WO2020221290A1 - 核电站在次临界状态下进行控制棒价值测量的方法和装置 - Google Patents

核电站在次临界状态下进行控制棒价值测量的方法和装置 Download PDF

Info

Publication number
WO2020221290A1
WO2020221290A1 PCT/CN2020/087752 CN2020087752W WO2020221290A1 WO 2020221290 A1 WO2020221290 A1 WO 2020221290A1 CN 2020087752 W CN2020087752 W CN 2020087752W WO 2020221290 A1 WO2020221290 A1 WO 2020221290A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
control rod
neutron
neutron detector
response
Prior art date
Application number
PCT/CN2020/087752
Other languages
English (en)
French (fr)
Inventor
谭世杰
Original Assignee
岭澳核电有限公司
广东核电合营有限公司
岭东核电有限公司
大亚湾核电运营管理有限责任公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岭澳核电有限公司, 广东核电合营有限公司, 岭东核电有限公司, 大亚湾核电运营管理有限责任公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 岭澳核电有限公司
Priority to EP20798619.1A priority Critical patent/EP3965121A4/en
Publication of WO2020221290A1 publication Critical patent/WO2020221290A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • G21C17/104Measuring reactivity
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/001Computer implemented control
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • G21C17/108Measuring reactor flux
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • This application relates to the technical field of rod control systems for mega-kilowatt nuclear power plants, and in particular to a method and device for measuring the value of control rods in nuclear power plants in a subcritical state.
  • Initiating the physical test is a comprehensive and direct test of the design of the PWR core.
  • the value measurement of the control rod is one of the longest and most important items.
  • the test method will be more time-consuming as the accuracy of the reactor's numerical calculation increases. Development in the direction of shorter and faster operation.
  • a power detector of the reactor After reaching the critical point, a power detector of the reactor is required to measure the value of the control rod.
  • this power detector also has a safety protection function. Therefore, when this power detector is occupied, the protection of the power detector to the reactor will be weakened.
  • One of the purposes of the embodiments of this application is to provide a method and device for measuring the value of control rods in nuclear power plants under sub-critical conditions, aiming to solve the problem of shortening the time occupied by the critical path and in other projects (such as in the critical operation Or drop rod test) At the same time the value of the control rod is measured, and the technical problem of not occupying the power detector when the value of the control rod is measured.
  • an embodiment of the present application provides a method for measuring the value of a control rod in a nuclear power plant in a subcritical state, and the method includes:
  • the value of the control rod is determined.
  • determining the value of the control rod according to the response value of the first neutron detector and the response value of the second neutron detector includes:
  • the response value of the first neutron detector, the response value of the second neutron detector and the effective value-added coefficient of the initial state obtain the effective value-added coefficient of the subcritical state
  • the value of the control rod is determined.
  • the above-mentioned obtaining the effective value-added coefficient of the subcritical state based on the response value of the first neutron detector, the response value of the second neutron detector and the effective value-added coefficient of the initial state includes:
  • Ma is the response value of the first neutron detector
  • Mb is the response value of the second neutron detector
  • is the neutron detection efficiency
  • S 0 is the intensity of the external neutron source
  • K effa is the effective increase coefficient of the initial state
  • K effb Is the effective value-added coefficient of the subcritical state
  • G1 is the space correction factor
  • G2 is the detector response correction factor.
  • determining the value of the control rod according to the effective value-added coefficient of the initial state and the effective value-added coefficient of the subcritical state includes:
  • is the value of the control rod.
  • the above-mentioned spatial correction factor is a relationship including a normalized external neutron source distribution function, a conjugate function, a neutron density distribution function, a reactor neutron generation operator, and a neutron velocity; where ,
  • the above conjugate function is the conjugate function of the neutron flux density function;
  • the above-mentioned detector response correction factor is a relational expression including a weight coefficient, a neutron density distribution function, and a neutron velocity.
  • is the normalized external neutron source distribution function
  • is the conjugate function
  • I is the neutron density distribution function
  • F is the neutron generation operator
  • v is the neutron velocity
  • w is the weight coefficient
  • ⁇ > represents the integral of space energy
  • the method before obtaining the response value of the second neutron detector of the nuclear reactor in the subcritical state, the method further includes:
  • the above-mentioned changing the relative position between the control rod and the core of the nuclear reactor includes:
  • the control rod falls into the core
  • control rod is lifted to the top of the core
  • control rod includes at least one of a safety control rod, a power control rod and a temperature control rod.
  • an embodiment of the present application provides a device for measuring the value of a control rod in a nuclear power plant in a subcritical state, and the device includes:
  • the first neutron detector response value acquiring module is used to acquire the first neutron detector response value of the nuclear reactor in the initial state
  • the second neutron detector response value acquiring module is used to acquire the second neutron detector response value of the nuclear reactor in the subcritical state
  • the control rod value determination module is used to determine the value of the control rod according to the response value of the first neutron detector and the response value of the second neutron detector.
  • control rod value determination module includes:
  • the first effective value-added coefficient sub-module is used to determine the effective value-added coefficient of the initial state
  • the second effective value-added coefficient sub-module is used to obtain the effective value-added coefficient of the subcritical state according to the response value of the first neutron detector, the response value of the second neutron detector and the effective value-added coefficient of the initial state;
  • the control rod value determination sub-module is used to determine the value of the control rod according to the effective value-added coefficient of the initial state and the effective value-added coefficient of the subcritical state.
  • the second effective value-added coefficient sub-module is specifically used according to the formula: Calculate the effective value-added coefficient of the subcritical state;
  • Ma is the response value of the first neutron detector
  • Mb is the response value of the second neutron detector
  • is the neutron detection efficiency
  • S 0 is the intensity of the external neutron source
  • K effa is the effective increase coefficient of the initial state
  • K effb Is the effective value-added coefficient of the subcritical state
  • G1 is the space correction factor
  • G2 is the detector response correction factor.
  • control rod value determination sub-module is specifically used according to the formula: Calculate the value of the control rod; where ⁇ is the value of the control rod.
  • the above-mentioned spatial correction factor is a relationship including a normalized external neutron source distribution function, a conjugate function, a neutron density distribution function, a reactor neutron generation operator, and a neutron velocity; where ,
  • the above conjugate function is the conjugate function of the neutron flux density function;
  • the above-mentioned detector response correction factor is a relational expression including a weight coefficient, a neutron density distribution function, and a neutron velocity.
  • the aforementioned spatial correction factor is:
  • the above-mentioned detector response correction factor is:
  • is the normalized external neutron source distribution function
  • is the conjugate function
  • I is the neutron density distribution function
  • F is the neutron generation operator
  • v is the neutron velocity
  • w is the weight coefficient
  • ⁇ > represents the integral of space energy
  • the device before the second neutron detector response value acquiring module, the device further includes:
  • the control rod position change module is used to change the relative position between the control rod and the core of the nuclear reactor to reach a subcritical state.
  • control rod position changing module is specifically used to control the control rod to fall into the core; or, to lift the control rod to the top of the core.
  • control rod includes at least one of a safety control rod, a power control rod and a temperature control rod.
  • an embodiment of the present application provides a computer device, including a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the above computer program:
  • the value of the control rod is determined.
  • an embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the value of the control rod is determined.
  • the beneficial effects of the embodiments of the present application are: obtaining the response value of the first neutron detector of the nuclear reactor in the initial state through the method and device for measuring the value of the control rod of a nuclear power plant in a subcritical state provided by the embodiments of the present application; obtaining the nuclear reactor The response value of the second neutron detector in the subcritical state; the value of the control rod is determined according to the response value of the first neutron detector and the response value of the second neutron detector.
  • the value of the control rod is determined according to the acquired response value of the first neutron detector and the response value of the second neutron detector, because it is not necessary to obtain the response value of the second neutron detector in the subcritical state. Occupied power detectors, that is, power detectors can still protect nuclear reactors, and therefore can improve the safety of nuclear reactors.
