第三数据信道中的第三数据。
示例性地,网络设备向终端设备发送第二BWP的第二控制信息的方式可以有多种,比如,网络设备在第二BWP上向终端设备发送第二控制信息,或者,网络设备也可以在其它激活的BWP(比如第一BWP)上向终端设备发送第二控制信息,具体不做限定。
示例性地,第三数据信道可以位于第三频域资源上,第三数据信道的位置和所述第二数据信道的位置不重叠,或者是,第三数据信道的位置和所述第二数据信道的时频位置不重叠。在一个示例中,第三数据信道的位置和第二数据信道的时频位置不重叠,可以理解为第三数据信道占用的时频资源和第二数据信道占用的时频资源不相同(即第三数据信道占用的时域资源和第二数据信道占用的时域资源不相同,和/或,第三数据信道占用的频域资源和第二数据信道占用的频域资源不相同),参见图5所示。
下面举个例子来说明,参见图6a所示,第一BWP的子载波间隔为30KHz,第二BWP的子载波间隔为15KHz。在一个时隙上,第一BWP的RB可以包括RB00,RB01,RB02,RB03;第二BWP的RB可以包括RB200,RB201,RB202,RB203,其中第一BWP的RB02和第二BWP的RB200、RB201在频域上重叠,第一BWP的RB03和第二BWP的RB202、RB203在频域上重叠。
网络设备对待传输的原始数据进行编码等操作后,可以得到系统数据和校验数据,并通过交织插入到一个环形缓冲器中(具体实施中,可以先插入系统数据,然后再插入校验数据),进而从环形缓冲器的不同起始位置来提取比特生成不同的冗余版本(redundancy version,RV),比如RVi(i=0,1,2,3,……N),其中,RV0至少包含系统数据,N为大于0的整数。若待传输数据量(即RV0至RVi的数据量之和)为M(比如M为19440bits),需要占用第一BWP的RB00、RB01、RB02。由于第一BWP的RB02和第二BWP的RB200、RB201在频域上重叠,因此,可以考虑在第二BWP上承载部分数据。
示例性地,网络设备可以确定第一BWP的一个RB所能承载的数据量和第二BWP的一个RB所能承载的数据量,比如,网络设备根据第一BWP的子载波间隔、符号长度以及终端上报的信道质量得知第一BWP的一个RB所能承载的数据量为N1(比如3240bits),以及根据第二BWP的子载波间隔、符号长度以及终端上报的信道质量得知第二BWP的一个RB所能承载的数据量为N2(比如3752bits),则可以得出在第二BWP上需要使用的 RB个数W=1(W=N1*(在第一BWP上需要使用的RB个数)/N2=3240*1/3752=0.86向上取整),也就是说,在第二BWP上需要使用的RB为一个,比如可以为RB200。
进一步地,参见图6b所示,网络设备可以将第一数据(第一数据可以包括第一冗余版本,在一个示例中,第一数据包括RV0至RVI,I为大于等于0且小于等于N-1的整数,第一冗余版本可以为RV0至RVI中的任一个)映射到第一BWP上的RB00、RB01发送,以及将第二数据(第二数据可以包括第二冗余版本,在一个示例中,第二数据包括RVI+1至RVN,第二冗余版本可以为RV0至RVI中的任一个)映射到第二BWP上的RB200上发送。可以理解为,第一数据信道占用RB00、RB01,第二数据信道占用RB200。
相应地,终端设备接收到第一数据和第二数据后,可以先对第一数据进行处理,若处理失败,则对第一数据和第二数据进行一并处理。其中,以第一数据为例,对第一数据进行处理可以理解为对第一数据进行解析或解调。也就是说,终端设备若成功解析RV0至RVI,则可以不再解析RVI+1至RVN;若未能成功解析RV0至RVI,则可以解析RV0至RVN。采用这种方式,由于待传输数据可以通过不同的BWP来发送,从而在某一BWP上的冗余版本解析失败时,可以对该BWP上的冗余版本和另一BWP上的冗余版本一并解析或者说联合解析,从而能够有效提高数据传输的成功率。
需要说明的是,网络设备将第二数据映射到第二BWP上的RB200上发送之前,需要确定第三数据信道不占用RB200(比如第三数据信道占用RB203),也就是说,第三数据信道与第二数据信道的时频位置不重叠,从而在避免影响第三数据信道的正常传输的基础上,提高资源利用率。
实施例二
在实施例二中,将主要针对网络设备为终端设备激活多个BWP时,网络设备和终端设备之间传输下行控制信道的实现方式进行描述。
图7为本申请实施例二提供的一种通信方法所对应的流程示意图,如图7所示,包括:
步骤701,网络设备向终端设备发送第一指示信息,第一指示信息用于指示第一资源的第一控制信息的候选时频位置和第二资源的第二控制信息的候选时频位置相同。
步骤702,终端设备接收来自网络设备的第一指示信息。
步骤703,网络设备在第一资源的候选时频位置上发送第一资源的第一控制信息和/或第二资源的第二控制信息。
步骤704,终端设备在第一控制信息的候选时频位置上检测第一控制信息和第二控制信息。
采用上述方法,由于第一控制信息和第二控制信息的候选时频位置相同,从而可以在第一控制信息的候选时频位置上检测第一控制信息和第二控制信息,即可以不增加第一控制信息的盲检功耗的基础上检测第一控制信息和第二控制信息。
需要说明的是,本申请实施例对第一资源和第二资源的种类不作限制,比如,第一资源和第二资源可以是不同的两个载波,或者,第一资源和第二资源也可以是不同的两个BWP,比如第一资源为第一BWP,第二资源为第二BWP。第一BWP和第二BWP可以属于同一个载波,或者也可以属于不同的载波,本申请实施例不做限制。
下文将以第一资源为第一BWP,第二资源为第二BWP为例进行描述。
示例性地,在上述步骤701之前,网络设备可以向终端设备发送第一BWP的搜索空 间的配置信息,比如网络设备向终端设备发送第一BWP的PDCCH配置信息元素(PDCCH configured information element,简称为PDCCH configured IE),其中,PDCCH configured IE可以携带第一BWP的搜索空间的配置信息,第一BWP的搜索空间的配置信息可以包括PDCCH监控周期、PDCCH监控偏移、PDCCH监控模式、每个PDCCH监控周期内需要监控的连续时隙个数等参数中的一个或多个,其中,PDCCH监控周期用于配置终端设备每隔多少个时隙进行一次监控;PDCCH监控偏移用于指示终端设备在一个监控周期内的第几个时隙进行监控;PDCCH监控模式用于指示终端设备在时隙的哪个符号开始监控。相应地,终端设备根据第一BWP的PDCCH configured IE中携带的信息,可以得到第一BWP的候选时频位置;第一BWP的候选时频位置可理解为第一BWP的PDCCH可能出现的时频位置。
上述步骤701中,网络设备向终端设备发送第一指示信息,指示第二BWP的候选时频位置和第一BWP的候选时频位置相同的实现方式可以有多种。以网络设备为终端设备激活的BWP包括第一BWP和第二BWP为例,在一种可能的实现方式(称为实现方式1)中,网络设备可以向终端设备发送第一BWP的PDCCH configured IE以及向终端设备发送第二BWP的PDCCH configured IE,其中,第一BWP的PDCCH configured IE可以包括上述所描述的PDCCH监控周期、PDCCH监控偏移、PDCCH监控模式、每个PDCCH监控周期内需要监控的连续时隙个数等参数,而第二BWP的PDCCH configured IE所携带的内容可以为空,如此,终端设备接收到第二BWP的PDCCH configured IE后,可以获知第二BWP的候选时频位置和已激活的第一BWP的候选时频位置相同。
在又一种可能的实现方式(称为实现方式2)中,网络设备可以向终端设备发送第一BWP的PDCCH configured IE以及向终端设备发送第二BWP的PDCCH configured IE,其中,第二BWP的PDCCH configured IE所携带的内容与第一BWP的PDCCH configured IE所携带的内容相同,如此,终端设备接收到第二BWP的PDCCH configured IE后,可以获知第二BWP的候选时频位置和已激活的第一BWP的候选时频位置相同。
需要说明的是:(1)第一指示信息可以理解为上述实现方式1和实现方式2中第二BWP的PDCCH configured IE。(2)上述是以网络设备为终端设备激活的BWP包括第一BWP和第二BWP为例进行描述,在其它可能的示例中,比如示例1,若网络设备为终端设备激活的BWP还包括第三BWP,则第三BWP的PDCCH configured IE所携带的信息可以为空,或者第三BWP的PDCCH configured IE所携带的内容与第一BWP的PDCCH configured IE所携带的内容相同,从而使得终端设备可以获知第三BWP的候选时频位置和第一BWP的候选时频位置相同。也就是说,若网络设备为终端设备激活第一BWP以及其它多个BWP,且其它多个BWP的候选时频位置和第一BWP的候选时频位置相同,则可以采用上述实现方式或实现方式2来指示终端设备。又比如示例2,网络设备为终端设备激活的BWP包括第一BWP、第二BWP、第三BWP和第四BWP,若第一BWP的候选时频位置和第二BWP的候选时频位置相同,第三BWP的候选时频位置和第四BWP的候选时频位置相同,则此种情形下,可以通过实现方式2来指示终端设备,即第二BWP的PDCCH configured IE所携带的内容与第一BWP的PDCCH configured IE所携带的内容相同,第四BWP的PDCCH configured IE所携带的内容与第三BWP的PDCCH configured IE所携带的内容相同。
本申请实施例中,第一控制信息和第二控制信息用于指示不同的数据信道,比如,第一控制信息可以用于指示数据信道1,第二控制信息可以用于指示数据信道2。示例性地, 第一控制信息可以用于指示数据信道1的时频位置,第二控制信息可以用于指示数据信道2的时频位置。以第一控制信息为例,第一控制信息中可以包括两个域,分别为频域资源分配域和时域资源分配域,频域资源分配域用于指示数据信道1的频域位置,时域资源分配域用于指示数据信道1的时域位置。若数据信道1的频域位置位于第一BWP,数据信道2的频域位置位于第二BWP,由于BWP的控制信息的原始有效负荷大小是由该BWP的配置信息来决定的,因此,第一BWP的配置信息(比如可以包括第一BWP的帧结构参数)和第二BWP的配置信息不同会导致第一控制信息的原始有效负荷(payload size)和第二控制信息的原始有效负荷不同,比如第一控制信息中的频域资源分配域的大小和第二控制信息中的频域资源分配域的大小可能不同,第一控制信息中的时域资源分配域的大小和第二控制信息中的时域资源分配域的大小可能不同。