  • Fig. 1 is an application environment diagram of the method for measuring the value of control rods in a nuclear power plant in a subcritical state provided by an embodiment of the application;
  • FIG. 2 is a schematic flowchart of a method for measuring the value of control rods in a nuclear power plant in a subcritical state according to an embodiment of the application;
  • FIG. 3 is a schematic flowchart of the steps of determining the value of the control rod provided by an embodiment of the application
  • Fig. 4 is a structural block diagram of a device for measuring the value of control rods in a nuclear power plant in a subcritical state according to an embodiment of the application.
  • the method for measuring the value of control rods in a nuclear power plant in a subcritical state can be applied to the application environment as shown in FIG. 1.
  • the monitoring device 101 and the server 102 can communicate through a network.
  • the monitoring device monitors various parameters of the nuclear reactor, for example, the response value of the neutron detector can be measured.
  • the server 102 may be implemented as an independent server or a server cluster composed of multiple servers.
  • a method for measuring the value of control rods in a nuclear power plant in a subcritical state is provided. Taking the method applied to the server in FIG. 1 as an example for description, the method includes the following steps:
  • Step 201 Obtain the response value of the first neutron detector of the nuclear reactor in the initial state.
  • the state before the physical experiment of the nuclear reactor starts can be determined as the initial state.
  • the pressurized water reactor is in the normal shutdown mode of the steam generator SG cooling, the three main pumps are all in operation, and the temperature of the reactor coolant system RCP is 291.4°C and the pressure value is 155bar as the initial state.
  • the embodiment of the present application does not limit the initial state in detail, and can be set according to actual conditions.
  • the server can obtain the total number of neutrons in the reactor at this time from the monitoring device, that is, obtain the response value of the first neutron detector.
  • Step 202 Obtain the response value of the second neutron detector of the nuclear reactor in the subcritical state.
  • the nuclear reactor is brought to a subcritical state, and then the total number of neutrons in the subcritical state is detected by the monitoring device. Then, the server obtains the total number of neutrons in the reactor at this time from the monitoring device, that is, the first Two neutron detector response value.
  • the nuclear reactor can reach the sub-critical state, and the moving rod operation can be performed, for example, the rod dropping or lifting operation can be performed.
  • the second neutron detection response value is obtained during the operation of the moving rod. Since the criticality is not reached at this time, the power range of the power detector has not yet begun to measure, so the power detector will not be occupied and can still protect the nuclear reactor The role of safety, thereby improving the safety of nuclear reactors.
  • Step 203 Determine the value of the control rod according to the response value of the first neutron detector and the response value of the second neutron detector.
  • the response value of the first neutron detector and the response value of the second neutron detector can be determined from the initial state to The subcritical state controls the reactivity caused by the rod to determine the value of the control rod.
  • the response value of the first neutron detector of the nuclear reactor in the initial state is obtained; the response value of the second neutron detector of the nuclear reactor in the subcritical state is obtained; according to the response value of the first neutron detector And the second neutron detector response value to determine the value of the control rod.
  • the value of the control rod is determined according to the acquired response value of the first neutron detector and the response value of the second neutron detector, because it is not necessary to obtain the response value of the second neutron detector in the subcritical state. Occupied power detectors, that is, power detectors can still protect nuclear reactors, and therefore can improve the safety of nuclear reactors.
  • this embodiment relates to an optional process of determining the value of the control rod based on the response value of the first neutron detector and the response value of the second neutron detector.
  • the above step 203 may specifically include the following steps:
  • Step 301 Determine the effective value-added coefficient of the initial state.
  • the boron concentration of the primary loop can be measured in the initial state, and then the effective value-added coefficient of the initial state can be calculated according to the boron concentration of the primary loop.
  • Step 302 Obtain the effective value-added coefficient of the subcritical state according to the response value of the first neutron detector, the response value of the second neutron detector and the effective value-added coefficient of the initial state.
  • the effective value-added coefficient of the subcritical state can be obtained according to the following steps:
  • Ma is the response value of the first neutron detector
  • Mb is the response value of the second neutron detector
  • is the neutron detection efficiency
  • S 0 is the intensity of the external neutron source
  • K effa is the effective increase coefficient of the initial state
  • K effb Is the effective value-added coefficient of the subcritical state
  • G1 is the space correction factor
  • G2 is the detector response correction factor.
  • the specific process of formula (1) includes: Calculating the ratio of Mb to Ma can get formula (1). Since the first neutron detector response value Ma, the second neutron detector response value Mb, and the initial state effective value-added coefficient K effa are known values, the space correction factor G1 and the detector response correction factor G2 can be calculated The effective value-added coefficient K effb of the subcritical state is obtained .
  • the space correction factor G1 and the detector response correction factor G2 can be calculated as follows:
  • the neutron transport equation can be expressed as:
  • F is the reactor neutron generation operator
  • L is the reactor neutron loss operator
  • is the neutron flux density function
  • S is the intensity of the external neutron source
  • S S 0 ⁇ (r,E, ⁇ )
  • is the normalized external neutron source distribution function.
  • v is the neutron velocity
  • E is the energy
  • t is the time.
  • the function ⁇ that makes the formula (4) possible is the conjugate function of the neutron flux density function.
  • the conjugate function represents the relative value of introducing neutrons into the system or eliminating any local changes of neutrons from the system at point r. It is a measure of the importance of the point's influence on reactivity, and is also called a weight function.
  • Fd is the delayed neutron generation operator, and is defined as follows:
  • K eff can be regarded as a non-time-sensitive function, but can be approximated as K eff ⁇ 1; but K eff -1 is a time-sensitive function, so it is often There can be ⁇ K eff -1, so formula (7) can be transformed into:
  • the response value of the neutron detector can be expressed as an integral value weighted by the flux at each position of the core.
  • the flux at different positions has different weighting effects:
  • the aforementioned spatial correction factor G1 is a relational expression including a normalized external neutron source distribution function, conjugate function, neutron density distribution function, reactor neutron generation operator, and neutron velocity.
  • the spatial correction factor The above-mentioned detector response correction factor G2 is a relational expression including a weight coefficient, a neutron density distribution function, and a neutron velocity.
  • the detector response correction factor Among them, ⁇ is the normalized external neutron source distribution function, ⁇ is the conjugate function, Is the neutron density distribution function, F is the neutron generation operator, v is the neutron velocity; w is the weight coefficient, and ⁇ > represents the integral of space energy.
  • G1 can be derived from the experimental data.
  • different loadings under the same fuel management mode are regarded as When the disturbance occurs, there is an approximate G1.
  • the G1 of the previous cycle can also be obtained by the following formula based on the measured M and K eff :
  • the correction value is obtained, and then the G1 of the current cycle can be corrected according to the correction value, so as to solve the decoupling problem in the process of solving G1.
  • the above formula (2) modifies the point reactor value-added formula for the spatial effect, which can make the subsequently calculated control rod value more in line with the actual situation and more accurate.
  • Step 303 Determine the value of the control rod according to the effective value-added coefficient of the initial state and the effective value-added coefficient of the subcritical state.
  • the effective value-added coefficient of the initial state determines the effective value-added coefficient of the initial state; obtain the effective value-added coefficient of the subcritical state according to the response value of the first neutron detector, the response value of the second neutron detector and the effective value-added coefficient of the initial state; The value-added coefficient and the effective value-added coefficient of the subcritical state determine the value of the control rod.
  • the point-stack value-added formula is spatially revised, so that the point-stack value-added formula is more in line with actual conditions, and the calculated effective value-added coefficient of the subcritical state is more accurate, and the calculated value of the control rod is more accurate.
  • this embodiment relates to an optional process of determining the value of the control rod. Based on the embodiment shown in FIG. 2, the following steps may be further included before step 202:
  • control rod after starting the physical experiment, can be controlled to fall into the core; it can also be controlled to be lifted to the top of the core.
  • control rod includes at least one of a safety control rod, a power control rod and a temperature control rod.
  • the safety control rods, power control rods, and temperature control rods are all in the initial state outside the core, and the safety control rods can be dropped into the core to reach a subcritical state.
  • Control rod value It is also possible to drop the power control rod into the core to reach a subcritical state, and calculate the control rod value of the power control rod according to the embodiment shown in FIG. 2. It is also possible to drop the temperature control rod into the core to reach a subcritical state, and calculate the control rod value of the temperature control rod according to the embodiment shown in FIG. 2.
  • the safety control rods, power control rods, and temperature control rods are all in the initial state in the core. Lifting the safety control rods to the top of the core is the first critical state, and then lifting the power control rods to the top of the core. In the second critical state, the temperature control rod is finally lifted to the top of the core as the third critical state.
  • the control rod value of the safety control rod can be calculated based on the initial state and the first critical state; it can also be based on the initial state and the second critical state.
  • the subcritical state calculates the control rod value of the power control rod; the control rod value of the temperature control rod can also be calculated according to the initial state and the third critical state.
  • the above process of changing the relative position between the control rod and the core of the nuclear reactor to reach the subcritical state uses the moving rod operation in the critical process.
  • the response value of the second neutron detector in the subcritical state is obtained, so as to determine the value of the control rod and save the time for carving the rod.
  • a device for measuring the value of a control rod in a nuclear power plant in a subcritical state includes:
  • the first neutron detector response value obtaining module 401 is configured to obtain the first neutron detector response value of the nuclear reactor in the initial state
  • the second neutron detector response value obtaining module 402 is used to obtain the second neutron detector response value of the nuclear reactor in the subcritical state;
  • the control rod value determination module 403 is configured to determine the value of the control rod according to the response value of the first neutron detector and the response value of the second neutron detector.
  • control rod value determination module includes:
  • the first effective value-added coefficient sub-module is used to determine the effective value-added coefficient of the initial state
  • the second effective value-added coefficient sub-module is used to obtain the effective value-added coefficient of the subcritical state according to the response value of the first neutron detector, the response value of the second neutron detector and the effective value-added coefficient of the initial state;
  • the control rod value determination sub-module is used to determine the value of the control rod according to the effective value-added coefficient of the initial state and the effective value-added coefficient of the subcritical state.
  • the above-mentioned second effective value-added coefficient sub-module is specifically used according to the formula Calculate the effective value-added coefficient of the subcritical state
  • Ma is the response value of the first neutron detector
  • Mb is the response value of the second neutron detector
  • is the neutron detection efficiency
  • S 0 is the intensity of the external neutron source
  • K effa is the effective increase coefficient of the initial state
  • K effb Is the effective value-added coefficient of the subcritical state
  • G1 is the space correction factor
  • G2 is the detector response correction factor.
  • control rod value determination sub-module is specifically used to determine according to the formula Calculate the value of the control rod; where ⁇ is the value of the control rod.
  • the aforementioned spatial correction factor is a relational expression including a normalized external neutron source distribution function, a conjugate function, a neutron density distribution function, a reactor neutron generation operator, and a neutron velocity;
  • the above-mentioned detector response correction factor is a relational expression including a weight coefficient, a neutron density distribution function, and a neutron velocity.
  • the aforementioned spatial correction factor The above detector response correction factor
  • is the normalized external neutron source distribution function
  • is the conjugate function
  • I is the neutron density distribution function
  • F is the neutron generation operator
  • v is the neutron velocity
  • w is the weight coefficient
  • ⁇ > represents the integral of space energy
  • the device before the second neutron detector response value acquiring module, the device further includes:
  • the control rod position change module is used to change the relative position between the control rod and the core of the nuclear reactor to reach a subcritical state.
  • control rod position changing module is specifically used to control the control rod to fall into the core; or, to lift the control rod to the top of the core.
  • control rod includes at least one of a safety control rod, a power control rod and a temperature control rod.
  • the various modules in the device for measuring the value of the control rod in the above-mentioned nuclear power plant in a subcritical state can be implemented in whole or in part by software, hardware and a combination thereof.
  • the foregoing modules may be embedded in the form of hardware or independent of the processor in the computer device, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the foregoing modules.
  • a computer device including a memory and a processor, and a computer program is stored in the memory, and the processor implements the following steps when executing the computer program:
  • the value of the control rod is determined.
  • the processor further implements the following steps when executing the computer program:
  • the response value of the first neutron detector, the response value of the second neutron detector and the effective value-added coefficient of the initial state obtain the effective value-added coefficient of the subcritical state
  • the value of the control rod is determined.
  • the processor further implements the following steps when executing the computer program:
  • Ma is the response value of the first neutron detector
  • Mb is the response value of the second neutron detector
  • is the neutron detection efficiency
  • S 0 is the intensity of the external neutron source
  • K effa is the effective increase coefficient of the initial state
  • K effb Is the effective value-added coefficient of the subcritical state
  • G1 is the space correction factor
  • G2 is the detector response correction factor.
  • the processor further implements the following steps when executing the computer program:
  • is the value of the control rod.
  • the above-mentioned spatial correction factor is a relational expression including a normalized external neutron source distribution function, a conjugate function, a neutron density distribution function, a reactor neutron generation operator, and a neutron velocity; wherein, the above The conjugate function is the conjugate function of the neutron flux density function;
  • the above-mentioned detector response correction factor is a relational expression including a weight coefficient, a neutron density distribution function, and a neutron velocity.
  • is the normalized external neutron source distribution function
  • is the conjugate function
  • I is the neutron density distribution function
  • F is the neutron generation operator
  • v is the neutron velocity
  • w is the weight coefficient
  • ⁇ > represents the integral of space energy
  • the processor further implements the following steps when executing the computer program:
  • the processor further implements the following steps when executing the computer program:
  • the control rod falls into the core
  • control rod is lifted to the top of the core.
  • control rod includes at least one of a safety control rod, a power control rod and a temperature control rod.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the value of the control rod is determined.
  • the computer program further implements the following steps when being executed by the processor:
  • the response value of the first neutron detector, the response value of the second neutron detector and the effective value-added coefficient of the initial state obtain the effective value-added coefficient of the subcritical state
  • the value of the control rod is determined.
  • the computer program further implements the following steps when being executed by the processor:
  • Ma is the response value of the first neutron detector
  • Mb is the response value of the second neutron detector
  • is the neutron detection efficiency
  • S 0 is the intensity of the external neutron source
  • K effa is the effective increase coefficient of the initial state
  • K effb Is the effective value-added coefficient of the subcritical state
  • G1 is the space correction factor
  • G2 is the detector response correction factor.
  • the computer program further implements the following steps when being executed by the processor:
  • is the value of the control rod.
  • the above-mentioned spatial correction factor is a relationship including a normalized external neutron source distribution function, a conjugate function, a neutron density distribution function, a reactor neutron generation operator, and a neutron velocity;
  • the above-mentioned detector response correction factor is a relational expression including a weight coefficient, a neutron density distribution function, and a neutron velocity.
  • is the normalized external neutron source distribution function
  • is the conjugate function
  • I is the neutron density distribution function
  • F is the neutron generation operator
  • v is the neutron velocity
  • w is the weight coefficient
  • ⁇ > represents the integral of space energy
  • the computer program further implements the following steps when being executed by the processor:
  • the computer program further implements the following steps when being executed by the processor:
  • the control rod falls into the core
  • control rod is lifted to the top of the core.
  • control rod includes at least one of a safety control rod, a power control rod and a temperature control rod.
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