因此,在步骤703中,网络设备可以根据第一BWP的配置信息和第二BWP的配置信息确定目标有效负荷大小,或者说,网络设备可以根据第一控制信息的原始有效负荷大小和第二控制信息的原始有效负荷大小确定目标有效负荷大小。进一步地,若第一控制信息的原始有效负荷大小小于目标有效大小,则网络设备可以对第一BWP的控制信息进行补零操作使得第一BWP的控制信息的有效负荷大小等于目标有效负荷大小,并发送第一BWP的控制信息;若第二BWP的控制信息的原始有效负荷大小小于目标有效大小,则网络设备可以对第二BWP的控制信息进行补零操作使得第二BWP的控制信息的有效负荷大小等于目标有效负荷大小,并发送第二BWP的控制信息。
举例来说,若第一控制信息的原始有效负荷大小为K1,第二控制信息的原始有效负荷大小为K2,其中K2<K1,则网络设备可以确定目标有效负荷大小为K2。在一个示例中,网络设备在发送第二控制信息时,可以先对第二控制信息中的频域资源分配域和/或时域资源分配域进行补零操作,然后在第二控制信息尾部进行补零操作使第二控制信息的有效负荷大小等于K1;可以理解地,若对第二控制信息中的频域资源分配域和/或时域资源分配域进行补零操作后使第二控制信息的有效负荷大小等于K1,则也可以不再在第二控制信息尾部进行补零操作。在又一个示例中,网络设备在发送第二控制信息时,也可以直接在第二控制信息的尾部进行补零操作,补零长度为K1-K2+1,使第二控制信息的有效负荷大小等于K1。
本申请实施例中,第一控制信息中还可以包括第二指示信息,第二指示信息用于指示第一BWP,第二控制信息中还可以包括第三指示信息,第三指示信息用于指示第二BWP。
在步骤704中,在一个PDCCH监控周期内,终端设备可以从第一BWP的首个候选时频位置开始尝试解码,如果循环冗余校验(cyclic redundancy check,CRC)校验成功,则终端设备可以根据控制信息中所携带的第二指示信息或第三指示信息,确定该控制信息为第一BWP的第一控制信息还是第二BWP的第二控制信息,以及可以根据控制信息中的频域资源分配域和时域资源分配域携带的信息确定出数据信道的时频位置。
举个例子,一个PDCCH监控周期内共有20个候选时频位置,终端设备从首个候选时频位置开始尝试解码,若在第10个位置解码成功,得到第一控制信息,则可以继续从第11个位置开始尝试解码,直到解码成功得到第二控制信息,比如若在第15个位置解码成功,得到第二控制信息,则可以不再对剩下的5个候选时频位置进行解码。
需要说明的是,在一个可选的实施例中,网络设备向终端设备发送的第一指示信息可以在一段时长有效,该段时长可以为网络设备和终端设备协商确定的,或者也可以为协议 预先定义的,又或者也可以是持续有效直到第一资源和/或第二资源被去激活,具体不做限定。
在一个示例中,该段时长可以包括多个PDCCH监控周期的时长,比如PDCCH监控周期的时长为1个时隙,该段时长包括2个时隙(分别为时隙k、时隙k+1)。从网络设备的角度来看,网络设备有可能在时隙k上发送第一控制信息和第二控制信息,而在时隙k+1上发送第一控制信息,而未发送第二控制信息;从终端设备的角度来看,由于终端设备无法获知网络设备在某一时隙上是否会同时发送第一控制信息和第二控制信息,因此,终端设备接收到第一指示信息后,可以在时隙k、时隙k+1上均检测第一控制信息和第二控制信息。
在又一个示例中,该段时长可以为一个PDCCH监控周期的时长,比如均为一个时隙,此种情形下,从网络设备的角度来看,网络设备可以在该时隙内发送第一控制信息和第二控制信息;从终端设备的角度来看,终端设备可以在该时隙内检测第一控制信息和第二控制信息。
采用实施例二中所描述的方法,网络设备可以在某一或某些个资源的候选时频位置上发送其它多个资源的控制信息,从而能够有效降低终端设备盲检测控制信息的功耗。
针对于实施例一和实施例二,需要说明的是:(1)本申请实施例中所涉及的步骤编号仅为执行流程的一种可能的示例,并不构成对各个步骤的执行先后顺序的限制。本申请实施例中,相互之间没有时序依赖关系的步骤之间没有严格的执行顺序。
(2)本申请实施例中所涉及的第一控制信息和第二控制信息可以为DCI或DCI中的信息域。第一数据信道、第二数据信道和第三数据信道可以为PDSCH。
(3)实施例一侧重于对传输数据信道的实现方式进行描述,实施例二侧重于对传输控制信道的实现方式进行描述,除此差别之外的其它内容,实施例一和实施例二可以相互参照。
(4)实施例一和实施例二可以分别单独实施,或者也可以结合实施,具体不做限定。当实施例一和实施例二结合实施时,实施例一中网络设备和终端设备可以采用实施例二中的方式来传输第一控制信息和第二控制信息,即网络设备可以在第一控制信息的候选时频位置上发送第一控制信息和第二控制信息。