一种核电站在次临界状态下进行控制棒价值测量的方法和装置,包括:获取核反应堆在初始状态下的第一中子探测器响应值(S201);获取所述核反应堆在次临界状态下的第二中子探测器响应值(S202);根据所述第一中子探测器响应值和所述第二中子探测器响应值,确定控制棒价值(S203)。该方法和装置可以在测量控制棒价值时不占用功率探测器,功率探测器仍可以对核反应堆起保护作用,进而提升核反应堆的安全性。

Description

核电站在次临界状态下进行控制棒价值测量的方法和装置
本申请要求于2019年4月29日在中国专利局提交的、申请号为CN201910352853.4、发明名称为核电站在次临界状态下进行控制棒价值测量的方法和装置的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及百万千瓦级核电站棒控系统技术领域,特别是涉及一种核电站在次临界状态下进行控制棒价值测量的方法和装置。
背景技术
启动物理试验是对压水反应堆堆芯设计进行的全面直接检验,其中控制棒价值测量又是时间最长、最重要的项目之一,其试验方法随着反应堆数值计算精度的提高朝着时间更短、操作更快捷的方向发展。
由于在达临界后,需要反应堆的一个功率探测器进行控制棒价值测量。但是,这个功率探测器还具有安全保护功能,因此,在这个功率探测器被占用时,会减弱功率探测器对反应堆的保护。
技术问题
本申请实施例的目的之一在于:提供一种核电站在次临界状态下进行控制棒价值测量的方法和装置,旨在解决缩短占用关键路径时间、在其他项目中(如在达临界提棒操作或落棒试验中)同时进行控制棒价值测量,同时在进行控制棒价值测量时不占用功率探测器的技术问题。
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,本申请实施例提供了一种核电站在次临界状态下进行控制棒价值测量的方法,该方法包括:
获取核反应堆在初始状态下的第一中子探测器响应值;
获取核反应堆在次临界状态下的第二中子探测器响应值;
根据第一中子探测器响应值和第二中子探测器响应值,确定控制棒价值。
在其中的一个实施例中,上述根据第一中子探测器响应值和第二中子探测器响应值,确定控制棒价值,包括:
确定初始状态的有效增值系数;
根据第一中子探测器响应值、第二中子探测器响应值和初始状态的有效增值系数,获 取次临界状态的有效增值系数;
根据初始状态的有效增值系数和次临界状态的有效增值系数,确定控制棒价值。
在其中的一个实施例中,上述根据第一中子探测器响应值、第二中子探测器响应值和初始状态的有效增值系数,获取次临界状态的有效增值系数,包括:
根据公式
Figure PCTCN2020087752-appb-000001
计算次临界状态的有效增值系数;
其中,
Figure PCTCN2020087752-appb-000002
Ma为第一中子探测器响应值,Mb为第二中子探测器响应值,ε为中子探测效率,S 0为外中子源强度,K effa为初始状态的有效增值系数,K effb为次临界状态的有效增值系数,G1为空间修正因子,G2为探测器响应修正因子。
在其中的一个实施例中,上述根据初始状态的有效增值系数和次临界状态的有效增值系数,确定控制棒价值,包括:
根据公式
Figure PCTCN2020087752-appb-000003
计算控制棒价值;
其中,ρ为控制棒价值。
在其中的一个实施例中,上述空间修正因子为包括归一化的外中子源分布函数、共轭函数、中子密度分布函数、堆中子产生算符和中子速度的关系式;其中,上述共轭函数为中子通量密度函数的共轭函数;
上述探测器响应修正因子为包括权重系数、中子密度分布函数和中子速度的关系式。
在其中的一个实施例中,空间修正因子
Figure PCTCN2020087752-appb-000004
探测器响应修正因子
Figure PCTCN2020087752-appb-000005
其中,ξ为归一化的外中子源分布函数,ψ为共轭函数,
Figure PCTCN2020087752-appb-000006
为中子密度分布函数,F为堆中子产生算符、v为中子速度;w为权重系数,<>代表空间能量的积分。
在其中的一个实施例中,在上述获取核反应堆在次临界状态下的第二中子探测器响应值之前,该方法还包括:
改变控制棒与核反应堆的堆芯之间的相对位置,以达到次临界状态。
在其中的一个实施例中,上述改变控制棒与核反应堆的堆芯之间的相对位置,包括:
控制控制棒落入堆芯中;
或,控制控制棒提升至堆芯的顶部;
其中,控制棒包括安全控制棒、功率控制棒和温度控制棒中的至少一种。
第二方面,本申请实施例提供了一种核电站在次临界状态下进行控制棒价值测量的装置,该装置包括:
第一中子探测器响应值获取模块,用于获取核反应堆在初始状态下的第一中子探测器响应值;
第二中子探测器响应值获取模块,用于获取核反应堆在次临界状态下的第二中子探测器响应值;
控制棒价值确定模块,用于根据第一中子探测器响应值和第二中子探测器响应值,确定控制棒价值。
在其中的一个实施例中,上述控制棒价值确定模块包括:
第一有效增值系数子模块,用于确定初始状态的有效增值系数;
第二有效增值系数子模块,用于根据第一中子探测器响应值、第二中子探测器响应值和初始状态的有效增值系数,获取次临界状态的有效增值系数;
控制棒价值确定子模块,用于根据初始状态的有效增值系数和次临界状态的有效增值系数,确定控制棒价值。
在其中的一个实施例中,上述第二有效增值系数子模块,具体用于根据公式:
Figure PCTCN2020087752-appb-000007
计算次临界状态的有效增值系数;
其中,
Figure PCTCN2020087752-appb-000008
Ma为第一中子探测器响应值,Mb为第二中子探测器响应值,ε为中子探测效率,S 0为外中子源强度,K effa为初始状态的有效增值系数,K effb为次临界状态的有效增值系数,G1为空间修正因子,G2为探测器响应修正因子。
在其中的一个实施例中,上述控制棒价值确定子模块,具体用于根据公式:
Figure PCTCN2020087752-appb-000009
计算控制棒价值;其中,ρ为控制棒价值。
在其中的一个实施例中,上述空间修正因子为包括归一化的外中子源分布函数、共轭函数、中子密度分布函数、堆中子产生算符和中子速度的关系式;其中,上述共轭函数为中子通量密度函数的共轭函数;
上述探测器响应修正因子为包括权重系数、中子密度分布函数和中子速度的关系式。
在其中的一个实施例中,上述空间修正因子为:
Figure PCTCN2020087752-appb-000010
上述探测器响应修正因子为:
Figure PCTCN2020087752-appb-000011
其中,ξ为归一化的外中子源分布函数,ψ为共轭函数,
Figure PCTCN2020087752-appb-000012
为中子密度分布函数,F为堆中子产生算符、v为中子速度;w为权重系数,<>代表空间能量的积分。
在其中的一个实施例中,在第二中子探测器响应值获取模块之前,装置还包括:
控制棒位置改变模块,用于改变控制棒与核反应堆的堆芯之间的相对位置,以达到次临界状态。
在其中的一个实施例中,上述控制棒位置改变模块,具体用于控制控制棒落入堆芯中;或,控制控制棒提升至堆芯的顶部。
其中,控制棒包括安全控制棒、功率控制棒和温度控制棒中的至少一种。
第三方面,本申请实施例提供了一种计算机设备,包括存储器和处理器,该存储器存储有计算机程序,该处理器执行上述计算机程序时实现以下步骤:
获取核反应堆在初始状态下的第一中子探测器响应值;
获取核反应堆在次临界状态下的第二中子探测器响应值;
根据第一中子探测器响应值和第二中子探测器响应值,确定控制棒价值。
第四方面,本申请实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以下步骤:
获取核反应堆在初始状态下的第一中子探测器响应值;
获取核反应堆在次临界状态下的第二中子探测器响应值;
根据第一中子探测器响应值和第二中子探测器响应值,确定控制棒价值。
有益效果
本申请实施例的有益效果在于:通过本申请实施例提供的核电站在次临界状态下进行控制棒价值测量的方法和装置,获取核反应堆在初始状态下的第一中子探测器响应值;获取核反应堆在次临界状态下的第二中子探测器响应值;根据第一中子探测器响应值和第二中子探测器响应值,确定控制棒价值。通过本申请实施例,根据获取到的第一中子探测器响应值、第二中子探测器响应值确定控制棒价值,由于在获取次临界状态的第二中子探测器响应值时可以不占用功率探测器,即功率探测器仍可以对核反应堆起保护作用,因此可以提升核反应堆的安全性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的核电站在次临界状态下进行控制棒价值测量的方法的应用环境图;
图2为本申请实施例提供的核电站在次临界状态下进行控制棒价值测量的方法的流程示意图;
图3为本申请实施例提供的确定控制棒价值步骤的流程示意图;
图4为本申请实施例提供的核电站在次临界状态下进行控制棒价值测量的装置的结构框图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本申请提供的核电站在次临界状态下进行控制棒价值测量的方法,可以应用于如图1所示的应用环境中。其中,监控装置101与服务器102可以通过网络进行通信。监控装置对核反应堆的各项参数进行监控,例如可以测得中子探测器响应值等。服务器102可以用独立的服务器或者是多个服务器组成的服务器集群来实现。
在一个实施例中,如图2所示,提供了一种核电站在次临界状态下进行控制棒价值测量的方法,以该方法应用于图1中的服务器为例进行说明,包括以下步骤:
步骤201,获取核反应堆在初始状态下的第一中子探测器响应值。
本实施例中,可以将核反应堆启动物理实验前的状态确定为初始状态。例如,将压水 反应堆处于蒸汽发生器SG冷却正常停堆模式,三台主泵均处于运行状态,反应堆冷却剂系统RCP的温度为291.4℃、压力值为155bar确定为初始状态。本申请实施例对初始状态不作详细限定,可以根据实际情况进行设置。
在初始状态下,通过监测装置如中子探测器探测反应堆中子总数,服务器可以从监测装置获取此时的反应堆中子总数,即获取第一中子探测器响应值。
步骤202,获取核反应堆在次临界状态下的第二中子探测器响应值。
本实施例中,在启动物理实验后,使核反应堆达到次临界状态,然后通过监测装置探测次临界状态下反应堆中子总数,接着,服务器从监控装置获取此时的反应堆中子总数,即获取第二中子探测器响应值。
具体地,在启动物理实验后,使核反应堆达到次临界状态,可以进行动棒操作,比如进行落棒或者提棒操作。在这个动棒操作的过程中获取第二中子探测响应值,由于此时还未达临界,功率探测器的功率量程还未开始测量,因此功率探测器不会被占用,仍可以起保护核反应堆安全的作用,进而提高核反应堆的安全性。
步骤203,根据第一中子探测器响应值和第二中子探测器响应值,确定控制棒价值。
本实施例中,获取到第一中子探测器响应值和第二中子探测器响应值之后,根据第一中子探测器响应值和第二中子探测器响应值可以确定从初始状态到次临界状态控制棒引起的反应性,从而确定控制棒价值。
上述控制棒的测量方法中,获取核反应堆在初始状态下的第一中子探测器响应值;获取核反应堆在次临界状态下的第二中子探测器响应值;根据第一中子探测器响应值和第二中子探测器响应值,确定控制棒价值。通过本申请实施例,根据获取到的第一中子探测器响应值、第二中子探测器响应值确定控制棒价值,由于在获取次临界状态的第二中子探测器响应值时可以不占用功率探测器,即功率探测器仍可以对核反应堆起保护作用,因此可以提升核反应堆的安全性。
在另一个实施例中,如图3所示,本实施例涉及的是根据第一中子探测器响应值和第二中子探测器响应值确定控制棒价值的一种可选的过程。在上述图2所示实施例的基础上,上述步骤203具体可以包括以下步骤:
步骤301,确定初始状态的有效增值系数。
本实施例中,可以在初始状态时测量一回路硼浓度,然后根据一回路硼浓度计算初始状态的有效增值系数。
步骤302,根据第一中子探测器响应值、第二中子探测器响应值和初始状态的有效增值系数,获取次临界状态的有效增值系数。
本实施例中,获取到第一中子探测器响应值、第二中子探测器响应值,并计算出初始状态的有效增值系数后,可以根据如下步骤获取次临界状态的有效增值系数:
根据公式(1)计算临界状态的有效增值系数;
Figure PCTCN2020087752-appb-000013
其中,
Figure PCTCN2020087752-appb-000014
Ma为第一中子探测器响应值,Mb为第二中子探测器响应值,ε为中子探测效率,S 0为外中子源强度,K effa为初始状态的有效增值系数,K effb为次临界状态的有效增值系数,G1为空间修正因子,G2为探测器响应修正因子。
根据公式(2)得到公式(1)的具体过程包括:
Figure PCTCN2020087752-appb-000015
计算Mb与Ma的比值则可以得到公式(1)。由于第一中子探测器响应值Ma、第二中子探测器响应值Mb、初始状态的有效增值系数K effa为已知值,因此计算出空间修正因子G1和探测器响应修正因子G2即可以得到次临界状态的有效增值系数K effb
本实施例中,计算出空间修正因子G1和探测器响应修正因子G2可以通过如下推导:
在有外中子源情况下,中子输运方程可表示为:
Figure PCTCN2020087752-appb-000016
其中,F为堆中子产生算符,L为堆中子损失算符,Φ为中子通量密度函数,S为外中子源强度,且S=S 0ξ(r,E,Ω),ξ是归一化的外中子源分布函数。根据中子通量密度的定义可以得到Φ(r,E,t)=v(E)n(r,E,t)。其中,v为中子速度、E为能量,t为时间。
假设可以选取到适当的中子密度分布函数
Figure PCTCN2020087752-appb-000017
使得
Figure PCTCN2020087752-appb-000018
那么可以得到
Figure PCTCN2020087752-appb-000019
在次临界稳态工况下,中子密度的空间分布与振幅无关,因此在物理上是可行的。
设有函数ψ(r,E),可使得
Figure PCTCN2020087752-appb-000020
将满足公式(4)的ψ(r,E)乘以公式(3)并做空间能量的积分,则公式(3)的左端可以做如下变形:
Figure PCTCN2020087752-appb-000021
上述使公式(4)可以成立的函数ψ即为中子通量密度函数的共轭函数。共轭函数代表在r点向系统引入中子或者从系统消除中子的任何局部变化的相对价值,是该点对反应性影响重要程度的一种量度,也称为权重函数。
公式(3)的右端做如下变形:
Figure PCTCN2020087752-appb-000022
此处及以下用<>代表空间能量的积分。则中子输运方程(3)变形为
Figure PCTCN2020087752-appb-000023
将堆中子产生算符F设为F=(F-Fd)+Fd,Fd为缓发中子产生算符,并进行如下定义:
Figure PCTCN2020087752-appb-000024
Figure PCTCN2020087752-appb-000025
Figure PCTCN2020087752-appb-000026
Figure PCTCN2020087752-appb-000027
Figure PCTCN2020087752-appb-000028
其中,i=1…6,根据如上公式可以得到有外中子源情况下的中子动力学方程:
Figure PCTCN2020087752-appb-000029
Figure PCTCN2020087752-appb-000030
Figure PCTCN2020087752-appb-000031
则在有外中子源情况下的稳态动力学方程为:
Figure PCTCN2020087752-appb-000032
从次临界启动到临界的过程中,值变化一般很小,可把K eff视为不是时间敏感的函数,而可近似为K eff≈1;但K eff-1却是时间的敏感函数,故常可有ρ≈K eff-1,因此公式(7)则可以变形为:
Figure PCTCN2020087752-appb-000033
中子探测器响应值可以表达为对堆芯各个位置的通量加权的积分值,不同位置的通量有不同的权重影响:
Figure PCTCN2020087752-appb-000034
把公式(7)代入公式(8),可以得到:
Figure PCTCN2020087752-appb-000035
其中,
Figure PCTCN2020087752-appb-000036
上述空间修正因子G1为包括归一化的外中子源分布函数、共轭函数、中子密度分布函数、堆中子产生算符和中子速度的关系式。具体地,空间修正因子
Figure PCTCN2020087752-appb-000037
上述探测器响应修正因子G2为包括权重系数、中子密度分布函数和中子速度的关系式。具体地,探测器响应修正因子
Figure PCTCN2020087752-appb-000038
其中,ξ为归一化的外中子源分布函数,ψ为共轭函数,
Figure PCTCN2020087752-appb-000039
为中子密度分布函数,F为堆中子产生算符、v为中子速度;w为权重系数,<>代表空间能量的积分。
进一步地,G1的求解比较复杂,可以通过实验的实测数据来推导G1。根据已获得的多个循环的实验数据可知,在同一燃料管理模式下不同的装载看作是
Figure PCTCN2020087752-appb-000040
的扰动时,有近似的G1。此时前一循环的G1还可以根据实测的M和K eff,通过下式求出:
Figure PCTCN2020087752-appb-000041
根据求出的G1对前一个循环的G1进行修正后得到修正值,然后可以根据修正值对当前循环的G1进行修正,从而解决求解G1过程中解耦性问题。
上述公式(2)对点堆增值公式进行了空间效应的修正,可以使后续计算出的控制棒价值更符合实际情况,更加准确。
步骤303,根据初始状态的有效增值系数和次临界状态的有效增值系数,确定控制棒价值。
本实施例中,在得到初始状态的有效增值系数和次临界状态的有效增值系数之后,可以根据公式:
Figure PCTCN2020087752-appb-000042
计算控制棒价值;其中,ρ为控制棒价值。
上述,确定初始状态的有效增值系数;根据第一中子探测器响应值、第二中子探测器响应值和初始状态的有效增值系数,获取次临界状态的有效增值系数;根据初始状态的有效增值系数和次临界状态的有效增值系数,确定控制棒价值。通过本申请实施例,对点堆增值公式进行了空间修正,使点堆增值公式更符合实际情况,计算出的次临界状态的有效增值系数更加准确,进而使计算出的控制棒价值更加准确。
在另一个实施例中,本实施例涉及的是确定控制棒价值的一种可选的过程。在上述图2所示实施例的基础上,在步骤202之前还可以包括以下步骤:
改变控制棒与核反应堆的堆芯之间的相对位置,以达到次临界状态。
本实施例中,在启动物理实验后,可以控制控制棒落入堆芯中;也可以控制控制棒提升至堆芯的顶部。其中,控制棒包括安全控制棒、功率控制棒和温度控制棒中的至少一种。
例如,安全控制棒、功率控制棒和温度控制棒均在堆芯外为初始状态,可以将安全控制棒落入堆芯中达到次临界状态,根据图2所示的实施例计算安全控制棒的控制棒价值。也可以将功率控制棒落入堆芯中达到次临界状态,根据图2所示的实施例计算功率控制棒的控制棒价值。还可以将温度控制棒落入堆芯中达到次临界状态,根据图2所示的实施例计算温度控制棒的控制棒价值。