上述主要从网络设备和终端设备之间交互的角度对本申请实施例提供的方案进行了介绍。可以理解的是,为了实现上述功能,网络设备或终端设备可以包括执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请的实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在采用集成的单元(模块)的情况下,图8示出了本申请实施例中所涉及的装置的可能的示例性框图,该装置800可以以软件的形式存在。装置800可以包括:处理单元802和通信单元803。处理单元802用于对装置800的动作进行控制管理。通信单元803用于支持装置800与其他网络实体的通信。可选地,通信单元803也称为收发单元,可以包括 接收单元和/或发送单元,分别用于执行接收和发送操作。装置800还可以包括存储单元801,用于存储装置800的程序代码和/或数据。
其中,处理单元802可以是处理器或控制器,其可以实现或执行结合本申请的实施例公开内容所描述的各种示例性的逻辑方框,模块和电路。通信单元803可以是通信接口、收发器或收发电路等,其中,该通信接口是统称,在具体实现中,该通信接口可以包括多个接口。存储单元801可以是存储器。
该装置800可以为上述任一实施例中的终端设备、或者还可以为设置在终端设备中的半导体芯片。处理单元802可以支持装置800执行上文中各方法示例中终端设备的动作。或者,处理单元802主要执行方法示例中的终端内部动作,通信单元803可以支持装置800与网络设备之间的通信。例如,通信单元803用于执行图4中的步骤402和步骤404、图7中的步骤702和步骤704。
具体地,在一个实施例中,通信单元用于,从网络设备接收第一BWP的第一控制信息,第一控制信息用于指示第一数据信道和第二数据信道;以及根据第一控制信息,从网络设备接收第一数据信道中承载的第一数据和第二数据信道中承载的第二数据。其中,第一BWP包括第一频域资源和第二频域资源,第二BWP包括第三频域资源,第三频域资源和第二频域资源在频域上完全重叠;第一数据信道位于第一频域资源上,第二数据信道位于第三频域资源上。
在一种可能的设计中,第一数据包括基于待传输数据得到的第一冗余版本,第二数据包括基于待传输数据得到的第二冗余版本。
在一种可能的设计中,处理单元用于,对第一数据进行处理,若处理失败,则对第一数据和第二数据进行处理。
在一种可能的设计中,通信单元还用于,从网络设备接收第二BWP的第二控制信息,第二控制信息用于指示第三数据信道;以及,根据第二控制信息,从网络设备接收第三数据信道中承载的第三数据;其中,第三数据信道位于第三频域资源,第三数据信道的位置和第二数据信道的位置不重叠。
在一种可能的设计中,通信单元还用于,从网络设备接收指示信息,指示信息用于指示第一控制信息的候选时频位置和第二BWP的第二控制信息的候选时频位置相同;以及,在第一控制信息的候选时频位置上接收第一控制信息和第二控制信息。
在一种可能的设计中,通信单元还用于,从网络设备接收第一BWP的搜索空间的配置参数;处理单元还用于,根据第一BWP的搜索空间的配置参数确定第一控制信息的候选时频位置。
在一种可能的设计中,第一控制信息的有效负荷大小和第二控制信息的有效负荷大小相等。
该装置800可以为上述任一实施例中的网络设备、或者还可以为设置在网络设备中的半导体芯片。处理单元802可以支持装置800执行上文中各方法示例中网络设备的动作。或者,处理单元802主要执行方法示例中的网络内部动作,通信单元803可以支持装置800与终端设备之间的通信。例如,通信单元803用于执行图4中的步骤401和步骤403、图7中的步骤701和步骤703。
具体地,在一个实施例中,通信单元用于,向终端设备发送第一BWP的第一控制信息,第一控制信息用于指示第一数据信道和第二数据信道;以及向终端设备发送承载在第 一数据信道中的第一数据和承载在第二数据信道中的第二数据;其中,第一BWP包括第一频域资源和第二频域资源,第二BWP包括第三频域资源,第三频域资源和第二频域资源在频域上完全重叠;第一数据信道位于第一频域资源上,第二数据信道位于第三频域资源上。
在一种可能的设计中,第一数据包括基于待传输数据得到的第一冗余版本,第二数据包括基于待传输数据得到的第二冗余版本。
在一种可能的设计中,通信单元还用于,向终端设备发送第二BWP的第二控制信息,第二控制信息用于指示第三数据信道;其中,第三数据信道位于第三频域资源,第三数据信道的位置和第二数据信道的位置不重叠。
在一种可能的设计中,通信单元还用于,向终端设备发送指示信息,指示信息用于指示第一控制信息的候选时频位置和第二BWP的第二控制信息的候选时频位置相同;以及,在第一控制信息的候选时频位置上发送第一控制信息和/或第二控制信息。
在一种可能的设计中,通信单元还用于,向终端设备发送第一BWP的搜索空间的配置参数。
在一种可能的设计中,第一控制信息的有效负荷大小和第二控制信息的有效负荷大小相等。
图9给出了一种装置的结构示意图,该装置900包括处理器910、存储器920和收发器930。在一个示例中,该装置900可以实现图8所示意出的装置800的功能,具体来说,图8中所示意的通信单元803的功能可以由收发器实现,处理单元802的功能可由处理器实现,存储单元801的功能可以由存储器实现。在又一个示例中,该装置900可以是方法实施例中的网络设备,或者,也可以是上述方法实施例中的终端设备,该装置900可用于实现上述方法实施例中描述的对应于网络设备或终端设备的方法,具体可以参见上述方法实施例中的说明。