又例如,安全控制棒、功率控制棒和温度控制棒均在堆芯内为初始状态,将安全控制棒提到堆芯顶部为第一次临界状态,随后将功率控制棒提到堆芯顶部为第二次临界状态,最后将温度控制棒提到堆芯顶部为第三次临界状态,可以根据初始状态和第一次临界状态计算安全控制棒的控制棒价值;也可以根据初始状态和第二次临界状态计算功率控制棒的控制棒价值;还可以根据初始状态和第三次临界状态计算温度控制棒的控制棒价值。
本申请实施例不限于上述计算方式,可以根据实际情况进行设置。
上述改变控制棒与核反应堆的堆芯之间的相对位置,以达到次临界状态的过程,利用了临界过程中的动棒操作。在动棒操作过程中,获取次临界状态下的第二中子探测器响应值,从而确定控制棒价值,节省了刻棒时间。
应该理解的是,虽然图2-3的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图2-3中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些子步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
在一个实施例中,如图4所示,提供了一种核电站在次临界状态下进行控制棒价值测量的装置,该装置包括:
第一中子探测器响应值获取模块401,用于获取核反应堆在初始状态下的第一中子探测器响应值;
第二中子探测器响应值获取模块402,用于获取核反应堆在次临界状态下的第二中子探测器响应值;
控制棒价值确定模块403,用于根据第一中子探测器响应值和第二中子探测器响应值,确定控制棒价值。
在其中的一个实施例中,上述控制棒价值确定模块包括:
第一有效增值系数子模块,用于确定初始状态的有效增值系数;
第二有效增值系数子模块,用于根据第一中子探测器响应值、第二中子探测器响应值和初始状态的有效增值系数,获取次临界状态的有效增值系数;
控制棒价值确定子模块,用于根据初始状态的有效增值系数和次临界状态的有效增值系数,确定控制棒价值。
在其中的一个实施例中,上述第二有效增值系数子模块,具体用于根据公式
Figure PCTCN2020087752-appb-000043
计算次临界状态的有效增值系数;
其中,
Figure PCTCN2020087752-appb-000044
Ma为第一中子探测器响应值,Mb为第二中子探测器响应值,ε为中子探测效率,S 0为 外中子源强度,K effa为初始状态的有效增值系数,K effb为次临界状态的有效增值系数,G1为空间修正因子,G2为探测器响应修正因子。
在其中的一个实施例中,上述控制棒价值确定子模块,具体用于根据公式
Figure PCTCN2020087752-appb-000045
计算控制棒价值;其中,ρ为控制棒价值。
在其中的一个实施例中,上述空间修正因子为包括归一化的外中子源分布函数、共轭函数、中子密度分布函数、堆中子产生算符和中子速度的关系式;
上述探测器响应修正因子为包括权重系数、中子密度分布函数和中子速度的关系式。
在其中的一个实施例中,上述空间修正因子
Figure PCTCN2020087752-appb-000046
上述探测器响应修正因子
Figure PCTCN2020087752-appb-000047
其中,ξ为归一化的外中子源分布函数,ψ为共轭函数,
Figure PCTCN2020087752-appb-000048
为中子密度分布函数,F为堆中子产生算符、v为中子速度;w为权重系数,<>代表空间能量的积分。
在其中的一个实施例中,在第二中子探测器响应值获取模块之前,装置还包括:
控制棒位置改变模块,用于改变控制棒与核反应堆的堆芯之间的相对位置,以达到次临界状态。
在其中的一个实施例中,上述控制棒位置改变模块,具体用于控制控制棒落入堆芯中;或,控制控制棒提升至堆芯的顶部。
其中,控制棒包括安全控制棒、功率控制棒和温度控制棒中的至少一种。
关于核电站在次临界状态下进行控制棒价值测量的装置的具体限定可以参见上文中对于核电站在次临界状态下进行控制棒价值测量的方法的限定,在此不再赘述。上述核电站在次临界状态下进行控制棒价值测量的装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
获取核反应堆在初始状态下的第一中子探测器响应值;
获取核反应堆在次临界状态下的第二中子探测器响应值;
根据第一中子探测器响应值和第二中子探测器响应值,确定控制棒价值。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
确定初始状态的有效增值系数;
根据第一中子探测器响应值、第二中子探测器响应值和初始状态的有效增值系数,获取次临界状态的有效增值系数;
根据初始状态的有效增值系数和次临界状态的有效增值系数,确定控制棒价值。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
根据公式
Figure PCTCN2020087752-appb-000049
计算次临界状态的有效增值系数;
其中,
Figure PCTCN2020087752-appb-000050
Ma为第一中子探测器响应值,Mb为第二中子探测器响应值,ε为中子探测效率,S 0为外中子源强度,K effa为初始状态的有效增值系数,K effb为次临界状态的有效增值系数,G1为空间修正因子,G2为探测器响应修正因子。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
根据公式
Figure PCTCN2020087752-appb-000051
计算控制棒价值;
其中,ρ为控制棒价值。
在一个实施例中,上述空间修正因子为包括归一化的外中子源分布函数、共轭函数、中子密度分布函数、堆中子产生算符和中子速度的关系式;其中,上述共轭函数为中子通量密度函数的共轭函数;
上述探测器响应修正因子为包括权重系数、中子密度分布函数和中子速度的关系式。
在一个实施例中,空间修正因子
Figure PCTCN2020087752-appb-000052
探测器响应修正因子
Figure PCTCN2020087752-appb-000053
其中,ξ为归一化的外中子源分布函数,ψ为共轭函数,
Figure PCTCN2020087752-appb-000054
为中子密度分布函数,F为堆中子产生算符、v为中子速度;w为权重系数,<>代表空间能量的积分。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
改变控制棒与核反应堆的堆芯之间的相对位置,以达到次临界状态。
在一个实施例中,处理器执行计算机程序时还实现以下步骤:
控制控制棒落入堆芯中;
或,控制控制棒提升至堆芯的顶部。
其中,控制棒包括安全控制棒、功率控制棒和温度控制棒中的至少一种。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
获取核反应堆在初始状态下的第一中子探测器响应值;
获取核反应堆在次临界状态下的第二中子探测器响应值;
根据第一中子探测器响应值和第二中子探测器响应值,确定控制棒价值。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
确定初始状态的有效增值系数;
根据第一中子探测器响应值、第二中子探测器响应值和初始状态的有效增值系数,获取次临界状态的有效增值系数;
根据初始状态的有效增值系数和次临界状态的有效增值系数,确定控制棒价值。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
根据公式
Figure PCTCN2020087752-appb-000055
计算次临界状态的有效增值系数;
其中,
Figure PCTCN2020087752-appb-000056
Ma为第一中子探测器响应值,Mb为第二中子探测器响应值,ε为中子探测效率,S 0为外中子源强度,K effa为初始状态的有效增值系数,K effb为次临界状态的有效增值系数,G1为空间修正因子,G2为探测器响应修正因子。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
根据公式
Figure PCTCN2020087752-appb-000057
计算控制棒价值;
其中,ρ为控制棒价值。
在一个实施例中,上述空间修正因子为包括归一化的外中子源分布函数、共轭函数、中子密度分布函数、堆中子产生算符和中子速度的关系式;
上述探测器响应修正因子为包括权重系数、中子密度分布函数和中子速度的关系式。
在一个实施例中,空间修正因子
Figure PCTCN2020087752-appb-000058
探测器响应修正因子
Figure PCTCN2020087752-appb-000059
其中,ξ为归一化的外中子源分布函数,ψ为共轭函数,
Figure PCTCN2020087752-appb-000060
为中子密度分布函数,F为堆中子产生算符、v为中子速度;w为权重系数,<>代表空间能量的积分。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
改变控制棒与核反应堆的堆芯之间的相对位置,以达到次临界状态。
在一个实施例中,计算机程序被处理器执行时还实现以下步骤:
控制控制棒落入堆芯中;
或,控制控制棒提升至堆芯的顶部。
其中,控制棒包括安全控制棒、功率控制棒和温度控制棒中的至少一种。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (16)

  1. 一种核电站在次临界状态下进行控制棒价值测量的方法,其特征在于,所述方法包括:
    获取核反应堆在初始状态下的第一中子探测器响应值;
    获取所述核反应堆在次临界状态下的第二中子探测器响应值;
    根据所述第一中子探测器响应值和所述第二中子探测器响应值,确定所述控制棒价值。
  2. 根据权利要求1所述的方法,其特征在于,根据所述第一中子探测器响应值和所述第二中子探测器响应值,确定所述控制棒价值,包括:
    确定所述初始状态的有效增值系数;
    根据所述第一中子探测器响应值、所述第二中子探测器响应值和所述初始状态的有效增值系数,获取所述次临界状态的有效增值系数;
    根据所述初始状态的有效增值系数和所述次临界状态的有效增值系数,确定所述控制棒价值。
  3. 根据权利要求2所述的方法,其特征在于,根据所述第一中子探测器响应值、所述第二中子探测器响应值和所述初始状态的有效增值系数,获取所述次临界状态的有效增值系数,包括:
    根据公式
    Figure PCTCN2020087752-appb-100001
    计算所述次临界状态的有效增值系数;
    其中,
    Figure PCTCN2020087752-appb-100002
    Ma为所述第一中子探测器响应值,Mb为所述第二中子探测器响应值,ε为中子探测效率,S 0为外中子源强度,K effa为所述初始状态的有效增值系数,K effb为所述次临界状态的有效增值系数,G1为空间修正因子,G2为探测器响应修正因子。
  4. 根据权利要求3所述的方法,其特征在于,根据所述初始状态的有效增值系数和所述次临界状态的有效增值系数,确定所述控制棒价值,包括:
    根据公式
    Figure PCTCN2020087752-appb-100003
    计算所述控制棒价值;
    其中,ρ为控制棒价值。
  5. 根据权利要求3所述的方法,其特征在于,所述空间修正因子为包括归一化的外中子源分布函数、共轭函数、中子密度分布函数、堆中子产生算符和中子速度的关系式;
    所述探测器响应修正因子为包括权重系数、中子密度分布函数和中子速度的关系式。
  6. 根据权利要求5所述的方法,其特征在于,所述空间修正因子
    Figure PCTCN2020087752-appb-100004
    所述探测器响应修正因子
    Figure PCTCN2020087752-appb-100005
    其中,ξ为所述归一化的外中子源分布函数,ψ为所述共轭函数,
    Figure PCTCN2020087752-appb-100006
    为所述中子密度分布函数,F为所述堆中子产生算符、v为所述中子速度;w为所述权重系数,<>代表空间能量的积分。
  7. 根据权利要求1所述的方法,其特征在于,在所述获取所述核反应堆在次临界状态下的第二中子探测器响应值之前,还包括:
    改变所述控制棒与所述核反应堆的堆芯之间的相对位置,以达到所述次临界状态。
  8. 根据权利要求7所述的方法,其特征在于,改变所述控制棒与所述核反应堆的堆芯之间的相对位置,包括:
    控制所述控制棒落入所述堆芯中;
    或,控制所述控制棒提升至所述堆芯的顶部;
    其中,所述控制棒包括安全控制棒、功率控制棒和温度控制棒中的至少一种。
  9. 一种核电站在次临界状态下进行控制棒价值测量的装置,其特征在于,所述装置包括:
    第一中子探测器响应值获取模块,用于获取核反应堆在初始状态下的第一中子探测器响应值;
    第二中子探测器响应值获取模块,用于获取核反应堆在次临界状态下的第二中子探测器响应值;
    控制棒价值确定模块,用于根据第一中子探测器响应值和第二中子探测器响应值,确定控制棒价值。
  10. 根据权利要求9所述的装置,其特征在于,所述控制棒价值确定模块包括:
    第一有效增值系数子模块,用于确定初始状态的有效增值系数;
    第二有效增值系数子模块,用于根据第一中子探测器响应值、第二中子探测器响应值和初始状态的有效增值系数,获取次临界状态的有效增值系数;
    控制棒价值确定子模块,用于根据初始状态的有效增值系数和次临界状态的有效增值系数,确定控制棒价值。
  11. 根据权利要求10所述的装置,其特征在于,所述第二有效增值系数子模块,用于 根据公式
    Figure PCTCN2020087752-appb-100007
    计算次临界状态的有效增值系数;
    其中,
    Figure PCTCN2020087752-appb-100008
    Ma为第一中子探测器响应值,Mb为第二中子探测器响应值,ε为中子探测效率,S 0为外中子源强度,K effa为初始状态的有效增值系数,K effb为次临界状态的有效增值系数,G1为空间修正因子,G2为探测器响应修正因子。
  12. 根据权利要求10所述的装置,其特征在于,所述控制棒价值确定子模块,用于根据公式
    Figure PCTCN2020087752-appb-100009
    计算控制棒价值,其中,ρ为控制棒价值。
  13. 根据权利要求9所述的装置,其特征在于,在第二中子探测器响应值获取模块之前,装置还包括:
    控制棒位置改变模块,用于改变控制棒与核反应堆的堆芯之间的相对位置,以达到次临界状态。
  14. 根据权利要求13所述的装置,其特征在于,所述控制棒位置改变模块,用于控制控制棒落入堆芯中;或,控制控制棒提升至堆芯的顶部。
  15. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至8中任一项所述方法的步骤。
  16. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至8中任一项所述的方法的步骤。
PCT/CN2020/087752 2019-04-29 2020-04-29 核电站在次临界状态下进行控制棒价值测量的方法和装置 WO2020221290A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20798619.1A EP3965121A4 (en) 2019-04-29 2020-04-29 METHOD AND DEVICE FOR MEASUREMENT OF THE CONTROL ROD IN THE SUBCRITICAL CONDITION OF A NUCLEAR POWER PLANT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910352853.4 2019-04-29
CN201910352853.4A CN110010256B (zh) 2019-04-29 2019-04-29 核电站在次临界状态下进行控制棒价值测量的方法和装置