图10为本申请实施例提供的一种终端设备1000的结构示意图。为了便于说明,图10仅示出了终端设备的主要部件。如图10所示,终端设备1000包括处理器、存储器、控制电路、天线以及输入输出装置。该终端设备1000可应用于如图2所示的系统架构中,执行上述方法实施例中终端设备的功能。
处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于控制终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图10仅示出了一个存储器和处理器。在 实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图10中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。该基带处理器也可以表述为基带处理电路或者基带处理芯片。该中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
示例性的,若图8所示意的装置800为终端设备,则在图10的实施例中,可以将具有收发功能的天线和控制电路视为装置800的通信单元,将具有处理功能的处理器视为装置800的处理单元。示例性的,通信单元可以包括接收单元和发送单元,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
图10所示的终端设备1000能够实现图4或图7方法实施例中涉及终端设备的各个过程。终端设备1000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
图11为本申请实施例提供的一种网络设备的结构示意图,例如可以为基站的结构示意图。如图11所示,该网络设备1100可应用于如图2所示的系统架构中,执行上述方法实施例中网络设备的功能。
网络设备1100可包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1101和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元(digital unit,DU))1102。
该RRU 1101可以称为收发单元、收发机、收发电路、或者收发器等等,其可以包括至少一个天线1111和射频单元1112。该RRU 1101部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于发送上述方法实施例中的控制信息。该RRU 1101与BBU 1102可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
该BBU 1102为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如该BBU(处理单元)1102可以用于控制基站执行上述方法实施例中关于网络设备的操作流程。
在一个实施例中,该BBU 1102可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如LTE网络),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其它网)。该BBU 1102还包括存储器1121和处理器1122,该存储器1121用于存储必要的指令和数据。该处理器1122用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。该存储器1121和处理器1122可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图11所示的网络设备1100能够实现图4或图7中涉及网络设备的各个过程。 网络设备1100中的各个模块的操作和/或功能,分别设置为实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
在实现过程中,本实施例提供的方法中的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用中央处理器(central processing unit,CPU),通用处理器,数字信号处理(digital signal processing,DSP),专用集成电路(application specific integrated circuits,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合;也可以是实现计算功能的组合,例如包括一个或多个微处理器组合,DSP和微处理器的组合等等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
可以理解,本申请实施例中的存储器或存储单元可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器,专用集成电路(ASIC),现场可编程门阵列(FPGA)或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类 似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。

Claims (20)

  1. 一种通信方法,其特征在于,所述方法包括:
    从网络设备接收第一带宽部分BWP的第一控制信息,所述第一控制信息用于指示第一数据信道和第二数据信道;
    根据所述第一控制信息,从所述网络设备接收所述第一数据信道中承载的第一数据和所述第二数据信道中承载的第二数据;
    其中,所述第一BWP包括第一频域资源和第二频域资源,第二BWP包括第三频域资源,所述第三频域资源和所述第二频域资源在频域上完全重叠;所述第一数据信道位于所述第一频域资源上,所述第二数据信道位于所述第三频域资源上。
  2. 根据权利要求1所述的方法,其特征在于:
    所述第一数据包括基于待传输数据得到的第一冗余版本,所述第二数据包括基于所述待传输数据得到的第二冗余版本。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    对所述第一数据进行处理,若处理失败,则对所述第一数据和所述第二数据进行处理。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述方法还包括:
    从所述网络设备接收第二BWP的第二控制信息,所述第二控制信息用于指示第三数据信道;
    根据所述第二控制信息,从所述网络设备接收所述第三数据信道中承载的第三数据;
    其中,所述第三数据信道位于所述第三频域资源,所述第三数据信道的位置和所述第二数据信道的位置不重叠。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    从所述网络设备接收指示信息,所述指示信息用于指示所述第一控制信息的候选时频位置和所述第二BWP的第二控制信息的候选时频位置相同;
    在所述第一控制信息的候选时频位置上接收所述第一控制信息和所述第二控制信息。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    从所述网络设备接收所述第一BWP的搜索空间的配置参数,并根据所述第一BWP的搜索空间的配置参数确定所述第一控制信息的候选时频位置。
  7. 根据权利要求5或6所述的方法,其特征在于:
    所述第一控制信息的有效负荷大小和所述第二控制信息的有效负荷大小相等。
  8. 一种通信方法,其特征在于,所述方法包括:
    向终端设备发送第一BWP的第一控制信息,所述第一控制信息用于指示第一数据信道和第二数据信道;
    向所述终端设备发送承载在所述第一数据信道中的第一数据和承载在所述第二数据信道中的第二数据;
    其中,所述第一BWP包括第一频域资源和第二频域资源,第二BWP包括第三频域资源,所述第三频域资源和所述第二频域资源在频域上完全重叠;所述第一数据信道位于所述第一频域资源上,所述第二数据信道位于所述第三频域资源上。
  9. 根据权利要求8所述的方法,其特征在于:
    所述第一数据包括基于待传输数据得到的第一冗余版本,所述第二数据包括基于所述 待传输数据得到的第二冗余版本。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送第二BWP的第二控制信息,所述第二控制信息用于指示第三数据信道;
    其中,所述第三数据信道位于所述第三频域资源,所述第三数据信道的位置和所述第二数据信道的位置不重叠。
  11. 根据权利要求8至10中任一项所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送指示信息,所述指示信息用于指示所述第一控制信息的候选时频位置和所述第二BWP的第二控制信息的候选时频位置相同;
    在所述第一控制信息的候选时频位置上发送所述第一控制信息和/或所述第二控制信息。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    向所述终端设备发送所述第一BWP的搜索空间的配置参数。
  13. 根据权利要求11或12所述的方法,其特征在于:
    所述第一控制信息的有效负荷大小和所述第二控制信息的有效负荷大小相等。
  14. 一种装置,其特征在于,用于执行如权利要求1至13中任一项所述的方法。
  15. 一种装置,其特征在于,所述装置包括处理器、存储器以及存储在所述存储器上并可在所述处理器上运行的指令,当所述指令被运行时,使得所述装置执行如权利要求1至7中任一项所述的方法。
  16. 一种装置,其特征在于,所述装置包括处理器、存储器以及存储在所述存储器上并可在所述处理器上运行的指令,当所述指令被运行时,使得所述装置执行如权利要求8至13中任一项所述的方法。
  17. 一种终端设备,其特征在于,包括如权利要求15所述的装置。
  18. 一种网络设备,其特征在于,包括如权利要求16所述的装置。
  19. 一种计算机可读存储介质,其特征在于,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至13任一项所述的方法。
  20. 一种计算机程序产品,其特征在于,当其在计算机上运行时,使得计算机执行权利要求1至13任一项所述的方法。
PCT/CN2020/087890 2019-04-29 2020-04-29 一种通信方法及装置 WO2020221319A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20798495.6A EP3934147A4 (en) 2019-04-29 2020-04-29 METHOD AND COMMUNICATION DEVICE
US17/505,907 US12075435B2 (en) 2019-04-29 2021-10-20 Communication method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910356746.9A CN111865527B (zh) 2019-04-29 2019-04-29 一种通信方法及装置
CN201910356746.9 2019-04-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/505,907 Continuation US12075435B2 (en) 2019-04-29 2021-10-20 Communication method and apparatus