Publications (1)

Publication Number Publication Date
WO2020221290A1 true WO2020221290A1 (zh) 2020-11-05

Family

ID=67174951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087752 WO2020221290A1 (zh) 2019-04-29 2020-04-29 核电站在次临界状态下进行控制棒价值测量的方法和装置

Country Status (3)

Country Link
EP (1) EP3965121A4 (zh)
CN (1) CN110010256B (zh)
WO (1) WO2020221290A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114783637A (zh) * 2022-04-20 2022-07-22 西安交通大学 一种压水堆多燃料循环动态刻棒空间修正因子计算方法
CN116469589A (zh) * 2023-05-12 2023-07-21 西安交通大学 一种基于达临界提棒过程的次临界状态刻棒方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110010256B (zh) * 2019-04-29 2021-07-20 岭澳核电有限公司 核电站在次临界状态下进行控制棒价值测量的方法和装置
CN111403058B (zh) * 2020-03-26 2022-05-03 广西防城港核电有限公司 核反应堆的控制棒价值测量方法
CN112885413B (zh) * 2021-01-12 2024-02-20 中国原子能科学研究院 模拟核反应堆临界实验的方法
CN114171220B (zh) * 2021-12-03 2024-02-20 中国原子能科学研究院 控制棒和/或控制鼓积分价值测量方法及装置
CN114694862A (zh) * 2022-04-02 2022-07-01 中广核工程有限公司 核电厂功率分布测量方法、装置及系统
CN114822882B (zh) * 2022-04-15 2024-07-02 哈尔滨工程大学 核反应堆控制棒的控制棒价值及不确定性计算方法、电子设备和计算机可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148524A (ja) * 2014-02-07 2015-08-20 株式会社グローバル・ニュークリア・フュエル・ジャパン 原子炉の制御棒価値を求める方法、プログラム、記録媒体、およびシステム
CN105895174A (zh) * 2016-05-06 2016-08-24 中国核动力研究设计院 一种压水堆控制棒价值计算方法
CN106531254A (zh) * 2016-10-20 2017-03-22 中核核电运行管理有限公司 一种新的控制棒价值测量方法
CN108492898A (zh) * 2018-03-15 2018-09-04 岭东核电有限公司 百万千瓦级核电站的控制棒价值测量方法和装置
CN109273119A (zh) * 2018-09-13 2019-01-25 中国核动力研究设计院 在临界装置上测量大反应性时优化中子探测器位置的方法
CN110010256A (zh) * 2019-04-29 2019-07-12 岭澳核电有限公司 核电站在次临界状态下进行控制棒价值测量的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104916337B (zh) * 2014-03-14 2017-11-24 江苏核电有限公司 一种控制棒微积分价值测量试验的数据处理方法
US20170140842A1 (en) * 2015-11-12 2017-05-18 Westinghouse Electric Company Llc Subcritical Reactivity Monitor Utilizing Prompt Self-Powered Incore Detectors
CN107170498B (zh) * 2017-05-25 2018-11-02 中国核动力研究设计院 具有在线动态刻度控制棒价值功能的反应性仪
CN108053892B (zh) * 2017-12-08 2019-07-16 中国核动力研究设计院 一种船用反应堆反应性控制方法
CN109117591B (zh) * 2018-09-13 2022-10-04 中国核动力研究设计院 一种基于多探测器测量信号的动态反应性测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015148524A (ja) * 2014-02-07 2015-08-20 株式会社グローバル・ニュークリア・フュエル・ジャパン 原子炉の制御棒価値を求める方法、プログラム、記録媒体、およびシステム
CN105895174A (zh) * 2016-05-06 2016-08-24 中国核动力研究设计院 一种压水堆控制棒价值计算方法
CN106531254A (zh) * 2016-10-20 2017-03-22 中核核电运行管理有限公司 一种新的控制棒价值测量方法
CN108492898A (zh) * 2018-03-15 2018-09-04 岭东核电有限公司 百万千瓦级核电站的控制棒价值测量方法和装置
CN109273119A (zh) * 2018-09-13 2019-01-25 中国核动力研究设计院 在临界装置上测量大反应性时优化中子探测器位置的方法
CN110010256A (zh) * 2019-04-29 2019-07-12 岭澳核电有限公司 核电站在次临界状态下进行控制棒价值测量的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3965121A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114783637A (zh) * 2022-04-20 2022-07-22 西安交通大学 一种压水堆多燃料循环动态刻棒空间修正因子计算方法
CN114783637B (zh) * 2022-04-20 2024-04-26 西安交通大学 一种压水堆多燃料循环动态刻棒空间修正因子计算方法
CN116469589A (zh) * 2023-05-12 2023-07-21 西安交通大学 一种基于达临界提棒过程的次临界状态刻棒方法
CN116469589B (zh) * 2023-05-12 2023-12-19 西安交通大学 一种基于达临界提棒过程的次临界状态刻棒方法

Also Published As

Publication number Publication date
EP3965121A4 (en) 2022-05-18
CN110010256A (zh) 2019-07-12
EP3965121A1 (en) 2022-03-09
CN110010256B (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
WO2020221290A1 (zh) 核电站在次临界状态下进行控制棒价值测量的方法和装置
Geelhood et al. FRAPTRAN 1.4: a computer code for the transient analysis of oxide fuel rods
KR101577095B1 (ko) 미임계 반응도 측정 방법
JP6771553B2 (ja) 迅速応答自己給電型炉内検出器を用いる臨界未満反応度監視装置
CN108492898B (zh) 百万千瓦级核电站的控制棒价值测量方法和装置
JP7308009B2 (ja) 未臨界炉心反応度バイアスを予想する方法
Piro et al. Coupled thermochemical, isotopic evolution and heat transfer simulations in highly irradiated UO2 nuclear fuel
Rossiter Development of the ENIGMA fuel performance code for whole core analysis and dry storage assessments
KR102324497B1 (ko) 원자로 운전정지기간 중 붕소 희석도를 모니터링하는 방법
CN106448775B (zh) 一种核电站反应堆保护系统安全参数监控装置与方法
Ji et al. Impact of photoneutrons on reactivity measurements for TMSR-SF1
CN113990406A (zh) 核电厂一回路热平衡测量试验条件验证方法和系统
WO2024040872A1 (zh) 反应堆中修复组件的入堆可行性方法、装置及设备
US20210098139A1 (en) Method for monitoring a nuclear core comprising a relaxation of a threshold, and associated programme, support and nuclear reactor
Shimskey et al. Optimization of Hydride Rim Formation in Unirradiated Zr 4 Cladding
US20220051824A1 (en) Method for protecting a nuclear reactor and corresponding nuclear reactor
RU2465660C1 (ru) Способ определения парового коэффициента реактивности
JP2019179018A (ja) 未臨界性評価装置、未臨界性評価方法及び未臨界性評価プログラム
Beeny MELCOR Integrated Severe Accident Code for Molten Salt Reactor Applications Including Fluid-Fuel Point Reactor Kinetics Equations.
CN113487464B (zh) 核电厂事故管理方法、装置、计算机设备和存储介质
CN117747157A (zh) 核反应堆的数据修正方法、装置、计算机设备和存储介质
CN118072995A (zh) 压水堆核电站一回路泄漏率不确定度监测方法和装置
Pastore et al. Modelling of the gadolinium fuel test IFA-681 using the BISON code
Klein et al. Tritium accountancy in fusion systems
CN117594267A (zh) 堆芯中子学模型的修正方法、装置、设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20798619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020798619

Country of ref document: EP

Effective date: 20211129