Publications (1)

Publication Number Publication Date
WO2020221319A1 true WO2020221319A1 (zh) 2020-11-05

Family

ID=72965524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087890 WO2020221319A1 (zh) 2019-04-29 2020-04-29 一种通信方法及装置

Country Status (4)

Country Link
US (1) US12075435B2 (zh)
EP (1) EP3934147A4 (zh)
CN (1) CN111865527B (zh)
WO (1) WO2020221319A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020254714A1 (en) * 2019-06-19 2020-12-24 Nokia Solutions And Networks Oy Translation of ue-specific frequency domain information among cells in fifth generation wireless networks
CN115604730A (zh) * 2021-07-08 2023-01-13 维沃移动通信有限公司(Cn) 传输方法、终端及网络侧设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108882376A (zh) * 2017-11-10 2018-11-23 华为技术有限公司 一种通信方法、装置以及系统
WO2019009665A1 (en) * 2017-07-06 2019-01-10 Lg Electronics Inc. METHOD AND APPARATUS FOR MANAGING MULTIPLE NUMEROLOGIES IN A WIRELESS COMMUNICATION SYSTEM
CN109600835A (zh) * 2017-09-30 2019-04-09 电信科学技术研究院 确定资源分配、指示资源分配的方法、终端及网络侧设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11832264B2 (en) * 2017-06-13 2023-11-28 Apple Inc. Enhancement on scheduling and HARQ-ACK feedback for URLLC, multiplexing scheme for control/data channel and DM-RS for NR, and activation mechanism, scheduling aspects, and synchronization signal (SS) blocks for new radio (NR) system with multiple bandwidth parts (BWPs)
CN109152019A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 资源映射的方法和装置
EP3672344B1 (en) * 2017-09-07 2023-05-10 Beijing Xiaomi Mobile Software Co., Ltd. Method and base station for avoiding inter-cell interference
US10716133B2 (en) * 2017-09-08 2020-07-14 Apple Inc. Enhancement of performance of ultra-reliable low-latency communication
WO2019051242A2 (en) * 2017-09-08 2019-03-14 Convida Wireless, Llc COMMUNICATION MANAGEMENT USING DOWNLINK COMMAND INFORMATION
WO2019050379A1 (en) * 2017-09-11 2019-03-14 Lg Electronics Inc. METHOD AND APPARATUS FOR TRANSMITTING DOWNLINK CONTROL INFORMATION IN WIRELESS COMMUNICATION SYSTEM
CN113517952A (zh) * 2017-09-30 2021-10-19 中兴通讯股份有限公司 确定时频资源的方法及装置
US11064434B2 (en) * 2017-10-31 2021-07-13 Asustek Computer Inc. Methods for performing communication for a cell
CN109922534B (zh) * 2017-12-13 2020-06-23 华硕电脑股份有限公司 随机接入程序期间处理带宽部分定时器的方法和设备
US10980051B2 (en) * 2018-01-22 2021-04-13 Qualcomm Incorporated Physical downlink control channel (PDCCH) repetition and decoding for ultra-reliability low latency communication (URLLC)
ES2800438T3 (es) * 2018-02-07 2020-12-30 Asustek Comp Inc Método y aparato para supervisar una indicación de transmisión interrumpida en un sistema de comunicación inalámbrica
US11006442B2 (en) * 2018-02-13 2021-05-11 Mediatek Singapore Pte. Ltd. Method and apparatus for bandwidth part switch operations in mobile communications
WO2019193422A2 (en) * 2018-04-06 2019-10-10 Lenovo (Singapore) Pte. Ltd. Configuring for bandwidth parts
US11701734B2 (en) * 2019-07-25 2023-07-18 The Esab Group, Inc. Apparatus and methods associated with operating a plasma torch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009665A1 (en) * 2017-07-06 2019-01-10 Lg Electronics Inc. METHOD AND APPARATUS FOR MANAGING MULTIPLE NUMEROLOGIES IN A WIRELESS COMMUNICATION SYSTEM
CN109600835A (zh) * 2017-09-30 2019-04-09 电信科学技术研究院 确定资源分配、指示资源分配的方法、终端及网络侧设备
CN108882376A (zh) * 2017-11-10 2018-11-23 华为技术有限公司 一种通信方法、装置以及系统

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GOOGLE INC.: ""Discussion on BWP Switching and LBT"", 3GPP TSG-RAN WG1 #96BIS R1-1904681, 29 March 2019 (2019-03-29), XP051699880, DOI: 20200620174951A *
NOKIA ET AL.: ""On the Remaining Wider-Band Aspects of NR"", 3GPP TSG-RAN WG1 MEETING #90 R1-1714094, 11 August 2017 (2017-08-11), XP051316884, DOI: 30A *
See also references of EP3934147A4 *

Also Published As

Publication number Publication date
US12075435B2 (en) 2024-08-27
CN111865527A (zh) 2020-10-30
CN111865527B (zh) 2021-10-01
US20220039075A1 (en) 2022-02-03
EP3934147A4 (en) 2022-06-01
EP3934147A1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
US9877278B2 (en) Monitoring a narrowband control channel for a wideband system to reduce power consumption
JP7304412B2 (ja) Nr-uにおける広帯域キャリア動作のためのレートマッチング
WO2020221055A1 (zh) 接收数据和发送数据的方法、通信装置
US11924141B2 (en) Communication method, network device, and terminal device
CN110830216A (zh) 确定载波聚合下监控pdcch候选数目的方法和装置
WO2018210243A1 (zh) 一种通信方法和装置
WO2020094110A1 (zh) 接收信号的方法、发送信号的方法及其装置
WO2018166421A1 (zh) 传输控制信息的方法、设备和系统
US11240798B2 (en) Transmission control method and apparatus
CN106797529B (zh) 用于减小带宽的机器型通信(mtc)设备的子带分配技术
US11109444B2 (en) Wireless communication method and apparatus for uplink transmission without scheduling
WO2013166715A1 (zh) 资源管理的方法和装置、小带宽用户设备以及用户设备
WO2021032021A1 (zh) 一种通信方法及装置
WO2020200086A1 (zh) 下行控制信息传输的方法、装置及系统
WO2020156559A1 (zh) 一种数据传输方法、网络设备和终端设备
EP3886507A1 (en) Method and apparatus for reducing terminal power consumption in wireless communication system
CN111436085B (zh) 通信方法及装置
US20210337477A1 (en) Communication method and apparatus
EP3562070B1 (en) Data receiving and transmitting method and receiving and transmitting device
US12075435B2 (en) Communication method and apparatus
WO2024093878A1 (zh) 一种通信方法及装置
US20210195645A1 (en) Communication method and communications apparatus for using unlicensed frequency band
WO2022117058A1 (zh) 数据传输方法及装置
WO2022252954A1 (zh) 资源配置的方法及装置
WO2022027524A1 (zh) 一种资源配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798495

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020798495

Country of ref document: EP

Effective date: 20210930

NENP Non-entry into the national phase

Ref country code: DE